OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [target-reloc.h] - Diff between revs 27 and 159

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 27 Rev 159
// target-reloc.h -- target specific relocation support  -*- C++ -*-
// target-reloc.h -- target specific relocation support  -*- C++ -*-
 
 
// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// Written by Ian Lance Taylor <iant@google.com>.
 
 
// This file is part of gold.
// This file is part of gold.
 
 
// This program is free software; you can redistribute it and/or modify
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// (at your option) any later version.
 
 
// This program is distributed in the hope that it will be useful,
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
// GNU General Public License for more details.
 
 
// You should have received a copy of the GNU General Public License
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
// MA 02110-1301, USA.
 
 
#ifndef GOLD_TARGET_RELOC_H
#ifndef GOLD_TARGET_RELOC_H
#define GOLD_TARGET_RELOC_H
#define GOLD_TARGET_RELOC_H
 
 
#include "elfcpp.h"
#include "elfcpp.h"
#include "symtab.h"
#include "symtab.h"
#include "object.h"
#include "object.h"
#include "reloc.h"
#include "reloc.h"
#include "reloc-types.h"
#include "reloc-types.h"
 
 
namespace gold
namespace gold
{
{
 
 
// This function implements the generic part of reloc scanning.  The
// This function implements the generic part of reloc scanning.  The
// template parameter Scan must be a class type which provides two
// template parameter Scan must be a class type which provides two
// functions: local() and global().  Those functions implement the
// functions: local() and global().  Those functions implement the
// machine specific part of scanning.  We do it this way to
// machine specific part of scanning.  We do it this way to
// avoid making a function call for each relocation, and to avoid
// avoid making a function call for each relocation, and to avoid
// repeating the generic code for each target.
// repeating the generic code for each target.
 
 
template<int size, bool big_endian, typename Target_type, int sh_type,
template<int size, bool big_endian, typename Target_type, int sh_type,
         typename Scan>
         typename Scan>
inline void
inline void
scan_relocs(
scan_relocs(
    Symbol_table* symtab,
    Symbol_table* symtab,
    Layout* layout,
    Layout* layout,
    Target_type* target,
    Target_type* target,
    Sized_relobj_file<size, big_endian>* object,
    Sized_relobj_file<size, big_endian>* object,
    unsigned int data_shndx,
    unsigned int data_shndx,
    const unsigned char* prelocs,
    const unsigned char* prelocs,
    size_t reloc_count,
    size_t reloc_count,
    Output_section* output_section,
    Output_section* output_section,
    bool needs_special_offset_handling,
    bool needs_special_offset_handling,
    size_t local_count,
    size_t local_count,
    const unsigned char* plocal_syms)
    const unsigned char* plocal_syms)
{
{
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
  Scan scan;
  Scan scan;
 
 
  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
    {
      Reltype reloc(prelocs);
      Reltype reloc(prelocs);
 
 
      if (needs_special_offset_handling
      if (needs_special_offset_handling
          && !output_section->is_input_address_mapped(object, data_shndx,
          && !output_section->is_input_address_mapped(object, data_shndx,
                                                      reloc.get_r_offset()))
                                                      reloc.get_r_offset()))
        continue;
        continue;
 
 
      typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
      typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
      unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
      unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
      unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
      unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
 
 
      if (r_sym < local_count)
      if (r_sym < local_count)
        {
        {
          gold_assert(plocal_syms != NULL);
          gold_assert(plocal_syms != NULL);
          typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
          typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
                                                      + r_sym * sym_size);
                                                      + r_sym * sym_size);
          unsigned int shndx = lsym.get_st_shndx();
          unsigned int shndx = lsym.get_st_shndx();
          bool is_ordinary;
          bool is_ordinary;
          shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
          shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
          if (is_ordinary
          if (is_ordinary
              && shndx != elfcpp::SHN_UNDEF
              && shndx != elfcpp::SHN_UNDEF
              && !object->is_section_included(shndx)
              && !object->is_section_included(shndx)
              && !symtab->is_section_folded(object, shndx))
              && !symtab->is_section_folded(object, shndx))
            {
            {
              // RELOC is a relocation against a local symbol in a
              // RELOC is a relocation against a local symbol in a
              // section we are discarding.  We can ignore this
              // section we are discarding.  We can ignore this
              // relocation.  It will eventually become a reloc
              // relocation.  It will eventually become a reloc
              // against the value zero.
              // against the value zero.
              //
              //
              // FIXME: We should issue a warning if this is an
              // FIXME: We should issue a warning if this is an
              // allocated section; is this the best place to do it?
              // allocated section; is this the best place to do it?
              // 
              // 
              // FIXME: The old GNU linker would in some cases look
              // FIXME: The old GNU linker would in some cases look
              // for the linkonce section which caused this section to
              // for the linkonce section which caused this section to
              // be discarded, and, if the other section was the same
              // be discarded, and, if the other section was the same
              // size, change the reloc to refer to the other section.
              // size, change the reloc to refer to the other section.
              // That seems risky and weird to me, and I don't know of
              // That seems risky and weird to me, and I don't know of
              // any case where it is actually required.
              // any case where it is actually required.
 
 
              continue;
              continue;
            }
            }
          scan.local(symtab, layout, target, object, data_shndx,
          scan.local(symtab, layout, target, object, data_shndx,
                     output_section, reloc, r_type, lsym);
                     output_section, reloc, r_type, lsym);
        }
        }
      else
      else
        {
        {
          Symbol* gsym = object->global_symbol(r_sym);
          Symbol* gsym = object->global_symbol(r_sym);
          gold_assert(gsym != NULL);
          gold_assert(gsym != NULL);
          if (gsym->is_forwarder())
          if (gsym->is_forwarder())
            gsym = symtab->resolve_forwards(gsym);
            gsym = symtab->resolve_forwards(gsym);
 
 
          scan.global(symtab, layout, target, object, data_shndx,
          scan.global(symtab, layout, target, object, data_shndx,
                      output_section, reloc, r_type, gsym);
                      output_section, reloc, r_type, gsym);
        }
        }
    }
    }
}
}
 
