OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gas/] [doc/] [c-mips.texi] - Diff between revs 147 and 160

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 147 Rev 160
@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1999, 2000, 2001,
@c Copyright 1991, 1992, 1993, 1994, 1995, 1997, 1999, 2000, 2001,
@c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
@c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
@c Free Software Foundation, Inc.
@c Free Software Foundation, Inc.
@c This is part of the GAS manual.
@c This is part of the GAS manual.
@c For copying conditions, see the file as.texinfo.
@c For copying conditions, see the file as.texinfo.
@ifset GENERIC
@ifset GENERIC
@page
@page
@node MIPS-Dependent
@node MIPS-Dependent
@chapter MIPS Dependent Features
@chapter MIPS Dependent Features
@end ifset
@end ifset
@ifclear GENERIC
@ifclear GENERIC
@node Machine Dependencies
@node Machine Dependencies
@chapter MIPS Dependent Features
@chapter MIPS Dependent Features
@end ifclear
@end ifclear
 
 
@cindex MIPS processor
@cindex MIPS processor
@sc{gnu} @code{@value{AS}} for @sc{mips} architectures supports several
@sc{gnu} @code{@value{AS}} for @sc{mips} architectures supports several
different @sc{mips} processors, and MIPS ISA levels I through V, MIPS32,
different @sc{mips} processors, and MIPS ISA levels I through V, MIPS32,
and MIPS64.  For information about the @sc{mips} instruction set, see
and MIPS64.  For information about the @sc{mips} instruction set, see
@cite{MIPS RISC Architecture}, by Kane and Heindrich (Prentice-Hall).
@cite{MIPS RISC Architecture}, by Kane and Heindrich (Prentice-Hall).
For an overview of @sc{mips} assembly conventions, see ``Appendix D:
For an overview of @sc{mips} assembly conventions, see ``Appendix D:
Assembly Language Programming'' in the same work.
Assembly Language Programming'' in the same work.
 
 
@menu
@menu
* MIPS Opts::           Assembler options
* MIPS Opts::           Assembler options
* MIPS Object::         ECOFF object code
* MIPS Object::         ECOFF object code
* MIPS Stabs::          Directives for debugging information
* MIPS Stabs::          Directives for debugging information
* MIPS ISA::            Directives to override the ISA level
* MIPS ISA::            Directives to override the ISA level
* MIPS symbol sizes::   Directives to override the size of symbols
* MIPS symbol sizes::   Directives to override the size of symbols
* MIPS autoextend::     Directives for extending MIPS 16 bit instructions
* MIPS autoextend::     Directives for extending MIPS 16 bit instructions
* MIPS insn::           Directive to mark data as an instruction
* MIPS insn::           Directive to mark data as an instruction
* MIPS option stack::   Directives to save and restore options
* MIPS option stack::   Directives to save and restore options
* MIPS ASE instruction generation overrides:: Directives to control
* MIPS ASE instruction generation overrides:: Directives to control
                        generation of MIPS ASE instructions
                        generation of MIPS ASE instructions
* MIPS floating-point:: Directives to override floating-point options
* MIPS floating-point:: Directives to override floating-point options
* MIPS Syntax::         MIPS specific syntactical considerations
* MIPS Syntax::         MIPS specific syntactical considerations
@end menu
@end menu
 
 
@node MIPS Opts
@node MIPS Opts
@section Assembler options
@section Assembler options
 
 
The @sc{mips} configurations of @sc{gnu} @code{@value{AS}} support these
The @sc{mips} configurations of @sc{gnu} @code{@value{AS}} support these
special options:
special options:
 
 
@table @code
@table @code
@cindex @code{-G} option (MIPS)
@cindex @code{-G} option (MIPS)
@item -G @var{num}
@item -G @var{num}
This option sets the largest size of an object that can be referenced
This option sets the largest size of an object that can be referenced
implicitly with the @code{gp} register.  It is only accepted for targets
implicitly with the @code{gp} register.  It is only accepted for targets
that use @sc{ecoff} format.  The default value is 8.
that use @sc{ecoff} format.  The default value is 8.
 
 
@cindex @code{-EB} option (MIPS)
@cindex @code{-EB} option (MIPS)
@cindex @code{-EL} option (MIPS)
@cindex @code{-EL} option (MIPS)
@cindex MIPS big-endian output
@cindex MIPS big-endian output
@cindex MIPS little-endian output
@cindex MIPS little-endian output
@cindex big-endian output, MIPS
@cindex big-endian output, MIPS
@cindex little-endian output, MIPS
@cindex little-endian output, MIPS
@item -EB
@item -EB
@itemx -EL
@itemx -EL
Any @sc{mips} configuration of @code{@value{AS}} can select big-endian or
Any @sc{mips} configuration of @code{@value{AS}} can select big-endian or
little-endian output at run time (unlike the other @sc{gnu} development
little-endian output at run time (unlike the other @sc{gnu} development
tools, which must be configured for one or the other).  Use @samp{-EB}
tools, which must be configured for one or the other).  Use @samp{-EB}
to select big-endian output, and @samp{-EL} for little-endian.
to select big-endian output, and @samp{-EL} for little-endian.
 
 
@item -KPIC
@item -KPIC
@cindex PIC selection, MIPS
@cindex PIC selection, MIPS
@cindex @option{-KPIC} option, MIPS
@cindex @option{-KPIC} option, MIPS
Generate SVR4-style PIC.  This option tells the assembler to generate
Generate SVR4-style PIC.  This option tells the assembler to generate
SVR4-style position-independent macro expansions.  It also tells the
SVR4-style position-independent macro expansions.  It also tells the
assembler to mark the output file as PIC.
assembler to mark the output file as PIC.
 
 
@item -mvxworks-pic
@item -mvxworks-pic
@cindex @option{-mvxworks-pic} option, MIPS
@cindex @option{-mvxworks-pic} option, MIPS
Generate VxWorks PIC.  This option tells the assembler to generate
Generate VxWorks PIC.  This option tells the assembler to generate
VxWorks-style position-independent macro expansions.
VxWorks-style position-independent macro expansions.
 
