OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [i386.cc] - Diff between revs 159 and 163

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 159 Rev 163
// i386.cc -- i386 target support for gold.
// i386.cc -- i386 target support for gold.
 
 
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// Written by Ian Lance Taylor <iant@google.com>.
 
 
// This file is part of gold.
// This file is part of gold.
 
 
// This program is free software; you can redistribute it and/or modify
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// (at your option) any later version.
 
 
// This program is distributed in the hope that it will be useful,
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
// GNU General Public License for more details.
 
 
// You should have received a copy of the GNU General Public License
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
// MA 02110-1301, USA.
 
 
#include "gold.h"
#include "gold.h"
 
 
#include <cstring>
#include <cstring>
 
 
#include "elfcpp.h"
#include "elfcpp.h"
#include "dwarf.h"
#include "dwarf.h"
#include "parameters.h"
#include "parameters.h"
#include "reloc.h"
#include "reloc.h"
#include "i386.h"
#include "i386.h"
#include "object.h"
#include "object.h"
#include "symtab.h"
#include "symtab.h"
#include "layout.h"
#include "layout.h"
#include "output.h"
#include "output.h"
#include "copy-relocs.h"
#include "copy-relocs.h"
#include "target.h"
#include "target.h"
#include "target-reloc.h"
#include "target-reloc.h"
#include "target-select.h"
#include "target-select.h"
#include "tls.h"
#include "tls.h"
#include "freebsd.h"
#include "freebsd.h"
#include "gc.h"
#include "gc.h"
 
 
namespace
namespace
{
{
 
 
using namespace gold;
using namespace gold;
 
 
// A class to handle the PLT data.
// A class to handle the PLT data.
 
 
class Output_data_plt_i386 : public Output_section_data
class Output_data_plt_i386 : public Output_section_data
{
{
 public:
 public:
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
 
 
  Output_data_plt_i386(Layout*, Output_data_space*, Output_data_space*);
  Output_data_plt_i386(Layout*, Output_data_space*, Output_data_space*);
 
 
  // Add an entry to the PLT.
  // Add an entry to the PLT.
  void
  void
  add_entry(Symbol_table*, Layout*, Symbol* gsym);
  add_entry(Symbol_table*, Layout*, Symbol* gsym);
 
 
  // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
  // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
  unsigned int
  unsigned int
  add_local_ifunc_entry(Symbol_table*, Layout*,
  add_local_ifunc_entry(Symbol_table*, Layout*,
                        Sized_relobj_file<32, false>* relobj,
                        Sized_relobj_file<32, false>* relobj,
                        unsigned int local_sym_index);
                        unsigned int local_sym_index);
 
 
  // Return the .rel.plt section data.
  // Return the .rel.plt section data.
  Reloc_section*
  Reloc_section*
  rel_plt() const
  rel_plt() const
  { return this->rel_; }
  { return this->rel_; }
 
 
  // Return where the TLS_DESC relocations should go.
  // Return where the TLS_DESC relocations should go.
  Reloc_section*
  Reloc_section*
  rel_tls_desc(Layout*);
  rel_tls_desc(Layout*);
 
 
  // Return where the IRELATIVE relocations should go.
  // Return where the IRELATIVE relocations should go.
  Reloc_section*
  Reloc_section*
  rel_irelative(Symbol_table*, Layout*);
  rel_irelative(Symbol_table*, Layout*);
 
 
  // Return whether we created a section for IRELATIVE relocations.
  // Return whether we created a section for IRELATIVE relocations.
  bool
  bool
  has_irelative_section() const
  has_irelative_section() const
  { return this->irelative_rel_ != NULL; }
  { return this->irelative_rel_ != NULL; }
 
 
  // Return the number of PLT entries.
  // Return the number of PLT entries.
  unsigned int
  unsigned int
  entry_count() const
  entry_count() const
  { return this->count_ + this->irelative_count_; }
  { return this->count_ + this->irelative_count_; }
 
 
  // Return the offset of the first non-reserved PLT entry.
  // Return the offset of the first non-reserved PLT entry.
  static unsigned int
  static unsigned int
  first_plt_entry_offset()
  first_plt_entry_offset()
  { return plt_entry_size; }
  { return plt_entry_size; }
 
 
  // Return the size of a PLT entry.
  // Return the size of a PLT entry.
  static unsigned int
  static unsigned int
  get_plt_entry_size()
  get_plt_entry_size()
  { return plt_entry_size; }
  { return plt_entry_size; }
 
 
  // Return the PLT address to use for a global symbol.
  // Return the PLT address to use for a global symbol.
  uint64_t
  uint64_t
  address_for_global(const Symbol*);
  address_for_global(const Symbol*);
 
 
  // Return the PLT address to use for a local symbol.
  // Return the PLT address to use for a local symbol.
  uint64_t
  uint64_t
  address_for_local(const Relobj*, unsigned int symndx);
  address_for_local(const Relobj*, unsigned int symndx);
 
 
 protected:
 protected:
  void
  void
  do_adjust_output_section(Output_section* os);
  do_adjust_output_section(Output_section* os);
 
 
  // Write to a map file.
  // Write to a map file.
  void
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** PLT")); }
  { mapfile->print_output_data(this, _("** PLT")); }
 
 
 private:
 private:
  // The size of an entry in the PLT.
  // The size of an entry in the PLT.
  static const int plt_entry_size = 16;
  static const int plt_entry_size = 16;
 
 
  // The first entry in the PLT for an executable.
  // The first entry in the PLT for an executable.
  static const unsigned char exec_first_plt_entry[plt_entry_size];
  static const unsigned char exec_first_plt_entry[plt_entry_size];
 
 
  // The first entry in the PLT for a shared object.
  // The first entry in the PLT for a shared object.
  static const unsigned char dyn_first_plt_entry[plt_entry_size];
  static const unsigned char dyn_first_plt_entry[plt_entry_size];
 
 
  // Other entries in the PLT for an executable.
  // Other entries in the PLT for an executable.
  static const unsigned char exec_plt_entry[plt_entry_size];
  static const unsigned char exec_plt_entry[plt_entry_size];
 
 
  // Other entries in the PLT for a shared object.
  // Other entries in the PLT for a shared object.
  static const unsigned char dyn_plt_entry[plt_entry_size];
  static const unsigned char dyn_plt_entry[plt_entry_size];
 
 
  // The .eh_frame unwind information for the PLT.
  // The .eh_frame unwind information for the PLT.
  static const int plt_eh_frame_cie_size = 16;
  static const int plt_eh_frame_cie_size = 16;
  static const int plt_eh_frame_fde_size = 32;
  static const int plt_eh_frame_fde_size = 32;
  static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
  static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
 
 
  // Set the final size.
  // Set the final size.
  void
  void
  set_final_data_size()
  set_final_data_size()
  {
  {
    this->set_data_size((this->count_ + this->irelative_count_ + 1)
    this->set_data_size((this->count_ + this->irelative_count_ + 1)
                        * plt_entry_size);
                        * plt_entry_size);
  }
  }
 
 
  // Write out the PLT data.
  // Write out the PLT data.
  void
  void
  do_write(Output_file*);
  do_write(Output_file*);
 
 
  // We keep a list of global STT_GNU_IFUNC symbols, each with its
  // We keep a list of global STT_GNU_IFUNC symbols, each with its
  // offset in the GOT.
  // offset in the GOT.
  struct Global_ifunc
  struct Global_ifunc
  {
  {
    Symbol* sym;
    Symbol* sym;
    unsigned int got_offset;
    unsigned int got_offset;
  };
  };
 
 
  // We keep a list of local STT_GNU_IFUNC symbols, each with its
  // We keep a list of local STT_GNU_IFUNC symbols, each with its
  // offset in the GOT.
  // offset in the GOT.
  struct Local_ifunc
  struct Local_ifunc
  {
  {
    Sized_relobj_file<32, false>* object;
    Sized_relobj_file<32, false>* object;
    unsigned int local_sym_index;
    unsigned int local_sym_index;
    unsigned int got_offset;
    unsigned int got_offset;
  };
  };
 
 
  // A pointer to the Layout class, so that we can find the .dynamic
  // A pointer to the Layout class, so that we can find the .dynamic
  // section when we write out the GOT PLT section.
  // section when we write out the GOT PLT section.
  Layout* layout_;
  Layout* layout_;
  // The reloc section.
  // The reloc section.
  Reloc_section* rel_;
  Reloc_section* rel_;
  // The TLS_DESC relocations, if necessary.  These must follow the
  // The TLS_DESC relocations, if necessary.  These must follow the
  // regular PLT relocs.
  // regular PLT relocs.
  Reloc_section* tls_desc_rel_;
  Reloc_section* tls_desc_rel_;
  // The IRELATIVE relocations, if necessary.  These must follow the
  // The IRELATIVE relocations, if necessary.  These must follow the
  // regular relocatoins and the TLS_DESC relocations.
  // regular relocatoins and the TLS_DESC relocations.
  Reloc_section* irelative_rel_;
  Reloc_section* irelative_rel_;
  // The .got.plt section.
  // The .got.plt section.
  Output_data_space* got_plt_;
  Output_data_space* got_plt_;
  // The part of the .got.plt section used for IRELATIVE relocs.
  // The part of the .got.plt section used for IRELATIVE relocs.
  Output_data_space* got_irelative_;
  Output_data_space* got_irelative_;
  // The number of PLT entries.
  // The number of PLT entries.
  unsigned int count_;
  unsigned int count_;
  // Number of PLT entries with R_386_IRELATIVE relocs.  These follow
  // Number of PLT entries with R_386_IRELATIVE relocs.  These follow
  // the regular PLT entries.
  // the regular PLT entries.
  unsigned int irelative_count_;
  unsigned int irelative_count_;
  // Global STT_GNU_IFUNC symbols.
  // Global STT_GNU_IFUNC symbols.
  std::vector<Global_ifunc> global_ifuncs_;
  std::vector<Global_ifunc> global_ifuncs_;
  // Local STT_GNU_IFUNC symbols.
  // Local STT_GNU_IFUNC symbols.
  std::vector<Local_ifunc> local_ifuncs_;
  std::vector<Local_ifunc> local_ifuncs_;
};
};
 
 
// The i386 target class.
// The i386 target class.
// TLS info comes from
// TLS info comes from
//   http://people.redhat.com/drepper/tls.pdf
//   http://people.redhat.com/drepper/tls.pdf
//   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
//   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
 
 
class Target_i386 : public Sized_target<32, false>
class Target_i386 : public Sized_target<32, false>
{
{
 public:
 public:
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
  typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
 
 
  Target_i386()
  Target_i386()
    : Sized_target<32, false>(&i386_info),
    : Sized_target<32, false>(&i386_info),
      got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
      got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
      got_tlsdesc_(NULL), global_offset_table_(NULL), rel_dyn_(NULL),
      got_tlsdesc_(NULL), global_offset_table_(NULL), rel_dyn_(NULL),
      rel_irelative_(NULL), copy_relocs_(elfcpp::R_386_COPY), dynbss_(NULL),
      rel_irelative_(NULL), copy_relocs_(elfcpp::R_386_COPY), dynbss_(NULL),
      got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
      got_mod_index_offset_(-1U), tls_base_symbol_defined_(false)
  { }
  { }
 
 
  // Process the relocations to determine unreferenced sections for 
  // Process the relocations to determine unreferenced sections for 
  // garbage collection.
  // garbage collection.
  void
  void
  gc_process_relocs(Symbol_table* symtab,
  gc_process_relocs(Symbol_table* symtab,
                    Layout* layout,
                    Layout* layout,
                    Sized_relobj_file<32, false>* object,
                    Sized_relobj_file<32, false>* object,
                    unsigned int data_shndx,
                    unsigned int data_shndx,
                    unsigned int sh_type,
                    unsigned int sh_type,
                    const unsigned char* prelocs,
                    const unsigned char* prelocs,
                    size_t reloc_count,
                    size_t reloc_count,
                    Output_section* output_section,
                    Output_section* output_section,
                    bool needs_special_offset_handling,
                    bool needs_special_offset_handling,
                    size_t local_symbol_count,
                    size_t local_symbol_count,
                    const unsigned char* plocal_symbols);
                    const unsigned char* plocal_symbols);
 
 
  // Scan the relocations to look for symbol adjustments.
  // Scan the relocations to look for symbol adjustments.
  void
  void
  scan_relocs(Symbol_table* symtab,
  scan_relocs(Symbol_table* symtab,
              Layout* layout,
              Layout* layout,
              Sized_relobj_file<32, false>* object,
              Sized_relobj_file<32, false>* object,
              unsigned int data_shndx,
              unsigned int data_shndx,
              unsigned int sh_type,
              unsigned int sh_type,
              const unsigned char* prelocs,
              const unsigned char* prelocs,
              size_t reloc_count,
              size_t reloc_count,
              Output_section* output_section,
              Output_section* output_section,
              bool needs_special_offset_handling,
              bool needs_special_offset_handling,
              size_t local_symbol_count,
              size_t local_symbol_count,
              const unsigned char* plocal_symbols);
              const unsigned char* plocal_symbols);
 
 
  // Finalize the sections.
  // Finalize the sections.
  void
  void
  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
 
 
  // Return the value to use for a dynamic which requires special
  // Return the value to use for a dynamic which requires special
  // treatment.
  // treatment.
  uint64_t
  uint64_t
  do_dynsym_value(const Symbol*) const;
  do_dynsym_value(const Symbol*) const;
 
 
  // Relocate a section.
  // Relocate a section.
  void
  void
  relocate_section(const Relocate_info<32, false>*,
  relocate_section(const Relocate_info<32, false>*,
                   unsigned int sh_type,
                   unsigned int sh_type,
                   const unsigned char* prelocs,
                   const unsigned char* prelocs,
                   size_t reloc_count,
                   size_t reloc_count,
                   Output_section* output_section,
                   Output_section* output_section,
                   bool needs_special_offset_handling,
                   bool needs_special_offset_handling,
                   unsigned char* view,
                   unsigned char* view,
                   elfcpp::Elf_types<32>::Elf_Addr view_address,
                   elfcpp::Elf_types<32>::Elf_Addr view_address,
                   section_size_type view_size,
                   section_size_type view_size,
                   const Reloc_symbol_changes*);
                   const Reloc_symbol_changes*);
 
 
  // Scan the relocs during a relocatable link.
  // Scan the relocs during a relocatable link.
  void
  void
  scan_relocatable_relocs(Symbol_table* symtab,
  scan_relocatable_relocs(Symbol_table* symtab,
                          Layout* layout,
                          Layout* layout,
                          Sized_relobj_file<32, false>* object,
                          Sized_relobj_file<32, false>* object,
                          unsigned int data_shndx,
                          unsigned int data_shndx,
                          unsigned int sh_type,
                          unsigned int sh_type,
                          const unsigned char* prelocs,
                          const unsigned char* prelocs,
                          size_t reloc_count,
                          size_t reloc_count,
                          Output_section* output_section,
                          Output_section* output_section,
                          bool needs_special_offset_handling,
                          bool needs_special_offset_handling,
                          size_t local_symbol_count,
                          size_t local_symbol_count,
                          const unsigned char* plocal_symbols,
                          const unsigned char* plocal_symbols,
                          Relocatable_relocs*);
                          Relocatable_relocs*);
 
 
  // Relocate a section during a relocatable link.
  // Relocate a section during a relocatable link.
  void
  void
  relocate_for_relocatable(const Relocate_info<32, false>*,
  relocate_for_relocatable(const Relocate_info<32, false>*,
                           unsigned int sh_type,
                           unsigned int sh_type,
                           const unsigned char* prelocs,
                           const unsigned char* prelocs,
                           size_t reloc_count,
                           size_t reloc_count,
                           Output_section* output_section,
                           Output_section* output_section,
                           off_t offset_in_output_section,
                           off_t offset_in_output_section,
                           const Relocatable_relocs*,
                           const Relocatable_relocs*,
                           unsigned char* view,
                           unsigned char* view,
                           elfcpp::Elf_types<32>::Elf_Addr view_address,
                           elfcpp::Elf_types<32>::Elf_Addr view_address,
                           section_size_type view_size,
                           section_size_type view_size,
                           unsigned char* reloc_view,
                           unsigned char* reloc_view,
                           section_size_type reloc_view_size);
                           section_size_type reloc_view_size);
 
 
  // Return a string used to fill a code section with nops.
  // Return a string used to fill a code section with nops.
  std::string
  std::string
  do_code_fill(section_size_type length) const;
  do_code_fill(section_size_type length) const;
 
 
  // Return whether SYM is defined by the ABI.
  // Return whether SYM is defined by the ABI.
  bool
  bool
  do_is_defined_by_abi(const Symbol* sym) const
  do_is_defined_by_abi(const Symbol* sym) const
  { return strcmp(sym->name(), "___tls_get_addr") == 0; }
  { return strcmp(sym->name(), "___tls_get_addr") == 0; }
 
 
  // Return whether a symbol name implies a local label.  The UnixWare
  // Return whether a symbol name implies a local label.  The UnixWare
  // 2.1 cc generates temporary symbols that start with .X, so we
  // 2.1 cc generates temporary symbols that start with .X, so we
  // recognize them here.  FIXME: do other SVR4 compilers also use .X?.
  // recognize them here.  FIXME: do other SVR4 compilers also use .X?.
  // If so, we should move the .X recognition into
  // If so, we should move the .X recognition into
  // Target::do_is_local_label_name.
  // Target::do_is_local_label_name.
  bool
  bool
  do_is_local_label_name(const char* name) const
  do_is_local_label_name(const char* name) const
  {
  {
    if (name[0] == '.' && name[1] == 'X')
    if (name[0] == '.' && name[1] == 'X')
      return true;
      return true;
    return Target::do_is_local_label_name(name);
    return Target::do_is_local_label_name(name);
  }
  }
 
 
  // Return the PLT address to use for a global symbol.
  // Return the PLT address to use for a global symbol.
  uint64_t
  uint64_t
  do_plt_address_for_global(const Symbol* gsym) const
  do_plt_address_for_global(const Symbol* gsym) const
  { return this->plt_section()->address_for_global(gsym); }
  { return this->plt_section()->address_for_global(gsym); }
 
 
  uint64_t
  uint64_t
  do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
  do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
  { return this->plt_section()->address_for_local(relobj, symndx); }
  { return this->plt_section()->address_for_local(relobj, symndx); }
 
 
  // We can tell whether we take the address of a function.
  // We can tell whether we take the address of a function.
  inline bool
  inline bool
  do_can_check_for_function_pointers() const
  do_can_check_for_function_pointers() const
  { return true; }
  { return true; }
 
 
  // Return the base for a DW_EH_PE_datarel encoding.
  // Return the base for a DW_EH_PE_datarel encoding.
  uint64_t
  uint64_t
  do_ehframe_datarel_base() const;
  do_ehframe_datarel_base() const;
 
 
  // Return whether SYM is call to a non-split function.
  // Return whether SYM is call to a non-split function.
  bool
  bool
  do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
  do_is_call_to_non_split(const Symbol* sym, unsigned int) const;
 
 
  // Adjust -fsplit-stack code which calls non-split-stack code.
  // Adjust -fsplit-stack code which calls non-split-stack code.
  void
  void
  do_calls_non_split(Relobj* object, unsigned int shndx,
  do_calls_non_split(Relobj* object, unsigned int shndx,
                     section_offset_type fnoffset, section_size_type fnsize,
                     section_offset_type fnoffset, section_size_type fnsize,
                     unsigned char* view, section_size_type view_size,
                     unsigned char* view, section_size_type view_size,
                     std::string* from, std::string* to) const;
                     std::string* from, std::string* to) const;
 
 
  // Return the size of the GOT section.
  // Return the size of the GOT section.
  section_size_type
  section_size_type
  got_size() const
  got_size() const
  {
  {
    gold_assert(this->got_ != NULL);
    gold_assert(this->got_ != NULL);
    return this->got_->data_size();
    return this->got_->data_size();
  }
  }
 
 
  // Return the number of entries in the GOT.
  // Return the number of entries in the GOT.
  unsigned int
  unsigned int
  got_entry_count() const
  got_entry_count() const
  {
  {
    if (this->got_ == NULL)
    if (this->got_ == NULL)
      return 0;
      return 0;
    return this->got_size() / 4;
    return this->got_size() / 4;
  }
  }
 
 
  // Return the number of entries in the PLT.
  // Return the number of entries in the PLT.
  unsigned int
  unsigned int
  plt_entry_count() const;
  plt_entry_count() const;
 
 
  // Return the offset of the first non-reserved PLT entry.
  // Return the offset of the first non-reserved PLT entry.
  unsigned int
  unsigned int
  first_plt_entry_offset() const;
  first_plt_entry_offset() const;
 
 
  // Return the size of each PLT entry.
  // Return the size of each PLT entry.
  unsigned int
  unsigned int
  plt_entry_size() const;
  plt_entry_size() const;
 
 
 private:
 private:
  // The class which scans relocations.
  // The class which scans relocations.
  struct Scan
  struct Scan
  {
  {
    static inline int
    static inline int
 
 
    get_reference_flags(unsigned int r_type);
    get_reference_flags(unsigned int r_type);
 
 
    inline void
    inline void
    local(Symbol_table* symtab, Layout* layout, Target_i386* target,
    local(Symbol_table* symtab, Layout* layout, Target_i386* target,
          Sized_relobj_file<32, false>* object,
          Sized_relobj_file<32, false>* object,
          unsigned int data_shndx,
          unsigned int data_shndx,
          Output_section* output_section,
          Output_section* output_section,
          const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
          const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
          const elfcpp::Sym<32, false>& lsym);
          const elfcpp::Sym<32, false>& lsym);
 
 
    inline void
    inline void
    global(Symbol_table* symtab, Layout* layout, Target_i386* target,
    global(Symbol_table* symtab, Layout* layout, Target_i386* target,
           Sized_relobj_file<32, false>* object,
           Sized_relobj_file<32, false>* object,
           unsigned int data_shndx,
           unsigned int data_shndx,
           Output_section* output_section,
           Output_section* output_section,
           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
           const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
           Symbol* gsym);
           Symbol* gsym);
 
 
    inline bool
    inline bool
    local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
    local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
                                        Target_i386* target,
                                        Target_i386* target,
                                        Sized_relobj_file<32, false>* object,
                                        Sized_relobj_file<32, false>* object,
                                        unsigned int data_shndx,
                                        unsigned int data_shndx,
                                        Output_section* output_section,
                                        Output_section* output_section,
                                        const elfcpp::Rel<32, false>& reloc,
                                        const elfcpp::Rel<32, false>& reloc,
                                        unsigned int r_type,
                                        unsigned int r_type,
                                        const elfcpp::Sym<32, false>& lsym);
                                        const elfcpp::Sym<32, false>& lsym);
 
 
    inline bool
    inline bool
    global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
    global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
                                         Target_i386* target,
                                         Target_i386* target,
                                         Sized_relobj_file<32, false>* object,
                                         Sized_relobj_file<32, false>* object,
                                         unsigned int data_shndx,
                                         unsigned int data_shndx,
                                         Output_section* output_section,
                                         Output_section* output_section,
                                         const elfcpp::Rel<32, false>& reloc,
                                         const elfcpp::Rel<32, false>& reloc,
                                         unsigned int r_type,
                                         unsigned int r_type,
                                         Symbol* gsym);
                                         Symbol* gsym);
 
 
    inline bool
    inline bool
    possible_function_pointer_reloc(unsigned int r_type);
    possible_function_pointer_reloc(unsigned int r_type);
 
 
    bool
    bool
    reloc_needs_plt_for_ifunc(Sized_relobj_file<32, false>*,
    reloc_needs_plt_for_ifunc(Sized_relobj_file<32, false>*,
                              unsigned int r_type);
                              unsigned int r_type);
 
 
    static void
    static void
    unsupported_reloc_local(Sized_relobj_file<32, false>*, unsigned int r_type);
    unsupported_reloc_local(Sized_relobj_file<32, false>*, unsigned int r_type);
 
 
    static void
    static void
    unsupported_reloc_global(Sized_relobj_file<32, false>*, unsigned int r_type,
    unsupported_reloc_global(Sized_relobj_file<32, false>*, unsigned int r_type,
                             Symbol*);
                             Symbol*);
  };
  };
 
 
  // The class which implements relocation.
  // The class which implements relocation.
  class Relocate
  class Relocate
  {
  {
   public:
   public:
    Relocate()
    Relocate()
      : skip_call_tls_get_addr_(false),
      : skip_call_tls_get_addr_(false),
        local_dynamic_type_(LOCAL_DYNAMIC_NONE)
        local_dynamic_type_(LOCAL_DYNAMIC_NONE)
    { }
    { }
 
 
    ~Relocate()
    ~Relocate()
    {
    {
      if (this->skip_call_tls_get_addr_)
      if (this->skip_call_tls_get_addr_)
        {
        {
          // FIXME: This needs to specify the location somehow.
          // FIXME: This needs to specify the location somehow.
          gold_error(_("missing expected TLS relocation"));
          gold_error(_("missing expected TLS relocation"));
        }
        }
    }
    }
 
 
    // Return whether the static relocation needs to be applied.
    // Return whether the static relocation needs to be applied.
    inline bool
    inline bool
    should_apply_static_reloc(const Sized_symbol<32>* gsym,
    should_apply_static_reloc(const Sized_symbol<32>* gsym,
                              unsigned int r_type,
                              unsigned int r_type,
                              bool is_32bit,
                              bool is_32bit,
                              Output_section* output_section);
                              Output_section* output_section);
 
 
    // Do a relocation.  Return false if the caller should not issue
    // Do a relocation.  Return false if the caller should not issue
    // any warnings about this relocation.
    // any warnings about this relocation.
    inline bool
    inline bool
    relocate(const Relocate_info<32, false>*, Target_i386*, Output_section*,
    relocate(const Relocate_info<32, false>*, Target_i386*, Output_section*,
             size_t relnum, const elfcpp::Rel<32, false>&,
             size_t relnum, const elfcpp::Rel<32, false>&,
             unsigned int r_type, const Sized_symbol<32>*,
             unsigned int r_type, const Sized_symbol<32>*,
             const Symbol_value<32>*,
             const Symbol_value<32>*,
             unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
             unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
             section_size_type);
             section_size_type);
 
 
   private:
   private:
    // Do a TLS relocation.
    // Do a TLS relocation.
    inline void
    inline void
    relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
    relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
                 size_t relnum, const elfcpp::Rel<32, false>&,
                 size_t relnum, const elfcpp::Rel<32, false>&,
                 unsigned int r_type, const Sized_symbol<32>*,
                 unsigned int r_type, const Sized_symbol<32>*,
                 const Symbol_value<32>*,
                 const Symbol_value<32>*,
                 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
                 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
                 section_size_type);
                 section_size_type);
 
 
    // Do a TLS General-Dynamic to Initial-Exec transition.
    // Do a TLS General-Dynamic to Initial-Exec transition.
    inline void
    inline void
    tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
    tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
                 Output_segment* tls_segment,
                 Output_segment* tls_segment,
                 const elfcpp::Rel<32, false>&, unsigned int r_type,
                 const elfcpp::Rel<32, false>&, unsigned int r_type,
                 elfcpp::Elf_types<32>::Elf_Addr value,
                 elfcpp::Elf_types<32>::Elf_Addr value,
                 unsigned char* view,
                 unsigned char* view,
                 section_size_type view_size);
                 section_size_type view_size);
 
