OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [boehm-gc/] [misc.c] - Diff between revs 721 and 783

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 721 Rev 783
/*
/*
 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
 * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
 * Copyright (c) 1991-1994 by Xerox Corporation.  All rights reserved.
 * Copyright (c) 1991-1994 by Xerox Corporation.  All rights reserved.
 * Copyright (c) 1999-2001 by Hewlett-Packard Company. All rights reserved.
 * Copyright (c) 1999-2001 by Hewlett-Packard Company. All rights reserved.
 *
 *
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
 * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
 * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
 *
 *
 * Permission is hereby granted to use or copy this program
 * Permission is hereby granted to use or copy this program
 * for any purpose,  provided the above notices are retained on all copies.
 * for any purpose,  provided the above notices are retained on all copies.
 * Permission to modify the code and to distribute modified code is granted,
 * Permission to modify the code and to distribute modified code is granted,
 * provided the above notices are retained, and a notice that the code was
 * provided the above notices are retained, and a notice that the code was
 * modified is included with the above copyright notice.
 * modified is included with the above copyright notice.
 */
 */
/* Boehm, July 31, 1995 5:02 pm PDT */
/* Boehm, July 31, 1995 5:02 pm PDT */
 
 
 
 
#include <stdio.h>
#include <stdio.h>
#include <limits.h>
#include <limits.h>
#ifndef _WIN32_WCE
#ifndef _WIN32_WCE
#include <signal.h>
#include <signal.h>
#endif
#endif
 
 
#define I_HIDE_POINTERS /* To make GC_call_with_alloc_lock visible */
#define I_HIDE_POINTERS /* To make GC_call_with_alloc_lock visible */
#include "private/gc_pmark.h"
#include "private/gc_pmark.h"
 
 
#ifdef GC_SOLARIS_THREADS
#ifdef GC_SOLARIS_THREADS
# include <sys/syscall.h>
# include <sys/syscall.h>
#endif
#endif
#if defined(MSWIN32) || defined(MSWINCE)
#if defined(MSWIN32) || defined(MSWINCE)
# define WIN32_LEAN_AND_MEAN
# define WIN32_LEAN_AND_MEAN
# define NOSERVICE
# define NOSERVICE
# include <windows.h>
# include <windows.h>
# include <tchar.h>
# include <tchar.h>
#endif
#endif
 
 
# ifdef THREADS
# ifdef THREADS
#   ifdef PCR
#   ifdef PCR
#     include "il/PCR_IL.h"
#     include "il/PCR_IL.h"
      PCR_Th_ML GC_allocate_ml;
      PCR_Th_ML GC_allocate_ml;
#   else
#   else
#     ifdef SRC_M3
#     ifdef SRC_M3
        /* Critical section counter is defined in the M3 runtime        */
        /* Critical section counter is defined in the M3 runtime        */
        /* That's all we use.                                           */
        /* That's all we use.                                           */
#     else
#     else
#       ifdef GC_SOLARIS_THREADS
#       ifdef GC_SOLARIS_THREADS
          mutex_t GC_allocate_ml;       /* Implicitly initialized.      */
          mutex_t GC_allocate_ml;       /* Implicitly initialized.      */
#       else
#       else
#          if defined(GC_WIN32_THREADS) 
#          if defined(GC_WIN32_THREADS) 
#             if defined(GC_PTHREADS)
#             if defined(GC_PTHREADS)
                  pthread_mutex_t GC_allocate_ml = PTHREAD_MUTEX_INITIALIZER;
                  pthread_mutex_t GC_allocate_ml = PTHREAD_MUTEX_INITIALIZER;
#             elif defined(GC_DLL)
#             elif defined(GC_DLL)
                 __declspec(dllexport) CRITICAL_SECTION GC_allocate_ml;
                 __declspec(dllexport) CRITICAL_SECTION GC_allocate_ml;
#             else
#             else
                 CRITICAL_SECTION GC_allocate_ml;
                 CRITICAL_SECTION GC_allocate_ml;
#             endif
#             endif
#          else
#          else
#             if defined(GC_PTHREADS) && !defined(GC_SOLARIS_THREADS)
#             if defined(GC_PTHREADS) && !defined(GC_SOLARIS_THREADS)
#               if defined(USE_SPIN_LOCK)
#               if defined(USE_SPIN_LOCK)
                  pthread_t GC_lock_holder = NO_THREAD;
                  pthread_t GC_lock_holder = NO_THREAD;
#               else
#               else
                  pthread_mutex_t GC_allocate_ml = PTHREAD_MUTEX_INITIALIZER;
                  pthread_mutex_t GC_allocate_ml = PTHREAD_MUTEX_INITIALIZER;
                  pthread_t GC_lock_holder = NO_THREAD;
                  pthread_t GC_lock_holder = NO_THREAD;
                        /* Used only for assertions, and to prevent      */
                        /* Used only for assertions, and to prevent      */
                        /* recursive reentry in the system call wrapper. */
                        /* recursive reentry in the system call wrapper. */
#               endif 
#               endif 
#             else
#             else
                  --> declare allocator lock here
                  --> declare allocator lock here
#             endif
#             endif
#          endif
#          endif
#       endif
#       endif
#     endif
#     endif
#   endif
#   endif
# endif
# endif
 
 
#if defined(NOSYS) || defined(ECOS)
#if defined(NOSYS) || defined(ECOS)
#undef STACKBASE
#undef STACKBASE
#endif
#endif
 
 
/* Dont unnecessarily call GC_register_main_static_data() in case       */
/* Dont unnecessarily call GC_register_main_static_data() in case       */
/* dyn_load.c isn't linked in.                                          */
/* dyn_load.c isn't linked in.                                          */
#ifdef DYNAMIC_LOADING
#ifdef DYNAMIC_LOADING
# define GC_REGISTER_MAIN_STATIC_DATA() GC_register_main_static_data()
# define GC_REGISTER_MAIN_STATIC_DATA() GC_register_main_static_data()
#else
#else
# define GC_REGISTER_MAIN_STATIC_DATA() TRUE
# define GC_REGISTER_MAIN_STATIC_DATA() TRUE
#endif
#endif
 
 
GC_FAR struct _GC_arrays GC_arrays /* = { 0 } */;
GC_FAR struct _GC_arrays GC_arrays /* = { 0 } */;
 
 
 
 
GC_bool GC_debugging_started = FALSE;
GC_bool GC_debugging_started = FALSE;
        /* defined here so we don't have to load debug_malloc.o */
        /* defined here so we don't have to load debug_malloc.o */
 
 
void (*GC_check_heap) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0;
void (*GC_check_heap) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0;
void (*GC_print_all_smashed) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0;
void (*GC_print_all_smashed) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0;
 
 
void (*GC_start_call_back) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0;
void (*GC_start_call_back) GC_PROTO((void)) = (void (*) GC_PROTO((void)))0;
 
 
ptr_t GC_stackbottom = 0;
ptr_t GC_stackbottom = 0;
 
 
#ifdef IA64
#ifdef IA64
  ptr_t GC_register_stackbottom = 0;
  ptr_t GC_register_stackbottom = 0;
#endif
#endif
 
 
GC_bool GC_dont_gc = 0;
GC_bool GC_dont_gc = 0;
 
 
GC_bool GC_dont_precollect = 0;
GC_bool GC_dont_precollect = 0;
 
 
GC_bool GC_quiet = 0;
GC_bool GC_quiet = 0;
 
 
GC_bool GC_print_stats = 0;
GC_bool GC_print_stats = 0;
 
