OpenCores
URL https://opencores.org/ocsvn/open8_urisc/open8_urisc/trunk

Subversion Repositories open8_urisc

[/] [open8_urisc/] [trunk/] [gnu/] [binutils/] [gold/] [x86_64.cc] - Diff between revs 159 and 163

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 159 Rev 163
// x86_64.cc -- x86_64 target support for gold.
// x86_64.cc -- x86_64 target support for gold.
 
 
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
// Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.
// Written by Ian Lance Taylor <iant@google.com>.
 
 
// This file is part of gold.
// This file is part of gold.
 
 
// This program is free software; you can redistribute it and/or modify
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.
// (at your option) any later version.
 
 
// This program is distributed in the hope that it will be useful,
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
// GNU General Public License for more details.
 
 
// You should have received a copy of the GNU General Public License
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.
// MA 02110-1301, USA.
 
 
#include "gold.h"
#include "gold.h"
 
 
#include <cstring>
#include <cstring>
 
 
#include "elfcpp.h"
#include "elfcpp.h"
#include "dwarf.h"
#include "dwarf.h"
#include "parameters.h"
#include "parameters.h"
#include "reloc.h"
#include "reloc.h"
#include "x86_64.h"
#include "x86_64.h"
#include "object.h"
#include "object.h"
#include "symtab.h"
#include "symtab.h"
#include "layout.h"
#include "layout.h"
#include "output.h"
#include "output.h"
#include "copy-relocs.h"
#include "copy-relocs.h"
#include "target.h"
#include "target.h"
#include "target-reloc.h"
#include "target-reloc.h"
#include "target-select.h"
#include "target-select.h"
#include "tls.h"
#include "tls.h"
#include "freebsd.h"
#include "freebsd.h"
#include "gc.h"
#include "gc.h"
#include "icf.h"
#include "icf.h"
 
 
namespace
namespace
{
{
 
 
using namespace gold;
using namespace gold;
 
 
// A class to handle the PLT data.
// A class to handle the PLT data.
 
 
class Output_data_plt_x86_64 : public Output_section_data
class Output_data_plt_x86_64 : public Output_section_data
{
{
 public:
 public:
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
 
 
  Output_data_plt_x86_64(Layout* layout, Output_data_got<64, false>* got,
  Output_data_plt_x86_64(Layout* layout, Output_data_got<64, false>* got,
                         Output_data_space* got_plt,
                         Output_data_space* got_plt,
                         Output_data_space* got_irelative)
                         Output_data_space* got_irelative)
    : Output_section_data(16), layout_(layout), tlsdesc_rel_(NULL),
    : Output_section_data(16), layout_(layout), tlsdesc_rel_(NULL),
      irelative_rel_(NULL), got_(got), got_plt_(got_plt),
      irelative_rel_(NULL), got_(got), got_plt_(got_plt),
      got_irelative_(got_irelative), count_(0), irelative_count_(0),
      got_irelative_(got_irelative), count_(0), irelative_count_(0),
      tlsdesc_got_offset_(-1U), free_list_()
      tlsdesc_got_offset_(-1U), free_list_()
  { this->init(layout); }
  { this->init(layout); }
 
 
  Output_data_plt_x86_64(Layout* layout, Output_data_got<64, false>* got,
  Output_data_plt_x86_64(Layout* layout, Output_data_got<64, false>* got,
                         Output_data_space* got_plt,
                         Output_data_space* got_plt,
                         Output_data_space* got_irelative,
                         Output_data_space* got_irelative,
                         unsigned int plt_count)
                         unsigned int plt_count)
    : Output_section_data((plt_count + 1) * plt_entry_size, 16, false),
    : Output_section_data((plt_count + 1) * plt_entry_size, 16, false),
      layout_(layout), tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
      layout_(layout), tlsdesc_rel_(NULL), irelative_rel_(NULL), got_(got),
      got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
      got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
      irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
      irelative_count_(0), tlsdesc_got_offset_(-1U), free_list_()
  {
  {
    this->init(layout);
    this->init(layout);
 
 
    // Initialize the free list and reserve the first entry.
    // Initialize the free list and reserve the first entry.
    this->free_list_.init((plt_count + 1) * plt_entry_size, false);
    this->free_list_.init((plt_count + 1) * plt_entry_size, false);
    this->free_list_.remove(0, plt_entry_size);
    this->free_list_.remove(0, plt_entry_size);
  }
  }
 
 
  // Initialize the PLT section.
  // Initialize the PLT section.
  void
  void
  init(Layout* layout);
  init(Layout* layout);
 
 
  // Add an entry to the PLT.
  // Add an entry to the PLT.
  void
  void
  add_entry(Symbol_table*, Layout*, Symbol* gsym);
  add_entry(Symbol_table*, Layout*, Symbol* gsym);
 
 
  // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
  // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
  unsigned int
  unsigned int
  add_local_ifunc_entry(Symbol_table* symtab, Layout*,
  add_local_ifunc_entry(Symbol_table* symtab, Layout*,
                        Sized_relobj_file<64, false>* relobj,
                        Sized_relobj_file<64, false>* relobj,
                        unsigned int local_sym_index);
                        unsigned int local_sym_index);
 
 
  // Add the relocation for a PLT entry.
  // Add the relocation for a PLT entry.
  void
  void
  add_relocation(Symbol_table*, Layout*, Symbol* gsym,
  add_relocation(Symbol_table*, Layout*, Symbol* gsym,
                 unsigned int got_offset);
                 unsigned int got_offset);
 
 
  // Add the reserved TLSDESC_PLT entry to the PLT.
  // Add the reserved TLSDESC_PLT entry to the PLT.
  void
  void
  reserve_tlsdesc_entry(unsigned int got_offset)
  reserve_tlsdesc_entry(unsigned int got_offset)
  { this->tlsdesc_got_offset_ = got_offset; }
  { this->tlsdesc_got_offset_ = got_offset; }
 
 
  // Return true if a TLSDESC_PLT entry has been reserved.
  // Return true if a TLSDESC_PLT entry has been reserved.
  bool
  bool
  has_tlsdesc_entry() const
  has_tlsdesc_entry() const
  { return this->tlsdesc_got_offset_ != -1U; }
  { return this->tlsdesc_got_offset_ != -1U; }
 
 
  // Return the GOT offset for the reserved TLSDESC_PLT entry.
  // Return the GOT offset for the reserved TLSDESC_PLT entry.
  unsigned int
  unsigned int
  get_tlsdesc_got_offset() const
  get_tlsdesc_got_offset() const
  { return this->tlsdesc_got_offset_; }
  { return this->tlsdesc_got_offset_; }
 
 
  // Return the offset of the reserved TLSDESC_PLT entry.
  // Return the offset of the reserved TLSDESC_PLT entry.
  unsigned int
  unsigned int
  get_tlsdesc_plt_offset() const
  get_tlsdesc_plt_offset() const
  { return (this->count_ + this->irelative_count_ + 1) * plt_entry_size; }
  { return (this->count_ + this->irelative_count_ + 1) * plt_entry_size; }
 
 
  // Return the .rela.plt section data.
  // Return the .rela.plt section data.
  Reloc_section*
  Reloc_section*
  rela_plt()
  rela_plt()
  { return this->rel_; }
  { return this->rel_; }
 
 
  // Return where the TLSDESC relocations should go.
  // Return where the TLSDESC relocations should go.
  Reloc_section*
  Reloc_section*
  rela_tlsdesc(Layout*);
  rela_tlsdesc(Layout*);
 
 
  // Return where the IRELATIVE relocations should go in the PLT
  // Return where the IRELATIVE relocations should go in the PLT
  // relocations.
  // relocations.
  Reloc_section*
  Reloc_section*
  rela_irelative(Symbol_table*, Layout*);
  rela_irelative(Symbol_table*, Layout*);
 
 
  // Return whether we created a section for IRELATIVE relocations.
  // Return whether we created a section for IRELATIVE relocations.
  bool
  bool
  has_irelative_section() const
  has_irelative_section() const
  { return this->irelative_rel_ != NULL; }
  { return this->irelative_rel_ != NULL; }
 
 
  // Return the number of PLT entries.
  // Return the number of PLT entries.
  unsigned int
  unsigned int
  entry_count() const
  entry_count() const
  { return this->count_ + this->irelative_count_; }
  { return this->count_ + this->irelative_count_; }
 
 
  // Return the offset of the first non-reserved PLT entry.
  // Return the offset of the first non-reserved PLT entry.
  static unsigned int
  static unsigned int
  first_plt_entry_offset()
  first_plt_entry_offset()
  { return plt_entry_size; }
  { return plt_entry_size; }
 
 
  // Return the size of a PLT entry.
  // Return the size of a PLT entry.
  static unsigned int
  static unsigned int
  get_plt_entry_size()
  get_plt_entry_size()
  { return plt_entry_size; }
  { return plt_entry_size; }
 
 
  // Reserve a slot in the PLT for an existing symbol in an incremental update.
  // Reserve a slot in the PLT for an existing symbol in an incremental update.
  void
  void
  reserve_slot(unsigned int plt_index)
  reserve_slot(unsigned int plt_index)
  {
  {
    this->free_list_.remove((plt_index + 1) * plt_entry_size,
    this->free_list_.remove((plt_index + 1) * plt_entry_size,
                            (plt_index + 2) * plt_entry_size);
                            (plt_index + 2) * plt_entry_size);
  }
  }
 
 
  // Return the PLT address to use for a global symbol.
  // Return the PLT address to use for a global symbol.
  uint64_t
  uint64_t
  address_for_global(const Symbol*);
  address_for_global(const Symbol*);
 
 
  // Return the PLT address to use for a local symbol.
  // Return the PLT address to use for a local symbol.
  uint64_t
  uint64_t
  address_for_local(const Relobj*, unsigned int symndx);
  address_for_local(const Relobj*, unsigned int symndx);
 
 
 protected:
 protected:
  void
  void
  do_adjust_output_section(Output_section* os);
  do_adjust_output_section(Output_section* os);
 
 
  // Write to a map file.
  // Write to a map file.
  void
  void
  do_print_to_mapfile(Mapfile* mapfile) const
  do_print_to_mapfile(Mapfile* mapfile) const
  { mapfile->print_output_data(this, _("** PLT")); }
  { mapfile->print_output_data(this, _("** PLT")); }
 
 
 private:
 private:
  // The size of an entry in the PLT.
  // The size of an entry in the PLT.
  static const int plt_entry_size = 16;
  static const int plt_entry_size = 16;
 
 
  // The first entry in the PLT.
  // The first entry in the PLT.
  // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
  // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
  // procedure linkage table for both programs and shared objects."
  // procedure linkage table for both programs and shared objects."
  static const unsigned char first_plt_entry[plt_entry_size];
  static const unsigned char first_plt_entry[plt_entry_size];
 
 
  // Other entries in the PLT for an executable.
  // Other entries in the PLT for an executable.
  static const unsigned char plt_entry[plt_entry_size];
  static const unsigned char plt_entry[plt_entry_size];
 
 
  // The reserved TLSDESC entry in the PLT for an executable.
  // The reserved TLSDESC entry in the PLT for an executable.
  static const unsigned char tlsdesc_plt_entry[plt_entry_size];
  static const unsigned char tlsdesc_plt_entry[plt_entry_size];
 
 
  // The .eh_frame unwind information for the PLT.
  // The .eh_frame unwind information for the PLT.
  static const int plt_eh_frame_cie_size = 16;
  static const int plt_eh_frame_cie_size = 16;
  static const int plt_eh_frame_fde_size = 32;
  static const int plt_eh_frame_fde_size = 32;
  static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
  static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
  static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
 
 
  // Set the final size.
  // Set the final size.
  void
  void
  set_final_data_size();
  set_final_data_size();
 
 
  // Write out the PLT data.
  // Write out the PLT data.
  void
  void
  do_write(Output_file*);
  do_write(Output_file*);
 
 
  // A pointer to the Layout class, so that we can find the .dynamic
  // A pointer to the Layout class, so that we can find the .dynamic
  // section when we write out the GOT PLT section.
  // section when we write out the GOT PLT section.
  Layout* layout_;
  Layout* layout_;
  // The reloc section.
  // The reloc section.
  Reloc_section* rel_;
  Reloc_section* rel_;
  // The TLSDESC relocs, if necessary.  These must follow the regular
  // The TLSDESC relocs, if necessary.  These must follow the regular
  // PLT relocs.
  // PLT relocs.
  Reloc_section* tlsdesc_rel_;
  Reloc_section* tlsdesc_rel_;
  // The IRELATIVE relocs, if necessary.  These must follow the
  // The IRELATIVE relocs, if necessary.  These must follow the
  // regular PLT relocations and the TLSDESC relocations.
  // regular PLT relocations and the TLSDESC relocations.
  Reloc_section* irelative_rel_;
  Reloc_section* irelative_rel_;
  // The .got section.
  // The .got section.
  Output_data_got<64, false>* got_;
  Output_data_got<64, false>* got_;
  // The .got.plt section.
  // The .got.plt section.
  Output_data_space* got_plt_;
  Output_data_space* got_plt_;
  // The part of the .got.plt section used for IRELATIVE relocs.
  // The part of the .got.plt section used for IRELATIVE relocs.
  Output_data_space* got_irelative_;
  Output_data_space* got_irelative_;
  // The number of PLT entries.
  // The number of PLT entries.
  unsigned int count_;
  unsigned int count_;
  // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
  // Number of PLT entries with R_X86_64_IRELATIVE relocs.  These
  // follow the regular PLT entries.
  // follow the regular PLT entries.
  unsigned int irelative_count_;
  unsigned int irelative_count_;
  // Offset of the reserved TLSDESC_GOT entry when needed.
  // Offset of the reserved TLSDESC_GOT entry when needed.
  unsigned int tlsdesc_got_offset_;
  unsigned int tlsdesc_got_offset_;
  // List of available regions within the section, for incremental
  // List of available regions within the section, for incremental
  // update links.
  // update links.
  Free_list free_list_;
  Free_list free_list_;
};
};
 
 
// The x86_64 target class.
// The x86_64 target class.
// See the ABI at
// See the ABI at
//   http://www.x86-64.org/documentation/abi.pdf
//   http://www.x86-64.org/documentation/abi.pdf
// TLS info comes from
// TLS info comes from
//   http://people.redhat.com/drepper/tls.pdf
//   http://people.redhat.com/drepper/tls.pdf
//   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
//   http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
 
 
class Target_x86_64 : public Sized_target<64, false>
class Target_x86_64 : public Sized_target<64, false>
{
{
 public:
 public:
  // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
  // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
  // uses only Elf64_Rela relocation entries with explicit addends."
  // uses only Elf64_Rela relocation entries with explicit addends."
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
  typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
 
 
  Target_x86_64()
  Target_x86_64()
    : Sized_target<64, false>(&x86_64_info),
    : Sized_target<64, false>(&x86_64_info),
      got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
      got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
      got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
      got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
      rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
      rela_irelative_(NULL), copy_relocs_(elfcpp::R_X86_64_COPY),
      dynbss_(NULL), got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
      dynbss_(NULL), got_mod_index_offset_(-1U), tlsdesc_reloc_info_(),
      tls_base_symbol_defined_(false)
      tls_base_symbol_defined_(false)
  { }
  { }
 
 
  // Hook for a new output section.
  // Hook for a new output section.
  void
  void
  do_new_output_section(Output_section*) const;
  do_new_output_section(Output_section*) const;
 
 
  // Scan the relocations to look for symbol adjustments.
  // Scan the relocations to look for symbol adjustments.
  void
  void
  gc_process_relocs(Symbol_table* symtab,
  gc_process_relocs(Symbol_table* symtab,
                    Layout* layout,
                    Layout* layout,
                    Sized_relobj_file<64, false>* object,
                    Sized_relobj_file<64, false>* object,
                    unsigned int data_shndx,
                    unsigned int data_shndx,
                    unsigned int sh_type,
                    unsigned int sh_type,
                    const unsigned char* prelocs,
                    const unsigned char* prelocs,
                    size_t reloc_count,
                    size_t reloc_count,
                    Output_section* output_section,
                    Output_section* output_section,
                    bool needs_special_offset_handling,
                    bool needs_special_offset_handling,
                    size_t local_symbol_count,
                    size_t local_symbol_count,
                    const unsigned char* plocal_symbols);
                    const unsigned char* plocal_symbols);
 
 
  // Scan the relocations to look for symbol adjustments.
  // Scan the relocations to look for symbol adjustments.
  void
  void
  scan_relocs(Symbol_table* symtab,
  scan_relocs(Symbol_table* symtab,
              Layout* layout,
              Layout* layout,
              Sized_relobj_file<64, false>* object,
              Sized_relobj_file<64, false>* object,
              unsigned int data_shndx,
              unsigned int data_shndx,
              unsigned int sh_type,
              unsigned int sh_type,
              const unsigned char* prelocs,
              const unsigned char* prelocs,
              size_t reloc_count,
              size_t reloc_count,
              Output_section* output_section,
              Output_section* output_section,
              bool needs_special_offset_handling,
              bool needs_special_offset_handling,
              size_t local_symbol_count,
              size_t local_symbol_count,
              const unsigned char* plocal_symbols);
              const unsigned char* plocal_symbols);
 
 
  // Finalize the sections.
  // Finalize the sections.
  void
  void
  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
 
 
  // Return the value to use for a dynamic which requires special
  // Return the value to use for a dynamic which requires special
  // treatment.
  // treatment.
  uint64_t
  uint64_t
  do_dynsym_value(const Symbol*) const;
  do_dynsym_value(const Symbol*) const;
 
 
  // Relocate a section.
  // Relocate a section.
  void
  void
  relocate_section(const Relocate_info<64, false>*,
  relocate_section(const Relocate_info<64, false>*,
                   unsigned int sh_type,
                   unsigned int sh_type,
                   const unsigned char* prelocs,
                   const unsigned char* prelocs,
                   size_t reloc_count,
                   size_t reloc_count,
                   Output_section* output_section,
                   Output_section* output_section,
                   bool needs_special_offset_handling,
                   bool needs_special_offset_handling,
                   unsigned char* view,
                   unsigned char* view,
                   elfcpp::Elf_types<64>::Elf_Addr view_address,
                   elfcpp::Elf_types<64>::Elf_Addr view_address,
                   section_size_type view_size,
                   section_size_type view_size,
                   const Reloc_symbol_changes*);
                   const Reloc_symbol_changes*);
 
 
  // Scan the relocs during a relocatable link.
  // Scan the relocs during a relocatable link.
  void
  void
  scan_relocatable_relocs(Symbol_table* symtab,
  scan_relocatable_relocs(Symbol_table* symtab,
                          Layout* layout,
                          Layout* layout,
                          Sized_relobj_file<64, false>* object,
                          Sized_relobj_file<64, false>* object,
                          unsigned int data_shndx,
                          unsigned int data_shndx,
                          unsigned int sh_type,
                          unsigned int sh_type,
                          const unsigned char* prelocs,
                          const unsigned char* prelocs,
                          size_t reloc_count,
                          size_t reloc_count,
                          Output_section* output_section,
                          Output_section* output_section,
                          bool needs_special_offset_handling,
                          bool needs_special_offset_handling,
                          size_t local_symbol_count,
                          size_t local_symbol_count,
                          const unsigned char* plocal_symbols,
                          const unsigned char* plocal_symbols,
                          Relocatable_relocs*);
                          Relocatable_relocs*);
 
 
  // Relocate a section during a relocatable link.
  // Relocate a section during a relocatable link.
  void
  void
  relocate_for_relocatable(const Relocate_info<64, false>*,
  relocate_for_relocatable(const Relocate_info<64, false>*,
                           unsigned int sh_type,
                           unsigned int sh_type,
                           const unsigned char* prelocs,
                           const unsigned char* prelocs,
                           size_t reloc_count,
                           size_t reloc_count,
                           Output_section* output_section,
                           Output_section* output_section,
                           off_t offset_in_output_section,
                           off_t offset_in_output_section,
                           const Relocatable_relocs*,
                           const Relocatable_relocs*,
                           unsigned char* view,
                           unsigned char* view,
                           elfcpp::Elf_types<64>::Elf_Addr view_address,
                           elfcpp::Elf_types<64>::Elf_Addr view_address,
                           section_size_type view_size,
                           section_size_type view_size,
                           unsigned char* reloc_view,
                           unsigned char* reloc_view,
                           section_size_type reloc_view_size);
                           section_size_type reloc_view_size);
 
 
  // Return a string used to fill a code section with nops.
  // Return a string used to fill a code section with nops.
  std::string
  std::string
  do_code_fill(section_size_type length) const;
  do_code_fill(section_size_type length) const;
 
 
  // Return whether SYM is defined by the ABI.
  // Return whether SYM is defined by the ABI.
  bool
  bool
  do_is_defined_by_abi(const Symbol* sym) const
  do_is_defined_by_abi(const Symbol* sym) const
  { return strcmp(sym->name(), "__tls_get_addr") == 0; }
  { return strcmp(sym->name(), "__tls_get_addr") == 0; }
 
 
  // Return the symbol index to use for a target specific relocation.
  // Return the symbol index to use for a target specific relocation.
  // The only target specific relocation is R_X86_64_TLSDESC for a
  // The only target specific relocation is R_X86_64_TLSDESC for a
  // local symbol, which is an absolute reloc.
  // local symbol, which is an absolute reloc.
  unsigned int
  unsigned int
  do_reloc_symbol_index(void*, unsigned int r_type) const
  do_reloc_symbol_index(void*, unsigned int r_type) const
  {
  {
    gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
    gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
    return 0;
    return 0;
  }
  }
 
 
  // Return the addend to use for a target specific relocation.
  // Return the addend to use for a target specific relocation.
  uint64_t
  uint64_t
  do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
  do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
 
 
  // Return the PLT section.
  // Return the PLT section.
  uint64_t
  uint64_t
  do_plt_address_for_global(const Symbol* gsym) const
  do_plt_address_for_global(const Symbol* gsym) const
  { return this->plt_section()->address_for_global(gsym); }
  { return this->plt_section()->address_for_global(gsym); }
 
 
  uint64_t
  uint64_t
  do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
  do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
  { return this->plt_section()->address_for_local(relobj, symndx); }
  { return this->plt_section()->address_for_local(relobj, symndx); }
 
 
  // This function should be defined in targets that can use relocation
  // This function should be defined in targets that can use relocation
  // types to determine (implemented in local_reloc_may_be_function_pointer
  // types to determine (implemented in local_reloc_may_be_function_pointer
  // and global_reloc_may_be_function_pointer)
  // and global_reloc_may_be_function_pointer)
  // if a function's pointer is taken.  ICF uses this in safe mode to only
  // if a function's pointer is taken.  ICF uses this in safe mode to only
  // fold those functions whose pointer is defintely not taken.  For x86_64
  // fold those functions whose pointer is defintely not taken.  For x86_64
  // pie binaries, safe ICF cannot be done by looking at relocation types.
  // pie binaries, safe ICF cannot be done by looking at relocation types.
  bool
  bool
  do_can_check_for_function_pointers() const
  do_can_check_for_function_pointers() const
  { return !parameters->options().pie(); }
  { return !parameters->options().pie(); }
 
 
  // Return the base for a DW_EH_PE_datarel encoding.
  // Return the base for a DW_EH_PE_datarel encoding.
  uint64_t
  uint64_t
  do_ehframe_datarel_base() const;
  do_ehframe_datarel_base() const;
 
 
  // Adjust -fsplit-stack code which calls non-split-stack code.
  // Adjust -fsplit-stack code which calls non-split-stack code.
  void
  void
  do_calls_non_split(Relobj* object, unsigned int shndx,
  do_calls_non_split(Relobj* object, unsigned int shndx,
                     section_offset_type fnoffset, section_size_type fnsize,
                     section_offset_type fnoffset, section_size_type fnsize,
                     unsigned char* view, section_size_type view_size,
                     unsigned char* view, section_size_type view_size,
                     std::string* from, std::string* to) const;
                     std::string* from, std::string* to) const;
 
 
  // Return the size of the GOT section.
  // Return the size of the GOT section.
  section_size_type
  section_size_type
  got_size() const
  got_size() const
  {
  {
    gold_assert(this->got_ != NULL);
    gold_assert(this->got_ != NULL);
    return this->got_->data_size();
    return this->got_->data_size();
  }
  }
 
 
  // Return the number of entries in the GOT.
  // Return the number of entries in the GOT.
  unsigned int
  unsigned int
  got_entry_count() const
  got_entry_count() const
  {
  {
    if (this->got_ == NULL)
    if (this->got_ == NULL)
      return 0;
      return 0;
    return this->got_size() / 8;
    return this->got_size() / 8;
  }
  }
 
 
  // Return the number of entries in the PLT.
  // Return the number of entries in the PLT.
  unsigned int
  unsigned int
  plt_entry_count() const;
  plt_entry_count() const;
 
 
  // Return the offset of the first non-reserved PLT entry.
  // Return the offset of the first non-reserved PLT entry.
  unsigned int
  unsigned int
  first_plt_entry_offset() const;
  first_plt_entry_offset() const;
 
 
  // Return the size of each PLT entry.
  // Return the size of each PLT entry.
  unsigned int
  unsigned int
  plt_entry_size() const;
  plt_entry_size() const;
 
 
  // Create the GOT section for an incremental update.
  // Create the GOT section for an incremental update.
  Output_data_got<64, false>*
  Output_data_got<64, false>*
  init_got_plt_for_update(Symbol_table* symtab,
  init_got_plt_for_update(Symbol_table* symtab,
                          Layout* layout,
                          Layout* layout,
                          unsigned int got_count,
                          unsigned int got_count,
                          unsigned int plt_count);
                          unsigned int plt_count);
 
 
  // Reserve a GOT entry for a local symbol, and regenerate any
  // Reserve a GOT entry for a local symbol, and regenerate any
  // necessary dynamic relocations.
  // necessary dynamic relocations.
  void
  void
  reserve_local_got_entry(unsigned int got_index,
  reserve_local_got_entry(unsigned int got_index,
                          Sized_relobj<64, false>* obj,
                          Sized_relobj<64, false>* obj,
                          unsigned int r_sym,
                          unsigned int r_sym,
                          unsigned int got_type);
                          unsigned int got_type);
 
 
  // Reserve a GOT entry for a global symbol, and regenerate any
  // Reserve a GOT entry for a global symbol, and regenerate any
  // necessary dynamic relocations.
  // necessary dynamic relocations.
  void
  void
  reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
  reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
                           unsigned int got_type);
                           unsigned int got_type);
 
 
  // Register an existing PLT entry for a global symbol.
  // Register an existing PLT entry for a global symbol.
  void
  void
  register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
  register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
                            Symbol* gsym);
                            Symbol* gsym);
 
 
  // Force a COPY relocation for a given symbol.
  // Force a COPY relocation for a given symbol.
  void
  void
  emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
  emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
 
 
  // Apply an incremental relocation.
  // Apply an incremental relocation.
  void
  void
  apply_relocation(const Relocate_info<64, false>* relinfo,
  apply_relocation(const Relocate_info<64, false>* relinfo,
                   elfcpp::Elf_types<64>::Elf_Addr r_offset,
                   elfcpp::Elf_types<64>::Elf_Addr r_offset,
                   unsigned int r_type,
                   unsigned int r_type,
                   elfcpp::Elf_types<64>::Elf_Swxword r_addend,
                   elfcpp::Elf_types<64>::Elf_Swxword r_addend,
                   const Symbol* gsym,
                   const Symbol* gsym,
                   unsigned char* view,
                   unsigned char* view,
                   elfcpp::Elf_types<64>::Elf_Addr address,
                   elfcpp::Elf_types<64>::Elf_Addr address,
                   section_size_type view_size);
                   section_size_type view_size);
 