 
// Behavior for relocations to discarded comdat sections.
// Behavior for relocations to discarded comdat sections.
 
 
enum Comdat_behavior
enum Comdat_behavior
{
{
  CB_UNDETERMINED,   // Not yet determined -- need to look at section name.
  CB_UNDETERMINED,   // Not yet determined -- need to look at section name.
  CB_PRETEND,        // Attempt to map to the corresponding kept section.
  CB_PRETEND,        // Attempt to map to the corresponding kept section.
  CB_IGNORE,         // Ignore the relocation.
  CB_IGNORE,         // Ignore the relocation.
  CB_WARNING         // Print a warning.
  CB_WARNING         // Print a warning.
};
};
 
 
// Decide what the linker should do for relocations that refer to discarded
// Decide what the linker should do for relocations that refer to discarded
// comdat sections.  This decision is based on the name of the section being
// comdat sections.  This decision is based on the name of the section being
// relocated.
// relocated.
 
 
inline Comdat_behavior
inline Comdat_behavior
get_comdat_behavior(const char* name)
get_comdat_behavior(const char* name)
{
{
  if (Layout::is_debug_info_section(name))
  if (Layout::is_debug_info_section(name))
    return CB_PRETEND;
    return CB_PRETEND;
  if (strcmp(name, ".eh_frame") == 0
  if (strcmp(name, ".eh_frame") == 0
      || strcmp(name, ".gcc_except_table") == 0)
      || strcmp(name, ".gcc_except_table") == 0)
    return CB_IGNORE;
    return CB_IGNORE;
  return CB_WARNING;
  return CB_WARNING;
}
}
 
 
// Give an error for a symbol with non-default visibility which is not
// Give an error for a symbol with non-default visibility which is not
// defined locally.
// defined locally.
 
 
inline void
inline void
visibility_error(const Symbol* sym)
visibility_error(const Symbol* sym)
{
{
  const char* v;
  const char* v;
  switch (sym->visibility())
  switch (sym->visibility())
    {
    {
    case elfcpp::STV_INTERNAL:
    case elfcpp::STV_INTERNAL:
      v = _("internal");
      v = _("internal");
      break;
      break;
    case elfcpp::STV_HIDDEN:
    case elfcpp::STV_HIDDEN:
      v = _("hidden");
      v = _("hidden");
      break;
      break;
    case elfcpp::STV_PROTECTED:
    case elfcpp::STV_PROTECTED:
      v = _("protected");
      v = _("protected");
      break;
      break;
    default:
    default:
      gold_unreachable();
      gold_unreachable();
    }
    }
  gold_error(_("%s symbol '%s' is not defined locally"),
  gold_error(_("%s symbol '%s' is not defined locally"),
             v, sym->name());
             v, sym->name());
}
}
 
 
 
// Return true if we are should issue an error saying that SYM is an
 
// undefined symbol.  This is called if there is a relocation against
 
// SYM.
 
 
 
inline bool
 
issue_undefined_symbol_error(const Symbol* sym)
 
{
 
  // We only report global symbols.
 
  if (sym == NULL)
 
    return false;
 
 
 
  // We only report undefined symbols.
 
  if (!sym->is_undefined() && !sym->is_placeholder())
 
    return false;
 
 
 
  // We don't report weak symbols.
 
  if (sym->binding() == elfcpp::STB_WEAK)
 
    return false;
 
 
 
  // We don't report symbols defined in discarded sections.
 
  if (sym->is_defined_in_discarded_section())
 
    return false;
 
 
 
  // If the target defines this symbol, don't report it here.
 
  if (parameters->target().is_defined_by_abi(sym))
 
    return false;
 
 
 
  // See if we've been told to ignore whether this symbol is
 
  // undefined.
 
  const char* const u = parameters->options().unresolved_symbols();
 
  if (u != NULL)
 
    {
 
      if (strcmp(u, "ignore-all") == 0)
 
        return false;
 
      if (strcmp(u, "report-all") == 0)
 
        return true;
 
      if (strcmp(u, "ignore-in-object-files") == 0 && !sym->in_dyn())
 
        return false;
 
      if (strcmp(u, "ignore-in-shared-libs") == 0 && !sym->in_reg())
 
        return false;
 
    }
 
 
 
  // When creating a shared library, only report unresolved symbols if
 
  // -z defs was used.
 
  if (parameters->options().shared() && !parameters->options().defs())
 
    return false;
 
 
 
  // Otherwise issue a warning.
 
  return true;
 
}
 
 
// This function implements the generic part of relocation processing.
// This function implements the generic part of relocation processing.
// The template parameter Relocate must be a class type which provides
// The template parameter Relocate must be a class type which provides
// a single function, relocate(), which implements the machine
// a single function, relocate(), which implements the machine
// specific part of a relocation.
// specific part of a relocation.
 
 
// SIZE is the ELF size: 32 or 64.  BIG_ENDIAN is the endianness of
// SIZE is the ELF size: 32 or 64.  BIG_ENDIAN is the endianness of
// the data.  SH_TYPE is the section type: SHT_REL or SHT_RELA.
// the data.  SH_TYPE is the section type: SHT_REL or SHT_RELA.
// RELOCATE implements operator() to do a relocation.
// RELOCATE implements operator() to do a relocation.
 
 
// PRELOCS points to the relocation data.  RELOC_COUNT is the number
// PRELOCS points to the relocation data.  RELOC_COUNT is the number
// of relocs.  OUTPUT_SECTION is the output section.
// of relocs.  OUTPUT_SECTION is the output section.
// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
// mapped to output offsets.
// mapped to output offsets.
 