 
GC_bool GC_print_back_height = 0;
GC_bool GC_print_back_height = 0;
 
 
#ifndef NO_DEBUGGING
#ifndef NO_DEBUGGING
  GC_bool GC_dump_regularly = 0;  /* Generate regular debugging dumps. */
  GC_bool GC_dump_regularly = 0;  /* Generate regular debugging dumps. */
#endif
#endif
 
 
#ifdef KEEP_BACK_PTRS
#ifdef KEEP_BACK_PTRS
  long GC_backtraces = 0;        /* Number of random backtraces to       */
  long GC_backtraces = 0;        /* Number of random backtraces to       */
                                /* generate for each GC.                */
                                /* generate for each GC.                */
#endif
#endif
 
 
#ifdef FIND_LEAK
#ifdef FIND_LEAK
  int GC_find_leak = 1;
  int GC_find_leak = 1;
#else
#else
  int GC_find_leak = 0;
  int GC_find_leak = 0;
#endif
#endif
 
 
#ifdef ALL_INTERIOR_POINTERS
#ifdef ALL_INTERIOR_POINTERS
  int GC_all_interior_pointers = 1;
  int GC_all_interior_pointers = 1;
#else
#else
  int GC_all_interior_pointers = 0;
  int GC_all_interior_pointers = 0;
#endif
#endif
 
 
long GC_large_alloc_warn_interval = 5;
long GC_large_alloc_warn_interval = 5;
        /* Interval between unsuppressed warnings.      */
        /* Interval between unsuppressed warnings.      */
 
 
long GC_large_alloc_warn_suppressed = 0;
long GC_large_alloc_warn_suppressed = 0;
        /* Number of warnings suppressed so far.        */
        /* Number of warnings suppressed so far.        */
 
 
/*ARGSUSED*/
/*ARGSUSED*/
GC_PTR GC_default_oom_fn GC_PROTO((size_t bytes_requested))
GC_PTR GC_default_oom_fn GC_PROTO((size_t bytes_requested))
{
{
    return(0);
    return(0);
}
}
 
 
GC_PTR (*GC_oom_fn) GC_PROTO((size_t bytes_requested)) = GC_default_oom_fn;
GC_PTR (*GC_oom_fn) GC_PROTO((size_t bytes_requested)) = GC_default_oom_fn;
 
 
extern signed_word GC_mem_found;
extern signed_word GC_mem_found;
 
 
void * GC_project2(arg1, arg2)
void * GC_project2(arg1, arg2)
void *arg1;
void *arg1;
void *arg2;
void *arg2;
{
{
  return arg2;
  return arg2;
}
}
 
 
# ifdef MERGE_SIZES
# ifdef MERGE_SIZES
    /* Set things up so that GC_size_map[i] >= words(i),                */
    /* Set things up so that GC_size_map[i] >= words(i),                */
    /* but not too much bigger                                          */
    /* but not too much bigger                                          */
    /* and so that size_map contains relatively few distinct entries    */
    /* and so that size_map contains relatively few distinct entries    */
    /* This is stolen from Russ Atkinson's Cedar quantization           */
    /* This is stolen from Russ Atkinson's Cedar quantization           */
    /* alogrithm (but we precompute it).                                */
    /* alogrithm (but we precompute it).                                */
 
 
 
 
    void GC_init_size_map()
    void GC_init_size_map()
    {
    {
        register unsigned i;
        register unsigned i;
 
 
        /* Map size 0 to something bigger.                      */
        /* Map size 0 to something bigger.                      */
        /* This avoids problems at lower levels.                */
        /* This avoids problems at lower levels.                */
        /* One word objects don't have to be 2 word aligned,    */
        /* One word objects don't have to be 2 word aligned,    */
        /* unless we're using mark bytes.                       */
        /* unless we're using mark bytes.                       */
          for (i = 0; i < sizeof(word); i++) {
          for (i = 0; i < sizeof(word); i++) {
              GC_size_map[i] = MIN_WORDS;
              GC_size_map[i] = MIN_WORDS;
          }
          }
#         if MIN_WORDS > 1
#         if MIN_WORDS > 1
            GC_size_map[sizeof(word)] = MIN_WORDS;
            GC_size_map[sizeof(word)] = MIN_WORDS;
#         else
#         else
            GC_size_map[sizeof(word)] = ROUNDED_UP_WORDS(sizeof(word));
            GC_size_map[sizeof(word)] = ROUNDED_UP_WORDS(sizeof(word));
#         endif
#         endif
        for (i = sizeof(word) + 1; i <= 8 * sizeof(word); i++) {
        for (i = sizeof(word) + 1; i <= 8 * sizeof(word); i++) {
            GC_size_map[i] = ALIGNED_WORDS(i);
            GC_size_map[i] = ALIGNED_WORDS(i);
        }
        }
        for (i = 8*sizeof(word) + 1; i <= 16 * sizeof(word); i++) {
        for (i = 8*sizeof(word) + 1; i <= 16 * sizeof(word); i++) {
              GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 1) & (~1);
              GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 1) & (~1);
        }
        }
#       ifdef GC_GCJ_SUPPORT
#       ifdef GC_GCJ_SUPPORT
           /* Make all sizes up to 32 words predictable, so that a      */
           /* Make all sizes up to 32 words predictable, so that a      */
           /* compiler can statically perform the same computation,     */
           /* compiler can statically perform the same computation,     */
           /* or at least a computation that results in similar size    */
           /* or at least a computation that results in similar size    */
           /* classes.                                                  */
           /* classes.                                                  */
           for (i = 16*sizeof(word) + 1; i <= 32 * sizeof(word); i++) {
           for (i = 16*sizeof(word) + 1; i <= 32 * sizeof(word); i++) {
              GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 3) & (~3);
              GC_size_map[i] = (ROUNDED_UP_WORDS(i) + 3) & (~3);
           }
           }
#       endif
#       endif
        /* We leave the rest of the array to be filled in on demand. */
        /* We leave the rest of the array to be filled in on demand. */
    }
    }
 
 
    /* Fill in additional entries in GC_size_map, including the ith one */
    /* Fill in additional entries in GC_size_map, including the ith one */
    /* We assume the ith entry is currently 0.                          */
    /* We assume the ith entry is currently 0.                          */
    /* Note that a filled in section of the array ending at n always    */
    /* Note that a filled in section of the array ending at n always    */
    /* has length at least n/4.                                         */
    /* has length at least n/4.                                         */
    void GC_extend_size_map(i)
    void GC_extend_size_map(i)
    word i;
    word i;
    {
    {
        word orig_word_sz = ROUNDED_UP_WORDS(i);
        word orig_word_sz = ROUNDED_UP_WORDS(i);
        word word_sz = orig_word_sz;
        word word_sz = orig_word_sz;
        register word byte_sz = WORDS_TO_BYTES(word_sz);
        register word byte_sz = WORDS_TO_BYTES(word_sz);
                                /* The size we try to preserve.         */
                                /* The size we try to preserve.         */
                                /* Close to to i, unless this would     */
                                /* Close to to i, unless this would     */
                                /* introduce too many distinct sizes.   */
                                /* introduce too many distinct sizes.   */
        word smaller_than_i = byte_sz - (byte_sz >> 3);
        word smaller_than_i = byte_sz - (byte_sz >> 3);
        word much_smaller_than_i = byte_sz - (byte_sz >> 2);
        word much_smaller_than_i = byte_sz - (byte_sz >> 2);
        register word low_limit;        /* The lowest indexed entry we  */
        register word low_limit;        /* The lowest indexed entry we  */
                                        /* initialize.                  */
                                        /* initialize.                  */
        register word j;
        register word j;
 
