OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [tags/] [gdb/] [gdb-6.8/] [gdb-6.8.openrisc-2.1/] [sim/] [m68hc11/] [interp.c] - Diff between revs 24 and 33

Only display areas with differences | Details | Blame | View Log

Rev 24 Rev 33
/* interp.c -- Simulator for Motorola 68HC11/68HC12
/* interp.c -- Simulator for Motorola 68HC11/68HC12
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Written by Stephane Carrez (stcarrez@nerim.fr)
   Written by Stephane Carrez (stcarrez@nerim.fr)
 
 
This file is part of GDB, the GNU debugger.
This file is part of GDB, the GNU debugger.
 
 
This program is free software; you can redistribute it and/or modify
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
(at your option) any later version.
 
 
This program is distributed in the hope that it will be useful,
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "sim-main.h"
#include "sim-main.h"
#include "sim-assert.h"
#include "sim-assert.h"
#include "sim-hw.h"
#include "sim-hw.h"
#include "sim-options.h"
#include "sim-options.h"
#include "hw-tree.h"
#include "hw-tree.h"
#include "hw-device.h"
#include "hw-device.h"
#include "hw-ports.h"
#include "hw-ports.h"
#include "elf32-m68hc1x.h"
#include "elf32-m68hc1x.h"
 
 
#ifndef MONITOR_BASE
#ifndef MONITOR_BASE
# define MONITOR_BASE (0x0C000)
# define MONITOR_BASE (0x0C000)
# define MONITOR_SIZE (0x04000)
# define MONITOR_SIZE (0x04000)
#endif
#endif
 
 
static void sim_get_info (SIM_DESC sd, char *cmd);
static void sim_get_info (SIM_DESC sd, char *cmd);
 
 
 
 
char *interrupt_names[] = {
char *interrupt_names[] = {
  "reset",
  "reset",
  "nmi",
  "nmi",
  "int",
  "int",
  NULL
  NULL
};
};
 
 
#ifndef INLINE
#ifndef INLINE
#if defined(__GNUC__) && defined(__OPTIMIZE__)
#if defined(__GNUC__) && defined(__OPTIMIZE__)
#define INLINE __inline__
#define INLINE __inline__
#else
#else
#define INLINE
#define INLINE
#endif
#endif
#endif
#endif
 
 
struct sim_info_list
struct sim_info_list
{
{
  const char *name;
  const char *name;
  const char *device;
  const char *device;
};
};
 
 
struct sim_info_list dev_list_68hc11[] = {
struct sim_info_list dev_list_68hc11[] = {
  {"cpu", "/m68hc11"},
  {"cpu", "/m68hc11"},
  {"timer", "/m68hc11/m68hc11tim"},
  {"timer", "/m68hc11/m68hc11tim"},
  {"sio", "/m68hc11/m68hc11sio"},
  {"sio", "/m68hc11/m68hc11sio"},
  {"spi", "/m68hc11/m68hc11spi"},
  {"spi", "/m68hc11/m68hc11spi"},
  {"eeprom", "/m68hc11/m68hc11eepr"},
  {"eeprom", "/m68hc11/m68hc11eepr"},
  {0, 0}
  {0, 0}
};
};
 
 
struct sim_info_list dev_list_68hc12[] = {
struct sim_info_list dev_list_68hc12[] = {
  {"cpu", "/m68hc12"},
  {"cpu", "/m68hc12"},
  {"timer", "/m68hc12/m68hc12tim"},
  {"timer", "/m68hc12/m68hc12tim"},
  {"sio", "/m68hc12/m68hc12sio"},
  {"sio", "/m68hc12/m68hc12sio"},
  {"spi", "/m68hc12/m68hc12spi"},
  {"spi", "/m68hc12/m68hc12spi"},
  {"eeprom", "/m68hc12/m68hc12eepr"},
  {"eeprom", "/m68hc12/m68hc12eepr"},
  {0, 0}
  {0, 0}
};
};
 
 
/* Cover function of sim_state_free to free the cpu buffers as well.  */
/* Cover function of sim_state_free to free the cpu buffers as well.  */
 
 
static void
static void
free_state (SIM_DESC sd)
free_state (SIM_DESC sd)
{
{
  if (STATE_MODULES (sd) != NULL)
  if (STATE_MODULES (sd) != NULL)
    sim_module_uninstall (sd);
    sim_module_uninstall (sd);
 
 
  sim_state_free (sd);
  sim_state_free (sd);
}
}
 
 
/* Give some information about the simulator.  */
/* Give some information about the simulator.  */
static void
static void
sim_get_info (SIM_DESC sd, char *cmd)
sim_get_info (SIM_DESC sd, char *cmd)
{
{
  sim_cpu *cpu;
  sim_cpu *cpu;
 
 
  cpu = STATE_CPU (sd, 0);
  cpu = STATE_CPU (sd, 0);
  if (cmd != 0 && (cmd[0] == ' ' || cmd[0] == '-'))
  if (cmd != 0 && (cmd[0] == ' ' || cmd[0] == '-'))
    {
    {
      int i;
      int i;
      struct hw *hw_dev;
      struct hw *hw_dev;
      struct sim_info_list *dev_list;
      struct sim_info_list *dev_list;
      const struct bfd_arch_info *arch;
      const struct bfd_arch_info *arch;
 
 
      arch = STATE_ARCHITECTURE (sd);
      arch = STATE_ARCHITECTURE (sd);
      cmd++;
      cmd++;
 
 
      if (arch->arch == bfd_arch_m68hc11)
      if (arch->arch == bfd_arch_m68hc11)
        dev_list = dev_list_68hc11;
        dev_list = dev_list_68hc11;
      else
      else
        dev_list = dev_list_68hc12;
        dev_list = dev_list_68hc12;
 
 
      for (i = 0; dev_list[i].name; i++)
      for (i = 0; dev_list[i].name; i++)
        if (strcmp (cmd, dev_list[i].name) == 0)
        if (strcmp (cmd, dev_list[i].name) == 0)
          break;
          break;
 