 
    // Do a TLS General-Dynamic to Local-Exec transition.
    // Do a TLS General-Dynamic to Local-Exec transition.
    inline void
    inline void
    tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
    tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
                 Output_segment* tls_segment,
                 Output_segment* tls_segment,
                 const elfcpp::Rel<32, false>&, unsigned int r_type,
                 const elfcpp::Rel<32, false>&, unsigned int r_type,
                 elfcpp::Elf_types<32>::Elf_Addr value,
                 elfcpp::Elf_types<32>::Elf_Addr value,
                 unsigned char* view,
                 unsigned char* view,
                 section_size_type view_size);
                 section_size_type view_size);
 
 
    // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
    // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Initial-Exec
    // transition.
    // transition.
    inline void
    inline void
    tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
    tls_desc_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
                      Output_segment* tls_segment,
                      Output_segment* tls_segment,
                      const elfcpp::Rel<32, false>&, unsigned int r_type,
                      const elfcpp::Rel<32, false>&, unsigned int r_type,
                      elfcpp::Elf_types<32>::Elf_Addr value,
                      elfcpp::Elf_types<32>::Elf_Addr value,
                      unsigned char* view,
                      unsigned char* view,
                      section_size_type view_size);
                      section_size_type view_size);
 
 
    // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
    // Do a TLS_GOTDESC or TLS_DESC_CALL General-Dynamic to Local-Exec
    // transition.
    // transition.
    inline void
    inline void
    tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
    tls_desc_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
                      Output_segment* tls_segment,
                      Output_segment* tls_segment,
                      const elfcpp::Rel<32, false>&, unsigned int r_type,
                      const elfcpp::Rel<32, false>&, unsigned int r_type,
                      elfcpp::Elf_types<32>::Elf_Addr value,
                      elfcpp::Elf_types<32>::Elf_Addr value,
                      unsigned char* view,
                      unsigned char* view,
                      section_size_type view_size);
                      section_size_type view_size);
 
 
    // Do a TLS Local-Dynamic to Local-Exec transition.
    // Do a TLS Local-Dynamic to Local-Exec transition.
    inline void
    inline void
    tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
    tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
                 Output_segment* tls_segment,
                 Output_segment* tls_segment,
                 const elfcpp::Rel<32, false>&, unsigned int r_type,
                 const elfcpp::Rel<32, false>&, unsigned int r_type,
                 elfcpp::Elf_types<32>::Elf_Addr value,
                 elfcpp::Elf_types<32>::Elf_Addr value,
                 unsigned char* view,
                 unsigned char* view,
                 section_size_type view_size);
                 section_size_type view_size);
 
 
    // Do a TLS Initial-Exec to Local-Exec transition.
    // Do a TLS Initial-Exec to Local-Exec transition.
    static inline void
    static inline void
    tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
    tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
                 Output_segment* tls_segment,
                 Output_segment* tls_segment,
                 const elfcpp::Rel<32, false>&, unsigned int r_type,
                 const elfcpp::Rel<32, false>&, unsigned int r_type,
                 elfcpp::Elf_types<32>::Elf_Addr value,
                 elfcpp::Elf_types<32>::Elf_Addr value,
                 unsigned char* view,
                 unsigned char* view,
                 section_size_type view_size);
                 section_size_type view_size);
 
 
    // We need to keep track of which type of local dynamic relocation
    // We need to keep track of which type of local dynamic relocation
    // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
    // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
    enum Local_dynamic_type
    enum Local_dynamic_type
    {
    {
      LOCAL_DYNAMIC_NONE,
      LOCAL_DYNAMIC_NONE,
      LOCAL_DYNAMIC_SUN,
      LOCAL_DYNAMIC_SUN,
      LOCAL_DYNAMIC_GNU
      LOCAL_DYNAMIC_GNU
    };
    };
 
 
    // This is set if we should skip the next reloc, which should be a
    // This is set if we should skip the next reloc, which should be a
    // PLT32 reloc against ___tls_get_addr.
    // PLT32 reloc against ___tls_get_addr.
    bool skip_call_tls_get_addr_;
    bool skip_call_tls_get_addr_;
    // The type of local dynamic relocation we have seen in the section
    // The type of local dynamic relocation we have seen in the section
    // being relocated, if any.
    // being relocated, if any.
    Local_dynamic_type local_dynamic_type_;
    Local_dynamic_type local_dynamic_type_;
  };
  };
 
 
  // A class which returns the size required for a relocation type,
  // A class which returns the size required for a relocation type,
  // used while scanning relocs during a relocatable link.
  // used while scanning relocs during a relocatable link.
  class Relocatable_size_for_reloc
  class Relocatable_size_for_reloc
  {
  {
   public:
   public:
    unsigned int
    unsigned int
    get_size_for_reloc(unsigned int, Relobj*);
    get_size_for_reloc(unsigned int, Relobj*);
  };
  };
 
 
  // Adjust TLS relocation type based on the options and whether this
  // Adjust TLS relocation type based on the options and whether this
  // is a local symbol.
  // is a local symbol.
  static tls::Tls_optimization
  static tls::Tls_optimization
  optimize_tls_reloc(bool is_final, int r_type);
  optimize_tls_reloc(bool is_final, int r_type);
 
 
  // Get the GOT section, creating it if necessary.
  // Get the GOT section, creating it if necessary.
  Output_data_got<32, false>*
  Output_data_got<32, false>*
  got_section(Symbol_table*, Layout*);
  got_section(Symbol_table*, Layout*);
 
 
  // Get the GOT PLT section.
  // Get the GOT PLT section.
  Output_data_space*
  Output_data_space*
  got_plt_section() const
  got_plt_section() const
  {
  {
    gold_assert(this->got_plt_ != NULL);
    gold_assert(this->got_plt_ != NULL);
    return this->got_plt_;
    return this->got_plt_;
  }
  }
 
 
  // Get the GOT section for TLSDESC entries.
  // Get the GOT section for TLSDESC entries.
  Output_data_got<32, false>*
  Output_data_got<32, false>*
  got_tlsdesc_section() const
  got_tlsdesc_section() const
  {
  {
    gold_assert(this->got_tlsdesc_ != NULL);
    gold_assert(this->got_tlsdesc_ != NULL);
    return this->got_tlsdesc_;
    return this->got_tlsdesc_;
  }
  }
 
 
  // Create the PLT section.
  // Create the PLT section.
  void
  void
  make_plt_section(Symbol_table* symtab, Layout* layout);
  make_plt_section(Symbol_table* symtab, Layout* layout);
 
 
  // Create a PLT entry for a global symbol.
  // Create a PLT entry for a global symbol.
  void
  void
  make_plt_entry(Symbol_table*, Layout*, Symbol*);
  make_plt_entry(Symbol_table*, Layout*, Symbol*);
 
 
  // Create a PLT entry for a local STT_GNU_IFUNC symbol.
  // Create a PLT entry for a local STT_GNU_IFUNC symbol.
  void
  void
  make_local_ifunc_plt_entry(Symbol_table*, Layout*,
  make_local_ifunc_plt_entry(Symbol_table*, Layout*,
                             Sized_relobj_file<32, false>* relobj,
                             Sized_relobj_file<32, false>* relobj,
                             unsigned int local_sym_index);
                             unsigned int local_sym_index);
 
 
  // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
  // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
  void
  void
  define_tls_base_symbol(Symbol_table*, Layout*);
  define_tls_base_symbol(Symbol_table*, Layout*);
 
 
  // Create a GOT entry for the TLS module index.
  // Create a GOT entry for the TLS module index.
  unsigned int
  unsigned int
  got_mod_index_entry(Symbol_table* symtab, Layout* layout,
  got_mod_index_entry(Symbol_table* symtab, Layout* layout,
                      Sized_relobj_file<32, false>* object);
                      Sized_relobj_file<32, false>* object);
 
 
  // Get the PLT section.
  // Get the PLT section.
  Output_data_plt_i386*
  Output_data_plt_i386*
  plt_section() const
  plt_section() const
  {
  {
    gold_assert(this->plt_ != NULL);
    gold_assert(this->plt_ != NULL);
    return this->plt_;
    return this->plt_;
  }
  }
 
 
  // Get the dynamic reloc section, creating it if necessary.
  // Get the dynamic reloc section, creating it if necessary.
  Reloc_section*
  Reloc_section*
  rel_dyn_section(Layout*);
  rel_dyn_section(Layout*);
 
 
  // Get the section to use for TLS_DESC relocations.
  // Get the section to use for TLS_DESC relocations.
  Reloc_section*
  Reloc_section*
  rel_tls_desc_section(Layout*) const;
  rel_tls_desc_section(Layout*) const;
 
 
  // Get the section to use for IRELATIVE relocations.
  // Get the section to use for IRELATIVE relocations.
  Reloc_section*
  Reloc_section*
  rel_irelative_section(Layout*);
  rel_irelative_section(Layout*);
 
 
  // Add a potential copy relocation.
  // Add a potential copy relocation.
  void
  void
  copy_reloc(Symbol_table* symtab, Layout* layout,
  copy_reloc(Symbol_table* symtab, Layout* layout,
             Sized_relobj_file<32, false>* object,
             Sized_relobj_file<32, false>* object,
             unsigned int shndx, Output_section* output_section,
             unsigned int shndx, Output_section* output_section,
             Symbol* sym, const elfcpp::Rel<32, false>& reloc)
             Symbol* sym, const elfcpp::Rel<32, false>& reloc)
  {
  {
    this->copy_relocs_.copy_reloc(symtab, layout,
    this->copy_relocs_.copy_reloc(symtab, layout,
                                  symtab->get_sized_symbol<32>(sym),
                                  symtab->get_sized_symbol<32>(sym),
                                  object, shndx, output_section, reloc,
                                  object, shndx, output_section, reloc,
                                  this->rel_dyn_section(layout));
                                  this->rel_dyn_section(layout));
  }
  }
 
 
  // Information about this specific target which we pass to the
  // Information about this specific target which we pass to the
  // general Target structure.
  // general Target structure.
  static const Target::Target_info i386_info;
  static const Target::Target_info i386_info;
 
 
  // The types of GOT entries needed for this platform.
  // The types of GOT entries needed for this platform.
  // These values are exposed to the ABI in an incremental link.
  // These values are exposed to the ABI in an incremental link.
  // Do not renumber existing values without changing the version
  // Do not renumber existing values without changing the version
  // number of the .gnu_incremental_inputs section.
  // number of the .gnu_incremental_inputs section.
  enum Got_type
  enum Got_type
  {
  {
    GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
    GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
    GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
    GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
    GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
    GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
    GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
    GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
    GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
    GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
  };
  };
 
 
  // The GOT section.
  // The GOT section.
  Output_data_got<32, false>* got_;
  Output_data_got<32, false>* got_;
  // The PLT section.
  // The PLT section.
  Output_data_plt_i386* plt_;
  Output_data_plt_i386* plt_;
  // The GOT PLT section.
  // The GOT PLT section.
  Output_data_space* got_plt_;
  Output_data_space* got_plt_;
  // The GOT section for IRELATIVE relocations.
  // The GOT section for IRELATIVE relocations.
  Output_data_space* got_irelative_;
  Output_data_space* got_irelative_;
  // The GOT section for TLSDESC relocations.
  // The GOT section for TLSDESC relocations.
  Output_data_got<32, false>* got_tlsdesc_;
  Output_data_got<32, false>* got_tlsdesc_;
  // The _GLOBAL_OFFSET_TABLE_ symbol.
  // The _GLOBAL_OFFSET_TABLE_ symbol.
  Symbol* global_offset_table_;
  Symbol* global_offset_table_;
  // The dynamic reloc section.
  // The dynamic reloc section.
  Reloc_section* rel_dyn_;
  Reloc_section* rel_dyn_;
  // The section to use for IRELATIVE relocs.
  // The section to use for IRELATIVE relocs.
  Reloc_section* rel_irelative_;
  Reloc_section* rel_irelative_;
  // Relocs saved to avoid a COPY reloc.
  // Relocs saved to avoid a COPY reloc.
  Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
  Copy_relocs<elfcpp::SHT_REL, 32, false> copy_relocs_;
  // Space for variables copied with a COPY reloc.
  // Space for variables copied with a COPY reloc.
  Output_data_space* dynbss_;
  Output_data_space* dynbss_;
  // Offset of the GOT entry for the TLS module index.
  // Offset of the GOT entry for the TLS module index.
  unsigned int got_mod_index_offset_;
  unsigned int got_mod_index_offset_;
  // True if the _TLS_MODULE_BASE_ symbol has been defined.
  // True if the _TLS_MODULE_BASE_ symbol has been defined.
  bool tls_base_symbol_defined_;
  bool tls_base_symbol_defined_;
};
};
 
 
const Target::Target_info Target_i386::i386_info =
const Target::Target_info Target_i386::i386_info =
{
{
  32,                   // size
  32,                   // size
  false,                // is_big_endian
  false,                // is_big_endian
  elfcpp::EM_386,       // machine_code
  elfcpp::EM_386,       // machine_code
  false,                // has_make_symbol
  false,                // has_make_symbol
  false,                // has_resolve
  false,                // has_resolve
  true,                 // has_code_fill
  true,                 // has_code_fill
  true,                 // is_default_stack_executable
  true,                 // is_default_stack_executable
  true,                 // can_icf_inline_merge_sections
  true,                 // can_icf_inline_merge_sections
  '\0',                 // wrap_char
  '\0',                 // wrap_char
  "/usr/lib/libc.so.1", // dynamic_linker
  "/usr/lib/libc.so.1", // dynamic_linker
  0x08048000,           // default_text_segment_address
  0x08048000,           // default_text_segment_address
  0x1000,               // abi_pagesize (overridable by -z max-page-size)
  0x1000,               // abi_pagesize (overridable by -z max-page-size)
  0x1000,               // common_pagesize (overridable by -z common-page-size)
  0x1000,               // common_pagesize (overridable by -z common-page-size)
  elfcpp::SHN_UNDEF,    // small_common_shndx
  elfcpp::SHN_UNDEF,    // small_common_shndx
  elfcpp::SHN_UNDEF,    // large_common_shndx
  elfcpp::SHN_UNDEF,    // large_common_shndx
  0,                     // small_common_section_flags
  0,                     // small_common_section_flags
  0,                     // large_common_section_flags
  0,                     // large_common_section_flags
  NULL,                 // attributes_section
  NULL,                 // attributes_section
  NULL                  // attributes_vendor
  NULL                  // attributes_vendor
};
};
 
 
// Get the GOT section, creating it if necessary.
// Get the GOT section, creating it if necessary.
 
 
Output_data_got<32, false>*
Output_data_got<32, false>*
Target_i386::got_section(Symbol_table* symtab, Layout* layout)
Target_i386::got_section(Symbol_table* symtab, Layout* layout)
{
{
  if (this->got_ == NULL)
  if (this->got_ == NULL)
    {
    {
      gold_assert(symtab != NULL && layout != NULL);
      gold_assert(symtab != NULL && layout != NULL);
 
 
      this->got_ = new Output_data_got<32, false>();
      this->got_ = new Output_data_got<32, false>();
 
 
      // When using -z now, we can treat .got.plt as a relro section.
      // When using -z now, we can treat .got.plt as a relro section.
      // Without -z now, it is modified after program startup by lazy
      // Without -z now, it is modified after program startup by lazy
      // PLT relocations.
      // PLT relocations.
      bool is_got_plt_relro = parameters->options().now();
      bool is_got_plt_relro = parameters->options().now();
      Output_section_order got_order = (is_got_plt_relro
      Output_section_order got_order = (is_got_plt_relro
                                        ? ORDER_RELRO
                                        ? ORDER_RELRO
                                        : ORDER_RELRO_LAST);
                                        : ORDER_RELRO_LAST);
      Output_section_order got_plt_order = (is_got_plt_relro
      Output_section_order got_plt_order = (is_got_plt_relro
                                            ? ORDER_RELRO
                                            ? ORDER_RELRO
                                            : ORDER_NON_RELRO_FIRST);
                                            : ORDER_NON_RELRO_FIRST);
 
 
      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_WRITE),
                                       | elfcpp::SHF_WRITE),
                                      this->got_, got_order, true);
                                      this->got_, got_order, true);
 
 
      this->got_plt_ = new Output_data_space(4, "** GOT PLT");
      this->got_plt_ = new Output_data_space(4, "** GOT PLT");
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_WRITE),
                                       | elfcpp::SHF_WRITE),
                                      this->got_plt_, got_plt_order,
                                      this->got_plt_, got_plt_order,
                                      is_got_plt_relro);
                                      is_got_plt_relro);
 
 
      // The first three entries are reserved.
      // The first three entries are reserved.
      this->got_plt_->set_current_data_size(3 * 4);
      this->got_plt_->set_current_data_size(3 * 4);
 
 
      if (!is_got_plt_relro)
      if (!is_got_plt_relro)
        {
        {
          // Those bytes can go into the relro segment.
          // Those bytes can go into the relro segment.
          layout->increase_relro(3 * 4);
          layout->increase_relro(3 * 4);
        }
        }
 
 
      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
      this->global_offset_table_ =
      this->global_offset_table_ =
        symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
        symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
                                      Symbol_table::PREDEFINED,
                                      Symbol_table::PREDEFINED,
                                      this->got_plt_,
                                      this->got_plt_,
                                      0, 0, elfcpp::STT_OBJECT,
                                      0, 0, elfcpp::STT_OBJECT,
                                      elfcpp::STB_LOCAL,
                                      elfcpp::STB_LOCAL,
                                      elfcpp::STV_HIDDEN, 0,
                                      elfcpp::STV_HIDDEN, 0,
                                      false, false);
                                      false, false);
 
 
      // If there are any IRELATIVE relocations, they get GOT entries
      // If there are any IRELATIVE relocations, they get GOT entries
      // in .got.plt after the jump slot relocations.
      // in .got.plt after the jump slot relocations.
      this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
      this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_WRITE),
                                       | elfcpp::SHF_WRITE),
                                      this->got_irelative_,
                                      this->got_irelative_,
                                      got_plt_order, is_got_plt_relro);
                                      got_plt_order, is_got_plt_relro);
 
 
      // If there are any TLSDESC relocations, they get GOT entries in
      // If there are any TLSDESC relocations, they get GOT entries in
      // .got.plt after the jump slot entries.
      // .got.plt after the jump slot entries.
      this->got_tlsdesc_ = new Output_data_got<32, false>();
      this->got_tlsdesc_ = new Output_data_got<32, false>();
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_WRITE),
                                       | elfcpp::SHF_WRITE),
                                      this->got_tlsdesc_,
                                      this->got_tlsdesc_,
                                      got_plt_order, is_got_plt_relro);
                                      got_plt_order, is_got_plt_relro);
    }
    }
 
 
  return this->got_;
  return this->got_;
}
}
 
 
// Get the dynamic reloc section, creating it if necessary.
// Get the dynamic reloc section, creating it if necessary.
 
 
Target_i386::Reloc_section*
Target_i386::Reloc_section*
Target_i386::rel_dyn_section(Layout* layout)
Target_i386::rel_dyn_section(Layout* layout)
{
{
  if (this->rel_dyn_ == NULL)
  if (this->rel_dyn_ == NULL)
    {
    {
      gold_assert(layout != NULL);
      gold_assert(layout != NULL);
      this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
      this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
      layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
      layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
                                      elfcpp::SHF_ALLOC, this->rel_dyn_,
                                      elfcpp::SHF_ALLOC, this->rel_dyn_,
                                      ORDER_DYNAMIC_RELOCS, false);
                                      ORDER_DYNAMIC_RELOCS, false);
    }
    }
  return this->rel_dyn_;
  return this->rel_dyn_;
}
}
 
 
// Get the section to use for IRELATIVE relocs, creating it if
// Get the section to use for IRELATIVE relocs, creating it if
// necessary.  These go in .rel.dyn, but only after all other dynamic
// necessary.  These go in .rel.dyn, but only after all other dynamic
// relocations.  They need to follow the other dynamic relocations so
// relocations.  They need to follow the other dynamic relocations so
// that they can refer to global variables initialized by those
// that they can refer to global variables initialized by those
// relocs.
// relocs.
 
 
Target_i386::Reloc_section*
Target_i386::Reloc_section*
Target_i386::rel_irelative_section(Layout* layout)
Target_i386::rel_irelative_section(Layout* layout)
{
{
  if (this->rel_irelative_ == NULL)
  if (this->rel_irelative_ == NULL)
    {
    {
      // Make sure we have already create the dynamic reloc section.
      // Make sure we have already create the dynamic reloc section.
      this->rel_dyn_section(layout);
      this->rel_dyn_section(layout);
      this->rel_irelative_ = new Reloc_section(false);
      this->rel_irelative_ = new Reloc_section(false);
      layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
      layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
                                      elfcpp::SHF_ALLOC, this->rel_irelative_,
                                      elfcpp::SHF_ALLOC, this->rel_irelative_,
                                      ORDER_DYNAMIC_RELOCS, false);
                                      ORDER_DYNAMIC_RELOCS, false);
      gold_assert(this->rel_dyn_->output_section()
      gold_assert(this->rel_dyn_->output_section()
                  == this->rel_irelative_->output_section());
                  == this->rel_irelative_->output_section());
    }
    }
  return this->rel_irelative_;
  return this->rel_irelative_;
}
}
 
 
// Create the PLT section.  The ordinary .got section is an argument,
// Create the PLT section.  The ordinary .got section is an argument,
// since we need to refer to the start.  We also create our own .got
// since we need to refer to the start.  We also create our own .got
// section just for PLT entries.
// section just for PLT entries.
 
 
Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
                                           Output_data_space* got_plt,
                                           Output_data_space* got_plt,
                                           Output_data_space* got_irelative)
                                           Output_data_space* got_irelative)
  : Output_section_data(16), layout_(layout), tls_desc_rel_(NULL),
  : Output_section_data(16), layout_(layout), tls_desc_rel_(NULL),
    irelative_rel_(NULL), got_plt_(got_plt), got_irelative_(got_irelative),
    irelative_rel_(NULL), got_plt_(got_plt), got_irelative_(got_irelative),
    count_(0), irelative_count_(0), global_ifuncs_(), local_ifuncs_()
    count_(0), irelative_count_(0), global_ifuncs_(), local_ifuncs_()
{
{
  this->rel_ = new Reloc_section(false);
  this->rel_ = new Reloc_section(false);
  layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
  layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
                                  elfcpp::SHF_ALLOC, this->rel_,
                                  elfcpp::SHF_ALLOC, this->rel_,
                                  ORDER_DYNAMIC_PLT_RELOCS, false);
                                  ORDER_DYNAMIC_PLT_RELOCS, false);
 
 
  // Add unwind information if requested.
  // Add unwind information if requested.
  if (parameters->options().ld_generated_unwind_info())
  if (parameters->options().ld_generated_unwind_info())
    layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
    layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
                                 plt_eh_frame_fde, plt_eh_frame_fde_size);
                                 plt_eh_frame_fde, plt_eh_frame_fde_size);
}
}
 
 
void
void
Output_data_plt_i386::do_adjust_output_section(Output_section* os)
Output_data_plt_i386::do_adjust_output_section(Output_section* os)
{
{
  // UnixWare sets the entsize of .plt to 4, and so does the old GNU
  // UnixWare sets the entsize of .plt to 4, and so does the old GNU
  // linker, and so do we.
  // linker, and so do we.
  os->set_entsize(4);
  os->set_entsize(4);
}
}
 
 
// Add an entry to the PLT.
// Add an entry to the PLT.
 
 
void
void
Output_data_plt_i386::add_entry(Symbol_table* symtab, Layout* layout,
Output_data_plt_i386::add_entry(Symbol_table* symtab, Layout* layout,
                                Symbol* gsym)
                                Symbol* gsym)
{
{
  gold_assert(!gsym->has_plt_offset());
  gold_assert(!gsym->has_plt_offset());
 
 
  // Every PLT entry needs a reloc.
  // Every PLT entry needs a reloc.
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && gsym->can_use_relative_reloc(false))
      && gsym->can_use_relative_reloc(false))
    {
    {
      gsym->set_plt_offset(this->irelative_count_ * plt_entry_size);
      gsym->set_plt_offset(this->irelative_count_ * plt_entry_size);
      ++this->irelative_count_;
      ++this->irelative_count_;
      section_offset_type got_offset =
      section_offset_type got_offset =
        this->got_irelative_->current_data_size();
        this->got_irelative_->current_data_size();
      this->got_irelative_->set_current_data_size(got_offset + 4);
      this->got_irelative_->set_current_data_size(got_offset + 4);
      Reloc_section* rel = this->rel_irelative(symtab, layout);
      Reloc_section* rel = this->rel_irelative(symtab, layout);
      rel->add_symbolless_global_addend(gsym, elfcpp::R_386_IRELATIVE,
      rel->add_symbolless_global_addend(gsym, elfcpp::R_386_IRELATIVE,
                                        this->got_irelative_, got_offset);
                                        this->got_irelative_, got_offset);
      struct Global_ifunc gi;
      struct Global_ifunc gi;
      gi.sym = gsym;
      gi.sym = gsym;
      gi.got_offset = got_offset;
      gi.got_offset = got_offset;
      this->global_ifuncs_.push_back(gi);
      this->global_ifuncs_.push_back(gi);
    }
    }
  else
  else
    {
    {
      // When setting the PLT offset we skip the initial reserved PLT
      // When setting the PLT offset we skip the initial reserved PLT
      // entry.
      // entry.
      gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
      gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
 
 
      ++this->count_;
      ++this->count_;
 
 
      section_offset_type got_offset = this->got_plt_->current_data_size();
      section_offset_type got_offset = this->got_plt_->current_data_size();
 
 
      // Every PLT entry needs a GOT entry which points back to the
      // Every PLT entry needs a GOT entry which points back to the
      // PLT entry (this will be changed by the dynamic linker,
      // PLT entry (this will be changed by the dynamic linker,
      // normally lazily when the function is called).
      // normally lazily when the function is called).
      this->got_plt_->set_current_data_size(got_offset + 4);
      this->got_plt_->set_current_data_size(got_offset + 4);
 
 
      gsym->set_needs_dynsym_entry();
      gsym->set_needs_dynsym_entry();
      this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
      this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
                             got_offset);
                             got_offset);
    }
    }
 
 
  // Note that we don't need to save the symbol.  The contents of the
  // Note that we don't need to save the symbol.  The contents of the
  // PLT are independent of which symbols are used.  The symbols only
  // PLT are independent of which symbols are used.  The symbols only
  // appear in the relocations.
  // appear in the relocations.
}
}
 
 
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
// the PLT offset.
// the PLT offset.
 
 
unsigned int
unsigned int
Output_data_plt_i386::add_local_ifunc_entry(
Output_data_plt_i386::add_local_ifunc_entry(
    Symbol_table* symtab,
    Symbol_table* symtab,
    Layout* layout,
    Layout* layout,
    Sized_relobj_file<32, false>* relobj,
    Sized_relobj_file<32, false>* relobj,
    unsigned int local_sym_index)
    unsigned int local_sym_index)
{
{
  unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
  unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
  ++this->irelative_count_;
  ++this->irelative_count_;
 
 
  section_offset_type got_offset = this->got_irelative_->current_data_size();
  section_offset_type got_offset = this->got_irelative_->current_data_size();
 
 
  // Every PLT entry needs a GOT entry which points back to the PLT
  // Every PLT entry needs a GOT entry which points back to the PLT
  // entry.
  // entry.
  this->got_irelative_->set_current_data_size(got_offset + 4);
  this->got_irelative_->set_current_data_size(got_offset + 4);
 
 
  // Every PLT entry needs a reloc.
  // Every PLT entry needs a reloc.
  Reloc_section* rel = this->rel_irelative(symtab, layout);
  Reloc_section* rel = this->rel_irelative(symtab, layout);
  rel->add_symbolless_local_addend(relobj, local_sym_index,
  rel->add_symbolless_local_addend(relobj, local_sym_index,
                                   elfcpp::R_386_IRELATIVE,
                                   elfcpp::R_386_IRELATIVE,
                                   this->got_irelative_, got_offset);
                                   this->got_irelative_, got_offset);
 
 
  struct Local_ifunc li;
  struct Local_ifunc li;
  li.object = relobj;
  li.object = relobj;
  li.local_sym_index = local_sym_index;
  li.local_sym_index = local_sym_index;
  li.got_offset = got_offset;
  li.got_offset = got_offset;
  this->local_ifuncs_.push_back(li);
  this->local_ifuncs_.push_back(li);
 
 
  return plt_offset;
  return plt_offset;
}
}
 
 
// Return where the TLS_DESC relocations should go, creating it if
// Return where the TLS_DESC relocations should go, creating it if
// necessary. These follow the JUMP_SLOT relocations.
// necessary. These follow the JUMP_SLOT relocations.
 