 
        if (GC_size_map[smaller_than_i] == 0) {
        if (GC_size_map[smaller_than_i] == 0) {
            low_limit = much_smaller_than_i;
            low_limit = much_smaller_than_i;
            while (GC_size_map[low_limit] != 0) low_limit++;
            while (GC_size_map[low_limit] != 0) low_limit++;
        } else {
        } else {
            low_limit = smaller_than_i + 1;
            low_limit = smaller_than_i + 1;
            while (GC_size_map[low_limit] != 0) low_limit++;
            while (GC_size_map[low_limit] != 0) low_limit++;
            word_sz = ROUNDED_UP_WORDS(low_limit);
            word_sz = ROUNDED_UP_WORDS(low_limit);
            word_sz += word_sz >> 3;
            word_sz += word_sz >> 3;
            if (word_sz < orig_word_sz) word_sz = orig_word_sz;
            if (word_sz < orig_word_sz) word_sz = orig_word_sz;
        }
        }
#       ifdef ALIGN_DOUBLE
#       ifdef ALIGN_DOUBLE
            word_sz += 1;
            word_sz += 1;
            word_sz &= ~1;
            word_sz &= ~1;
#       endif
#       endif
        if (word_sz > MAXOBJSZ) {
        if (word_sz > MAXOBJSZ) {
            word_sz = MAXOBJSZ;
            word_sz = MAXOBJSZ;
        }
        }
        /* If we can fit the same number of larger objects in a block,  */
        /* If we can fit the same number of larger objects in a block,  */
        /* do so.                                                       */
        /* do so.                                                       */
        {
        {
            size_t number_of_objs = BODY_SZ/word_sz;
            size_t number_of_objs = BODY_SZ/word_sz;
            word_sz = BODY_SZ/number_of_objs;
            word_sz = BODY_SZ/number_of_objs;
#           ifdef ALIGN_DOUBLE
#           ifdef ALIGN_DOUBLE
                word_sz &= ~1;
                word_sz &= ~1;
#           endif
#           endif
        }
        }
        byte_sz = WORDS_TO_BYTES(word_sz);
        byte_sz = WORDS_TO_BYTES(word_sz);
        if (GC_all_interior_pointers) {
        if (GC_all_interior_pointers) {
            /* We need one extra byte; don't fill in GC_size_map[byte_sz] */
            /* We need one extra byte; don't fill in GC_size_map[byte_sz] */
            byte_sz -= EXTRA_BYTES;
            byte_sz -= EXTRA_BYTES;
        }
        }
 
 
        for (j = low_limit; j <= byte_sz; j++) GC_size_map[j] = word_sz;
        for (j = low_limit; j <= byte_sz; j++) GC_size_map[j] = word_sz;
    }
    }
# endif
# endif
 
 
 
 
/*
/*
 * The following is a gross hack to deal with a problem that can occur
 * The following is a gross hack to deal with a problem that can occur
 * on machines that are sloppy about stack frame sizes, notably SPARC.
 * on machines that are sloppy about stack frame sizes, notably SPARC.
 * Bogus pointers may be written to the stack and not cleared for
 * Bogus pointers may be written to the stack and not cleared for
 * a LONG time, because they always fall into holes in stack frames
 * a LONG time, because they always fall into holes in stack frames
 * that are not written.  We partially address this by clearing
 * that are not written.  We partially address this by clearing
 * sections of the stack whenever we get control.
 * sections of the stack whenever we get control.
 */
 */
word GC_stack_last_cleared = 0;  /* GC_no when we last did this */
word GC_stack_last_cleared = 0;  /* GC_no when we last did this */
# ifdef THREADS
# ifdef THREADS
#   define BIG_CLEAR_SIZE 2048  /* Clear this much now and then.        */
#   define BIG_CLEAR_SIZE 2048  /* Clear this much now and then.        */
#   define SMALL_CLEAR_SIZE 256 /* Clear this much every time.          */
#   define SMALL_CLEAR_SIZE 256 /* Clear this much every time.          */
# endif
# endif
# define CLEAR_SIZE 213  /* Granularity for GC_clear_stack_inner */
# define CLEAR_SIZE 213  /* Granularity for GC_clear_stack_inner */
# define DEGRADE_RATE 50
# define DEGRADE_RATE 50
 
 
word GC_min_sp;         /* Coolest stack pointer value from which we've */
word GC_min_sp;         /* Coolest stack pointer value from which we've */
                        /* already cleared the stack.                   */
                        /* already cleared the stack.                   */
 
 
word GC_high_water;
word GC_high_water;
                        /* "hottest" stack pointer value we have seen   */
                        /* "hottest" stack pointer value we have seen   */
                        /* recently.  Degrades over time.               */
                        /* recently.  Degrades over time.               */
 
 
word GC_words_allocd_at_reset;
word GC_words_allocd_at_reset;
 
 
#if defined(ASM_CLEAR_CODE)
#if defined(ASM_CLEAR_CODE)
  extern ptr_t GC_clear_stack_inner();
  extern ptr_t GC_clear_stack_inner();
#else  
#else  
/* Clear the stack up to about limit.  Return arg. */
/* Clear the stack up to about limit.  Return arg. */
/*ARGSUSED*/
/*ARGSUSED*/
ptr_t GC_clear_stack_inner(arg, limit)
ptr_t GC_clear_stack_inner(arg, limit)
ptr_t arg;
ptr_t arg;
word limit;
word limit;
{
{
    word dummy[CLEAR_SIZE];
    word dummy[CLEAR_SIZE];
 
 
    BZERO(dummy, CLEAR_SIZE*sizeof(word));
    BZERO(dummy, CLEAR_SIZE*sizeof(word));
    if ((word)(dummy) COOLER_THAN limit) {
    if ((word)(dummy) COOLER_THAN limit) {
        (void) GC_clear_stack_inner(arg, limit);
        (void) GC_clear_stack_inner(arg, limit);
    }
    }
    /* Make sure the recursive call is not a tail call, and the bzero   */
    /* Make sure the recursive call is not a tail call, and the bzero   */
    /* call is not recognized as dead code.                             */
    /* call is not recognized as dead code.                             */
    GC_noop1((word)dummy);
    GC_noop1((word)dummy);
    return(arg);
    return(arg);
}
}
#endif
#endif
 
 
/* Clear some of the inaccessible part of the stack.  Returns its       */
/* Clear some of the inaccessible part of the stack.  Returns its       */
/* argument, so it can be used in a tail call position, hence clearing  */
/* argument, so it can be used in a tail call position, hence clearing  */
/* another frame.                                                       */
/* another frame.                                                       */
ptr_t GC_clear_stack(arg)
ptr_t GC_clear_stack(arg)
ptr_t arg;
ptr_t arg;
{
{
    register word sp = (word)GC_approx_sp();  /* Hotter than actual sp */
    register word sp = (word)GC_approx_sp();  /* Hotter than actual sp */
#   ifdef THREADS
#   ifdef THREADS
        word dummy[SMALL_CLEAR_SIZE];
        word dummy[SMALL_CLEAR_SIZE];
        static unsigned random_no = 0;
        static unsigned random_no = 0;
                                 /* Should be more random than it is ... */
                                 /* Should be more random than it is ... */
                                 /* Used to occasionally clear a bigger  */
                                 /* Used to occasionally clear a bigger  */
                                 /* chunk.                               */
                                 /* chunk.                               */
#   endif
#   endif
    register word limit;
    register word limit;
 