 
@cindex MIPS architecture options
@cindex MIPS architecture options
@item -mips1
@item -mips1
@itemx -mips2
@itemx -mips2
@itemx -mips3
@itemx -mips3
@itemx -mips4
@itemx -mips4
@itemx -mips5xo
@itemx -mips5xo
@itemx -mips32
@itemx -mips32
@itemx -mips32r2
@itemx -mips32r2
@itemx -mips64
@itemx -mips64
@itemx -mips64r2
@itemx -mips64r2
Generate code for a particular MIPS Instruction Set Architecture level.
Generate code for a particular MIPS Instruction Set Architecture level.
@samp{-mips1} corresponds to the @sc{r2000} and @sc{r3000} processors,
@samp{-mips1} corresponds to the @sc{r2000} and @sc{r3000} processors,
@samp{-mips2} to the @sc{r6000} processor, @samp{-mips3} to the
@samp{-mips2} to the @sc{r6000} processor, @samp{-mips3} to the
@sc{r4000} processor, and @samp{-mips4} to the @sc{r8000} and
@sc{r4000} processor, and @samp{-mips4} to the @sc{r8000} and
@sc{r10000} processors.  @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2},
@sc{r10000} processors.  @samp{-mips5}, @samp{-mips32}, @samp{-mips32r2},
@samp{-mips64}, and @samp{-mips64r2}
@samp{-mips64}, and @samp{-mips64r2}
correspond to generic
correspond to generic
@sc{MIPS V}, @sc{MIPS32}, @sc{MIPS32 Release 2}, @sc{MIPS64},
@sc{MIPS V}, @sc{MIPS32}, @sc{MIPS32 Release 2}, @sc{MIPS64},
and @sc{MIPS64 Release 2}
and @sc{MIPS64 Release 2}
ISA processors, respectively.  You can also switch
ISA processors, respectively.  You can also switch
instruction sets during the assembly; see @ref{MIPS ISA, Directives to
instruction sets during the assembly; see @ref{MIPS ISA, Directives to
override the ISA level}.
override the ISA level}.
 
 
@item -mgp32
@item -mgp32
@itemx -mfp32
@itemx -mfp32
Some macros have different expansions for 32-bit and 64-bit registers.
Some macros have different expansions for 32-bit and 64-bit registers.
The register sizes are normally inferred from the ISA and ABI, but these
The register sizes are normally inferred from the ISA and ABI, but these
flags force a certain group of registers to be treated as 32 bits wide at
flags force a certain group of registers to be treated as 32 bits wide at
all times.  @samp{-mgp32} controls the size of general-purpose registers
all times.  @samp{-mgp32} controls the size of general-purpose registers
and @samp{-mfp32} controls the size of floating-point registers.
and @samp{-mfp32} controls the size of floating-point registers.
 
 
The @code{.set gp=32} and @code{.set fp=32} directives allow the size
The @code{.set gp=32} and @code{.set fp=32} directives allow the size
of registers to be changed for parts of an object. The default value is
of registers to be changed for parts of an object. The default value is
restored by @code{.set gp=default} and @code{.set fp=default}.
restored by @code{.set gp=default} and @code{.set fp=default}.
 
 
On some MIPS variants there is a 32-bit mode flag; when this flag is
On some MIPS variants there is a 32-bit mode flag; when this flag is
set, 64-bit instructions generate a trap.  Also, some 32-bit OSes only
set, 64-bit instructions generate a trap.  Also, some 32-bit OSes only
save the 32-bit registers on a context switch, so it is essential never
save the 32-bit registers on a context switch, so it is essential never
to use the 64-bit registers.
to use the 64-bit registers.
 
 
@item -mgp64
@item -mgp64
@itemx -mfp64
@itemx -mfp64
Assume that 64-bit registers are available.  This is provided in the
Assume that 64-bit registers are available.  This is provided in the
interests of symmetry with @samp{-mgp32} and @samp{-mfp32}.
interests of symmetry with @samp{-mgp32} and @samp{-mfp32}.
 
 
The @code{.set gp=64} and @code{.set fp=64} directives allow the size
The @code{.set gp=64} and @code{.set fp=64} directives allow the size
of registers to be changed for parts of an object. The default value is
of registers to be changed for parts of an object. The default value is
restored by @code{.set gp=default} and @code{.set fp=default}.
restored by @code{.set gp=default} and @code{.set fp=default}.
 
 
@item -mips16
@item -mips16
@itemx -no-mips16
@itemx -no-mips16
Generate code for the MIPS 16 processor.  This is equivalent to putting
Generate code for the MIPS 16 processor.  This is equivalent to putting
@code{.set mips16} at the start of the assembly file.  @samp{-no-mips16}
@code{.set mips16} at the start of the assembly file.  @samp{-no-mips16}
turns off this option.
turns off this option.
 
 
 
@item -mmicromips
 
@itemx -mno-micromips
 
Generate code for the microMIPS processor.  This is equivalent to putting
 
@code{.set micromips} at the start of the assembly file.  @samp{-mno-micromips}
 
turns off this option.  This is equivalent to putting @code{.set nomicromips}
 
at the start of the assembly file.
 
 
@item -msmartmips
@item -msmartmips
@itemx -mno-smartmips
@itemx -mno-smartmips
Enables the SmartMIPS extensions to the MIPS32 instruction set, which
Enables the SmartMIPS extensions to the MIPS32 instruction set, which
provides a number of new instructions which target smartcard and
provides a number of new instructions which target smartcard and
cryptographic applications.  This is equivalent to putting
cryptographic applications.  This is equivalent to putting
@code{.set smartmips} at the start of the assembly file.
@code{.set smartmips} at the start of the assembly file.
@samp{-mno-smartmips} turns off this option.
@samp{-mno-smartmips} turns off this option.
 
 
@item -mips3d
@item -mips3d
@itemx -no-mips3d
@itemx -no-mips3d
Generate code for the MIPS-3D Application Specific Extension.
Generate code for the MIPS-3D Application Specific Extension.
This tells the assembler to accept MIPS-3D instructions.
This tells the assembler to accept MIPS-3D instructions.
@samp{-no-mips3d} turns off this option.
@samp{-no-mips3d} turns off this option.
 
 
@item -mdmx
@item -mdmx
@itemx -no-mdmx
@itemx -no-mdmx
Generate code for the MDMX Application Specific Extension.
Generate code for the MDMX Application Specific Extension.
This tells the assembler to accept MDMX instructions.
This tells the assembler to accept MDMX instructions.
@samp{-no-mdmx} turns off this option.
@samp{-no-mdmx} turns off this option.
 
 
@item -mdsp
@item -mdsp
@itemx -mno-dsp
@itemx -mno-dsp
Generate code for the DSP Release 1 Application Specific Extension.
Generate code for the DSP Release 1 Application Specific Extension.
This tells the assembler to accept DSP Release 1 instructions.
This tells the assembler to accept DSP Release 1 instructions.
@samp{-mno-dsp} turns off this option.
@samp{-mno-dsp} turns off this option.
 