 
  // Add a new reloc argument, returning the index in the vector.
  // Add a new reloc argument, returning the index in the vector.
  size_t
  size_t
  add_tlsdesc_info(Sized_relobj_file<64, false>* object, unsigned int r_sym)
  add_tlsdesc_info(Sized_relobj_file<64, false>* object, unsigned int r_sym)
  {
  {
    this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
    this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
    return this->tlsdesc_reloc_info_.size() - 1;
    return this->tlsdesc_reloc_info_.size() - 1;
  }
  }
 
 
 private:
 private:
  // The class which scans relocations.
  // The class which scans relocations.
  class Scan
  class Scan
  {
  {
  public:
  public:
    Scan()
    Scan()
      : issued_non_pic_error_(false)
      : issued_non_pic_error_(false)
    { }
    { }
 
 
    static inline int
    static inline int
    get_reference_flags(unsigned int r_type);
    get_reference_flags(unsigned int r_type);
 
 
    inline void
    inline void
    local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
    local(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
          Sized_relobj_file<64, false>* object,
          Sized_relobj_file<64, false>* object,
          unsigned int data_shndx,
          unsigned int data_shndx,
          Output_section* output_section,
          Output_section* output_section,
          const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
          const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
          const elfcpp::Sym<64, false>& lsym);
          const elfcpp::Sym<64, false>& lsym);
 
 
    inline void
    inline void
    global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
    global(Symbol_table* symtab, Layout* layout, Target_x86_64* target,
           Sized_relobj_file<64, false>* object,
           Sized_relobj_file<64, false>* object,
           unsigned int data_shndx,
           unsigned int data_shndx,
           Output_section* output_section,
           Output_section* output_section,
           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
           const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
           Symbol* gsym);
           Symbol* gsym);
 
 
    inline bool
    inline bool
    local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
    local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
                                        Target_x86_64* target,
                                        Target_x86_64* target,
                                        Sized_relobj_file<64, false>* object,
                                        Sized_relobj_file<64, false>* object,
                                        unsigned int data_shndx,
                                        unsigned int data_shndx,
                                        Output_section* output_section,
                                        Output_section* output_section,
                                        const elfcpp::Rela<64, false>& reloc,
                                        const elfcpp::Rela<64, false>& reloc,
                                        unsigned int r_type,
                                        unsigned int r_type,
                                        const elfcpp::Sym<64, false>& lsym);
                                        const elfcpp::Sym<64, false>& lsym);
 
 
    inline bool
    inline bool
    global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
    global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
                                         Target_x86_64* target,
                                         Target_x86_64* target,
                                         Sized_relobj_file<64, false>* object,
                                         Sized_relobj_file<64, false>* object,
                                         unsigned int data_shndx,
                                         unsigned int data_shndx,
                                         Output_section* output_section,
                                         Output_section* output_section,
                                         const elfcpp::Rela<64, false>& reloc,
                                         const elfcpp::Rela<64, false>& reloc,
                                         unsigned int r_type,
                                         unsigned int r_type,
                                         Symbol* gsym);
                                         Symbol* gsym);
 
 
  private:
  private:
    static void
    static void
    unsupported_reloc_local(Sized_relobj_file<64, false>*, unsigned int r_type);
    unsupported_reloc_local(Sized_relobj_file<64, false>*, unsigned int r_type);
 
 
    static void
    static void
    unsupported_reloc_global(Sized_relobj_file<64, false>*, unsigned int r_type,
    unsupported_reloc_global(Sized_relobj_file<64, false>*, unsigned int r_type,
                             Symbol*);
                             Symbol*);
 
 
    void
    void
    check_non_pic(Relobj*, unsigned int r_type, Symbol*);
    check_non_pic(Relobj*, unsigned int r_type, Symbol*);
 
 
    inline bool
    inline bool
    possible_function_pointer_reloc(unsigned int r_type);
    possible_function_pointer_reloc(unsigned int r_type);
 
 
    bool
    bool
    reloc_needs_plt_for_ifunc(Sized_relobj_file<64, false>*,
    reloc_needs_plt_for_ifunc(Sized_relobj_file<64, false>*,
                              unsigned int r_type);
                              unsigned int r_type);
 
 
    // Whether we have issued an error about a non-PIC compilation.
    // Whether we have issued an error about a non-PIC compilation.
    bool issued_non_pic_error_;
    bool issued_non_pic_error_;
  };
  };
 
 
  // The class which implements relocation.
  // The class which implements relocation.
  class Relocate
  class Relocate
  {
  {
   public:
   public:
    Relocate()
    Relocate()
      : skip_call_tls_get_addr_(false)
      : skip_call_tls_get_addr_(false)
    { }
    { }
 
 
    ~Relocate()
    ~Relocate()
    {
    {
      if (this->skip_call_tls_get_addr_)
      if (this->skip_call_tls_get_addr_)
        {
        {
          // FIXME: This needs to specify the location somehow.
          // FIXME: This needs to specify the location somehow.
          gold_error(_("missing expected TLS relocation"));
          gold_error(_("missing expected TLS relocation"));
        }
        }
    }
    }
 
 
    // Do a relocation.  Return false if the caller should not issue
    // Do a relocation.  Return false if the caller should not issue
    // any warnings about this relocation.
    // any warnings about this relocation.
    inline bool
    inline bool
    relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
    relocate(const Relocate_info<64, false>*, Target_x86_64*, Output_section*,
             size_t relnum, const elfcpp::Rela<64, false>&,
             size_t relnum, const elfcpp::Rela<64, false>&,
             unsigned int r_type, const Sized_symbol<64>*,
             unsigned int r_type, const Sized_symbol<64>*,
             const Symbol_value<64>*,
             const Symbol_value<64>*,
             unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
             unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
             section_size_type);
             section_size_type);
 
 
   private:
   private:
    // Do a TLS relocation.
    // Do a TLS relocation.
    inline void
    inline void
    relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
    relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
                 size_t relnum, const elfcpp::Rela<64, false>&,
                 size_t relnum, const elfcpp::Rela<64, false>&,
                 unsigned int r_type, const Sized_symbol<64>*,
                 unsigned int r_type, const Sized_symbol<64>*,
                 const Symbol_value<64>*,
                 const Symbol_value<64>*,
                 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
                 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
                 section_size_type);
                 section_size_type);
 
 
    // Do a TLS General-Dynamic to Initial-Exec transition.
    // Do a TLS General-Dynamic to Initial-Exec transition.
    inline void
    inline void
    tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
    tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
                 Output_segment* tls_segment,
                 Output_segment* tls_segment,
                 const elfcpp::Rela<64, false>&, unsigned int r_type,
                 const elfcpp::Rela<64, false>&, unsigned int r_type,
                 elfcpp::Elf_types<64>::Elf_Addr value,
                 elfcpp::Elf_types<64>::Elf_Addr value,
                 unsigned char* view,
                 unsigned char* view,
                 elfcpp::Elf_types<64>::Elf_Addr,
                 elfcpp::Elf_types<64>::Elf_Addr,
                 section_size_type view_size);
                 section_size_type view_size);
 
 
    // Do a TLS General-Dynamic to Local-Exec transition.
    // Do a TLS General-Dynamic to Local-Exec transition.
    inline void
    inline void
    tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
    tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
                 Output_segment* tls_segment,
                 Output_segment* tls_segment,
                 const elfcpp::Rela<64, false>&, unsigned int r_type,
                 const elfcpp::Rela<64, false>&, unsigned int r_type,
                 elfcpp::Elf_types<64>::Elf_Addr value,
                 elfcpp::Elf_types<64>::Elf_Addr value,
                 unsigned char* view,
                 unsigned char* view,
                 section_size_type view_size);
                 section_size_type view_size);
 
 
    // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
    // Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
    inline void
    inline void
    tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
    tls_desc_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
                      Output_segment* tls_segment,
                      Output_segment* tls_segment,
                      const elfcpp::Rela<64, false>&, unsigned int r_type,
                      const elfcpp::Rela<64, false>&, unsigned int r_type,
                      elfcpp::Elf_types<64>::Elf_Addr value,
                      elfcpp::Elf_types<64>::Elf_Addr value,
                      unsigned char* view,
                      unsigned char* view,
                      elfcpp::Elf_types<64>::Elf_Addr,
                      elfcpp::Elf_types<64>::Elf_Addr,
                      section_size_type view_size);
                      section_size_type view_size);
 
 
    // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
    // Do a TLSDESC-style General-Dynamic to Local-Exec transition.
    inline void
    inline void
    tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
    tls_desc_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
                      Output_segment* tls_segment,
                      Output_segment* tls_segment,
                      const elfcpp::Rela<64, false>&, unsigned int r_type,
                      const elfcpp::Rela<64, false>&, unsigned int r_type,
                      elfcpp::Elf_types<64>::Elf_Addr value,
                      elfcpp::Elf_types<64>::Elf_Addr value,
                      unsigned char* view,
                      unsigned char* view,
                      section_size_type view_size);
                      section_size_type view_size);
 
 
    // Do a TLS Local-Dynamic to Local-Exec transition.
    // Do a TLS Local-Dynamic to Local-Exec transition.
    inline void
    inline void
    tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
    tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
                 Output_segment* tls_segment,
                 Output_segment* tls_segment,
                 const elfcpp::Rela<64, false>&, unsigned int r_type,
                 const elfcpp::Rela<64, false>&, unsigned int r_type,
                 elfcpp::Elf_types<64>::Elf_Addr value,
                 elfcpp::Elf_types<64>::Elf_Addr value,
                 unsigned char* view,
                 unsigned char* view,
                 section_size_type view_size);
                 section_size_type view_size);
 
 
    // Do a TLS Initial-Exec to Local-Exec transition.
    // Do a TLS Initial-Exec to Local-Exec transition.
    static inline void
    static inline void
    tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
    tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
                 Output_segment* tls_segment,
                 Output_segment* tls_segment,
                 const elfcpp::Rela<64, false>&, unsigned int r_type,
                 const elfcpp::Rela<64, false>&, unsigned int r_type,
                 elfcpp::Elf_types<64>::Elf_Addr value,
                 elfcpp::Elf_types<64>::Elf_Addr value,
                 unsigned char* view,
                 unsigned char* view,
                 section_size_type view_size);
                 section_size_type view_size);
 
 
    // This is set if we should skip the next reloc, which should be a
    // This is set if we should skip the next reloc, which should be a
    // PLT32 reloc against ___tls_get_addr.
    // PLT32 reloc against ___tls_get_addr.
    bool skip_call_tls_get_addr_;
    bool skip_call_tls_get_addr_;
  };
  };
 
 
  // A class which returns the size required for a relocation type,
  // A class which returns the size required for a relocation type,
  // used while scanning relocs during a relocatable link.
  // used while scanning relocs during a relocatable link.
  class Relocatable_size_for_reloc
  class Relocatable_size_for_reloc
  {
  {
   public:
   public:
    unsigned int
    unsigned int
    get_size_for_reloc(unsigned int, Relobj*);
    get_size_for_reloc(unsigned int, Relobj*);
  };
  };
 
 
  // Adjust TLS relocation type based on the options and whether this
  // Adjust TLS relocation type based on the options and whether this
  // is a local symbol.
  // is a local symbol.
  static tls::Tls_optimization
  static tls::Tls_optimization
  optimize_tls_reloc(bool is_final, int r_type);
  optimize_tls_reloc(bool is_final, int r_type);
 
 
  // Get the GOT section, creating it if necessary.
  // Get the GOT section, creating it if necessary.
  Output_data_got<64, false>*
  Output_data_got<64, false>*
  got_section(Symbol_table*, Layout*);
  got_section(Symbol_table*, Layout*);
 
 
  // Get the GOT PLT section.
  // Get the GOT PLT section.
  Output_data_space*
  Output_data_space*
  got_plt_section() const
  got_plt_section() const
  {
  {
    gold_assert(this->got_plt_ != NULL);
    gold_assert(this->got_plt_ != NULL);
    return this->got_plt_;
    return this->got_plt_;
  }
  }
 
 
  // Get the GOT section for TLSDESC entries.
  // Get the GOT section for TLSDESC entries.
  Output_data_got<64, false>*
  Output_data_got<64, false>*
  got_tlsdesc_section() const
  got_tlsdesc_section() const
  {
  {
    gold_assert(this->got_tlsdesc_ != NULL);
    gold_assert(this->got_tlsdesc_ != NULL);
    return this->got_tlsdesc_;
    return this->got_tlsdesc_;
  }
  }
 
 
  // Create the PLT section.
  // Create the PLT section.
  void
  void
  make_plt_section(Symbol_table* symtab, Layout* layout);
  make_plt_section(Symbol_table* symtab, Layout* layout);
 
 
  // Create a PLT entry for a global symbol.
  // Create a PLT entry for a global symbol.
  void
  void
  make_plt_entry(Symbol_table*, Layout*, Symbol*);
  make_plt_entry(Symbol_table*, Layout*, Symbol*);
 
 
  // Create a PLT entry for a local STT_GNU_IFUNC symbol.
  // Create a PLT entry for a local STT_GNU_IFUNC symbol.
  void
  void
  make_local_ifunc_plt_entry(Symbol_table*, Layout*,
  make_local_ifunc_plt_entry(Symbol_table*, Layout*,
                             Sized_relobj_file<64, false>* relobj,
                             Sized_relobj_file<64, false>* relobj,
                             unsigned int local_sym_index);
                             unsigned int local_sym_index);
 
 
  // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
  // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
  void
  void
  define_tls_base_symbol(Symbol_table*, Layout*);
  define_tls_base_symbol(Symbol_table*, Layout*);
 
 
  // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
  // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
  void
  void
  reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
  reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
 
 
  // Create a GOT entry for the TLS module index.
  // Create a GOT entry for the TLS module index.
  unsigned int
  unsigned int
  got_mod_index_entry(Symbol_table* symtab, Layout* layout,
  got_mod_index_entry(Symbol_table* symtab, Layout* layout,
                      Sized_relobj_file<64, false>* object);
                      Sized_relobj_file<64, false>* object);
 
 
  // Get the PLT section.
  // Get the PLT section.
  Output_data_plt_x86_64*
  Output_data_plt_x86_64*
  plt_section() const
  plt_section() const
  {
  {
    gold_assert(this->plt_ != NULL);
    gold_assert(this->plt_ != NULL);
    return this->plt_;
    return this->plt_;
  }
  }
 
 
  // Get the dynamic reloc section, creating it if necessary.
  // Get the dynamic reloc section, creating it if necessary.
  Reloc_section*
  Reloc_section*
  rela_dyn_section(Layout*);
  rela_dyn_section(Layout*);
 
 
  // Get the section to use for TLSDESC relocations.
  // Get the section to use for TLSDESC relocations.
  Reloc_section*
  Reloc_section*
  rela_tlsdesc_section(Layout*) const;
  rela_tlsdesc_section(Layout*) const;
 
 
  // Get the section to use for IRELATIVE relocations.
  // Get the section to use for IRELATIVE relocations.
  Reloc_section*
  Reloc_section*
  rela_irelative_section(Layout*);
  rela_irelative_section(Layout*);
 
 
  // Add a potential copy relocation.
  // Add a potential copy relocation.
  void
  void
  copy_reloc(Symbol_table* symtab, Layout* layout,
  copy_reloc(Symbol_table* symtab, Layout* layout,
             Sized_relobj_file<64, false>* object,
             Sized_relobj_file<64, false>* object,
             unsigned int shndx, Output_section* output_section,
             unsigned int shndx, Output_section* output_section,
             Symbol* sym, const elfcpp::Rela<64, false>& reloc)
             Symbol* sym, const elfcpp::Rela<64, false>& reloc)
  {
  {
    this->copy_relocs_.copy_reloc(symtab, layout,
    this->copy_relocs_.copy_reloc(symtab, layout,
                                  symtab->get_sized_symbol<64>(sym),
                                  symtab->get_sized_symbol<64>(sym),
                                  object, shndx, output_section,
                                  object, shndx, output_section,
                                  reloc, this->rela_dyn_section(layout));
                                  reloc, this->rela_dyn_section(layout));
  }
  }
 
 
  // Information about this specific target which we pass to the
  // Information about this specific target which we pass to the
  // general Target structure.
  // general Target structure.
  static const Target::Target_info x86_64_info;
  static const Target::Target_info x86_64_info;
 
 
  // The types of GOT entries needed for this platform.
  // The types of GOT entries needed for this platform.
  // These values are exposed to the ABI in an incremental link.
  // These values are exposed to the ABI in an incremental link.
  // Do not renumber existing values without changing the version
  // Do not renumber existing values without changing the version
  // number of the .gnu_incremental_inputs section.
  // number of the .gnu_incremental_inputs section.
  enum Got_type
  enum Got_type
  {
  {
    GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
    GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
    GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
    GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
    GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
    GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
    GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
    GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
  };
  };
 
 
  // This type is used as the argument to the target specific
  // This type is used as the argument to the target specific
  // relocation routines.  The only target specific reloc is
  // relocation routines.  The only target specific reloc is
  // R_X86_64_TLSDESC against a local symbol.
  // R_X86_64_TLSDESC against a local symbol.
  struct Tlsdesc_info
  struct Tlsdesc_info
  {
  {
    Tlsdesc_info(Sized_relobj_file<64, false>* a_object, unsigned int a_r_sym)
    Tlsdesc_info(Sized_relobj_file<64, false>* a_object, unsigned int a_r_sym)
      : object(a_object), r_sym(a_r_sym)
      : object(a_object), r_sym(a_r_sym)
    { }
    { }
 
 
    // The object in which the local symbol is defined.
    // The object in which the local symbol is defined.
    Sized_relobj_file<64, false>* object;
    Sized_relobj_file<64, false>* object;
    // The local symbol index in the object.
    // The local symbol index in the object.
    unsigned int r_sym;
    unsigned int r_sym;
  };
  };
 
 
  // The GOT section.
  // The GOT section.
  Output_data_got<64, false>* got_;
  Output_data_got<64, false>* got_;
  // The PLT section.
  // The PLT section.
  Output_data_plt_x86_64* plt_;
  Output_data_plt_x86_64* plt_;
  // The GOT PLT section.
  // The GOT PLT section.
  Output_data_space* got_plt_;
  Output_data_space* got_plt_;
  // The GOT section for IRELATIVE relocations.
  // The GOT section for IRELATIVE relocations.
  Output_data_space* got_irelative_;
  Output_data_space* got_irelative_;
  // The GOT section for TLSDESC relocations.
  // The GOT section for TLSDESC relocations.
  Output_data_got<64, false>* got_tlsdesc_;
  Output_data_got<64, false>* got_tlsdesc_;
  // The _GLOBAL_OFFSET_TABLE_ symbol.
  // The _GLOBAL_OFFSET_TABLE_ symbol.
  Symbol* global_offset_table_;
  Symbol* global_offset_table_;
  // The dynamic reloc section.
  // The dynamic reloc section.
  Reloc_section* rela_dyn_;
  Reloc_section* rela_dyn_;
  // The section to use for IRELATIVE relocs.
  // The section to use for IRELATIVE relocs.
  Reloc_section* rela_irelative_;
  Reloc_section* rela_irelative_;
  // Relocs saved to avoid a COPY reloc.
  // Relocs saved to avoid a COPY reloc.
  Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
  Copy_relocs<elfcpp::SHT_RELA, 64, false> copy_relocs_;
  // Space for variables copied with a COPY reloc.
  // Space for variables copied with a COPY reloc.
  Output_data_space* dynbss_;
  Output_data_space* dynbss_;
  // Offset of the GOT entry for the TLS module index.
  // Offset of the GOT entry for the TLS module index.
  unsigned int got_mod_index_offset_;
  unsigned int got_mod_index_offset_;
  // We handle R_X86_64_TLSDESC against a local symbol as a target
  // We handle R_X86_64_TLSDESC against a local symbol as a target
  // specific relocation.  Here we store the object and local symbol
  // specific relocation.  Here we store the object and local symbol
  // index for the relocation.
  // index for the relocation.
  std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
  std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
  // True if the _TLS_MODULE_BASE_ symbol has been defined.
  // True if the _TLS_MODULE_BASE_ symbol has been defined.
  bool tls_base_symbol_defined_;
  bool tls_base_symbol_defined_;
};
};
 
 
const Target::Target_info Target_x86_64::x86_64_info =
const Target::Target_info Target_x86_64::x86_64_info =
{
{
  64,                   // size
  64,                   // size
  false,                // is_big_endian
  false,                // is_big_endian
  elfcpp::EM_X86_64,    // machine_code
  elfcpp::EM_X86_64,    // machine_code
  false,                // has_make_symbol
  false,                // has_make_symbol
  false,                // has_resolve
  false,                // has_resolve
  true,                 // has_code_fill
  true,                 // has_code_fill
  true,                 // is_default_stack_executable
  true,                 // is_default_stack_executable
  true,                 // can_icf_inline_merge_sections
  true,                 // can_icf_inline_merge_sections
  '\0',                 // wrap_char
  '\0',                 // wrap_char
  "/lib/ld64.so.1",     // program interpreter
  "/lib/ld64.so.1",     // program interpreter
  0x400000,             // default_text_segment_address
  0x400000,             // default_text_segment_address
  0x1000,               // abi_pagesize (overridable by -z max-page-size)
  0x1000,               // abi_pagesize (overridable by -z max-page-size)
  0x1000,               // common_pagesize (overridable by -z common-page-size)
  0x1000,               // common_pagesize (overridable by -z common-page-size)
  elfcpp::SHN_UNDEF,    // small_common_shndx
  elfcpp::SHN_UNDEF,    // small_common_shndx
  elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
  elfcpp::SHN_X86_64_LCOMMON,   // large_common_shndx
  0,                     // small_common_section_flags
  0,                     // small_common_section_flags
  elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
  elfcpp::SHF_X86_64_LARGE,     // large_common_section_flags
  NULL,                 // attributes_section
  NULL,                 // attributes_section
  NULL                  // attributes_vendor
  NULL                  // attributes_vendor
};
};
 
 
// This is called when a new output section is created.  This is where
// This is called when a new output section is created.  This is where
// we handle the SHF_X86_64_LARGE.
// we handle the SHF_X86_64_LARGE.
 
 
void
void
Target_x86_64::do_new_output_section(Output_section* os) const
Target_x86_64::do_new_output_section(Output_section* os) const
{
{
  if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
  if ((os->flags() & elfcpp::SHF_X86_64_LARGE) != 0)
    os->set_is_large_section();
    os->set_is_large_section();
}
}
 
 
// Get the GOT section, creating it if necessary.
// Get the GOT section, creating it if necessary.
 
 
Output_data_got<64, false>*
Output_data_got<64, false>*
Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
{
{
  if (this->got_ == NULL)
  if (this->got_ == NULL)
    {
    {
      gold_assert(symtab != NULL && layout != NULL);
      gold_assert(symtab != NULL && layout != NULL);
 
 
      // When using -z now, we can treat .got.plt as a relro section.
      // When using -z now, we can treat .got.plt as a relro section.
      // Without -z now, it is modified after program startup by lazy
      // Without -z now, it is modified after program startup by lazy
      // PLT relocations.
      // PLT relocations.
      bool is_got_plt_relro = parameters->options().now();
      bool is_got_plt_relro = parameters->options().now();
      Output_section_order got_order = (is_got_plt_relro
      Output_section_order got_order = (is_got_plt_relro
                                        ? ORDER_RELRO
                                        ? ORDER_RELRO
                                        : ORDER_RELRO_LAST);
                                        : ORDER_RELRO_LAST);
      Output_section_order got_plt_order = (is_got_plt_relro
      Output_section_order got_plt_order = (is_got_plt_relro
                                            ? ORDER_RELRO
                                            ? ORDER_RELRO
                                            : ORDER_NON_RELRO_FIRST);
                                            : ORDER_NON_RELRO_FIRST);
 
 
      this->got_ = new Output_data_got<64, false>();
      this->got_ = new Output_data_got<64, false>();
 
 
      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_WRITE),
                                       | elfcpp::SHF_WRITE),
                                      this->got_, got_order, true);
                                      this->got_, got_order, true);
 
 
      this->got_plt_ = new Output_data_space(8, "** GOT PLT");
      this->got_plt_ = new Output_data_space(8, "** GOT PLT");
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_WRITE),
                                       | elfcpp::SHF_WRITE),
                                      this->got_plt_, got_plt_order,
                                      this->got_plt_, got_plt_order,
                                      is_got_plt_relro);
                                      is_got_plt_relro);
 
 
      // The first three entries are reserved.
      // The first three entries are reserved.
      this->got_plt_->set_current_data_size(3 * 8);
      this->got_plt_->set_current_data_size(3 * 8);
 
 
      if (!is_got_plt_relro)
      if (!is_got_plt_relro)
        {
        {
          // Those bytes can go into the relro segment.
          // Those bytes can go into the relro segment.
          layout->increase_relro(3 * 8);
          layout->increase_relro(3 * 8);
        }
        }
 
 
      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
      // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
      this->global_offset_table_ =
      this->global_offset_table_ =
        symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
        symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
                                      Symbol_table::PREDEFINED,
                                      Symbol_table::PREDEFINED,
                                      this->got_plt_,
                                      this->got_plt_,
                                      0, 0, elfcpp::STT_OBJECT,
                                      0, 0, elfcpp::STT_OBJECT,
                                      elfcpp::STB_LOCAL,
                                      elfcpp::STB_LOCAL,
                                      elfcpp::STV_HIDDEN, 0,
                                      elfcpp::STV_HIDDEN, 0,
                                      false, false);
                                      false, false);
 
 
      // If there are any IRELATIVE relocations, they get GOT entries
      // If there are any IRELATIVE relocations, they get GOT entries
      // in .got.plt after the jump slot entries.
      // in .got.plt after the jump slot entries.
      this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
      this->got_irelative_ = new Output_data_space(8, "** GOT IRELATIVE PLT");
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_WRITE),
                                       | elfcpp::SHF_WRITE),
                                      this->got_irelative_,
                                      this->got_irelative_,
                                      got_plt_order, is_got_plt_relro);
                                      got_plt_order, is_got_plt_relro);
 
 
      // If there are any TLSDESC relocations, they get GOT entries in
      // If there are any TLSDESC relocations, they get GOT entries in
      // .got.plt after the jump slot and IRELATIVE entries.
      // .got.plt after the jump slot and IRELATIVE entries.
      this->got_tlsdesc_ = new Output_data_got<64, false>();
      this->got_tlsdesc_ = new Output_data_got<64, false>();
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_WRITE),
                                       | elfcpp::SHF_WRITE),
                                      this->got_tlsdesc_,
                                      this->got_tlsdesc_,
                                      got_plt_order, is_got_plt_relro);
                                      got_plt_order, is_got_plt_relro);
    }
    }
 
 
  return this->got_;
  return this->got_;
}
}
 
 
// Get the dynamic reloc section, creating it if necessary.
// Get the dynamic reloc section, creating it if necessary.
 
 
Target_x86_64::Reloc_section*
Target_x86_64::Reloc_section*
Target_x86_64::rela_dyn_section(Layout* layout)
Target_x86_64::rela_dyn_section(Layout* layout)
{
{
  if (this->rela_dyn_ == NULL)
  if (this->rela_dyn_ == NULL)
    {
    {
      gold_assert(layout != NULL);
      gold_assert(layout != NULL);
      this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
      this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
                                      elfcpp::SHF_ALLOC, this->rela_dyn_,
                                      elfcpp::SHF_ALLOC, this->rela_dyn_,
                                      ORDER_DYNAMIC_RELOCS, false);
                                      ORDER_DYNAMIC_RELOCS, false);
    }
    }
  return this->rela_dyn_;
  return this->rela_dyn_;
}
}
 
 
// Get the section to use for IRELATIVE relocs, creating it if
// Get the section to use for IRELATIVE relocs, creating it if
// necessary.  These go in .rela.dyn, but only after all other dynamic
// necessary.  These go in .rela.dyn, but only after all other dynamic
// relocations.  They need to follow the other dynamic relocations so
// relocations.  They need to follow the other dynamic relocations so
// that they can refer to global variables initialized by those
// that they can refer to global variables initialized by those
// relocs.
// relocs.
 