 
      if (dev_list[i].name == 0)
      if (dev_list[i].name == 0)
        {
        {
          sim_io_eprintf (sd, "Device '%s' not found.\n", cmd);
          sim_io_eprintf (sd, "Device '%s' not found.\n", cmd);
          sim_io_eprintf (sd, "Valid devices: cpu timer sio eeprom\n");
          sim_io_eprintf (sd, "Valid devices: cpu timer sio eeprom\n");
          return;
          return;
        }
        }
      hw_dev = sim_hw_parse (sd, dev_list[i].device);
      hw_dev = sim_hw_parse (sd, dev_list[i].device);
      if (hw_dev == 0)
      if (hw_dev == 0)
        {
        {
          sim_io_eprintf (sd, "Device '%s' not found\n", dev_list[i].device);
          sim_io_eprintf (sd, "Device '%s' not found\n", dev_list[i].device);
          return;
          return;
        }
        }
      hw_ioctl (hw_dev, 23, 0);
      hw_ioctl (hw_dev, 23, 0);
      return;
      return;
    }
    }
 
 
  cpu_info (sd, cpu);
  cpu_info (sd, cpu);
  interrupts_info (sd, &cpu->cpu_interrupts);
  interrupts_info (sd, &cpu->cpu_interrupts);
}
}
 
 
 
 
void
void
sim_board_reset (SIM_DESC sd)
sim_board_reset (SIM_DESC sd)
{
{
  struct hw *hw_cpu;
  struct hw *hw_cpu;
  sim_cpu *cpu;
  sim_cpu *cpu;
  const struct bfd_arch_info *arch;
  const struct bfd_arch_info *arch;
  const char *cpu_type;
  const char *cpu_type;
 
 
  cpu = STATE_CPU (sd, 0);
  cpu = STATE_CPU (sd, 0);
  arch = STATE_ARCHITECTURE (sd);
  arch = STATE_ARCHITECTURE (sd);
 
 
  /*  hw_cpu = sim_hw_parse (sd, "/"); */
  /*  hw_cpu = sim_hw_parse (sd, "/"); */
  if (arch->arch == bfd_arch_m68hc11)
  if (arch->arch == bfd_arch_m68hc11)
    {
    {
      cpu->cpu_type = CPU_M6811;
      cpu->cpu_type = CPU_M6811;
      cpu_type = "/m68hc11";
      cpu_type = "/m68hc11";
    }
    }
  else
  else
    {
    {
      cpu->cpu_type = CPU_M6812;
      cpu->cpu_type = CPU_M6812;
      cpu_type = "/m68hc12";
      cpu_type = "/m68hc12";
    }
    }
 
 
  hw_cpu = sim_hw_parse (sd, cpu_type);
  hw_cpu = sim_hw_parse (sd, cpu_type);
  if (hw_cpu == 0)
  if (hw_cpu == 0)
    {
    {
      sim_io_eprintf (sd, "%s cpu not found in device tree.", cpu_type);
      sim_io_eprintf (sd, "%s cpu not found in device tree.", cpu_type);
      return;
      return;
    }
    }
 
 
  cpu_reset (cpu);
  cpu_reset (cpu);
  hw_port_event (hw_cpu, 3, 0);
  hw_port_event (hw_cpu, 3, 0);
  cpu_restart (cpu);
  cpu_restart (cpu);
}
}
 
 
static int
static int
sim_hw_configure (SIM_DESC sd)
sim_hw_configure (SIM_DESC sd)
{
{
  const struct bfd_arch_info *arch;
  const struct bfd_arch_info *arch;
  struct hw *device_tree;
  struct hw *device_tree;
  sim_cpu *cpu;
  sim_cpu *cpu;
 
 
  arch = STATE_ARCHITECTURE (sd);
  arch = STATE_ARCHITECTURE (sd);
  if (arch == 0)
  if (arch == 0)
    return 0;
    return 0;
 
 
  cpu = STATE_CPU (sd, 0);
  cpu = STATE_CPU (sd, 0);
  cpu->cpu_configured_arch = arch;
  cpu->cpu_configured_arch = arch;
  device_tree = sim_hw_parse (sd, "/");
  device_tree = sim_hw_parse (sd, "/");
  if (arch->arch == bfd_arch_m68hc11)
  if (arch->arch == bfd_arch_m68hc11)
    {
    {
      cpu->cpu_interpretor = cpu_interp_m6811;
      cpu->cpu_interpretor = cpu_interp_m6811;
      if (hw_tree_find_property (device_tree, "/m68hc11/reg") == 0)
      if (hw_tree_find_property (device_tree, "/m68hc11/reg") == 0)
        {
        {
          /* Allocate core managed memory */
          /* Allocate core managed memory */
 