 
// VIEW is the section data, VIEW_ADDRESS is its memory address, and
// VIEW is the section data, VIEW_ADDRESS is its memory address, and
// VIEW_SIZE is the size.  These refer to the input section, unless
// VIEW_SIZE is the size.  These refer to the input section, unless
// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
// the output section.
// the output section.
 
 
// RELOC_SYMBOL_CHANGES is used for -fsplit-stack support.  If it is
// RELOC_SYMBOL_CHANGES is used for -fsplit-stack support.  If it is
// not NULL, it is a vector indexed by relocation index.  If that
// not NULL, it is a vector indexed by relocation index.  If that
// entry is not NULL, it points to a global symbol which used as the
// entry is not NULL, it points to a global symbol which used as the
// symbol for the relocation, ignoring the symbol index in the
// symbol for the relocation, ignoring the symbol index in the
// relocation.
// relocation.
 
 
template<int size, bool big_endian, typename Target_type, int sh_type,
template<int size, bool big_endian, typename Target_type, int sh_type,
         typename Relocate>
         typename Relocate>
inline void
inline void
relocate_section(
relocate_section(
    const Relocate_info<size, big_endian>* relinfo,
    const Relocate_info<size, big_endian>* relinfo,
    Target_type* target,
    Target_type* target,
    const unsigned char* prelocs,
    const unsigned char* prelocs,
    size_t reloc_count,
    size_t reloc_count,
    Output_section* output_section,
    Output_section* output_section,
    bool needs_special_offset_handling,
    bool needs_special_offset_handling,
    unsigned char* view,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
    section_size_type view_size,
    section_size_type view_size,
    const Reloc_symbol_changes* reloc_symbol_changes)
    const Reloc_symbol_changes* reloc_symbol_changes)
{
{
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  Relocate relocate;
  Relocate relocate;
 
 
  Sized_relobj_file<size, big_endian>* object = relinfo->object;
  Sized_relobj_file<size, big_endian>* object = relinfo->object;
  unsigned int local_count = object->local_symbol_count();
  unsigned int local_count = object->local_symbol_count();
 
 
  Comdat_behavior comdat_behavior = CB_UNDETERMINED;
  Comdat_behavior comdat_behavior = CB_UNDETERMINED;
 
 
  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
    {
      Reltype reloc(prelocs);
      Reltype reloc(prelocs);
 
 
      section_offset_type offset =
      section_offset_type offset =
        convert_to_section_size_type(reloc.get_r_offset());
        convert_to_section_size_type(reloc.get_r_offset());
 
 
      if (needs_special_offset_handling)
      if (needs_special_offset_handling)
        {
        {
          offset = output_section->output_offset(relinfo->object,
          offset = output_section->output_offset(relinfo->object,
                                                 relinfo->data_shndx,
                                                 relinfo->data_shndx,
                                                 offset);
                                                 offset);
          if (offset == -1)
          if (offset == -1)
            continue;
            continue;
        }
        }
 
 
      typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
      typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
      unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
      unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
      unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
      unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
 
 
      const Sized_symbol<size>* sym;
      const Sized_symbol<size>* sym;
 
 
      Symbol_value<size> symval;
      Symbol_value<size> symval;
      const Symbol_value<size> *psymval;
      const Symbol_value<size> *psymval;
      bool is_defined_in_discarded_section;
      bool is_defined_in_discarded_section;
      unsigned int shndx;
      unsigned int shndx;
      if (r_sym < local_count
      if (r_sym < local_count
          && (reloc_symbol_changes == NULL
          && (reloc_symbol_changes == NULL
              || (*reloc_symbol_changes)[i] == NULL))
              || (*reloc_symbol_changes)[i] == NULL))
        {
        {
          sym = NULL;
          sym = NULL;
          psymval = object->local_symbol(r_sym);
          psymval = object->local_symbol(r_sym);
 
 
          // If the local symbol belongs to a section we are discarding,
          // If the local symbol belongs to a section we are discarding,
          // and that section is a debug section, try to find the
          // and that section is a debug section, try to find the
          // corresponding kept section and map this symbol to its
          // corresponding kept section and map this symbol to its
          // counterpart in the kept section.  The symbol must not 
          // counterpart in the kept section.  The symbol must not 
          // correspond to a section we are folding.
          // correspond to a section we are folding.
          bool is_ordinary;
          bool is_ordinary;
          shndx = psymval->input_shndx(&is_ordinary);
          shndx = psymval->input_shndx(&is_ordinary);
          is_defined_in_discarded_section =
          is_defined_in_discarded_section =
            (is_ordinary
            (is_ordinary
             && shndx != elfcpp::SHN_UNDEF
             && shndx != elfcpp::SHN_UNDEF
             && !object->is_section_included(shndx)
             && !object->is_section_included(shndx)
             && !relinfo->symtab->is_section_folded(object, shndx));
             && !relinfo->symtab->is_section_folded(object, shndx));
        }
        }
      else
      else
        {
        {
          const Symbol* gsym;
          const Symbol* gsym;
          if (reloc_symbol_changes != NULL
          if (reloc_symbol_changes != NULL
              && (*reloc_symbol_changes)[i] != NULL)
              && (*reloc_symbol_changes)[i] != NULL)
            gsym = (*reloc_symbol_changes)[i];
            gsym = (*reloc_symbol_changes)[i];
          else
          else
            {
            {
              gsym = object->global_symbol(r_sym);
              gsym = object->global_symbol(r_sym);
              gold_assert(gsym != NULL);
              gold_assert(gsym != NULL);
              if (gsym->is_forwarder())
              if (gsym->is_forwarder())
                gsym = relinfo->symtab->resolve_forwards(gsym);
                gsym = relinfo->symtab->resolve_forwards(gsym);
            }
            }
 