 
Target_x86_64::Reloc_section*
Target_x86_64::Reloc_section*
Target_x86_64::rela_irelative_section(Layout* layout)
Target_x86_64::rela_irelative_section(Layout* layout)
{
{
  if (this->rela_irelative_ == NULL)
  if (this->rela_irelative_ == NULL)
    {
    {
      // Make sure we have already created the dynamic reloc section.
      // Make sure we have already created the dynamic reloc section.
      this->rela_dyn_section(layout);
      this->rela_dyn_section(layout);
      this->rela_irelative_ = new Reloc_section(false);
      this->rela_irelative_ = new Reloc_section(false);
      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
      layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
                                      elfcpp::SHF_ALLOC, this->rela_irelative_,
                                      elfcpp::SHF_ALLOC, this->rela_irelative_,
                                      ORDER_DYNAMIC_RELOCS, false);
                                      ORDER_DYNAMIC_RELOCS, false);
      gold_assert(this->rela_dyn_->output_section()
      gold_assert(this->rela_dyn_->output_section()
                  == this->rela_irelative_->output_section());
                  == this->rela_irelative_->output_section());
    }
    }
  return this->rela_irelative_;
  return this->rela_irelative_;
}
}
 
 
// Initialize the PLT section.
// Initialize the PLT section.
 
 
void
void
Output_data_plt_x86_64::init(Layout* layout)
Output_data_plt_x86_64::init(Layout* layout)
{
{
  this->rel_ = new Reloc_section(false);
  this->rel_ = new Reloc_section(false);
  layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
  layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
                                  elfcpp::SHF_ALLOC, this->rel_,
                                  elfcpp::SHF_ALLOC, this->rel_,
                                  ORDER_DYNAMIC_PLT_RELOCS, false);
                                  ORDER_DYNAMIC_PLT_RELOCS, false);
 
 
  // Add unwind information if requested.
  // Add unwind information if requested.
  if (parameters->options().ld_generated_unwind_info())
  if (parameters->options().ld_generated_unwind_info())
    layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
    layout->add_eh_frame_for_plt(this, plt_eh_frame_cie, plt_eh_frame_cie_size,
                                 plt_eh_frame_fde, plt_eh_frame_fde_size);
                                 plt_eh_frame_fde, plt_eh_frame_fde_size);
}
}
 
 
void
void
Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
{
{
  os->set_entsize(plt_entry_size);
  os->set_entsize(plt_entry_size);
}
}
 
 
// Add an entry to the PLT.
// Add an entry to the PLT.
 
 
void
void
Output_data_plt_x86_64::add_entry(Symbol_table* symtab, Layout* layout,
Output_data_plt_x86_64::add_entry(Symbol_table* symtab, Layout* layout,
                                  Symbol* gsym)
                                  Symbol* gsym)
{
{
  gold_assert(!gsym->has_plt_offset());
  gold_assert(!gsym->has_plt_offset());
 
 
  unsigned int plt_index;
  unsigned int plt_index;
  off_t plt_offset;
  off_t plt_offset;
  section_offset_type got_offset;
  section_offset_type got_offset;
 
 
  unsigned int* pcount;
  unsigned int* pcount;
  unsigned int offset;
  unsigned int offset;
  unsigned int reserved;
  unsigned int reserved;
  Output_data_space* got;
  Output_data_space* got;
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && gsym->can_use_relative_reloc(false))
      && gsym->can_use_relative_reloc(false))
    {
    {
      pcount = &this->irelative_count_;
      pcount = &this->irelative_count_;
      offset = 0;
      offset = 0;
      reserved = 0;
      reserved = 0;
      got = this->got_irelative_;
      got = this->got_irelative_;
    }
    }
  else
  else
    {
    {
      pcount = &this->count_;
      pcount = &this->count_;
      offset = 1;
      offset = 1;
      reserved = 3;
      reserved = 3;
      got = this->got_plt_;
      got = this->got_plt_;
    }
    }
 
 
  if (!this->is_data_size_valid())
  if (!this->is_data_size_valid())
    {
    {
      // Note that when setting the PLT offset for a non-IRELATIVE
      // Note that when setting the PLT offset for a non-IRELATIVE
      // entry we skip the initial reserved PLT entry.
      // entry we skip the initial reserved PLT entry.
      plt_index = *pcount + offset;
      plt_index = *pcount + offset;
      plt_offset = plt_index * plt_entry_size;
      plt_offset = plt_index * plt_entry_size;
 
 
      ++*pcount;
      ++*pcount;
 
 
      got_offset = (plt_index - offset + reserved) * 8;
      got_offset = (plt_index - offset + reserved) * 8;
      gold_assert(got_offset == got->current_data_size());
      gold_assert(got_offset == got->current_data_size());
 
 
      // Every PLT entry needs a GOT entry which points back to the PLT
      // Every PLT entry needs a GOT entry which points back to the PLT
      // entry (this will be changed by the dynamic linker, normally
      // entry (this will be changed by the dynamic linker, normally
      // lazily when the function is called).
      // lazily when the function is called).
      got->set_current_data_size(got_offset + 8);
      got->set_current_data_size(got_offset + 8);
    }
    }
  else
  else
    {
    {
      // FIXME: This is probably not correct for IRELATIVE relocs.
      // FIXME: This is probably not correct for IRELATIVE relocs.
 
 
      // For incremental updates, find an available slot.
      // For incremental updates, find an available slot.
      plt_offset = this->free_list_.allocate(plt_entry_size, plt_entry_size, 0);
      plt_offset = this->free_list_.allocate(plt_entry_size, plt_entry_size, 0);
      if (plt_offset == -1)
      if (plt_offset == -1)
        gold_fallback(_("out of patch space (PLT);"
        gold_fallback(_("out of patch space (PLT);"
                        " relink with --incremental-full"));
                        " relink with --incremental-full"));
 
 
      // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
      // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
      // can be calculated from the PLT index, adjusting for the three
      // can be calculated from the PLT index, adjusting for the three
      // reserved entries at the beginning of the GOT.
      // reserved entries at the beginning of the GOT.
      plt_index = plt_offset / plt_entry_size - 1;
      plt_index = plt_offset / plt_entry_size - 1;
      got_offset = (plt_index - offset + reserved) * 8;
      got_offset = (plt_index - offset + reserved) * 8;
    }
    }
 
 
  gsym->set_plt_offset(plt_offset);
  gsym->set_plt_offset(plt_offset);
 
 
  // Every PLT entry needs a reloc.
  // Every PLT entry needs a reloc.
  this->add_relocation(symtab, layout, gsym, got_offset);
  this->add_relocation(symtab, layout, gsym, got_offset);
 
 
  // Note that we don't need to save the symbol.  The contents of the
  // Note that we don't need to save the symbol.  The contents of the
  // PLT are independent of which symbols are used.  The symbols only
  // PLT are independent of which symbols are used.  The symbols only
  // appear in the relocations.
  // appear in the relocations.
}
}
 
 
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
// the PLT offset.
// the PLT offset.
 
 
unsigned int
unsigned int
Output_data_plt_x86_64::add_local_ifunc_entry(
Output_data_plt_x86_64::add_local_ifunc_entry(
    Symbol_table* symtab,
    Symbol_table* symtab,
    Layout* layout,
    Layout* layout,
    Sized_relobj_file<64, false>* relobj,
    Sized_relobj_file<64, false>* relobj,
    unsigned int local_sym_index)
    unsigned int local_sym_index)
{
{
  unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
  unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
  ++this->irelative_count_;
  ++this->irelative_count_;
 
 
  section_offset_type got_offset = this->got_irelative_->current_data_size();
  section_offset_type got_offset = this->got_irelative_->current_data_size();
 
 
  // Every PLT entry needs a GOT entry which points back to the PLT
  // Every PLT entry needs a GOT entry which points back to the PLT
  // entry.
  // entry.
  this->got_irelative_->set_current_data_size(got_offset + 8);
  this->got_irelative_->set_current_data_size(got_offset + 8);
 
 
  // Every PLT entry needs a reloc.
  // Every PLT entry needs a reloc.
  Reloc_section* rela = this->rela_irelative(symtab, layout);
  Reloc_section* rela = this->rela_irelative(symtab, layout);
  rela->add_symbolless_local_addend(relobj, local_sym_index,
  rela->add_symbolless_local_addend(relobj, local_sym_index,
                                    elfcpp::R_X86_64_IRELATIVE,
                                    elfcpp::R_X86_64_IRELATIVE,
                                    this->got_irelative_, got_offset, 0);
                                    this->got_irelative_, got_offset, 0);
 
 
  return plt_offset;
  return plt_offset;
}
}
 
 
// Add the relocation for a PLT entry.
// Add the relocation for a PLT entry.
 
 
void
void
Output_data_plt_x86_64::add_relocation(Symbol_table* symtab, Layout* layout,
Output_data_plt_x86_64::add_relocation(Symbol_table* symtab, Layout* layout,
                                       Symbol* gsym, unsigned int got_offset)
                                       Symbol* gsym, unsigned int got_offset)
{
{
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && gsym->can_use_relative_reloc(false))
      && gsym->can_use_relative_reloc(false))
    {
    {
      Reloc_section* rela = this->rela_irelative(symtab, layout);
      Reloc_section* rela = this->rela_irelative(symtab, layout);
      rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
      rela->add_symbolless_global_addend(gsym, elfcpp::R_X86_64_IRELATIVE,
                                         this->got_irelative_, got_offset, 0);
                                         this->got_irelative_, got_offset, 0);
    }
    }
  else
  else
    {
    {
      gsym->set_needs_dynsym_entry();
      gsym->set_needs_dynsym_entry();
      this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
      this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
                             got_offset, 0);
                             got_offset, 0);
    }
    }
}
}
 
 
// Return where the TLSDESC relocations should go, creating it if
// Return where the TLSDESC relocations should go, creating it if
// necessary.  These follow the JUMP_SLOT relocations.
// necessary.  These follow the JUMP_SLOT relocations.
 
 
Output_data_plt_x86_64::Reloc_section*
Output_data_plt_x86_64::Reloc_section*
Output_data_plt_x86_64::rela_tlsdesc(Layout* layout)
Output_data_plt_x86_64::rela_tlsdesc(Layout* layout)
{
{
  if (this->tlsdesc_rel_ == NULL)
  if (this->tlsdesc_rel_ == NULL)
    {
    {
      this->tlsdesc_rel_ = new Reloc_section(false);
      this->tlsdesc_rel_ = new Reloc_section(false);
      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
                                      elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
                                      elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
      gold_assert(this->tlsdesc_rel_->output_section()
      gold_assert(this->tlsdesc_rel_->output_section()
                  == this->rel_->output_section());
                  == this->rel_->output_section());
    }
    }
  return this->tlsdesc_rel_;
  return this->tlsdesc_rel_;
}
}
 
 
// Return where the IRELATIVE relocations should go in the PLT.  These
// Return where the IRELATIVE relocations should go in the PLT.  These
// follow the JUMP_SLOT and the TLSDESC relocations.
// follow the JUMP_SLOT and the TLSDESC relocations.
 
 
Output_data_plt_x86_64::Reloc_section*
Output_data_plt_x86_64::Reloc_section*
Output_data_plt_x86_64::rela_irelative(Symbol_table* symtab, Layout* layout)
Output_data_plt_x86_64::rela_irelative(Symbol_table* symtab, Layout* layout)
{
{
  if (this->irelative_rel_ == NULL)
  if (this->irelative_rel_ == NULL)
    {
    {
      // Make sure we have a place for the TLSDESC relocations, in
      // Make sure we have a place for the TLSDESC relocations, in
      // case we see any later on.
      // case we see any later on.
      this->rela_tlsdesc(layout);
      this->rela_tlsdesc(layout);
      this->irelative_rel_ = new Reloc_section(false);
      this->irelative_rel_ = new Reloc_section(false);
      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
      layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
                                      elfcpp::SHF_ALLOC, this->irelative_rel_,
                                      elfcpp::SHF_ALLOC, this->irelative_rel_,
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
                                      ORDER_DYNAMIC_PLT_RELOCS, false);
      gold_assert(this->irelative_rel_->output_section()
      gold_assert(this->irelative_rel_->output_section()
                  == this->rel_->output_section());
                  == this->rel_->output_section());
 
 
      if (parameters->doing_static_link())
      if (parameters->doing_static_link())
        {
        {
          // A statically linked executable will only have a .rela.plt
          // A statically linked executable will only have a .rela.plt
          // section to hold R_X86_64_IRELATIVE relocs for
          // section to hold R_X86_64_IRELATIVE relocs for
          // STT_GNU_IFUNC symbols.  The library will use these
          // STT_GNU_IFUNC symbols.  The library will use these
          // symbols to locate the IRELATIVE relocs at program startup
          // symbols to locate the IRELATIVE relocs at program startup
          // time.
          // time.
          symtab->define_in_output_data("__rela_iplt_start", NULL,
          symtab->define_in_output_data("__rela_iplt_start", NULL,
                                        Symbol_table::PREDEFINED,
                                        Symbol_table::PREDEFINED,
                                        this->irelative_rel_, 0, 0,
                                        this->irelative_rel_, 0, 0,
                                        elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                        elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                        elfcpp::STV_HIDDEN, 0, false, true);
                                        elfcpp::STV_HIDDEN, 0, false, true);
          symtab->define_in_output_data("__rela_iplt_end", NULL,
          symtab->define_in_output_data("__rela_iplt_end", NULL,
                                        Symbol_table::PREDEFINED,
                                        Symbol_table::PREDEFINED,
                                        this->irelative_rel_, 0, 0,
                                        this->irelative_rel_, 0, 0,
                                        elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                        elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                        elfcpp::STV_HIDDEN, 0, true, true);
                                        elfcpp::STV_HIDDEN, 0, true, true);
        }
        }
    }
    }
  return this->irelative_rel_;
  return this->irelative_rel_;
}
}
 
 
// Return the PLT address to use for a global symbol.
// Return the PLT address to use for a global symbol.
 
 
uint64_t
uint64_t
Output_data_plt_x86_64::address_for_global(const Symbol* gsym)
Output_data_plt_x86_64::address_for_global(const Symbol* gsym)
{
{
  uint64_t offset = 0;
  uint64_t offset = 0;
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && gsym->can_use_relative_reloc(false))
      && gsym->can_use_relative_reloc(false))
    offset = (this->count_ + 1) * plt_entry_size;
    offset = (this->count_ + 1) * plt_entry_size;
  return this->address() + offset;
  return this->address() + offset;
}
}
 
 
// Return the PLT address to use for a local symbol.  These are always
// Return the PLT address to use for a local symbol.  These are always
// IRELATIVE relocs.
// IRELATIVE relocs.
 
 
uint64_t
uint64_t
Output_data_plt_x86_64::address_for_local(const Relobj*, unsigned int)
Output_data_plt_x86_64::address_for_local(const Relobj*, unsigned int)
{
{
  return this->address() + (this->count_ + 1) * plt_entry_size;
  return this->address() + (this->count_ + 1) * plt_entry_size;
}
}
 
 
// Set the final size.
// Set the final size.
void
void
Output_data_plt_x86_64::set_final_data_size()
Output_data_plt_x86_64::set_final_data_size()
{
{
  unsigned int count = this->count_ + this->irelative_count_;
  unsigned int count = this->count_ + this->irelative_count_;
  if (this->has_tlsdesc_entry())
  if (this->has_tlsdesc_entry())
    ++count;
    ++count;
  this->set_data_size((count + 1) * plt_entry_size);
  this->set_data_size((count + 1) * plt_entry_size);
}
}
 
 
// The first entry in the PLT for an executable.
// The first entry in the PLT for an executable.
 
 
const unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
const unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
{
{
  // From AMD64 ABI Draft 0.98, page 76
  // From AMD64 ABI Draft 0.98, page 76
  0xff, 0x35,   // pushq contents of memory address
  0xff, 0x35,   // pushq contents of memory address
  0, 0, 0, 0,       // replaced with address of .got + 8
  0, 0, 0, 0,       // replaced with address of .got + 8
  0xff, 0x25,   // jmp indirect
  0xff, 0x25,   // jmp indirect
  0, 0, 0, 0,       // replaced with address of .got + 16
  0, 0, 0, 0,       // replaced with address of .got + 16
  0x90, 0x90, 0x90, 0x90   // noop (x4)
  0x90, 0x90, 0x90, 0x90   // noop (x4)
};
};
 
 
// Subsequent entries in the PLT for an executable.
// Subsequent entries in the PLT for an executable.
 
 
const unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
const unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
{
{
  // From AMD64 ABI Draft 0.98, page 76
  // From AMD64 ABI Draft 0.98, page 76
  0xff, 0x25,   // jmpq indirect
  0xff, 0x25,   // jmpq indirect
  0, 0, 0, 0,       // replaced with address of symbol in .got
  0, 0, 0, 0,       // replaced with address of symbol in .got
  0x68,         // pushq immediate
  0x68,         // pushq immediate
  0, 0, 0, 0,       // replaced with offset into relocation table
  0, 0, 0, 0,       // replaced with offset into relocation table
  0xe9,         // jmpq relative
  0xe9,         // jmpq relative
  0, 0, 0, 0        // replaced with offset to start of .plt
  0, 0, 0, 0        // replaced with offset to start of .plt
};
};
 
 
// The reserved TLSDESC entry in the PLT for an executable.
// The reserved TLSDESC entry in the PLT for an executable.
 
 
const unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
const unsigned char Output_data_plt_x86_64::tlsdesc_plt_entry[plt_entry_size] =
{
{
  // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
  // From Alexandre Oliva, "Thread-Local Storage Descriptors for IA32
  // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
  // and AMD64/EM64T", Version 0.9.4 (2005-10-10).
  0xff, 0x35,   // pushq x(%rip)
  0xff, 0x35,   // pushq x(%rip)
  0, 0, 0, 0,       // replaced with address of linkmap GOT entry (at PLTGOT + 8)
  0, 0, 0, 0,       // replaced with address of linkmap GOT entry (at PLTGOT + 8)
  0xff, 0x25,   // jmpq *y(%rip)
  0xff, 0x25,   // jmpq *y(%rip)
  0, 0, 0, 0,       // replaced with offset of reserved TLSDESC_GOT entry
  0, 0, 0, 0,       // replaced with offset of reserved TLSDESC_GOT entry
  0x0f, 0x1f,   // nop
  0x0f, 0x1f,   // nop
  0x40, 0
  0x40, 0
};
};
 
 
// The .eh_frame unwind information for the PLT.
// The .eh_frame unwind information for the PLT.
 
 
const unsigned char
const unsigned char
Output_data_plt_x86_64::plt_eh_frame_cie[plt_eh_frame_cie_size] =
Output_data_plt_x86_64::plt_eh_frame_cie[plt_eh_frame_cie_size] =
{
{
  1,                            // CIE version.
  1,                            // CIE version.
  'z',                          // Augmentation: augmentation size included.
  'z',                          // Augmentation: augmentation size included.
  'R',                          // Augmentation: FDE encoding included.
  'R',                          // Augmentation: FDE encoding included.
  '\0',                         // End of augmentation string.
  '\0',                         // End of augmentation string.
  1,                            // Code alignment factor.
  1,                            // Code alignment factor.
  0x78,                         // Data alignment factor.
  0x78,                         // Data alignment factor.
  16,                           // Return address column.
  16,                           // Return address column.
  1,                            // Augmentation size.
  1,                            // Augmentation size.
  (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
  (elfcpp::DW_EH_PE_pcrel       // FDE encoding.
   | elfcpp::DW_EH_PE_sdata4),
   | elfcpp::DW_EH_PE_sdata4),
  elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
  elfcpp::DW_CFA_def_cfa, 7, 8, // DW_CFA_def_cfa: r7 (rsp) ofs 8.
  elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
  elfcpp::DW_CFA_offset + 16, 1,// DW_CFA_offset: r16 (rip) at cfa-8.
  elfcpp::DW_CFA_nop,           // Align to 16 bytes.
  elfcpp::DW_CFA_nop,           // Align to 16 bytes.
  elfcpp::DW_CFA_nop
  elfcpp::DW_CFA_nop
};
};
 
 
const unsigned char
const unsigned char
Output_data_plt_x86_64::plt_eh_frame_fde[plt_eh_frame_fde_size] =
Output_data_plt_x86_64::plt_eh_frame_fde[plt_eh_frame_fde_size] =
{
{
  0, 0, 0, 0,                               // Replaced with offset to .plt.
  0, 0, 0, 0,                               // Replaced with offset to .plt.
  0, 0, 0, 0,                               // Replaced with size of .plt.
  0, 0, 0, 0,                               // Replaced with size of .plt.
  0,                                     // Augmentation size.
  0,                                     // Augmentation size.
  elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
  elfcpp::DW_CFA_def_cfa_offset, 16,    // DW_CFA_def_cfa_offset: 16.
  elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
  elfcpp::DW_CFA_advance_loc + 6,       // Advance 6 to __PLT__ + 6.
  elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
  elfcpp::DW_CFA_def_cfa_offset, 24,    // DW_CFA_def_cfa_offset: 24.
  elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
  elfcpp::DW_CFA_advance_loc + 10,      // Advance 10 to __PLT__ + 16.
  elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
  elfcpp::DW_CFA_def_cfa_expression,    // DW_CFA_def_cfa_expression.
  11,                                   // Block length.
  11,                                   // Block length.
  elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
  elfcpp::DW_OP_breg7, 8,               // Push %rsp + 8.
  elfcpp::DW_OP_breg16, 0,               // Push %rip.
  elfcpp::DW_OP_breg16, 0,               // Push %rip.
  elfcpp::DW_OP_lit15,                  // Push 0xf.
  elfcpp::DW_OP_lit15,                  // Push 0xf.
  elfcpp::DW_OP_and,                    // & (%rip & 0xf).
  elfcpp::DW_OP_and,                    // & (%rip & 0xf).
  elfcpp::DW_OP_lit11,                  // Push 0xb.
  elfcpp::DW_OP_lit11,                  // Push 0xb.
  elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
  elfcpp::DW_OP_ge,                     // >= ((%rip & 0xf) >= 0xb)
  elfcpp::DW_OP_lit3,                   // Push 3.
  elfcpp::DW_OP_lit3,                   // Push 3.
  elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
  elfcpp::DW_OP_shl,                    // << (((%rip & 0xf) >= 0xb) << 3)
  elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
  elfcpp::DW_OP_plus,                   // + ((((%rip&0xf)>=0xb)<<3)+%rsp+8
  elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
  elfcpp::DW_CFA_nop,                   // Align to 32 bytes.
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop,
  elfcpp::DW_CFA_nop
  elfcpp::DW_CFA_nop
};
};
 
 
// Write out the PLT.  This uses the hand-coded instructions above,
// Write out the PLT.  This uses the hand-coded instructions above,
// and adjusts them as needed.  This is specified by the AMD64 ABI.
// and adjusts them as needed.  This is specified by the AMD64 ABI.
 
 
void
void
Output_data_plt_x86_64::do_write(Output_file* of)
Output_data_plt_x86_64::do_write(Output_file* of)
{
{
  const off_t offset = this->offset();
  const off_t offset = this->offset();
  const section_size_type oview_size =
  const section_size_type oview_size =
    convert_to_section_size_type(this->data_size());
    convert_to_section_size_type(this->data_size());
  unsigned char* const oview = of->get_output_view(offset, oview_size);
  unsigned char* const oview = of->get_output_view(offset, oview_size);
 
 
  const off_t got_file_offset = this->got_plt_->offset();
  const off_t got_file_offset = this->got_plt_->offset();
  gold_assert(parameters->incremental_update()
  gold_assert(parameters->incremental_update()
              || (got_file_offset + this->got_plt_->data_size()
              || (got_file_offset + this->got_plt_->data_size()
                  == this->got_irelative_->offset()));
                  == this->got_irelative_->offset()));
  const section_size_type got_size =
  const section_size_type got_size =
    convert_to_section_size_type(this->got_plt_->data_size()
    convert_to_section_size_type(this->got_plt_->data_size()
                                 + this->got_irelative_->data_size());
                                 + this->got_irelative_->data_size());
  unsigned char* const got_view = of->get_output_view(got_file_offset,
  unsigned char* const got_view = of->get_output_view(got_file_offset,
                                                      got_size);
                                                      got_size);
 
 
  unsigned char* pov = oview;
  unsigned char* pov = oview;
 
 
  // The base address of the .plt section.
  // The base address of the .plt section.
  elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
  elfcpp::Elf_types<64>::Elf_Addr plt_address = this->address();
  // The base address of the .got section.
  // The base address of the .got section.
  elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
  elfcpp::Elf_types<64>::Elf_Addr got_base = this->got_->address();
  // The base address of the PLT portion of the .got section,
  // The base address of the PLT portion of the .got section,
  // which is where the GOT pointer will point, and where the
  // which is where the GOT pointer will point, and where the
  // three reserved GOT entries are located.
  // three reserved GOT entries are located.
  elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
  elfcpp::Elf_types<64>::Elf_Addr got_address = this->got_plt_->address();
 
 
  memcpy(pov, first_plt_entry, plt_entry_size);
  memcpy(pov, first_plt_entry, plt_entry_size);
  // We do a jmp relative to the PC at the end of this instruction.
  // We do a jmp relative to the PC at the end of this instruction.
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
  elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
                                              (got_address + 8
                                              (got_address + 8
                                               - (plt_address + 6)));
                                               - (plt_address + 6)));
  elfcpp::Swap<32, false>::writeval(pov + 8,
  elfcpp::Swap<32, false>::writeval(pov + 8,
                                    (got_address + 16
                                    (got_address + 16
                                     - (plt_address + 12)));
                                     - (plt_address + 12)));
  pov += plt_entry_size;
  pov += plt_entry_size;
 
 
  unsigned char* got_pov = got_view;
  unsigned char* got_pov = got_view;
 
 
  // The first entry in the GOT is the address of the .dynamic section
  // The first entry in the GOT is the address of the .dynamic section
  // aka the PT_DYNAMIC segment.  The next two entries are reserved.
  // aka the PT_DYNAMIC segment.  The next two entries are reserved.
  // We saved space for them when we created the section in
  // We saved space for them when we created the section in
  // Target_x86_64::got_section.
  // Target_x86_64::got_section.
  Output_section* dynamic = this->layout_->dynamic_section();
  Output_section* dynamic = this->layout_->dynamic_section();
  uint32_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
  uint32_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
  elfcpp::Swap<64, false>::writeval(got_pov, dynamic_addr);
  elfcpp::Swap<64, false>::writeval(got_pov, dynamic_addr);
  got_pov += 8;
  got_pov += 8;
  memset(got_pov, 0, 16);
  memset(got_pov, 0, 16);
  got_pov += 16;
  got_pov += 16;
 
 
  unsigned int plt_offset = plt_entry_size;
  unsigned int plt_offset = plt_entry_size;
  unsigned int got_offset = 24;
  unsigned int got_offset = 24;
  const unsigned int count = this->count_ + this->irelative_count_;
  const unsigned int count = this->count_ + this->irelative_count_;
  for (unsigned int plt_index = 0;
  for (unsigned int plt_index = 0;
       plt_index < count;
       plt_index < count;
       ++plt_index,
       ++plt_index,
         pov += plt_entry_size,
         pov += plt_entry_size,
         got_pov += 8,
         got_pov += 8,
         plt_offset += plt_entry_size,
         plt_offset += plt_entry_size,
         got_offset += 8)
         got_offset += 8)
    {
    {
      // Set and adjust the PLT entry itself.
      // Set and adjust the PLT entry itself.
      memcpy(pov, plt_entry, plt_entry_size);
      memcpy(pov, plt_entry, plt_entry_size);
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
                                                  (got_address + got_offset
                                                  (got_address + got_offset
                                                   - (plt_address + plt_offset
                                                   - (plt_address + plt_offset
                                                      + 6)));
                                                      + 6)));
 
 
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
      elfcpp::Swap<32, false>::writeval(pov + 12,
      elfcpp::Swap<32, false>::writeval(pov + 12,
                                        - (plt_offset + plt_entry_size));
                                        - (plt_offset + plt_entry_size));
 
 
      // Set the entry in the GOT.
      // Set the entry in the GOT.
      elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
      elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
    }
    }
 
 
  if (this->has_tlsdesc_entry())
  if (this->has_tlsdesc_entry())
    {
    {
      // Set and adjust the reserved TLSDESC PLT entry.
      // Set and adjust the reserved TLSDESC PLT entry.
      unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
      unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
      memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
      memcpy(pov, tlsdesc_plt_entry, plt_entry_size);
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
                                                  (got_address + 8
                                                  (got_address + 8
                                                   - (plt_address + plt_offset
                                                   - (plt_address + plt_offset
                                                      + 6)));
                                                      + 6)));
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
      elfcpp::Swap_unaligned<32, false>::writeval(pov + 8,
                                                  (got_base
                                                  (got_base
                                                   + tlsdesc_got_offset
                                                   + tlsdesc_got_offset
                                                   - (plt_address + plt_offset
                                                   - (plt_address + plt_offset
                                                      + 12)));
                                                      + 12)));
      pov += plt_entry_size;
      pov += plt_entry_size;
    }
    }
 
 
  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
  gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
  gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
 
 
  of->write_output_view(offset, oview_size, oview);
  of->write_output_view(offset, oview_size, oview);
  of->write_output_view(got_file_offset, got_size, got_view);
  of->write_output_view(got_file_offset, got_size, got_view);
}
}
 
 
// Create the PLT section.
// Create the PLT section.
 
 
void
void
Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
Target_x86_64::make_plt_section(Symbol_table* symtab, Layout* layout)
{
{
  if (this->plt_ == NULL)
  if (this->plt_ == NULL)
    {
    {
      // Create the GOT sections first.
      // Create the GOT sections first.
      this->got_section(symtab, layout);
      this->got_section(symtab, layout);
 
 
      this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
      this->plt_ = new Output_data_plt_x86_64(layout, this->got_,
                                              this->got_plt_,
                                              this->got_plt_,
                                              this->got_irelative_);
                                              this->got_irelative_);
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
      layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_EXECINSTR),
                                       | elfcpp::SHF_EXECINSTR),
                                      this->plt_, ORDER_PLT, false);
                                      this->plt_, ORDER_PLT, false);
 
 
      // Make the sh_info field of .rela.plt point to .plt.
      // Make the sh_info field of .rela.plt point to .plt.
      Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
      Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
      rela_plt_os->set_info_section(this->plt_->output_section());
      rela_plt_os->set_info_section(this->plt_->output_section());
    }
    }
}
}
 
 
// Return the section for TLSDESC relocations.
// Return the section for TLSDESC relocations.
 