 
Output_data_plt_i386::Reloc_section*
Output_data_plt_i386::Reloc_section*
Output_data_plt_i386::rel_tls_desc(Layout* layout)
Output_data_plt_i386::rel_tls_desc(Layout* layout)
{
{
  if (this->tls_desc_rel_ == NULL)
  if (this->tls_desc_rel_ == NULL)
    {
    {
      this->tls_desc_rel_ = new Reloc_section(false);
      this->tls_desc_rel_ = new Reloc_section(false);
      layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
      layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
                                      elfcpp::SHF_ALLOC, this->tls_desc_rel_,
                                      elfcpp::SHF_ALLOC, this->tls_desc_rel_,
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
      gold_assert(this->tls_desc_rel_->output_section()
      gold_assert(this->tls_desc_rel_->output_section()
                  == this->rel_->output_section());
                  == this->rel_->output_section());
    }
    }
  return this->tls_desc_rel_;
  return this->tls_desc_rel_;
}
}
 
 
// Return where the IRELATIVE relocations should go in the PLT.  These
// Return where the IRELATIVE relocations should go in the PLT.  These
// follow the JUMP_SLOT and TLS_DESC relocations.
// follow the JUMP_SLOT and TLS_DESC relocations.
 
 
Output_data_plt_i386::Reloc_section*
Output_data_plt_i386::Reloc_section*
Output_data_plt_i386::rel_irelative(Symbol_table* symtab, Layout* layout)
Output_data_plt_i386::rel_irelative(Symbol_table* symtab, Layout* layout)
{
{
  if (this->irelative_rel_ == NULL)
  if (this->irelative_rel_ == NULL)
    {
    {
      // Make sure we have a place for the TLS_DESC relocations, in
      // Make sure we have a place for the TLS_DESC relocations, in
      // case we see any later on.
      // case we see any later on.
      this->rel_tls_desc(layout);
      this->rel_tls_desc(layout);
      this->irelative_rel_ = new Reloc_section(false);
      this->irelative_rel_ = new Reloc_section(false);
      layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
      layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
                                      elfcpp::SHF_ALLOC, this->irelative_rel_,
                                      elfcpp::SHF_ALLOC, this->irelative_rel_,
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
      gold_assert(this->irelative_rel_->output_section()
      gold_assert(this->irelative_rel_->output_section()
                  == this->rel_->output_section());
                  == this->rel_->output_section());
 
 
      if (parameters->doing_static_link())
      if (parameters->doing_static_link())
        {
        {
          // A statically linked executable will only have a .rel.plt
          // A statically linked executable will only have a .rel.plt
          // section to hold R_386_IRELATIVE relocs for STT_GNU_IFUNC
          // section to hold R_386_IRELATIVE relocs for STT_GNU_IFUNC
          // symbols.  The library will use these symbols to locate
          // symbols.  The library will use these symbols to locate
          // the IRELATIVE relocs at program startup time.
          // the IRELATIVE relocs at program startup time.
          symtab->define_in_output_data("__rel_iplt_start", NULL,
          symtab->define_in_output_data("__rel_iplt_start", NULL,
                                        Symbol_table::PREDEFINED,
                                        Symbol_table::PREDEFINED,
                                        this->irelative_rel_, 0, 0,
                                        this->irelative_rel_, 0, 0,
                                        elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                        elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                        elfcpp::STV_HIDDEN, 0, false, true);
                                        elfcpp::STV_HIDDEN, 0, false, true);
          symtab->define_in_output_data("__rel_iplt_end", NULL,
          symtab->define_in_output_data("__rel_iplt_end", NULL,
                                        Symbol_table::PREDEFINED,
                                        Symbol_table::PREDEFINED,
                                        this->irelative_rel_, 0, 0,
                                        this->irelative_rel_, 0, 0,
                                        elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                        elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                        elfcpp::STV_HIDDEN, 0, true, true);
                                        elfcpp::STV_HIDDEN, 0, true, true);
        }
        }
    }
    }
  return this->irelative_rel_;
  return this->irelative_rel_;
}
}
 
 
// Return the PLT address to use for a global symbol.
// Return the PLT address to use for a global symbol.
 
 
uint64_t
uint64_t
Output_data_plt_i386::address_for_global(const Symbol* gsym)
Output_data_plt_i386::address_for_global(const Symbol* gsym)
{
{
  uint64_t offset = 0;
  uint64_t offset = 0;
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && gsym->can_use_relative_reloc(false))
      && gsym->can_use_relative_reloc(false))
    offset = (this->count_ + 1) * plt_entry_size;
    offset = (this->count_ + 1) * plt_entry_size;
  return this->address() + offset;
  return this->address() + offset;
}
}
 
 
// Return the PLT address to use for a local symbol.  These are always
// Return the PLT address to use for a local symbol.  These are always
// IRELATIVE relocs.
// IRELATIVE relocs.
 
 
uint64_t
uint64_t
Output_data_plt_i386::address_for_local(const Relobj*, unsigned int)
Output_data_plt_i386::address_for_local(const Relobj*, unsigned int)
{
{
  return this->address() + (this->count_ + 1) * plt_entry_size;
  return this->address() + (this->count_ + 1) * plt_entry_size;
}
}
 
 
// The first entry in the PLT for an executable.
// The first entry in the PLT for an executable.
 
 
const unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
const unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
{
{
  0xff, 0x35,   // pushl contents of memory address
  0xff, 0x35,   // pushl contents of memory address
  0, 0, 0, 0,       // replaced with address of .got + 4
  0, 0, 0, 0,       // replaced with address of .got + 4
  0xff, 0x25,   // jmp indirect
  0xff, 0x25,   // jmp indirect
  0, 0, 0, 0,       // replaced with address of .got + 8
  0, 0, 0, 0,       // replaced with address of .got + 8
  0, 0, 0, 0        // unused
  0, 0, 0, 0        // unused
};
};
 
 
// The first entry in the PLT for a shared object.
// The first entry in the PLT for a shared object.
 
 
const unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
const unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
{
{
  0xff, 0xb3, 4, 0, 0, 0,  // pushl 4(%ebx)
  0xff, 0xb3, 4, 0, 0, 0,  // pushl 4(%ebx)
  0xff, 0xa3, 8, 0, 0, 0,  // jmp *8(%ebx)
  0xff, 0xa3, 8, 0, 0, 0,  // jmp *8(%ebx)
  0, 0, 0, 0                        // unused
  0, 0, 0, 0                        // unused
};
};
 
 
// Subsequent entries in the PLT for an executable.
// Subsequent entries in the PLT for an executable.
 
 
const unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
const unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
{
{
  0xff, 0x25,   // jmp indirect
  0xff, 0x25,   // jmp indirect
  0, 0, 0, 0,       // replaced with address of symbol in .got
  0, 0, 0, 0,       // replaced with address of symbol in .got
  0x68,         // pushl immediate
  0x68,         // pushl immediate
  0, 0, 0, 0,       // replaced with offset into relocation table
  0, 0, 0, 0,       // replaced with offset into relocation table
  0xe9,         // jmp relative
  0xe9,         // jmp relative
  0, 0, 0, 0        // replaced with offset to start of .plt
  0, 0, 0, 0        // replaced with offset to start of .plt
};
};
 
 
// Subsequent entries in the PLT for a shared object.
// Subsequent entries in the PLT for a shared object.
 
 
const unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
const unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
{
{
  0xff, 0xa3,   // jmp *offset(%ebx)
  0xff, 0xa3,   // jmp *offset(%ebx)
  0, 0, 0, 0,       // replaced with offset of symbol in .got
  0, 0, 0, 0,       // replaced with offset of symbol in .got
  0x68,         // pushl immediate
  0x68,         // pushl immediate
  0, 0, 0, 0,       // replaced with offset into relocation table
  0, 0, 0, 0,       // replaced with offset into relocation table
  0xe9,         // jmp relative
  0xe9,         // jmp relative
  0, 0, 0, 0        // replaced with offset to start of .plt
  0, 0, 0, 0        // replaced with offset to start of .plt
};
};
 
 
// The .eh_frame unwind information for the PLT.
// The .eh_frame unwind information for the PLT.
 
 
const unsigned char
const unsigned char
Output_data_plt_i386::plt_eh_frame_cie[plt_eh_frame_cie_size] =
Output_data_plt_i386::plt_eh_frame_cie[plt_eh_frame_cie_size] =
{
{
  1,                            // CIE version.
  1,                            // CIE version.
  'z',                          // Augmentation: augmentation size included.
  'z',                          // Augmentation: augmentation size included.
  'R',                          // Augmentation: FDE encoding included.
  'R',                          // Augmentation: FDE encoding included.
  '\0',                         // End of augmentation string.
  '\0',                         // End of augmentation string.
  1,                            // Code alignment factor.
  1,                            // Code alignment factor.
  0x7c,                         // Data alignment factor.
  0x7c,                         // Data alignment factor.
  8,                            // Return address column.
  8,                            // Return address column.
  1,                            // Augmentation size.
  1,                            // Augmentation size.
  (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
  (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
   | elfcpp::DW_EH_PE_sdata4),
   | elfcpp::DW_EH_PE_sdata4),
  elfcpp::DW_CFA_def_cfa, 4, 4, // DW_CFA_def_cfa: r4 (esp) ofs 4.
  elfcpp::DW_CFA_def_cfa, 4, 4, // DW_CFA_def_cfa: r4 (esp) ofs 4.
  elfcpp::DW_CFA_offset + 8, 1, // DW_CFA_offset: r8 (eip) at cfa-4.
  elfcpp::DW_CFA_offset + 8, 1, // DW_CFA_offset: r8 (eip) at cfa-4.
  elfcpp::DW_CFA_nop,           // Align to 16 bytes.
  elfcpp::DW_CFA_nop,           // Align to 16 bytes.
  elfcpp::DW_CFA_nop
  elfcpp::DW_CFA_nop
};
};
 
 
const unsigned char
const unsigned char
Output_data_plt_i386::plt_eh_frame_fde[plt_eh_frame_fde_size] =
Output_data_plt_i386::plt_eh_frame_fde[plt_eh_frame_fde_size] =
{
{
  0, 0, 0, 0,                               // Replaced with offset to .plt.
  0, 0, 0, 0,                               // Replaced with offset to .plt.
  0, 0, 0, 0,                               // Replaced with size of .plt.
  0, 0, 0, 0,                               // Replaced with size of .plt.
  0,                                     // Augmentation size.
  0,                                     // Augmentation size.
  elfcpp::DW_CFA_def_cfa_offset, 8,     // DW_CFA_def_cfa_offset: 8.
  elfcpp::DW_CFA_def_cfa_offset, 8,     // DW_CFA_def_cfa_offset: 8.
  elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
  elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
  elfcpp::DW_CFA_def_cfa_offset, 12,    // DW_CFA_def_cfa_offset: 12.
  elfcpp::DW_CFA_def_cfa_offset, 12,    // DW_CFA_def_cfa_offset: 12.
  elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
  elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
  elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
  elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
  11,                                   // Block length.
  11,                                   // Block length.
  elfcpp::DW_OP_breg4, 4,               // Push %esp + 4.
  elfcpp::DW_OP_breg4, 4,               // Push %esp + 4.
  elfcpp::DW_OP_breg8, 0,                // Push %eip.
  elfcpp::DW_OP_breg8, 0,                // Push %eip.
  elfcpp::DW_OP_lit15,                  // Push 0xf.
  elfcpp::DW_OP_lit15,                  // Push 0xf.
  elfcpp::DW_OP_and,                    // & (%eip & 0xf).
  elfcpp::DW_OP_and,                    // & (%eip & 0xf).
  elfcpp::DW_OP_lit11,                  // Push 0xb.
  elfcpp::DW_OP_lit11,                  // Push 0xb.
  elfcpp::DW_OP_ge,                     // >= ((%eip & 0xf) >= 0xb)
  elfcpp::DW_OP_ge,                     // >= ((%eip & 0xf) >= 0xb)
  elfcpp::DW_OP_lit2,                   // Push 2.
  elfcpp::DW_OP_lit2,                   // Push 2.
  elfcpp::DW_OP_shl,                    // << (((%eip & 0xf) >= 0xb) << 2)
  elfcpp::DW_OP_shl,                    // << (((%eip & 0xf) >= 0xb) << 2)
  elfcpp::DW_OP_plus,                   // + ((((%eip&0xf)>=0xb)<<2)+%esp+4
  elfcpp::DW_OP_plus,                   // + ((((%eip&0xf)>=0xb)<<2)+%esp+4
  elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
  elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop
  elfcpp::DW_CFA_nop
};
};
 
 
// Write out the PLT.  This uses the hand-coded instructions above,
// Write out the PLT.  This uses the hand-coded instructions above,
// and adjusts them as needed.  This is all specified by the i386 ELF
// and adjusts them as needed.  This is all specified by the i386 ELF
// Processor Supplement.
// Processor Supplement.
 
 
void
void
Output_data_plt_i386::do_write(Output_file* of)
Output_data_plt_i386::do_write(Output_file* of)
{
{
  const off_t offset = this->offset();
  const off_t offset = this->offset();
  const section_size_type oview_size =
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);
  unsigned char* const oview = of->get_output_view(offset, oview_size);
 
 
  const off_t got_file_offset = this->got_plt_->offset();
  const off_t got_file_offset = this->got_plt_->offset();
  gold_assert(parameters->incremental_update()
  gold_assert(parameters->incremental_update()
              || (got_file_offset + this->got_plt_->data_size()
              || (got_file_offset + this->got_plt_->data_size()
                  == this->got_irelative_->offset()));
                  == this->got_irelative_->offset()));
  const section_size_type got_size =
  const section_size_type got_size =
    convert_to_section_size_type(this->got_plt_->data_size()
    convert_to_section_size_type(this->got_plt_->data_size()
                                 + this->got_irelative_->data_size());
                                 + this->got_irelative_->data_size());
  unsigned char* const got_view = of->get_output_view(got_file_offset,
  unsigned char* const got_view = of->get_output_view(got_file_offset,
                                                      got_size);
                                                      got_size);
 
 
  unsigned char* pov = oview;
  unsigned char* pov = oview;
 
 
  elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
  elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
  elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
  elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
 
 
  if (parameters->options().output_is_position_independent())
  if (parameters->options().output_is_position_independent())
    memcpy(pov, dyn_first_plt_entry, plt_entry_size);
    memcpy(pov, dyn_first_plt_entry, plt_entry_size);
  else
  else
    {
    {
      memcpy(pov, exec_first_plt_entry, plt_entry_size);
      memcpy(pov, exec_first_plt_entry, plt_entry_size);
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
      elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
      elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
    }
    }
  pov += plt_entry_size;
  pov += plt_entry_size;
 
 
  unsigned char* got_pov = got_view;
  unsigned char* got_pov = got_view;
 
 
  // The first entry in the GOT is the address of the .dynamic section
  // The first entry in the GOT is the address of the .dynamic section
  // aka the PT_DYNAMIC segment.  The next two entries are reserved.
  // aka the PT_DYNAMIC segment.  The next two entries are reserved.
  // We saved space for them when we created the section in
  // We saved space for them when we created the section in
  // Target_i386::got_section.
  // Target_i386::got_section.
  Output_section* dynamic = this->layout_->dynamic_section();
  Output_section* dynamic = this->layout_->dynamic_section();
  uint32_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
  uint32_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
  elfcpp::Swap<32, false>::writeval(got_pov, dynamic_addr);
  elfcpp::Swap<32, false>::writeval(got_pov, dynamic_addr);
  got_pov += 4;
  got_pov += 4;
  memset(got_pov, 0, 8);
  memset(got_pov, 0, 8);
  got_pov += 8;
  got_pov += 8;
 
 
  const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
  const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
 
 
  unsigned int plt_offset = plt_entry_size;
  unsigned int plt_offset = plt_entry_size;
  unsigned int plt_rel_offset = 0;
  unsigned int plt_rel_offset = 0;
  unsigned int got_offset = 12;
  unsigned int got_offset = 12;
  const unsigned int count = this->count_ + this->irelative_count_;
  const unsigned int count = this->count_ + this->irelative_count_;
  for (unsigned int i = 0;
  for (unsigned int i = 0;
       i < count;
       i < count;
       ++i,
       ++i,
         pov += plt_entry_size,
         pov += plt_entry_size,
         got_pov += 4,
         got_pov += 4,
         plt_offset += plt_entry_size,
         plt_offset += plt_entry_size,
         plt_rel_offset += rel_size,
         plt_rel_offset += rel_size,
         got_offset += 4)
         got_offset += 4)
    {
    {
      // Set and adjust the PLT entry itself.
      // Set and adjust the PLT entry itself.
 
 
      if (parameters->options().output_is_position_independent())
      if (parameters->options().output_is_position_independent())
        {
        {
          memcpy(pov, dyn_plt_entry, plt_entry_size);
          memcpy(pov, dyn_plt_entry, plt_entry_size);
          elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
          elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
        }
        }
      else
      else
        {
        {
          memcpy(pov, exec_plt_entry, plt_entry_size);
          memcpy(pov, exec_plt_entry, plt_entry_size);
          elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
          elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
                                                      (got_address
                                                      (got_address
                                                       + got_offset));
                                                       + got_offset));
        }
        }
 
 
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
      elfcpp::Swap<32, false>::writeval(pov + 12,
      elfcpp::Swap<32, false>::writeval(pov + 12,
                                        - (plt_offset + plt_entry_size));
                                        - (plt_offset + plt_entry_size));
 
 
      // Set the entry in the GOT.
      // Set the entry in the GOT.
      elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
      elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
    }
    }
 
 
  // If any STT_GNU_IFUNC symbols have PLT entries, we need to change
  // If any STT_GNU_IFUNC symbols have PLT entries, we need to change
  // the GOT to point to the actual symbol value, rather than point to
  // the GOT to point to the actual symbol value, rather than point to
  // the PLT entry.  That will let the dynamic linker call the right
  // the PLT entry.  That will let the dynamic linker call the right
  // function when resolving IRELATIVE relocations.
  // function when resolving IRELATIVE relocations.
  unsigned char* got_irelative_view = got_view + this->got_plt_->data_size();
  unsigned char* got_irelative_view = got_view + this->got_plt_->data_size();
  for (std::vector<Global_ifunc>::const_iterator p =
  for (std::vector<Global_ifunc>::const_iterator p =
         this->global_ifuncs_.begin();
         this->global_ifuncs_.begin();
       p != this->global_ifuncs_.end();
       p != this->global_ifuncs_.end();
       ++p)
       ++p)
    {
    {
      const Sized_symbol<32>* ssym =
      const Sized_symbol<32>* ssym =
        static_cast<const Sized_symbol<32>*>(p->sym);
        static_cast<const Sized_symbol<32>*>(p->sym);
      elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
      elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
                                        ssym->value());
                                        ssym->value());
    }
    }
 
 
  for (std::vector<Local_ifunc>::const_iterator p =
  for (std::vector<Local_ifunc>::const_iterator p =
         this->local_ifuncs_.begin();
         this->local_ifuncs_.begin();
       p != this->local_ifuncs_.end();
       p != this->local_ifuncs_.end();
       ++p)
       ++p)
    {
    {
      const Symbol_value<32>* psymval =
      const Symbol_value<32>* psymval =
        p->object->local_symbol(p->local_sym_index);
        p->object->local_symbol(p->local_sym_index);
      elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
      elfcpp::Swap<32, false>::writeval(got_irelative_view + p->got_offset,
                                        psymval->value(p->object, 0));
                                        psymval->value(p->object, 0));
    }
    }
 
 
  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
 
 
  of->write_output_view(offset, oview_size, oview);
  of->write_output_view(offset, oview_size, oview);
  of->write_output_view(got_file_offset, got_size, got_view);
  of->write_output_view(got_file_offset, got_size, got_view);
}
}
 
 
// Create the PLT section.
// Create the PLT section.
 
 
void
void
Target_i386::make_plt_section(Symbol_table* symtab, Layout* layout)
Target_i386::make_plt_section(Symbol_table* symtab, Layout* layout)
{
{
  if (this->plt_ == NULL)
  if (this->plt_ == NULL)
    {
    {
      // Create the GOT sections first.
      // Create the GOT sections first.
      this->got_section(symtab, layout);
      this->got_section(symtab, layout);
 
 
      this->plt_ = new Output_data_plt_i386(layout, this->got_plt_,
      this->plt_ = new Output_data_plt_i386(layout, this->got_plt_,
                                            this->got_irelative_);
                                            this->got_irelative_);
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_EXECINSTR),
                                       | elfcpp::SHF_EXECINSTR),
                                      this->plt_, ORDER_PLT, false);
                                      this->plt_, ORDER_PLT, false);
 
 
      // Make the sh_info field of .rel.plt point to .plt.
      // Make the sh_info field of .rel.plt point to .plt.
      Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
      Output_section* rel_plt_os = this->plt_->rel_plt()->output_section();
      rel_plt_os->set_info_section(this->plt_->output_section());
      rel_plt_os->set_info_section(this->plt_->output_section());
    }
    }
}
}
 
 
// Create a PLT entry for a global symbol.
// Create a PLT entry for a global symbol.
 
 
void
void
Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
{
{
  if (gsym->has_plt_offset())
  if (gsym->has_plt_offset())
    return;
    return;
  if (this->plt_ == NULL)
  if (this->plt_ == NULL)
    this->make_plt_section(symtab, layout);
    this->make_plt_section(symtab, layout);
  this->plt_->add_entry(symtab, layout, gsym);
  this->plt_->add_entry(symtab, layout, gsym);
}
}
 
 
// Make a PLT entry for a local STT_GNU_IFUNC symbol.
// Make a PLT entry for a local STT_GNU_IFUNC symbol.
 
 
void
void
Target_i386::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
Target_i386::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
                                        Sized_relobj_file<32, false>* relobj,
                                        Sized_relobj_file<32, false>* relobj,
                                        unsigned int local_sym_index)
                                        unsigned int local_sym_index)
{
{
  if (relobj->local_has_plt_offset(local_sym_index))
  if (relobj->local_has_plt_offset(local_sym_index))
    return;
    return;
  if (this->plt_ == NULL)
  if (this->plt_ == NULL)
    this->make_plt_section(symtab, layout);
    this->make_plt_section(symtab, layout);
  unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
  unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
                                                              relobj,
                                                              relobj,
                                                              local_sym_index);
                                                              local_sym_index);
  relobj->set_local_plt_offset(local_sym_index, plt_offset);
  relobj->set_local_plt_offset(local_sym_index, plt_offset);
}
}
 
 
// Return the number of entries in the PLT.
// Return the number of entries in the PLT.
 
 
unsigned int
unsigned int
Target_i386::plt_entry_count() const
Target_i386::plt_entry_count() const
{
{
  if (this->plt_ == NULL)
  if (this->plt_ == NULL)
    return 0;
    return 0;
  return this->plt_->entry_count();
  return this->plt_->entry_count();
}
}
 
 
// Return the offset of the first non-reserved PLT entry.
// Return the offset of the first non-reserved PLT entry.
 
 
unsigned int
unsigned int
Target_i386::first_plt_entry_offset() const
Target_i386::first_plt_entry_offset() const
{
{
  return Output_data_plt_i386::first_plt_entry_offset();
  return Output_data_plt_i386::first_plt_entry_offset();
}
}
 
 
// Return the size of each PLT entry.
// Return the size of each PLT entry.
 
 
unsigned int
unsigned int
Target_i386::plt_entry_size() const
Target_i386::plt_entry_size() const
{
{
  return Output_data_plt_i386::get_plt_entry_size();
  return Output_data_plt_i386::get_plt_entry_size();
}
}
 
 
// Get the section to use for TLS_DESC relocations.
// Get the section to use for TLS_DESC relocations.
 