 
          /* the monitor  */
          /* the monitor  */
          sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
          sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
                           /* MONITOR_BASE, MONITOR_SIZE */
                           /* MONITOR_BASE, MONITOR_SIZE */
                           0x8000, M6811_RAM_LEVEL, 0x8000);
                           0x8000, M6811_RAM_LEVEL, 0x8000);
          sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
          sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
                           M6811_RAM_LEVEL);
                           M6811_RAM_LEVEL);
          sim_hw_parse (sd, "/m68hc11/reg 0x1000 0x03F");
          sim_hw_parse (sd, "/m68hc11/reg 0x1000 0x03F");
          if (cpu->bank_start < cpu->bank_end)
          if (cpu->bank_start < cpu->bank_end)
            {
            {
              sim_do_commandf (sd, "memory region 0x%lx@%d,0x100000",
              sim_do_commandf (sd, "memory region 0x%lx@%d,0x100000",
                               cpu->bank_virtual, M6811_RAM_LEVEL);
                               cpu->bank_virtual, M6811_RAM_LEVEL);
              sim_hw_parse (sd, "/m68hc11/use_bank 1");
              sim_hw_parse (sd, "/m68hc11/use_bank 1");
            }
            }
        }
        }
      if (cpu->cpu_start_mode)
      if (cpu->cpu_start_mode)
        {
        {
          sim_hw_parse (sd, "/m68hc11/mode %s", cpu->cpu_start_mode);
          sim_hw_parse (sd, "/m68hc11/mode %s", cpu->cpu_start_mode);
        }
        }
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11sio/reg") == 0)
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11sio/reg") == 0)
        {
        {
          sim_hw_parse (sd, "/m68hc11/m68hc11sio/reg 0x2b 0x5");
          sim_hw_parse (sd, "/m68hc11/m68hc11sio/reg 0x2b 0x5");
          sim_hw_parse (sd, "/m68hc11/m68hc11sio/backend stdio");
          sim_hw_parse (sd, "/m68hc11/m68hc11sio/backend stdio");
          sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11sio");
          sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11sio");
        }
        }
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11tim/reg") == 0)
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11tim/reg") == 0)
        {
        {
          /* M68hc11 Timer configuration. */
          /* M68hc11 Timer configuration. */
          sim_hw_parse (sd, "/m68hc11/m68hc11tim/reg 0x1b 0x5");
          sim_hw_parse (sd, "/m68hc11/m68hc11tim/reg 0x1b 0x5");
          sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11tim");
          sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11tim");
          sim_hw_parse (sd, "/m68hc11 > capture capture /m68hc11/m68hc11tim");
          sim_hw_parse (sd, "/m68hc11 > capture capture /m68hc11/m68hc11tim");
        }
        }
 
 
      /* Create the SPI device.  */
      /* Create the SPI device.  */
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11spi/reg") == 0)
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11spi/reg") == 0)
        {
        {
          sim_hw_parse (sd, "/m68hc11/m68hc11spi/reg 0x28 0x3");
          sim_hw_parse (sd, "/m68hc11/m68hc11spi/reg 0x28 0x3");
          sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11spi");
          sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11spi");
        }
        }
      if (hw_tree_find_property (device_tree, "/m68hc11/nvram/reg") == 0)
      if (hw_tree_find_property (device_tree, "/m68hc11/nvram/reg") == 0)
        {
        {
          /* M68hc11 persistent ram configuration. */
          /* M68hc11 persistent ram configuration. */
          sim_hw_parse (sd, "/m68hc11/nvram/reg 0x0 256");
          sim_hw_parse (sd, "/m68hc11/nvram/reg 0x0 256");
          sim_hw_parse (sd, "/m68hc11/nvram/file m68hc11.ram");
          sim_hw_parse (sd, "/m68hc11/nvram/file m68hc11.ram");
          sim_hw_parse (sd, "/m68hc11/nvram/mode save-modified");
          sim_hw_parse (sd, "/m68hc11/nvram/mode save-modified");
          /*sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/pram"); */
          /*sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/pram"); */
        }
        }
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11eepr/reg") == 0)
      if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11eepr/reg") == 0)
        {
        {
          sim_hw_parse (sd, "/m68hc11/m68hc11eepr/reg 0xb000 512");
          sim_hw_parse (sd, "/m68hc11/m68hc11eepr/reg 0xb000 512");
          sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11eepr");
          sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11eepr");
        }
        }
      sim_hw_parse (sd, "/m68hc11 > port-a cpu-write-port /m68hc11");
      sim_hw_parse (sd, "/m68hc11 > port-a cpu-write-port /m68hc11");
      sim_hw_parse (sd, "/m68hc11 > port-b cpu-write-port /m68hc11");
      sim_hw_parse (sd, "/m68hc11 > port-b cpu-write-port /m68hc11");
      sim_hw_parse (sd, "/m68hc11 > port-c cpu-write-port /m68hc11");
      sim_hw_parse (sd, "/m68hc11 > port-c cpu-write-port /m68hc11");
      sim_hw_parse (sd, "/m68hc11 > port-d cpu-write-port /m68hc11");
      sim_hw_parse (sd, "/m68hc11 > port-d cpu-write-port /m68hc11");
      cpu->hw_cpu = sim_hw_parse (sd, "/m68hc11");
      cpu->hw_cpu = sim_hw_parse (sd, "/m68hc11");
    }
    }
  else
  else
    {
    {
      cpu->cpu_interpretor = cpu_interp_m6812;
      cpu->cpu_interpretor = cpu_interp_m6812;
      if (hw_tree_find_property (device_tree, "/m68hc12/reg") == 0)
      if (hw_tree_find_property (device_tree, "/m68hc12/reg") == 0)
        {
        {
          /* Allocate core external memory.  */
          /* Allocate core external memory.  */
          sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
          sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
                           0x8000, M6811_RAM_LEVEL, 0x8000);
                           0x8000, M6811_RAM_LEVEL, 0x8000);
          sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
          sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
                           M6811_RAM_LEVEL);
                           M6811_RAM_LEVEL);
          if (cpu->bank_start < cpu->bank_end)
          if (cpu->bank_start < cpu->bank_end)
            {
            {
              sim_do_commandf (sd, "memory region 0x%lx@%d,0x100000",
              sim_do_commandf (sd, "memory region 0x%lx@%d,0x100000",
                               cpu->bank_virtual, M6811_RAM_LEVEL);
                               cpu->bank_virtual, M6811_RAM_LEVEL);
              sim_hw_parse (sd, "/m68hc12/use_bank 1");
              sim_hw_parse (sd, "/m68hc12/use_bank 1");
            }
            }
          sim_hw_parse (sd, "/m68hc12/reg 0x0 0x3FF");
          sim_hw_parse (sd, "/m68hc12/reg 0x0 0x3FF");
        }
        }
 
 
      if (!hw_tree_find_property (device_tree, "/m68hc12/m68hc12sio@1/reg"))
      if (!hw_tree_find_property (device_tree, "/m68hc12/m68hc12sio@1/reg"))
        {
        {
          sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/reg 0xC0 0x8");
          sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/reg 0xC0 0x8");
          sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/backend stdio");
          sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/backend stdio");
          sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12sio@1");
          sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12sio@1");
        }
        }
      if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12tim/reg") == 0)
      if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12tim/reg") == 0)
        {
        {
          /* M68hc11 Timer configuration. */
          /* M68hc11 Timer configuration. */
          sim_hw_parse (sd, "/m68hc12/m68hc12tim/reg 0x1b 0x5");
          sim_hw_parse (sd, "/m68hc12/m68hc12tim/reg 0x1b 0x5");
          sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12tim");
          sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12tim");
          sim_hw_parse (sd, "/m68hc12 > capture capture /m68hc12/m68hc12tim");
          sim_hw_parse (sd, "/m68hc12 > capture capture /m68hc12/m68hc12tim");
        }
        }
 