 
Target_x86_64::Reloc_section*
Target_x86_64::Reloc_section*
Target_x86_64::rela_tlsdesc_section(Layout* layout) const
Target_x86_64::rela_tlsdesc_section(Layout* layout) const
{
{
  return this->plt_section()->rela_tlsdesc(layout);
  return this->plt_section()->rela_tlsdesc(layout);
}
}
 
 
// Create a PLT entry for a global symbol.
// Create a PLT entry for a global symbol.
 
 
void
void
Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
                              Symbol* gsym)
                              Symbol* gsym)
{
{
  if (gsym->has_plt_offset())
  if (gsym->has_plt_offset())
    return;
    return;
 
 
  if (this->plt_ == NULL)
  if (this->plt_ == NULL)
    this->make_plt_section(symtab, layout);
    this->make_plt_section(symtab, layout);
 
 
  this->plt_->add_entry(symtab, layout, gsym);
  this->plt_->add_entry(symtab, layout, gsym);
}
}
 
 
// Make a PLT entry for a local STT_GNU_IFUNC symbol.
// Make a PLT entry for a local STT_GNU_IFUNC symbol.
 
 
void
void
Target_x86_64::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
Target_x86_64::make_local_ifunc_plt_entry(Symbol_table* symtab, Layout* layout,
                                          Sized_relobj_file<64, false>* relobj,
                                          Sized_relobj_file<64, false>* relobj,
                                          unsigned int local_sym_index)
                                          unsigned int local_sym_index)
{
{
  if (relobj->local_has_plt_offset(local_sym_index))
  if (relobj->local_has_plt_offset(local_sym_index))
    return;
    return;
  if (this->plt_ == NULL)
  if (this->plt_ == NULL)
    this->make_plt_section(symtab, layout);
    this->make_plt_section(symtab, layout);
  unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
  unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
                                                              relobj,
                                                              relobj,
                                                              local_sym_index);
                                                              local_sym_index);
  relobj->set_local_plt_offset(local_sym_index, plt_offset);
  relobj->set_local_plt_offset(local_sym_index, plt_offset);
}
}
 
 
// Return the number of entries in the PLT.
// Return the number of entries in the PLT.
 
 
unsigned int
unsigned int
Target_x86_64::plt_entry_count() const
Target_x86_64::plt_entry_count() const
{
{
  if (this->plt_ == NULL)
  if (this->plt_ == NULL)
    return 0;
    return 0;
  return this->plt_->entry_count();
  return this->plt_->entry_count();
}
}
 
 
// Return the offset of the first non-reserved PLT entry.
// Return the offset of the first non-reserved PLT entry.
 
 
unsigned int
unsigned int
Target_x86_64::first_plt_entry_offset() const
Target_x86_64::first_plt_entry_offset() const
{
{
  return Output_data_plt_x86_64::first_plt_entry_offset();
  return Output_data_plt_x86_64::first_plt_entry_offset();
}
}
 
 
// Return the size of each PLT entry.
// Return the size of each PLT entry.
 
 
unsigned int
unsigned int
Target_x86_64::plt_entry_size() const
Target_x86_64::plt_entry_size() const
{
{
  return Output_data_plt_x86_64::get_plt_entry_size();
  return Output_data_plt_x86_64::get_plt_entry_size();
}
}
 
 
// Create the GOT and PLT sections for an incremental update.
// Create the GOT and PLT sections for an incremental update.
 
 
Output_data_got<64, false>*
Output_data_got<64, false>*
Target_x86_64::init_got_plt_for_update(Symbol_table* symtab,
Target_x86_64::init_got_plt_for_update(Symbol_table* symtab,
                                       Layout* layout,
                                       Layout* layout,
                                       unsigned int got_count,
                                       unsigned int got_count,
                                       unsigned int plt_count)
                                       unsigned int plt_count)
{
{
  gold_assert(this->got_ == NULL);
  gold_assert(this->got_ == NULL);
 
 
  this->got_ = new Output_data_got<64, false>(got_count * 8);
  this->got_ = new Output_data_got<64, false>(got_count * 8);
  layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
  layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                  (elfcpp::SHF_ALLOC
                                  (elfcpp::SHF_ALLOC
                                   | elfcpp::SHF_WRITE),
                                   | elfcpp::SHF_WRITE),
                                  this->got_, ORDER_RELRO_LAST,
                                  this->got_, ORDER_RELRO_LAST,
                                  true);
                                  true);
 
 
  // Add the three reserved entries.
  // Add the three reserved entries.
  this->got_plt_ = new Output_data_space((plt_count + 3) * 8, 8, "** GOT PLT");
  this->got_plt_ = new Output_data_space((plt_count + 3) * 8, 8, "** GOT PLT");
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                  (elfcpp::SHF_ALLOC
                                  (elfcpp::SHF_ALLOC
                                   | elfcpp::SHF_WRITE),
                                   | elfcpp::SHF_WRITE),
                                  this->got_plt_, ORDER_NON_RELRO_FIRST,
                                  this->got_plt_, ORDER_NON_RELRO_FIRST,
                                  false);
                                  false);
 
 
  // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
  // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
  this->global_offset_table_ =
  this->global_offset_table_ =
    symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
    symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
                                  Symbol_table::PREDEFINED,
                                  Symbol_table::PREDEFINED,
                                  this->got_plt_,
                                  this->got_plt_,
                                  0, 0, elfcpp::STT_OBJECT,
                                  0, 0, elfcpp::STT_OBJECT,
                                  elfcpp::STB_LOCAL,
                                  elfcpp::STB_LOCAL,
                                  elfcpp::STV_HIDDEN, 0,
                                  elfcpp::STV_HIDDEN, 0,
                                  false, false);
                                  false, false);
 
 
  // If there are any TLSDESC relocations, they get GOT entries in
  // If there are any TLSDESC relocations, they get GOT entries in
  // .got.plt after the jump slot entries.
  // .got.plt after the jump slot entries.
  // FIXME: Get the count for TLSDESC entries.
  // FIXME: Get the count for TLSDESC entries.
  this->got_tlsdesc_ = new Output_data_got<64, false>(0);
  this->got_tlsdesc_ = new Output_data_got<64, false>(0);
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
                                  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
                                  this->got_tlsdesc_,
                                  this->got_tlsdesc_,
                                  ORDER_NON_RELRO_FIRST, false);
                                  ORDER_NON_RELRO_FIRST, false);
 
 
  // If there are any IRELATIVE relocations, they get GOT entries in
  // If there are any IRELATIVE relocations, they get GOT entries in
  // .got.plt after the jump slot and TLSDESC entries.
  // .got.plt after the jump slot and TLSDESC entries.
  this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
  this->got_irelative_ = new Output_data_space(0, 8, "** GOT IRELATIVE PLT");
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
  layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
                                  elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
                                  this->got_irelative_,
                                  this->got_irelative_,
                                  ORDER_NON_RELRO_FIRST, false);
                                  ORDER_NON_RELRO_FIRST, false);
 
 
  // Create the PLT section.
  // Create the PLT section.
  this->plt_ = new Output_data_plt_x86_64(layout, this->got_, this->got_plt_,
  this->plt_ = new Output_data_plt_x86_64(layout, this->got_, this->got_plt_,
                                          this->got_irelative_, plt_count);
                                          this->got_irelative_, plt_count);
  layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
  layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
                                  elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
                                  elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
                                  this->plt_, ORDER_PLT, false);
                                  this->plt_, ORDER_PLT, false);
 
 
  // Make the sh_info field of .rela.plt point to .plt.
  // Make the sh_info field of .rela.plt point to .plt.
  Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
  Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
  rela_plt_os->set_info_section(this->plt_->output_section());
  rela_plt_os->set_info_section(this->plt_->output_section());
 
 
  // Create the rela_dyn section.
  // Create the rela_dyn section.
  this->rela_dyn_section(layout);
  this->rela_dyn_section(layout);
 
 
  return this->got_;
  return this->got_;
}
}
 
 
// Reserve a GOT entry for a local symbol, and regenerate any
// Reserve a GOT entry for a local symbol, and regenerate any
// necessary dynamic relocations.
// necessary dynamic relocations.
 
 
void
void
Target_x86_64::reserve_local_got_entry(
Target_x86_64::reserve_local_got_entry(
    unsigned int got_index,
    unsigned int got_index,
    Sized_relobj<64, false>* obj,
    Sized_relobj<64, false>* obj,
    unsigned int r_sym,
    unsigned int r_sym,
    unsigned int got_type)
    unsigned int got_type)
{
{
  unsigned int got_offset = got_index * 8;
  unsigned int got_offset = got_index * 8;
  Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
  Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
 
 
  this->got_->reserve_local(got_index, obj, r_sym, got_type);
  this->got_->reserve_local(got_index, obj, r_sym, got_type);
  switch (got_type)
  switch (got_type)
    {
    {
    case GOT_TYPE_STANDARD:
    case GOT_TYPE_STANDARD:
      if (parameters->options().output_is_position_independent())
      if (parameters->options().output_is_position_independent())
        rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
        rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_X86_64_RELATIVE,
                                     this->got_, got_offset, 0);
                                     this->got_, got_offset, 0, false);
      break;
      break;
    case GOT_TYPE_TLS_OFFSET:
    case GOT_TYPE_TLS_OFFSET:
      rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
      rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_TPOFF64,
                          this->got_, got_offset, 0);
                          this->got_, got_offset, 0);
      break;
      break;
    case GOT_TYPE_TLS_PAIR:
    case GOT_TYPE_TLS_PAIR:
      this->got_->reserve_slot(got_index + 1);
      this->got_->reserve_slot(got_index + 1);
      rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
      rela_dyn->add_local(obj, r_sym, elfcpp::R_X86_64_DTPMOD64,
                          this->got_, got_offset, 0);
                          this->got_, got_offset, 0);
      break;
      break;
    case GOT_TYPE_TLS_DESC:
    case GOT_TYPE_TLS_DESC:
      gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
      gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
      // this->got_->reserve_slot(got_index + 1);
      // this->got_->reserve_slot(got_index + 1);
      // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
      // rela_dyn->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
      //                               this->got_, got_offset, 0);
      //                               this->got_, got_offset, 0);
      break;
      break;
    default:
    default:
      gold_unreachable();
      gold_unreachable();
    }
    }
}
}
 
 
// Reserve a GOT entry for a global symbol, and regenerate any
// Reserve a GOT entry for a global symbol, and regenerate any
// necessary dynamic relocations.
// necessary dynamic relocations.
 
 
void
void
Target_x86_64::reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
Target_x86_64::reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
                                        unsigned int got_type)
                                        unsigned int got_type)
{
{
  unsigned int got_offset = got_index * 8;
  unsigned int got_offset = got_index * 8;
  Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
  Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
 
 
  this->got_->reserve_global(got_index, gsym, got_type);
  this->got_->reserve_global(got_index, gsym, got_type);
  switch (got_type)
  switch (got_type)
    {
    {
    case GOT_TYPE_STANDARD:
    case GOT_TYPE_STANDARD:
      if (!gsym->final_value_is_known())
      if (!gsym->final_value_is_known())
        {
        {
          if (gsym->is_from_dynobj()
          if (gsym->is_from_dynobj()
              || gsym->is_undefined()
              || gsym->is_undefined()
              || gsym->is_preemptible()
              || gsym->is_preemptible()
              || gsym->type() == elfcpp::STT_GNU_IFUNC)
              || gsym->type() == elfcpp::STT_GNU_IFUNC)
            rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
            rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT,
                                 this->got_, got_offset, 0);
                                 this->got_, got_offset, 0);
          else
          else
            rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
            rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
                                          this->got_, got_offset, 0);
                                          this->got_, got_offset, 0);
        }
        }
      break;
      break;
    case GOT_TYPE_TLS_OFFSET:
    case GOT_TYPE_TLS_OFFSET:
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TPOFF64,
                                    this->got_, got_offset, 0);
                                    this->got_, got_offset, 0);
      break;
      break;
    case GOT_TYPE_TLS_PAIR:
    case GOT_TYPE_TLS_PAIR:
      this->got_->reserve_slot(got_index + 1);
      this->got_->reserve_slot(got_index + 1);
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPMOD64,
                                    this->got_, got_offset, 0);
                                    this->got_, got_offset, 0);
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_DTPOFF64,
                                    this->got_, got_offset + 8, 0);
                                    this->got_, got_offset + 8, 0);
      break;
      break;
    case GOT_TYPE_TLS_DESC:
    case GOT_TYPE_TLS_DESC:
      this->got_->reserve_slot(got_index + 1);
      this->got_->reserve_slot(got_index + 1);
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
      rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_TLSDESC,
                                    this->got_, got_offset, 0);
                                    this->got_, got_offset, 0);
      break;
      break;
    default:
    default:
      gold_unreachable();
      gold_unreachable();
    }
    }
}
}
 
 
// Register an existing PLT entry for a global symbol.
// Register an existing PLT entry for a global symbol.
 
 
void
void
Target_x86_64::register_global_plt_entry(Symbol_table* symtab,
Target_x86_64::register_global_plt_entry(Symbol_table* symtab,
                                         Layout* layout,
                                         Layout* layout,
                                         unsigned int plt_index,
                                         unsigned int plt_index,
                                         Symbol* gsym)
                                         Symbol* gsym)
{
{
  gold_assert(this->plt_ != NULL);
  gold_assert(this->plt_ != NULL);
  gold_assert(!gsym->has_plt_offset());
  gold_assert(!gsym->has_plt_offset());
 
 
  this->plt_->reserve_slot(plt_index);
  this->plt_->reserve_slot(plt_index);
 
 
  gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
  gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
 
 
  unsigned int got_offset = (plt_index + 3) * 8;
  unsigned int got_offset = (plt_index + 3) * 8;
  this->plt_->add_relocation(symtab, layout, gsym, got_offset);
  this->plt_->add_relocation(symtab, layout, gsym, got_offset);
}
}
 
 
// Force a COPY relocation for a given symbol.
// Force a COPY relocation for a given symbol.
 
 
void
void
Target_x86_64::emit_copy_reloc(
Target_x86_64::emit_copy_reloc(
    Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
    Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
{
{
  this->copy_relocs_.emit_copy_reloc(symtab,
  this->copy_relocs_.emit_copy_reloc(symtab,
                                     symtab->get_sized_symbol<64>(sym),
                                     symtab->get_sized_symbol<64>(sym),
                                     os,
                                     os,
                                     offset,
                                     offset,
                                     this->rela_dyn_section(NULL));
                                     this->rela_dyn_section(NULL));
}
}
 
 
// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
 
 
void
void
Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
Target_x86_64::define_tls_base_symbol(Symbol_table* symtab, Layout* layout)
{
{
  if (this->tls_base_symbol_defined_)
  if (this->tls_base_symbol_defined_)
    return;
    return;
 
 
  Output_segment* tls_segment = layout->tls_segment();
  Output_segment* tls_segment = layout->tls_segment();
  if (tls_segment != NULL)
  if (tls_segment != NULL)
    {
    {
      bool is_exec = parameters->options().output_is_executable();
      bool is_exec = parameters->options().output_is_executable();
      symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
      symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
                                       Symbol_table::PREDEFINED,
                                       Symbol_table::PREDEFINED,
                                       tls_segment, 0, 0,
                                       tls_segment, 0, 0,
                                       elfcpp::STT_TLS,
                                       elfcpp::STT_TLS,
                                       elfcpp::STB_LOCAL,
                                       elfcpp::STB_LOCAL,
                                       elfcpp::STV_HIDDEN, 0,
                                       elfcpp::STV_HIDDEN, 0,
                                       (is_exec
                                       (is_exec
                                        ? Symbol::SEGMENT_END
                                        ? Symbol::SEGMENT_END
                                        : Symbol::SEGMENT_START),
                                        : Symbol::SEGMENT_START),
                                       true);
                                       true);
    }
    }
  this->tls_base_symbol_defined_ = true;
  this->tls_base_symbol_defined_ = true;
}
}
 
 
// Create the reserved PLT and GOT entries for the TLS descriptor resolver.
// Create the reserved PLT and GOT entries for the TLS descriptor resolver.
 
 
void
void
Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
Target_x86_64::reserve_tlsdesc_entries(Symbol_table* symtab,
                                             Layout* layout)
                                             Layout* layout)
{
{
  if (this->plt_ == NULL)
  if (this->plt_ == NULL)
    this->make_plt_section(symtab, layout);
    this->make_plt_section(symtab, layout);
 
 
  if (!this->plt_->has_tlsdesc_entry())
  if (!this->plt_->has_tlsdesc_entry())
    {
    {
      // Allocate the TLSDESC_GOT entry.
      // Allocate the TLSDESC_GOT entry.
      Output_data_got<64, false>* got = this->got_section(symtab, layout);
      Output_data_got<64, false>* got = this->got_section(symtab, layout);
      unsigned int got_offset = got->add_constant(0);
      unsigned int got_offset = got->add_constant(0);
 
 
      // Allocate the TLSDESC_PLT entry.
      // Allocate the TLSDESC_PLT entry.
      this->plt_->reserve_tlsdesc_entry(got_offset);
      this->plt_->reserve_tlsdesc_entry(got_offset);
    }
    }
}
}
 
 
// Create a GOT entry for the TLS module index.
// Create a GOT entry for the TLS module index.
 
 
unsigned int
unsigned int
Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
Target_x86_64::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
                                   Sized_relobj_file<64, false>* object)
                                   Sized_relobj_file<64, false>* object)
{
{
  if (this->got_mod_index_offset_ == -1U)
  if (this->got_mod_index_offset_ == -1U)
    {
    {
      gold_assert(symtab != NULL && layout != NULL && object != NULL);
      gold_assert(symtab != NULL && layout != NULL && object != NULL);
      Reloc_section* rela_dyn = this->rela_dyn_section(layout);
      Reloc_section* rela_dyn = this->rela_dyn_section(layout);
      Output_data_got<64, false>* got = this->got_section(symtab, layout);
      Output_data_got<64, false>* got = this->got_section(symtab, layout);
      unsigned int got_offset = got->add_constant(0);
      unsigned int got_offset = got->add_constant(0);
      rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
      rela_dyn->add_local(object, 0, elfcpp::R_X86_64_DTPMOD64, got,
                          got_offset, 0);
                          got_offset, 0);
      got->add_constant(0);
      got->add_constant(0);
      this->got_mod_index_offset_ = got_offset;
      this->got_mod_index_offset_ = got_offset;
    }
    }
  return this->got_mod_index_offset_;
  return this->got_mod_index_offset_;
}
}
 
 
// Optimize the TLS relocation type based on what we know about the
// Optimize the TLS relocation type based on what we know about the
// symbol.  IS_FINAL is true if the final address of this symbol is
// symbol.  IS_FINAL is true if the final address of this symbol is
// known at link time.
// known at link time.
 
 
tls::Tls_optimization
tls::Tls_optimization
Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
{
{
  // If we are generating a shared library, then we can't do anything
  // If we are generating a shared library, then we can't do anything
  // in the linker.
  // in the linker.
  if (parameters->options().shared())
  if (parameters->options().shared())
    return tls::TLSOPT_NONE;
    return tls::TLSOPT_NONE;
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_X86_64_TLSGD:
    case elfcpp::R_X86_64_TLSGD:
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSDESC_CALL:
      // These are General-Dynamic which permits fully general TLS
      // These are General-Dynamic which permits fully general TLS
      // access.  Since we know that we are generating an executable,
      // access.  Since we know that we are generating an executable,
      // we can convert this to Initial-Exec.  If we also know that
      // we can convert this to Initial-Exec.  If we also know that
      // this is a local symbol, we can further switch to Local-Exec.
      // this is a local symbol, we can further switch to Local-Exec.
      if (is_final)
      if (is_final)
        return tls::TLSOPT_TO_LE;
        return tls::TLSOPT_TO_LE;
      return tls::TLSOPT_TO_IE;
      return tls::TLSOPT_TO_IE;
 
 
    case elfcpp::R_X86_64_TLSLD:
    case elfcpp::R_X86_64_TLSLD:
      // This is Local-Dynamic, which refers to a local symbol in the
      // This is Local-Dynamic, which refers to a local symbol in the
      // dynamic TLS block.  Since we know that we generating an
      // dynamic TLS block.  Since we know that we generating an
      // executable, we can switch to Local-Exec.
      // executable, we can switch to Local-Exec.
      return tls::TLSOPT_TO_LE;
      return tls::TLSOPT_TO_LE;
 
 
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_DTPOFF64:
      // Another Local-Dynamic reloc.
      // Another Local-Dynamic reloc.
      return tls::TLSOPT_TO_LE;
      return tls::TLSOPT_TO_LE;
 
 
    case elfcpp::R_X86_64_GOTTPOFF:
    case elfcpp::R_X86_64_GOTTPOFF:
      // These are Initial-Exec relocs which get the thread offset
      // These are Initial-Exec relocs which get the thread offset
      // from the GOT.  If we know that we are linking against the
      // from the GOT.  If we know that we are linking against the
      // local symbol, we can switch to Local-Exec, which links the
      // local symbol, we can switch to Local-Exec, which links the
      // thread offset into the instruction.
      // thread offset into the instruction.
      if (is_final)
      if (is_final)
        return tls::TLSOPT_TO_LE;
        return tls::TLSOPT_TO_LE;
      return tls::TLSOPT_NONE;
      return tls::TLSOPT_NONE;
 
 
    case elfcpp::R_X86_64_TPOFF32:
    case elfcpp::R_X86_64_TPOFF32:
      // When we already have Local-Exec, there is nothing further we
      // When we already have Local-Exec, there is nothing further we
      // can do.
      // can do.
      return tls::TLSOPT_NONE;
      return tls::TLSOPT_NONE;
 
 
    default:
    default:
      gold_unreachable();
      gold_unreachable();
    }
    }
}
}
 
 
// Get the Reference_flags for a particular relocation.
// Get the Reference_flags for a particular relocation.
 
 
int
int
Target_x86_64::Scan::get_reference_flags(unsigned int r_type)
Target_x86_64::Scan::get_reference_flags(unsigned int r_type)
{
{
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTENTRY:
    case elfcpp::R_X86_64_GNU_VTENTRY:
    case elfcpp::R_X86_64_GOTPC32:
    case elfcpp::R_X86_64_GOTPC32:
    case elfcpp::R_X86_64_GOTPC64:
    case elfcpp::R_X86_64_GOTPC64:
      // No symbol reference.
      // No symbol reference.
      return 0;
      return 0;
 
 
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_8:
    case elfcpp::R_X86_64_8:
      return Symbol::ABSOLUTE_REF;
      return Symbol::ABSOLUTE_REF;
 
 
    case elfcpp::R_X86_64_PC64:
    case elfcpp::R_X86_64_PC64:
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC16:
    case elfcpp::R_X86_64_PC16:
    case elfcpp::R_X86_64_PC8:
    case elfcpp::R_X86_64_PC8:
    case elfcpp::R_X86_64_GOTOFF64:
    case elfcpp::R_X86_64_GOTOFF64:
      return Symbol::RELATIVE_REF;
      return Symbol::RELATIVE_REF;
 
 
    case elfcpp::R_X86_64_PLT32:
    case elfcpp::R_X86_64_PLT32:
    case elfcpp::R_X86_64_PLTOFF64:
    case elfcpp::R_X86_64_PLTOFF64:
      return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
      return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
 
 
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPLT64:
    case elfcpp::R_X86_64_GOTPLT64:
      // Absolute in GOT.
      // Absolute in GOT.
      return Symbol::ABSOLUTE_REF;
      return Symbol::ABSOLUTE_REF;
 
 
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
      return Symbol::TLS_REF;
      return Symbol::TLS_REF;
 
 
    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_TLSDESC:
    case elfcpp::R_X86_64_TLSDESC:
    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE64:
    case elfcpp::R_X86_64_SIZE64:
    default:
    default:
      // Not expected.  We will give an error later.
      // Not expected.  We will give an error later.
      return 0;
      return 0;
    }
    }
}
}
 
 
// Report an unsupported relocation against a local symbol.
// Report an unsupported relocation against a local symbol.
 
 
void
void
Target_x86_64::Scan::unsupported_reloc_local(
Target_x86_64::Scan::unsupported_reloc_local(
     Sized_relobj_file<64, false>* object,
     Sized_relobj_file<64, false>* object,
     unsigned int r_type)
     unsigned int r_type)
{
{
  gold_error(_("%s: unsupported reloc %u against local symbol"),
  gold_error(_("%s: unsupported reloc %u against local symbol"),
             object->name().c_str(), r_type);
             object->name().c_str(), r_type);
}
}
 
 
// We are about to emit a dynamic relocation of type R_TYPE.  If the
// We are about to emit a dynamic relocation of type R_TYPE.  If the
// dynamic linker does not support it, issue an error.  The GNU linker
// dynamic linker does not support it, issue an error.  The GNU linker
// only issues a non-PIC error for an allocated read-only section.
// only issues a non-PIC error for an allocated read-only section.
// Here we know the section is allocated, but we don't know that it is
// Here we know the section is allocated, but we don't know that it is
// read-only.  But we check for all the relocation types which the
// read-only.  But we check for all the relocation types which the
// glibc dynamic linker supports, so it seems appropriate to issue an
// glibc dynamic linker supports, so it seems appropriate to issue an
// error even if the section is not read-only.  If GSYM is not NULL,
// error even if the section is not read-only.  If GSYM is not NULL,
// it is the symbol the relocation is against; if it is NULL, the
// it is the symbol the relocation is against; if it is NULL, the
// relocation is against a local symbol.
// relocation is against a local symbol.
 
 
void
void
Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type,
Target_x86_64::Scan::check_non_pic(Relobj* object, unsigned int r_type,
                                   Symbol* gsym)
                                   Symbol* gsym)
{
{
  switch (r_type)
  switch (r_type)
    {
    {
      // These are the relocation types supported by glibc for x86_64
      // These are the relocation types supported by glibc for x86_64
      // which should always work.
      // which should always work.
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_COPY:
      return;
      return;
 
 
      // glibc supports these reloc types, but they can overflow.
      // glibc supports these reloc types, but they can overflow.
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC32:
      // A PC relative reference is OK against a local symbol or if
      // A PC relative reference is OK against a local symbol or if
      // the symbol is defined locally.
      // the symbol is defined locally.
      if (gsym == NULL
      if (gsym == NULL
          || (!gsym->is_from_dynobj()
          || (!gsym->is_from_dynobj()
              && !gsym->is_undefined()
              && !gsym->is_undefined()
              && !gsym->is_preemptible()))
              && !gsym->is_preemptible()))
        return;
        return;
      /* Fall through.  */
      /* Fall through.  */
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32:
      if (this->issued_non_pic_error_)
      if (this->issued_non_pic_error_)
        return;
        return;
      gold_assert(parameters->options().output_is_position_independent());
      gold_assert(parameters->options().output_is_position_independent());
      if (gsym == NULL)
      if (gsym == NULL)
        object->error(_("requires dynamic R_X86_64_32 reloc which may "
        object->error(_("requires dynamic R_X86_64_32 reloc which may "
                        "overflow at runtime; recompile with -fPIC"));
                        "overflow at runtime; recompile with -fPIC"));
      else
      else
        object->error(_("requires dynamic %s reloc against '%s' which may "
        object->error(_("requires dynamic %s reloc against '%s' which may "
                        "overflow at runtime; recompile with -fPIC"),
                        "overflow at runtime; recompile with -fPIC"),
                      (r_type == elfcpp::R_X86_64_32
                      (r_type == elfcpp::R_X86_64_32
                       ? "R_X86_64_32"
                       ? "R_X86_64_32"
                       : "R_X86_64_PC32"),
                       : "R_X86_64_PC32"),
                      gsym->name());
                      gsym->name());
      this->issued_non_pic_error_ = true;
      this->issued_non_pic_error_ = true;
      return;
      return;
 
 
    default:
    default:
      // This prevents us from issuing more than one error per reloc
      // This prevents us from issuing more than one error per reloc
      // section.  But we can still wind up issuing more than one
      // section.  But we can still wind up issuing more than one
      // error per object file.
      // error per object file.
      if (this->issued_non_pic_error_)
      if (this->issued_non_pic_error_)
        return;
        return;
      gold_assert(parameters->options().output_is_position_independent());
      gold_assert(parameters->options().output_is_position_independent());
      object->error(_("requires unsupported dynamic reloc %u; "
      object->error(_("requires unsupported dynamic reloc %u; "
                      "recompile with -fPIC"),
                      "recompile with -fPIC"),
                    r_type);
                    r_type);
      this->issued_non_pic_error_ = true;
      this->issued_non_pic_error_ = true;
      return;
      return;
 
 
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_NONE:
      gold_unreachable();
      gold_unreachable();
    }
    }
}
}
 