 
@item -mdspr2
@item -mdspr2
@itemx -mno-dspr2
@itemx -mno-dspr2
Generate code for the DSP Release 2 Application Specific Extension.
Generate code for the DSP Release 2 Application Specific Extension.
This option implies -mdsp.
This option implies -mdsp.
This tells the assembler to accept DSP Release 2 instructions.
This tells the assembler to accept DSP Release 2 instructions.
@samp{-mno-dspr2} turns off this option.
@samp{-mno-dspr2} turns off this option.
 
 
@item -mmt
@item -mmt
@itemx -mno-mt
@itemx -mno-mt
Generate code for the MT Application Specific Extension.
Generate code for the MT Application Specific Extension.
This tells the assembler to accept MT instructions.
This tells the assembler to accept MT instructions.
@samp{-mno-mt} turns off this option.
@samp{-mno-mt} turns off this option.
 
 
 
@item -mmcu
 
@itemx -mno-mcu
 
Generate code for the MCU Application Specific Extension.
 
This tells the assembler to accept MCU instructions.
 
@samp{-mno-mcu} turns off this option.
 
 
@item -mfix7000
@item -mfix7000
@itemx -mno-fix7000
@itemx -mno-fix7000
Cause nops to be inserted if the read of the destination register
Cause nops to be inserted if the read of the destination register
of an mfhi or mflo instruction occurs in the following two instructions.
of an mfhi or mflo instruction occurs in the following two instructions.
 
 
@item -mfix-loongson2f-jump
@item -mfix-loongson2f-jump
@itemx -mno-fix-loongson2f-jump
@itemx -mno-fix-loongson2f-jump
Eliminate instruction fetch from outside 256M region to work around the
Eliminate instruction fetch from outside 256M region to work around the
Loongson2F @samp{jump} instructions.  Without it, under extreme cases,
Loongson2F @samp{jump} instructions.  Without it, under extreme cases,
the kernel may crash.  The issue has been solved in latest processor
the kernel may crash.  The issue has been solved in latest processor
batches, but this fix has no side effect to them.
batches, but this fix has no side effect to them.
 
 
@item -mfix-loongson2f-nop
@item -mfix-loongson2f-nop
@itemx -mno-fix-loongson2f-nop
@itemx -mno-fix-loongson2f-nop
Replace nops by @code{or at,at,zero} to work around the Loongson2F
Replace nops by @code{or at,at,zero} to work around the Loongson2F
@samp{nop} errata.  Without it, under extreme cases, cpu might
@samp{nop} errata.  Without it, under extreme cases, cpu might
deadlock.  The issue has been solved in latest loongson2f batches, but
deadlock.  The issue has been solved in latest loongson2f batches, but
this fix has no side effect to them.
this fix has no side effect to them.
 
 
@item -mfix-vr4120
@item -mfix-vr4120
@itemx -mno-fix-vr4120
@itemx -mno-fix-vr4120
Insert nops to work around certain VR4120 errata.  This option is
Insert nops to work around certain VR4120 errata.  This option is
intended to be used on GCC-generated code: it is not designed to catch
intended to be used on GCC-generated code: it is not designed to catch
all problems in hand-written assembler code.
all problems in hand-written assembler code.
 
 
@item -mfix-vr4130
@item -mfix-vr4130
@itemx -mno-fix-vr4130
@itemx -mno-fix-vr4130
Insert nops to work around the VR4130 @samp{mflo}/@samp{mfhi} errata.
Insert nops to work around the VR4130 @samp{mflo}/@samp{mfhi} errata.
 
 
@item -mfix-24k
@item -mfix-24k
@itemx -no-mfix-24k
@itemx -no-mfix-24k
Insert nops to work around the 24K @samp{eret}/@samp{deret} errata.
Insert nops to work around the 24K @samp{eret}/@samp{deret} errata.
 
 
@item -mfix-cn63xxp1
@item -mfix-cn63xxp1
@itemx -mno-fix-cn63xxp1
@itemx -mno-fix-cn63xxp1
Replace @code{pref} hints 0 - 4 and 6 - 24 with hint 28 to work around
Replace @code{pref} hints 0 - 4 and 6 - 24 with hint 28 to work around
certain CN63XXP1 errata.
certain CN63XXP1 errata.
 
 
@item -m4010
@item -m4010
@itemx -no-m4010
@itemx -no-m4010
Generate code for the LSI @sc{r4010} chip.  This tells the assembler to
Generate code for the LSI @sc{r4010} chip.  This tells the assembler to
accept the @sc{r4010} specific instructions (@samp{addciu}, @samp{ffc},
accept the @sc{r4010} specific instructions (@samp{addciu}, @samp{ffc},
etc.), and to not schedule @samp{nop} instructions around accesses to
etc.), and to not schedule @samp{nop} instructions around accesses to
the @samp{HI} and @samp{LO} registers.  @samp{-no-m4010} turns off this
the @samp{HI} and @samp{LO} registers.  @samp{-no-m4010} turns off this
option.
option.
 
 
@item -m4650
@item -m4650
@itemx -no-m4650
@itemx -no-m4650
Generate code for the MIPS @sc{r4650} chip.  This tells the assembler to accept
Generate code for the MIPS @sc{r4650} chip.  This tells the assembler to accept
the @samp{mad} and @samp{madu} instruction, and to not schedule @samp{nop}
the @samp{mad} and @samp{madu} instruction, and to not schedule @samp{nop}
instructions around accesses to the @samp{HI} and @samp{LO} registers.
instructions around accesses to the @samp{HI} and @samp{LO} registers.
@samp{-no-m4650} turns off this option.
@samp{-no-m4650} turns off this option.
 
 
@itemx -m3900
@itemx -m3900
@itemx -no-m3900
@itemx -no-m3900
@itemx -m4100
@itemx -m4100
@itemx -no-m4100
@itemx -no-m4100
For each option @samp{-m@var{nnnn}}, generate code for the MIPS
For each option @samp{-m@var{nnnn}}, generate code for the MIPS
@sc{r@var{nnnn}} chip.  This tells the assembler to accept instructions
@sc{r@var{nnnn}} chip.  This tells the assembler to accept instructions
specific to that chip, and to schedule for that chip's hazards.
specific to that chip, and to schedule for that chip's hazards.
 