 
      /* Create the SPI device.  */
      /* Create the SPI device.  */
      if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12spi/reg") == 0)
      if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12spi/reg") == 0)
        {
        {
          sim_hw_parse (sd, "/m68hc12/m68hc12spi/reg 0x28 0x3");
          sim_hw_parse (sd, "/m68hc12/m68hc12spi/reg 0x28 0x3");
          sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12spi");
          sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12spi");
        }
        }
      if (hw_tree_find_property (device_tree, "/m68hc12/nvram/reg") == 0)
      if (hw_tree_find_property (device_tree, "/m68hc12/nvram/reg") == 0)
        {
        {
          /* M68hc11 persistent ram configuration. */
          /* M68hc11 persistent ram configuration. */
          sim_hw_parse (sd, "/m68hc12/nvram/reg 0x2000 8192");
          sim_hw_parse (sd, "/m68hc12/nvram/reg 0x2000 8192");
          sim_hw_parse (sd, "/m68hc12/nvram/file m68hc12.ram");
          sim_hw_parse (sd, "/m68hc12/nvram/file m68hc12.ram");
          sim_hw_parse (sd, "/m68hc12/nvram/mode save-modified");
          sim_hw_parse (sd, "/m68hc12/nvram/mode save-modified");
        }
        }
      if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12eepr/reg") == 0)
      if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12eepr/reg") == 0)
        {
        {
          sim_hw_parse (sd, "/m68hc12/m68hc12eepr/reg 0x0800 2048");
          sim_hw_parse (sd, "/m68hc12/m68hc12eepr/reg 0x0800 2048");
          sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12eepr");
          sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12eepr");
        }
        }
 
 
      sim_hw_parse (sd, "/m68hc12 > port-a cpu-write-port /m68hc12");
      sim_hw_parse (sd, "/m68hc12 > port-a cpu-write-port /m68hc12");
      sim_hw_parse (sd, "/m68hc12 > port-b cpu-write-port /m68hc12");
      sim_hw_parse (sd, "/m68hc12 > port-b cpu-write-port /m68hc12");
      sim_hw_parse (sd, "/m68hc12 > port-c cpu-write-port /m68hc12");
      sim_hw_parse (sd, "/m68hc12 > port-c cpu-write-port /m68hc12");
      sim_hw_parse (sd, "/m68hc12 > port-d cpu-write-port /m68hc12");
      sim_hw_parse (sd, "/m68hc12 > port-d cpu-write-port /m68hc12");
      cpu->hw_cpu = sim_hw_parse (sd, "/m68hc12");
      cpu->hw_cpu = sim_hw_parse (sd, "/m68hc12");
    }
    }
  return 1;
  return 1;
}
}
 
 
/* Get the memory bank parameters by looking at the global symbols
/* Get the memory bank parameters by looking at the global symbols
   defined by the linker.  */
   defined by the linker.  */
static int
static int
sim_get_bank_parameters (SIM_DESC sd, bfd* abfd)
sim_get_bank_parameters (SIM_DESC sd, bfd* abfd)
{
{
  sim_cpu *cpu;
  sim_cpu *cpu;
  long symsize;
  long symsize;
  long symbol_count, i;
  long symbol_count, i;
  unsigned size;
  unsigned size;
  asymbol** asymbols;
  asymbol** asymbols;
  asymbol** current;
  asymbol** current;
 
 
  cpu = STATE_CPU (sd, 0);
  cpu = STATE_CPU (sd, 0);
 
 
  symsize = bfd_get_symtab_upper_bound (abfd);
  symsize = bfd_get_symtab_upper_bound (abfd);
  if (symsize < 0)
  if (symsize < 0)
    {
    {
      sim_io_eprintf (sd, "Cannot read symbols of program");
      sim_io_eprintf (sd, "Cannot read symbols of program");
      return 0;
      return 0;
    }
    }
  asymbols = (asymbol **) xmalloc (symsize);
  asymbols = (asymbol **) xmalloc (symsize);
  symbol_count = bfd_canonicalize_symtab (abfd, asymbols);
  symbol_count = bfd_canonicalize_symtab (abfd, asymbols);
  if (symbol_count < 0)
  if (symbol_count < 0)
    {
    {
      sim_io_eprintf (sd, "Cannot read symbols of program");
      sim_io_eprintf (sd, "Cannot read symbols of program");
      return 0;
      return 0;
    }
    }
 
 
  size = 0;
  size = 0;
  for (i = 0, current = asymbols; i < symbol_count; i++, current++)
  for (i = 0, current = asymbols; i < symbol_count; i++, current++)
    {
    {
      const char* name = bfd_asymbol_name (*current);
      const char* name = bfd_asymbol_name (*current);
 
 
      if (strcmp (name, BFD_M68HC11_BANK_START_NAME) == 0)
      if (strcmp (name, BFD_M68HC11_BANK_START_NAME) == 0)
        {
        {
          cpu->bank_start = bfd_asymbol_value (*current);
          cpu->bank_start = bfd_asymbol_value (*current);
        }
        }
      else if (strcmp (name, BFD_M68HC11_BANK_SIZE_NAME) == 0)
      else if (strcmp (name, BFD_M68HC11_BANK_SIZE_NAME) == 0)
        {
        {
          size = bfd_asymbol_value (*current);
          size = bfd_asymbol_value (*current);
        }
        }
      else if (strcmp (name, BFD_M68HC11_BANK_VIRTUAL_NAME) == 0)
      else if (strcmp (name, BFD_M68HC11_BANK_VIRTUAL_NAME) == 0)
        {
        {
          cpu->bank_virtual = bfd_asymbol_value (*current);
          cpu->bank_virtual = bfd_asymbol_value (*current);
        }
        }
    }
    }
  free (asymbols);
  free (asymbols);
 