 
// Return whether we need to make a PLT entry for a relocation of the
// Return whether we need to make a PLT entry for a relocation of the
// given type against a STT_GNU_IFUNC symbol.
// given type against a STT_GNU_IFUNC symbol.
 
 
bool
bool
Target_x86_64::Scan::reloc_needs_plt_for_ifunc(
Target_x86_64::Scan::reloc_needs_plt_for_ifunc(
     Sized_relobj_file<64, false>* object,
     Sized_relobj_file<64, false>* object,
     unsigned int r_type)
     unsigned int r_type)
{
{
  int flags = Scan::get_reference_flags(r_type);
  int flags = Scan::get_reference_flags(r_type);
  if (flags & Symbol::TLS_REF)
  if (flags & Symbol::TLS_REF)
    gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
    gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
               object->name().c_str(), r_type);
               object->name().c_str(), r_type);
  return flags != 0;
  return flags != 0;
}
}
 
 
// Scan a relocation for a local symbol.
// Scan a relocation for a local symbol.
 
 
inline void
inline void
Target_x86_64::Scan::local(Symbol_table* symtab,
Target_x86_64::Scan::local(Symbol_table* symtab,
                           Layout* layout,
                           Layout* layout,
                           Target_x86_64* target,
                           Target_x86_64* target,
                           Sized_relobj_file<64, false>* object,
                           Sized_relobj_file<64, false>* object,
                           unsigned int data_shndx,
                           unsigned int data_shndx,
                           Output_section* output_section,
                           Output_section* output_section,
                           const elfcpp::Rela<64, false>& reloc,
                           const elfcpp::Rela<64, false>& reloc,
                           unsigned int r_type,
                           unsigned int r_type,
                           const elfcpp::Sym<64, false>& lsym)
                           const elfcpp::Sym<64, false>& lsym)
{
{
  // A local STT_GNU_IFUNC symbol may require a PLT entry.
  // A local STT_GNU_IFUNC symbol may require a PLT entry.
  if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC
  bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
      && this->reloc_needs_plt_for_ifunc(object, r_type))
  if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
    {
    {
      unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
      unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
      target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
      target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
    }
    }
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTENTRY:
    case elfcpp::R_X86_64_GNU_VTENTRY:
      break;
      break;
 
 
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_64:
      // If building a shared library (or a position-independent
      // If building a shared library (or a position-independent
      // executable), we need to create a dynamic relocation for this
      // executable), we need to create a dynamic relocation for this
      // location.  The relocation applied at link time will apply the
      // location.  The relocation applied at link time will apply the
      // link-time value, so we flag the location with an
      // link-time value, so we flag the location with an
      // R_X86_64_RELATIVE relocation so the dynamic loader can
      // R_X86_64_RELATIVE relocation so the dynamic loader can
      // relocate it easily.
      // relocate it easily.
      if (parameters->options().output_is_position_independent())
      if (parameters->options().output_is_position_independent())
        {
        {
          unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
          unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
          Reloc_section* rela_dyn = target->rela_dyn_section(layout);
          Reloc_section* rela_dyn = target->rela_dyn_section(layout);
          rela_dyn->add_local_relative(object, r_sym,
          rela_dyn->add_local_relative(object, r_sym,
                                       elfcpp::R_X86_64_RELATIVE,
                                       elfcpp::R_X86_64_RELATIVE,
                                       output_section, data_shndx,
                                       output_section, data_shndx,
                                       reloc.get_r_offset(),
                                       reloc.get_r_offset(),
                                       reloc.get_r_addend());
                                       reloc.get_r_addend(), is_ifunc);
        }
        }
      break;
      break;
 
 
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_8:
    case elfcpp::R_X86_64_8:
      // If building a shared library (or a position-independent
      // If building a shared library (or a position-independent
      // executable), we need to create a dynamic relocation for this
      // executable), we need to create a dynamic relocation for this
      // location.  We can't use an R_X86_64_RELATIVE relocation
      // location.  We can't use an R_X86_64_RELATIVE relocation
      // because that is always a 64-bit relocation.
      // because that is always a 64-bit relocation.
      if (parameters->options().output_is_position_independent())
      if (parameters->options().output_is_position_independent())
        {
        {
          this->check_non_pic(object, r_type, NULL);
          this->check_non_pic(object, r_type, NULL);
 
 
          Reloc_section* rela_dyn = target->rela_dyn_section(layout);
          Reloc_section* rela_dyn = target->rela_dyn_section(layout);
          unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
          unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
          if (lsym.get_st_type() != elfcpp::STT_SECTION)
          if (lsym.get_st_type() != elfcpp::STT_SECTION)
            rela_dyn->add_local(object, r_sym, r_type, output_section,
            rela_dyn->add_local(object, r_sym, r_type, output_section,
                                data_shndx, reloc.get_r_offset(),
                                data_shndx, reloc.get_r_offset(),
                                reloc.get_r_addend());
                                reloc.get_r_addend());
          else
          else
            {
            {
              gold_assert(lsym.get_st_value() == 0);
              gold_assert(lsym.get_st_value() == 0);
              unsigned int shndx = lsym.get_st_shndx();
              unsigned int shndx = lsym.get_st_shndx();
              bool is_ordinary;
              bool is_ordinary;
              shndx = object->adjust_sym_shndx(r_sym, shndx,
              shndx = object->adjust_sym_shndx(r_sym, shndx,
                                               &is_ordinary);
                                               &is_ordinary);
              if (!is_ordinary)
              if (!is_ordinary)
                object->error(_("section symbol %u has bad shndx %u"),
                object->error(_("section symbol %u has bad shndx %u"),
                              r_sym, shndx);
                              r_sym, shndx);
              else
              else
                rela_dyn->add_local_section(object, shndx,
                rela_dyn->add_local_section(object, shndx,
                                            r_type, output_section,
                                            r_type, output_section,
                                            data_shndx, reloc.get_r_offset(),
                                            data_shndx, reloc.get_r_offset(),
                                            reloc.get_r_addend());
                                            reloc.get_r_addend());
            }
            }
        }
        }
      break;
      break;
 
 
    case elfcpp::R_X86_64_PC64:
    case elfcpp::R_X86_64_PC64:
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC16:
    case elfcpp::R_X86_64_PC16:
    case elfcpp::R_X86_64_PC8:
    case elfcpp::R_X86_64_PC8:
      break;
      break;
 
 
    case elfcpp::R_X86_64_PLT32:
    case elfcpp::R_X86_64_PLT32:
      // Since we know this is a local symbol, we can handle this as a
      // Since we know this is a local symbol, we can handle this as a
      // PC32 reloc.
      // PC32 reloc.
      break;
      break;
 
 
    case elfcpp::R_X86_64_GOTPC32:
    case elfcpp::R_X86_64_GOTPC32:
    case elfcpp::R_X86_64_GOTOFF64:
    case elfcpp::R_X86_64_GOTOFF64:
    case elfcpp::R_X86_64_GOTPC64:
    case elfcpp::R_X86_64_GOTPC64:
    case elfcpp::R_X86_64_PLTOFF64:
    case elfcpp::R_X86_64_PLTOFF64:
      // We need a GOT section.
      // We need a GOT section.
      target->got_section(symtab, layout);
      target->got_section(symtab, layout);
      // For PLTOFF64, we'd normally want a PLT section, but since we
      // For PLTOFF64, we'd normally want a PLT section, but since we
      // know this is a local symbol, no PLT is needed.
      // know this is a local symbol, no PLT is needed.
      break;
      break;
 
 
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPLT64:
    case elfcpp::R_X86_64_GOTPLT64:
      {
      {
        // The symbol requires a GOT entry.
        // The symbol requires a GOT entry.
        Output_data_got<64, false>* got = target->got_section(symtab, layout);
        Output_data_got<64, false>* got = target->got_section(symtab, layout);
        unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
        unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
 
 
        // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
        // For a STT_GNU_IFUNC symbol we want the PLT offset.  That
        // lets function pointers compare correctly with shared
        // lets function pointers compare correctly with shared
        // libraries.  Otherwise we would need an IRELATIVE reloc.
        // libraries.  Otherwise we would need an IRELATIVE reloc.
        bool is_new;
        bool is_new;
        if (lsym.get_st_type() == elfcpp::STT_GNU_IFUNC)
        if (is_ifunc)
          is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
          is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
        else
        else
          is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
          is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
        if (is_new)
        if (is_new)
          {
          {
            // If we are generating a shared object, we need to add a
            // If we are generating a shared object, we need to add a
            // dynamic relocation for this symbol's GOT entry.
            // dynamic relocation for this symbol's GOT entry.
            if (parameters->options().output_is_position_independent())
            if (parameters->options().output_is_position_independent())
              {
              {
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                // R_X86_64_RELATIVE assumes a 64-bit relocation.
                // R_X86_64_RELATIVE assumes a 64-bit relocation.
                if (r_type != elfcpp::R_X86_64_GOT32)
                if (r_type != elfcpp::R_X86_64_GOT32)
                  {
                  {
                    unsigned int got_offset =
                    unsigned int got_offset =
                      object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
                      object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
                    rela_dyn->add_local_relative(object, r_sym,
                    rela_dyn->add_local_relative(object, r_sym,
                                                 elfcpp::R_X86_64_RELATIVE,
                                                 elfcpp::R_X86_64_RELATIVE,
                                                 got, got_offset, 0);
                                                 got, got_offset, 0, is_ifunc);
                  }
                  }
                else
                else
                  {
                  {
                    this->check_non_pic(object, r_type, NULL);
                    this->check_non_pic(object, r_type, NULL);
 
 
                    gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
                    gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
                    rela_dyn->add_local(
                    rela_dyn->add_local(
                        object, r_sym, r_type, got,
                        object, r_sym, r_type, got,
                        object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
                        object->local_got_offset(r_sym, GOT_TYPE_STANDARD), 0);
                  }
                  }
              }
              }
          }
          }
        // For GOTPLT64, we'd normally want a PLT section, but since
        // For GOTPLT64, we'd normally want a PLT section, but since
        // we know this is a local symbol, no PLT is needed.
        // we know this is a local symbol, no PLT is needed.
      }
      }
      break;
      break;
 
 
    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
      // These are outstanding tls relocs, which are unexpected when linking
      // These are outstanding tls relocs, which are unexpected when linking
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_TLSDESC:
    case elfcpp::R_X86_64_TLSDESC:
      gold_error(_("%s: unexpected reloc %u in object file"),
      gold_error(_("%s: unexpected reloc %u in object file"),
                 object->name().c_str(), r_type);
                 object->name().c_str(), r_type);
      break;
      break;
 
 
      // These are initial tls relocs, which are expected when linking
      // These are initial tls relocs, which are expected when linking
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
      {
      {
        bool output_is_shared = parameters->options().shared();
        bool output_is_shared = parameters->options().shared();
        const tls::Tls_optimization optimized_type
        const tls::Tls_optimization optimized_type
            = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
            = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
        switch (r_type)
        switch (r_type)
          {
          {
          case elfcpp::R_X86_64_TLSGD:       // General-dynamic
          case elfcpp::R_X86_64_TLSGD:       // General-dynamic
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create a pair of GOT entries for the module index and
                // Create a pair of GOT entries for the module index and
                // dtv-relative offset.
                // dtv-relative offset.
                Output_data_got<64, false>* got
                Output_data_got<64, false>* got
                    = target->got_section(symtab, layout);
                    = target->got_section(symtab, layout);
                unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
                unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
                unsigned int shndx = lsym.get_st_shndx();
                unsigned int shndx = lsym.get_st_shndx();
                bool is_ordinary;
                bool is_ordinary;
                shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
                shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
                if (!is_ordinary)
                if (!is_ordinary)
                  object->error(_("local symbol %u has bad shndx %u"),
                  object->error(_("local symbol %u has bad shndx %u"),
                              r_sym, shndx);
                              r_sym, shndx);
                else
                else
                  got->add_local_pair_with_rela(object, r_sym,
                  got->add_local_pair_with_rela(object, r_sym,
                                                shndx,
                                                shndx,
                                                GOT_TYPE_TLS_PAIR,
                                                GOT_TYPE_TLS_PAIR,
                                                target->rela_dyn_section(layout),
                                                target->rela_dyn_section(layout),
                                                elfcpp::R_X86_64_DTPMOD64, 0);
                                                elfcpp::R_X86_64_DTPMOD64, 0);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_local(object, r_type);
              unsupported_reloc_local(object, r_type);
            break;
            break;
 
 
          case elfcpp::R_X86_64_GOTPC32_TLSDESC:
          case elfcpp::R_X86_64_GOTPC32_TLSDESC:
            target->define_tls_base_symbol(symtab, layout);
            target->define_tls_base_symbol(symtab, layout);
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create reserved PLT and GOT entries for the resolver.
                // Create reserved PLT and GOT entries for the resolver.
                target->reserve_tlsdesc_entries(symtab, layout);
                target->reserve_tlsdesc_entries(symtab, layout);
 
 
                // Generate a double GOT entry with an
                // Generate a double GOT entry with an
                // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
                // R_X86_64_TLSDESC reloc.  The R_X86_64_TLSDESC reloc
                // is resolved lazily, so the GOT entry needs to be in
                // is resolved lazily, so the GOT entry needs to be in
                // an area in .got.plt, not .got.  Call got_section to
                // an area in .got.plt, not .got.  Call got_section to
                // make sure the section has been created.
                // make sure the section has been created.
                target->got_section(symtab, layout);
                target->got_section(symtab, layout);
                Output_data_got<64, false>* got = target->got_tlsdesc_section();
                Output_data_got<64, false>* got = target->got_tlsdesc_section();
                unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
                unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
                if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
                if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
                  {
                  {
                    unsigned int got_offset = got->add_constant(0);
                    unsigned int got_offset = got->add_constant(0);
                    got->add_constant(0);
                    got->add_constant(0);
                    object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
                    object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
                                                 got_offset);
                                                 got_offset);
                    Reloc_section* rt = target->rela_tlsdesc_section(layout);
                    Reloc_section* rt = target->rela_tlsdesc_section(layout);
                    // We store the arguments we need in a vector, and
                    // We store the arguments we need in a vector, and
                    // use the index into the vector as the parameter
                    // use the index into the vector as the parameter
                    // to pass to the target specific routines.
                    // to pass to the target specific routines.
                    uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
                    uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
                    void* arg = reinterpret_cast<void*>(intarg);
                    void* arg = reinterpret_cast<void*>(intarg);
                    rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
                    rt->add_target_specific(elfcpp::R_X86_64_TLSDESC, arg,
                                            got, got_offset, 0);
                                            got, got_offset, 0);
                  }
                  }
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_local(object, r_type);
              unsupported_reloc_local(object, r_type);
            break;
            break;
 
 
          case elfcpp::R_X86_64_TLSDESC_CALL:
          case elfcpp::R_X86_64_TLSDESC_CALL:
            break;
            break;
 
 
          case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
          case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create a GOT entry for the module index.
                // Create a GOT entry for the module index.
                target->got_mod_index_entry(symtab, layout, object);
                target->got_mod_index_entry(symtab, layout, object);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_local(object, r_type);
              unsupported_reloc_local(object, r_type);
            break;
            break;
 
 
          case elfcpp::R_X86_64_DTPOFF32:
          case elfcpp::R_X86_64_DTPOFF32:
          case elfcpp::R_X86_64_DTPOFF64:
          case elfcpp::R_X86_64_DTPOFF64:
            break;
            break;
 
 
          case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
          case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
            layout->set_has_static_tls();
            layout->set_has_static_tls();
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create a GOT entry for the tp-relative offset.
                // Create a GOT entry for the tp-relative offset.
                Output_data_got<64, false>* got
                Output_data_got<64, false>* got
                    = target->got_section(symtab, layout);
                    = target->got_section(symtab, layout);
                unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
                unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
                got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
                got->add_local_with_rela(object, r_sym, GOT_TYPE_TLS_OFFSET,
                                         target->rela_dyn_section(layout),
                                         target->rela_dyn_section(layout),
                                         elfcpp::R_X86_64_TPOFF64);
                                         elfcpp::R_X86_64_TPOFF64);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_local(object, r_type);
              unsupported_reloc_local(object, r_type);
            break;
            break;
 
 
          case elfcpp::R_X86_64_TPOFF32:     // Local-exec
          case elfcpp::R_X86_64_TPOFF32:     // Local-exec
            layout->set_has_static_tls();
            layout->set_has_static_tls();
            if (output_is_shared)
            if (output_is_shared)
              unsupported_reloc_local(object, r_type);
              unsupported_reloc_local(object, r_type);
            break;
            break;
 
 
          default:
          default:
            gold_unreachable();
            gold_unreachable();
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE64:
    case elfcpp::R_X86_64_SIZE64:
    default:
    default:
      gold_error(_("%s: unsupported reloc %u against local symbol"),
      gold_error(_("%s: unsupported reloc %u against local symbol"),
                 object->name().c_str(), r_type);
                 object->name().c_str(), r_type);
      break;
      break;
    }
    }
}
}
 
 
 
 
// Report an unsupported relocation against a global symbol.
// Report an unsupported relocation against a global symbol.
 
 
void
void
Target_x86_64::Scan::unsupported_reloc_global(
Target_x86_64::Scan::unsupported_reloc_global(
    Sized_relobj_file<64, false>* object,
    Sized_relobj_file<64, false>* object,
    unsigned int r_type,
    unsigned int r_type,
    Symbol* gsym)
    Symbol* gsym)
{
{
  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
  gold_error(_("%s: unsupported reloc %u against global symbol %s"),
             object->name().c_str(), r_type, gsym->demangled_name().c_str());
             object->name().c_str(), r_type, gsym->demangled_name().c_str());
}
}
 
 
// Returns true if this relocation type could be that of a function pointer.
// Returns true if this relocation type could be that of a function pointer.
inline bool
inline bool
Target_x86_64::Scan::possible_function_pointer_reloc(unsigned int r_type)
Target_x86_64::Scan::possible_function_pointer_reloc(unsigned int r_type)
{
{
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_8:
    case elfcpp::R_X86_64_8:
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPLT64:
    case elfcpp::R_X86_64_GOTPLT64:
      {
      {
        return true;
        return true;
      }
      }
    }
    }
  return false;
  return false;
}
}
 
 
// For safe ICF, scan a relocation for a local symbol to check if it
// For safe ICF, scan a relocation for a local symbol to check if it
// corresponds to a function pointer being taken.  In that case mark
// corresponds to a function pointer being taken.  In that case mark
// the function whose pointer was taken as not foldable.
// the function whose pointer was taken as not foldable.
 
 
inline bool
inline bool
Target_x86_64::Scan::local_reloc_may_be_function_pointer(
Target_x86_64::Scan::local_reloc_may_be_function_pointer(
  Symbol_table* ,
  Symbol_table* ,
  Layout* ,
  Layout* ,
  Target_x86_64* ,
  Target_x86_64* ,
  Sized_relobj_file<64, false>* ,
  Sized_relobj_file<64, false>* ,
  unsigned int ,
  unsigned int ,
  Output_section* ,
  Output_section* ,
  const elfcpp::Rela<64, false>& ,
  const elfcpp::Rela<64, false>& ,
  unsigned int r_type,
  unsigned int r_type,
  const elfcpp::Sym<64, false>&)
  const elfcpp::Sym<64, false>&)
{
{
  // When building a shared library, do not fold any local symbols as it is
  // When building a shared library, do not fold any local symbols as it is
  // not possible to distinguish pointer taken versus a call by looking at
  // not possible to distinguish pointer taken versus a call by looking at
  // the relocation types.
  // the relocation types.
  return (parameters->options().shared()
  return (parameters->options().shared()
          || possible_function_pointer_reloc(r_type));
          || possible_function_pointer_reloc(r_type));
}
}
 
 
// For safe ICF, scan a relocation for a global symbol to check if it
// For safe ICF, scan a relocation for a global symbol to check if it
// corresponds to a function pointer being taken.  In that case mark
// corresponds to a function pointer being taken.  In that case mark
// the function whose pointer was taken as not foldable.
// the function whose pointer was taken as not foldable.
 
 
inline bool
inline bool
Target_x86_64::Scan::global_reloc_may_be_function_pointer(
Target_x86_64::Scan::global_reloc_may_be_function_pointer(
  Symbol_table*,
  Symbol_table*,
  Layout* ,
  Layout* ,
  Target_x86_64* ,
  Target_x86_64* ,
  Sized_relobj_file<64, false>* ,
  Sized_relobj_file<64, false>* ,
  unsigned int ,
  unsigned int ,
  Output_section* ,
  Output_section* ,
  const elfcpp::Rela<64, false>& ,
  const elfcpp::Rela<64, false>& ,
  unsigned int r_type,
  unsigned int r_type,
  Symbol* gsym)
  Symbol* gsym)
{
{
  // When building a shared library, do not fold symbols whose visibility
  // When building a shared library, do not fold symbols whose visibility
  // is hidden, internal or protected.
  // is hidden, internal or protected.
  return ((parameters->options().shared()
  return ((parameters->options().shared()
           && (gsym->visibility() == elfcpp::STV_INTERNAL
           && (gsym->visibility() == elfcpp::STV_INTERNAL
               || gsym->visibility() == elfcpp::STV_PROTECTED
               || gsym->visibility() == elfcpp::STV_PROTECTED
               || gsym->visibility() == elfcpp::STV_HIDDEN))
               || gsym->visibility() == elfcpp::STV_HIDDEN))
          || possible_function_pointer_reloc(r_type));
          || possible_function_pointer_reloc(r_type));
}
}
 
 
// Scan a relocation for a global symbol.
// Scan a relocation for a global symbol.
 
 
inline void
inline void
Target_x86_64::Scan::global(Symbol_table* symtab,
Target_x86_64::Scan::global(Symbol_table* symtab,
                            Layout* layout,
                            Layout* layout,
                            Target_x86_64* target,
                            Target_x86_64* target,
                            Sized_relobj_file<64, false>* object,
                            Sized_relobj_file<64, false>* object,
                            unsigned int data_shndx,
                            unsigned int data_shndx,
                            Output_section* output_section,
                            Output_section* output_section,
                            const elfcpp::Rela<64, false>& reloc,
                            const elfcpp::Rela<64, false>& reloc,
                            unsigned int r_type,
                            unsigned int r_type,
                            Symbol* gsym)
                            Symbol* gsym)
{
{
  // A STT_GNU_IFUNC symbol may require a PLT entry.
  // A STT_GNU_IFUNC symbol may require a PLT entry.
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
  if (gsym->type() == elfcpp::STT_GNU_IFUNC
      && this->reloc_needs_plt_for_ifunc(object, r_type))
      && this->reloc_needs_plt_for_ifunc(object, r_type))
    target->make_plt_entry(symtab, layout, gsym);
    target->make_plt_entry(symtab, layout, gsym);
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTENTRY:
    case elfcpp::R_X86_64_GNU_VTENTRY:
      break;
      break;
 
 
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_8:
    case elfcpp::R_X86_64_8:
      {
      {
        // Make a PLT entry if necessary.
        // Make a PLT entry if necessary.
        if (gsym->needs_plt_entry())
        if (gsym->needs_plt_entry())
          {
          {
            target->make_plt_entry(symtab, layout, gsym);
            target->make_plt_entry(symtab, layout, gsym);
            // Since this is not a PC-relative relocation, we may be
            // Since this is not a PC-relative relocation, we may be
            // taking the address of a function. In that case we need to
            // taking the address of a function. In that case we need to
            // set the entry in the dynamic symbol table to the address of
            // set the entry in the dynamic symbol table to the address of
            // the PLT entry.
            // the PLT entry.
            if (gsym->is_from_dynobj() && !parameters->options().shared())
            if (gsym->is_from_dynobj() && !parameters->options().shared())
              gsym->set_needs_dynsym_value();
              gsym->set_needs_dynsym_value();
          }
          }
        // Make a dynamic relocation if necessary.
        // Make a dynamic relocation if necessary.
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
          {
          {
            if (gsym->may_need_copy_reloc())
            if (gsym->may_need_copy_reloc())
              {
              {
                target->copy_reloc(symtab, layout, object,
                target->copy_reloc(symtab, layout, object,
                                   data_shndx, output_section, gsym, reloc);
                                   data_shndx, output_section, gsym, reloc);
              }
              }
            else if (r_type == elfcpp::R_X86_64_64
            else if (r_type == elfcpp::R_X86_64_64
                     && gsym->type() == elfcpp::STT_GNU_IFUNC
                     && gsym->type() == elfcpp::STT_GNU_IFUNC
                     && gsym->can_use_relative_reloc(false)
                     && gsym->can_use_relative_reloc(false)
                     && !gsym->is_from_dynobj()
                     && !gsym->is_from_dynobj()
                     && !gsym->is_undefined()
                     && !gsym->is_undefined()
                     && !gsym->is_preemptible())
                     && !gsym->is_preemptible())
              {
              {
                // Use an IRELATIVE reloc for a locally defined
                // Use an IRELATIVE reloc for a locally defined
                // STT_GNU_IFUNC symbol.  This makes a function
                // STT_GNU_IFUNC symbol.  This makes a function
                // address in a PIE executable match the address in a
                // address in a PIE executable match the address in a
                // shared library that it links against.
                // shared library that it links against.
                Reloc_section* rela_dyn =
                Reloc_section* rela_dyn =
                  target->rela_irelative_section(layout);
                  target->rela_irelative_section(layout);
                unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
                unsigned int r_type = elfcpp::R_X86_64_IRELATIVE;
                rela_dyn->add_symbolless_global_addend(gsym, r_type,
                rela_dyn->add_symbolless_global_addend(gsym, r_type,
                                                       output_section, object,
                                                       output_section, object,
                                                       data_shndx,
                                                       data_shndx,
                                                       reloc.get_r_offset(),
                                                       reloc.get_r_offset(),
                                                       reloc.get_r_addend());
                                                       reloc.get_r_addend());
              }
              }
            else if (r_type == elfcpp::R_X86_64_64
            else if (r_type == elfcpp::R_X86_64_64
                     && gsym->can_use_relative_reloc(false))
                     && gsym->can_use_relative_reloc(false))
              {
              {
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
                rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
                                              output_section, object,
                                              output_section, object,
                                              data_shndx,
                                              data_shndx,
                                              reloc.get_r_offset(),
                                              reloc.get_r_offset(),
                                              reloc.get_r_addend());
                                              reloc.get_r_addend());
              }
              }
            else
            else
              {
              {
                this->check_non_pic(object, r_type, gsym);
                this->check_non_pic(object, r_type, gsym);
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                rela_dyn->add_global(gsym, r_type, output_section, object,
                rela_dyn->add_global(gsym, r_type, output_section, object,
                                     data_shndx, reloc.get_r_offset(),
                                     data_shndx, reloc.get_r_offset(),
                                     reloc.get_r_addend());
                                     reloc.get_r_addend());
              }
              }
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_X86_64_PC64:
    case elfcpp::R_X86_64_PC64:
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC16:
    case elfcpp::R_X86_64_PC16:
    case elfcpp::R_X86_64_PC8:
    case elfcpp::R_X86_64_PC8:
      {
      {
        // Make a PLT entry if necessary.
        // Make a PLT entry if necessary.
        if (gsym->needs_plt_entry())
        if (gsym->needs_plt_entry())
          target->make_plt_entry(symtab, layout, gsym);
          target->make_plt_entry(symtab, layout, gsym);
        // Make a dynamic relocation if necessary.
        // Make a dynamic relocation if necessary.
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
        if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
          {
          {
            if (gsym->may_need_copy_reloc())
            if (gsym->may_need_copy_reloc())
              {
              {
                target->copy_reloc(symtab, layout, object,
                target->copy_reloc(symtab, layout, object,
                                   data_shndx, output_section, gsym, reloc);
                                   data_shndx, output_section, gsym, reloc);
              }
              }
            else
            else
              {
              {
                this->check_non_pic(object, r_type, gsym);
                this->check_non_pic(object, r_type, gsym);
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                Reloc_section* rela_dyn = target->rela_dyn_section(layout);
                rela_dyn->add_global(gsym, r_type, output_section, object,
                rela_dyn->add_global(gsym, r_type, output_section, object,
                                     data_shndx, reloc.get_r_offset(),
                                     data_shndx, reloc.get_r_offset(),
                                     reloc.get_r_addend());
                                     reloc.get_r_addend());
              }
              }
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPLT64:
    case elfcpp::R_X86_64_GOTPLT64:
      {
      {
        // The symbol requires a GOT entry.
        // The symbol requires a GOT entry.
        Output_data_got<64, false>* got = target->got_section(symtab, layout);
        Output_data_got<64, false>* got = target->got_section(symtab, layout);
        if (gsym->final_value_is_known())
        if (gsym->final_value_is_known())
          {
          {
            // For a STT_GNU_IFUNC symbol we want the PLT address.
            // For a STT_GNU_IFUNC symbol we want the PLT address.
            if (gsym->type() == elfcpp::STT_GNU_IFUNC)
            if (gsym->type() == elfcpp::STT_GNU_IFUNC)
              got->add_global_plt(gsym, GOT_TYPE_STANDARD);
              got->add_global_plt(gsym, GOT_TYPE_STANDARD);
            else
            else
              got->add_global(gsym, GOT_TYPE_STANDARD);
              got->add_global(gsym, GOT_TYPE_STANDARD);
          }
          }
        else
        else
          {
          {
            // If this symbol is not fully resolved, we need to add a
            // If this symbol is not fully resolved, we need to add a
            // dynamic relocation for it.
            // dynamic relocation for it.
            Reloc_section* rela_dyn = target->rela_dyn_section(layout);
            Reloc_section* rela_dyn = target->rela_dyn_section(layout);
 