 
          sym = static_cast<const Sized_symbol<size>*>(gsym);
          sym = static_cast<const Sized_symbol<size>*>(gsym);
          if (sym->has_symtab_index() && sym->symtab_index() != -1U)
          if (sym->has_symtab_index() && sym->symtab_index() != -1U)
            symval.set_output_symtab_index(sym->symtab_index());
            symval.set_output_symtab_index(sym->symtab_index());
          else
          else
            symval.set_no_output_symtab_entry();
            symval.set_no_output_symtab_entry();
          symval.set_output_value(sym->value());
          symval.set_output_value(sym->value());
          if (gsym->type() == elfcpp::STT_TLS)
          if (gsym->type() == elfcpp::STT_TLS)
            symval.set_is_tls_symbol();
            symval.set_is_tls_symbol();
          else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
          else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
            symval.set_is_ifunc_symbol();
            symval.set_is_ifunc_symbol();
          psymval = &symval;
          psymval = &symval;
 
 
          is_defined_in_discarded_section =
          is_defined_in_discarded_section =
            (gsym->is_defined_in_discarded_section()
            (gsym->is_defined_in_discarded_section()
             && gsym->is_undefined());
             && gsym->is_undefined());
          shndx = 0;
          shndx = 0;
        }
        }
 
 
      Symbol_value<size> symval2;
      Symbol_value<size> symval2;
      if (is_defined_in_discarded_section)
      if (is_defined_in_discarded_section)
        {
        {
          if (comdat_behavior == CB_UNDETERMINED)
          if (comdat_behavior == CB_UNDETERMINED)
            {
            {
              std::string name = object->section_name(relinfo->data_shndx);
              std::string name = object->section_name(relinfo->data_shndx);
              comdat_behavior = get_comdat_behavior(name.c_str());
              comdat_behavior = get_comdat_behavior(name.c_str());
            }
            }
          if (comdat_behavior == CB_PRETEND)
          if (comdat_behavior == CB_PRETEND)
            {
            {
              // FIXME: This case does not work for global symbols.
              // FIXME: This case does not work for global symbols.
              // We have no place to store the original section index.
              // We have no place to store the original section index.
              // Fortunately this does not matter for comdat sections,
              // Fortunately this does not matter for comdat sections,
              // only for sections explicitly discarded by a linker
              // only for sections explicitly discarded by a linker
              // script.
              // script.
              bool found;
              bool found;
              typename elfcpp::Elf_types<size>::Elf_Addr value =
              typename elfcpp::Elf_types<size>::Elf_Addr value =
                object->map_to_kept_section(shndx, &found);
                object->map_to_kept_section(shndx, &found);
              if (found)
              if (found)
                symval2.set_output_value(value + psymval->input_value());
                symval2.set_output_value(value + psymval->input_value());
              else
              else
                symval2.set_output_value(0);
                symval2.set_output_value(0);
            }
            }
          else
          else
            {
            {
              if (comdat_behavior == CB_WARNING)
              if (comdat_behavior == CB_WARNING)
                gold_warning_at_location(relinfo, i, offset,
                gold_warning_at_location(relinfo, i, offset,
                                         _("relocation refers to discarded "
                                         _("relocation refers to discarded "
                                           "section"));
                                           "section"));
              symval2.set_output_value(0);
              symval2.set_output_value(0);
            }
            }
          symval2.set_no_output_symtab_entry();
          symval2.set_no_output_symtab_entry();
          psymval = &symval2;
          psymval = &symval2;
        }
        }
 
 
      if (!relocate.relocate(relinfo, target, output_section, i, reloc,
      if (!relocate.relocate(relinfo, target, output_section, i, reloc,
                             r_type, sym, psymval, view + offset,
                             r_type, sym, psymval, view + offset,
                             view_address + offset, view_size))
                             view_address + offset, view_size))
        continue;
        continue;
 
 
      if (offset < 0 || static_cast<section_size_type>(offset) >= view_size)
      if (offset < 0 || static_cast<section_size_type>(offset) >= view_size)
        {
        {
          gold_error_at_location(relinfo, i, offset,
          gold_error_at_location(relinfo, i, offset,
                                 _("reloc has bad offset %zu"),
                                 _("reloc has bad offset %zu"),
                                 static_cast<size_t>(offset));
                                 static_cast<size_t>(offset));
          continue;
          continue;
        }
        }
 
 
      if (sym != NULL
      if (issue_undefined_symbol_error(sym))
          && (sym->is_undefined() || sym->is_placeholder())
 
          && sym->binding() != elfcpp::STB_WEAK
 
          && !is_defined_in_discarded_section
 
          && !target->is_defined_by_abi(sym)
 
          && (!parameters->options().shared()       // -shared
 
              || parameters->options().defs()))     // -z defs
 
        gold_undefined_symbol_at_location(sym, relinfo, i, offset);
        gold_undefined_symbol_at_location(sym, relinfo, i, offset);
      else if (sym != NULL
      else if (sym != NULL
               && sym->visibility() != elfcpp::STV_DEFAULT
               && sym->visibility() != elfcpp::STV_DEFAULT
               && (sym->is_undefined() || sym->is_from_dynobj()))
               && (sym->is_undefined() || sym->is_from_dynobj()))
        visibility_error(sym);
        visibility_error(sym);
 
 
      if (sym != NULL && sym->has_warning())
      if (sym != NULL && sym->has_warning())
        relinfo->symtab->issue_warning(sym, relinfo, i, offset);
        relinfo->symtab->issue_warning(sym, relinfo, i, offset);
    }
    }
}
}
 
 
// Apply an incremental relocation.
// Apply an incremental relocation.
 