 
@item -march=@var{cpu}
@item -march=@var{cpu}
Generate code for a particular MIPS cpu.  It is exactly equivalent to
Generate code for a particular MIPS cpu.  It is exactly equivalent to
@samp{-m@var{cpu}}, except that there are more value of @var{cpu}
@samp{-m@var{cpu}}, except that there are more value of @var{cpu}
understood.  Valid @var{cpu} value are:
understood.  Valid @var{cpu} value are:
 
 
@quotation
@quotation
2000,
2000,
3000,
3000,
3900,
3900,
4000,
4000,
4010,
4010,
4100,
4100,
4111,
4111,
vr4120,
vr4120,
vr4130,
vr4130,
vr4181,
vr4181,
4300,
4300,
4400,
4400,
4600,
4600,
4650,
4650,
5000,
5000,
rm5200,
rm5200,
rm5230,
rm5230,
rm5231,
rm5231,
rm5261,
rm5261,
rm5721,
rm5721,
vr5400,
vr5400,
vr5500,
vr5500,
6000,
6000,
rm7000,
rm7000,
8000,
8000,
rm9000,
rm9000,
10000,
10000,
12000,
12000,
14000,
14000,
16000,
16000,
4kc,
4kc,
4km,
4km,
4kp,
4kp,
4ksc,
4ksc,
4kec,
4kec,
4kem,
4kem,
4kep,
4kep,
4ksd,
4ksd,
m4k,
m4k,
m4kp,
m4kp,
 
m14k,
 
m14kc,
24kc,
24kc,
24kf2_1,
24kf2_1,
24kf,
24kf,
24kf1_1,
24kf1_1,
24kec,
24kec,
24kef2_1,
24kef2_1,
24kef,
24kef,
24kef1_1,
24kef1_1,
34kc,
34kc,
34kf2_1,
34kf2_1,
34kf,
34kf,
34kf1_1,
34kf1_1,
74kc,
74kc,
74kf2_1,
74kf2_1,
74kf,
74kf,
74kf1_1,
74kf1_1,
74kf3_2,
74kf3_2,
1004kc,
1004kc,
1004kf2_1,
1004kf2_1,
1004kf,
1004kf,
1004kf1_1,
1004kf1_1,
5kc,
5kc,
5kf,
5kf,
20kc,
20kc,
25kf,
25kf,
sb1,
sb1,
sb1a,
sb1a,
loongson2e,
loongson2e,
loongson2f,
loongson2f,
loongson3a,
loongson3a,
octeon,
octeon,
xlr
xlr
@end quotation
@end quotation
 
 
For compatibility reasons, @samp{@var{n}x} and @samp{@var{b}fx} are
For compatibility reasons, @samp{@var{n}x} and @samp{@var{b}fx} are
accepted as synonyms for @samp{@var{n}f1_1}.  These values are
accepted as synonyms for @samp{@var{n}f1_1}.  These values are
deprecated.
deprecated.
 
 
@item -mtune=@var{cpu}
@item -mtune=@var{cpu}
Schedule and tune for a particular MIPS cpu.  Valid @var{cpu} values are
Schedule and tune for a particular MIPS cpu.  Valid @var{cpu} values are
identical to @samp{-march=@var{cpu}}.
identical to @samp{-march=@var{cpu}}.
 
 
@item -mabi=@var{abi}
@item -mabi=@var{abi}
Record which ABI the source code uses.  The recognized arguments
Record which ABI the source code uses.  The recognized arguments
are: @samp{32}, @samp{n32}, @samp{o64}, @samp{64} and @samp{eabi}.
are: @samp{32}, @samp{n32}, @samp{o64}, @samp{64} and @samp{eabi}.
 
 
@item -msym32
@item -msym32
@itemx -mno-sym32
@itemx -mno-sym32
@cindex -msym32
@cindex -msym32
@cindex -mno-sym32
@cindex -mno-sym32
Equivalent to adding @code{.set sym32} or @code{.set nosym32} to
Equivalent to adding @code{.set sym32} or @code{.set nosym32} to
the beginning of the assembler input.  @xref{MIPS symbol sizes}.
the beginning of the assembler input.  @xref{MIPS symbol sizes}.
 
 
@cindex @code{-nocpp} ignored (MIPS)
@cindex @code{-nocpp} ignored (MIPS)
@item -nocpp
@item -nocpp
This option is ignored.  It is accepted for command-line compatibility with
This option is ignored.  It is accepted for command-line compatibility with
other assemblers, which use it to turn off C style preprocessing.  With
other assemblers, which use it to turn off C style preprocessing.  With
@sc{gnu} @code{@value{AS}}, there is no need for @samp{-nocpp}, because the
@sc{gnu} @code{@value{AS}}, there is no need for @samp{-nocpp}, because the
@sc{gnu} assembler itself never runs the C preprocessor.
@sc{gnu} assembler itself never runs the C preprocessor.
 
 
@item -msoft-float
@item -msoft-float
@itemx -mhard-float
@itemx -mhard-float
Disable or enable floating-point instructions.  Note that by default
Disable or enable floating-point instructions.  Note that by default
floating-point instructions are always allowed even with CPU targets
floating-point instructions are always allowed even with CPU targets
that don't have support for these instructions.
that don't have support for these instructions.
 
 
@item -msingle-float
@item -msingle-float
@itemx -mdouble-float
@itemx -mdouble-float
Disable or enable double-precision floating-point operations.  Note
Disable or enable double-precision floating-point operations.  Note
that by default double-precision floating-point operations are always
that by default double-precision floating-point operations are always
allowed even with CPU targets that don't have support for these
allowed even with CPU targets that don't have support for these
operations.
operations.
 
 
@item --construct-floats
@item --construct-floats
@itemx --no-construct-floats
@itemx --no-construct-floats
The @code{--no-construct-floats} option disables the construction of
The @code{--no-construct-floats} option disables the construction of
double width floating point constants by loading the two halves of the
double width floating point constants by loading the two halves of the
value into the two single width floating point registers that make up
value into the two single width floating point registers that make up
the double width register.  This feature is useful if the processor
the double width register.  This feature is useful if the processor
support the FR bit in its status  register, and this bit is known (by
support the FR bit in its status  register, and this bit is known (by
the programmer) to be set.  This bit prevents the aliasing of the double
the programmer) to be set.  This bit prevents the aliasing of the double
width register by the single width registers.
width register by the single width registers.
 
 
By default @code{--construct-floats} is selected, allowing construction
By default @code{--construct-floats} is selected, allowing construction
of these floating point constants.
of these floating point constants.
 
 
@item --trap
@item --trap
@itemx --no-break
@itemx --no-break
@c FIXME!  (1) reflect these options (next item too) in option summaries;
@c FIXME!  (1) reflect these options (next item too) in option summaries;
@c         (2) stop teasing, say _which_ instructions expanded _how_.
@c         (2) stop teasing, say _which_ instructions expanded _how_.
@code{@value{AS}} automatically macro expands certain division and
@code{@value{AS}} automatically macro expands certain division and
multiplication instructions to check for overflow and division by zero.  This
multiplication instructions to check for overflow and division by zero.  This
option causes @code{@value{AS}} to generate code to take a trap exception
option causes @code{@value{AS}} to generate code to take a trap exception
rather than a break exception when an error is detected.  The trap instructions
rather than a break exception when an error is detected.  The trap instructions
are only supported at Instruction Set Architecture level 2 and higher.
are only supported at Instruction Set Architecture level 2 and higher.
 