 
#   define SLOP 400
#   define SLOP 400
        /* Extra bytes we clear every time.  This clears our own        */
        /* Extra bytes we clear every time.  This clears our own        */
        /* activation record, and should cause more frequent            */
        /* activation record, and should cause more frequent            */
        /* clearing near the cold end of the stack, a good thing.       */
        /* clearing near the cold end of the stack, a good thing.       */
#   define GC_SLOP 4000
#   define GC_SLOP 4000
        /* We make GC_high_water this much hotter than we really saw    */
        /* We make GC_high_water this much hotter than we really saw    */
        /* saw it, to cover for GC noise etc. above our current frame.  */
        /* saw it, to cover for GC noise etc. above our current frame.  */
#   define CLEAR_THRESHOLD 100000
#   define CLEAR_THRESHOLD 100000
        /* We restart the clearing process after this many bytes of     */
        /* We restart the clearing process after this many bytes of     */
        /* allocation.  Otherwise very heavily recursive programs       */
        /* allocation.  Otherwise very heavily recursive programs       */
        /* with sparse stacks may result in heaps that grow almost      */
        /* with sparse stacks may result in heaps that grow almost      */
        /* without bounds.  As the heap gets larger, collection         */
        /* without bounds.  As the heap gets larger, collection         */
        /* frequency decreases, thus clearing frequency would decrease, */
        /* frequency decreases, thus clearing frequency would decrease, */
        /* thus more junk remains accessible, thus the heap gets        */
        /* thus more junk remains accessible, thus the heap gets        */
        /* larger ...                                                   */
        /* larger ...                                                   */
# ifdef THREADS
# ifdef THREADS
    if (++random_no % 13 == 0) {
    if (++random_no % 13 == 0) {
        limit = sp;
        limit = sp;
        MAKE_HOTTER(limit, BIG_CLEAR_SIZE*sizeof(word));
        MAKE_HOTTER(limit, BIG_CLEAR_SIZE*sizeof(word));
        limit &= ~0xf;  /* Make it sufficiently aligned for assembly    */
        limit &= ~0xf;  /* Make it sufficiently aligned for assembly    */
                        /* implementations of GC_clear_stack_inner.     */
                        /* implementations of GC_clear_stack_inner.     */
        return GC_clear_stack_inner(arg, limit);
        return GC_clear_stack_inner(arg, limit);
    } else {
    } else {
        BZERO(dummy, SMALL_CLEAR_SIZE*sizeof(word));
        BZERO(dummy, SMALL_CLEAR_SIZE*sizeof(word));
        return arg;
        return arg;
    }
    }
# else
# else
    if (GC_gc_no > GC_stack_last_cleared) {
    if (GC_gc_no > GC_stack_last_cleared) {
        /* Start things over, so we clear the entire stack again */
        /* Start things over, so we clear the entire stack again */
        if (GC_stack_last_cleared == 0) GC_high_water = (word) GC_stackbottom;
        if (GC_stack_last_cleared == 0) GC_high_water = (word) GC_stackbottom;
        GC_min_sp = GC_high_water;
        GC_min_sp = GC_high_water;
        GC_stack_last_cleared = GC_gc_no;
        GC_stack_last_cleared = GC_gc_no;
        GC_words_allocd_at_reset = GC_words_allocd;
        GC_words_allocd_at_reset = GC_words_allocd;
    }
    }
    /* Adjust GC_high_water */
    /* Adjust GC_high_water */
        MAKE_COOLER(GC_high_water, WORDS_TO_BYTES(DEGRADE_RATE) + GC_SLOP);
        MAKE_COOLER(GC_high_water, WORDS_TO_BYTES(DEGRADE_RATE) + GC_SLOP);
        if (sp HOTTER_THAN GC_high_water) {
        if (sp HOTTER_THAN GC_high_water) {
            GC_high_water = sp;
            GC_high_water = sp;
        }
        }
        MAKE_HOTTER(GC_high_water, GC_SLOP);
        MAKE_HOTTER(GC_high_water, GC_SLOP);
    limit = GC_min_sp;
    limit = GC_min_sp;
    MAKE_HOTTER(limit, SLOP);
    MAKE_HOTTER(limit, SLOP);
    if (sp COOLER_THAN limit) {
    if (sp COOLER_THAN limit) {
        limit &= ~0xf;  /* Make it sufficiently aligned for assembly    */
        limit &= ~0xf;  /* Make it sufficiently aligned for assembly    */
                        /* implementations of GC_clear_stack_inner.     */
                        /* implementations of GC_clear_stack_inner.     */
        GC_min_sp = sp;
        GC_min_sp = sp;
        return(GC_clear_stack_inner(arg, limit));
        return(GC_clear_stack_inner(arg, limit));
    } else if (WORDS_TO_BYTES(GC_words_allocd - GC_words_allocd_at_reset)
    } else if (WORDS_TO_BYTES(GC_words_allocd - GC_words_allocd_at_reset)
               > CLEAR_THRESHOLD) {
               > CLEAR_THRESHOLD) {
        /* Restart clearing process, but limit how much clearing we do. */
        /* Restart clearing process, but limit how much clearing we do. */
        GC_min_sp = sp;
        GC_min_sp = sp;
        MAKE_HOTTER(GC_min_sp, CLEAR_THRESHOLD/4);
        MAKE_HOTTER(GC_min_sp, CLEAR_THRESHOLD/4);
        if (GC_min_sp HOTTER_THAN GC_high_water) GC_min_sp = GC_high_water;
        if (GC_min_sp HOTTER_THAN GC_high_water) GC_min_sp = GC_high_water;
        GC_words_allocd_at_reset = GC_words_allocd;
        GC_words_allocd_at_reset = GC_words_allocd;
    }
    }
    return(arg);
    return(arg);
# endif
# endif
}
}
 
 
 
 
/* Return a pointer to the base address of p, given a pointer to a      */
/* Return a pointer to the base address of p, given a pointer to a      */
/* an address within an object.  Return 0 o.w.                          */
/* an address within an object.  Return 0 o.w.                          */
# ifdef __STDC__
# ifdef __STDC__
    GC_PTR GC_base(GC_PTR p)
    GC_PTR GC_base(GC_PTR p)
# else
# else
    GC_PTR GC_base(p)
    GC_PTR GC_base(p)
    GC_PTR p;
    GC_PTR p;
# endif
# endif
{
{
    register word r;
    register word r;
    register struct hblk *h;
    register struct hblk *h;
    register bottom_index *bi;
    register bottom_index *bi;
    register hdr *candidate_hdr;
    register hdr *candidate_hdr;
    register word limit;
    register word limit;
 
 
    r = (word)p;
    r = (word)p;
    if (!GC_is_initialized) return 0;
    if (!GC_is_initialized) return 0;
    h = HBLKPTR(r);
    h = HBLKPTR(r);
    GET_BI(r, bi);
    GET_BI(r, bi);
    candidate_hdr = HDR_FROM_BI(bi, r);
    candidate_hdr = HDR_FROM_BI(bi, r);
    if (candidate_hdr == 0) return(0);
    if (candidate_hdr == 0) return(0);
    /* If it's a pointer to the middle of a large object, move it       */
    /* If it's a pointer to the middle of a large object, move it       */
    /* to the beginning.                                                */
    /* to the beginning.                                                */
        while (IS_FORWARDING_ADDR_OR_NIL(candidate_hdr)) {
        while (IS_FORWARDING_ADDR_OR_NIL(candidate_hdr)) {
           h = FORWARDED_ADDR(h,candidate_hdr);
           h = FORWARDED_ADDR(h,candidate_hdr);
           r = (word)h;
           r = (word)h;
           candidate_hdr = HDR(h);
           candidate_hdr = HDR(h);
        }
        }
    if (candidate_hdr -> hb_map == GC_invalid_map) return(0);
    if (candidate_hdr -> hb_map == GC_invalid_map) return(0);
    /* Make sure r points to the beginning of the object */
    /* Make sure r points to the beginning of the object */
        r &= ~(WORDS_TO_BYTES(1) - 1);
        r &= ~(WORDS_TO_BYTES(1) - 1);
        {
        {
            register int offset = HBLKDISPL(r);
            register int offset = HBLKDISPL(r);
            register signed_word sz = candidate_hdr -> hb_sz;
            register signed_word sz = candidate_hdr -> hb_sz;
            register signed_word map_entry;
            register signed_word map_entry;
 