 
            // Use a GLOB_DAT rather than a RELATIVE reloc if:
            // Use a GLOB_DAT rather than a RELATIVE reloc if:
            //
            //
            // 1) The symbol may be defined in some other module.
            // 1) The symbol may be defined in some other module.
            //
            //
            // 2) We are building a shared library and this is a
            // 2) We are building a shared library and this is a
            // protected symbol; using GLOB_DAT means that the dynamic
            // protected symbol; using GLOB_DAT means that the dynamic
            // linker can use the address of the PLT in the main
            // linker can use the address of the PLT in the main
            // executable when appropriate so that function address
            // executable when appropriate so that function address
            // comparisons work.
            // comparisons work.
            //
            //
            // 3) This is a STT_GNU_IFUNC symbol in position dependent
            // 3) This is a STT_GNU_IFUNC symbol in position dependent
            // code, again so that function address comparisons work.
            // code, again so that function address comparisons work.
            if (gsym->is_from_dynobj()
            if (gsym->is_from_dynobj()
                || gsym->is_undefined()
                || gsym->is_undefined()
                || gsym->is_preemptible()
                || gsym->is_preemptible()
                || (gsym->visibility() == elfcpp::STV_PROTECTED
                || (gsym->visibility() == elfcpp::STV_PROTECTED
                    && parameters->options().shared())
                    && parameters->options().shared())
                || (gsym->type() == elfcpp::STT_GNU_IFUNC
                || (gsym->type() == elfcpp::STT_GNU_IFUNC
                    && parameters->options().output_is_position_independent()))
                    && parameters->options().output_is_position_independent()))
              got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
              got->add_global_with_rela(gsym, GOT_TYPE_STANDARD, rela_dyn,
                                        elfcpp::R_X86_64_GLOB_DAT);
                                        elfcpp::R_X86_64_GLOB_DAT);
            else
            else
              {
              {
                // For a STT_GNU_IFUNC symbol we want to write the PLT
                // For a STT_GNU_IFUNC symbol we want to write the PLT
                // offset into the GOT, so that function pointer
                // offset into the GOT, so that function pointer
                // comparisons work correctly.
                // comparisons work correctly.
                bool is_new;
                bool is_new;
                if (gsym->type() != elfcpp::STT_GNU_IFUNC)
                if (gsym->type() != elfcpp::STT_GNU_IFUNC)
                  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
                  is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
                else
                else
                  {
                  {
                    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
                    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
                    // Tell the dynamic linker to use the PLT address
                    // Tell the dynamic linker to use the PLT address
                    // when resolving relocations.
                    // when resolving relocations.
                    if (gsym->is_from_dynobj()
                    if (gsym->is_from_dynobj()
                        && !parameters->options().shared())
                        && !parameters->options().shared())
                      gsym->set_needs_dynsym_value();
                      gsym->set_needs_dynsym_value();
                  }
                  }
                if (is_new)
                if (is_new)
                  {
                  {
                    unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
                    unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
                    rela_dyn->add_global_relative(gsym,
                    rela_dyn->add_global_relative(gsym,
                                                  elfcpp::R_X86_64_RELATIVE,
                                                  elfcpp::R_X86_64_RELATIVE,
                                                  got, got_off, 0);
                                                  got, got_off, 0);
                  }
                  }
              }
              }
          }
          }
        // For GOTPLT64, we also need a PLT entry (but only if the
        // For GOTPLT64, we also need a PLT entry (but only if the
        // symbol is not fully resolved).
        // symbol is not fully resolved).
        if (r_type == elfcpp::R_X86_64_GOTPLT64
        if (r_type == elfcpp::R_X86_64_GOTPLT64
            && !gsym->final_value_is_known())
            && !gsym->final_value_is_known())
          target->make_plt_entry(symtab, layout, gsym);
          target->make_plt_entry(symtab, layout, gsym);
      }
      }
      break;
      break;
 
 
    case elfcpp::R_X86_64_PLT32:
    case elfcpp::R_X86_64_PLT32:
      // If the symbol is fully resolved, this is just a PC32 reloc.
      // If the symbol is fully resolved, this is just a PC32 reloc.
      // Otherwise we need a PLT entry.
      // Otherwise we need a PLT entry.
      if (gsym->final_value_is_known())
      if (gsym->final_value_is_known())
        break;
        break;
      // If building a shared library, we can also skip the PLT entry
      // If building a shared library, we can also skip the PLT entry
      // if the symbol is defined in the output file and is protected
      // if the symbol is defined in the output file and is protected
      // or hidden.
      // or hidden.
      if (gsym->is_defined()
      if (gsym->is_defined()
          && !gsym->is_from_dynobj()
          && !gsym->is_from_dynobj()
          && !gsym->is_preemptible())
          && !gsym->is_preemptible())
        break;
        break;
      target->make_plt_entry(symtab, layout, gsym);
      target->make_plt_entry(symtab, layout, gsym);
      break;
      break;
 
 
    case elfcpp::R_X86_64_GOTPC32:
    case elfcpp::R_X86_64_GOTPC32:
    case elfcpp::R_X86_64_GOTOFF64:
    case elfcpp::R_X86_64_GOTOFF64:
    case elfcpp::R_X86_64_GOTPC64:
    case elfcpp::R_X86_64_GOTPC64:
    case elfcpp::R_X86_64_PLTOFF64:
    case elfcpp::R_X86_64_PLTOFF64:
      // We need a GOT section.
      // We need a GOT section.
      target->got_section(symtab, layout);
      target->got_section(symtab, layout);
      // For PLTOFF64, we also need a PLT entry (but only if the
      // For PLTOFF64, we also need a PLT entry (but only if the
      // symbol is not fully resolved).
      // symbol is not fully resolved).
      if (r_type == elfcpp::R_X86_64_PLTOFF64
      if (r_type == elfcpp::R_X86_64_PLTOFF64
          && !gsym->final_value_is_known())
          && !gsym->final_value_is_known())
        target->make_plt_entry(symtab, layout, gsym);
        target->make_plt_entry(symtab, layout, gsym);
      break;
      break;
 
 
    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
      // These are outstanding tls relocs, which are unexpected when linking
      // These are outstanding tls relocs, which are unexpected when linking
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_TLSDESC:
    case elfcpp::R_X86_64_TLSDESC:
      gold_error(_("%s: unexpected reloc %u in object file"),
      gold_error(_("%s: unexpected reloc %u in object file"),
                 object->name().c_str(), r_type);
                 object->name().c_str(), r_type);
      break;
      break;
 
 
      // These are initial tls relocs, which are expected for global()
      // These are initial tls relocs, which are expected for global()
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
      {
      {
        const bool is_final = gsym->final_value_is_known();
        const bool is_final = gsym->final_value_is_known();
        const tls::Tls_optimization optimized_type
        const tls::Tls_optimization optimized_type
            = Target_x86_64::optimize_tls_reloc(is_final, r_type);
            = Target_x86_64::optimize_tls_reloc(is_final, r_type);
        switch (r_type)
        switch (r_type)
          {
          {
          case elfcpp::R_X86_64_TLSGD:       // General-dynamic
          case elfcpp::R_X86_64_TLSGD:       // General-dynamic
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create a pair of GOT entries for the module index and
                // Create a pair of GOT entries for the module index and
                // dtv-relative offset.
                // dtv-relative offset.
                Output_data_got<64, false>* got
                Output_data_got<64, false>* got
                    = target->got_section(symtab, layout);
                    = target->got_section(symtab, layout);
                got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
                got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_PAIR,
                                               target->rela_dyn_section(layout),
                                               target->rela_dyn_section(layout),
                                               elfcpp::R_X86_64_DTPMOD64,
                                               elfcpp::R_X86_64_DTPMOD64,
                                               elfcpp::R_X86_64_DTPOFF64);
                                               elfcpp::R_X86_64_DTPOFF64);
              }
              }
            else if (optimized_type == tls::TLSOPT_TO_IE)
            else if (optimized_type == tls::TLSOPT_TO_IE)
              {
              {
                // Create a GOT entry for the tp-relative offset.
                // Create a GOT entry for the tp-relative offset.
                Output_data_got<64, false>* got
                Output_data_got<64, false>* got
                    = target->got_section(symtab, layout);
                    = target->got_section(symtab, layout);
                got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
                got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
                                          target->rela_dyn_section(layout),
                                          target->rela_dyn_section(layout),
                                          elfcpp::R_X86_64_TPOFF64);
                                          elfcpp::R_X86_64_TPOFF64);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_global(object, r_type, gsym);
              unsupported_reloc_global(object, r_type, gsym);
            break;
            break;
 
 
          case elfcpp::R_X86_64_GOTPC32_TLSDESC:
          case elfcpp::R_X86_64_GOTPC32_TLSDESC:
            target->define_tls_base_symbol(symtab, layout);
            target->define_tls_base_symbol(symtab, layout);
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create reserved PLT and GOT entries for the resolver.
                // Create reserved PLT and GOT entries for the resolver.
                target->reserve_tlsdesc_entries(symtab, layout);
                target->reserve_tlsdesc_entries(symtab, layout);
 
 
                // Create a double GOT entry with an R_X86_64_TLSDESC
                // Create a double GOT entry with an R_X86_64_TLSDESC
                // reloc.  The R_X86_64_TLSDESC reloc is resolved
                // reloc.  The R_X86_64_TLSDESC reloc is resolved
                // lazily, so the GOT entry needs to be in an area in
                // lazily, so the GOT entry needs to be in an area in
                // .got.plt, not .got.  Call got_section to make sure
                // .got.plt, not .got.  Call got_section to make sure
                // the section has been created.
                // the section has been created.
                target->got_section(symtab, layout);
                target->got_section(symtab, layout);
                Output_data_got<64, false>* got = target->got_tlsdesc_section();
                Output_data_got<64, false>* got = target->got_tlsdesc_section();
                Reloc_section* rt = target->rela_tlsdesc_section(layout);
                Reloc_section* rt = target->rela_tlsdesc_section(layout);
                got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC, rt,
                got->add_global_pair_with_rela(gsym, GOT_TYPE_TLS_DESC, rt,
                                               elfcpp::R_X86_64_TLSDESC, 0);
                                               elfcpp::R_X86_64_TLSDESC, 0);
              }
              }
            else if (optimized_type == tls::TLSOPT_TO_IE)
            else if (optimized_type == tls::TLSOPT_TO_IE)
              {
              {
                // Create a GOT entry for the tp-relative offset.
                // Create a GOT entry for the tp-relative offset.
                Output_data_got<64, false>* got
                Output_data_got<64, false>* got
                    = target->got_section(symtab, layout);
                    = target->got_section(symtab, layout);
                got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
                got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
                                          target->rela_dyn_section(layout),
                                          target->rela_dyn_section(layout),
                                          elfcpp::R_X86_64_TPOFF64);
                                          elfcpp::R_X86_64_TPOFF64);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_global(object, r_type, gsym);
              unsupported_reloc_global(object, r_type, gsym);
            break;
            break;
 
 
          case elfcpp::R_X86_64_TLSDESC_CALL:
          case elfcpp::R_X86_64_TLSDESC_CALL:
            break;
            break;
 
 
          case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
          case elfcpp::R_X86_64_TLSLD:       // Local-dynamic
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create a GOT entry for the module index.
                // Create a GOT entry for the module index.
                target->got_mod_index_entry(symtab, layout, object);
                target->got_mod_index_entry(symtab, layout, object);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_global(object, r_type, gsym);
              unsupported_reloc_global(object, r_type, gsym);
            break;
            break;
 
 
          case elfcpp::R_X86_64_DTPOFF32:
          case elfcpp::R_X86_64_DTPOFF32:
          case elfcpp::R_X86_64_DTPOFF64:
          case elfcpp::R_X86_64_DTPOFF64:
            break;
            break;
 
 
          case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
          case elfcpp::R_X86_64_GOTTPOFF:    // Initial-exec
            layout->set_has_static_tls();
            layout->set_has_static_tls();
            if (optimized_type == tls::TLSOPT_NONE)
            if (optimized_type == tls::TLSOPT_NONE)
              {
              {
                // Create a GOT entry for the tp-relative offset.
                // Create a GOT entry for the tp-relative offset.
                Output_data_got<64, false>* got
                Output_data_got<64, false>* got
                    = target->got_section(symtab, layout);
                    = target->got_section(symtab, layout);
                got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
                got->add_global_with_rela(gsym, GOT_TYPE_TLS_OFFSET,
                                          target->rela_dyn_section(layout),
                                          target->rela_dyn_section(layout),
                                          elfcpp::R_X86_64_TPOFF64);
                                          elfcpp::R_X86_64_TPOFF64);
              }
              }
            else if (optimized_type != tls::TLSOPT_TO_LE)
            else if (optimized_type != tls::TLSOPT_TO_LE)
              unsupported_reloc_global(object, r_type, gsym);
              unsupported_reloc_global(object, r_type, gsym);
            break;
            break;
 
 
          case elfcpp::R_X86_64_TPOFF32:     // Local-exec
          case elfcpp::R_X86_64_TPOFF32:     // Local-exec
            layout->set_has_static_tls();
            layout->set_has_static_tls();
            if (parameters->options().shared())
            if (parameters->options().shared())
              unsupported_reloc_local(object, r_type);
              unsupported_reloc_local(object, r_type);
            break;
            break;
 
 
          default:
          default:
            gold_unreachable();
            gold_unreachable();
          }
          }
      }
      }
      break;
      break;
 
 
    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE64:
    case elfcpp::R_X86_64_SIZE64:
    default:
    default:
      gold_error(_("%s: unsupported reloc %u against global symbol %s"),
      gold_error(_("%s: unsupported reloc %u against global symbol %s"),
                 object->name().c_str(), r_type,
                 object->name().c_str(), r_type,
                 gsym->demangled_name().c_str());
                 gsym->demangled_name().c_str());
      break;
      break;
    }
    }
}
}
 
 
void
void
Target_x86_64::gc_process_relocs(Symbol_table* symtab,
Target_x86_64::gc_process_relocs(Symbol_table* symtab,
                                 Layout* layout,
                                 Layout* layout,
                                 Sized_relobj_file<64, false>* object,
                                 Sized_relobj_file<64, false>* object,
                                 unsigned int data_shndx,
                                 unsigned int data_shndx,
                                 unsigned int sh_type,
                                 unsigned int sh_type,
                                 const unsigned char* prelocs,
                                 const unsigned char* prelocs,
                                 size_t reloc_count,
                                 size_t reloc_count,
                                 Output_section* output_section,
                                 Output_section* output_section,
                                 bool needs_special_offset_handling,
                                 bool needs_special_offset_handling,
                                 size_t local_symbol_count,
                                 size_t local_symbol_count,
                                 const unsigned char* plocal_symbols)
                                 const unsigned char* plocal_symbols)
{
{
 
 
  if (sh_type == elfcpp::SHT_REL)
  if (sh_type == elfcpp::SHT_REL)
    {
    {
      return;
      return;
    }
    }
 
 
   gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
   gold::gc_process_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
                           Target_x86_64::Scan,
                           Target_x86_64::Scan,
                           Target_x86_64::Relocatable_size_for_reloc>(
                           Target_x86_64::Relocatable_size_for_reloc>(
    symtab,
    symtab,
    layout,
    layout,
    this,
    this,
    object,
    object,
    data_shndx,
    data_shndx,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    needs_special_offset_handling,
    needs_special_offset_handling,
    local_symbol_count,
    local_symbol_count,
    plocal_symbols);
    plocal_symbols);
 
 
}
}
// Scan relocations for a section.
// Scan relocations for a section.
 
 
void
void
Target_x86_64::scan_relocs(Symbol_table* symtab,
Target_x86_64::scan_relocs(Symbol_table* symtab,
                           Layout* layout,
                           Layout* layout,
                           Sized_relobj_file<64, false>* object,
                           Sized_relobj_file<64, false>* object,
                           unsigned int data_shndx,
                           unsigned int data_shndx,
                           unsigned int sh_type,
                           unsigned int sh_type,
                           const unsigned char* prelocs,
                           const unsigned char* prelocs,
                           size_t reloc_count,
                           size_t reloc_count,
                           Output_section* output_section,
                           Output_section* output_section,
                           bool needs_special_offset_handling,
                           bool needs_special_offset_handling,
                           size_t local_symbol_count,
                           size_t local_symbol_count,
                           const unsigned char* plocal_symbols)
                           const unsigned char* plocal_symbols)
{
{
  if (sh_type == elfcpp::SHT_REL)
  if (sh_type == elfcpp::SHT_REL)
    {
    {
      gold_error(_("%s: unsupported REL reloc section"),
      gold_error(_("%s: unsupported REL reloc section"),
                 object->name().c_str());
                 object->name().c_str());
      return;
      return;
    }
    }
 
 
  gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
  gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
      Target_x86_64::Scan>(
      Target_x86_64::Scan>(
    symtab,
    symtab,
    layout,
    layout,
    this,
    this,
    object,
    object,
    data_shndx,
    data_shndx,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    needs_special_offset_handling,
    needs_special_offset_handling,
    local_symbol_count,
    local_symbol_count,
    plocal_symbols);
    plocal_symbols);
}
}
 
 
// Finalize the sections.
// Finalize the sections.
 
 
void
void
Target_x86_64::do_finalize_sections(
Target_x86_64::do_finalize_sections(
    Layout* layout,
    Layout* layout,
    const Input_objects*,
    const Input_objects*,
    Symbol_table* symtab)
    Symbol_table* symtab)
{
{
  const Reloc_section* rel_plt = (this->plt_ == NULL
  const Reloc_section* rel_plt = (this->plt_ == NULL
                                  ? NULL
                                  ? NULL
                                  : this->plt_->rela_plt());
                                  : this->plt_->rela_plt());
  layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
  layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
                                  this->rela_dyn_, true, false);
                                  this->rela_dyn_, true, false);
 
 
  // Fill in some more dynamic tags.
  // Fill in some more dynamic tags.
  Output_data_dynamic* const odyn = layout->dynamic_data();
  Output_data_dynamic* const odyn = layout->dynamic_data();
  if (odyn != NULL)
  if (odyn != NULL)
    {
    {
      if (this->plt_ != NULL
      if (this->plt_ != NULL
          && this->plt_->output_section() != NULL
          && this->plt_->output_section() != NULL
          && this->plt_->has_tlsdesc_entry())
          && this->plt_->has_tlsdesc_entry())
        {
        {
          unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
          unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
          unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
          unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
          this->got_->finalize_data_size();
          this->got_->finalize_data_size();
          odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
          odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
                                        this->plt_, plt_offset);
                                        this->plt_, plt_offset);
          odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
          odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
                                        this->got_, got_offset);
                                        this->got_, got_offset);
        }
        }
    }
    }
 
 
  // Emit any relocs we saved in an attempt to avoid generating COPY
  // Emit any relocs we saved in an attempt to avoid generating COPY
  // relocs.
  // relocs.
  if (this->copy_relocs_.any_saved_relocs())
  if (this->copy_relocs_.any_saved_relocs())
    this->copy_relocs_.emit(this->rela_dyn_section(layout));
    this->copy_relocs_.emit(this->rela_dyn_section(layout));
 
 
  // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
  // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
  // the .got.plt section.
  // the .got.plt section.
  Symbol* sym = this->global_offset_table_;
  Symbol* sym = this->global_offset_table_;
  if (sym != NULL)
  if (sym != NULL)
    {
    {
      uint64_t data_size = this->got_plt_->current_data_size();
      uint64_t data_size = this->got_plt_->current_data_size();
      symtab->get_sized_symbol<64>(sym)->set_symsize(data_size);
      symtab->get_sized_symbol<64>(sym)->set_symsize(data_size);
    }
    }
 
 
  if (parameters->doing_static_link()
  if (parameters->doing_static_link()
      && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
      && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
    {
    {
      // If linking statically, make sure that the __rela_iplt symbols
      // If linking statically, make sure that the __rela_iplt symbols
      // were defined if necessary, even if we didn't create a PLT.
      // were defined if necessary, even if we didn't create a PLT.
      static const Define_symbol_in_segment syms[] =
      static const Define_symbol_in_segment syms[] =
        {
        {
          {
          {
            "__rela_iplt_start",        // name
            "__rela_iplt_start",        // name
            elfcpp::PT_LOAD,            // segment_type
            elfcpp::PT_LOAD,            // segment_type
            elfcpp::PF_W,               // segment_flags_set
            elfcpp::PF_W,               // segment_flags_set
            elfcpp::PF(0),               // segment_flags_clear
            elfcpp::PF(0),               // segment_flags_clear
            0,                           // value
            0,                           // value
            0,                           // size
            0,                           // size
            elfcpp::STT_NOTYPE,         // type
            elfcpp::STT_NOTYPE,         // type
            elfcpp::STB_GLOBAL,         // binding
            elfcpp::STB_GLOBAL,         // binding
            elfcpp::STV_HIDDEN,         // visibility
            elfcpp::STV_HIDDEN,         // visibility
            0,                           // nonvis
            0,                           // nonvis
            Symbol::SEGMENT_START,      // offset_from_base
            Symbol::SEGMENT_START,      // offset_from_base
            true                        // only_if_ref
            true                        // only_if_ref
          },
          },
          {
          {
            "__rela_iplt_end",          // name
            "__rela_iplt_end",          // name
            elfcpp::PT_LOAD,            // segment_type
            elfcpp::PT_LOAD,            // segment_type
            elfcpp::PF_W,               // segment_flags_set
            elfcpp::PF_W,               // segment_flags_set
            elfcpp::PF(0),               // segment_flags_clear
            elfcpp::PF(0),               // segment_flags_clear
            0,                           // value
            0,                           // value
            0,                           // size
            0,                           // size
            elfcpp::STT_NOTYPE,         // type
            elfcpp::STT_NOTYPE,         // type
            elfcpp::STB_GLOBAL,         // binding
            elfcpp::STB_GLOBAL,         // binding
            elfcpp::STV_HIDDEN,         // visibility
            elfcpp::STV_HIDDEN,         // visibility
            0,                           // nonvis
            0,                           // nonvis
            Symbol::SEGMENT_START,      // offset_from_base
            Symbol::SEGMENT_START,      // offset_from_base
            true                        // only_if_ref
            true                        // only_if_ref
          }
          }
        };
        };
 
 
      symtab->define_symbols(layout, 2, syms,
      symtab->define_symbols(layout, 2, syms,
                             layout->script_options()->saw_sections_clause());
                             layout->script_options()->saw_sections_clause());
    }
    }
}
}
 
 
// Perform a relocation.
// Perform a relocation.
 
 
inline bool
inline bool
Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
                                  Target_x86_64* target,
                                  Target_x86_64* target,
                                  Output_section*,
                                  Output_section*,
                                  size_t relnum,
                                  size_t relnum,
                                  const elfcpp::Rela<64, false>& rela,
                                  const elfcpp::Rela<64, false>& rela,
                                  unsigned int r_type,
                                  unsigned int r_type,
                                  const Sized_symbol<64>* gsym,
                                  const Sized_symbol<64>* gsym,
                                  const Symbol_value<64>* psymval,
                                  const Symbol_value<64>* psymval,
                                  unsigned char* view,
                                  unsigned char* view,
                                  elfcpp::Elf_types<64>::Elf_Addr address,
                                  elfcpp::Elf_types<64>::Elf_Addr address,
                                  section_size_type view_size)
                                  section_size_type view_size)
{
{
  if (this->skip_call_tls_get_addr_)
  if (this->skip_call_tls_get_addr_)
    {
    {
      if ((r_type != elfcpp::R_X86_64_PLT32
      if ((r_type != elfcpp::R_X86_64_PLT32
           && r_type != elfcpp::R_X86_64_PC32)
           && r_type != elfcpp::R_X86_64_PC32)
          || gsym == NULL
          || gsym == NULL
          || strcmp(gsym->name(), "__tls_get_addr") != 0)
          || strcmp(gsym->name(), "__tls_get_addr") != 0)
        {
        {
          gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
          gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                                 _("missing expected TLS relocation"));
                                 _("missing expected TLS relocation"));
        }
        }
      else
      else
        {
        {
          this->skip_call_tls_get_addr_ = false;
          this->skip_call_tls_get_addr_ = false;
          return false;
          return false;
        }
        }
    }
    }
 
 
  const Sized_relobj_file<64, false>* object = relinfo->object;
  const Sized_relobj_file<64, false>* object = relinfo->object;
 
 
  // Pick the value to use for symbols defined in the PLT.
  // Pick the value to use for symbols defined in the PLT.
  Symbol_value<64> symval;
  Symbol_value<64> symval;
  if (gsym != NULL
  if (gsym != NULL
      && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
      && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
    {
    {
      symval.set_output_value(target->plt_address_for_global(gsym)
      symval.set_output_value(target->plt_address_for_global(gsym)
                              + gsym->plt_offset());
                              + gsym->plt_offset());
      psymval = &symval;
      psymval = &symval;
    }
    }
  else if (gsym == NULL && psymval->is_ifunc_symbol())
  else if (gsym == NULL && psymval->is_ifunc_symbol())
    {
    {
      unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
      unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
      if (object->local_has_plt_offset(r_sym))
      if (object->local_has_plt_offset(r_sym))
        {
        {
          symval.set_output_value(target->plt_address_for_local(object, r_sym)
          symval.set_output_value(target->plt_address_for_local(object, r_sym)
                                  + object->local_plt_offset(r_sym));
                                  + object->local_plt_offset(r_sym));
          psymval = &symval;
          psymval = &symval;
        }
        }
    }
    }
 
 
  const elfcpp::Elf_Xword addend = rela.get_r_addend();
  const elfcpp::Elf_Xword addend = rela.get_r_addend();
 
 
  // Get the GOT offset if needed.
  // Get the GOT offset if needed.
  // The GOT pointer points to the end of the GOT section.
  // The GOT pointer points to the end of the GOT section.
  // We need to subtract the size of the GOT section to get
  // We need to subtract the size of the GOT section to get
  // the actual offset to use in the relocation.
  // the actual offset to use in the relocation.
  bool have_got_offset = false;
  bool have_got_offset = false;
  unsigned int got_offset = 0;
  unsigned int got_offset = 0;
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOTPLT64:
    case elfcpp::R_X86_64_GOTPLT64:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL64:
      if (gsym != NULL)
      if (gsym != NULL)
        {
        {
          gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
          gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
          got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
          got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - target->got_size();
        }
        }
      else
      else
        {
        {
          unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
          unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
          gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
          gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
          got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
          got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
                        - target->got_size());
                        - target->got_size());
        }
        }
      have_got_offset = true;
      have_got_offset = true;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTENTRY:
    case elfcpp::R_X86_64_GNU_VTENTRY:
      break;
      break;
 
 
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_64:
      Relocate_functions<64, false>::rela64(view, object, psymval, addend);
      Relocate_functions<64, false>::rela64(view, object, psymval, addend);
      break;
      break;
 
 
    case elfcpp::R_X86_64_PC64:
    case elfcpp::R_X86_64_PC64:
      Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
      Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
                                              address);
                                              address);
      break;
      break;
 
 
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32:
      // FIXME: we need to verify that value + addend fits into 32 bits:
      // FIXME: we need to verify that value + addend fits into 32 bits:
      //    uint64_t x = value + addend;
      //    uint64_t x = value + addend;
      //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
      //    x == static_cast<uint64_t>(static_cast<uint32_t>(x))
      // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
      // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
      Relocate_functions<64, false>::rela32(view, object, psymval, addend);
      Relocate_functions<64, false>::rela32(view, object, psymval, addend);
      break;
      break;
 
 
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_32S:
      // FIXME: we need to verify that value + addend fits into 32 bits:
      // FIXME: we need to verify that value + addend fits into 32 bits:
      //    int64_t x = value + addend;   // note this quantity is signed!
      //    int64_t x = value + addend;   // note this quantity is signed!
      //    x == static_cast<int64_t>(static_cast<int32_t>(x))
      //    x == static_cast<int64_t>(static_cast<int32_t>(x))
      Relocate_functions<64, false>::rela32(view, object, psymval, addend);
      Relocate_functions<64, false>::rela32(view, object, psymval, addend);
      break;
      break;
 