 
@item --break
@item --break
@itemx --no-trap
@itemx --no-trap
Generate code to take a break exception rather than a trap exception when an
Generate code to take a break exception rather than a trap exception when an
error is detected.  This is the default.
error is detected.  This is the default.
 
 
@item -mpdr
@item -mpdr
@itemx -mno-pdr
@itemx -mno-pdr
Control generation of @code{.pdr} sections.  Off by default on IRIX, on
Control generation of @code{.pdr} sections.  Off by default on IRIX, on
elsewhere.
elsewhere.
 
 
@item -mshared
@item -mshared
@itemx -mno-shared
@itemx -mno-shared
When generating code using the Unix calling conventions (selected by
When generating code using the Unix calling conventions (selected by
@samp{-KPIC} or @samp{-mcall_shared}), gas will normally generate code
@samp{-KPIC} or @samp{-mcall_shared}), gas will normally generate code
which can go into a shared library.  The @samp{-mno-shared} option
which can go into a shared library.  The @samp{-mno-shared} option
tells gas to generate code which uses the calling convention, but can
tells gas to generate code which uses the calling convention, but can
not go into a shared library.  The resulting code is slightly more
not go into a shared library.  The resulting code is slightly more
efficient.  This option only affects the handling of the
efficient.  This option only affects the handling of the
@samp{.cpload} and @samp{.cpsetup} pseudo-ops.
@samp{.cpload} and @samp{.cpsetup} pseudo-ops.
@end table
@end table
 
 
@node MIPS Object
@node MIPS Object
@section MIPS ECOFF object code
@section MIPS ECOFF object code
 
 
@cindex ECOFF sections
@cindex ECOFF sections
@cindex MIPS ECOFF sections
@cindex MIPS ECOFF sections
Assembling for a @sc{mips} @sc{ecoff} target supports some additional sections
Assembling for a @sc{mips} @sc{ecoff} target supports some additional sections
besides the usual @code{.text}, @code{.data} and @code{.bss}.  The
besides the usual @code{.text}, @code{.data} and @code{.bss}.  The
additional sections are @code{.rdata}, used for read-only data,
additional sections are @code{.rdata}, used for read-only data,
@code{.sdata}, used for small data, and @code{.sbss}, used for small
@code{.sdata}, used for small data, and @code{.sbss}, used for small
common objects.
common objects.
 
 
@cindex small objects, MIPS ECOFF
@cindex small objects, MIPS ECOFF
@cindex @code{gp} register, MIPS
@cindex @code{gp} register, MIPS
When assembling for @sc{ecoff}, the assembler uses the @code{$gp} (@code{$28})
When assembling for @sc{ecoff}, the assembler uses the @code{$gp} (@code{$28})
register to form the address of a ``small object''.  Any object in the
register to form the address of a ``small object''.  Any object in the
@code{.sdata} or @code{.sbss} sections is considered ``small'' in this sense.
@code{.sdata} or @code{.sbss} sections is considered ``small'' in this sense.
For external objects, or for objects in the @code{.bss} section, you can use
For external objects, or for objects in the @code{.bss} section, you can use
the @code{@value{GCC}} @samp{-G} option to control the size of objects addressed via
the @code{@value{GCC}} @samp{-G} option to control the size of objects addressed via
@code{$gp}; the default value is 8, meaning that a reference to any object
@code{$gp}; the default value is 8, meaning that a reference to any object
eight bytes or smaller uses @code{$gp}.  Passing @samp{-G 0} to
eight bytes or smaller uses @code{$gp}.  Passing @samp{-G 0} to
@code{@value{AS}} prevents it from using the @code{$gp} register on the basis
@code{@value{AS}} prevents it from using the @code{$gp} register on the basis
of object size (but the assembler uses @code{$gp} for objects in @code{.sdata}
of object size (but the assembler uses @code{$gp} for objects in @code{.sdata}
or @code{sbss} in any case).  The size of an object in the @code{.bss} section
or @code{sbss} in any case).  The size of an object in the @code{.bss} section
is set by the @code{.comm} or @code{.lcomm} directive that defines it.  The
is set by the @code{.comm} or @code{.lcomm} directive that defines it.  The
size of an external object may be set with the @code{.extern} directive.  For
size of an external object may be set with the @code{.extern} directive.  For
example, @samp{.extern sym,4} declares that the object at @code{sym} is 4 bytes
example, @samp{.extern sym,4} declares that the object at @code{sym} is 4 bytes
in length, whie leaving @code{sym} otherwise undefined.
in length, whie leaving @code{sym} otherwise undefined.
 
 
Using small @sc{ecoff} objects requires linker support, and assumes that the
Using small @sc{ecoff} objects requires linker support, and assumes that the
@code{$gp} register is correctly initialized (normally done automatically by
@code{$gp} register is correctly initialized (normally done automatically by
the startup code).  @sc{mips} @sc{ecoff} assembly code must not modify the
the startup code).  @sc{mips} @sc{ecoff} assembly code must not modify the
@code{$gp} register.
@code{$gp} register.
 
 
@node MIPS Stabs
@node MIPS Stabs
@section Directives for debugging information
@section Directives for debugging information
 
 
@cindex MIPS debugging directives
@cindex MIPS debugging directives
@sc{mips} @sc{ecoff} @code{@value{AS}} supports several directives used for
@sc{mips} @sc{ecoff} @code{@value{AS}} supports several directives used for
generating debugging information which are not support by traditional @sc{mips}
generating debugging information which are not support by traditional @sc{mips}
assemblers.  These are @code{.def}, @code{.endef}, @code{.dim}, @code{.file},
assemblers.  These are @code{.def}, @code{.endef}, @code{.dim}, @code{.file},
@code{.scl}, @code{.size}, @code{.tag}, @code{.type}, @code{.val},
@code{.scl}, @code{.size}, @code{.tag}, @code{.type}, @code{.val},
@code{.stabd}, @code{.stabn}, and @code{.stabs}.  The debugging information
@code{.stabd}, @code{.stabn}, and @code{.stabs}.  The debugging information
generated by the three @code{.stab} directives can only be read by @sc{gdb},
generated by the three @code{.stab} directives can only be read by @sc{gdb},
not by traditional @sc{mips} debuggers (this enhancement is required to fully
not by traditional @sc{mips} debuggers (this enhancement is required to fully
support C++ debugging).  These directives are primarily used by compilers, not
support C++ debugging).  These directives are primarily used by compilers, not
assembly language programmers!
assembly language programmers!
 