 
template<int size, bool big_endian, typename Target_type,
template<int size, bool big_endian, typename Target_type,
         typename Relocate>
         typename Relocate>
void
void
apply_relocation(const Relocate_info<size, big_endian>* relinfo,
apply_relocation(const Relocate_info<size, big_endian>* relinfo,
                 Target_type* target,
                 Target_type* target,
                 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
                 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
                 unsigned int r_type,
                 unsigned int r_type,
                 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
                 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
                 const Symbol* gsym,
                 const Symbol* gsym,
                 unsigned char* view,
                 unsigned char* view,
                 typename elfcpp::Elf_types<size>::Elf_Addr address,
                 typename elfcpp::Elf_types<size>::Elf_Addr address,
                 section_size_type view_size)
                 section_size_type view_size)
{
{
  // Construct the ELF relocation in a temporary buffer.
  // Construct the ELF relocation in a temporary buffer.
  const int reloc_size = elfcpp::Elf_sizes<64>::rela_size;
  const int reloc_size = elfcpp::Elf_sizes<64>::rela_size;
  unsigned char relbuf[reloc_size];
  unsigned char relbuf[reloc_size];
  elfcpp::Rela<64, false> rel(relbuf);
  elfcpp::Rela<64, false> rel(relbuf);
  elfcpp::Rela_write<64, false> orel(relbuf);
  elfcpp::Rela_write<64, false> orel(relbuf);
  orel.put_r_offset(r_offset);
  orel.put_r_offset(r_offset);
  orel.put_r_info(elfcpp::elf_r_info<64>(0, r_type));
  orel.put_r_info(elfcpp::elf_r_info<64>(0, r_type));
  orel.put_r_addend(r_addend);
  orel.put_r_addend(r_addend);
 
 
  // Setup a Symbol_value for the global symbol.
  // Setup a Symbol_value for the global symbol.
  const Sized_symbol<64>* sym = static_cast<const Sized_symbol<64>*>(gsym);
  const Sized_symbol<64>* sym = static_cast<const Sized_symbol<64>*>(gsym);
  Symbol_value<64> symval;
  Symbol_value<64> symval;
  gold_assert(sym->has_symtab_index() && sym->symtab_index() != -1U);
  gold_assert(sym->has_symtab_index() && sym->symtab_index() != -1U);
  symval.set_output_symtab_index(sym->symtab_index());
  symval.set_output_symtab_index(sym->symtab_index());
  symval.set_output_value(sym->value());
  symval.set_output_value(sym->value());
  if (gsym->type() == elfcpp::STT_TLS)
  if (gsym->type() == elfcpp::STT_TLS)
    symval.set_is_tls_symbol();
    symval.set_is_tls_symbol();
  else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
  else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
    symval.set_is_ifunc_symbol();
    symval.set_is_ifunc_symbol();
 
 
  Relocate relocate;
  Relocate relocate;
  relocate.relocate(relinfo, target, NULL, -1U, rel, r_type, sym, &symval,
  relocate.relocate(relinfo, target, NULL, -1U, rel, r_type, sym, &symval,
                    view + r_offset, address + r_offset, view_size);
                    view + r_offset, address + r_offset, view_size);
}
}
 
 
// This class may be used as a typical class for the
// This class may be used as a typical class for the
// Scan_relocatable_reloc parameter to scan_relocatable_relocs.  The
// Scan_relocatable_reloc parameter to scan_relocatable_relocs.  The
// template parameter Classify_reloc must be a class type which
// template parameter Classify_reloc must be a class type which
// provides a function get_size_for_reloc which returns the number of
// provides a function get_size_for_reloc which returns the number of
// bytes to which a reloc applies.  This class is intended to capture
// bytes to which a reloc applies.  This class is intended to capture
// the most typical target behaviour, while still permitting targets
// the most typical target behaviour, while still permitting targets
// to define their own independent class for Scan_relocatable_reloc.
// to define their own independent class for Scan_relocatable_reloc.
 
 
template<int sh_type, typename Classify_reloc>
template<int sh_type, typename Classify_reloc>
class Default_scan_relocatable_relocs
class Default_scan_relocatable_relocs
{
{
 public:
 public:
  // Return the strategy to use for a local symbol which is not a
  // Return the strategy to use for a local symbol which is not a
  // section symbol, given the relocation type.
  // section symbol, given the relocation type.
  inline Relocatable_relocs::Reloc_strategy
  inline Relocatable_relocs::Reloc_strategy
  local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
  local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
  {
  {
    // We assume that relocation type 0 is NONE.  Targets which are
    // We assume that relocation type 0 is NONE.  Targets which are
    // different must override.
    // different must override.
    if (r_type == 0 && r_sym == 0)
    if (r_type == 0 && r_sym == 0)
      return Relocatable_relocs::RELOC_DISCARD;
      return Relocatable_relocs::RELOC_DISCARD;
    return Relocatable_relocs::RELOC_COPY;
    return Relocatable_relocs::RELOC_COPY;
  }
  }
 
 
  // Return the strategy to use for a local symbol which is a section
  // Return the strategy to use for a local symbol which is a section
  // symbol, given the relocation type.
  // symbol, given the relocation type.
  inline Relocatable_relocs::Reloc_strategy
  inline Relocatable_relocs::Reloc_strategy
  local_section_strategy(unsigned int r_type, Relobj* object)
  local_section_strategy(unsigned int r_type, Relobj* object)
  {
  {
    if (sh_type == elfcpp::SHT_RELA)
    if (sh_type == elfcpp::SHT_RELA)
      return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
      return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
    else
    else
      {
      {
        Classify_reloc classify;
        Classify_reloc classify;
        switch (classify.get_size_for_reloc(r_type, object))
        switch (classify.get_size_for_reloc(r_type, object))
          {
          {
          case 0:
          case 0:
            return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
            return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
          case 1:
          case 1:
            return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1;
            return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1;
          case 2:
          case 2:
            return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2;
            return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2;
          case 4:
          case 4:
            return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
            return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
          case 8:
          case 8:
            return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8;
            return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8;
          default:
          default:
            gold_unreachable();
            gold_unreachable();
          }
          }
      }
      }
  }
  }
 