 
            map_entry = MAP_ENTRY((candidate_hdr -> hb_map), offset);
            map_entry = MAP_ENTRY((candidate_hdr -> hb_map), offset);
            if (map_entry > CPP_MAX_OFFSET) {
            if (map_entry > CPP_MAX_OFFSET) {
                map_entry = (signed_word)(BYTES_TO_WORDS(offset)) % sz;
                map_entry = (signed_word)(BYTES_TO_WORDS(offset)) % sz;
            }
            }
            r -= WORDS_TO_BYTES(map_entry);
            r -= WORDS_TO_BYTES(map_entry);
            limit = r + WORDS_TO_BYTES(sz);
            limit = r + WORDS_TO_BYTES(sz);
            if (limit > (word)(h + 1)
            if (limit > (word)(h + 1)
                && sz <= BYTES_TO_WORDS(HBLKSIZE)) {
                && sz <= BYTES_TO_WORDS(HBLKSIZE)) {
                return(0);
                return(0);
            }
            }
            if ((word)p >= limit) return(0);
            if ((word)p >= limit) return(0);
        }
        }
    return((GC_PTR)r);
    return((GC_PTR)r);
}
}
 
 
 
 
/* Return the size of an object, given a pointer to its base.           */
/* Return the size of an object, given a pointer to its base.           */
/* (For small obects this also happens to work from interior pointers,  */
/* (For small obects this also happens to work from interior pointers,  */
/* but that shouldn't be relied upon.)                                  */
/* but that shouldn't be relied upon.)                                  */
# ifdef __STDC__
# ifdef __STDC__
    size_t GC_size(GC_PTR p)
    size_t GC_size(GC_PTR p)
# else
# else
    size_t GC_size(p)
    size_t GC_size(p)
    GC_PTR p;
    GC_PTR p;
# endif
# endif
{
{
    register int sz;
    register int sz;
    register hdr * hhdr = HDR(p);
    register hdr * hhdr = HDR(p);
 
 
    sz = WORDS_TO_BYTES(hhdr -> hb_sz);
    sz = WORDS_TO_BYTES(hhdr -> hb_sz);
    return(sz);
    return(sz);
}
}
 
 
size_t GC_get_heap_size GC_PROTO(())
size_t GC_get_heap_size GC_PROTO(())
{
{
    return ((size_t) GC_heapsize);
    return ((size_t) GC_heapsize);
}
}
 
 
size_t GC_get_free_bytes GC_PROTO(())
size_t GC_get_free_bytes GC_PROTO(())
{
{
    return ((size_t) GC_large_free_bytes);
    return ((size_t) GC_large_free_bytes);
}
}
 
 
size_t GC_get_bytes_since_gc GC_PROTO(())
size_t GC_get_bytes_since_gc GC_PROTO(())
{
{
    return ((size_t) WORDS_TO_BYTES(GC_words_allocd));
    return ((size_t) WORDS_TO_BYTES(GC_words_allocd));
}
}
 
 
size_t GC_get_total_bytes GC_PROTO(())
size_t GC_get_total_bytes GC_PROTO(())
{
{
    return ((size_t) WORDS_TO_BYTES(GC_words_allocd+GC_words_allocd_before_gc));
    return ((size_t) WORDS_TO_BYTES(GC_words_allocd+GC_words_allocd_before_gc));
}
}
 
 
GC_bool GC_is_initialized = FALSE;
GC_bool GC_is_initialized = FALSE;
 
 
void GC_init()
void GC_init()
{
{
    DCL_LOCK_STATE;
    DCL_LOCK_STATE;
 
 
    DISABLE_SIGNALS();
    DISABLE_SIGNALS();
 
 
#if defined(GC_WIN32_THREADS) && !defined(GC_PTHREADS)
#if defined(GC_WIN32_THREADS) && !defined(GC_PTHREADS)
    if (!GC_is_initialized) {
    if (!GC_is_initialized) {
      BOOL (WINAPI *pfn) (LPCRITICAL_SECTION, DWORD) = NULL;
      BOOL (WINAPI *pfn) (LPCRITICAL_SECTION, DWORD) = NULL;
      HMODULE hK32 = GetModuleHandle("kernel32.dll");
      HMODULE hK32 = GetModuleHandle("kernel32.dll");
      if (hK32)
      if (hK32)
          pfn = (BOOL (WINAPI *) (LPCRITICAL_SECTION, DWORD))
          pfn = (BOOL (WINAPI *) (LPCRITICAL_SECTION, DWORD))
                GetProcAddress (hK32,
                GetProcAddress (hK32,
                                "InitializeCriticalSectionAndSpinCount");
                                "InitializeCriticalSectionAndSpinCount");
      if (pfn)
      if (pfn)
          pfn(&GC_allocate_ml, 4000);
          pfn(&GC_allocate_ml, 4000);
      else
      else
          InitializeCriticalSection (&GC_allocate_ml);
          InitializeCriticalSection (&GC_allocate_ml);
    }
    }
#endif /* MSWIN32 */
#endif /* MSWIN32 */
 
 
    LOCK();
    LOCK();
    GC_init_inner();
    GC_init_inner();
    UNLOCK();
    UNLOCK();
    ENABLE_SIGNALS();
    ENABLE_SIGNALS();
 
 
#   if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
#   if defined(PARALLEL_MARK) || defined(THREAD_LOCAL_ALLOC)
        /* Make sure marker threads and started and thread local */
        /* Make sure marker threads and started and thread local */
        /* allocation is initialized, in case we didn't get      */
        /* allocation is initialized, in case we didn't get      */
        /* called from GC_init_parallel();                       */
        /* called from GC_init_parallel();                       */
        {
        {
          extern void GC_init_parallel(void);
          extern void GC_init_parallel(void);
          GC_init_parallel();
          GC_init_parallel();
        }
        }
#   endif /* PARALLEL_MARK || THREAD_LOCAL_ALLOC */
#   endif /* PARALLEL_MARK || THREAD_LOCAL_ALLOC */
 
 
#   if defined(DYNAMIC_LOADING) && defined(DARWIN)
#   if defined(DYNAMIC_LOADING) && defined(DARWIN)
    {
    {
        /* This must be called WITHOUT the allocation lock held
        /* This must be called WITHOUT the allocation lock held
        and before any threads are created */
        and before any threads are created */
        extern void GC_init_dyld();
        extern void GC_init_dyld();
        GC_init_dyld();
        GC_init_dyld();
    }
    }
#   endif
#   endif
}
}
 
 
#if defined(MSWIN32) || defined(MSWINCE)
#if defined(MSWIN32) || defined(MSWINCE)
    CRITICAL_SECTION GC_write_cs;
    CRITICAL_SECTION GC_write_cs;
#endif
#endif
 