 
  cpu->bank_end = cpu->bank_start + size;
  cpu->bank_end = cpu->bank_start + size;
  cpu->bank_shift = 0;
  cpu->bank_shift = 0;
  for (; size > 1; size >>= 1)
  for (; size > 1; size >>= 1)
    cpu->bank_shift++;
    cpu->bank_shift++;
 
 
  return 0;
  return 0;
}
}
 
 
static int
static int
sim_prepare_for_program (SIM_DESC sd, bfd* abfd)
sim_prepare_for_program (SIM_DESC sd, bfd* abfd)
{
{
  sim_cpu *cpu;
  sim_cpu *cpu;
  int elf_flags = 0;
  int elf_flags = 0;
 
 
  cpu = STATE_CPU (sd, 0);
  cpu = STATE_CPU (sd, 0);
 
 
  if (abfd != NULL)
  if (abfd != NULL)
    {
    {
      asection *s;
      asection *s;
 
 
      if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
      if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
        elf_flags = elf_elfheader (abfd)->e_flags;
        elf_flags = elf_elfheader (abfd)->e_flags;
 
 
      cpu->cpu_elf_start = bfd_get_start_address (abfd);
      cpu->cpu_elf_start = bfd_get_start_address (abfd);
      /* See if any section sets the reset address */
      /* See if any section sets the reset address */
      cpu->cpu_use_elf_start = 1;
      cpu->cpu_use_elf_start = 1;
      for (s = abfd->sections; s && cpu->cpu_use_elf_start; s = s->next)
      for (s = abfd->sections; s && cpu->cpu_use_elf_start; s = s->next)
        {
        {
          if (s->flags & SEC_LOAD)
          if (s->flags & SEC_LOAD)
            {
            {
              bfd_size_type size;
              bfd_size_type size;
 
 
              size = bfd_get_section_size (s);
              size = bfd_get_section_size (s);
              if (size > 0)
              if (size > 0)
                {
                {
                  bfd_vma lma;
                  bfd_vma lma;
 
 
                  if (STATE_LOAD_AT_LMA_P (sd))
                  if (STATE_LOAD_AT_LMA_P (sd))
                    lma = bfd_section_lma (abfd, s);
                    lma = bfd_section_lma (abfd, s);
                  else
                  else
                    lma = bfd_section_vma (abfd, s);
                    lma = bfd_section_vma (abfd, s);
 
 
                  if (lma <= 0xFFFE && lma+size >= 0x10000)
                  if (lma <= 0xFFFE && lma+size >= 0x10000)
                    cpu->cpu_use_elf_start = 0;
                    cpu->cpu_use_elf_start = 0;
                }
                }
            }
            }
        }
        }
 
 
      if (elf_flags & E_M68HC12_BANKS)
      if (elf_flags & E_M68HC12_BANKS)
        {
        {
          if (sim_get_bank_parameters (sd, abfd) != 0)
          if (sim_get_bank_parameters (sd, abfd) != 0)
            sim_io_eprintf (sd, "Memory bank parameters are not initialized\n");
            sim_io_eprintf (sd, "Memory bank parameters are not initialized\n");
        }
        }
    }
    }
 
 
  if (!sim_hw_configure (sd))
  if (!sim_hw_configure (sd))
    return SIM_RC_FAIL;
    return SIM_RC_FAIL;
 
 
  /* reset all state information */
  /* reset all state information */
  sim_board_reset (sd);
  sim_board_reset (sd);
 
 
  return SIM_RC_OK;
  return SIM_RC_OK;
}
}
 
 
SIM_DESC
SIM_DESC
sim_open (SIM_OPEN_KIND kind, host_callback *callback,
sim_open (SIM_OPEN_KIND kind, host_callback *callback,
          bfd *abfd, char **argv)
          bfd *abfd, char **argv)
{
{
  SIM_DESC sd;
  SIM_DESC sd;
  sim_cpu *cpu;
  sim_cpu *cpu;
 
 
  sd = sim_state_alloc (kind, callback);
  sd = sim_state_alloc (kind, callback);
  cpu = STATE_CPU (sd, 0);
  cpu = STATE_CPU (sd, 0);
 
 
  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
 
 
  /* for compatibility */
  /* for compatibility */
  current_alignment = NONSTRICT_ALIGNMENT;
  current_alignment = NONSTRICT_ALIGNMENT;
  current_target_byte_order = BIG_ENDIAN;
  current_target_byte_order = BIG_ENDIAN;
 
 
  cpu_initialize (sd, cpu);
  cpu_initialize (sd, cpu);
 
 
  if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
  if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
    {
    {
      free_state (sd);
      free_state (sd);
      return 0;
      return 0;
    }
    }
 
 
  /* getopt will print the error message so we just have to exit if this fails.
  /* getopt will print the error message so we just have to exit if this fails.
     FIXME: Hmmm...  in the case of gdb we need getopt to call
     FIXME: Hmmm...  in the case of gdb we need getopt to call
     print_filtered.  */
     print_filtered.  */
  if (sim_parse_args (sd, argv) != SIM_RC_OK)
  if (sim_parse_args (sd, argv) != SIM_RC_OK)
    {
    {
      /* Uninstall the modules to avoid memory leaks,
      /* Uninstall the modules to avoid memory leaks,
         file descriptor leaks, etc.  */
         file descriptor leaks, etc.  */
      free_state (sd);
      free_state (sd);
      return 0;
      return 0;
    }
    }
 