 
  // Return the strategy to use for a global symbol, given the
  // Return the strategy to use for a global symbol, given the
  // relocation type, the object, and the symbol index.
  // relocation type, the object, and the symbol index.
  inline Relocatable_relocs::Reloc_strategy
  inline Relocatable_relocs::Reloc_strategy
  global_strategy(unsigned int, Relobj*, unsigned int)
  global_strategy(unsigned int, Relobj*, unsigned int)
  { return Relocatable_relocs::RELOC_COPY; }
  { return Relocatable_relocs::RELOC_COPY; }
};
};
 
 
// Scan relocs during a relocatable link.  This is a default
// Scan relocs during a relocatable link.  This is a default
// definition which should work for most targets.
// definition which should work for most targets.
// Scan_relocatable_reloc must name a class type which provides three
// Scan_relocatable_reloc must name a class type which provides three
// functions which return a Relocatable_relocs::Reloc_strategy code:
// functions which return a Relocatable_relocs::Reloc_strategy code:
// global_strategy, local_non_section_strategy, and
// global_strategy, local_non_section_strategy, and
// local_section_strategy.  Most targets should be able to use
// local_section_strategy.  Most targets should be able to use
// Default_scan_relocatable_relocs as this class.
// Default_scan_relocatable_relocs as this class.
 
 
template<int size, bool big_endian, int sh_type,
template<int size, bool big_endian, int sh_type,
         typename Scan_relocatable_reloc>
         typename Scan_relocatable_reloc>
void
void
scan_relocatable_relocs(
scan_relocatable_relocs(
    Symbol_table*,
    Symbol_table*,
    Layout*,
    Layout*,
    Sized_relobj_file<size, big_endian>* object,
    Sized_relobj_file<size, big_endian>* object,
    unsigned int data_shndx,
    unsigned int data_shndx,
    const unsigned char* prelocs,
    const unsigned char* prelocs,
    size_t reloc_count,
    size_t reloc_count,
    Output_section* output_section,
    Output_section* output_section,
    bool needs_special_offset_handling,
    bool needs_special_offset_handling,
    size_t local_symbol_count,
    size_t local_symbol_count,
    const unsigned char* plocal_syms,
    const unsigned char* plocal_syms,
    Relocatable_relocs* rr)
    Relocatable_relocs* rr)
{
{
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
  Scan_relocatable_reloc scan;
  Scan_relocatable_reloc scan;
 
 
  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
    {
      Reltype reloc(prelocs);
      Reltype reloc(prelocs);
 
 
      Relocatable_relocs::Reloc_strategy strategy;
      Relocatable_relocs::Reloc_strategy strategy;
 
 
      if (needs_special_offset_handling
      if (needs_special_offset_handling
          && !output_section->is_input_address_mapped(object, data_shndx,
          && !output_section->is_input_address_mapped(object, data_shndx,
                                                      reloc.get_r_offset()))
                                                      reloc.get_r_offset()))
        strategy = Relocatable_relocs::RELOC_DISCARD;
        strategy = Relocatable_relocs::RELOC_DISCARD;
      else
      else
        {
        {
          typename elfcpp::Elf_types<size>::Elf_WXword r_info =
          typename elfcpp::Elf_types<size>::Elf_WXword r_info =
            reloc.get_r_info();
            reloc.get_r_info();
          const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
          const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
          const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
          const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
 
 
          if (r_sym >= local_symbol_count)
          if (r_sym >= local_symbol_count)
            strategy = scan.global_strategy(r_type, object, r_sym);
            strategy = scan.global_strategy(r_type, object, r_sym);
          else
          else
            {
            {
              gold_assert(plocal_syms != NULL);
              gold_assert(plocal_syms != NULL);
              typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
              typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
                                                          + r_sym * sym_size);
                                                          + r_sym * sym_size);
              unsigned int shndx = lsym.get_st_shndx();
              unsigned int shndx = lsym.get_st_shndx();
              bool is_ordinary;
              bool is_ordinary;
              shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
              shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
              if (is_ordinary
              if (is_ordinary
                  && shndx != elfcpp::SHN_UNDEF
                  && shndx != elfcpp::SHN_UNDEF
                  && !object->is_section_included(shndx))
                  && !object->is_section_included(shndx))
                {
                {
                  // RELOC is a relocation against a local symbol
                  // RELOC is a relocation against a local symbol
                  // defined in a section we are discarding.  Discard
                  // defined in a section we are discarding.  Discard
                  // the reloc.  FIXME: Should we issue a warning?
                  // the reloc.  FIXME: Should we issue a warning?
                  strategy = Relocatable_relocs::RELOC_DISCARD;
                  strategy = Relocatable_relocs::RELOC_DISCARD;
                }
                }
              else if (lsym.get_st_type() != elfcpp::STT_SECTION)
              else if (lsym.get_st_type() != elfcpp::STT_SECTION)
                strategy = scan.local_non_section_strategy(r_type, object,
                strategy = scan.local_non_section_strategy(r_type, object,
                                                           r_sym);
                                                           r_sym);
              else
              else
                {
                {
                  strategy = scan.local_section_strategy(r_type, object);
                  strategy = scan.local_section_strategy(r_type, object);
                  if (strategy != Relocatable_relocs::RELOC_DISCARD)
                  if (strategy != Relocatable_relocs::RELOC_DISCARD)
                    object->output_section(shndx)->set_needs_symtab_index();
                    object->output_section(shndx)->set_needs_symtab_index();
                }
                }
 
 
              if (strategy == Relocatable_relocs::RELOC_COPY)
              if (strategy == Relocatable_relocs::RELOC_COPY)
                object->set_must_have_output_symtab_entry(r_sym);
                object->set_must_have_output_symtab_entry(r_sym);
            }
            }
        }
        }
 
 
      rr->set_next_reloc_strategy(strategy);
      rr->set_next_reloc_strategy(strategy);
    }
    }
}
}
 