 
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC32:
      Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
      Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
                                              address);
                                              address);
      break;
      break;
 
 
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_16:
      Relocate_functions<64, false>::rela16(view, object, psymval, addend);
      Relocate_functions<64, false>::rela16(view, object, psymval, addend);
      break;
      break;
 
 
    case elfcpp::R_X86_64_PC16:
    case elfcpp::R_X86_64_PC16:
      Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
      Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
                                              address);
                                              address);
      break;
      break;
 
 
    case elfcpp::R_X86_64_8:
    case elfcpp::R_X86_64_8:
      Relocate_functions<64, false>::rela8(view, object, psymval, addend);
      Relocate_functions<64, false>::rela8(view, object, psymval, addend);
      break;
      break;
 
 
    case elfcpp::R_X86_64_PC8:
    case elfcpp::R_X86_64_PC8:
      Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
      Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
                                             address);
                                             address);
      break;
      break;
 
 
    case elfcpp::R_X86_64_PLT32:
    case elfcpp::R_X86_64_PLT32:
      gold_assert(gsym == NULL
      gold_assert(gsym == NULL
                  || gsym->has_plt_offset()
                  || gsym->has_plt_offset()
                  || gsym->final_value_is_known()
                  || gsym->final_value_is_known()
                  || (gsym->is_defined()
                  || (gsym->is_defined()
                      && !gsym->is_from_dynobj()
                      && !gsym->is_from_dynobj()
                      && !gsym->is_preemptible()));
                      && !gsym->is_preemptible()));
      // Note: while this code looks the same as for R_X86_64_PC32, it
      // Note: while this code looks the same as for R_X86_64_PC32, it
      // behaves differently because psymval was set to point to
      // behaves differently because psymval was set to point to
      // the PLT entry, rather than the symbol, in Scan::global().
      // the PLT entry, rather than the symbol, in Scan::global().
      Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
      Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
                                              address);
                                              address);
      break;
      break;
 
 
    case elfcpp::R_X86_64_PLTOFF64:
    case elfcpp::R_X86_64_PLTOFF64:
      {
      {
        gold_assert(gsym);
        gold_assert(gsym);
        gold_assert(gsym->has_plt_offset()
        gold_assert(gsym->has_plt_offset()
                    || gsym->final_value_is_known());
                    || gsym->final_value_is_known());
        elfcpp::Elf_types<64>::Elf_Addr got_address;
        elfcpp::Elf_types<64>::Elf_Addr got_address;
        got_address = target->got_section(NULL, NULL)->address();
        got_address = target->got_section(NULL, NULL)->address();
        Relocate_functions<64, false>::rela64(view, object, psymval,
        Relocate_functions<64, false>::rela64(view, object, psymval,
                                              addend - got_address);
                                              addend - got_address);
      }
      }
 
 
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOT32:
      gold_assert(have_got_offset);
      gold_assert(have_got_offset);
      Relocate_functions<64, false>::rela32(view, got_offset, addend);
      Relocate_functions<64, false>::rela32(view, got_offset, addend);
      break;
      break;
 
 
    case elfcpp::R_X86_64_GOTPC32:
    case elfcpp::R_X86_64_GOTPC32:
      {
      {
        gold_assert(gsym);
        gold_assert(gsym);
        elfcpp::Elf_types<64>::Elf_Addr value;
        elfcpp::Elf_types<64>::Elf_Addr value;
        value = target->got_plt_section()->address();
        value = target->got_plt_section()->address();
        Relocate_functions<64, false>::pcrela32(view, value, addend, address);
        Relocate_functions<64, false>::pcrela32(view, value, addend, address);
      }
      }
      break;
      break;
 
 
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT64:
      // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
      // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
      // Since we always add a PLT entry, this is equivalent.
      // Since we always add a PLT entry, this is equivalent.
    case elfcpp::R_X86_64_GOTPLT64:
    case elfcpp::R_X86_64_GOTPLT64:
      gold_assert(have_got_offset);
      gold_assert(have_got_offset);
      Relocate_functions<64, false>::rela64(view, got_offset, addend);
      Relocate_functions<64, false>::rela64(view, got_offset, addend);
      break;
      break;
 
 
    case elfcpp::R_X86_64_GOTPC64:
    case elfcpp::R_X86_64_GOTPC64:
      {
      {
        gold_assert(gsym);
        gold_assert(gsym);
        elfcpp::Elf_types<64>::Elf_Addr value;
        elfcpp::Elf_types<64>::Elf_Addr value;
        value = target->got_plt_section()->address();
        value = target->got_plt_section()->address();
        Relocate_functions<64, false>::pcrela64(view, value, addend, address);
        Relocate_functions<64, false>::pcrela64(view, value, addend, address);
      }
      }
      break;
      break;
 
 
    case elfcpp::R_X86_64_GOTOFF64:
    case elfcpp::R_X86_64_GOTOFF64:
      {
      {
        elfcpp::Elf_types<64>::Elf_Addr value;
        elfcpp::Elf_types<64>::Elf_Addr value;
        value = (psymval->value(object, 0)
        value = (psymval->value(object, 0)
                 - target->got_plt_section()->address());
                 - target->got_plt_section()->address());
        Relocate_functions<64, false>::rela64(view, value, addend);
        Relocate_functions<64, false>::rela64(view, value, addend);
      }
      }
      break;
      break;
 
 
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPCREL:
      {
      {
        gold_assert(have_got_offset);
        gold_assert(have_got_offset);
        elfcpp::Elf_types<64>::Elf_Addr value;
        elfcpp::Elf_types<64>::Elf_Addr value;
        value = target->got_plt_section()->address() + got_offset;
        value = target->got_plt_section()->address() + got_offset;
        Relocate_functions<64, false>::pcrela32(view, value, addend, address);
        Relocate_functions<64, false>::pcrela32(view, value, addend, address);
      }
      }
      break;
      break;
 
 
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL64:
      {
      {
        gold_assert(have_got_offset);
        gold_assert(have_got_offset);
        elfcpp::Elf_types<64>::Elf_Addr value;
        elfcpp::Elf_types<64>::Elf_Addr value;
        value = target->got_plt_section()->address() + got_offset;
        value = target->got_plt_section()->address() + got_offset;
        Relocate_functions<64, false>::pcrela64(view, value, addend, address);
        Relocate_functions<64, false>::pcrela64(view, value, addend, address);
      }
      }
      break;
      break;
 
 
    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
      // These are outstanding tls relocs, which are unexpected when linking
      // These are outstanding tls relocs, which are unexpected when linking
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_TLSDESC:
    case elfcpp::R_X86_64_TLSDESC:
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                             _("unexpected reloc %u in object file"),
                             _("unexpected reloc %u in object file"),
                             r_type);
                             r_type);
      break;
      break;
 
 
      // These are initial tls relocs, which are expected when linking
      // These are initial tls relocs, which are expected when linking
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
      this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
      this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
                         view, address, view_size);
                         view, address, view_size);
      break;
      break;
 
 
    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE64:
    case elfcpp::R_X86_64_SIZE64:
    default:
    default:
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                             _("unsupported reloc %u"),
                             _("unsupported reloc %u"),
                             r_type);
                             r_type);
      break;
      break;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
// Perform a TLS relocation.
// Perform a TLS relocation.
 
 
inline void
inline void
Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
                                      Target_x86_64* target,
                                      Target_x86_64* target,
                                      size_t relnum,
                                      size_t relnum,
                                      const elfcpp::Rela<64, false>& rela,
                                      const elfcpp::Rela<64, false>& rela,
                                      unsigned int r_type,
                                      unsigned int r_type,
                                      const Sized_symbol<64>* gsym,
                                      const Sized_symbol<64>* gsym,
                                      const Symbol_value<64>* psymval,
                                      const Symbol_value<64>* psymval,
                                      unsigned char* view,
                                      unsigned char* view,
                                      elfcpp::Elf_types<64>::Elf_Addr address,
                                      elfcpp::Elf_types<64>::Elf_Addr address,
                                      section_size_type view_size)
                                      section_size_type view_size)
{
{
  Output_segment* tls_segment = relinfo->layout->tls_segment();
  Output_segment* tls_segment = relinfo->layout->tls_segment();
 
 
  const Sized_relobj_file<64, false>* object = relinfo->object;
  const Sized_relobj_file<64, false>* object = relinfo->object;
  const elfcpp::Elf_Xword addend = rela.get_r_addend();
  const elfcpp::Elf_Xword addend = rela.get_r_addend();
  elfcpp::Shdr<64, false> data_shdr(relinfo->data_shdr);
  elfcpp::Shdr<64, false> data_shdr(relinfo->data_shdr);
  bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
  bool is_executable = (data_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) != 0;
 
 
  elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
  elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
 
 
  const bool is_final = (gsym == NULL
  const bool is_final = (gsym == NULL
                         ? !parameters->options().shared()
                         ? !parameters->options().shared()
                         : gsym->final_value_is_known());
                         : gsym->final_value_is_known());
  tls::Tls_optimization optimized_type
  tls::Tls_optimization optimized_type
      = Target_x86_64::optimize_tls_reloc(is_final, r_type);
      = Target_x86_64::optimize_tls_reloc(is_final, r_type);
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          // If this code sequence is used in a non-executable section,
          // If this code sequence is used in a non-executable section,
          // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
          // we will not optimize the R_X86_64_DTPOFF32/64 relocation,
          // on the assumption that it's being used by itself in a debug
          // on the assumption that it's being used by itself in a debug
          // section.  Therefore, in the unlikely event that the code
          // section.  Therefore, in the unlikely event that the code
          // sequence appears in a non-executable section, we simply
          // sequence appears in a non-executable section, we simply
          // leave it unoptimized.
          // leave it unoptimized.
          optimized_type = tls::TLSOPT_NONE;
          optimized_type = tls::TLSOPT_NONE;
        }
        }
      if (optimized_type == tls::TLSOPT_TO_LE)
      if (optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          if (tls_segment == NULL)
          if (tls_segment == NULL)
            {
            {
              gold_assert(parameters->errors()->error_count() > 0
              gold_assert(parameters->errors()->error_count() > 0
                          || issue_undefined_symbol_error(gsym));
                          || issue_undefined_symbol_error(gsym));
              return;
              return;
            }
            }
          this->tls_gd_to_le(relinfo, relnum, tls_segment,
          this->tls_gd_to_le(relinfo, relnum, tls_segment,
                             rela, r_type, value, view,
                             rela, r_type, value, view,
                             view_size);
                             view_size);
          break;
          break;
        }
        }
      else
      else
        {
        {
          unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
          unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
                                   ? GOT_TYPE_TLS_OFFSET
                                   ? GOT_TYPE_TLS_OFFSET
                                   : GOT_TYPE_TLS_PAIR);
                                   : GOT_TYPE_TLS_PAIR);
          unsigned int got_offset;
          unsigned int got_offset;
          if (gsym != NULL)
          if (gsym != NULL)
            {
            {
              gold_assert(gsym->has_got_offset(got_type));
              gold_assert(gsym->has_got_offset(got_type));
              got_offset = gsym->got_offset(got_type) - target->got_size();
              got_offset = gsym->got_offset(got_type) - target->got_size();
            }
            }
          else
          else
            {
            {
              unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
              unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
              gold_assert(object->local_has_got_offset(r_sym, got_type));
              gold_assert(object->local_has_got_offset(r_sym, got_type));
              got_offset = (object->local_got_offset(r_sym, got_type)
              got_offset = (object->local_got_offset(r_sym, got_type)
                            - target->got_size());
                            - target->got_size());
            }
            }
          if (optimized_type == tls::TLSOPT_TO_IE)
          if (optimized_type == tls::TLSOPT_TO_IE)
            {
            {
              if (tls_segment == NULL)
 
                {
 
                  gold_assert(parameters->errors()->error_count() > 0
 
                              || issue_undefined_symbol_error(gsym));
 
                  return;
 
                }
 
              value = target->got_plt_section()->address() + got_offset;
              value = target->got_plt_section()->address() + got_offset;
              this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
              this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
                                 value, view, address, view_size);
                                 value, view, address, view_size);
              break;
              break;
            }
            }
          else if (optimized_type == tls::TLSOPT_NONE)
          else if (optimized_type == tls::TLSOPT_NONE)
            {
            {
              // Relocate the field with the offset of the pair of GOT
              // Relocate the field with the offset of the pair of GOT
              // entries.
              // entries.
              value = target->got_plt_section()->address() + got_offset;
              value = target->got_plt_section()->address() + got_offset;
              Relocate_functions<64, false>::pcrela32(view, value, addend,
              Relocate_functions<64, false>::pcrela32(view, value, addend,
                                                      address);
                                                      address);
              break;
              break;
            }
            }
        }
        }
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                             _("unsupported reloc %u"), r_type);
                             _("unsupported reloc %u"), r_type);
      break;
      break;
 
 
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSDESC_CALL:
      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          // See above comment for R_X86_64_TLSGD.
          // See above comment for R_X86_64_TLSGD.
          optimized_type = tls::TLSOPT_NONE;
          optimized_type = tls::TLSOPT_NONE;
        }
        }
      if (optimized_type == tls::TLSOPT_TO_LE)
      if (optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          if (tls_segment == NULL)
          if (tls_segment == NULL)
            {
            {
              gold_assert(parameters->errors()->error_count() > 0
              gold_assert(parameters->errors()->error_count() > 0
                          || issue_undefined_symbol_error(gsym));
                          || issue_undefined_symbol_error(gsym));
              return;
              return;
            }
            }
          this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
          this->tls_desc_gd_to_le(relinfo, relnum, tls_segment,
                                  rela, r_type, value, view,
                                  rela, r_type, value, view,
                                  view_size);
                                  view_size);
          break;
          break;
        }
        }
      else
      else
        {
        {
          unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
          unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
                                   ? GOT_TYPE_TLS_OFFSET
                                   ? GOT_TYPE_TLS_OFFSET
                                   : GOT_TYPE_TLS_DESC);
                                   : GOT_TYPE_TLS_DESC);
          unsigned int got_offset = 0;
          unsigned int got_offset = 0;
          if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
          if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC
              && optimized_type == tls::TLSOPT_NONE)
              && optimized_type == tls::TLSOPT_NONE)
            {
            {
              // We created GOT entries in the .got.tlsdesc portion of
              // We created GOT entries in the .got.tlsdesc portion of
              // the .got.plt section, but the offset stored in the
              // the .got.plt section, but the offset stored in the
              // symbol is the offset within .got.tlsdesc.
              // symbol is the offset within .got.tlsdesc.
              got_offset = (target->got_size()
              got_offset = (target->got_size()
                            + target->got_plt_section()->data_size());
                            + target->got_plt_section()->data_size());
            }
            }
          if (gsym != NULL)
          if (gsym != NULL)
            {
            {
              gold_assert(gsym->has_got_offset(got_type));
              gold_assert(gsym->has_got_offset(got_type));
              got_offset += gsym->got_offset(got_type) - target->got_size();
              got_offset += gsym->got_offset(got_type) - target->got_size();
            }
            }
          else
          else
            {
            {
              unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
              unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
              gold_assert(object->local_has_got_offset(r_sym, got_type));
              gold_assert(object->local_has_got_offset(r_sym, got_type));
              got_offset += (object->local_got_offset(r_sym, got_type)
              got_offset += (object->local_got_offset(r_sym, got_type)
                             - target->got_size());
                             - target->got_size());
            }
            }
          if (optimized_type == tls::TLSOPT_TO_IE)
          if (optimized_type == tls::TLSOPT_TO_IE)
            {
            {
              if (tls_segment == NULL)
              if (tls_segment == NULL)
                {
                {
                  gold_assert(parameters->errors()->error_count() > 0
                  gold_assert(parameters->errors()->error_count() > 0
                              || issue_undefined_symbol_error(gsym));
                              || issue_undefined_symbol_error(gsym));
                  return;
                  return;
                }
                }
              value = target->got_plt_section()->address() + got_offset;
              value = target->got_plt_section()->address() + got_offset;
              this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
              this->tls_desc_gd_to_ie(relinfo, relnum, tls_segment,
                                      rela, r_type, value, view, address,
                                      rela, r_type, value, view, address,
                                      view_size);
                                      view_size);
              break;
              break;
            }
            }
          else if (optimized_type == tls::TLSOPT_NONE)
          else if (optimized_type == tls::TLSOPT_NONE)
            {
            {
              if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
              if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
                {
                {
                  // Relocate the field with the offset of the pair of GOT
                  // Relocate the field with the offset of the pair of GOT
                  // entries.
                  // entries.
                  value = target->got_plt_section()->address() + got_offset;
                  value = target->got_plt_section()->address() + got_offset;
                  Relocate_functions<64, false>::pcrela32(view, value, addend,
                  Relocate_functions<64, false>::pcrela32(view, value, addend,
                                                          address);
                                                          address);
                }
                }
              break;
              break;
            }
            }
        }
        }
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                             _("unsupported reloc %u"), r_type);
                             _("unsupported reloc %u"), r_type);
      break;
      break;
 
 
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
      if (!is_executable && optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          // See above comment for R_X86_64_TLSGD.
          // See above comment for R_X86_64_TLSGD.
          optimized_type = tls::TLSOPT_NONE;
          optimized_type = tls::TLSOPT_NONE;
        }
        }
      if (optimized_type == tls::TLSOPT_TO_LE)
      if (optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          if (tls_segment == NULL)
          if (tls_segment == NULL)
            {
            {
              gold_assert(parameters->errors()->error_count() > 0
              gold_assert(parameters->errors()->error_count() > 0
                          || issue_undefined_symbol_error(gsym));
                          || issue_undefined_symbol_error(gsym));
              return;
              return;
            }
            }
          this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
          this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
                             value, view, view_size);
                             value, view, view_size);
          break;
          break;
        }
        }
      else if (optimized_type == tls::TLSOPT_NONE)
      else if (optimized_type == tls::TLSOPT_NONE)
        {
        {
          // Relocate the field with the offset of the GOT entry for
          // Relocate the field with the offset of the GOT entry for
          // the module index.
          // the module index.
          unsigned int got_offset;
          unsigned int got_offset;
          got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
          got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
                        - target->got_size());
                        - target->got_size());
          value = target->got_plt_section()->address() + got_offset;
          value = target->got_plt_section()->address() + got_offset;
          Relocate_functions<64, false>::pcrela32(view, value, addend,
          Relocate_functions<64, false>::pcrela32(view, value, addend,
                                                  address);
                                                  address);
          break;
          break;
        }
        }
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                             _("unsupported reloc %u"), r_type);
                             _("unsupported reloc %u"), r_type);
      break;
      break;
 
 
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF32:
      // This relocation type is used in debugging information.
      // This relocation type is used in debugging information.
      // In that case we need to not optimize the value.  If the
      // In that case we need to not optimize the value.  If the
      // section is not executable, then we assume we should not
      // section is not executable, then we assume we should not
      // optimize this reloc.  See comments above for R_X86_64_TLSGD,
      // optimize this reloc.  See comments above for R_X86_64_TLSGD,
      // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
      // R_X86_64_GOTPC32_TLSDESC, R_X86_64_TLSDESC_CALL, and
      // R_X86_64_TLSLD.
      // R_X86_64_TLSLD.
      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
        {
        {
          if (tls_segment == NULL)
          if (tls_segment == NULL)
            {
            {
              gold_assert(parameters->errors()->error_count() > 0
              gold_assert(parameters->errors()->error_count() > 0
                          || issue_undefined_symbol_error(gsym));
                          || issue_undefined_symbol_error(gsym));
              return;
              return;
            }
            }
          value -= tls_segment->memsz();
          value -= tls_segment->memsz();
        }
        }
      Relocate_functions<64, false>::rela32(view, value, addend);
      Relocate_functions<64, false>::rela32(view, value, addend);
      break;
      break;
 
 
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_DTPOFF64:
      // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
      // See R_X86_64_DTPOFF32, just above, for why we check for is_executable.
      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
      if (optimized_type == tls::TLSOPT_TO_LE && is_executable)
        {
        {
          if (tls_segment == NULL)
          if (tls_segment == NULL)
            {
            {
              gold_assert(parameters->errors()->error_count() > 0
              gold_assert(parameters->errors()->error_count() > 0
                          || issue_undefined_symbol_error(gsym));
                          || issue_undefined_symbol_error(gsym));
              return;
              return;
            }
            }
          value -= tls_segment->memsz();
          value -= tls_segment->memsz();
        }
        }
      Relocate_functions<64, false>::rela64(view, value, addend);
      Relocate_functions<64, false>::rela64(view, value, addend);
      break;
      break;
 
 
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
      if (optimized_type == tls::TLSOPT_TO_LE)
      if (optimized_type == tls::TLSOPT_TO_LE)
        {
        {
          if (tls_segment == NULL)
          if (tls_segment == NULL)
            {
            {
              gold_assert(parameters->errors()->error_count() > 0
              gold_assert(parameters->errors()->error_count() > 0
                          || issue_undefined_symbol_error(gsym));
                          || issue_undefined_symbol_error(gsym));
              return;
              return;
            }
            }
          Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
          Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
                                                rela, r_type, value, view,
                                                rela, r_type, value, view,
                                                view_size);
                                                view_size);
          break;
          break;
        }
        }
      else if (optimized_type == tls::TLSOPT_NONE)
      else if (optimized_type == tls::TLSOPT_NONE)
        {
        {
          // Relocate the field with the offset of the GOT entry for
          // Relocate the field with the offset of the GOT entry for
          // the tp-relative offset of the symbol.
          // the tp-relative offset of the symbol.
          unsigned int got_offset;
          unsigned int got_offset;
          if (gsym != NULL)
          if (gsym != NULL)
            {
            {
              gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
              gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
              got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
              got_offset = (gsym->got_offset(GOT_TYPE_TLS_OFFSET)
                            - target->got_size());
                            - target->got_size());
            }
            }
          else
          else
            {
            {
              unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
              unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
              gold_assert(object->local_has_got_offset(r_sym,
              gold_assert(object->local_has_got_offset(r_sym,
                                                       GOT_TYPE_TLS_OFFSET));
                                                       GOT_TYPE_TLS_OFFSET));
              got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
              got_offset = (object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET)
                            - target->got_size());
                            - target->got_size());
            }
            }
          value = target->got_plt_section()->address() + got_offset;
          value = target->got_plt_section()->address() + got_offset;
          Relocate_functions<64, false>::pcrela32(view, value, addend, address);
          Relocate_functions<64, false>::pcrela32(view, value, addend, address);
          break;
          break;
        }
        }
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
      gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                             _("unsupported reloc type %u"),
                             _("unsupported reloc type %u"),
                             r_type);
                             r_type);
      break;
      break;
 
 
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
      if (tls_segment == NULL)
      if (tls_segment == NULL)
        {
        {
          gold_assert(parameters->errors()->error_count() > 0
          gold_assert(parameters->errors()->error_count() > 0
                      || issue_undefined_symbol_error(gsym));
                      || issue_undefined_symbol_error(gsym));
          return;
          return;
        }
        }
      value -= tls_segment->memsz();
      value -= tls_segment->memsz();
      Relocate_functions<64, false>::rela32(view, value, addend);
      Relocate_functions<64, false>::rela32(view, value, addend);
      break;
      break;
    }
    }
}
}
 
 
// Do a relocation in which we convert a TLS General-Dynamic to an
// Do a relocation in which we convert a TLS General-Dynamic to an
// Initial-Exec.
// Initial-Exec.
 
 
inline void
inline void
Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
                                      size_t relnum,
                                      size_t relnum,
                                      Output_segment*,
                                      Output_segment*,
                                      const elfcpp::Rela<64, false>& rela,
                                      const elfcpp::Rela<64, false>& rela,
                                      unsigned int,
                                      unsigned int,
                                      elfcpp::Elf_types<64>::Elf_Addr value,
                                      elfcpp::Elf_types<64>::Elf_Addr value,
                                      unsigned char* view,
                                      unsigned char* view,
                                      elfcpp::Elf_types<64>::Elf_Addr address,
                                      elfcpp::Elf_types<64>::Elf_Addr address,
                                      section_size_type view_size)
                                      section_size_type view_size)
{
{
  // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
  // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
  // .word 0x6666; rex64; call __tls_get_addr
  // .word 0x6666; rex64; call __tls_get_addr
  // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
  // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
 
 
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
 
 
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
                 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
                 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
                 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
                 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
 
 
  memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
  memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
 
 
  const elfcpp::Elf_Xword addend = rela.get_r_addend();
  const elfcpp::Elf_Xword addend = rela.get_r_addend();
  Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
  Relocate_functions<64, false>::pcrela32(view + 8, value, addend - 8, address);
 
 
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // We can skip it.
  // We can skip it.
  this->skip_call_tls_get_addr_ = true;
  this->skip_call_tls_get_addr_ = true;
}
}
 
 
// Do a relocation in which we convert a TLS General-Dynamic to a
// Do a relocation in which we convert a TLS General-Dynamic to a
// Local-Exec.
// Local-Exec.
 
 
inline void
inline void
Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
                                      size_t relnum,
                                      size_t relnum,
                                      Output_segment* tls_segment,
                                      Output_segment* tls_segment,
                                      const elfcpp::Rela<64, false>& rela,
                                      const elfcpp::Rela<64, false>& rela,
                                      unsigned int,
                                      unsigned int,
                                      elfcpp::Elf_types<64>::Elf_Addr value,
                                      elfcpp::Elf_types<64>::Elf_Addr value,
                                      unsigned char* view,
                                      unsigned char* view,
                                      section_size_type view_size)
                                      section_size_type view_size)
{
{
  // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
  // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
  // .word 0x6666; rex64; call __tls_get_addr
  // .word 0x6666; rex64; call __tls_get_addr
  // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
  // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
 
 
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
 
 
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
                 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
                 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
                 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
                 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
 
 
  memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
  memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
 
 
  value -= tls_segment->memsz();
  value -= tls_segment->memsz();
  Relocate_functions<64, false>::rela32(view + 8, value, 0);
  Relocate_functions<64, false>::rela32(view + 8, value, 0);
 
 
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // We can skip it.
  // We can skip it.
  this->skip_call_tls_get_addr_ = true;
  this->skip_call_tls_get_addr_ = true;
}
}
 
 
// Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
// Do a TLSDESC-style General-Dynamic to Initial-Exec transition.
 
 
inline void
inline void
Target_x86_64::Relocate::tls_desc_gd_to_ie(
Target_x86_64::Relocate::tls_desc_gd_to_ie(
    const Relocate_info<64, false>* relinfo,
    const Relocate_info<64, false>* relinfo,
    size_t relnum,
    size_t relnum,
    Output_segment*,
    Output_segment*,
    const elfcpp::Rela<64, false>& rela,
    const elfcpp::Rela<64, false>& rela,
    unsigned int r_type,
    unsigned int r_type,
    elfcpp::Elf_types<64>::Elf_Addr value,
    elfcpp::Elf_types<64>::Elf_Addr value,
    unsigned char* view,
    unsigned char* view,
    elfcpp::Elf_types<64>::Elf_Addr address,
    elfcpp::Elf_types<64>::Elf_Addr address,
    section_size_type view_size)
    section_size_type view_size)
{
{
  if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
  if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
    {
    {
      // leaq foo@tlsdesc(%rip), %rax
      // leaq foo@tlsdesc(%rip), %rax
      // ==> movq foo@gottpoff(%rip), %rax
      // ==> movq foo@gottpoff(%rip), %rax
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
                     view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
                     view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
      view[-2] = 0x8b;
      view[-2] = 0x8b;
      const elfcpp::Elf_Xword addend = rela.get_r_addend();
      const elfcpp::Elf_Xword addend = rela.get_r_addend();
      Relocate_functions<64, false>::pcrela32(view, value, addend, address);
      Relocate_functions<64, false>::pcrela32(view, value, addend, address);
    }
    }
  else
  else
    {
    {
      // call *foo@tlscall(%rax)
      // call *foo@tlscall(%rax)
      // ==> nop; nop
      // ==> nop; nop
      gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
      gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
                     view[0] == 0xff && view[1] == 0x10);
                     view[0] == 0xff && view[1] == 0x10);
      view[0] = 0x66;
      view[0] = 0x66;
      view[1] = 0x90;
      view[1] = 0x90;
    }
    }
}
}
 
 
// Do a TLSDESC-style General-Dynamic to Local-Exec transition.
// Do a TLSDESC-style General-Dynamic to Local-Exec transition.
 
 
inline void
inline void
Target_x86_64::Relocate::tls_desc_gd_to_le(
Target_x86_64::Relocate::tls_desc_gd_to_le(
    const Relocate_info<64, false>* relinfo,
    const Relocate_info<64, false>* relinfo,
    size_t relnum,
    size_t relnum,
    Output_segment* tls_segment,
    Output_segment* tls_segment,
    const elfcpp::Rela<64, false>& rela,
    const elfcpp::Rela<64, false>& rela,
    unsigned int r_type,
    unsigned int r_type,
    elfcpp::Elf_types<64>::Elf_Addr value,
    elfcpp::Elf_types<64>::Elf_Addr value,
    unsigned char* view,
    unsigned char* view,
    section_size_type view_size)
    section_size_type view_size)
{
{
  if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
  if (r_type == elfcpp::R_X86_64_GOTPC32_TLSDESC)
    {
    {
      // leaq foo@tlsdesc(%rip), %rax
      // leaq foo@tlsdesc(%rip), %rax
      // ==> movq foo@tpoff, %rax
      // ==> movq foo@tpoff, %rax
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
                     view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
                     view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x05);
      view[-2] = 0xc7;
      view[-2] = 0xc7;
      view[-1] = 0xc0;
      view[-1] = 0xc0;
      value -= tls_segment->memsz();
      value -= tls_segment->memsz();
      Relocate_functions<64, false>::rela32(view, value, 0);
      Relocate_functions<64, false>::rela32(view, value, 0);
    }
    }
  else
  else
    {
    {
      // call *foo@tlscall(%rax)
      // call *foo@tlscall(%rax)
      // ==> nop; nop
      // ==> nop; nop
      gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
      gold_assert(r_type == elfcpp::R_X86_64_TLSDESC_CALL);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
      tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
      tls::check_tls(relinfo, relnum, rela.get_r_offset(),
                     view[0] == 0xff && view[1] == 0x10);
                     view[0] == 0xff && view[1] == 0x10);
      view[0] = 0x66;
      view[0] = 0x66;
      view[1] = 0x90;
      view[1] = 0x90;
    }
    }
}
}
 
 
inline void
inline void
Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
                                      size_t relnum,
                                      size_t relnum,
                                      Output_segment*,
                                      Output_segment*,
                                      const elfcpp::Rela<64, false>& rela,
                                      const elfcpp::Rela<64, false>& rela,
                                      unsigned int,
                                      unsigned int,
                                      elfcpp::Elf_types<64>::Elf_Addr,
                                      elfcpp::Elf_types<64>::Elf_Addr,
                                      unsigned char* view,
                                      unsigned char* view,
                                      section_size_type view_size)
                                      section_size_type view_size)
{
{
  // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
  // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
  // ... leq foo@dtpoff(%rax),%reg
  // ... leq foo@dtpoff(%rax),%reg
  // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
  // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
 
 
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
 
 
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
  tls::check_tls(relinfo, relnum, rela.get_r_offset(),
                 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
                 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
 
 
  tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
  tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
 
 
  memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
  memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
 
 
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // The next reloc should be a PLT32 reloc against __tls_get_addr.
  // We can skip it.
  // We can skip it.
  this->skip_call_tls_get_addr_ = true;
  this->skip_call_tls_get_addr_ = true;
}
}
 
 
// Do a relocation in which we convert a TLS Initial-Exec to a
// Do a relocation in which we convert a TLS Initial-Exec to a
// Local-Exec.
// Local-Exec.
 
 
inline void
inline void
Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
                                      size_t relnum,
                                      size_t relnum,
                                      Output_segment* tls_segment,
                                      Output_segment* tls_segment,
                                      const elfcpp::Rela<64, false>& rela,
                                      const elfcpp::Rela<64, false>& rela,
                                      unsigned int,
                                      unsigned int,
                                      elfcpp::Elf_types<64>::Elf_Addr value,
                                      elfcpp::Elf_types<64>::Elf_Addr value,
                                      unsigned char* view,
                                      unsigned char* view,
                                      section_size_type view_size)
                                      section_size_type view_size)
{
{
  // We need to examine the opcodes to figure out which instruction we
  // We need to examine the opcodes to figure out which instruction we
  // are looking at.
  // are looking at.
 