 
  /* Check for/establish the a reference program image.  */
  /* Check for/establish the a reference program image.  */
  if (sim_analyze_program (sd,
  if (sim_analyze_program (sd,
                           (STATE_PROG_ARGV (sd) != NULL
                           (STATE_PROG_ARGV (sd) != NULL
                            ? *STATE_PROG_ARGV (sd)
                            ? *STATE_PROG_ARGV (sd)
                            : NULL), abfd) != SIM_RC_OK)
                            : NULL), abfd) != SIM_RC_OK)
    {
    {
      free_state (sd);
      free_state (sd);
      return 0;
      return 0;
    }
    }
 
 
  /* Establish any remaining configuration options.  */
  /* Establish any remaining configuration options.  */
  if (sim_config (sd) != SIM_RC_OK)
  if (sim_config (sd) != SIM_RC_OK)
    {
    {
      free_state (sd);
      free_state (sd);
      return 0;
      return 0;
    }
    }
 
 
  if (sim_post_argv_init (sd) != SIM_RC_OK)
  if (sim_post_argv_init (sd) != SIM_RC_OK)
    {
    {
      /* Uninstall the modules to avoid memory leaks,
      /* Uninstall the modules to avoid memory leaks,
         file descriptor leaks, etc.  */
         file descriptor leaks, etc.  */
      free_state (sd);
      free_state (sd);
      return 0;
      return 0;
    }
    }
  if (sim_prepare_for_program (sd, abfd) != SIM_RC_OK)
  if (sim_prepare_for_program (sd, abfd) != SIM_RC_OK)
    {
    {
      free_state (sd);
      free_state (sd);
      return 0;
      return 0;
    }
    }
 
 
  /* Fudge our descriptor.  */
  /* Fudge our descriptor.  */
  return sd;
  return sd;
}
}
 
 
 
 
void
void
sim_close (SIM_DESC sd, int quitting)
sim_close (SIM_DESC sd, int quitting)
{
{
  /* shut down modules */
  /* shut down modules */
  sim_module_uninstall (sd);
  sim_module_uninstall (sd);
 
 
  /* Ensure that any resources allocated through the callback
  /* Ensure that any resources allocated through the callback
     mechanism are released: */
     mechanism are released: */
  sim_io_shutdown (sd);
  sim_io_shutdown (sd);
 
 
  /* FIXME - free SD */
  /* FIXME - free SD */
  sim_state_free (sd);
  sim_state_free (sd);
  return;
  return;
}
}
 
 
void
void
sim_set_profile (int n)
sim_set_profile (int n)
{
{
}
}
 
 
void
void
sim_set_profile_size (int n)
sim_set_profile_size (int n)
{
{
}
}
 
 
/* Generic implementation of sim_engine_run that works within the
/* Generic implementation of sim_engine_run that works within the
   sim_engine setjmp/longjmp framework. */
   sim_engine setjmp/longjmp framework. */
 
 
void
void
sim_engine_run (SIM_DESC sd,
sim_engine_run (SIM_DESC sd,
                int next_cpu_nr,        /* ignore */
                int next_cpu_nr,        /* ignore */
                int nr_cpus,    /* ignore */
                int nr_cpus,    /* ignore */
                int siggnal)    /* ignore */
                int siggnal)    /* ignore */
{
{
  sim_cpu *cpu;
  sim_cpu *cpu;
 
 
  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  cpu = STATE_CPU (sd, 0);
  cpu = STATE_CPU (sd, 0);
  while (1)
  while (1)
    {
    {
      cpu_single_step (cpu);
      cpu_single_step (cpu);
 
 
      /* process any events */
      /* process any events */
      if (sim_events_tickn (sd, cpu->cpu_current_cycle))
      if (sim_events_tickn (sd, cpu->cpu_current_cycle))
        {
        {
          sim_events_process (sd);
          sim_events_process (sd);
        }
        }
    }
    }
}
}
 
 
int
int
sim_trace (SIM_DESC sd)
sim_trace (SIM_DESC sd)
{
{
  sim_resume (sd, 0, 0);
  sim_resume (sd, 0, 0);
  return 1;
  return 1;
}
}
 
 
void
void
sim_info (SIM_DESC sd, int verbose)
sim_info (SIM_DESC sd, int verbose)
{
{
  const char *cpu_type;
  const char *cpu_type;
  const struct bfd_arch_info *arch;
  const struct bfd_arch_info *arch;
 
 
  /* Nothing to do if there is no verbose flag set.  */
  /* Nothing to do if there is no verbose flag set.  */
  if (verbose == 0 && STATE_VERBOSE_P (sd) == 0)
  if (verbose == 0 && STATE_VERBOSE_P (sd) == 0)
    return;
    return;
 
 
  arch = STATE_ARCHITECTURE (sd);
  arch = STATE_ARCHITECTURE (sd);
  if (arch->arch == bfd_arch_m68hc11)
  if (arch->arch == bfd_arch_m68hc11)
    cpu_type = "68HC11";
    cpu_type = "68HC11";
  else
  else
    cpu_type = "68HC12";
    cpu_type = "68HC12";
 
 
  sim_io_eprintf (sd, "Simulator info:\n");
  sim_io_eprintf (sd, "Simulator info:\n");
  sim_io_eprintf (sd, "  CPU Motorola %s\n", cpu_type);
  sim_io_eprintf (sd, "  CPU Motorola %s\n", cpu_type);
  sim_get_info (sd, 0);
  sim_get_info (sd, 0);
  sim_module_info (sd, verbose || STATE_VERBOSE_P (sd));
  sim_module_info (sd, verbose || STATE_VERBOSE_P (sd));
}
}
 
 
SIM_RC
SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
                     char **argv, char **env)
                     char **argv, char **env)
{
{
  return sim_prepare_for_program (sd, abfd);
  return sim_prepare_for_program (sd, abfd);
}
}
 
 
 
 
void
void
sim_set_callbacks (host_callback *p)
sim_set_callbacks (host_callback *p)
{
{
  /*  m6811_callback = p; */
  /*  m6811_callback = p; */
}
}
 