 
#ifdef MSWIN32
#ifdef MSWIN32
    extern void GC_init_win32 GC_PROTO((void));
    extern void GC_init_win32 GC_PROTO((void));
#endif
#endif
 
 
extern void GC_setpagesize();
extern void GC_setpagesize();
 
 
 
 
#ifdef MSWIN32
#ifdef MSWIN32
extern GC_bool GC_no_win32_dlls;
extern GC_bool GC_no_win32_dlls;
#else
#else
# define GC_no_win32_dlls FALSE
# define GC_no_win32_dlls FALSE
#endif
#endif
 
 
void GC_exit_check GC_PROTO((void))
void GC_exit_check GC_PROTO((void))
{
{
   GC_gcollect();
   GC_gcollect();
}
}
 
 
#ifdef SEARCH_FOR_DATA_START
#ifdef SEARCH_FOR_DATA_START
  extern void GC_init_linux_data_start GC_PROTO((void));
  extern void GC_init_linux_data_start GC_PROTO((void));
#endif
#endif
 
 
#ifdef UNIX_LIKE
#ifdef UNIX_LIKE
 
 
extern void GC_set_and_save_fault_handler GC_PROTO((void (*handler)(int)));
extern void GC_set_and_save_fault_handler GC_PROTO((void (*handler)(int)));
 
 
static void looping_handler(sig)
static void looping_handler(sig)
int sig;
int sig;
{
{
    GC_err_printf1("Caught signal %d: looping in handler\n", sig);
    GC_err_printf1("Caught signal %d: looping in handler\n", sig);
    for(;;);
    for(;;);
}
}
 
 
static GC_bool installed_looping_handler = FALSE;
static GC_bool installed_looping_handler = FALSE;
 
 
static void maybe_install_looping_handler()
static void maybe_install_looping_handler()
{
{
    /* Install looping handler before the write fault handler, so we    */
    /* Install looping handler before the write fault handler, so we    */
    /* handle write faults correctly.                                   */
    /* handle write faults correctly.                                   */
      if (!installed_looping_handler && 0 != GETENV("GC_LOOP_ON_ABORT")) {
      if (!installed_looping_handler && 0 != GETENV("GC_LOOP_ON_ABORT")) {
        GC_set_and_save_fault_handler(looping_handler);
        GC_set_and_save_fault_handler(looping_handler);
        installed_looping_handler = TRUE;
        installed_looping_handler = TRUE;
      }
      }
}
}
 
 
#else /* !UNIX_LIKE */
#else /* !UNIX_LIKE */
 
 
# define maybe_install_looping_handler()
# define maybe_install_looping_handler()
 
 
#endif
#endif
 
 
void GC_init_inner()
void GC_init_inner()
{
{
#   if !defined(THREADS) && defined(GC_ASSERTIONS)
#   if !defined(THREADS) && defined(GC_ASSERTIONS)
        word dummy;
        word dummy;
#   endif
#   endif
    word initial_heap_sz = (word)MINHINCR;
    word initial_heap_sz = (word)MINHINCR;
 