 
// Relocate relocs during a relocatable link.  This is a default
// Relocate relocs during a relocatable link.  This is a default
// definition which should work for most targets.
// definition which should work for most targets.
 
 
template<int size, bool big_endian, int sh_type>
template<int size, bool big_endian, int sh_type>
void
void
relocate_for_relocatable(
relocate_for_relocatable(
    const Relocate_info<size, big_endian>* relinfo,
    const Relocate_info<size, big_endian>* relinfo,
    const unsigned char* prelocs,
    const unsigned char* prelocs,
    size_t reloc_count,
    size_t reloc_count,
    Output_section* output_section,
    Output_section* output_section,
    typename elfcpp::Elf_types<size>::Elf_Addr offset_in_output_section,
    typename elfcpp::Elf_types<size>::Elf_Addr offset_in_output_section,
    const Relocatable_relocs* rr,
    const Relocatable_relocs* rr,
    unsigned char* view,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
    section_size_type view_size,
    section_size_type view_size,
    unsigned char* reloc_view,
    unsigned char* reloc_view,
    section_size_type reloc_view_size)
    section_size_type reloc_view_size)
{
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc_write
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc_write
    Reltype_write;
    Reltype_write;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  const Address invalid_address = static_cast<Address>(0) - 1;
  const Address invalid_address = static_cast<Address>(0) - 1;
 
 
  Sized_relobj_file<size, big_endian>* const object = relinfo->object;
  Sized_relobj_file<size, big_endian>* const object = relinfo->object;
  const unsigned int local_count = object->local_symbol_count();
  const unsigned int local_count = object->local_symbol_count();
 
 
  unsigned char* pwrite = reloc_view;
  unsigned char* pwrite = reloc_view;
 
 
  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
    {
      Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
      Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
      if (strategy == Relocatable_relocs::RELOC_DISCARD)
      if (strategy == Relocatable_relocs::RELOC_DISCARD)
        continue;
        continue;
 
 
      if (strategy == Relocatable_relocs::RELOC_SPECIAL)
      if (strategy == Relocatable_relocs::RELOC_SPECIAL)
        {
        {
          // Target wants to handle this relocation.
          // Target wants to handle this relocation.
          Sized_target<size, big_endian>* target =
          Sized_target<size, big_endian>* target =
            parameters->sized_target<size, big_endian>();
            parameters->sized_target<size, big_endian>();
          target->relocate_special_relocatable(relinfo, sh_type, prelocs,
          target->relocate_special_relocatable(relinfo, sh_type, prelocs,
                                               i, output_section,
                                               i, output_section,
                                               offset_in_output_section,
                                               offset_in_output_section,
                                               view, view_address,
                                               view, view_address,
                                               view_size, pwrite);
                                               view_size, pwrite);
          pwrite += reloc_size;
          pwrite += reloc_size;
          continue;
          continue;
        }
        }
      Reltype reloc(prelocs);
      Reltype reloc(prelocs);
      Reltype_write reloc_write(pwrite);
      Reltype_write reloc_write(pwrite);
 
 
      typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
      typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
      const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
      const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
      const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
      const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
 
 
      // Get the new symbol index.
      // Get the new symbol index.
 
 
      unsigned int new_symndx;
      unsigned int new_symndx;
      if (r_sym < local_count)
      if (r_sym < local_count)
        {
        {
          switch (strategy)
          switch (strategy)
            {
            {
            case Relocatable_relocs::RELOC_COPY:
            case Relocatable_relocs::RELOC_COPY:
              if (r_sym == 0)
              if (r_sym == 0)
                new_symndx = 0;
                new_symndx = 0;
              else
              else
                {
                {
                  new_symndx = object->symtab_index(r_sym);
                  new_symndx = object->symtab_index(r_sym);
                  gold_assert(new_symndx != -1U);
                  gold_assert(new_symndx != -1U);
                }
                }
              break;
              break;
 
 
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
              {
              {
                // We are adjusting a section symbol.  We need to find
                // We are adjusting a section symbol.  We need to find
                // the symbol table index of the section symbol for
                // the symbol table index of the section symbol for
                // the output section corresponding to input section
                // the output section corresponding to input section
                // in which this symbol is defined.
                // in which this symbol is defined.
                gold_assert(r_sym < local_count);
                gold_assert(r_sym < local_count);
                bool is_ordinary;
                bool is_ordinary;
                unsigned int shndx =
                unsigned int shndx =
                  object->local_symbol_input_shndx(r_sym, &is_ordinary);
                  object->local_symbol_input_shndx(r_sym, &is_ordinary);
                gold_assert(is_ordinary);
                gold_assert(is_ordinary);
                Output_section* os = object->output_section(shndx);
                Output_section* os = object->output_section(shndx);
                gold_assert(os != NULL);
                gold_assert(os != NULL);
                gold_assert(os->needs_symtab_index());
                gold_assert(os->needs_symtab_index());
                new_symndx = os->symtab_index();
                new_symndx = os->symtab_index();
              }
              }
              break;
              break;
 
 
            default:
            default:
              gold_unreachable();
              gold_unreachable();
            }
            }
        }
        }
      else
      else
        {
        {
          const Symbol* gsym = object->global_symbol(r_sym);
          const Symbol* gsym = object->global_symbol(r_sym);
          gold_assert(gsym != NULL);
          gold_assert(gsym != NULL);
          if (gsym->is_forwarder())
          if (gsym->is_forwarder())
            gsym = relinfo->symtab->resolve_forwards(gsym);
            gsym = relinfo->symtab->resolve_forwards(gsym);
 
 
          gold_assert(gsym->has_symtab_index());
          gold_assert(gsym->has_symtab_index());
          new_symndx = gsym->symtab_index();
          new_symndx = gsym->symtab_index();
        }
        }
 
 
      // Get the new offset--the location in the output section where
      // Get the new offset--the location in the output section where
      // this relocation should be applied.
      // this relocation should be applied.
 