 
@node MIPS symbol sizes
@node MIPS symbol sizes
@section Directives to override the size of symbols
@section Directives to override the size of symbols
 
 
@cindex @code{.set sym32}
@cindex @code{.set sym32}
@cindex @code{.set nosym32}
@cindex @code{.set nosym32}
The n64 ABI allows symbols to have any 64-bit value.  Although this
The n64 ABI allows symbols to have any 64-bit value.  Although this
provides a great deal of flexibility, it means that some macros have
provides a great deal of flexibility, it means that some macros have
much longer expansions than their 32-bit counterparts.  For example,
much longer expansions than their 32-bit counterparts.  For example,
the non-PIC expansion of @samp{dla $4,sym} is usually:
the non-PIC expansion of @samp{dla $4,sym} is usually:
 
 
@smallexample
@smallexample
lui     $4,%highest(sym)
lui     $4,%highest(sym)
lui     $1,%hi(sym)
lui     $1,%hi(sym)
daddiu  $4,$4,%higher(sym)
daddiu  $4,$4,%higher(sym)
daddiu  $1,$1,%lo(sym)
daddiu  $1,$1,%lo(sym)
dsll32  $4,$4,0
dsll32  $4,$4,0
daddu   $4,$4,$1
daddu   $4,$4,$1
@end smallexample
@end smallexample
 
 
whereas the 32-bit expansion is simply:
whereas the 32-bit expansion is simply:
 
 
@smallexample
@smallexample
lui     $4,%hi(sym)
lui     $4,%hi(sym)
daddiu  $4,$4,%lo(sym)
daddiu  $4,$4,%lo(sym)
@end smallexample
@end smallexample
 
 
n64 code is sometimes constructed in such a way that all symbolic
n64 code is sometimes constructed in such a way that all symbolic
constants are known to have 32-bit values, and in such cases, it's
constants are known to have 32-bit values, and in such cases, it's
preferable to use the 32-bit expansion instead of the 64-bit
preferable to use the 32-bit expansion instead of the 64-bit
expansion.
expansion.
 
 
You can use the @code{.set sym32} directive to tell the assembler
You can use the @code{.set sym32} directive to tell the assembler
that, from this point on, all expressions of the form
that, from this point on, all expressions of the form
@samp{@var{symbol}} or @samp{@var{symbol} + @var{offset}}
@samp{@var{symbol}} or @samp{@var{symbol} + @var{offset}}
have 32-bit values.  For example:
have 32-bit values.  For example:
 
 
@smallexample
@smallexample
.set sym32
.set sym32
dla     $4,sym
dla     $4,sym
lw      $4,sym+16
lw      $4,sym+16
sw      $4,sym+0x8000($4)
sw      $4,sym+0x8000($4)
@end smallexample
@end smallexample
 
 
will cause the assembler to treat @samp{sym}, @code{sym+16} and
will cause the assembler to treat @samp{sym}, @code{sym+16} and
@code{sym+0x8000} as 32-bit values.  The handling of non-symbolic
@code{sym+0x8000} as 32-bit values.  The handling of non-symbolic
addresses is not affected.
addresses is not affected.
 
 
The directive @code{.set nosym32} ends a @code{.set sym32} block and
The directive @code{.set nosym32} ends a @code{.set sym32} block and
reverts to the normal behavior.  It is also possible to change the
reverts to the normal behavior.  It is also possible to change the
symbol size using the command-line options @option{-msym32} and
symbol size using the command-line options @option{-msym32} and
@option{-mno-sym32}.
@option{-mno-sym32}.
 
 
These options and directives are always accepted, but at present,
These options and directives are always accepted, but at present,
they have no effect for anything other than n64.
they have no effect for anything other than n64.
 
 
@node MIPS ISA
@node MIPS ISA
@section Directives to override the ISA level
@section Directives to override the ISA level
 
 
@cindex MIPS ISA override
@cindex MIPS ISA override
@kindex @code{.set mips@var{n}}
@kindex @code{.set mips@var{n}}
@sc{gnu} @code{@value{AS}} supports an additional directive to change
@sc{gnu} @code{@value{AS}} supports an additional directive to change
the @sc{mips} Instruction Set Architecture level on the fly: @code{.set
the @sc{mips} Instruction Set Architecture level on the fly: @code{.set
mips@var{n}}.  @var{n} should be a number from 0 to 5, or 32, 32r2, 64
mips@var{n}}.  @var{n} should be a number from 0 to 5, or 32, 32r2, 64
or 64r2.
or 64r2.
The values other than 0 make the assembler accept instructions
The values other than 0 make the assembler accept instructions
for the corresponding @sc{isa} level, from that point on in the
for the corresponding @sc{isa} level, from that point on in the
assembly.  @code{.set mips@var{n}} affects not only which instructions
assembly.  @code{.set mips@var{n}} affects not only which instructions
are permitted, but also how certain macros are expanded.  @code{.set
are permitted, but also how certain macros are expanded.  @code{.set
mips0} restores the @sc{isa} level to its original level: either the
mips0} restores the @sc{isa} level to its original level: either the
level you selected with command line options, or the default for your
level you selected with command line options, or the default for your
configuration.  You can use this feature to permit specific @sc{mips3}
configuration.  You can use this feature to permit specific @sc{mips3}
instructions while assembling in 32 bit mode.  Use this directive with
instructions while assembling in 32 bit mode.  Use this directive with
care!
care!
 
 
@cindex MIPS CPU override
@cindex MIPS CPU override
@kindex @code{.set arch=@var{cpu}}
@kindex @code{.set arch=@var{cpu}}
The @code{.set arch=@var{cpu}} directive provides even finer control.
The @code{.set arch=@var{cpu}} directive provides even finer control.
It changes the effective CPU target and allows the assembler to use
It changes the effective CPU target and allows the assembler to use
instructions specific to a particular CPU.  All CPUs supported by the
instructions specific to a particular CPU.  All CPUs supported by the
@samp{-march} command line option are also selectable by this directive.
@samp{-march} command line option are also selectable by this directive.
The original value is restored by @code{.set arch=default}.
The original value is restored by @code{.set arch=default}.
 
 
The directive @code{.set mips16} puts the assembler into MIPS 16 mode,
The directive @code{.set mips16} puts the assembler into MIPS 16 mode,
in which it will assemble instructions for the MIPS 16 processor.  Use
in which it will assemble instructions for the MIPS 16 processor.  Use
@code{.set nomips16} to return to normal 32 bit mode.
@code{.set nomips16} to return to normal 32 bit mode.
 
 
Traditional @sc{mips} assemblers do not support this directive.
Traditional @sc{mips} assemblers do not support this directive.
 