 
    if (GC_is_initialized) return;
    if (GC_is_initialized) return;
#   ifdef PRINTSTATS
#   ifdef PRINTSTATS
      GC_print_stats = 1;
      GC_print_stats = 1;
#   endif
#   endif
#   if defined(MSWIN32) || defined(MSWINCE)
#   if defined(MSWIN32) || defined(MSWINCE)
      InitializeCriticalSection(&GC_write_cs);
      InitializeCriticalSection(&GC_write_cs);
#   endif
#   endif
    if (0 != GETENV("GC_PRINT_STATS")) {
    if (0 != GETENV("GC_PRINT_STATS")) {
      GC_print_stats = 1;
      GC_print_stats = 1;
    }
    }
#   ifndef NO_DEBUGGING
#   ifndef NO_DEBUGGING
      if (0 != GETENV("GC_DUMP_REGULARLY")) {
      if (0 != GETENV("GC_DUMP_REGULARLY")) {
        GC_dump_regularly = 1;
        GC_dump_regularly = 1;
      }
      }
#   endif
#   endif
#   ifdef KEEP_BACK_PTRS
#   ifdef KEEP_BACK_PTRS
      {
      {
        char * backtraces_string = GETENV("GC_BACKTRACES");
        char * backtraces_string = GETENV("GC_BACKTRACES");
        if (0 != backtraces_string) {
        if (0 != backtraces_string) {
          GC_backtraces = atol(backtraces_string);
          GC_backtraces = atol(backtraces_string);
          if (backtraces_string[0] == '\0') GC_backtraces = 1;
          if (backtraces_string[0] == '\0') GC_backtraces = 1;
        }
        }
      }
      }
#   endif
#   endif
    if (0 != GETENV("GC_FIND_LEAK")) {
    if (0 != GETENV("GC_FIND_LEAK")) {
      GC_find_leak = 1;
      GC_find_leak = 1;
#     ifdef __STDC__
#     ifdef __STDC__
        atexit(GC_exit_check);
        atexit(GC_exit_check);
#     endif
#     endif
    }
    }
    if (0 != GETENV("GC_ALL_INTERIOR_POINTERS")) {
    if (0 != GETENV("GC_ALL_INTERIOR_POINTERS")) {
      GC_all_interior_pointers = 1;
      GC_all_interior_pointers = 1;
    }
    }
    if (0 != GETENV("GC_DONT_GC")) {
    if (0 != GETENV("GC_DONT_GC")) {
      GC_dont_gc = 1;
      GC_dont_gc = 1;
    }
    }
    if (0 != GETENV("GC_PRINT_BACK_HEIGHT")) {
    if (0 != GETENV("GC_PRINT_BACK_HEIGHT")) {
      GC_print_back_height = 1;
      GC_print_back_height = 1;
    }
    }
    if (0 != GETENV("GC_NO_BLACKLIST_WARNING")) {
    if (0 != GETENV("GC_NO_BLACKLIST_WARNING")) {
      GC_large_alloc_warn_interval = LONG_MAX;
      GC_large_alloc_warn_interval = LONG_MAX;
    }
    }
    {
    {
      char * time_limit_string = GETENV("GC_PAUSE_TIME_TARGET");
      char * time_limit_string = GETENV("GC_PAUSE_TIME_TARGET");
      if (0 != time_limit_string) {
      if (0 != time_limit_string) {
        long time_limit = atol(time_limit_string);
        long time_limit = atol(time_limit_string);
        if (time_limit < 5) {
        if (time_limit < 5) {
          WARN("GC_PAUSE_TIME_TARGET environment variable value too small "
          WARN("GC_PAUSE_TIME_TARGET environment variable value too small "
               "or bad syntax: Ignoring\n", 0);
               "or bad syntax: Ignoring\n", 0);
        } else {
        } else {
          GC_time_limit = time_limit;
          GC_time_limit = time_limit;
        }
        }
      }
      }
    }
    }
    {
    {
      char * interval_string = GETENV("GC_LARGE_ALLOC_WARN_INTERVAL");
      char * interval_string = GETENV("GC_LARGE_ALLOC_WARN_INTERVAL");
      if (0 != interval_string) {
      if (0 != interval_string) {
        long interval = atol(interval_string);
        long interval = atol(interval_string);
        if (interval <= 0) {
        if (interval <= 0) {
          WARN("GC_LARGE_ALLOC_WARN_INTERVAL environment variable has "
          WARN("GC_LARGE_ALLOC_WARN_INTERVAL environment variable has "
               "bad value: Ignoring\n", 0);
               "bad value: Ignoring\n", 0);
        } else {
        } else {
          GC_large_alloc_warn_interval = interval;
          GC_large_alloc_warn_interval = interval;
        }
        }
      }
      }
    }
    }
    maybe_install_looping_handler();
    maybe_install_looping_handler();
    /* Adjust normal object descriptor for extra allocation.    */
    /* Adjust normal object descriptor for extra allocation.    */
    if (ALIGNMENT > GC_DS_TAGS && EXTRA_BYTES != 0) {
    if (ALIGNMENT > GC_DS_TAGS && EXTRA_BYTES != 0) {
      GC_obj_kinds[NORMAL].ok_descriptor = ((word)(-ALIGNMENT) | GC_DS_LENGTH);
      GC_obj_kinds[NORMAL].ok_descriptor = ((word)(-ALIGNMENT) | GC_DS_LENGTH);
    }
    }
    GC_setpagesize();
    GC_setpagesize();
    GC_exclude_static_roots(beginGC_arrays, endGC_arrays);
    GC_exclude_static_roots(beginGC_arrays, endGC_arrays);
    GC_exclude_static_roots(beginGC_obj_kinds, endGC_obj_kinds);
    GC_exclude_static_roots(beginGC_obj_kinds, endGC_obj_kinds);
#   ifdef SEPARATE_GLOBALS
#   ifdef SEPARATE_GLOBALS
      GC_exclude_static_roots(beginGC_objfreelist, endGC_objfreelist);
      GC_exclude_static_roots(beginGC_objfreelist, endGC_objfreelist);
      GC_exclude_static_roots(beginGC_aobjfreelist, endGC_aobjfreelist);
      GC_exclude_static_roots(beginGC_aobjfreelist, endGC_aobjfreelist);
#   endif
#   endif
#   ifdef MSWIN32
#   ifdef MSWIN32
        GC_init_win32();
        GC_init_win32();
#   endif
#   endif
#   if defined(SEARCH_FOR_DATA_START)
#   if defined(SEARCH_FOR_DATA_START)
        GC_init_linux_data_start();
        GC_init_linux_data_start();
#   endif
#   endif
#   if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
#   if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__)
        GC_init_netbsd_elf();
        GC_init_netbsd_elf();
#   endif
#   endif
#   if defined(GC_PTHREADS) || defined(GC_SOLARIS_THREADS) \
#   if defined(GC_PTHREADS) || defined(GC_SOLARIS_THREADS) \
       || defined(GC_WIN32_THREADS)
       || defined(GC_WIN32_THREADS)
        GC_thr_init();
        GC_thr_init();
#   endif
#   endif
#   ifdef GC_SOLARIS_THREADS
#   ifdef GC_SOLARIS_THREADS
        /* We need dirty bits in order to find live stack sections.     */
        /* We need dirty bits in order to find live stack sections.     */
        GC_dirty_init();
        GC_dirty_init();
#   endif
#   endif
#   if !defined(THREADS) || defined(GC_PTHREADS) || defined(GC_WIN32_THREADS) \
#   if !defined(THREADS) || defined(GC_PTHREADS) || defined(GC_WIN32_THREADS) \
        || defined(GC_SOLARIS_THREADS)
        || defined(GC_SOLARIS_THREADS)
      if (GC_stackbottom == 0) {
      if (GC_stackbottom == 0) {
        # if defined(GC_PTHREADS) && ! defined(GC_SOLARIS_THREADS)
        # if defined(GC_PTHREADS) && ! defined(GC_SOLARIS_THREADS)
        /* Use thread_stack_base if available, as GC could be initialized from
        /* Use thread_stack_base if available, as GC could be initialized from
           a thread that is not the "main" thread.  */
           a thread that is not the "main" thread.  */
        GC_stackbottom = GC_get_thread_stack_base();
        GC_stackbottom = GC_get_thread_stack_base();
        # endif
        # endif
        if (GC_stackbottom == 0)
        if (GC_stackbottom == 0)
          GC_stackbottom = GC_get_stack_base();
          GC_stackbottom = GC_get_stack_base();
#       if (defined(LINUX) || defined(HPUX)) && defined(IA64)
#       if (defined(LINUX) || defined(HPUX)) && defined(IA64)
          GC_register_stackbottom = GC_get_register_stack_base();
          GC_register_stackbottom = GC_get_register_stack_base();
#       endif
#       endif
      } else {
      } else {
#       if (defined(LINUX) || defined(HPUX)) && defined(IA64)
#       if (defined(LINUX) || defined(HPUX)) && defined(IA64)
          if (GC_register_stackbottom == 0) {
          if (GC_register_stackbottom == 0) {
            WARN("GC_register_stackbottom should be set with GC_stackbottom", 0);
            WARN("GC_register_stackbottom should be set with GC_stackbottom", 0);
            /* The following may fail, since we may rely on             */
            /* The following may fail, since we may rely on             */
            /* alignment properties that may not hold with a user set   */
            /* alignment properties that may not hold with a user set   */
            /* GC_stackbottom.                                          */
            /* GC_stackbottom.                                          */
            GC_register_stackbottom = GC_get_register_stack_base();
            GC_register_stackbottom = GC_get_register_stack_base();
          }
          }
#       endif
#       endif
      }
      }
#   endif
#   endif
    GC_STATIC_ASSERT(sizeof (ptr_t) == sizeof(word));
    GC_STATIC_ASSERT(sizeof (ptr_t) == sizeof(word));
    GC_STATIC_ASSERT(sizeof (signed_word) == sizeof(word));
    GC_STATIC_ASSERT(sizeof (signed_word) == sizeof(word));
    GC_STATIC_ASSERT(sizeof (struct hblk) == HBLKSIZE);
    GC_STATIC_ASSERT(sizeof (struct hblk) == HBLKSIZE);
#   ifndef THREADS
#   ifndef THREADS
#     if defined(STACK_GROWS_UP) && defined(STACK_GROWS_DOWN)
#     if defined(STACK_GROWS_UP) && defined(STACK_GROWS_DOWN)
        ABORT(
        ABORT(
          "Only one of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n");
          "Only one of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n");
#     endif
#     endif
#     if !defined(STACK_GROWS_UP) && !defined(STACK_GROWS_DOWN)
#     if !defined(STACK_GROWS_UP) && !defined(STACK_GROWS_DOWN)
        ABORT(
        ABORT(
          "One of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n");
          "One of STACK_GROWS_UP and STACK_GROWS_DOWN should be defd\n");
#     endif
#     endif
#     ifdef STACK_GROWS_DOWN
#     ifdef STACK_GROWS_DOWN
        GC_ASSERT((word)(&dummy) <= (word)GC_stackbottom);
        GC_ASSERT((word)(&dummy) <= (word)GC_stackbottom);
#     else
#     else
        GC_ASSERT((word)(&dummy) >= (word)GC_stackbottom);
        GC_ASSERT((word)(&dummy) >= (word)GC_stackbottom);
#     endif
#     endif
#   endif
#   endif
#   if !defined(_AUX_SOURCE) || defined(__GNUC__)
#   if !defined(_AUX_SOURCE) || defined(__GNUC__)
      GC_ASSERT((word)(-1) > (word)0);
      GC_ASSERT((word)(-1) > (word)0);
      /* word should be unsigned */
      /* word should be unsigned */
#   endif
#   endif
    GC_ASSERT((signed_word)(-1) < (signed_word)0);
    GC_ASSERT((signed_word)(-1) < (signed_word)0);
 