 
Target_i386::Reloc_section*
Target_i386::Reloc_section*
Target_i386::rel_tls_desc_section(Layout* layout) const
Target_i386::rel_tls_desc_section(Layout* layout) const
{
{
  return this->plt_section()->rel_tls_desc(layout);
  return this->plt_section()->rel_tls_desc(layout);
}
}
 
 
// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
 
 
void
void
Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
Target_i386::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
{
{
  if (this->tls_base_symbol_defined_)
  if (this->tls_base_symbol_defined_)
    return;
    return;
 
 
  Output_segment* tls_segment = layout->tls_segment();
  Output_segment* tls_segment = layout->tls_segment();
  if (tls_segment != NULL)
  if (tls_segment != NULL)
    {
    {
      bool is_exec = parameters->options().output_is_executable();
      bool is_exec = parameters->options().output_is_executable();
      symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
      symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
                                       Symbol_table::PREDEFINED,
                                       Symbol_table::PREDEFINED,
                                       tls_segment, 0, 0,
                                       tls_segment, 0, 0,
                                       elfcpp::STT_TLS,
                                       elfcpp::STT_TLS,
                                       elfcpp::STB_LOCAL,
                                       elfcpp::STB_LOCAL,
                                       elfcpp::STV_HIDDEN, 0,
                                       elfcpp::STV_HIDDEN, 0,
                                       (is_exec
                                       (is_exec
                                        ? Symbol::SEGMENT_END
                                        ? Symbol::SEGMENT_END
                                        : Symbol::SEGMENT_START),
                                        : Symbol::SEGMENT_START),
                                       true);
                                       true);
    }
    }
  this->tls_base_symbol_defined_ = true;
  this->tls_base_symbol_defined_ = true;
}
}
 
 
// Create a GOT entry for the TLS module index.
// Create a GOT entry for the TLS module index.
 
 
unsigned int
unsigned int
Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
                                 Sized_relobj_file<32, false>* object)
                                 Sized_relobj_file<32, false>* object)
{
{
  if (this->got_mod_index_offset_ == -1U)
  if (this->got_mod_index_offset_ == -1U)
    {
    {
      gold_assert(symtab != NULL && layout != NULL && object != NULL);
      gold_assert(symtab != NULL && layout != NULL && object != NULL);
      Reloc_section* rel_dyn = this->rel_dyn_section(layout);
      Reloc_section* rel_dyn = this->rel_dyn_section(layout);
      Output_data_got<32, false>* got = this->got_section(symtab, layout);
      Output_data_got<32, false>* got = this->got_section(symtab, layout);
      unsigned int got_offset = got->add_constant(0);
      unsigned int got_offset = got->add_constant(0);
      rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
      rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
                         got_offset);
                         got_offset);
      got->add_constant(0);
      got->add_constant(0);
      this->got_mod_index_offset_ = got_offset;
      this->got_mod_index_offset_ = got_offset;
    }
    }
  return this->got_mod_index_offset_;
  return this->got_mod_index_offset_;
}
}
 
 
// Optimize the TLS relocation type based on what we know about the
// Optimize the TLS relocation type based on what we know about the
// symbol.  IS_FINAL is true if the final address of this symbol is
// symbol.  IS_FINAL is true if the final address of this symbol is
// known at link time.
// known at link time.
 
 
tls::Tls_optimization
tls::Tls_optimization
Target_i386::optimize_tls_reloc(bool is_final, int r_type)
Target_i386::optimize_tls_reloc(bool is_final, int r_type)
{
{
  // If we are generating a shared library, then we can't do anything
  // If we are generating a shared library, then we can't do anything
  // in the linker.
  // in the linker.
  if (parameters->options().shared())
  if (parameters->options().shared())
    return tls::TLSOPT_NONE;
    return tls::TLSOPT_NONE;
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_386_TLS_GD:
    case elfcpp::R_386_TLS_GD:
    case elfcpp::R_386_TLS_GOTDESC:
    case elfcpp::R_386_TLS_GOTDESC:
    case elfcpp::R_386_TLS_DESC_CALL:
    case elfcpp::R_386_TLS_DESC_CALL:
      // These are General-Dynamic which permits fully general TLS
      // These are General-Dynamic which permits fully general TLS
      // access.  Since we know that we are generating an executable,
      // access.  Since we know that we are generating an executable,
      // we can convert this to Initial-Exec.  If we also know that
      // we can convert this to Initial-Exec.  If we also know that
      // this is a local symbol, we can further switch to Local-Exec.
      // this is a local symbol, we can further switch to Local-Exec.
      if (is_final)
      if (is_final)
        return tls::TLSOPT_TO_LE;
        return tls::TLSOPT_TO_LE;
      return tls::TLSOPT_TO_IE;
      return tls::TLSOPT_TO_IE;
 
 
    case elfcpp::R_386_TLS_LDM:
    case elfcpp::R_386_TLS_LDM:
      // This is Local-Dynamic, which refers to a local symbol in the
      // This is Local-Dynamic, which refers to a local symbol in the
      // dynamic TLS block.  Since we know that we generating an
      // dynamic TLS block.  Since we know that we generating an
      // executable, we can switch to Local-Exec.
      // executable, we can switch to Local-Exec.
      return tls::TLSOPT_TO_LE;
      return tls::TLSOPT_TO_LE;
 
 
    case elfcpp::R_386_TLS_LDO_32:
    case elfcpp::R_386_TLS_LDO_32:
      // Another type of Local-Dynamic relocation.
      // Another type of Local-Dynamic relocation.
      return tls::TLSOPT_TO_LE;
      return tls::TLSOPT_TO_LE;
 
 
    case elfcpp::R_386_TLS_IE:
    case elfcpp::R_386_TLS_IE:
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_IE_32:
    case elfcpp::R_386_TLS_IE_32:
      // These are Initial-Exec relocs which get the thread offset
      // These are Initial-Exec relocs which get the thread offset
      // from the GOT.  If we know that we are linking against the
      // from the GOT.  If we know that we are linking against the
      // local symbol, we can switch to Local-Exec, which links the
      // local symbol, we can switch to Local-Exec, which links the
      // thread offset into the instruction.
      // thread offset into the instruction.
      if (is_final)
      if (is_final)
        return tls::TLSOPT_TO_LE;
        return tls::TLSOPT_TO_LE;
      return tls::TLSOPT_NONE;
      return tls::TLSOPT_NONE;
 
 
    case elfcpp::R_386_TLS_LE:
    case elfcpp::R_386_TLS_LE:
    case elfcpp::R_386_TLS_LE_32:
    case elfcpp::R_386_TLS_LE_32:
      // When we already have Local-Exec, there is nothing further we
      // When we already have Local-Exec, there is nothing further we
      // can do.
      // can do.
      return tls::TLSOPT_NONE;
      return tls::TLSOPT_NONE;
 
 
    default:
    default:
      gold_unreachable();
      gold_unreachable();
    }
    }
}
}
 
 
// Get the Reference_flags for a particular relocation.
// Get the Reference_flags for a particular relocation.
 
 
int
int
Target_i386::Scan::get_reference_flags(unsigned int r_type)
Target_i386::Scan::get_reference_flags(unsigned int r_type)
{
{
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_386_NONE:
    case elfcpp::R_386_NONE:
    case elfcpp::R_386_GNU_VTINHERIT:
    case elfcpp::R_386_GNU_VTINHERIT:
    case elfcpp::R_386_GNU_VTENTRY:
    case elfcpp::R_386_GNU_VTENTRY:
    case elfcpp::R_386_GOTPC:
    case elfcpp::R_386_GOTPC:
      // No symbol reference.
      // No symbol reference.
      return 0;
      return 0;
 
 
    case elfcpp::R_386_32:
    case elfcpp::R_386_32:
    case elfcpp::R_386_16:
    case elfcpp::R_386_16:
    case elfcpp::R_386_8:
    case elfcpp::R_386_8:
      return Symbol::ABSOLUTE_REF;
      return Symbol::ABSOLUTE_REF;
 
 
    case elfcpp::R_386_PC32:
    case elfcpp::R_386_PC32:
    case elfcpp::R_386_PC16:
    case elfcpp::R_386_PC16:
    case elfcpp::R_386_PC8:
    case elfcpp::R_386_PC8:
    case elfcpp::R_386_GOTOFF:
    case elfcpp::R_386_GOTOFF:
      return Symbol::RELATIVE_REF;
      return Symbol::RELATIVE_REF;
 
 
    case elfcpp::R_386_PLT32:
    case elfcpp::R_386_PLT32:
      return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
      return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
 
 
    case elfcpp::R_386_GOT32:
    case elfcpp::R_386_GOT32:
      // Absolute in GOT.
      // Absolute in GOT.
      return Symbol::ABSOLUTE_REF;
      return Symbol::ABSOLUTE_REF;
 
 
    case elfcpp::R_386_TLS_GD:            // Global-dynamic
    case elfcpp::R_386_TLS_GD:            // Global-dynamic
    case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
    case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
    case elfcpp::R_386_TLS_DESC_CALL:
    case elfcpp::R_386_TLS_DESC_CALL:
    case elfcpp::R_386_TLS_LDM:           // Local-dynamic
    case elfcpp::R_386_TLS_LDM:           // Local-dynamic
    case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
    case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
    case elfcpp::R_386_TLS_IE:            // Initial-exec
    case elfcpp::R_386_TLS_IE:            // Initial-exec
    case elfcpp::R_386_TLS_IE_32:
    case elfcpp::R_386_TLS_IE_32:
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_LE:            // Local-exec
    case elfcpp::R_386_TLS_LE:            // Local-exec
    case elfcpp::R_386_TLS_LE_32:
    case elfcpp::R_386_TLS_LE_32:
      return Symbol::TLS_REF;
      return Symbol::TLS_REF;
 
 
    case elfcpp::R_386_COPY:
    case elfcpp::R_386_COPY:
    case elfcpp::R_386_GLOB_DAT:
    case elfcpp::R_386_GLOB_DAT:
    case elfcpp::R_386_JUMP_SLOT:
    case elfcpp::R_386_JUMP_SLOT:
    case elfcpp::R_386_RELATIVE:
    case elfcpp::R_386_RELATIVE:
    case elfcpp::R_386_IRELATIVE:
    case elfcpp::R_386_IRELATIVE:
    case elfcpp::R_386_TLS_TPOFF:
    case elfcpp::R_386_TLS_TPOFF:
    case elfcpp::R_386_TLS_DTPMOD32:
    case elfcpp::R_386_TLS_DTPMOD32:
    case elfcpp::R_386_TLS_DTPOFF32:
    case elfcpp::R_386_TLS_DTPOFF32:
    case elfcpp::R_386_TLS_TPOFF32:
    case elfcpp::R_386_TLS_TPOFF32:
    case elfcpp::R_386_TLS_DESC:
    case elfcpp::R_386_TLS_DESC:
    case elfcpp::R_386_32PLT:
    case elfcpp::R_386_32PLT:
    case elfcpp::R_386_TLS_GD_32:
    case elfcpp::R_386_TLS_GD_32:
    case elfcpp::R_386_TLS_GD_PUSH:
    case elfcpp::R_386_TLS_GD_PUSH:
    case elfcpp::R_386_TLS_GD_CALL:
    case elfcpp::R_386_TLS_GD_CALL:
    case elfcpp::R_386_TLS_GD_POP:
    case elfcpp::R_386_TLS_GD_POP:
    case elfcpp::R_386_TLS_LDM_32:
    case elfcpp::R_386_TLS_LDM_32:
    case elfcpp::R_386_TLS_LDM_PUSH:
    case elfcpp::R_386_TLS_LDM_PUSH:
    case elfcpp::R_386_TLS_LDM_CALL:
    case elfcpp::R_386_TLS_LDM_CALL:
    case elfcpp::R_386_TLS_LDM_POP:
    case elfcpp::R_386_TLS_LDM_POP:
    case elfcpp::R_386_USED_BY_INTEL_200:
    case elfcpp::R_386_USED_BY_INTEL_200:
    default:
    default:
      // Not expected.  We will give an error later.
      // Not expected.  We will give an error later.
      return 0;
      return 0;
    }
    }
}
}
 
 
// Report an unsupported relocation against a local symbol.
// Report an unsupported relocation against a local symbol.
 
 
void
void
Target_i386::Scan::unsupported_reloc_local(Sized_relobj_file<32, false>* object,
Target_i386::Scan::unsupported_reloc_local(Sized_relobj_file<32, false>* object,
                                           unsigned int r_type)
                                           unsigned int r_type)
{
{
  gold_error(_("%s: unsupported reloc %u against local symbol"),
  gold_error(_("%s: unsupported reloc %u against local symbol"),
             object->name().c_str(), r_type);
             object->name().c_str(), r_type);
}
}
 
 
// Return whether we need to make a PLT entry for a relocation of a
// Return whether we need to make a PLT entry for a relocation of a
// given type against a STT_GNU_IFUNC symbol.
// given type against a STT_GNU_IFUNC symbol.
 
 
bool
bool
Target_i386::Scan::reloc_needs_plt_for_ifunc(
Target_i386::Scan::reloc_needs_plt_for_ifunc(
    Sized_relobj_file<32, false>* object,
    Sized_relobj_file<32, false>* object,
    unsigned int r_type)
    unsigned int r_type)
{
{
  int flags = Scan::get_reference_flags(r_type);
  int flags = Scan::get_reference_flags(r_type);
  if (flags & Symbol::TLS_REF)
  if (flags & Symbol::TLS_REF)
    gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
    gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
               object->name().c_str(), r_type);
               object->name().c_str(), r_type);
  return flags != 0;
  return flags != 0;
}
}
 
 
// Scan a relocation for a local symbol.
// Scan a relocation for a local symbol.
 
 
inline void
inline void
Target_i386::Scan::local(Symbol_table* symtab,
Target_i386::Scan::local(Symbol_table* symtab,
                         Layout* layout,
                         Layout* layout,
                         Target_i386* target,
                         Target_i386* target,
                         Sized_relobj_file<32, false>* object,
                         Sized_relobj_file<32, false>* object,
                         unsigned int data_shndx,
                         unsigned int data_shndx,
                         Output_section* output_section,
                         Output_section* output_section,
                         const elfcpp::Rel<32, false>& reloc,
                         const elfcpp::Rel<32, false>& reloc,
                         unsigned int r_type,
                         unsigned int r_type,
                         const elfcpp::Sym<32, false>& lsym)
                         const elfcpp::Sym<32, false>& lsym)
{
{
  // A local STT_GNU_IFUNC symbol may require a PLT entry.
  // A local STT_GNU_IFUNC symbol may require a PLT entry.
  if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
  if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
      && this->reloc_needs_plt_for_ifunc(object, r_type))
      && this->reloc_needs_plt_for_ifunc(object, r_type))
    {
    {
      unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
      unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
      target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
      target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
    }
    }
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_386_NONE:
    case elfcpp::R_386_NONE:
    case elfcpp::R_386_GNU_VTINHERIT:
    case elfcpp::R_386_GNU_VTINHERIT:
    case elfcpp::R_386_GNU_VTENTRY:
    case elfcpp::R_386_GNU_VTENTRY:
      break;
      break;
 
 
    case elfcpp::R_386_32:
    case elfcpp::R_386_32:
      // If building a shared library (or a position-independent
      // If building a shared library (or a position-independent
      // executable), we need to create a dynamic relocation for
      // executable), we need to create a dynamic relocation for
      // this location. The relocation applied at link time will
      // this location. The relocation applied at link time will
      // apply the link-time value, so we flag the location with
      // apply the link-time value, so we flag the location with
      // an R_386_RELATIVE relocation so the dynamic loader can
      // an R_386_RELATIVE relocation so the dynamic loader can
      // relocate it easily.
      // relocate it easily.
      if (parameters->options().output_is_position_independent())
      if (parameters->options().output_is_position_independent())
        {
        {
          Reloc_section* rel_dyn = target->rel_dyn_section(layout);
          Reloc_section* rel_dyn = target->rel_dyn_section(layout);
          unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
          unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
          rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
          rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
                                      output_section, data_shndx,
                                      output_section, data_shndx,
                                      reloc.get_r_offset());
                                      reloc.get_r_offset());
        }
        }
      break;
      break;
 
 
    case elfcpp::R_386_16:
    case elfcpp::R_386_16:
    case elfcpp::R_386_8:
    case elfcpp::R_386_8:
      // If building a shared library (or a position-independent
      // If building a shared library (or a position-independent
      // executable), we need to create a dynamic relocation for
      // executable), we need to create a dynamic relocation for
      // this location. Because the addend needs to remain in the
      // this location. Because the addend needs to remain in the
      // data section, we need to be careful not to apply this
      // data section, we need to be careful not to apply this
      // relocation statically.
      // relocation statically.
      if (parameters->options().output_is_position_independent())
      if (parameters->options().output_is_position_independent())
        {
        {
          Reloc_section* rel_dyn = target->rel_dyn_section(layout);
          Reloc_section* rel_dyn = target->rel_dyn_section(layout);
          unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
          unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
          if (lsym.get_st_type() != elfcpp::STT_SECTION)
          if (lsym.get_st_type() != elfcpp::STT_SECTION)
            rel_dyn->add_local(object, r_sym, r_type, output_section,
            rel_dyn->add_local(object, r_sym, r_type, output_section,
                               data_shndx, reloc.get_r_offset());
                               data_shndx, reloc.get_r_offset());
          else
          else
            {
            {
              gold_assert(lsym.get_st_value() == 0);
              gold_assert(lsym.get_st_value() == 0);
              unsigned int shndx = lsym.get_st_shndx();
              unsigned int shndx = lsym.get_st_shndx();
              bool is_ordinary;
              bool is_ordinary;
              shndx = object->adjust_sym_shndx(r_sym, shndx,
              shndx = object->adjust_sym_shndx(r_sym, shndx,
                                               &is_ordinary);
                                               &is_ordinary);
              if (!is_ordinary)
              if (!is_ordinary)
                object->error(_("section symbol %u has bad shndx %u"),
                object->error(_("section symbol %u has bad shndx %u"),
                              r_sym, shndx);
                              r_sym, shndx);
              else
              else
                rel_dyn->add_local_section(object, shndx,
                rel_dyn->add_local_section(object, shndx,
                                           r_type, output_section,
                                           r_type, output_section,
                                           data_shndx, reloc.get_r_offset());
                                           data_shndx, reloc.get_r_offset());
            }
            }
        }
        }
      break;
      break;
 
 
    case elfcpp::R_386_PC32:
    case elfcpp::R_386_PC32:
    case elfcpp::R_386_PC16:
    case elfcpp::R_386_PC16:
    case elfcpp::R_386_PC8:
    case elfcpp::R_386_PC8:
      break;
      break;
 
 
    case elfcpp::R_386_PLT32:
    case elfcpp::R_386_PLT32:
      // Since we know this is a local symbol, we can handle this as a
      // Since we know this is a local symbol, we can handle this as a
      // PC32 reloc.
      // PC32 reloc.
      break;
      break;
 
 
    case elfcpp::R_386_GOTOFF:
    case elfcpp::R_386_GOTOFF:
    case elfcpp::R_386_GOTPC:
    case elfcpp::R_386_GOTPC:
      // We need a GOT section.
      // We need a GOT section.
      target->got_section(symtab, layout);
      target->got_section(symtab, layout);
      break;
      break;
 
 
    case elfcpp::R_386_GOT32:
    case elfcpp::R_386_GOT32:
      {
      {
        // The symbol requires a GOT entry.
        // The symbol requires a GOT entry.
        Output_data_got<32, false>* got = target->got_section(symtab, layout);
        Output_data_got<32, false>* got = target->got_section(symtab, layout);
        unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
        unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
 
 
        // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
        // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
        // lets function pointers compare correctly with shared
        // lets function pointers compare correctly with shared
        // libraries.  Otherwise we would need an IRELATIVE reloc.
        // libraries.  Otherwise we would need an IRELATIVE reloc.
        bool is_new;
        bool is_new;
        if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
        if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
          is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
          is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
        else
        else
          is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
          is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
        if (is_new)
        if (is_new)
          {
          {
            // If we are generating a shared object, we need to add a
            // If we are generating a shared object, we need to add a
            // dynamic RELATIVE relocation for this symbol's GOT entry.
            // dynamic RELATIVE relocation for this symbol's GOT entry.
            if (parameters->options().output_is_position_independent())
            if (parameters->options().output_is_position_independent())
              {
              {
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                unsigned int got_offset =
                unsigned int got_offset =
                  object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
                  object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
                rel_dyn->add_local_relative(object, r_sym,
                rel_dyn->add_local_relative(object, r_sym,
                                            elfcpp::R_386_RELATIVE,
                                            elfcpp::R_386_RELATIVE,
                                            got, got_offset);
                                            got, got_offset);
              }
              }
          }
          }
      }
      }
      break;
      break;
 
 
      // These are relocations which should only be seen by the
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
      // dynamic linker, and should never be seen here.
    case elfcpp::R_386_COPY:
    case elfcpp::R_386_COPY:
    case elfcpp::R_386_GLOB_DAT:
    case elfcpp::R_386_GLOB_DAT:
    case elfcpp::R_386_JUMP_SLOT:
    case elfcpp::R_386_JUMP_SLOT:
    case elfcpp::R_386_RELATIVE:
    case elfcpp::R_386_RELATIVE:
    case elfcpp::R_386_IRELATIVE:
    case elfcpp::R_386_IRELATIVE:
    case elfcpp::R_386_TLS_TPOFF:
    case elfcpp::R_386_TLS_TPOFF:
    case elfcpp::R_386_TLS_DTPMOD32:
    case elfcpp::R_386_TLS_DTPMOD32:
    case elfcpp::R_386_TLS_DTPOFF32:
    case elfcpp::R_386_TLS_DTPOFF32:
    case elfcpp::R_386_TLS_TPOFF32:
    case elfcpp::R_386_TLS_TPOFF32:
    case elfcpp::R_386_TLS_DESC:
    case elfcpp::R_386_TLS_DESC:
      gold_error(_("%s: unexpected reloc %u in object file"),
      gold_error(_("%s: unexpected reloc %u in object file"),
                 object->name().c_str(), r_type);
                 object->name().c_str(), r_type);
      break;
      break;
 
 
      // These are initial TLS relocs, which are expected when
      // These are initial TLS relocs, which are expected when
      // linking.
      // linking.
    case elfcpp::R_386_TLS_GD:            // Global-dynamic
    case elfcpp::R_386_TLS_GD:            // Global-dynamic
    case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
    case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
    case elfcpp::R_386_TLS_DESC_CALL:
    case elfcpp::R_386_TLS_DESC_CALL:
    case elfcpp::R_386_TLS_LDM:           // Local-dynamic
    case elfcpp::R_386_TLS_LDM:           // Local-dynamic
    case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
    case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
    case elfcpp::R_386_TLS_IE:            // Initial-exec
    case elfcpp::R_386_TLS_IE:            // Initial-exec
    case elfcpp::R_386_TLS_IE_32:
    case elfcpp::R_386_TLS_IE_32:
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_LE:            // Local-exec
    case elfcpp::R_386_TLS_LE:            // Local-exec
    case elfcpp::R_386_TLS_LE_32:
    case elfcpp::R_386_TLS_LE_32:
      {
      {
        bool output_is_shared = parameters->options().shared();
        bool output_is_shared = parameters->options().shared();
        const tls::Tls_optimization optimized_type
        const tls::Tls_optimization optimized_type
            = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
            = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
        switch (r_type)
        switch (r_type)
          {
          {
          case elfcpp::R_386_TLS_GD:          // Global-dynamic
          case elfcpp::R_386_TLS_GD:          // Global-dynamic
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create a pair of GOT entries for the module index and
                // Create a pair of GOT entries for the module index and
                // dtv-relative offset.
                // dtv-relative offset.
                Output_data_got<32, false>* got
                Output_data_got<32, false>* got
                    = target->got_section(symtab, layout);
                    = target->got_section(symtab, layout);
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
                unsigned int shndx = lsym.get_st_shndx();
                unsigned int shndx = lsym.get_st_shndx();
                bool is_ordinary;
                bool is_ordinary;
                shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
                shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
                if (!is_ordinary)
                if (!is_ordinary)
                  object->error(_("local symbol %u has bad shndx %u"),
                  object->error(_("local symbol %u has bad shndx %u"),
                              r_sym, shndx);
                              r_sym, shndx);
                else
                else
                  got->add_local_pair_with_rel(object, r_sym, shndx,
                  got->add_local_pair_with_rel(object, r_sym, shndx,
                                               GOT_TYPE_TLS_PAIR,
                                               GOT_TYPE_TLS_PAIR,
                                               target->rel_dyn_section(layout),
                                               target->rel_dyn_section(layout),
                                               elfcpp::R_386_TLS_DTPMOD32, 0);
                                               elfcpp::R_386_TLS_DTPMOD32, 0);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_local(object, r_type);
              unsupported_reloc_local(object, r_type);
            break;
            break;
 
 
          case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (from ~oliva)
          case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (from ~oliva)
            target->define_tls_base_symbol(symtab, layout);
            target->define_tls_base_symbol(symtab, layout);
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create a double GOT entry with an R_386_TLS_DESC
                // Create a double GOT entry with an R_386_TLS_DESC
                // reloc.  The R_386_TLS_DESC reloc is resolved
                // reloc.  The R_386_TLS_DESC reloc is resolved
                // lazily, so the GOT entry needs to be in an area in
                // lazily, so the GOT entry needs to be in an area in
                // .got.plt, not .got.  Call got_section to make sure
                // .got.plt, not .got.  Call got_section to make sure
                // the section has been created.
                // the section has been created.
                target->got_section(symtab, layout);
                target->got_section(symtab, layout);
                Output_data_got<32, false>* got = target->got_tlsdesc_section();
                Output_data_got<32, false>* got = target->got_tlsdesc_section();
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
                if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
                if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
                  {
                  {
                    unsigned int got_offset = got->add_constant(0);
                    unsigned int got_offset = got->add_constant(0);
                    // The local symbol value is stored in the second
                    // The local symbol value is stored in the second
                    // GOT entry.
                    // GOT entry.
                    got->add_local(object, r_sym, GOT_TYPE_TLS_DESC);
                    got->add_local(object, r_sym, GOT_TYPE_TLS_DESC);
                    // That set the GOT offset of the local symbol to
                    // That set the GOT offset of the local symbol to
                    // point to the second entry, but we want it to
                    // point to the second entry, but we want it to
                    // point to the first.
                    // point to the first.
                    object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
                    object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
                                                 got_offset);
                                                 got_offset);
                    Reloc_section* rt = target->rel_tls_desc_section(layout);
                    Reloc_section* rt = target->rel_tls_desc_section(layout);
                    rt->add_absolute(elfcpp::R_386_TLS_DESC, got, got_offset);
                    rt->add_absolute(elfcpp::R_386_TLS_DESC, got, got_offset);
                  }
                  }
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_local(object, r_type);
              unsupported_reloc_local(object, r_type);
            break;
            break;
 
 
          case elfcpp::R_386_TLS_DESC_CALL:
          case elfcpp::R_386_TLS_DESC_CALL:
            break;
            break;
 
 
          case elfcpp::R_386_TLS_LDM:         // Local-dynamic
          case elfcpp::R_386_TLS_LDM:         // Local-dynamic
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create a GOT entry for the module index.
                // Create a GOT entry for the module index.
                target->got_mod_index_entry(symtab, layout, object);
                target->got_mod_index_entry(symtab, layout, object);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_local(object, r_type);
              unsupported_reloc_local(object, r_type);
            break;
            break;
 
 
          case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
          case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
            break;
            break;
 
 
          case elfcpp::R_386_TLS_IE:          // Initial-exec
          case elfcpp::R_386_TLS_IE:          // Initial-exec
          case elfcpp::R_386_TLS_IE_32:
          case elfcpp::R_386_TLS_IE_32:
          case elfcpp::R_386_TLS_GOTIE:
          case elfcpp::R_386_TLS_GOTIE:
            layout->set_has_static_tls();
            layout->set_has_static_tls();
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // For the R_386_TLS_IE relocation, we need to create a
                // For the R_386_TLS_IE relocation, we need to create a
                // dynamic relocation when building a shared library.
                // dynamic relocation when building a shared library.
                if (r_type == elfcpp::R_386_TLS_IE
                if (r_type == elfcpp::R_386_TLS_IE
                    && parameters->options().shared())
                    && parameters->options().shared())
                  {
                  {
                    Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                    Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                    unsigned int r_sym
                    unsigned int r_sym
                        = elfcpp::elf_r_sym<32>(reloc.get_r_info());
                        = elfcpp::elf_r_sym<32>(reloc.get_r_info());
                    rel_dyn->add_local_relative(object, r_sym,
                    rel_dyn->add_local_relative(object, r_sym,
                                                elfcpp::R_386_RELATIVE,
                                                elfcpp::R_386_RELATIVE,
                                                output_section, data_shndx,
                                                output_section, data_shndx,
                                                reloc.get_r_offset());
                                                reloc.get_r_offset());
                  }
                  }
                // Create a GOT entry for the tp-relative offset.
                // Create a GOT entry for the tp-relative offset.
                Output_data_got<32, false>* got
                Output_data_got<32, false>* got
                    = target->got_section(symtab, layout);
                    = target->got_section(symtab, layout);
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
                unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
                unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
                                           ? elfcpp::R_386_TLS_TPOFF32
                                           ? elfcpp::R_386_TLS_TPOFF32
                                           : elfcpp::R_386_TLS_TPOFF);
                                           : elfcpp::R_386_TLS_TPOFF);
                unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
                unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
                                         ? GOT_TYPE_TLS_OFFSET
                                         ? GOT_TYPE_TLS_OFFSET
                                         : GOT_TYPE_TLS_NOFFSET);
                                         : GOT_TYPE_TLS_NOFFSET);
                got->add_local_with_rel(object, r_sym, got_type,
                got->add_local_with_rel(object, r_sym, got_type,
                                        target->rel_dyn_section(layout),
                                        target->rel_dyn_section(layout),
                                        dyn_r_type);
                                        dyn_r_type);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_local(object, r_type);
              unsupported_reloc_local(object, r_type);
            break;
            break;
 
 
          case elfcpp::R_386_TLS_LE:          // Local-exec
          case elfcpp::R_386_TLS_LE:          // Local-exec
          case elfcpp::R_386_TLS_LE_32:
          case elfcpp::R_386_TLS_LE_32:
            layout->set_has_static_tls();
            layout->set_has_static_tls();
            if (output_is_shared)
            if (output_is_shared)
              {
              {
                // We need to create a dynamic relocation.
                // We need to create a dynamic relocation.
                gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
                gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
                unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
                unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
                                           ? elfcpp::R_386_TLS_TPOFF32
                                           ? elfcpp::R_386_TLS_TPOFF32
                                           : elfcpp::R_386_TLS_TPOFF);
                                           : elfcpp::R_386_TLS_TPOFF);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
                rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
                                   data_shndx, reloc.get_r_offset());
                                   data_shndx, reloc.get_r_offset());
              }
              }
            break;
            break;
 
 
          default:
          default:
            gold_unreachable();
            gold_unreachable();
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_386_32PLT:
    case elfcpp::R_386_32PLT:
    case elfcpp::R_386_TLS_GD_32:
    case elfcpp::R_386_TLS_GD_32:
    case elfcpp::R_386_TLS_GD_PUSH:
    case elfcpp::R_386_TLS_GD_PUSH:
    case elfcpp::R_386_TLS_GD_CALL:
    case elfcpp::R_386_TLS_GD_CALL:
    case elfcpp::R_386_TLS_GD_POP:
    case elfcpp::R_386_TLS_GD_POP:
    case elfcpp::R_386_TLS_LDM_32:
    case elfcpp::R_386_TLS_LDM_32:
    case elfcpp::R_386_TLS_LDM_PUSH:
    case elfcpp::R_386_TLS_LDM_PUSH:
    case elfcpp::R_386_TLS_LDM_CALL:
    case elfcpp::R_386_TLS_LDM_CALL:
    case elfcpp::R_386_TLS_LDM_POP:
    case elfcpp::R_386_TLS_LDM_POP:
    case elfcpp::R_386_USED_BY_INTEL_200:
    case elfcpp::R_386_USED_BY_INTEL_200:
    default:
    default:
      unsupported_reloc_local(object, r_type);
      unsupported_reloc_local(object, r_type);
      break;
      break;
    }
    }
}
}
 