 
 
 
int
int
sim_fetch_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
sim_fetch_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
{
{
  sim_cpu *cpu;
  sim_cpu *cpu;
  uint16 val;
  uint16 val;
  int size = 2;
  int size = 2;
 
 
  cpu = STATE_CPU (sd, 0);
  cpu = STATE_CPU (sd, 0);
  switch (rn)
  switch (rn)
    {
    {
    case A_REGNUM:
    case A_REGNUM:
      val = cpu_get_a (cpu);
      val = cpu_get_a (cpu);
      size = 1;
      size = 1;
      break;
      break;
 
 
    case B_REGNUM:
    case B_REGNUM:
      val = cpu_get_b (cpu);
      val = cpu_get_b (cpu);
      size = 1;
      size = 1;
      break;
      break;
 
 
    case D_REGNUM:
    case D_REGNUM:
      val = cpu_get_d (cpu);
      val = cpu_get_d (cpu);
      break;
      break;
 
 
    case X_REGNUM:
    case X_REGNUM:
      val = cpu_get_x (cpu);
      val = cpu_get_x (cpu);
      break;
      break;
 
 
    case Y_REGNUM:
    case Y_REGNUM:
      val = cpu_get_y (cpu);
      val = cpu_get_y (cpu);
      break;
      break;
 
 
    case SP_REGNUM:
    case SP_REGNUM:
      val = cpu_get_sp (cpu);
      val = cpu_get_sp (cpu);
      break;
      break;
 
 
    case PC_REGNUM:
    case PC_REGNUM:
      val = cpu_get_pc (cpu);
      val = cpu_get_pc (cpu);
      break;
      break;
 
 
    case PSW_REGNUM:
    case PSW_REGNUM:
      val = cpu_get_ccr (cpu);
      val = cpu_get_ccr (cpu);
      size = 1;
      size = 1;
      break;
      break;
 
 
    case PAGE_REGNUM:
    case PAGE_REGNUM:
      val = cpu_get_page (cpu);
      val = cpu_get_page (cpu);
      size = 1;
      size = 1;
      break;
      break;
 
 
    default:
    default:
      val = 0;
      val = 0;
      break;
      break;
    }
    }
  if (size == 1)
  if (size == 1)
    {
    {
      memory[0] = val;
      memory[0] = val;
    }
    }
  else
  else
    {
    {
      memory[0] = val >> 8;
      memory[0] = val >> 8;
      memory[1] = val & 0x0FF;
      memory[1] = val & 0x0FF;
    }
    }
  return size;
  return size;
}
}
 
 
int
int
sim_store_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
sim_store_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
{
{
  uint16 val;
  uint16 val;
  sim_cpu *cpu;
  sim_cpu *cpu;
 
 
  cpu = STATE_CPU (sd, 0);
  cpu = STATE_CPU (sd, 0);
 
 
  val = *memory++;
  val = *memory++;
  if (length == 2)
  if (length == 2)
    val = (val << 8) | *memory;
    val = (val << 8) | *memory;
 
 
  switch (rn)
  switch (rn)
    {
    {
    case D_REGNUM:
    case D_REGNUM:
      cpu_set_d (cpu, val);
      cpu_set_d (cpu, val);
      break;
      break;
 
 
    case A_REGNUM:
    case A_REGNUM:
      cpu_set_a (cpu, val);
      cpu_set_a (cpu, val);
      return 1;
      return 1;
 
 
    case B_REGNUM:
    case B_REGNUM:
      cpu_set_b (cpu, val);
      cpu_set_b (cpu, val);
      return 1;
      return 1;
 
 
    case X_REGNUM:
    case X_REGNUM:
      cpu_set_x (cpu, val);
      cpu_set_x (cpu, val);
      break;
      break;
 
 
    case Y_REGNUM:
    case Y_REGNUM:
      cpu_set_y (cpu, val);
      cpu_set_y (cpu, val);
      break;
      break;
 
 
    case SP_REGNUM:
    case SP_REGNUM:
      cpu_set_sp (cpu, val);
      cpu_set_sp (cpu, val);
      break;
      break;
 
 
    case PC_REGNUM:
    case PC_REGNUM:
      cpu_set_pc (cpu, val);
      cpu_set_pc (cpu, val);
      break;
      break;
 
 
    case PSW_REGNUM:
    case PSW_REGNUM:
      cpu_set_ccr (cpu, val);
      cpu_set_ccr (cpu, val);
      return 1;
      return 1;
 
 
    case PAGE_REGNUM:
    case PAGE_REGNUM:
      cpu_set_page (cpu, val);
      cpu_set_page (cpu, val);
      return 1;
      return 1;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return 2;
  return 2;
}
}
 
 
void
void
sim_size (int s)
sim_size (int s)
{
{
  ;
  ;
}
}
 
 
void
void
sim_do_command (SIM_DESC sd, char *cmd)
sim_do_command (SIM_DESC sd, char *cmd)
{
{
  char *mm_cmd = "memory-map";
  char *mm_cmd = "memory-map";
  char *int_cmd = "interrupt";
  char *int_cmd = "interrupt";
  sim_cpu *cpu;
  sim_cpu *cpu;
 
 
  cpu = STATE_CPU (sd, 0);
  cpu = STATE_CPU (sd, 0);
  /* Commands available from GDB:   */
  /* Commands available from GDB:   */
  if (sim_args_command (sd, cmd) != SIM_RC_OK)
  if (sim_args_command (sd, cmd) != SIM_RC_OK)
    {
    {
      if (strncmp (cmd, "info", sizeof ("info") - 1) == 0)
      if (strncmp (cmd, "info", sizeof ("info") - 1) == 0)
        sim_get_info (sd, &cmd[4]);
        sim_get_info (sd, &cmd[4]);
      else if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0))
      else if (strncmp (cmd, mm_cmd, strlen (mm_cmd) == 0))
        sim_io_eprintf (sd,
        sim_io_eprintf (sd,
                        "`memory-map' command replaced by `sim memory'\n");
                        "`memory-map' command replaced by `sim memory'\n");
      else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0)
      else if (strncmp (cmd, int_cmd, strlen (int_cmd)) == 0)
        sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n");
        sim_io_eprintf (sd, "`interrupt' command replaced by `sim watch'\n");
      else
      else
        sim_io_eprintf (sd, "Unknown command `%s'\n", cmd);
        sim_io_eprintf (sd, "Unknown command `%s'\n", cmd);
    }
    }
 