 
 
The directive @code{.set micromips} puts the assembler into microMIPS mode,
 
in which it will assemble instructions for the microMIPS processor.  Use
 
@code{.set nomicromips} to return to normal 32 bit mode.
 
 
 
Traditional @sc{mips} assemblers do not support this directive.
 
 
@node MIPS autoextend
@node MIPS autoextend
@section Directives for extending MIPS 16 bit instructions
@section Directives for extending MIPS 16 bit instructions
 
 
@kindex @code{.set autoextend}
@kindex @code{.set autoextend}
@kindex @code{.set noautoextend}
@kindex @code{.set noautoextend}
By default, MIPS 16 instructions are automatically extended to 32 bits
By default, MIPS 16 instructions are automatically extended to 32 bits
when necessary.  The directive @code{.set noautoextend} will turn this
when necessary.  The directive @code{.set noautoextend} will turn this
off.  When @code{.set noautoextend} is in effect, any 32 bit instruction
off.  When @code{.set noautoextend} is in effect, any 32 bit instruction
must be explicitly extended with the @code{.e} modifier (e.g.,
must be explicitly extended with the @code{.e} modifier (e.g.,
@code{li.e $4,1000}).  The directive @code{.set autoextend} may be used
@code{li.e $4,1000}).  The directive @code{.set autoextend} may be used
to once again automatically extend instructions when necessary.
to once again automatically extend instructions when necessary.
 
 
This directive is only meaningful when in MIPS 16 mode.  Traditional
This directive is only meaningful when in MIPS 16 mode.  Traditional
@sc{mips} assemblers do not support this directive.
@sc{mips} assemblers do not support this directive.
 
 
@node MIPS insn
@node MIPS insn
@section Directive to mark data as an instruction
@section Directive to mark data as an instruction
 
 
@kindex @code{.insn}
@kindex @code{.insn}
The @code{.insn} directive tells @code{@value{AS}} that the following
The @code{.insn} directive tells @code{@value{AS}} that the following
data is actually instructions.  This makes a difference in MIPS 16 mode:
data is actually instructions.  This makes a difference in MIPS 16 and
when loading the address of a label which precedes instructions,
microMIPS modes: when loading the address of a label which precedes
@code{@value{AS}} automatically adds 1 to the value, so that jumping to
instructions, @code{@value{AS}} automatically adds 1 to the value, so
the loaded address will do the right thing.
that jumping to the loaded address will do the right thing.
 
 
@kindex @code{.global}
@kindex @code{.global}
The @code{.global} and @code{.globl} directives supported by
The @code{.global} and @code{.globl} directives supported by
@code{@value{AS}} will by default mark the symbol as pointing to a
@code{@value{AS}} will by default mark the symbol as pointing to a
region of data not code.  This means that, for example, any
region of data not code.  This means that, for example, any
instructions following such a symbol will not be disassembled by
instructions following such a symbol will not be disassembled by
@code{objdump} as it will regard them as data.  To change this
@code{objdump} as it will regard them as data.  To change this
behaviour an optional section name can be placed after the symbol name
behaviour an optional section name can be placed after the symbol name
in the @code{.global} directive.  If this section exists and is known
in the @code{.global} directive.  If this section exists and is known
to be a code section, then the symbol will be marked as poiting at
to be a code section, then the symbol will be marked as poiting at
code not data.  Ie the syntax for the directive is:
code not data.  Ie the syntax for the directive is:
 
 
  @code{.global @var{symbol}[ @var{section}][, @var{symbol}[ @var{section}]] ...},
  @code{.global @var{symbol}[ @var{section}][, @var{symbol}[ @var{section}]] ...},
 
 
Here is a short example:
Here is a short example:
 
 
@example
@example
        .global foo .text, bar, baz .data
        .global foo .text, bar, baz .data
foo:
foo:
        nop
        nop
bar:
bar:
        .word 0x0
        .word 0x0
baz:
baz:
        .word 0x1
        .word 0x1
 
 
@end example
@end example
 
 
@node MIPS option stack
@node MIPS option stack
@section Directives to save and restore options
@section Directives to save and restore options
 
 
@cindex MIPS option stack
@cindex MIPS option stack
@kindex @code{.set push}
@kindex @code{.set push}
@kindex @code{.set pop}
@kindex @code{.set pop}
The directives @code{.set push} and @code{.set pop} may be used to save
The directives @code{.set push} and @code{.set pop} may be used to save
and restore the current settings for all the options which are
and restore the current settings for all the options which are
controlled by @code{.set}.  The @code{.set push} directive saves the
controlled by @code{.set}.  The @code{.set push} directive saves the
current settings on a stack.  The @code{.set pop} directive pops the
current settings on a stack.  The @code{.set pop} directive pops the
stack and restores the settings.
stack and restores the settings.
 
 
These directives can be useful inside an macro which must change an
These directives can be useful inside an macro which must change an
option such as the ISA level or instruction reordering but does not want
option such as the ISA level or instruction reordering but does not want
to change the state of the code which invoked the macro.
to change the state of the code which invoked the macro.
 
 
Traditional @sc{mips} assemblers do not support these directives.
Traditional @sc{mips} assemblers do not support these directives.
 
 
@node MIPS ASE instruction generation overrides
@node MIPS ASE instruction generation overrides
@section Directives to control generation of MIPS ASE instructions
@section Directives to control generation of MIPS ASE instructions
 
 
@cindex MIPS MIPS-3D instruction generation override
@cindex MIPS MIPS-3D instruction generation override
@kindex @code{.set mips3d}
@kindex @code{.set mips3d}
@kindex @code{.set nomips3d}
@kindex @code{.set nomips3d}
The directive @code{.set mips3d} makes the assembler accept instructions
The directive @code{.set mips3d} makes the assembler accept instructions
from the MIPS-3D Application Specific Extension from that point on
from the MIPS-3D Application Specific Extension from that point on
in the assembly.  The @code{.set nomips3d} directive prevents MIPS-3D
in the assembly.  The @code{.set nomips3d} directive prevents MIPS-3D
instructions from being accepted.
instructions from being accepted.
 
 
@cindex SmartMIPS instruction generation override
@cindex SmartMIPS instruction generation override
@kindex @code{.set smartmips}
@kindex @code{.set smartmips}
@kindex @code{.set nosmartmips}
@kindex @code{.set nosmartmips}
The directive @code{.set smartmips} makes the assembler accept
The directive @code{.set smartmips} makes the assembler accept
instructions from the SmartMIPS Application Specific Extension to the
instructions from the SmartMIPS Application Specific Extension to the
MIPS32 @sc{isa} from that point on in the assembly.  The
MIPS32 @sc{isa} from that point on in the assembly.  The
@code{.set nosmartmips} directive prevents SmartMIPS instructions from
@code{.set nosmartmips} directive prevents SmartMIPS instructions from
being accepted.
being accepted.
 