 
// Report an unsupported relocation against a global symbol.
// Report an unsupported relocation against a global symbol.
 
 
void
void
Target_i386::Scan::unsupported_reloc_global(
Target_i386::Scan::unsupported_reloc_global(
    Sized_relobj_file<32, false>* object,
    Sized_relobj_file<32, false>* object,
    unsigned int r_type,
    unsigned int r_type,
    Symbol* gsym)
    Symbol* gsym)
{
{
  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
             object->name().c_str(), r_type, gsym->demangled_name().c_str());
             object->name().c_str(), r_type, gsym->demangled_name().c_str());
}
}
 
 
inline bool
inline bool
Target_i386::Scan::possible_function_pointer_reloc(unsigned int r_type)
Target_i386::Scan::possible_function_pointer_reloc(unsigned int r_type)
{
{
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_386_32:
    case elfcpp::R_386_32:
    case elfcpp::R_386_16:
    case elfcpp::R_386_16:
    case elfcpp::R_386_8:
    case elfcpp::R_386_8:
    case elfcpp::R_386_GOTOFF:
    case elfcpp::R_386_GOTOFF:
    case elfcpp::R_386_GOT32:
    case elfcpp::R_386_GOT32:
      {
      {
        return true;
        return true;
      }
      }
    default:
    default:
      return false;
      return false;
    }
    }
  return false;
  return false;
}
}
 
 
inline bool
inline bool
Target_i386::Scan::local_reloc_may_be_function_pointer(
Target_i386::Scan::local_reloc_may_be_function_pointer(
  Symbol_table* ,
  Symbol_table* ,
  Layout* ,
  Layout* ,
  Target_i386* ,
  Target_i386* ,
  Sized_relobj_file<32, false>* ,
  Sized_relobj_file<32, false>* ,
  unsigned int ,
  unsigned int ,
  Output_section* ,
  Output_section* ,
  const elfcpp::Rel<32, false>& ,
  const elfcpp::Rel<32, false>& ,
  unsigned int r_type,
  unsigned int r_type,
  const elfcpp::Sym<32, false>&)
  const elfcpp::Sym<32, false>&)
{
{
  return possible_function_pointer_reloc(r_type);
  return possible_function_pointer_reloc(r_type);
}
}
 
 
inline bool
inline bool
Target_i386::Scan::global_reloc_may_be_function_pointer(
Target_i386::Scan::global_reloc_may_be_function_pointer(
  Symbol_table* ,
  Symbol_table* ,
  Layout* ,
  Layout* ,
  Target_i386* ,
  Target_i386* ,
  Sized_relobj_file<32, false>* ,
  Sized_relobj_file<32, false>* ,
  unsigned int ,
  unsigned int ,
  Output_section* ,
  Output_section* ,
  const elfcpp::Rel<32, false>& ,
  const elfcpp::Rel<32, false>& ,
  unsigned int r_type,
  unsigned int r_type,
  Symbol*)
  Symbol*)
{
{
  return possible_function_pointer_reloc(r_type);
  return possible_function_pointer_reloc(r_type);
}
}
 
 
// Scan a relocation for a global symbol.
// Scan a relocation for a global symbol.
 
 
inline void
inline void
Target_i386::Scan::global(Symbol_table* symtab,
Target_i386::Scan::global(Symbol_table* symtab,
                          Layout* layout,
                          Layout* layout,
                          Target_i386* target,
                          Target_i386* target,
                          Sized_relobj_file<32, false>* object,
                          Sized_relobj_file<32, false>* object,
                          unsigned int data_shndx,
                          unsigned int data_shndx,
                          Output_section* output_section,
                          Output_section* output_section,
                          const elfcpp::Rel<32, false>& reloc,
                          const elfcpp::Rel<32, false>& reloc,
                          unsigned int r_type,
                          unsigned int r_type,
                          Symbol* gsym)
                          Symbol* gsym)
{
{
  // A STT_GNU_IFUNC symbol may require a PLT entry.
  // A STT_GNU_IFUNC symbol may require a PLT entry.
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && this->reloc_needs_plt_for_ifunc(object, r_type))
      && this->reloc_needs_plt_for_ifunc(object, r_type))
    target->make_plt_entry(symtab, layout, gsym);
    target->make_plt_entry(symtab, layout, gsym);
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_386_NONE:
    case elfcpp::R_386_NONE:
    case elfcpp::R_386_GNU_VTINHERIT:
    case elfcpp::R_386_GNU_VTINHERIT:
    case elfcpp::R_386_GNU_VTENTRY:
    case elfcpp::R_386_GNU_VTENTRY:
      break;
      break;
 
 
    case elfcpp::R_386_32:
    case elfcpp::R_386_32:
    case elfcpp::R_386_16:
    case elfcpp::R_386_16:
    case elfcpp::R_386_8:
    case elfcpp::R_386_8:
      {
      {
        // Make a PLT entry if necessary.
        // Make a PLT entry if necessary.
        if (gsym->needs_plt_entry())
        if (gsym->needs_plt_entry())
          {
          {
            target->make_plt_entry(symtab, layout, gsym);
            target->make_plt_entry(symtab, layout, gsym);
            // Since this is not a PC-relative relocation, we may be
            // Since this is not a PC-relative relocation, we may be
            // taking the address of a function. In that case we need to
            // taking the address of a function. In that case we need to
            // set the entry in the dynamic symbol table to the address of
            // set the entry in the dynamic symbol table to the address of
            // the PLT entry.
            // the PLT entry.
            if (gsym->is_from_dynobj() && !parameters->options().shared())
            if (gsym->is_from_dynobj() && !parameters->options().shared())
              gsym->set_needs_dynsym_value();
              gsym->set_needs_dynsym_value();
          }
          }
        // Make a dynamic relocation if necessary.
        // Make a dynamic relocation if necessary.
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
          {
          {
            if (gsym->may_need_copy_reloc())
            if (gsym->may_need_copy_reloc())
              {
              {
                target->copy_reloc(symtab, layout, object,
                target->copy_reloc(symtab, layout, object,
                                   data_shndx, output_section, gsym, reloc);
                                   data_shndx, output_section, gsym, reloc);
              }
              }
            else if (r_type == elfcpp::R_386_32
            else if (r_type == elfcpp::R_386_32
                     && gsym->type() == elfcpp::STT_GNU_IFUNC
                     && gsym->type() == elfcpp::STT_GNU_IFUNC
                     && gsym->can_use_relative_reloc(false)
                     && gsym->can_use_relative_reloc(false)
                     && !gsym->is_from_dynobj()
                     && !gsym->is_from_dynobj()
                     && !gsym->is_undefined()
                     && !gsym->is_undefined()
                     && !gsym->is_preemptible())
                     && !gsym->is_preemptible())
              {
              {
                // Use an IRELATIVE reloc for a locally defined
                // Use an IRELATIVE reloc for a locally defined
                // STT_GNU_IFUNC symbol.  This makes a function
                // STT_GNU_IFUNC symbol.  This makes a function
                // address in a PIE executable match the address in a
                // address in a PIE executable match the address in a
                // shared library that it links against.
                // shared library that it links against.
                Reloc_section* rel_dyn = target->rel_irelative_section(layout);
                Reloc_section* rel_dyn = target->rel_irelative_section(layout);
                rel_dyn->add_symbolless_global_addend(gsym,
                rel_dyn->add_symbolless_global_addend(gsym,
                                                      elfcpp::R_386_IRELATIVE,
                                                      elfcpp::R_386_IRELATIVE,
                                                      output_section,
                                                      output_section,
                                                      object, data_shndx,
                                                      object, data_shndx,
                                                      reloc.get_r_offset());
                                                      reloc.get_r_offset());
              }
              }
            else if (r_type == elfcpp::R_386_32
            else if (r_type == elfcpp::R_386_32
                     && gsym->can_use_relative_reloc(false))
                     && gsym->can_use_relative_reloc(false))
              {
              {
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
                rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
                                             output_section, object,
                                             output_section, object,
                                             data_shndx, reloc.get_r_offset());
                                             data_shndx, reloc.get_r_offset());
              }
              }
            else
            else
              {
              {
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                rel_dyn->add_global(gsym, r_type, output_section, object,
                rel_dyn->add_global(gsym, r_type, output_section, object,
                                    data_shndx, reloc.get_r_offset());
                                    data_shndx, reloc.get_r_offset());
              }
              }
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_386_PC32:
    case elfcpp::R_386_PC32:
    case elfcpp::R_386_PC16:
    case elfcpp::R_386_PC16:
    case elfcpp::R_386_PC8:
    case elfcpp::R_386_PC8:
      {
      {
        // Make a PLT entry if necessary.
        // Make a PLT entry if necessary.
        if (gsym->needs_plt_entry())
        if (gsym->needs_plt_entry())
          {
          {
            // These relocations are used for function calls only in
            // These relocations are used for function calls only in
            // non-PIC code.  For a 32-bit relocation in a shared library,
            // non-PIC code.  For a 32-bit relocation in a shared library,
            // we'll need a text relocation anyway, so we can skip the
            // we'll need a text relocation anyway, so we can skip the
            // PLT entry and let the dynamic linker bind the call directly
            // PLT entry and let the dynamic linker bind the call directly
            // to the target.  For smaller relocations, we should use a
            // to the target.  For smaller relocations, we should use a
            // PLT entry to ensure that the call can reach.
            // PLT entry to ensure that the call can reach.
            if (!parameters->options().shared()
            if (!parameters->options().shared()
                || r_type != elfcpp::R_386_PC32)
                || r_type != elfcpp::R_386_PC32)
              target->make_plt_entry(symtab, layout, gsym);
              target->make_plt_entry(symtab, layout, gsym);
          }
          }
        // Make a dynamic relocation if necessary.
        // Make a dynamic relocation if necessary.
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
          {
          {
            if (gsym->may_need_copy_reloc())
            if (gsym->may_need_copy_reloc())
              {
              {
                target->copy_reloc(symtab, layout, object,
                target->copy_reloc(symtab, layout, object,
                                   data_shndx, output_section, gsym, reloc);
                                   data_shndx, output_section, gsym, reloc);
              }
              }
            else
            else
              {
              {
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                rel_dyn->add_global(gsym, r_type, output_section, object,
                rel_dyn->add_global(gsym, r_type, output_section, object,
                                    data_shndx, reloc.get_r_offset());
                                    data_shndx, reloc.get_r_offset());
              }
              }
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_386_GOT32:
    case elfcpp::R_386_GOT32:
      {
      {
        // The symbol requires a GOT entry.
        // The symbol requires a GOT entry.
        Output_data_got<32, false>* got = target->got_section(symtab, layout);
        Output_data_got<32, false>* got = target->got_section(symtab, layout);
        if (gsym->final_value_is_known())
        if (gsym->final_value_is_known())
          {
          {
            // For a STT_GNU_IFUNC symbol we want the PLT address.
            // For a STT_GNU_IFUNC symbol we want the PLT address.
            if (gsym->type() == elfcpp::STT_GNU_IFUNC)
            if (gsym->type() == elfcpp::STT_GNU_IFUNC)
              got->add_global_plt(gsym, GOT_TYPE_STANDARD);
              got->add_global_plt(gsym, GOT_TYPE_STANDARD);
            else
            else
              got->add_global(gsym, GOT_TYPE_STANDARD);
              got->add_global(gsym, GOT_TYPE_STANDARD);
          }
          }
        else
        else
          {
          {
            // If this symbol is not fully resolved, we need to add a
            // If this symbol is not fully resolved, we need to add a
            // GOT entry with a dynamic relocation.
            // GOT entry with a dynamic relocation.
            Reloc_section* rel_dyn = target->rel_dyn_section(layout);
            Reloc_section* rel_dyn = target->rel_dyn_section(layout);
 
 
            // Use a GLOB_DAT rather than a RELATIVE reloc if:
            // Use a GLOB_DAT rather than a RELATIVE reloc if:
            //
            //
            // 1) The symbol may be defined in some other module.
            // 1) The symbol may be defined in some other module.
            //
            //
            // 2) We are building a shared library and this is a
            // 2) We are building a shared library and this is a
            // protected symbol; using GLOB_DAT means that the dynamic
            // protected symbol; using GLOB_DAT means that the dynamic
            // linker can use the address of the PLT in the main
            // linker can use the address of the PLT in the main
            // executable when appropriate so that function address
            // executable when appropriate so that function address
            // comparisons work.
            // comparisons work.
            //
            //
            // 3) This is a STT_GNU_IFUNC symbol in position dependent
            // 3) This is a STT_GNU_IFUNC symbol in position dependent
            // code, again so that function address comparisons work.
            // code, again so that function address comparisons work.
            if (gsym->is_from_dynobj()
            if (gsym->is_from_dynobj()
                || gsym->is_undefined()
                || gsym->is_undefined()
                || gsym->is_preemptible()
                || gsym->is_preemptible()
                || (gsym->visibility() == elfcpp::STV_PROTECTED
                || (gsym->visibility() == elfcpp::STV_PROTECTED
                    && parameters->options().shared())
                    && parameters->options().shared())
                || (gsym->type() == elfcpp::STT_GNU_IFUNC
                || (gsym->type() == elfcpp::STT_GNU_IFUNC
                    && parameters->options().output_is_position_independent()))
                    && parameters->options().output_is_position_independent()))
              got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
              got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
                                       rel_dyn, elfcpp::R_386_GLOB_DAT);
                                       rel_dyn, elfcpp::R_386_GLOB_DAT);
            else
            else
              {
              {
                // For a STT_GNU_IFUNC symbol we want to write the PLT
                // For a STT_GNU_IFUNC symbol we want to write the PLT
                // offset into the GOT, so that function pointer
                // offset into the GOT, so that function pointer
                // comparisons work correctly.
                // comparisons work correctly.
                bool is_new;
                bool is_new;
                if (gsym->type() != elfcpp::STT_GNU_IFUNC)
                if (gsym->type() != elfcpp::STT_GNU_IFUNC)
                  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
                  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
                else
                else
                  {
                  {
                    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
                    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
                    // Tell the dynamic linker to use the PLT address
                    // Tell the dynamic linker to use the PLT address
                    // when resolving relocations.
                    // when resolving relocations.
                    if (gsym->is_from_dynobj()
                    if (gsym->is_from_dynobj()
                        && !parameters->options().shared())
                        && !parameters->options().shared())
                      gsym->set_needs_dynsym_value();
                      gsym->set_needs_dynsym_value();
                  }
                  }
                if (is_new)
                if (is_new)
                  {
                  {
                    unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
                    unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
                    rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
                    rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
                                                 got, got_off);
                                                 got, got_off);
                  }
                  }
              }
              }
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_386_PLT32:
    case elfcpp::R_386_PLT32:
      // If the symbol is fully resolved, this is just a PC32 reloc.
      // If the symbol is fully resolved, this is just a PC32 reloc.
      // Otherwise we need a PLT entry.
      // Otherwise we need a PLT entry.
      if (gsym->final_value_is_known())
      if (gsym->final_value_is_known())
        break;
        break;
      // If building a shared library, we can also skip the PLT entry
      // If building a shared library, we can also skip the PLT entry
      // if the symbol is defined in the output file and is protected
      // if the symbol is defined in the output file and is protected
      // or hidden.
      // or hidden.
      if (gsym->is_defined()
      if (gsym->is_defined()
          && !gsym->is_from_dynobj()
          && !gsym->is_from_dynobj()
          && !gsym->is_preemptible())
          && !gsym->is_preemptible())
        break;
        break;
      target->make_plt_entry(symtab, layout, gsym);
      target->make_plt_entry(symtab, layout, gsym);
      break;
      break;
 
 
    case elfcpp::R_386_GOTOFF:
    case elfcpp::R_386_GOTOFF:
    case elfcpp::R_386_GOTPC:
    case elfcpp::R_386_GOTPC:
      // We need a GOT section.
      // We need a GOT section.
      target->got_section(symtab, layout);
      target->got_section(symtab, layout);
      break;
      break;
 
 
      // These are relocations which should only be seen by the
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
      // dynamic linker, and should never be seen here.
    case elfcpp::R_386_COPY:
    case elfcpp::R_386_COPY:
    case elfcpp::R_386_GLOB_DAT:
    case elfcpp::R_386_GLOB_DAT:
    case elfcpp::R_386_JUMP_SLOT:
    case elfcpp::R_386_JUMP_SLOT:
    case elfcpp::R_386_RELATIVE:
    case elfcpp::R_386_RELATIVE:
    case elfcpp::R_386_IRELATIVE:
    case elfcpp::R_386_IRELATIVE:
    case elfcpp::R_386_TLS_TPOFF:
    case elfcpp::R_386_TLS_TPOFF:
    case elfcpp::R_386_TLS_DTPMOD32:
    case elfcpp::R_386_TLS_DTPMOD32:
    case elfcpp::R_386_TLS_DTPOFF32:
    case elfcpp::R_386_TLS_DTPOFF32:
    case elfcpp::R_386_TLS_TPOFF32:
    case elfcpp::R_386_TLS_TPOFF32:
    case elfcpp::R_386_TLS_DESC:
    case elfcpp::R_386_TLS_DESC:
      gold_error(_("%s: unexpected reloc %u in object file"),
      gold_error(_("%s: unexpected reloc %u in object file"),
                 object->name().c_str(), r_type);
                 object->name().c_str(), r_type);
      break;
      break;
 
 
      // These are initial tls relocs, which are expected when
      // These are initial tls relocs, which are expected when
      // linking.
      // linking.
    case elfcpp::R_386_TLS_GD:            // Global-dynamic
    case elfcpp::R_386_TLS_GD:            // Global-dynamic
    case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
    case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
    case elfcpp::R_386_TLS_DESC_CALL:
    case elfcpp::R_386_TLS_DESC_CALL:
    case elfcpp::R_386_TLS_LDM:           // Local-dynamic
    case elfcpp::R_386_TLS_LDM:           // Local-dynamic
    case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
    case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
    case elfcpp::R_386_TLS_IE:            // Initial-exec
    case elfcpp::R_386_TLS_IE:            // Initial-exec
    case elfcpp::R_386_TLS_IE_32:
    case elfcpp::R_386_TLS_IE_32:
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_LE:            // Local-exec
    case elfcpp::R_386_TLS_LE:            // Local-exec
    case elfcpp::R_386_TLS_LE_32:
    case elfcpp::R_386_TLS_LE_32:
      {
      {
        const bool is_final = gsym->final_value_is_known();
        const bool is_final = gsym->final_value_is_known();
        const tls::Tls_optimization optimized_type
        const tls::Tls_optimization optimized_type
            = Target_i386::optimize_tls_reloc(is_final, r_type);
            = Target_i386::optimize_tls_reloc(is_final, r_type);
        switch (r_type)
        switch (r_type)
          {
          {
          case elfcpp::R_386_TLS_GD:          // Global-dynamic
          case elfcpp::R_386_TLS_GD:          // Global-dynamic
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create a pair of GOT entries for the module index and
                // Create a pair of GOT entries for the module index and
                // dtv-relative offset.
                // dtv-relative offset.
                Output_data_got<32, false>* got
                Output_data_got<32, false>* got
                    = target->got_section(symtab, layout);
                    = target->got_section(symtab, layout);
                got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
                got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
                                             target->rel_dyn_section(layout),
                                             target->rel_dyn_section(layout),
                                             elfcpp::R_386_TLS_DTPMOD32,
                                             elfcpp::R_386_TLS_DTPMOD32,
                                             elfcpp::R_386_TLS_DTPOFF32);
                                             elfcpp::R_386_TLS_DTPOFF32);
              }
              }
            else if (optimized_type == tls::TLSOPT_TO_IE)
            else if (optimized_type == tls::TLSOPT_TO_IE)
              {
              {
                // Create a GOT entry for the tp-relative offset.
                // Create a GOT entry for the tp-relative offset.
                Output_data_got<32, false>* got
                Output_data_got<32, false>* got
                    = target->got_section(symtab, layout);
                    = target->got_section(symtab, layout);
                got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
                got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
                                         target->rel_dyn_section(layout),
                                         target->rel_dyn_section(layout),
                                         elfcpp::R_386_TLS_TPOFF);
                                         elfcpp::R_386_TLS_TPOFF);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_global(object, r_type, gsym);
              unsupported_reloc_global(object, r_type, gsym);
            break;
            break;
 
 
          case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (~oliva url)
          case elfcpp::R_386_TLS_GOTDESC:     // Global-dynamic (~oliva url)
            target->define_tls_base_symbol(symtab, layout);
            target->define_tls_base_symbol(symtab, layout);
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create a double GOT entry with an R_386_TLS_DESC
                // Create a double GOT entry with an R_386_TLS_DESC
                // reloc.  The R_386_TLS_DESC reloc is resolved
                // reloc.  The R_386_TLS_DESC reloc is resolved
                // lazily, so the GOT entry needs to be in an area in
                // lazily, so the GOT entry needs to be in an area in
                // .got.plt, not .got.  Call got_section to make sure
                // .got.plt, not .got.  Call got_section to make sure
                // the section has been created.
                // the section has been created.
                target->got_section(symtab, layout);
                target->got_section(symtab, layout);
                Output_data_got<32, false>* got = target->got_tlsdesc_section();
                Output_data_got<32, false>* got = target->got_tlsdesc_section();
                Reloc_section* rt = target->rel_tls_desc_section(layout);
                Reloc_section* rt = target->rel_tls_desc_section(layout);
                got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
                got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
                                             elfcpp::R_386_TLS_DESC, 0);
                                             elfcpp::R_386_TLS_DESC, 0);
              }
              }
            else if (optimized_type == tls::TLSOPT_TO_IE)
            else if (optimized_type == tls::TLSOPT_TO_IE)
              {
              {
                // Create a GOT entry for the tp-relative offset.
                // Create a GOT entry for the tp-relative offset.
                Output_data_got<32, false>* got
                Output_data_got<32, false>* got
                    = target->got_section(symtab, layout);
                    = target->got_section(symtab, layout);
                got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
                got->add_global_with_rel(gsym, GOT_TYPE_TLS_NOFFSET,
                                         target->rel_dyn_section(layout),
                                         target->rel_dyn_section(layout),
                                         elfcpp::R_386_TLS_TPOFF);
                                         elfcpp::R_386_TLS_TPOFF);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_global(object, r_type, gsym);
              unsupported_reloc_global(object, r_type, gsym);
            break;
            break;
 
 
          case elfcpp::R_386_TLS_DESC_CALL:
          case elfcpp::R_386_TLS_DESC_CALL:
            break;
            break;
 
 
          case elfcpp::R_386_TLS_LDM:         // Local-dynamic
          case elfcpp::R_386_TLS_LDM:         // Local-dynamic
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create a GOT entry for the module index.
                // Create a GOT entry for the module index.
                target->got_mod_index_entry(symtab, layout, object);
                target->got_mod_index_entry(symtab, layout, object);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_global(object, r_type, gsym);
              unsupported_reloc_global(object, r_type, gsym);
            break;
            break;
 
 
          case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
          case elfcpp::R_386_TLS_LDO_32:      // Alternate local-dynamic
            break;
            break;
 