 
  /* If the architecture changed, re-configure.  */
  /* If the architecture changed, re-configure.  */
  if (STATE_ARCHITECTURE (sd) != cpu->cpu_configured_arch)
  if (STATE_ARCHITECTURE (sd) != cpu->cpu_configured_arch)
    sim_hw_configure (sd);
    sim_hw_configure (sd);
}
}
 
 
/* Halt the simulator after just one instruction */
/* Halt the simulator after just one instruction */
 
 
static void
static void
has_stepped (SIM_DESC sd,
has_stepped (SIM_DESC sd,
             void *data)
             void *data)
{
{
  ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  sim_engine_halt (sd, NULL, NULL, NULL_CIA, sim_stopped, SIM_SIGTRAP);
  sim_engine_halt (sd, NULL, NULL, NULL_CIA, sim_stopped, SIM_SIGTRAP);
}
}
 
 
 
 
/* Generic resume - assumes the existance of sim_engine_run */
/* Generic resume - assumes the existance of sim_engine_run */
 
 
void
void
sim_resume (SIM_DESC sd,
sim_resume (SIM_DESC sd,
            int step,
            int step,
            int siggnal)
            int siggnal)
{
{
  sim_engine *engine = STATE_ENGINE (sd);
  sim_engine *engine = STATE_ENGINE (sd);
  jmp_buf buf;
  jmp_buf buf;
  int jmpval;
  int jmpval;
 
 
  ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
 
 
  /* we only want to be single stepping the simulator once */
  /* we only want to be single stepping the simulator once */
  if (engine->stepper != NULL)
  if (engine->stepper != NULL)
    {
    {
      sim_events_deschedule (sd, engine->stepper);
      sim_events_deschedule (sd, engine->stepper);
      engine->stepper = NULL;
      engine->stepper = NULL;
    }
    }
  sim_module_resume (sd);
  sim_module_resume (sd);
 
 
  /* run/resume the simulator */
  /* run/resume the simulator */
  engine->jmpbuf = &buf;
  engine->jmpbuf = &buf;
  jmpval = setjmp (buf);
  jmpval = setjmp (buf);
  if (jmpval == sim_engine_start_jmpval
  if (jmpval == sim_engine_start_jmpval
      || jmpval == sim_engine_restart_jmpval)
      || jmpval == sim_engine_restart_jmpval)
    {
    {
      int last_cpu_nr = sim_engine_last_cpu_nr (sd);
      int last_cpu_nr = sim_engine_last_cpu_nr (sd);
      int next_cpu_nr = sim_engine_next_cpu_nr (sd);
      int next_cpu_nr = sim_engine_next_cpu_nr (sd);
      int nr_cpus = sim_engine_nr_cpus (sd);
      int nr_cpus = sim_engine_nr_cpus (sd);
 
 
      sim_events_preprocess (sd, last_cpu_nr >= nr_cpus, next_cpu_nr >= nr_cpus);
      sim_events_preprocess (sd, last_cpu_nr >= nr_cpus, next_cpu_nr >= nr_cpus);
      if (next_cpu_nr >= nr_cpus)
      if (next_cpu_nr >= nr_cpus)
        next_cpu_nr = 0;
        next_cpu_nr = 0;
 
 
      /* Only deliver the siggnal ]sic] the first time through - don't
      /* Only deliver the siggnal ]sic] the first time through - don't
         re-deliver any siggnal during a restart. */
         re-deliver any siggnal during a restart. */
      if (jmpval == sim_engine_restart_jmpval)
      if (jmpval == sim_engine_restart_jmpval)
        siggnal = 0;
        siggnal = 0;
 
 
      /* Install the stepping event after having processed some
      /* Install the stepping event after having processed some
         pending events.  This is necessary for HC11/HC12 simulator
         pending events.  This is necessary for HC11/HC12 simulator
         because the tick counter is incremented by the number of cycles
         because the tick counter is incremented by the number of cycles
         the instruction took.  Some pending ticks to process can still
         the instruction took.  Some pending ticks to process can still
         be recorded internally by the simulator and sim_events_preprocess
         be recorded internally by the simulator and sim_events_preprocess
         will handle them.  If the stepping event is inserted before,
         will handle them.  If the stepping event is inserted before,
         these pending ticks will raise the event and the simulator will
         these pending ticks will raise the event and the simulator will
         stop without having executed any instruction.  */
         stop without having executed any instruction.  */
      if (step)
      if (step)
        engine->stepper = sim_events_schedule (sd, 0, has_stepped, sd);
        engine->stepper = sim_events_schedule (sd, 0, has_stepped, sd);
 
 
#ifdef SIM_CPU_EXCEPTION_RESUME
#ifdef SIM_CPU_EXCEPTION_RESUME
      {
      {
        sim_cpu* cpu = STATE_CPU (sd, next_cpu_nr);
        sim_cpu* cpu = STATE_CPU (sd, next_cpu_nr);
        SIM_CPU_EXCEPTION_RESUME(sd, cpu, siggnal);
        SIM_CPU_EXCEPTION_RESUME(sd, cpu, siggnal);
      }
      }
#endif
#endif
 
 
      sim_engine_run (sd, next_cpu_nr, nr_cpus, siggnal);
      sim_engine_run (sd, next_cpu_nr, nr_cpus, siggnal);
    }
    }
  engine->jmpbuf = NULL;
  engine->jmpbuf = NULL;
 
 
  sim_module_suspend (sd);
  sim_module_suspend (sd);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.