 
  // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
  // movq foo@gottpoff(%rip),%reg  ==>  movq $YY,%reg
  // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
  // addq foo@gottpoff(%rip),%reg  ==>  addq $YY,%reg
 
 
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
  tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
 
 
  unsigned char op1 = view[-3];
  unsigned char op1 = view[-3];
  unsigned char op2 = view[-2];
  unsigned char op2 = view[-2];
  unsigned char op3 = view[-1];
  unsigned char op3 = view[-1];
  unsigned char reg = op3 >> 3;
  unsigned char reg = op3 >> 3;
 
 
  if (op2 == 0x8b)
  if (op2 == 0x8b)
    {
    {
      // movq
      // movq
      if (op1 == 0x4c)
      if (op1 == 0x4c)
        view[-3] = 0x49;
        view[-3] = 0x49;
      view[-2] = 0xc7;
      view[-2] = 0xc7;
      view[-1] = 0xc0 | reg;
      view[-1] = 0xc0 | reg;
    }
    }
  else if (reg == 4)
  else if (reg == 4)
    {
    {
      // Special handling for %rsp.
      // Special handling for %rsp.
      if (op1 == 0x4c)
      if (op1 == 0x4c)
        view[-3] = 0x49;
        view[-3] = 0x49;
      view[-2] = 0x81;
      view[-2] = 0x81;
      view[-1] = 0xc0 | reg;
      view[-1] = 0xc0 | reg;
    }
    }
  else
  else
    {
    {
      // addq
      // addq
      if (op1 == 0x4c)
      if (op1 == 0x4c)
        view[-3] = 0x4d;
        view[-3] = 0x4d;
      view[-2] = 0x8d;
      view[-2] = 0x8d;
      view[-1] = 0x80 | reg | (reg << 3);
      view[-1] = 0x80 | reg | (reg << 3);
    }
    }
 
 
  value -= tls_segment->memsz();
  value -= tls_segment->memsz();
  Relocate_functions<64, false>::rela32(view, value, 0);
  Relocate_functions<64, false>::rela32(view, value, 0);
}
}
 
 
// Relocate section data.
// Relocate section data.
 
 
void
void
Target_x86_64::relocate_section(
Target_x86_64::relocate_section(
    const Relocate_info<64, false>* relinfo,
    const Relocate_info<64, false>* relinfo,
    unsigned int sh_type,
    unsigned int sh_type,
    const unsigned char* prelocs,
    const unsigned char* prelocs,
    size_t reloc_count,
    size_t reloc_count,
    Output_section* output_section,
    Output_section* output_section,
    bool needs_special_offset_handling,
    bool needs_special_offset_handling,
    unsigned char* view,
    unsigned char* view,
    elfcpp::Elf_types<64>::Elf_Addr address,
    elfcpp::Elf_types<64>::Elf_Addr address,
    section_size_type view_size,
    section_size_type view_size,
    const Reloc_symbol_changes* reloc_symbol_changes)
    const Reloc_symbol_changes* reloc_symbol_changes)
{
{
  gold_assert(sh_type == elfcpp::SHT_RELA);
  gold_assert(sh_type == elfcpp::SHT_RELA);
 
 
  gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
  gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
                         Target_x86_64::Relocate>(
                         Target_x86_64::Relocate>(
    relinfo,
    relinfo,
    this,
    this,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    needs_special_offset_handling,
    needs_special_offset_handling,
    view,
    view,
    address,
    address,
    view_size,
    view_size,
    reloc_symbol_changes);
    reloc_symbol_changes);
}
}
 
 
// Apply an incremental relocation.  Incremental relocations always refer
// Apply an incremental relocation.  Incremental relocations always refer
// to global symbols.
// to global symbols.
 
 
void
void
Target_x86_64::apply_relocation(
Target_x86_64::apply_relocation(
    const Relocate_info<64, false>* relinfo,
    const Relocate_info<64, false>* relinfo,
    elfcpp::Elf_types<64>::Elf_Addr r_offset,
    elfcpp::Elf_types<64>::Elf_Addr r_offset,
    unsigned int r_type,
    unsigned int r_type,
    elfcpp::Elf_types<64>::Elf_Swxword r_addend,
    elfcpp::Elf_types<64>::Elf_Swxword r_addend,
    const Symbol* gsym,
    const Symbol* gsym,
    unsigned char* view,
    unsigned char* view,
    elfcpp::Elf_types<64>::Elf_Addr address,
    elfcpp::Elf_types<64>::Elf_Addr address,
    section_size_type view_size)
    section_size_type view_size)
{
{
  gold::apply_relocation<64, false, Target_x86_64, Target_x86_64::Relocate>(
  gold::apply_relocation<64, false, Target_x86_64, Target_x86_64::Relocate>(
    relinfo,
    relinfo,
    this,
    this,
    r_offset,
    r_offset,
    r_type,
    r_type,
    r_addend,
    r_addend,
    gsym,
    gsym,
    view,
    view,
    address,
    address,
    view_size);
    view_size);
}
}
 
 
// Return the size of a relocation while scanning during a relocatable
// Return the size of a relocation while scanning during a relocatable
// link.
// link.
 
 
unsigned int
unsigned int
Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
Target_x86_64::Relocatable_size_for_reloc::get_size_for_reloc(
    unsigned int r_type,
    unsigned int r_type,
    Relobj* object)
    Relobj* object)
{
{
  switch (r_type)
  switch (r_type)
    {
    {
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_NONE:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTINHERIT:
    case elfcpp::R_X86_64_GNU_VTENTRY:
    case elfcpp::R_X86_64_GNU_VTENTRY:
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_TLSGD:            // Global-dynamic
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_GOTPC32_TLSDESC:  // Global-dynamic (from ~oliva url)
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSDESC_CALL:
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_TLSLD:            // Local-dynamic
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF32:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_DTPOFF64:
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_GOTTPOFF:         // Initial-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
    case elfcpp::R_X86_64_TPOFF32:          // Local-exec
      return 0;
      return 0;
 
 
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_64:
    case elfcpp::R_X86_64_PC64:
    case elfcpp::R_X86_64_PC64:
    case elfcpp::R_X86_64_GOTOFF64:
    case elfcpp::R_X86_64_GOTOFF64:
    case elfcpp::R_X86_64_GOTPC64:
    case elfcpp::R_X86_64_GOTPC64:
    case elfcpp::R_X86_64_PLTOFF64:
    case elfcpp::R_X86_64_PLTOFF64:
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOT64:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL64:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPCREL:
    case elfcpp::R_X86_64_GOTPLT64:
    case elfcpp::R_X86_64_GOTPLT64:
      return 8;
      return 8;
 
 
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_32S:
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PC32:
    case elfcpp::R_X86_64_PLT32:
    case elfcpp::R_X86_64_PLT32:
    case elfcpp::R_X86_64_GOTPC32:
    case elfcpp::R_X86_64_GOTPC32:
    case elfcpp::R_X86_64_GOT32:
    case elfcpp::R_X86_64_GOT32:
      return 4;
      return 4;
 
 
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_16:
    case elfcpp::R_X86_64_PC16:
    case elfcpp::R_X86_64_PC16:
      return 2;
      return 2;
 
 
    case elfcpp::R_X86_64_8:
    case elfcpp::R_X86_64_8:
    case elfcpp::R_X86_64_PC8:
    case elfcpp::R_X86_64_PC8:
      return 1;
      return 1;
 
 
    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_COPY:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_GLOB_DAT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_JUMP_SLOT:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_RELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
    case elfcpp::R_X86_64_IRELATIVE:
      // These are outstanding tls relocs, which are unexpected when linking
      // These are outstanding tls relocs, which are unexpected when linking
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_TPOFF64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_DTPMOD64:
    case elfcpp::R_X86_64_TLSDESC:
    case elfcpp::R_X86_64_TLSDESC:
      object->error(_("unexpected reloc %u in object file"), r_type);
      object->error(_("unexpected reloc %u in object file"), r_type);
      return 0;
      return 0;
 
 
    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE32:
    case elfcpp::R_X86_64_SIZE64:
    case elfcpp::R_X86_64_SIZE64:
    default:
    default:
      object->error(_("unsupported reloc %u against local symbol"), r_type);
      object->error(_("unsupported reloc %u against local symbol"), r_type);
      return 0;
      return 0;
    }
    }
}
}
 
 
// Scan the relocs during a relocatable link.
// Scan the relocs during a relocatable link.
 
 
void
void
Target_x86_64::scan_relocatable_relocs(Symbol_table* symtab,
Target_x86_64::scan_relocatable_relocs(Symbol_table* symtab,
                                       Layout* layout,
                                       Layout* layout,
                                       Sized_relobj_file<64, false>* object,
                                       Sized_relobj_file<64, false>* object,
                                       unsigned int data_shndx,
                                       unsigned int data_shndx,
                                       unsigned int sh_type,
                                       unsigned int sh_type,
                                       const unsigned char* prelocs,
                                       const unsigned char* prelocs,
                                       size_t reloc_count,
                                       size_t reloc_count,
                                       Output_section* output_section,
                                       Output_section* output_section,
                                       bool needs_special_offset_handling,
                                       bool needs_special_offset_handling,
                                       size_t local_symbol_count,
                                       size_t local_symbol_count,
                                       const unsigned char* plocal_symbols,
                                       const unsigned char* plocal_symbols,
                                       Relocatable_relocs* rr)
                                       Relocatable_relocs* rr)
{
{
  gold_assert(sh_type == elfcpp::SHT_RELA);
  gold_assert(sh_type == elfcpp::SHT_RELA);
 
 
  typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
  typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
    Relocatable_size_for_reloc> Scan_relocatable_relocs;
    Relocatable_size_for_reloc> Scan_relocatable_relocs;
 
 
  gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
  gold::scan_relocatable_relocs<64, false, elfcpp::SHT_RELA,
      Scan_relocatable_relocs>(
      Scan_relocatable_relocs>(
    symtab,
    symtab,
    layout,
    layout,
    object,
    object,
    data_shndx,
    data_shndx,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    needs_special_offset_handling,
    needs_special_offset_handling,
    local_symbol_count,
    local_symbol_count,
    plocal_symbols,
    plocal_symbols,
    rr);
    rr);
}
}
 
 
// Relocate a section during a relocatable link.
// Relocate a section during a relocatable link.
 
 
void
void
Target_x86_64::relocate_for_relocatable(
Target_x86_64::relocate_for_relocatable(
    const Relocate_info<64, false>* relinfo,
    const Relocate_info<64, false>* relinfo,
    unsigned int sh_type,
    unsigned int sh_type,
    const unsigned char* prelocs,
    const unsigned char* prelocs,
    size_t reloc_count,
    size_t reloc_count,
    Output_section* output_section,
    Output_section* output_section,
    off_t offset_in_output_section,
    off_t offset_in_output_section,
    const Relocatable_relocs* rr,
    const Relocatable_relocs* rr,
    unsigned char* view,
    unsigned char* view,
    elfcpp::Elf_types<64>::Elf_Addr view_address,
    elfcpp::Elf_types<64>::Elf_Addr view_address,
    section_size_type view_size,
    section_size_type view_size,
    unsigned char* reloc_view,
    unsigned char* reloc_view,
    section_size_type reloc_view_size)
    section_size_type reloc_view_size)
{
{
  gold_assert(sh_type == elfcpp::SHT_RELA);
  gold_assert(sh_type == elfcpp::SHT_RELA);
 
 
  gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
  gold::relocate_for_relocatable<64, false, elfcpp::SHT_RELA>(
    relinfo,
    relinfo,
    prelocs,
    prelocs,
    reloc_count,
    reloc_count,
    output_section,
    output_section,
    offset_in_output_section,
    offset_in_output_section,
    rr,
    rr,
    view,
    view,
    view_address,
    view_address,
    view_size,
    view_size,
    reloc_view,
    reloc_view,
    reloc_view_size);
    reloc_view_size);
}
}
 
 
// Return the value to use for a dynamic which requires special
// Return the value to use for a dynamic which requires special
// treatment.  This is how we support equality comparisons of function
// treatment.  This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.
// processor specific ABI supplement.
 
 
uint64_t
uint64_t
Target_x86_64::do_dynsym_value(const Symbol* gsym) const
Target_x86_64::do_dynsym_value(const Symbol* gsym) const
{
{
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
  gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
  return this->plt_address_for_global(gsym) + gsym->plt_offset();
  return this->plt_address_for_global(gsym) + gsym->plt_offset();
}
}
 
 
// Return a string used to fill a code section with nops to take up
// Return a string used to fill a code section with nops to take up
// the specified length.
// the specified length.
 
 
std::string
std::string
Target_x86_64::do_code_fill(section_size_type length) const
Target_x86_64::do_code_fill(section_size_type length) const
{
{
  if (length >= 16)
  if (length >= 16)
    {
    {
      // Build a jmpq instruction to skip over the bytes.
      // Build a jmpq instruction to skip over the bytes.
      unsigned char jmp[5];
      unsigned char jmp[5];
      jmp[0] = 0xe9;
      jmp[0] = 0xe9;
      elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
      elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
      return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
      return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
              + std::string(length - 5, '\0'));
              + std::string(length - 5, '\0'));
    }
    }
 
 
  // Nop sequences of various lengths.
  // Nop sequences of various lengths.
  const char nop1[1] = { 0x90 };                   // nop
  const char nop1[1] = { 0x90 };                   // nop
  const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
  const char nop2[2] = { 0x66, 0x90 };             // xchg %ax %ax
  const char nop3[3] = { 0x0f, 0x1f, 0x00 };       // nop (%rax)
  const char nop3[3] = { 0x0f, 0x1f, 0x00 };       // nop (%rax)
  const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00};  // nop 0(%rax)
  const char nop4[4] = { 0x0f, 0x1f, 0x40, 0x00};  // nop 0(%rax)
  const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00,   // nop 0(%rax,%rax,1)
  const char nop5[5] = { 0x0f, 0x1f, 0x44, 0x00,   // nop 0(%rax,%rax,1)
                         0x00 };
                         0x00 };
  const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44,   // nopw 0(%rax,%rax,1)
  const char nop6[6] = { 0x66, 0x0f, 0x1f, 0x44,   // nopw 0(%rax,%rax,1)
                         0x00, 0x00 };
                         0x00, 0x00 };
  const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00,   // nopl 0L(%rax)
  const char nop7[7] = { 0x0f, 0x1f, 0x80, 0x00,   // nopl 0L(%rax)
                         0x00, 0x00, 0x00 };
                         0x00, 0x00, 0x00 };
  const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00,   // nopl 0L(%rax,%rax,1)
  const char nop8[8] = { 0x0f, 0x1f, 0x84, 0x00,   // nopl 0L(%rax,%rax,1)
                         0x00, 0x00, 0x00, 0x00 };
                         0x00, 0x00, 0x00, 0x00 };
  const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84,   // nopw 0L(%rax,%rax,1)
  const char nop9[9] = { 0x66, 0x0f, 0x1f, 0x84,   // nopw 0L(%rax,%rax,1)
                         0x00, 0x00, 0x00, 0x00,
                         0x00, 0x00, 0x00, 0x00,
                         0x00 };
                         0x00 };
  const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
  const char nop10[10] = { 0x66, 0x2e, 0x0f, 0x1f, // nopw %cs:0L(%rax,%rax,1)
                           0x84, 0x00, 0x00, 0x00,
                           0x84, 0x00, 0x00, 0x00,
                           0x00, 0x00 };
                           0x00, 0x00 };
  const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
  const char nop11[11] = { 0x66, 0x66, 0x2e, 0x0f, // data16
                           0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
                           0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
                           0x00, 0x00, 0x00 };
                           0x00, 0x00, 0x00 };
  const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
  const char nop12[12] = { 0x66, 0x66, 0x66, 0x2e, // data16; data16
                           0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
                           0x0f, 0x1f, 0x84, 0x00, // nopw %cs:0L(%rax,%rax,1)
                           0x00, 0x00, 0x00, 0x00 };
                           0x00, 0x00, 0x00, 0x00 };
  const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
  const char nop13[13] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
                           0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
                           0x2e, 0x0f, 0x1f, 0x84, // nopw %cs:0L(%rax,%rax,1)
                           0x00, 0x00, 0x00, 0x00,
                           0x00, 0x00, 0x00, 0x00,
                           0x00 };
                           0x00 };
  const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
  const char nop14[14] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
                           0x66, 0x2e, 0x0f, 0x1f, // data16
                           0x66, 0x2e, 0x0f, 0x1f, // data16
                           0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
                           0x84, 0x00, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
                           0x00, 0x00 };
                           0x00, 0x00 };
  const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
  const char nop15[15] = { 0x66, 0x66, 0x66, 0x66, // data16; data16; data16
                           0x66, 0x66, 0x2e, 0x0f, // data16; data16
                           0x66, 0x66, 0x2e, 0x0f, // data16; data16
                           0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
                           0x1f, 0x84, 0x00, 0x00, // nopw %cs:0L(%rax,%rax,1)
                           0x00, 0x00, 0x00 };
                           0x00, 0x00, 0x00 };
 
 
  const char* nops[16] = {
  const char* nops[16] = {
    NULL,
    NULL,
    nop1, nop2, nop3, nop4, nop5, nop6, nop7,
    nop1, nop2, nop3, nop4, nop5, nop6, nop7,
    nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
    nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
  };
  };
 
 
  return std::string(nops[length], length);
  return std::string(nops[length], length);
}
}
 
 
// Return the addend to use for a target specific relocation.  The
// Return the addend to use for a target specific relocation.  The
// only target specific relocation is R_X86_64_TLSDESC for a local
// only target specific relocation is R_X86_64_TLSDESC for a local
// symbol.  We want to set the addend is the offset of the local
// symbol.  We want to set the addend is the offset of the local
// symbol in the TLS segment.
// symbol in the TLS segment.
 
 
uint64_t
uint64_t
Target_x86_64::do_reloc_addend(void* arg, unsigned int r_type,
Target_x86_64::do_reloc_addend(void* arg, unsigned int r_type,
                               uint64_t) const
                               uint64_t) const
{
{
  gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
  gold_assert(r_type == elfcpp::R_X86_64_TLSDESC);
  uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
  uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
  gold_assert(intarg < this->tlsdesc_reloc_info_.size());
  gold_assert(intarg < this->tlsdesc_reloc_info_.size());
  const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
  const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
  const Symbol_value<64>* psymval = ti.object->local_symbol(ti.r_sym);
  const Symbol_value<64>* psymval = ti.object->local_symbol(ti.r_sym);
  gold_assert(psymval->is_tls_symbol());
  gold_assert(psymval->is_tls_symbol());
  // The value of a TLS symbol is the offset in the TLS segment.
  // The value of a TLS symbol is the offset in the TLS segment.
  return psymval->value(ti.object, 0);
  return psymval->value(ti.object, 0);
}
}
 
 
// Return the value to use for the base of a DW_EH_PE_datarel offset
// Return the value to use for the base of a DW_EH_PE_datarel offset
// in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
// in an FDE.  Solaris and SVR4 use DW_EH_PE_datarel because their
// assembler can not write out the difference between two labels in
// assembler can not write out the difference between two labels in
// different sections, so instead of using a pc-relative value they
// different sections, so instead of using a pc-relative value they
// use an offset from the GOT.
// use an offset from the GOT.
 
 
uint64_t
uint64_t
Target_x86_64::do_ehframe_datarel_base() const
Target_x86_64::do_ehframe_datarel_base() const
{
{
  gold_assert(this->global_offset_table_ != NULL);
  gold_assert(this->global_offset_table_ != NULL);
  Symbol* sym = this->global_offset_table_;
  Symbol* sym = this->global_offset_table_;
  Sized_symbol<64>* ssym = static_cast<Sized_symbol<64>*>(sym);
  Sized_symbol<64>* ssym = static_cast<Sized_symbol<64>*>(sym);
  return ssym->value();
  return ssym->value();
}
}
 
 
// FNOFFSET in section SHNDX in OBJECT is the start of a function
// FNOFFSET in section SHNDX in OBJECT is the start of a function
// compiled with -fsplit-stack.  The function calls non-split-stack
// compiled with -fsplit-stack.  The function calls non-split-stack
// code.  We have to change the function so that it always ensures
// code.  We have to change the function so that it always ensures
// that it has enough stack space to run some random function.
// that it has enough stack space to run some random function.
 
 
void
void
Target_x86_64::do_calls_non_split(Relobj* object, unsigned int shndx,
Target_x86_64::do_calls_non_split(Relobj* object, unsigned int shndx,
                                  section_offset_type fnoffset,
                                  section_offset_type fnoffset,
                                  section_size_type fnsize,
                                  section_size_type fnsize,
                                  unsigned char* view,
                                  unsigned char* view,
                                  section_size_type view_size,
                                  section_size_type view_size,
                                  std::string* from,
                                  std::string* from,
                                  std::string* to) const
                                  std::string* to) const
{
{
  // The function starts with a comparison of the stack pointer and a
  // The function starts with a comparison of the stack pointer and a
  // field in the TCB.  This is followed by a jump.
  // field in the TCB.  This is followed by a jump.
 
 
  // cmp %fs:NN,%rsp
  // cmp %fs:NN,%rsp
  if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
  if (this->match_view(view, view_size, fnoffset, "\x64\x48\x3b\x24\x25", 5)
      && fnsize > 9)
      && fnsize > 9)
    {
    {
      // We will call __morestack if the carry flag is set after this
      // We will call __morestack if the carry flag is set after this
      // comparison.  We turn the comparison into an stc instruction
      // comparison.  We turn the comparison into an stc instruction
      // and some nops.
      // and some nops.
      view[fnoffset] = '\xf9';
      view[fnoffset] = '\xf9';
      this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
      this->set_view_to_nop(view, view_size, fnoffset + 1, 8);
    }
    }
  // lea NN(%rsp),%r10
  // lea NN(%rsp),%r10
  // lea NN(%rsp),%r11
  // lea NN(%rsp),%r11
  else if ((this->match_view(view, view_size, fnoffset,
  else if ((this->match_view(view, view_size, fnoffset,
                             "\x4c\x8d\x94\x24", 4)
                             "\x4c\x8d\x94\x24", 4)
            || this->match_view(view, view_size, fnoffset,
            || this->match_view(view, view_size, fnoffset,
                                "\x4c\x8d\x9c\x24", 4))
                                "\x4c\x8d\x9c\x24", 4))
           && fnsize > 8)
           && fnsize > 8)
    {
    {
      // This is loading an offset from the stack pointer for a
      // This is loading an offset from the stack pointer for a
      // comparison.  The offset is negative, so we decrease the
      // comparison.  The offset is negative, so we decrease the
      // offset by the amount of space we need for the stack.  This
      // offset by the amount of space we need for the stack.  This
      // means we will avoid calling __morestack if there happens to
      // means we will avoid calling __morestack if there happens to
      // be plenty of space on the stack already.
      // be plenty of space on the stack already.
      unsigned char* pval = view + fnoffset + 4;
      unsigned char* pval = view + fnoffset + 4;
      uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
      uint32_t val = elfcpp::Swap_unaligned<32, false>::readval(pval);
      val -= parameters->options().split_stack_adjust_size();
      val -= parameters->options().split_stack_adjust_size();
      elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
      elfcpp::Swap_unaligned<32, false>::writeval(pval, val);
    }
    }
  else
  else
    {
    {
      if (!object->has_no_split_stack())
      if (!object->has_no_split_stack())
        object->error(_("failed to match split-stack sequence at "
        object->error(_("failed to match split-stack sequence at "
                        "section %u offset %0zx"),
                        "section %u offset %0zx"),
                      shndx, static_cast<size_t>(fnoffset));
                      shndx, static_cast<size_t>(fnoffset));
      return;
      return;
    }
    }
 
 
  // We have to change the function so that it calls
  // We have to change the function so that it calls
  // __morestack_non_split instead of __morestack.  The former will
  // __morestack_non_split instead of __morestack.  The former will
  // allocate additional stack space.
  // allocate additional stack space.
  *from = "__morestack";
  *from = "__morestack";
  *to = "__morestack_non_split";
  *to = "__morestack_non_split";
}
}
 
 
// The selector for x86_64 object files.
// The selector for x86_64 object files.
 
 
class Target_selector_x86_64 : public Target_selector_freebsd
class Target_selector_x86_64 : public Target_selector_freebsd
{
{
public:
public:
  Target_selector_x86_64()
  Target_selector_x86_64()
    : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
    : Target_selector_freebsd(elfcpp::EM_X86_64, 64, false, "elf64-x86-64",
                              "elf64-x86-64-freebsd", "elf_x86_64")
                              "elf64-x86-64-freebsd", "elf_x86_64")
  { }
  { }
 
 
  Target*
  Target*
  do_instantiate_target()
  do_instantiate_target()
  { return new Target_x86_64(); }
  { return new Target_x86_64(); }
 
 
};
};
 
 
Target_selector_x86_64 target_selector_x86_64;
Target_selector_x86_64 target_selector_x86_64;
 
 
} // End anonymous namespace.
} // End anonymous namespace.
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.