 
          case elfcpp::R_386_TLS_IE:          // Initial-exec
          case elfcpp::R_386_TLS_IE:          // Initial-exec
          case elfcpp::R_386_TLS_IE_32:
          case elfcpp::R_386_TLS_IE_32:
          case elfcpp::R_386_TLS_GOTIE:
          case elfcpp::R_386_TLS_GOTIE:
            layout->set_has_static_tls();
            layout->set_has_static_tls();
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // For the R_386_TLS_IE relocation, we need to create a
                // For the R_386_TLS_IE relocation, we need to create a
                // dynamic relocation when building a shared library.
                // dynamic relocation when building a shared library.
                if (r_type == elfcpp::R_386_TLS_IE
                if (r_type == elfcpp::R_386_TLS_IE
                    && parameters->options().shared())
                    && parameters->options().shared())
                  {
                  {
                    Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                    Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                    rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
                    rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
                                                 output_section, object,
                                                 output_section, object,
                                                 data_shndx,
                                                 data_shndx,
                                                 reloc.get_r_offset());
                                                 reloc.get_r_offset());
                  }
                  }
                // Create a GOT entry for the tp-relative offset.
                // Create a GOT entry for the tp-relative offset.
                Output_data_got<32, false>* got
                Output_data_got<32, false>* got
                    = target->got_section(symtab, layout);
                    = target->got_section(symtab, layout);
                unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
                unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
                                           ? elfcpp::R_386_TLS_TPOFF32
                                           ? elfcpp::R_386_TLS_TPOFF32
                                           : elfcpp::R_386_TLS_TPOFF);
                                           : elfcpp::R_386_TLS_TPOFF);
                unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
                unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
                                         ? GOT_TYPE_TLS_OFFSET
                                         ? GOT_TYPE_TLS_OFFSET
                                         : GOT_TYPE_TLS_NOFFSET);
                                         : GOT_TYPE_TLS_NOFFSET);
                got->add_global_with_rel(gsym, got_type,
                got->add_global_with_rel(gsym, got_type,
                                         target->rel_dyn_section(layout),
                                         target->rel_dyn_section(layout),
                                         dyn_r_type);
                                         dyn_r_type);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_global(object, r_type, gsym);
              unsupported_reloc_global(object, r_type, gsym);
            break;
            break;
 
 
          case elfcpp::R_386_TLS_LE:          // Local-exec
          case elfcpp::R_386_TLS_LE:          // Local-exec
          case elfcpp::R_386_TLS_LE_32:
          case elfcpp::R_386_TLS_LE_32:
            layout->set_has_static_tls();
            layout->set_has_static_tls();
            if (parameters->options().shared())
            if (parameters->options().shared())
              {
              {
                // We need to create a dynamic relocation.
                // We need to create a dynamic relocation.
                unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
                unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
                                           ? elfcpp::R_386_TLS_TPOFF32
                                           ? elfcpp::R_386_TLS_TPOFF32
                                           : elfcpp::R_386_TLS_TPOFF);
                                           : elfcpp::R_386_TLS_TPOFF);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
                rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
                rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
                                    data_shndx, reloc.get_r_offset());
                                    data_shndx, reloc.get_r_offset());
              }
              }
            break;
            break;
 
 
          default:
          default:
            gold_unreachable();
            gold_unreachable();
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_386_32PLT:
    case elfcpp::R_386_32PLT:
    case elfcpp::R_386_TLS_GD_32:
    case elfcpp::R_386_TLS_GD_32:
    case elfcpp::R_386_TLS_GD_PUSH:
    case elfcpp::R_386_TLS_GD_PUSH:
    case elfcpp::R_386_TLS_GD_CALL:
    case elfcpp::R_386_TLS_GD_CALL:
    case elfcpp::R_386_TLS_GD_POP:
    case elfcpp::R_386_TLS_GD_POP:
    case elfcpp::R_386_TLS_LDM_32:
    case elfcpp::R_386_TLS_LDM_32:
    case elfcpp::R_386_TLS_LDM_PUSH:
    case elfcpp::R_386_TLS_LDM_PUSH:
    case elfcpp::R_386_TLS_LDM_CALL:
    case elfcpp::R_386_TLS_LDM_CALL:
    case elfcpp::R_386_TLS_LDM_POP:
    case elfcpp::R_386_TLS_LDM_POP:
    case elfcpp::R_386_USED_BY_INTEL_200:
    case elfcpp::R_386_USED_BY_INTEL_200:
    default:
    default:
      unsupported_reloc_global(object, r_type, gsym);
      unsupported_reloc_global(object, r_type, gsym);
      break;
      break;
    }
    }
}
}
 
 
// Process relocations for gc.
// Process relocations for gc.
 
 
void
void
Target_i386::gc_process_relocs(Symbol_table* symtab,
Target_i386::gc_process_relocs(Symbol_table* symtab,
                               Layout* layout,
                               Layout* layout,
                               Sized_relobj_file<32, false>* object,
                               Sized_relobj_file<32, false>* object,
                               unsigned int data_shndx,
                               unsigned int data_shndx,
                               unsigned int,
                               unsigned int,
                               const unsigned char* prelocs,
                               const unsigned char* prelocs,
                               size_t reloc_count,
                               size_t reloc_count,
                               Output_section* output_section,
                               Output_section* output_section,
                               bool needs_special_offset_handling,
                               bool needs_special_offset_handling,
                               size_t local_symbol_count,
                               size_t local_symbol_count,
                               const unsigned char* plocal_symbols)
                               const unsigned char* plocal_symbols)
{
{
  gold::gc_process_relocs<32, false, Target_i386, elfcpp::SHT_REL,
  gold::gc_process_relocs<32, false, Target_i386, elfcpp::SHT_REL,
                          Target_i386::Scan,
                          Target_i386::Scan,
                          Target_i386::Relocatable_size_for_reloc>(
                          Target_i386::Relocatable_size_for_reloc>(
    symtab,
    symtab,
    layout,
    layout,
    this,
    this,
    object,
    object,
    data_shndx,
    data_shndx,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    needs_special_offset_handling,
    needs_special_offset_handling,
    local_symbol_count,
    local_symbol_count,
    plocal_symbols);
    plocal_symbols);
}
}
 
 
// Scan relocations for a section.
// Scan relocations for a section.
 
 
void
void
Target_i386::scan_relocs(Symbol_table* symtab,
Target_i386::scan_relocs(Symbol_table* symtab,
                         Layout* layout,
                         Layout* layout,
                         Sized_relobj_file<32, false>* object,
                         Sized_relobj_file<32, false>* object,
                         unsigned int data_shndx,
                         unsigned int data_shndx,
                         unsigned int sh_type,
                         unsigned int sh_type,
                         const unsigned char* prelocs,
                         const unsigned char* prelocs,
                         size_t reloc_count,
                         size_t reloc_count,
                         Output_section* output_section,
                         Output_section* output_section,
                         bool needs_special_offset_handling,
                         bool needs_special_offset_handling,
                         size_t local_symbol_count,
                         size_t local_symbol_count,
                         const unsigned char* plocal_symbols)
                         const unsigned char* plocal_symbols)
{
{
  if (sh_type == elfcpp::SHT_RELA)
  if (sh_type == elfcpp::SHT_RELA)
    {
    {
      gold_error(_("%s: unsupported RELA reloc section"),
      gold_error(_("%s: unsupported RELA reloc section"),
                 object->name().c_str());
                 object->name().c_str());
      return;
      return;
    }
    }
 
 
  gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
  gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
                    Target_i386::Scan>(
                    Target_i386::Scan>(
    symtab,
    symtab,
    layout,
    layout,
    this,
    this,
    object,
    object,
    data_shndx,
    data_shndx,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    needs_special_offset_handling,
    needs_special_offset_handling,
    local_symbol_count,
    local_symbol_count,
    plocal_symbols);
    plocal_symbols);
}
}
 
 
// Finalize the sections.
// Finalize the sections.
 
 
void
void
Target_i386::do_finalize_sections(
Target_i386::do_finalize_sections(
    Layout* layout,
    Layout* layout,
    const Input_objects*,
    const Input_objects*,
    Symbol_table* symtab)
    Symbol_table* symtab)
{
{
  const Reloc_section* rel_plt = (this->plt_ == NULL
  const Reloc_section* rel_plt = (this->plt_ == NULL
                                  ? NULL
                                  ? NULL
                                  : this->plt_->rel_plt());
                                  : this->plt_->rel_plt());
  layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
  layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
                                  this->rel_dyn_, true, false);
                                  this->rel_dyn_, true, false);
 
 
  // Emit any relocs we saved in an attempt to avoid generating COPY
  // Emit any relocs we saved in an attempt to avoid generating COPY
  // relocs.
  // relocs.
  if (this->copy_relocs_.any_saved_relocs())
  if (this->copy_relocs_.any_saved_relocs())
    this->copy_relocs_.emit(this->rel_dyn_section(layout));
    this->copy_relocs_.emit(this->rel_dyn_section(layout));
 
 
  // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
  // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
  // the .got.plt section.
  // the .got.plt section.
  Symbol* sym = this->global_offset_table_;
  Symbol* sym = this->global_offset_table_;
  if (sym != NULL)
  if (sym != NULL)
    {
    {
      uint32_t data_size = this->got_plt_->current_data_size();
      uint32_t data_size = this->got_plt_->current_data_size();
      symtab->get_sized_symbol<32>(sym)->set_symsize(data_size);
      symtab->get_sized_symbol<32>(sym)->set_symsize(data_size);
    }
    }
 
 
  if (parameters->doing_static_link()
  if (parameters->doing_static_link()
      && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
      && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
    {
    {
      // If linking statically, make sure that the __rel_iplt symbols
      // If linking statically, make sure that the __rel_iplt symbols
      // were defined if necessary, even if we didn't create a PLT.
      // were defined if necessary, even if we didn't create a PLT.
      static const Define_symbol_in_segment syms[] =
      static const Define_symbol_in_segment syms[] =
        {
        {
          {
          {
            "__rel_iplt_start",         // name
            "__rel_iplt_start",         // name
            elfcpp::PT_LOAD,            // segment_type
            elfcpp::PT_LOAD,            // segment_type
            elfcpp::PF_W,               // segment_flags_set
            elfcpp::PF_W,               // segment_flags_set
            elfcpp::PF(0),               // segment_flags_clear
            elfcpp::PF(0),               // segment_flags_clear
            0,                           // value
            0,                           // value
            0,                           // size
            0,                           // size
            elfcpp::STT_NOTYPE,         // type
            elfcpp::STT_NOTYPE,         // type
            elfcpp::STB_GLOBAL,         // binding
            elfcpp::STB_GLOBAL,         // binding
            elfcpp::STV_HIDDEN,         // visibility
            elfcpp::STV_HIDDEN,         // visibility
            0,                           // nonvis
            0,                           // nonvis
            Symbol::SEGMENT_START,      // offset_from_base
            Symbol::SEGMENT_START,      // offset_from_base
            true                        // only_if_ref
            true                        // only_if_ref
          },
          },
          {
          {
            "__rel_iplt_end",           // name
            "__rel_iplt_end",           // name
            elfcpp::PT_LOAD,            // segment_type
            elfcpp::PT_LOAD,            // segment_type
            elfcpp::PF_W,               // segment_flags_set
            elfcpp::PF_W,               // segment_flags_set
            elfcpp::PF(0),               // segment_flags_clear
            elfcpp::PF(0),               // segment_flags_clear
            0,                           // value
            0,                           // value
            0,                           // size
            0,                           // size
            elfcpp::STT_NOTYPE,         // type
            elfcpp::STT_NOTYPE,         // type
            elfcpp::STB_GLOBAL,         // binding
            elfcpp::STB_GLOBAL,         // binding
            elfcpp::STV_HIDDEN,         // visibility
            elfcpp::STV_HIDDEN,         // visibility
            0,                           // nonvis
            0,                           // nonvis
            Symbol::SEGMENT_START,      // offset_from_base
            Symbol::SEGMENT_START,      // offset_from_base
            true                        // only_if_ref
            true                        // only_if_ref
          }
          }
        };
        };
 
 
      symtab->define_symbols(layout, 2, syms,
      symtab->define_symbols(layout, 2, syms,
                             layout->script_options()->saw_sections_clause());
                             layout->script_options()->saw_sections_clause());
    }
    }
}
}
 
 
// Return whether a direct absolute static relocation needs to be applied.
// Return whether a direct absolute static relocation needs to be applied.
// In cases where Scan::local() or Scan::global() has created
// In cases where Scan::local() or Scan::global() has created
// a dynamic relocation other than R_386_RELATIVE, the addend
// a dynamic relocation other than R_386_RELATIVE, the addend
// of the relocation is carried in the data, and we must not
// of the relocation is carried in the data, and we must not
// apply the static relocation.
// apply the static relocation.
 
 
inline bool
inline bool
Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
                                                 unsigned int r_type,
                                                 unsigned int r_type,
                                                 bool is_32bit,
                                                 bool is_32bit,
                                                 Output_section* output_section)
                                                 Output_section* output_section)
{
{
  // If the output section is not allocated, then we didn't call
  // If the output section is not allocated, then we didn't call
  // scan_relocs, we didn't create a dynamic reloc, and we must apply
  // scan_relocs, we didn't create a dynamic reloc, and we must apply
  // the reloc here.
  // the reloc here.
  if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
  if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
    return true;
    return true;
 
 
  int ref_flags = Scan::get_reference_flags(r_type);
  int ref_flags = Scan::get_reference_flags(r_type);
 
 
  // For local symbols, we will have created a non-RELATIVE dynamic
  // For local symbols, we will have created a non-RELATIVE dynamic
  // relocation only if (a) the output is position independent,
  // relocation only if (a) the output is position independent,
  // (b) the relocation is absolute (not pc- or segment-relative), and
  // (b) the relocation is absolute (not pc- or segment-relative), and
  // (c) the relocation is not 32 bits wide.
  // (c) the relocation is not 32 bits wide.
  if (gsym == NULL)
  if (gsym == NULL)
    return !(parameters->options().output_is_position_independent()
    return !(parameters->options().output_is_position_independent()
             && (ref_flags & Symbol::ABSOLUTE_REF)
             && (ref_flags & Symbol::ABSOLUTE_REF)
             && !is_32bit);
             && !is_32bit);
 
 
  // For global symbols, we use the same helper routines used in the
  // For global symbols, we use the same helper routines used in the
  // scan pass.  If we did not create a dynamic relocation, or if we
  // scan pass.  If we did not create a dynamic relocation, or if we
  // created a RELATIVE dynamic relocation, we should apply the static
  // created a RELATIVE dynamic relocation, we should apply the static
  // relocation.
  // relocation.
  bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
  bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
  bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
  bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
                && gsym->can_use_relative_reloc(ref_flags
                && gsym->can_use_relative_reloc(ref_flags
                                                & Symbol::FUNCTION_CALL);
                                                & Symbol::FUNCTION_CALL);
  return !has_dyn || is_rel;
  return !has_dyn || is_rel;
}
}
 
 
// Perform a relocation.
// Perform a relocation.
 
 
inline bool
inline bool
Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
                                Target_i386* target,
                                Target_i386* target,
                                Output_section* output_section,
                                Output_section* output_section,
                                size_t relnum,
                                size_t relnum,
                                const elfcpp::Rel<32, false>& rel,
                                const elfcpp::Rel<32, false>& rel,
                                unsigned int r_type,
                                unsigned int r_type,
                                const Sized_symbol<32>* gsym,
                                const Sized_symbol<32>* gsym,
                                const Symbol_value<32>* psymval,
                                const Symbol_value<32>* psymval,
                                unsigned char* view,
                                unsigned char* view,
                                elfcpp::Elf_types<32>::Elf_Addr address,
                                elfcpp::Elf_types<32>::Elf_Addr address,
                                section_size_type view_size)
                                section_size_type view_size)
{
{
  if (this->skip_call_tls_get_addr_)
  if (this->skip_call_tls_get_addr_)
    {
    {
      if ((r_type != elfcpp::R_386_PLT32
      if ((r_type != elfcpp::R_386_PLT32
           && r_type != elfcpp::R_386_PC32)
           && r_type != elfcpp::R_386_PC32)
          || gsym == NULL
          || gsym == NULL
          || strcmp(gsym->name(), "___tls_get_addr") != 0)
          || strcmp(gsym->name(), "___tls_get_addr") != 0)
        gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
        gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                               _("missing expected TLS relocation"));
                               _("missing expected TLS relocation"));
      else
      else
        {
        {
          this->skip_call_tls_get_addr_ = false;
          this->skip_call_tls_get_addr_ = false;
          return false;
          return false;
        }
        }
    }
    }
 
 
  const Sized_relobj_file<32, false>* object = relinfo->object;
  const Sized_relobj_file<32, false>* object = relinfo->object;
 
 
  // Pick the value to use for symbols defined in shared objects.
  // Pick the value to use for symbols defined in shared objects.
  Symbol_value<32> symval;
  Symbol_value<32> symval;
  if (gsym != NULL
  if (gsym != NULL
      && gsym->type() == elfcpp::STT_GNU_IFUNC
      && gsym->type() == elfcpp::STT_GNU_IFUNC
      && r_type == elfcpp::R_386_32
      && r_type == elfcpp::R_386_32
      && gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
      && gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
      && gsym->can_use_relative_reloc(false)
      && gsym->can_use_relative_reloc(false)
      && !gsym->is_from_dynobj()
      && !gsym->is_from_dynobj()
      && !gsym->is_undefined()
      && !gsym->is_undefined()
      && !gsym->is_preemptible())
      && !gsym->is_preemptible())
    {
    {
      // In this case we are generating a R_386_IRELATIVE reloc.  We
      // In this case we are generating a R_386_IRELATIVE reloc.  We
      // want to use the real value of the symbol, not the PLT offset.
      // want to use the real value of the symbol, not the PLT offset.
    }
    }
  else if (gsym != NULL
  else if (gsym != NULL
           && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
           && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
    {
    {
      symval.set_output_value(target->plt_address_for_global(gsym)
      symval.set_output_value(target->plt_address_for_global(gsym)
                              + gsym->plt_offset());
                              + gsym->plt_offset());
      psymval = &symval;
      psymval = &symval;
    }
    }
  else if (gsym == NULL && psymval->is_ifunc_symbol())
  else if (gsym == NULL && psymval->is_ifunc_symbol())
    {
    {
      unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
      unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
      if (object->local_has_plt_offset(r_sym))
      if (object->local_has_plt_offset(r_sym))
        {
        {
          symval.set_output_value(target->plt_address_for_local(object, r_sym)
          symval.set_output_value(target->plt_address_for_local(object, r_sym)
                                  + object->local_plt_offset(r_sym));
                                  + object->local_plt_offset(r_sym));
          psymval = &symval;
          psymval = &symval;
        }
        }
    }
    }
 
 
  // Get the GOT offset if needed.
  // Get the GOT offset if needed.
  // The GOT pointer points to the end of the GOT section.
  // The GOT pointer points to the end of the GOT section.
  // We need to subtract the size of the GOT section to get
  // We need to subtract the size of the GOT section to get
  // the actual offset to use in the relocation.
  // the actual offset to use in the relocation.
  bool have_got_offset = false;
  bool have_got_offset = false;
  unsigned int got_offset = 0;
  unsigned int got_offset = 0;
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_386_GOT32:
    case elfcpp::R_386_GOT32:
      if (gsym != NULL)
      if (gsym != NULL)
        {
        {
          gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
          gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
          got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
          got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
                        - target->got_size());
                        - target->got_size());
        }
        }
      else
      else
        {
        {
          unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
          unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
          gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
          gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
          got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
          got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
                        - target->got_size());
                        - target->got_size());
        }
        }
      have_got_offset = true;
      have_got_offset = true;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_386_NONE:
    case elfcpp::R_386_NONE:
    case elfcpp::R_386_GNU_VTINHERIT:
    case elfcpp::R_386_GNU_VTINHERIT:
    case elfcpp::R_386_GNU_VTENTRY:
    case elfcpp::R_386_GNU_VTENTRY:
      break;
      break;
 
 
    case elfcpp::R_386_32:
    case elfcpp::R_386_32:
      if (should_apply_static_reloc(gsym, r_type, true, output_section))
      if (should_apply_static_reloc(gsym, r_type, true, output_section))
        Relocate_functions<32, false>::rel32(view, object, psymval);
        Relocate_functions<32, false>::rel32(view, object, psymval);
      break;
      break;
 
 
    case elfcpp::R_386_PC32:
    case elfcpp::R_386_PC32:
      if (should_apply_static_reloc(gsym, r_type, true, output_section))
      if (should_apply_static_reloc(gsym, r_type, true, output_section))
        Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
        Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
      break;
      break;
 
 
    case elfcpp::R_386_16:
    case elfcpp::R_386_16:
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
        Relocate_functions<32, false>::rel16(view, object, psymval);
        Relocate_functions<32, false>::rel16(view, object, psymval);
      break;
      break;
 
 
    case elfcpp::R_386_PC16:
    case elfcpp::R_386_PC16:
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
        Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
        Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
      break;
      break;
 
 
    case elfcpp::R_386_8:
    case elfcpp::R_386_8:
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
        Relocate_functions<32, false>::rel8(view, object, psymval);
        Relocate_functions<32, false>::rel8(view, object, psymval);
      break;
      break;
 
 
    case elfcpp::R_386_PC8:
    case elfcpp::R_386_PC8:
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
      if (should_apply_static_reloc(gsym, r_type, false, output_section))
        Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
        Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
      break;
      break;
 
 
    case elfcpp::R_386_PLT32:
    case elfcpp::R_386_PLT32:
      gold_assert(gsym == NULL
      gold_assert(gsym == NULL
                  || gsym->has_plt_offset()
                  || gsym->has_plt_offset()
                  || gsym->final_value_is_known()
                  || gsym->final_value_is_known()
                  || (gsym->is_defined()
                  || (gsym->is_defined()
                      && !gsym->is_from_dynobj()
                      && !gsym->is_from_dynobj()
                      && !gsym->is_preemptible()));
                      && !gsym->is_preemptible()));
      Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
      Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
      break;
      break;
 
 
    case elfcpp::R_386_GOT32:
    case elfcpp::R_386_GOT32:
      gold_assert(have_got_offset);
      gold_assert(have_got_offset);
      Relocate_functions<32, false>::rel32(view, got_offset);
      Relocate_functions<32, false>::rel32(view, got_offset);
      break;
      break;
 
 
    case elfcpp::R_386_GOTOFF:
    case elfcpp::R_386_GOTOFF:
      {
      {
        elfcpp::Elf_types<32>::Elf_Addr value;
        elfcpp::Elf_types<32>::Elf_Addr value;
        value = (psymval->value(object, 0)
        value = (psymval->value(object, 0)
                 - target->got_plt_section()->address());
                 - target->got_plt_section()->address());
        Relocate_functions<32, false>::rel32(view, value);
        Relocate_functions<32, false>::rel32(view, value);
      }
      }
      break;
      break;
 
 
    case elfcpp::R_386_GOTPC:
    case elfcpp::R_386_GOTPC:
      {
      {
        elfcpp::Elf_types<32>::Elf_Addr value;
        elfcpp::Elf_types<32>::Elf_Addr value;
        value = target->got_plt_section()->address();
        value = target->got_plt_section()->address();
        Relocate_functions<32, false>::pcrel32(view, value, address);
        Relocate_functions<32, false>::pcrel32(view, value, address);
      }
      }
      break;
      break;
 
 
    case elfcpp::R_386_COPY:
    case elfcpp::R_386_COPY:
    case elfcpp::R_386_GLOB_DAT:
    case elfcpp::R_386_GLOB_DAT:
    case elfcpp::R_386_JUMP_SLOT:
    case elfcpp::R_386_JUMP_SLOT:
    case elfcpp::R_386_RELATIVE:
    case elfcpp::R_386_RELATIVE:
    case elfcpp::R_386_IRELATIVE:
    case elfcpp::R_386_IRELATIVE:
      // These are outstanding tls relocs, which are unexpected when
      // These are outstanding tls relocs, which are unexpected when
      // linking.
      // linking.
    case elfcpp::R_386_TLS_TPOFF:
    case elfcpp::R_386_TLS_TPOFF:
    case elfcpp::R_386_TLS_DTPMOD32:
    case elfcpp::R_386_TLS_DTPMOD32:
    case elfcpp::R_386_TLS_DTPOFF32:
    case elfcpp::R_386_TLS_DTPOFF32:
    case elfcpp::R_386_TLS_TPOFF32:
    case elfcpp::R_386_TLS_TPOFF32:
    case elfcpp::R_386_TLS_DESC:
    case elfcpp::R_386_TLS_DESC:
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                             _("unexpected reloc %u in object file"),
                             _("unexpected reloc %u in object file"),
                             r_type);
                             r_type);
      break;
      break;
 
 
      // These are initial tls relocs, which are expected when
      // These are initial tls relocs, which are expected when
      // linking.
      // linking.
    case elfcpp::R_386_TLS_GD:             // Global-dynamic
    case elfcpp::R_386_TLS_GD:             // Global-dynamic
    case elfcpp::R_386_TLS_GOTDESC:        // Global-dynamic (from ~oliva url)
    case elfcpp::R_386_TLS_GOTDESC:        // Global-dynamic (from ~oliva url)
    case elfcpp::R_386_TLS_DESC_CALL:
    case elfcpp::R_386_TLS_DESC_CALL:
    case elfcpp::R_386_TLS_LDM:            // Local-dynamic
    case elfcpp::R_386_TLS_LDM:            // Local-dynamic
    case elfcpp::R_386_TLS_LDO_32:         // Alternate local-dynamic
    case elfcpp::R_386_TLS_LDO_32:         // Alternate local-dynamic
    case elfcpp::R_386_TLS_IE:             // Initial-exec
    case elfcpp::R_386_TLS_IE:             // Initial-exec
    case elfcpp::R_386_TLS_IE_32:
    case elfcpp::R_386_TLS_IE_32:
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_LE:             // Local-exec
    case elfcpp::R_386_TLS_LE:             // Local-exec
    case elfcpp::R_386_TLS_LE_32:
    case elfcpp::R_386_TLS_LE_32:
      this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
      this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
                         view, address, view_size);
                         view, address, view_size);
      break;
      break;
 
 
    case elfcpp::R_386_32PLT:
    case elfcpp::R_386_32PLT:
    case elfcpp::R_386_TLS_GD_32:
    case elfcpp::R_386_TLS_GD_32:
    case elfcpp::R_386_TLS_GD_PUSH:
    case elfcpp::R_386_TLS_GD_PUSH:
    case elfcpp::R_386_TLS_GD_CALL:
    case elfcpp::R_386_TLS_GD_CALL:
    case elfcpp::R_386_TLS_GD_POP:
    case elfcpp::R_386_TLS_GD_POP:
    case elfcpp::R_386_TLS_LDM_32:
    case elfcpp::R_386_TLS_LDM_32:
    case elfcpp::R_386_TLS_LDM_PUSH:
    case elfcpp::R_386_TLS_LDM_PUSH:
    case elfcpp::R_386_TLS_LDM_CALL:
    case elfcpp::R_386_TLS_LDM_CALL:
    case elfcpp::R_386_TLS_LDM_POP:
    case elfcpp::R_386_TLS_LDM_POP:
    case elfcpp::R_386_USED_BY_INTEL_200:
    case elfcpp::R_386_USED_BY_INTEL_200:
    default:
    default:
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                             _("unsupported reloc %u"),
                             _("unsupported reloc %u"),
                             r_type);
                             r_type);
      break;
      break;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
// Perform a TLS relocation.
// Perform a TLS relocation.
 