 
      Address offset = reloc.get_r_offset();
      Address offset = reloc.get_r_offset();
      Address new_offset;
      Address new_offset;
      if (offset_in_output_section != invalid_address)
      if (offset_in_output_section != invalid_address)
        new_offset = offset + offset_in_output_section;
        new_offset = offset + offset_in_output_section;
      else
      else
        {
        {
          section_offset_type sot_offset =
          section_offset_type sot_offset =
              convert_types<section_offset_type, Address>(offset);
              convert_types<section_offset_type, Address>(offset);
          section_offset_type new_sot_offset =
          section_offset_type new_sot_offset =
              output_section->output_offset(object, relinfo->data_shndx,
              output_section->output_offset(object, relinfo->data_shndx,
                                            sot_offset);
                                            sot_offset);
          gold_assert(new_sot_offset != -1);
          gold_assert(new_sot_offset != -1);
          new_offset = new_sot_offset;
          new_offset = new_sot_offset;
        }
        }
 
 
      // In an object file, r_offset is an offset within the section.
      // In an object file, r_offset is an offset within the section.
      // In an executable or dynamic object, generated by
      // In an executable or dynamic object, generated by
      // --emit-relocs, r_offset is an absolute address.
      // --emit-relocs, r_offset is an absolute address.
      if (!parameters->options().relocatable())
      if (!parameters->options().relocatable())
        {
        {
          new_offset += view_address;
          new_offset += view_address;
          if (offset_in_output_section != invalid_address)
          if (offset_in_output_section != invalid_address)
            new_offset -= offset_in_output_section;
            new_offset -= offset_in_output_section;
        }
        }
 
 
      reloc_write.put_r_offset(new_offset);
      reloc_write.put_r_offset(new_offset);
      reloc_write.put_r_info(elfcpp::elf_r_info<size>(new_symndx, r_type));
      reloc_write.put_r_info(elfcpp::elf_r_info<size>(new_symndx, r_type));
 
 
      // Handle the reloc addend based on the strategy.
      // Handle the reloc addend based on the strategy.
 
 
      if (strategy == Relocatable_relocs::RELOC_COPY)
      if (strategy == Relocatable_relocs::RELOC_COPY)
        {
        {
          if (sh_type == elfcpp::SHT_RELA)
          if (sh_type == elfcpp::SHT_RELA)
            Reloc_types<sh_type, size, big_endian>::
            Reloc_types<sh_type, size, big_endian>::
              copy_reloc_addend(&reloc_write,
              copy_reloc_addend(&reloc_write,
                                &reloc);
                                &reloc);
        }
        }
      else
      else
        {
        {
          // The relocation uses a section symbol in the input file.
          // The relocation uses a section symbol in the input file.
          // We are adjusting it to use a section symbol in the output
          // We are adjusting it to use a section symbol in the output
          // file.  The input section symbol refers to some address in
          // file.  The input section symbol refers to some address in
          // the input section.  We need the relocation in the output
          // the input section.  We need the relocation in the output
          // file to refer to that same address.  This adjustment to
          // file to refer to that same address.  This adjustment to
          // the addend is the same calculation we use for a simple
          // the addend is the same calculation we use for a simple
          // absolute relocation for the input section symbol.
          // absolute relocation for the input section symbol.
 
 
          const Symbol_value<size>* psymval = object->local_symbol(r_sym);
          const Symbol_value<size>* psymval = object->local_symbol(r_sym);
 
 
          unsigned char* padd = view + offset;
          unsigned char* padd = view + offset;
          switch (strategy)
          switch (strategy)
            {
            {
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
              {
              {
                typename elfcpp::Elf_types<size>::Elf_Swxword addend;
                typename elfcpp::Elf_types<size>::Elf_Swxword addend;
                addend = Reloc_types<sh_type, size, big_endian>::
                addend = Reloc_types<sh_type, size, big_endian>::
                           get_reloc_addend(&reloc);
                           get_reloc_addend(&reloc);
                addend = psymval->value(object, addend);
                addend = psymval->value(object, addend);
                Reloc_types<sh_type, size, big_endian>::
                Reloc_types<sh_type, size, big_endian>::
                  set_reloc_addend(&reloc_write, addend);
                  set_reloc_addend(&reloc_write, addend);
              }
              }
              break;
              break;
 
 
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
              break;
              break;
 
 
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
              Relocate_functions<size, big_endian>::rel8(padd, object,
              Relocate_functions<size, big_endian>::rel8(padd, object,
                                                         psymval);
                                                         psymval);
              break;
              break;
 
 
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
              Relocate_functions<size, big_endian>::rel16(padd, object,
              Relocate_functions<size, big_endian>::rel16(padd, object,
                                                          psymval);
                                                          psymval);
              break;
              break;
 
 
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
              Relocate_functions<size, big_endian>::rel32(padd, object,
              Relocate_functions<size, big_endian>::rel32(padd, object,
                                                          psymval);
                                                          psymval);
              break;
              break;
 
 
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
            case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
              Relocate_functions<size, big_endian>::rel64(padd, object,
              Relocate_functions<size, big_endian>::rel64(padd, object,
                                                          psymval);
                                                          psymval);
              break;
              break;
 
 
            default:
            default:
              gold_unreachable();
              gold_unreachable();
            }
            }
        }
        }
 
 
      pwrite += reloc_size;
      pwrite += reloc_size;
    }
    }
 
 
  gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
  gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
              == reloc_view_size);
              == reloc_view_size);
}
}
 
 
} // End namespace gold.
} // End namespace gold.
 
 
#endif // !defined(GOLD_TARGET_RELOC_H)
#endif // !defined(GOLD_TARGET_RELOC_H)
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.