 
@cindex MIPS MDMX instruction generation override
@cindex MIPS MDMX instruction generation override
@kindex @code{.set mdmx}
@kindex @code{.set mdmx}
@kindex @code{.set nomdmx}
@kindex @code{.set nomdmx}
The directive @code{.set mdmx} makes the assembler accept instructions
The directive @code{.set mdmx} makes the assembler accept instructions
from the MDMX Application Specific Extension from that point on
from the MDMX Application Specific Extension from that point on
in the assembly.  The @code{.set nomdmx} directive prevents MDMX
in the assembly.  The @code{.set nomdmx} directive prevents MDMX
instructions from being accepted.
instructions from being accepted.
 
 
@cindex MIPS DSP Release 1 instruction generation override
@cindex MIPS DSP Release 1 instruction generation override
@kindex @code{.set dsp}
@kindex @code{.set dsp}
@kindex @code{.set nodsp}
@kindex @code{.set nodsp}
The directive @code{.set dsp} makes the assembler accept instructions
The directive @code{.set dsp} makes the assembler accept instructions
from the DSP Release 1 Application Specific Extension from that point
from the DSP Release 1 Application Specific Extension from that point
on in the assembly.  The @code{.set nodsp} directive prevents DSP
on in the assembly.  The @code{.set nodsp} directive prevents DSP
Release 1 instructions from being accepted.
Release 1 instructions from being accepted.
 
 
@cindex MIPS DSP Release 2 instruction generation override
@cindex MIPS DSP Release 2 instruction generation override
@kindex @code{.set dspr2}
@kindex @code{.set dspr2}
@kindex @code{.set nodspr2}
@kindex @code{.set nodspr2}
The directive @code{.set dspr2} makes the assembler accept instructions
The directive @code{.set dspr2} makes the assembler accept instructions
from the DSP Release 2 Application Specific Extension from that point
from the DSP Release 2 Application Specific Extension from that point
on in the assembly.  This dirctive implies @code{.set dsp}.  The
on in the assembly.  This dirctive implies @code{.set dsp}.  The
@code{.set nodspr2} directive prevents DSP Release 2 instructions from
@code{.set nodspr2} directive prevents DSP Release 2 instructions from
being accepted.
being accepted.
 
 
@cindex MIPS MT instruction generation override
@cindex MIPS MT instruction generation override
@kindex @code{.set mt}
@kindex @code{.set mt}
@kindex @code{.set nomt}
@kindex @code{.set nomt}
The directive @code{.set mt} makes the assembler accept instructions
The directive @code{.set mt} makes the assembler accept instructions
from the MT Application Specific Extension from that point on
from the MT Application Specific Extension from that point on
in the assembly.  The @code{.set nomt} directive prevents MT
in the assembly.  The @code{.set nomt} directive prevents MT
instructions from being accepted.
instructions from being accepted.
 
 
 
@cindex MIPS MCU instruction generation override
 
@kindex @code{.set mcu}
 
@kindex @code{.set nomcu}
 
The directive @code{.set mcu} makes the assembler accept instructions
 
from the MCU Application Specific Extension from that point on
 
in the assembly.  The @code{.set nomcu} directive prevents MCU
 
instructions from being accepted.
 
 
Traditional @sc{mips} assemblers do not support these directives.
Traditional @sc{mips} assemblers do not support these directives.
 
 
@node MIPS floating-point
@node MIPS floating-point
@section Directives to override floating-point options
@section Directives to override floating-point options
 
 
@cindex Disable floating-point instructions
@cindex Disable floating-point instructions
@kindex @code{.set softfloat}
@kindex @code{.set softfloat}
@kindex @code{.set hardfloat}
@kindex @code{.set hardfloat}
The directives @code{.set softfloat} and @code{.set hardfloat} provide
The directives @code{.set softfloat} and @code{.set hardfloat} provide
finer control of disabling and enabling float-point instructions.
finer control of disabling and enabling float-point instructions.
These directives always override the default (that hard-float
These directives always override the default (that hard-float
instructions are accepted) or the command-line options
instructions are accepted) or the command-line options
(@samp{-msoft-float} and @samp{-mhard-float}).
(@samp{-msoft-float} and @samp{-mhard-float}).
 
 
@cindex Disable single-precision floating-point operations
@cindex Disable single-precision floating-point operations
@kindex @code{.set singlefloat}
@kindex @code{.set singlefloat}
@kindex @code{.set doublefloat}
@kindex @code{.set doublefloat}
The directives @code{.set singlefloat} and @code{.set doublefloat}
The directives @code{.set singlefloat} and @code{.set doublefloat}
provide finer control of disabling and enabling double-precision
provide finer control of disabling and enabling double-precision
float-point operations.  These directives always override the default
float-point operations.  These directives always override the default
(that double-precision operations are accepted) or the command-line
(that double-precision operations are accepted) or the command-line
options (@samp{-msingle-float} and @samp{-mdouble-float}).
options (@samp{-msingle-float} and @samp{-mdouble-float}).
 
 
Traditional @sc{mips} assemblers do not support these directives.
Traditional @sc{mips} assemblers do not support these directives.
 
 
@node MIPS Syntax
@node MIPS Syntax
@section Syntactical considerations for the MIPS assembler
@section Syntactical considerations for the MIPS assembler
@menu
@menu
* MIPS-Chars::                Special Characters
* MIPS-Chars::                Special Characters
@end menu
@end menu
 
 
@node MIPS-Chars
@node MIPS-Chars
@subsection Special Characters
@subsection Special Characters
 
 
@cindex line comment character, MIPS
@cindex line comment character, MIPS
@cindex MIPS line comment character
@cindex MIPS line comment character
The presence of a @samp{#} on a line indicates the start of a comment
The presence of a @samp{#} on a line indicates the start of a comment
that extends to the end of the current line.
that extends to the end of the current line.
 
 
If a @samp{#} appears as the first character of a line, the whole line
If a @samp{#} appears as the first character of a line, the whole line
is treated as a comment, but in this case the line can also be a
is treated as a comment, but in this case the line can also be a
logical line number directive (@pxref{Comments}) or a
logical line number directive (@pxref{Comments}) or a
preprocessor control command (@pxref{Preprocessing}).
preprocessor control command (@pxref{Preprocessing}).
 
 
@cindex line separator, MIPS
@cindex line separator, MIPS
@cindex statement separator, MIPS
@cindex statement separator, MIPS
@cindex MIPS line separator
@cindex MIPS line separator
The @samp{;} character can be used to separate statements on the same
The @samp{;} character can be used to separate statements on the same
line.
line.
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.