 
inline void
inline void
Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
                                    Target_i386* target,
                                    Target_i386* target,
                                    size_t relnum,
                                    size_t relnum,
                                    const elfcpp::Rel<32, false>& rel,
                                    const elfcpp::Rel<32, false>& rel,
                                    unsigned int r_type,
                                    unsigned int r_type,
                                    const Sized_symbol<32>* gsym,
                                    const Sized_symbol<32>* gsym,
                                    const Symbol_value<32>* psymval,
                                    const Symbol_value<32>* psymval,
                                    unsigned char* view,
                                    unsigned char* view,
                                    elfcpp::Elf_types<32>::Elf_Addr,
                                    elfcpp::Elf_types<32>::Elf_Addr,
                                    section_size_type view_size)
                                    section_size_type view_size)
{
{
  Output_segment* tls_segment = relinfo->layout->tls_segment();
  Output_segment* tls_segment = relinfo->layout->tls_segment();
 
 
  const Sized_relobj_file<32, false>* object = relinfo->object;
  const Sized_relobj_file<32, false>* object = relinfo->object;
 
 
  elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
  elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
 
 
  const bool is_final = (gsym == NULL
  const bool is_final = (gsym == NULL
                         ? !parameters->options().shared()
                         ? !parameters->options().shared()
                         : gsym->final_value_is_known());
                         : gsym->final_value_is_known());
  const tls::Tls_optimization optimized_type
  const tls::Tls_optimization optimized_type
      = Target_i386::optimize_tls_reloc(is_final, r_type);
      = Target_i386::optimize_tls_reloc(is_final, r_type);
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_386_TLS_GD:           // Global-dynamic
    case elfcpp::R_386_TLS_GD:           // Global-dynamic
      if (optimized_type == tls::TLSOPT_TO_LE)
      if (optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          if (tls_segment == NULL)
          if (tls_segment == NULL)
            {
            {
              gold_assert(parameters->errors()->error_count() > 0
              gold_assert(parameters->errors()->error_count() > 0
                          || issue_undefined_symbol_error(gsym));
                          || issue_undefined_symbol_error(gsym));
              return;
              return;
            }
            }
          this->tls_gd_to_le(relinfo, relnum, tls_segment,
          this->tls_gd_to_le(relinfo, relnum, tls_segment,
                             rel, r_type, value, view,
                             rel, r_type, value, view,
                             view_size);
                             view_size);
          break;
          break;
        }
        }
      else
      else
        {
        {
          unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
          unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
                                   ? GOT_TYPE_TLS_NOFFSET
                                   ? GOT_TYPE_TLS_NOFFSET
                                   : GOT_TYPE_TLS_PAIR);
                                   : GOT_TYPE_TLS_PAIR);
          unsigned int got_offset;
          unsigned int got_offset;
          if (gsym != NULL)
          if (gsym != NULL)
            {
            {
              gold_assert(gsym->has_got_offset(got_type));
              gold_assert(gsym->has_got_offset(got_type));
              got_offset = gsym->got_offset(got_type) - target->got_size();
              got_offset = gsym->got_offset(got_type) - target->got_size();
            }
            }
          else
          else
            {
            {
              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
              gold_assert(object->local_has_got_offset(r_sym, got_type));
              gold_assert(object->local_has_got_offset(r_sym, got_type));
              got_offset = (object->local_got_offset(r_sym, got_type)
              got_offset = (object->local_got_offset(r_sym, got_type)
                            - target->got_size());
                            - target->got_size());
            }
            }
          if (optimized_type == tls::TLSOPT_TO_IE)
          if (optimized_type == tls::TLSOPT_TO_IE)
            {
            {
              if (tls_segment == NULL)
 
                {
 
                  gold_assert(parameters->errors()->error_count() > 0
 
                              || issue_undefined_symbol_error(gsym));
 
                  return;
 
                }
 
              this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
              this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
                                 got_offset, view, view_size);
                                 got_offset, view, view_size);
              break;
              break;
            }
            }
          else if (optimized_type == tls::TLSOPT_NONE)
          else if (optimized_type == tls::TLSOPT_NONE)
            {
            {
              // Relocate the field with the offset of the pair of GOT
              // Relocate the field with the offset of the pair of GOT
              // entries.
              // entries.
              Relocate_functions<32, false>::rel32(view, got_offset);
              Relocate_functions<32, false>::rel32(view, got_offset);
              break;
              break;
            }
            }
        }
        }
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                             _("unsupported reloc %u"),
                             _("unsupported reloc %u"),
                             r_type);
                             r_type);
      break;
      break;
 
 
    case elfcpp::R_386_TLS_GOTDESC:      // Global-dynamic (from ~oliva url)
    case elfcpp::R_386_TLS_GOTDESC:      // Global-dynamic (from ~oliva url)
    case elfcpp::R_386_TLS_DESC_CALL:
    case elfcpp::R_386_TLS_DESC_CALL:
      this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
      this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
      if (optimized_type == tls::TLSOPT_TO_LE)
      if (optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          if (tls_segment == NULL)
          if (tls_segment == NULL)
            {
            {
              gold_assert(parameters->errors()->error_count() > 0
              gold_assert(parameters->errors()->error_count() > 0
                          || issue_undefined_symbol_error(gsym));
                          || issue_undefined_symbol_error(gsym));
              return;
              return;
            }
            }
          this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
          this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
                                  rel, r_type, value, view,
                                  rel, r_type, value, view,
                                  view_size);
                                  view_size);
          break;
          break;
        }
        }
      else
      else
        {
        {
          unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
          unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
                                   ? GOT_TYPE_TLS_NOFFSET
                                   ? GOT_TYPE_TLS_NOFFSET
                                   : GOT_TYPE_TLS_DESC);
                                   : GOT_TYPE_TLS_DESC);
          unsigned int got_offset = 0;
          unsigned int got_offset = 0;
          if (r_type == elfcpp::R_386_TLS_GOTDESC
          if (r_type == elfcpp::R_386_TLS_GOTDESC
              && optimized_type == tls::TLSOPT_NONE)
              && optimized_type == tls::TLSOPT_NONE)
            {
            {
              // We created GOT entries in the .got.tlsdesc portion of
              // We created GOT entries in the .got.tlsdesc portion of
              // the .got.plt section, but the offset stored in the
              // the .got.plt section, but the offset stored in the
              // symbol is the offset within .got.tlsdesc.
              // symbol is the offset within .got.tlsdesc.
              got_offset = (target->got_size()
              got_offset = (target->got_size()
                            + target->got_plt_section()->data_size());
                            + target->got_plt_section()->data_size());
            }
            }
          if (gsym != NULL)
          if (gsym != NULL)
            {
            {
              gold_assert(gsym->has_got_offset(got_type));
              gold_assert(gsym->has_got_offset(got_type));
              got_offset += gsym->got_offset(got_type) - target->got_size();
              got_offset += gsym->got_offset(got_type) - target->got_size();
            }
            }
          else
          else
            {
            {
              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
              gold_assert(object->local_has_got_offset(r_sym, got_type));
              gold_assert(object->local_has_got_offset(r_sym, got_type));
              got_offset += (object->local_got_offset(r_sym, got_type)
              got_offset += (object->local_got_offset(r_sym, got_type)
                             - target->got_size());
                             - target->got_size());
            }
            }
          if (optimized_type == tls::TLSOPT_TO_IE)
          if (optimized_type == tls::TLSOPT_TO_IE)
            {
            {
              if (tls_segment == NULL)
              if (tls_segment == NULL)
                {
                {
                  gold_assert(parameters->errors()->error_count() > 0
                  gold_assert(parameters->errors()->error_count() > 0
                              || issue_undefined_symbol_error(gsym));
                              || issue_undefined_symbol_error(gsym));
                  return;
                  return;
                }
                }
              this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
              this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
                                      got_offset, view, view_size);
                                      got_offset, view, view_size);
              break;
              break;
            }
            }
          else if (optimized_type == tls::TLSOPT_NONE)
          else if (optimized_type == tls::TLSOPT_NONE)
            {
            {
              if (r_type == elfcpp::R_386_TLS_GOTDESC)
              if (r_type == elfcpp::R_386_TLS_GOTDESC)
                {
                {
                  // Relocate the field with the offset of the pair of GOT
                  // Relocate the field with the offset of the pair of GOT
                  // entries.
                  // entries.
                  Relocate_functions<32, false>::rel32(view, got_offset);
                  Relocate_functions<32, false>::rel32(view, got_offset);
                }
                }
              break;
              break;
            }
            }
        }
        }
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                             _("unsupported reloc %u"),
                             _("unsupported reloc %u"),
                             r_type);
                             r_type);
      break;
      break;
 
 
    case elfcpp::R_386_TLS_LDM:          // Local-dynamic
    case elfcpp::R_386_TLS_LDM:          // Local-dynamic
      if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
      if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
        {
        {
          gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
          gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                                 _("both SUN and GNU model "
                                 _("both SUN and GNU model "
                                   "TLS relocations"));
                                   "TLS relocations"));
          break;
          break;
        }
        }
      this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
      this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
      if (optimized_type == tls::TLSOPT_TO_LE)
      if (optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          if (tls_segment == NULL)
          if (tls_segment == NULL)
            {
            {
              gold_assert(parameters->errors()->error_count() > 0
              gold_assert(parameters->errors()->error_count() > 0
                          || issue_undefined_symbol_error(gsym));
                          || issue_undefined_symbol_error(gsym));
              return;
              return;
            }
            }
          this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
          this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
                             value, view, view_size);
                             value, view, view_size);
          break;
          break;
        }
        }
      else if (optimized_type == tls::TLSOPT_NONE)
      else if (optimized_type == tls::TLSOPT_NONE)
        {
        {
          // Relocate the field with the offset of the GOT entry for
          // Relocate the field with the offset of the GOT entry for
          // the module index.
          // the module index.
          unsigned int got_offset;
          unsigned int got_offset;
          got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
          got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
                        - target->got_size());
                        - target->got_size());
          Relocate_functions<32, false>::rel32(view, got_offset);
          Relocate_functions<32, false>::rel32(view, got_offset);
          break;
          break;
        }
        }
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                             _("unsupported reloc %u"),
                             _("unsupported reloc %u"),
                             r_type);
                             r_type);
      break;
      break;
 
 
    case elfcpp::R_386_TLS_LDO_32:       // Alternate local-dynamic
    case elfcpp::R_386_TLS_LDO_32:       // Alternate local-dynamic
      if (optimized_type == tls::TLSOPT_TO_LE)
      if (optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          // This reloc can appear in debugging sections, in which
          // This reloc can appear in debugging sections, in which
          // case we must not convert to local-exec.  We decide what
          // case we must not convert to local-exec.  We decide what
          // to do based on whether the section is marked as
          // to do based on whether the section is marked as
          // containing executable code.  That is what the GNU linker
          // containing executable code.  That is what the GNU linker
          // does as well.
          // does as well.
          elfcpp::Shdr<32, false> shdr(relinfo->data_shdr);
          elfcpp::Shdr<32, false> shdr(relinfo->data_shdr);
          if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
          if ((shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0)
            {
            {
              if (tls_segment == NULL)
              if (tls_segment == NULL)
                {
                {
                  gold_assert(parameters->errors()->error_count() > 0
                  gold_assert(parameters->errors()->error_count() > 0
                              || issue_undefined_symbol_error(gsym));
                              || issue_undefined_symbol_error(gsym));
                  return;
                  return;
                }
                }
              value -= tls_segment->memsz();
              value -= tls_segment->memsz();
            }
            }
        }
        }
      Relocate_functions<32, false>::rel32(view, value);
      Relocate_functions<32, false>::rel32(view, value);
      break;
      break;
 
 
    case elfcpp::R_386_TLS_IE:           // Initial-exec
    case elfcpp::R_386_TLS_IE:           // Initial-exec
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_IE_32:
    case elfcpp::R_386_TLS_IE_32:
      if (optimized_type == tls::TLSOPT_TO_LE)
      if (optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          if (tls_segment == NULL)
          if (tls_segment == NULL)
            {
            {
              gold_assert(parameters->errors()->error_count() > 0
              gold_assert(parameters->errors()->error_count() > 0
                          || issue_undefined_symbol_error(gsym));
                          || issue_undefined_symbol_error(gsym));
              return;
              return;
            }
            }
          Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
          Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
                                              rel, r_type, value, view,
                                              rel, r_type, value, view,
                                              view_size);
                                              view_size);
          break;
          break;
        }
        }
      else if (optimized_type == tls::TLSOPT_NONE)
      else if (optimized_type == tls::TLSOPT_NONE)
        {
        {
          // Relocate the field with the offset of the GOT entry for
          // Relocate the field with the offset of the GOT entry for
          // the tp-relative offset of the symbol.
          // the tp-relative offset of the symbol.
          unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
          unsigned int got_type = (r_type == elfcpp::R_386_TLS_IE_32
                                   ? GOT_TYPE_TLS_OFFSET
                                   ? GOT_TYPE_TLS_OFFSET
                                   : GOT_TYPE_TLS_NOFFSET);
                                   : GOT_TYPE_TLS_NOFFSET);
          unsigned int got_offset;
          unsigned int got_offset;
          if (gsym != NULL)
          if (gsym != NULL)
            {
            {
              gold_assert(gsym->has_got_offset(got_type));
              gold_assert(gsym->has_got_offset(got_type));
              got_offset = gsym->got_offset(got_type);
              got_offset = gsym->got_offset(got_type);
            }
            }
          else
          else
            {
            {
              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
              gold_assert(object->local_has_got_offset(r_sym, got_type));
              gold_assert(object->local_has_got_offset(r_sym, got_type));
              got_offset = object->local_got_offset(r_sym, got_type);
              got_offset = object->local_got_offset(r_sym, got_type);
            }
            }
          // For the R_386_TLS_IE relocation, we need to apply the
          // For the R_386_TLS_IE relocation, we need to apply the
          // absolute address of the GOT entry.
          // absolute address of the GOT entry.
          if (r_type == elfcpp::R_386_TLS_IE)
          if (r_type == elfcpp::R_386_TLS_IE)
            got_offset += target->got_plt_section()->address();
            got_offset += target->got_plt_section()->address();
          // All GOT offsets are relative to the end of the GOT.
          // All GOT offsets are relative to the end of the GOT.
          got_offset -= target->got_size();
          got_offset -= target->got_size();
          Relocate_functions<32, false>::rel32(view, got_offset);
          Relocate_functions<32, false>::rel32(view, got_offset);
          break;
          break;
        }
        }
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                             _("unsupported reloc %u"),
                             _("unsupported reloc %u"),
                             r_type);
                             r_type);
      break;
      break;
 
 
    case elfcpp::R_386_TLS_LE:           // Local-exec
    case elfcpp::R_386_TLS_LE:           // Local-exec
      // If we're creating a shared library, a dynamic relocation will
      // If we're creating a shared library, a dynamic relocation will
      // have been created for this location, so do not apply it now.
      // have been created for this location, so do not apply it now.
      if (!parameters->options().shared())
      if (!parameters->options().shared())
        {
        {
          if (tls_segment == NULL)
          if (tls_segment == NULL)
            {
            {
              gold_assert(parameters->errors()->error_count() > 0
              gold_assert(parameters->errors()->error_count() > 0
                          || issue_undefined_symbol_error(gsym));
                          || issue_undefined_symbol_error(gsym));
              return;
              return;
            }
            }
          value -= tls_segment->memsz();
          value -= tls_segment->memsz();
          Relocate_functions<32, false>::rel32(view, value);
          Relocate_functions<32, false>::rel32(view, value);
        }
        }
      break;
      break;
 
 
    case elfcpp::R_386_TLS_LE_32:
    case elfcpp::R_386_TLS_LE_32:
      // If we're creating a shared library, a dynamic relocation will
      // If we're creating a shared library, a dynamic relocation will
      // have been created for this location, so do not apply it now.
      // have been created for this location, so do not apply it now.
      if (!parameters->options().shared())
      if (!parameters->options().shared())
        {
        {
          if (tls_segment == NULL)
          if (tls_segment == NULL)
            {
            {
              gold_assert(parameters->errors()->error_count() > 0
              gold_assert(parameters->errors()->error_count() > 0
                          || issue_undefined_symbol_error(gsym));
                          || issue_undefined_symbol_error(gsym));
              return;
              return;
            }
            }
          value = tls_segment->memsz() - value;
          value = tls_segment->memsz() - value;
          Relocate_functions<32, false>::rel32(view, value);
          Relocate_functions<32, false>::rel32(view, value);
        }
        }
      break;
      break;
    }
    }
}
}
 
 
// Do a relocation in which we convert a TLS General-Dynamic to a
// Do a relocation in which we convert a TLS General-Dynamic to a
// Local-Exec.
// Local-Exec.
 
 
inline void
inline void
Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
                                    size_t relnum,
                                    size_t relnum,
                                    Output_segment* tls_segment,
                                    Output_segment* tls_segment,
                                    const elfcpp::Rel<32, false>& rel,
                                    const elfcpp::Rel<32, false>& rel,
                                    unsigned int,
                                    unsigned int,
                                    elfcpp::Elf_types<32>::Elf_Addr value,
                                    elfcpp::Elf_types<32>::Elf_Addr value,
                                    unsigned char* view,
                                    unsigned char* view,
                                    section_size_type view_size)
                                    section_size_type view_size)
{
{
  // leal foo(,%reg,1),%eax; call ___tls_get_addr
  // leal foo(,%reg,1),%eax; call ___tls_get_addr
  //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
  //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
  // leal foo(%reg),%eax; call ___tls_get_addr
  // leal foo(%reg),%eax; call ___tls_get_addr
  //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
  //  ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
 
 
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
 
 
  unsigned char op1 = view[-1];
  unsigned char op1 = view[-1];
  unsigned char op2 = view[-2];
  unsigned char op2 = view[-2];
 
 
  tls::check_tls(relinfo, relnum, rel.get_r_offset(),
  tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                 op2 == 0x8d || op2 == 0x04);
                 op2 == 0x8d || op2 == 0x04);
  tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
  tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
 
 
  int roff = 5;
  int roff = 5;
 
 
  if (op2 == 0x04)
  if (op2 == 0x04)
    {
    {
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
      tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
      tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                     ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
                     ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
      memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
      memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
    }
    }
  else
  else
    {
    {
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                     (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
                     (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
      if (rel.get_r_offset() + 9 < view_size
      if (rel.get_r_offset() + 9 < view_size
          && view[9] == 0x90)
          && view[9] == 0x90)
        {
        {
          // There is a trailing nop.  Use the size byte subl.
          // There is a trailing nop.  Use the size byte subl.
          memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
          memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
          roff = 6;
          roff = 6;
        }
        }
      else
      else
        {
        {
          // Use the five byte subl.
          // Use the five byte subl.
          memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
          memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
        }
        }
    }
    }
 
 
  value = tls_segment->memsz() - value;
  value = tls_segment->memsz() - value;
  Relocate_functions<32, false>::rel32(view + roff, value);
  Relocate_functions<32, false>::rel32(view + roff, value);
 
 
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // We can skip it.
  // We can skip it.
  this->skip_call_tls_get_addr_ = true;
  this->skip_call_tls_get_addr_ = true;
}
}
 
 
// Do a relocation in which we convert a TLS General-Dynamic to an
// Do a relocation in which we convert a TLS General-Dynamic to an
// Initial-Exec.
// Initial-Exec.
 
 
inline void
inline void
Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
                                    size_t relnum,
                                    size_t relnum,
                                    Output_segment*,
                                    Output_segment*,
                                    const elfcpp::Rel<32, false>& rel,
                                    const elfcpp::Rel<32, false>& rel,
                                    unsigned int,
                                    unsigned int,
                                    elfcpp::Elf_types<32>::Elf_Addr value,
                                    elfcpp::Elf_types<32>::Elf_Addr value,
                                    unsigned char* view,
                                    unsigned char* view,
                                    section_size_type view_size)
                                    section_size_type view_size)
{
{
  // leal foo(,%ebx,1),%eax; call ___tls_get_addr
  // leal foo(,%ebx,1),%eax; call ___tls_get_addr
  //  ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
  //  ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
 
 
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
 
 
  unsigned char op1 = view[-1];
  unsigned char op1 = view[-1];
  unsigned char op2 = view[-2];
  unsigned char op2 = view[-2];
 
 
  tls::check_tls(relinfo, relnum, rel.get_r_offset(),
  tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                 op2 == 0x8d || op2 == 0x04);
                 op2 == 0x8d || op2 == 0x04);
  tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
  tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
 
 
  int roff = 5;
  int roff = 5;
 
 
  // FIXME: For now, support only the first (SIB) form.
  // FIXME: For now, support only the first (SIB) form.
  tls::check_tls(relinfo, relnum, rel.get_r_offset(), op2 == 0x04);
  tls::check_tls(relinfo, relnum, rel.get_r_offset(), op2 == 0x04);
 
 
  if (op2 == 0x04)
  if (op2 == 0x04)
    {
    {
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
      tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
      tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                     ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
                     ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
      memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
      memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
    }
    }
  else
  else
    {
    {
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                     (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
                     (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
      if (rel.get_r_offset() + 9 < view_size
      if (rel.get_r_offset() + 9 < view_size
          && view[9] == 0x90)
          && view[9] == 0x90)
        {
        {
          // FIXME: This is not the right instruction sequence.
          // FIXME: This is not the right instruction sequence.
          // There is a trailing nop.  Use the size byte subl.
          // There is a trailing nop.  Use the size byte subl.
          memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
          memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
          roff = 6;
          roff = 6;
        }
        }
      else
      else
        {
        {
          // FIXME: This is not the right instruction sequence.
          // FIXME: This is not the right instruction sequence.
          // Use the five byte subl.
          // Use the five byte subl.
          memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
          memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
        }
        }
    }
    }
 
 
  Relocate_functions<32, false>::rel32(view + roff, value);
  Relocate_functions<32, false>::rel32(view + roff, value);
 
 
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // We can skip it.
  // We can skip it.
  this->skip_call_tls_get_addr_ = true;
  this->skip_call_tls_get_addr_ = true;
}
}
 
 
// Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
// Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
// General-Dynamic to a Local-Exec.
// General-Dynamic to a Local-Exec.
 
 
inline void
inline void
Target_i386::Relocate::tls_desc_gd_to_le(
Target_i386::Relocate::tls_desc_gd_to_le(
    const Relocate_info<32, false>* relinfo,
    const Relocate_info<32, false>* relinfo,
    size_t relnum,
    size_t relnum,
    Output_segment* tls_segment,
    Output_segment* tls_segment,
    const elfcpp::Rel<32, false>& rel,
    const elfcpp::Rel<32, false>& rel,
    unsigned int r_type,
    unsigned int r_type,
    elfcpp::Elf_types<32>::Elf_Addr value,
    elfcpp::Elf_types<32>::Elf_Addr value,
    unsigned char* view,
    unsigned char* view,
    section_size_type view_size)
    section_size_type view_size)
{
{
  if (r_type == elfcpp::R_386_TLS_GOTDESC)
  if (r_type == elfcpp::R_386_TLS_GOTDESC)
    {
    {
      // leal foo@TLSDESC(%ebx), %eax
      // leal foo@TLSDESC(%ebx), %eax
      // ==> leal foo@NTPOFF, %eax
      // ==> leal foo@NTPOFF, %eax
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                     view[-2] == 0x8d && view[-1] == 0x83);
                     view[-2] == 0x8d && view[-1] == 0x83);
      view[-1] = 0x05;
      view[-1] = 0x05;
      value -= tls_segment->memsz();
      value -= tls_segment->memsz();
      Relocate_functions<32, false>::rel32(view, value);
      Relocate_functions<32, false>::rel32(view, value);
    }
    }
  else
  else
    {
    {
      // call *foo@TLSCALL(%eax)
      // call *foo@TLSCALL(%eax)
      // ==> nop; nop
      // ==> nop; nop
      gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
      gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                     view[0] == 0xff && view[1] == 0x10);
                     view[0] == 0xff && view[1] == 0x10);
      view[0] = 0x66;
      view[0] = 0x66;
      view[1] = 0x90;
      view[1] = 0x90;
    }
    }
}
}
 
 
// Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
// Do a relocation in which we convert a TLS_GOTDESC or TLS_DESC_CALL
// General-Dynamic to an Initial-Exec.
// General-Dynamic to an Initial-Exec.
 
 
inline void
inline void
Target_i386::Relocate::tls_desc_gd_to_ie(
Target_i386::Relocate::tls_desc_gd_to_ie(
    const Relocate_info<32, false>* relinfo,
    const Relocate_info<32, false>* relinfo,
    size_t relnum,
    size_t relnum,
    Output_segment*,
    Output_segment*,
    const elfcpp::Rel<32, false>& rel,
    const elfcpp::Rel<32, false>& rel,
    unsigned int r_type,
    unsigned int r_type,
    elfcpp::Elf_types<32>::Elf_Addr value,
    elfcpp::Elf_types<32>::Elf_Addr value,
    unsigned char* view,
    unsigned char* view,
    section_size_type view_size)
    section_size_type view_size)
{
{
  if (r_type == elfcpp::R_386_TLS_GOTDESC)
  if (r_type == elfcpp::R_386_TLS_GOTDESC)
    {
    {
      // leal foo@TLSDESC(%ebx), %eax
      // leal foo@TLSDESC(%ebx), %eax
      // ==> movl foo@GOTNTPOFF(%ebx), %eax
      // ==> movl foo@GOTNTPOFF(%ebx), %eax
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                     view[-2] == 0x8d && view[-1] == 0x83);
                     view[-2] == 0x8d && view[-1] == 0x83);
      view[-2] = 0x8b;
      view[-2] = 0x8b;
      Relocate_functions<32, false>::rel32(view, value);
      Relocate_functions<32, false>::rel32(view, value);
    }
    }
  else
  else
    {
    {
      // call *foo@TLSCALL(%eax)
      // call *foo@TLSCALL(%eax)
      // ==> nop; nop
      // ==> nop; nop
      gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
      gold_assert(r_type == elfcpp::R_386_TLS_DESC_CALL);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 2);
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                     view[0] == 0xff && view[1] == 0x10);
                     view[0] == 0xff && view[1] == 0x10);
      view[0] = 0x66;
      view[0] = 0x66;
      view[1] = 0x90;
      view[1] = 0x90;
    }
    }
}
}
 
 
// Do a relocation in which we convert a TLS Local-Dynamic to a
// Do a relocation in which we convert a TLS Local-Dynamic to a
// Local-Exec.
// Local-Exec.
 
 
inline void
inline void
Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
                                    size_t relnum,
                                    size_t relnum,
                                    Output_segment*,
                                    Output_segment*,
                                    const elfcpp::Rel<32, false>& rel,
                                    const elfcpp::Rel<32, false>& rel,
                                    unsigned int,
                                    unsigned int,
                                    elfcpp::Elf_types<32>::Elf_Addr,
                                    elfcpp::Elf_types<32>::Elf_Addr,
                                    unsigned char* view,
                                    unsigned char* view,
                                    section_size_type view_size)
                                    section_size_type view_size)
{
{
  // leal foo(%reg), %eax; call ___tls_get_addr
  // leal foo(%reg), %eax; call ___tls_get_addr
  // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
  // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
 
 
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
  tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
 
 
  // FIXME: Does this test really always pass?
  // FIXME: Does this test really always pass?
  tls::check_tls(relinfo, relnum, rel.get_r_offset(),
  tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                 view[-2] == 0x8d && view[-1] == 0x83);
                 view[-2] == 0x8d && view[-1] == 0x83);
 
 
  tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
  tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
 
 
  memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
  memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
 
 
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // We can skip it.
  // We can skip it.
  this->skip_call_tls_get_addr_ = true;
  this->skip_call_tls_get_addr_ = true;
}
}
 
 
// Do a relocation in which we convert a TLS Initial-Exec to a
// Do a relocation in which we convert a TLS Initial-Exec to a
// Local-Exec.
// Local-Exec.
 
 
inline void
inline void
Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
                                    size_t relnum,
                                    size_t relnum,
                                    Output_segment* tls_segment,
                                    Output_segment* tls_segment,
                                    const elfcpp::Rel<32, false>& rel,
                                    const elfcpp::Rel<32, false>& rel,
                                    unsigned int r_type,
                                    unsigned int r_type,
                                    elfcpp::Elf_types<32>::Elf_Addr value,
                                    elfcpp::Elf_types<32>::Elf_Addr value,
                                    unsigned char* view,
                                    unsigned char* view,
                                    section_size_type view_size)
                                    section_size_type view_size)
{
{
  // We have to actually change the instructions, which means that we
  // We have to actually change the instructions, which means that we
  // need to examine the opcodes to figure out which instruction we
  // need to examine the opcodes to figure out which instruction we
  // are looking at.
  // are looking at.
  if (r_type == elfcpp::R_386_TLS_IE)
  if (r_type == elfcpp::R_386_TLS_IE)
    {
    {
      // movl %gs:XX,%eax  ==>  movl $YY,%eax
      // movl %gs:XX,%eax  ==>  movl $YY,%eax
      // movl %gs:XX,%reg  ==>  movl $YY,%reg
      // movl %gs:XX,%reg  ==>  movl $YY,%reg
      // addl %gs:XX,%reg  ==>  addl $YY,%reg
      // addl %gs:XX,%reg  ==>  addl $YY,%reg
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
 
 
      unsigned char op1 = view[-1];
      unsigned char op1 = view[-1];
      if (op1 == 0xa1)
      if (op1 == 0xa1)
        {
        {
          // movl XX,%eax  ==>  movl $YY,%eax
          // movl XX,%eax  ==>  movl $YY,%eax
          view[-1] = 0xb8;
          view[-1] = 0xb8;
        }
        }
      else
      else
        {
        {
          tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
          tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
 
 
          unsigned char op2 = view[-2];
          unsigned char op2 = view[-2];
          if (op2 == 0x8b)
          if (op2 == 0x8b)
            {
            {
              // movl XX,%reg  ==>  movl $YY,%reg
              // movl XX,%reg  ==>  movl $YY,%reg
              tls::check_tls(relinfo, relnum, rel.get_r_offset(),
              tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                             (op1 & 0xc7) == 0x05);
                             (op1 & 0xc7) == 0x05);
              view[-2] = 0xc7;
              view[-2] = 0xc7;
              view[-1] = 0xc0 | ((op1 >> 3) & 7);
              view[-1] = 0xc0 | ((op1 >> 3) & 7);
            }
            }
          else if (op2 == 0x03)
          else if (op2 == 0x03)
            {
            {
              // addl XX,%reg  ==>  addl $YY,%reg
              // addl XX,%reg  ==>  addl $YY,%reg
              tls::check_tls(relinfo, relnum, rel.get_r_offset(),
              tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                             (op1 & 0xc7) == 0x05);
                             (op1 & 0xc7) == 0x05);
              view[-2] = 0x81;
              view[-2] = 0x81;
              view[-1] = 0xc0 | ((op1 >> 3) & 7);
              view[-1] = 0xc0 | ((op1 >> 3) & 7);
            }
            }
          else
          else
            tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
            tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
        }
        }
    }
    }
  else
  else
    {
    {
      // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
      // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
      // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
      // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
      // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
      // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
      tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
 
 
      unsigned char op1 = view[-1];
      unsigned char op1 = view[-1];
      unsigned char op2 = view[-2];
      unsigned char op2 = view[-2];
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
      tls::check_tls(relinfo, relnum, rel.get_r_offset(),
                     (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
                     (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
      if (op2 == 0x8b)
      if (op2 == 0x8b)
        {
        {
          // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
          // movl %gs:XX(%reg1),%reg2  ==>  movl $YY,%reg2
          view[-2] = 0xc7;
          view[-2] = 0xc7;
          view[-1] = 0xc0 | ((op1 >> 3) & 7);
          view[-1] = 0xc0 | ((op1 >> 3) & 7);
        }
        }
      else if (op2 == 0x2b)
      else if (op2 == 0x2b)
        {
        {
          // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
          // subl %gs:XX(%reg1),%reg2  ==>  subl $YY,%reg2
          view[-2] = 0x81;
          view[-2] = 0x81;
          view[-1] = 0xe8 | ((op1 >> 3) & 7);
          view[-1] = 0xe8 | ((op1 >> 3) & 7);
        }
        }
      else if (op2 == 0x03)
      else if (op2 == 0x03)
        {
        {
          // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
          // addl %gs:XX(%reg1),%reg2  ==>  addl $YY,$reg2
          view[-2] = 0x81;
          view[-2] = 0x81;
          view[-1] = 0xc0 | ((op1 >> 3) & 7);
          view[-1] = 0xc0 | ((op1 >> 3) & 7);
        }
        }
      else
      else
        tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
        tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
    }
    }
 
 
  value = tls_segment->memsz() - value;
  value = tls_segment->memsz() - value;
  if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
  if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
    value = - value;
    value = - value;
 
 
  Relocate_functions<32, false>::rel32(view, value);
  Relocate_functions<32, false>::rel32(view, value);
}
}
 
 
// Relocate section data.
// Relocate section data.
 
 
void
void
Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
                              unsigned int sh_type,
                              unsigned int sh_type,
                              const unsigned char* prelocs,
                              const unsigned char* prelocs,
                              size_t reloc_count,
                              size_t reloc_count,
                              Output_section* output_section,
                              Output_section* output_section,
                              bool needs_special_offset_handling,
                              bool needs_special_offset_handling,
                              unsigned char* view,
                              unsigned char* view,
                              elfcpp::Elf_types<32>::Elf_Addr address,
                              elfcpp::Elf_types<32>::Elf_Addr address,
                              section_size_type view_size,
                              section_size_type view_size,
                              const Reloc_symbol_changes* reloc_symbol_changes)
                              const Reloc_symbol_changes* reloc_symbol_changes)
{
{
  gold_assert(sh_type == elfcpp::SHT_REL);
  gold_assert(sh_type == elfcpp::SHT_REL);
 
 
  gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
  gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
                         Target_i386::Relocate>(
                         Target_i386::Relocate>(
    relinfo,
    relinfo,
    this,
    this,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    needs_special_offset_handling,
    needs_special_offset_handling,
    view,
    view,
    address,
    address,
    view_size,
    view_size,
    reloc_symbol_changes);
    reloc_symbol_changes);
}
}
 
 
// Return the size of a relocation while scanning during a relocatable
// Return the size of a relocation while scanning during a relocatable
// link.
// link.
 
 
unsigned int
unsigned int
Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
    unsigned int r_type,
    unsigned int r_type,
    Relobj* object)
    Relobj* object)
{
{
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_386_NONE:
    case elfcpp::R_386_NONE:
    case elfcpp::R_386_GNU_VTINHERIT:
    case elfcpp::R_386_GNU_VTINHERIT:
    case elfcpp::R_386_GNU_VTENTRY:
    case elfcpp::R_386_GNU_VTENTRY:
    case elfcpp::R_386_TLS_GD:            // Global-dynamic
    case elfcpp::R_386_TLS_GD:            // Global-dynamic
    case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
    case elfcpp::R_386_TLS_GOTDESC:       // Global-dynamic (from ~oliva url)
    case elfcpp::R_386_TLS_DESC_CALL:
    case elfcpp::R_386_TLS_DESC_CALL:
    case elfcpp::R_386_TLS_LDM:           // Local-dynamic
    case elfcpp::R_386_TLS_LDM:           // Local-dynamic
    case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
    case elfcpp::R_386_TLS_LDO_32:        // Alternate local-dynamic
    case elfcpp::R_386_TLS_IE:            // Initial-exec
    case elfcpp::R_386_TLS_IE:            // Initial-exec
    case elfcpp::R_386_TLS_IE_32:
    case elfcpp::R_386_TLS_IE_32:
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_GOTIE:
    case elfcpp::R_386_TLS_LE:            // Local-exec
    case elfcpp::R_386_TLS_LE:            // Local-exec
    case elfcpp::R_386_TLS_LE_32:
    case elfcpp::R_386_TLS_LE_32:
      return 0;
      return 0;
 
 
    case elfcpp::R_386_32:
    case elfcpp::R_386_32:
    case elfcpp::R_386_PC32:
    case elfcpp::R_386_PC32:
    case elfcpp::R_386_GOT32:
    case elfcpp::R_386_GOT32:
    case elfcpp::R_386_PLT32:
    case elfcpp::R_386_PLT32:
    case elfcpp::R_386_GOTOFF:
    case elfcpp::R_386_GOTOFF:
    case elfcpp::R_386_GOTPC:
    case elfcpp::R_386_GOTPC:
     return 4;
     return 4;
 
 
    case elfcpp::R_386_16:
    case elfcpp::R_386_16:
    case elfcpp::R_386_PC16:
    case elfcpp::R_386_PC16:
      return 2;
      return 2;
 
 
    case elfcpp::R_386_8:
    case elfcpp::R_386_8:
    case elfcpp::R_386_PC8:
    case elfcpp::R_386_PC8:
      return 1;
      return 1;
 
 
      // These are relocations which should only be seen by the
      // These are relocations which should only be seen by the
      // dynamic linker, and should never be seen here.
      // dynamic linker, and should never be seen here.
    case elfcpp::R_386_COPY:
    case elfcpp::R_386_COPY:
    case elfcpp::R_386_GLOB_DAT:
    case elfcpp::R_386_GLOB_DAT:
    case elfcpp::R_386_JUMP_SLOT:
    case elfcpp::R_386_JUMP_SLOT:
    case elfcpp::R_386_RELATIVE:
    case elfcpp::R_386_RELATIVE:
    case elfcpp::R_386_IRELATIVE:
    case elfcpp::R_386_IRELATIVE:
    case elfcpp::R_386_TLS_TPOFF:
    case elfcpp::R_386_TLS_TPOFF:
    case elfcpp::R_386_TLS_DTPMOD32:
    case elfcpp::R_386_TLS_DTPMOD32:
    case elfcpp::R_386_TLS_DTPOFF32:
    case elfcpp::R_386_TLS_DTPOFF32:
    case elfcpp::R_386_TLS_TPOFF32:
    case elfcpp::R_386_TLS_TPOFF32:
    case elfcpp::R_386_TLS_DESC:
    case elfcpp::R_386_TLS_DESC:
      object->error(_("unexpected reloc %u in object file"), r_type);
      object->error(_("unexpected reloc %u in object file"), r_type);
      return 0;
      return 0;
 
 
    case elfcpp::R_386_32PLT:
    case elfcpp::R_386_32PLT:
    case elfcpp::R_386_TLS_GD_32:
    case elfcpp::R_386_TLS_GD_32:
    case elfcpp::R_386_TLS_GD_PUSH:
    case elfcpp::R_386_TLS_GD_PUSH:
    case elfcpp::R_386_TLS_GD_CALL:
    case elfcpp::R_386_TLS_GD_CALL:
    case elfcpp::R_386_TLS_GD_POP:
    case elfcpp::R_386_TLS_GD_POP:
    case elfcpp::R_386_TLS_LDM_32:
    case elfcpp::R_386_TLS_LDM_32:
    case elfcpp::R_386_TLS_LDM_PUSH:
    case elfcpp::R_386_TLS_LDM_PUSH:
    case elfcpp::R_386_TLS_LDM_CALL:
    case elfcpp::R_386_TLS_LDM_CALL:
    case elfcpp::R_386_TLS_LDM_POP:
    case elfcpp::R_386_TLS_LDM_POP:
    case elfcpp::R_386_USED_BY_INTEL_200:
    case elfcpp::R_386_USED_BY_INTEL_200:
    default:
    default:
      object->error(_("unsupported reloc %u in object file"), r_type);
      object->error(_("unsupported reloc %u in object file"), r_type);
      return 0;
      return 0;
    }
    }
}
}
 
 
// Scan the relocs during a relocatable link.
// Scan the relocs during a relocatable link.
 
 
void
void
Target_i386::scan_relocatable_relocs(Symbol_table* symtab,
Target_i386::scan_relocatable_relocs(Symbol_table* symtab,
                                     Layout* layout,
                                     Layout* layout,
                                     Sized_relobj_file<32, false>* object,
                                     Sized_relobj_file<32, false>* object,
                                     unsigned int data_shndx,
                                     unsigned int data_shndx,
                                     unsigned int sh_type,
                                     unsigned int sh_type,
                                     const unsigned char* prelocs,
                                     const unsigned char* prelocs,
                                     size_t reloc_count,
                                     size_t reloc_count,
                                     Output_section* output_section,
                                     Output_section* output_section,
                                     bool needs_special_offset_handling,
                                     bool needs_special_offset_handling,
                                     size_t local_symbol_count,
                                     size_t local_symbol_count,
                                     const unsigned char* plocal_symbols,
                                     const unsigned char* plocal_symbols,
                                     Relocatable_relocs* rr)
                                     Relocatable_relocs* rr)
{
{
  gold_assert(sh_type == elfcpp::SHT_REL);
  gold_assert(sh_type == elfcpp::SHT_REL);
 
 
  typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
  typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
    Relocatable_size_for_reloc> Scan_relocatable_relocs;
    Relocatable_size_for_reloc> Scan_relocatable_relocs;
 
 
  gold::scan_relocatable_relocs<32, false, elfcpp::SHT_REL,
  gold::scan_relocatable_relocs<32, false, elfcpp::SHT_REL,
      Scan_relocatable_relocs>(
      Scan_relocatable_relocs>(
    symtab,
    symtab,
    layout,
    layout,
    object,
    object,
    data_shndx,
    data_shndx,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    needs_special_offset_handling,
    needs_special_offset_handling,
    local_symbol_count,
    local_symbol_count,
    plocal_symbols,
    plocal_symbols,
    rr);
    rr);
}
}
 
 
// Relocate a section during a relocatable link.
// Relocate a section during a relocatable link.
 
 
void
void
Target_i386::relocate_for_relocatable(
Target_i386::relocate_for_relocatable(
    const Relocate_info<32, false>* relinfo,
    const Relocate_info<32, false>* relinfo,
    unsigned int sh_type,
    unsigned int sh_type,
    const unsigned char* prelocs,
    const unsigned char* prelocs,
    size_t reloc_count,
    size_t reloc_count,
    Output_section* output_section,
    Output_section* output_section,
    off_t offset_in_output_section,
    off_t offset_in_output_section,
    const Relocatable_relocs* rr,
    const Relocatable_relocs* rr,
    unsigned char* view,
    unsigned char* view,
    elfcpp::Elf_types<32>::Elf_Addr view_address,
    elfcpp::Elf_types<32>::Elf_Addr view_address,
    section_size_type view_size,
    section_size_type view_size,
    unsigned char* reloc_view,
    unsigned char* reloc_view,
    section_size_type reloc_view_size)
    section_size_type reloc_view_size)
{
{
  gold_assert(sh_type == elfcpp::SHT_REL);
  gold_assert(sh_type == elfcpp::SHT_REL);
 
 
  gold::relocate_for_relocatable<32, false, elfcpp::SHT_REL>(
  gold::relocate_for_relocatable<32, false, elfcpp::SHT_REL>(
    relinfo,
    relinfo,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    offset_in_output_section,
    offset_in_output_section,
    rr,
    rr,
    view,
    view,
    view_address,
    view_address,
    view_size,
    view_size,
    reloc_view,
    reloc_view,
    reloc_view_size);
    reloc_view_size);
}
}
 
 
// Return the value to use for a dynamic which requires special
// Return the value to use for a dynamic which requires special
// treatment.  This is how we support equality comparisons of function
// treatment.  This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.
// processor specific ABI supplement.
 
 
uint64_t
uint64_t
Target_i386::do_dynsym_value(const Symbol* gsym) const
Target_i386::do_dynsym_value(const Symbol* gsym) const
{
{
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
  return this->plt_address_for_global(gsym) + gsym->plt_offset();
  return this->plt_address_for_global(gsym) + gsym->plt_offset();
}
}
 
 
// Return a string used to fill a code section with nops to take up
// Return a string used to fill a code section with nops to take up
// the specified length.
// the specified length.
 
 
std::string
std::string
Target_i386::do_code_fill(section_size_type length) const
Target_i386::do_code_fill(section_size_type length) const
{
{
  if (length >= 16)
  if (length >= 16)
    {
    {
      // Build a jmp instruction to skip over the bytes.
      // Build a jmp instruction to skip over the bytes.
      unsigned char jmp[5];
      unsigned char jmp[5];
      jmp[0] = 0xe9;
      jmp[0] = 0xe9;
      elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
      elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
      return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
      return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
              + std::string(length - 5, '\0'));
              + std::string(length - 5, '\0'));
    }
    }
 
 
  // Nop sequences of various lengths.
  // Nop sequences of various lengths.
  const char nop1[1] = { 0x90 };                   // nop
  const char nop1[1] = { 0x90 };                   // nop
  const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
  const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
  const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
  const char nop3[3] = { 0x8d, 0x76, 0x00 };       // leal 0(%esi),%esi
  const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
  const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00};  // leal 0(%esi,1),%esi
  const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
  const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26,   // nop
                         0x00 };                   // leal 0(%esi,1),%esi
                         0x00 };                   // leal 0(%esi,1),%esi
  const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
  const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00,   // leal 0L(%esi),%esi
                         0x00, 0x00 };
                         0x00, 0x00 };
  const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
  const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00,   // leal 0L(%esi,1),%esi
                         0x00, 0x00, 0x00 };
                         0x00, 0x00, 0x00 };
  const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
  const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26,   // nop
                         0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
                         0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
  const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
  const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc,   // movl %esi,%esi
                         0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
                         0x27, 0x00, 0x00, 0x00,   // leal 0L(%edi,1),%edi
                         0x00 };
                         0x00 };
  const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
  const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
                           0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
                           0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
                           0x00, 0x00 };
                           0x00, 0x00 };
  const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
  const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
                           0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
                           0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
                           0x00, 0x00, 0x00 };
                           0x00, 0x00, 0x00 };
  const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
  const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
                           0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
                           0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
                           0x00, 0x00, 0x00, 0x00 };
                           0x00, 0x00, 0x00, 0x00 };
  const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
  const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
                           0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
                           0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
                           0x27, 0x00, 0x00, 0x00,
                           0x27, 0x00, 0x00, 0x00,
                           0x00 };
                           0x00 };
  const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
  const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
                           0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
                           0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
                           0xbc, 0x27, 0x00, 0x00,
                           0xbc, 0x27, 0x00, 0x00,
                           0x00, 0x00 };
                           0x00, 0x00 };
  const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
  const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
                           0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
                           0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
                           0x90, 0x90, 0x90, 0x90,
                           0x90, 0x90, 0x90, 0x90,
                           0x90, 0x90, 0x90 };
                           0x90, 0x90, 0x90 };
 
 
  const char* nops[16] = {
  const char* nops[16] = {
    NULL,
    NULL,
    nop1, nop2, nop3, nop4, nop5, nop6, nop7,
    nop1, nop2, nop3, nop4, nop5, nop6, nop7,
    nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
    nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
  };
  };
 
 
  return std::string(nops[length], length);
  return std::string(nops[length], length);
}
}
 
 
// Return the value to use for the base of a DW_EH_PE_datarel offset
// Return the value to use for the base of a DW_EH_PE_datarel offset
// in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
// in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
// assembler can not write out the difference between two labels in
// assembler can not write out the difference between two labels in
// different sections, so instead of using a pc-relative value they
// different sections, so instead of using a pc-relative value they
// use an offset from the GOT.
// use an offset from the GOT.
 
 
uint64_t
uint64_t
Target_i386::do_ehframe_datarel_base() const
Target_i386::do_ehframe_datarel_base() const
{
{
  gold_assert(this->global_offset_table_ != NULL);
  gold_assert(this->global_offset_table_ != NULL);
  Symbol* sym = this->global_offset_table_;
  Symbol* sym = this->global_offset_table_;
  Sized_symbol<32>* ssym = static_cast<Sized_symbol<32>*>(sym);
  Sized_symbol<32>* ssym = static_cast<Sized_symbol<32>*>(sym);
  return ssym->value();
  return ssym->value();
}
}
 
 
// Return whether SYM should be treated as a call to a non-split
// Return whether SYM should be treated as a call to a non-split
// function.  We don't want that to be true of a call to a
// function.  We don't want that to be true of a call to a
// get_pc_thunk function.
// get_pc_thunk function.
 
 
bool
bool
Target_i386::do_is_call_to_non_split(const Symbol* sym, unsigned int) const
Target_i386::do_is_call_to_non_split(const Symbol* sym, unsigned int) const
{
{
  return (sym->type() == elfcpp::STT_FUNC
  return (sym->type() == elfcpp::STT_FUNC
          && !is_prefix_of("__i686.get_pc_thunk.", sym->name()));
          && !is_prefix_of("__i686.get_pc_thunk.", sym->name()));
}
}
 
 
// FNOFFSET in section SHNDX in OBJECT is the start of a function
// FNOFFSET in section SHNDX in OBJECT is the start of a function
// compiled with -fsplit-stack.  The function calls non-split-stack
// compiled with -fsplit-stack.  The function calls non-split-stack
// code.  We have to change the function so that it always ensures
// code.  We have to change the function so that it always ensures
// that it has enough stack space to run some random function.
// that it has enough stack space to run some random function.
 
 
void
void
Target_i386::do_calls_non_split(Relobj* object, unsigned int shndx,
Target_i386::do_calls_non_split(Relobj* object, unsigned int shndx,
                                section_offset_type fnoffset,
                                section_offset_type fnoffset,
                                section_size_type fnsize,
                                section_size_type fnsize,
                                unsigned char* view,
                                unsigned char* view,
                                section_size_type view_size,
                                section_size_type view_size,
                                std::string* from,
                                std::string* from,
                                std::string* to) const
                                std::string* to) const
{
{
  // The function starts with a comparison of the stack pointer and a
  // The function starts with a comparison of the stack pointer and a
  // field in the TCB.  This is followed by a jump.
  // field in the TCB.  This is followed by a jump.
 
 
  // cmp %gs:NN,%esp
  // cmp %gs:NN,%esp
  if (this->match_view(view, view_size, fnoffset, "\x65\x3b\x25", 3)
  if (this->match_view(view, view_size, fnoffset, "\x65\x3b\x25", 3)
      && fnsize > 7)
      && fnsize > 7)
    {
    {
      // We will call __morestack if the carry flag is set after this
      // We will call __morestack if the carry flag is set after this
      // comparison.  We turn the comparison into an stc instruction
      // comparison.  We turn the comparison into an stc instruction
      // and some nops.
      // and some nops.
      view[fnoffset] = '\xf9';
      view[fnoffset] = '\xf9';
      this->set_view_to_nop(view, view_size, fnoffset + 1, 6);
      this->set_view_to_nop(view, view_size, fnoffset + 1, 6);
    }
    }
  // lea NN(%esp),%ecx
  // lea NN(%esp),%ecx
  // lea NN(%esp),%edx
  // lea NN(%esp),%edx
  else if ((this->match_view(view, view_size, fnoffset, "\x8d\x8c\x24", 3)
  else if ((this->match_view(view, view_size, fnoffset, "\x8d\x8c\x24", 3)
            || this->match_view(view, view_size, fnoffset, "\x8d\x94\x24", 3))
            || this->match_view(view, view_size, fnoffset, "\x8d\x94\x24", 3))
           && fnsize > 7)
           && fnsize > 7)
    {
    {
      // This is loading an offset from the stack pointer for a
      // This is loading an offset from the stack pointer for a
      // comparison.  The offset is negative, so we decrease the
      // comparison.  The offset is negative, so we decrease the
      // offset by the amount of space we need for the stack.  This
      // offset by the amount of space we need for the stack.  This
      // means we will avoid calling __morestack if there happens to
      // means we will avoid calling __morestack if there happens to
      // be plenty of space on the stack already.
      // be plenty of space on the stack already.
      unsigned char* pval = view + fnoffset + 3;
      unsigned char* pval = view + fnoffset + 3;
      uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
      uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
      val -= parameters->options().split_stack_adjust_size();
      val -= parameters->options().split_stack_adjust_size();
      elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
      elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
    }
    }
  else
  else
    {
    {
      if (!object->has_no_split_stack())
      if (!object->has_no_split_stack())
        object->error(_("failed to match split-stack sequence at "
        object->error(_("failed to match split-stack sequence at "
                        "section %u offset %0zx"),
                        "section %u offset %0zx"),
                      shndx, static_cast<size_t>(fnoffset));
                      shndx, static_cast<size_t>(fnoffset));
      return;
      return;
    }
    }
 
 
  // We have to change the function so that it calls
  // We have to change the function so that it calls
  // __morestack_non_split instead of __morestack.  The former will
  // __morestack_non_split instead of __morestack.  The former will
  // allocate additional stack space.
  // allocate additional stack space.
  *from = "__morestack";
  *from = "__morestack";
  *to = "__morestack_non_split";
  *to = "__morestack_non_split";
}
}
 
 
// The selector for i386 object files.
// The selector for i386 object files.
 
 
class Target_selector_i386 : public Target_selector_freebsd
class Target_selector_i386 : public Target_selector_freebsd
{
{
public:
public:
  Target_selector_i386()
  Target_selector_i386()
    : Target_selector_freebsd(elfcpp::EM_386, 32, false,
    : Target_selector_freebsd(elfcpp::EM_386, 32, false,
                              "elf32-i386", "elf32-i386-freebsd",
                              "elf32-i386", "elf32-i386-freebsd",
                              "elf_i386")
                              "elf_i386")
  { }
  { }
 
 
  Target*
  Target*
  do_instantiate_target()
  do_instantiate_target()
  { return new Target_i386(); }
  { return new Target_i386(); }
};
};
 
 
Target_selector_i386 target_selector_i386;
Target_selector_i386 target_selector_i386;
 
 
} // End anonymous namespace.
} // End anonymous namespace.
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.