 
    /* Add initial guess of root sets.  Do this first, since sbrk(0)    */
    /* Add initial guess of root sets.  Do this first, since sbrk(0)    */
    /* might be used.                                                   */
    /* might be used.                                                   */
      if (GC_REGISTER_MAIN_STATIC_DATA()) GC_register_data_segments();
      if (GC_REGISTER_MAIN_STATIC_DATA()) GC_register_data_segments();
    GC_init_headers();
    GC_init_headers();
    GC_bl_init();
    GC_bl_init();
    GC_mark_init();
    GC_mark_init();
    {
    {
        char * sz_str = GETENV("GC_INITIAL_HEAP_SIZE");
        char * sz_str = GETENV("GC_INITIAL_HEAP_SIZE");
        if (sz_str != NULL) {
        if (sz_str != NULL) {
          initial_heap_sz = atoi(sz_str);
          initial_heap_sz = atoi(sz_str);
          if (initial_heap_sz <= MINHINCR * HBLKSIZE) {
          if (initial_heap_sz <= MINHINCR * HBLKSIZE) {
            WARN("Bad initial heap size %s - ignoring it.\n",
            WARN("Bad initial heap size %s - ignoring it.\n",
                 sz_str);
                 sz_str);
          }
          }
          initial_heap_sz = divHBLKSZ(initial_heap_sz);
          initial_heap_sz = divHBLKSZ(initial_heap_sz);
        }
        }
    }
    }
    {
    {
        char * sz_str = GETENV("GC_MAXIMUM_HEAP_SIZE");
        char * sz_str = GETENV("GC_MAXIMUM_HEAP_SIZE");
        if (sz_str != NULL) {
        if (sz_str != NULL) {
          word max_heap_sz = (word)atol(sz_str);
          word max_heap_sz = (word)atol(sz_str);
          if (max_heap_sz < initial_heap_sz * HBLKSIZE) {
          if (max_heap_sz < initial_heap_sz * HBLKSIZE) {
            WARN("Bad maximum heap size %s - ignoring it.\n",
            WARN("Bad maximum heap size %s - ignoring it.\n",
                 sz_str);
                 sz_str);
          }
          }
          if (0 == GC_max_retries) GC_max_retries = 2;
          if (0 == GC_max_retries) GC_max_retries = 2;
          GC_set_max_heap_size(max_heap_sz);
          GC_set_max_heap_size(max_heap_sz);
        }
        }
    }
    }
    if (!GC_expand_hp_inner(initial_heap_sz)) {
    if (!GC_expand_hp_inner(initial_heap_sz)) {
        GC_err_printf0("Can't start up: not enough memory\n");
        GC_err_printf0("Can't start up: not enough memory\n");
        EXIT();
        EXIT();
    }
    }
    /* Preallocate large object map.  It's otherwise inconvenient to    */
    /* Preallocate large object map.  It's otherwise inconvenient to    */
    /* deal with failure.                                               */
    /* deal with failure.                                               */
      if (!GC_add_map_entry((word)0)) {
      if (!GC_add_map_entry((word)0)) {
        GC_err_printf0("Can't start up: not enough memory\n");
        GC_err_printf0("Can't start up: not enough memory\n");
        EXIT();
        EXIT();
      }
      }
    GC_register_displacement_inner(0L);
    GC_register_displacement_inner(0L);
#   ifdef MERGE_SIZES
#   ifdef MERGE_SIZES
      GC_init_size_map();
      GC_init_size_map();
#   endif
#   endif
#   ifdef PCR
#   ifdef PCR
      if (PCR_IL_Lock(PCR_Bool_false, PCR_allSigsBlocked, PCR_waitForever)
      if (PCR_IL_Lock(PCR_Bool_false, PCR_allSigsBlocked, PCR_waitForever)
          != PCR_ERes_okay) {
          != PCR_ERes_okay) {
          ABORT("Can't lock load state\n");
          ABORT("Can't lock load state\n");
      } else if (PCR_IL_Unlock() != PCR_ERes_okay) {
      } else if (PCR_IL_Unlock() != PCR_ERes_okay) {
          ABORT("Can't unlock load state\n");
          ABORT("Can't unlock load state\n");
      }
      }
      PCR_IL_Unlock();
      PCR_IL_Unlock();
      GC_pcr_install();
      GC_pcr_install();
#   endif
#   endif
#   if !defined(SMALL_CONFIG)
#   if !defined(SMALL_CONFIG)
      if (!GC_no_win32_dlls && 0 != GETENV("GC_ENABLE_INCREMENTAL")) {
      if (!GC_no_win32_dlls && 0 != GETENV("GC_ENABLE_INCREMENTAL")) {
        GC_ASSERT(!GC_incremental);
        GC_ASSERT(!GC_incremental);
        GC_setpagesize();
        GC_setpagesize();
#       ifndef GC_SOLARIS_THREADS
#       ifndef GC_SOLARIS_THREADS
          GC_dirty_init();
          GC_dirty_init();
#       endif
#       endif
        GC_ASSERT(GC_words_allocd == 0)
        GC_ASSERT(GC_words_allocd == 0)
        GC_incremental = TRUE;
        GC_incremental = TRUE;
      }
      }
#   endif /* !SMALL_CONFIG */
#   endif /* !SMALL_CONFIG */
    COND_DUMP;
    COND_DUMP;
    /* Get black list set up and/or incremental GC started */
    /* Get black list set up and/or incremental GC started */
      if (!GC_dont_precollect || GC_incremental) GC_gcollect_inner();
      if (!GC_dont_precollect || GC_incremental) GC_gcollect_inner();
    GC_is_initialized = TRUE;
    GC_is_initialized = TRUE;
#   ifdef STUBBORN_ALLOC
#   ifdef STUBBORN_ALLOC
        GC_stubborn_init();
        GC_stubborn_init();
#   endif
#   endif
    /* Convince lint that some things are used */
    /* Convince lint that some things are used */
#   ifdef LINT
#   ifdef LINT
      {
      {
          extern char * GC_copyright[];
          extern char * GC_copyright[];
          extern int GC_read();
          extern int GC_read();
          extern void GC_register_finalizer_no_order();
          extern void GC_register_finalizer_no_order();
 
 
          GC_noop(GC_copyright, GC_find_header,
          GC_noop(GC_copyright, GC_find_header,
                  GC_push_one, GC_call_with_alloc_lock, GC_read,
                  GC_push_one, GC_call_with_alloc_lock, GC_read,
                  GC_dont_expand,
                  GC_dont_expand,
#                 ifndef NO_DEBUGGING
#                 ifndef NO_DEBUGGING
                    GC_dump,
                    GC_dump,
#                 endif
#                 endif
                  GC_register_finalizer_no_order);
                  GC_register_finalizer_no_order);
      }
      }
#   endif
#   endif
}
}
 
 
void GC_enable_incremental GC_PROTO(())
void GC_enable_incremental GC_PROTO(())
{
{
# if !defined(SMALL_CONFIG) && !defined(KEEP_BACK_PTRS)
# if !defined(SMALL_CONFIG) && !defined(KEEP_BACK_PTRS)
  /* If we are keeping back pointers, the GC itself dirties all */
  /* If we are keeping back pointers, the GC itself dirties all */
  /* pages on which objects have been marked, making            */
  /* pages on which objects have been marked, making            */
  /* incremental GC pointless.                                  */
  /* incremental GC pointless.                                  */
  if (!GC_find_leak) {
  if (!GC_find_leak) {
    DCL_LOCK_STATE;
    DCL_LOCK_STATE;
 
 
    DISABLE_SIGNALS();
    DISABLE_SIGNALS();
    LOCK();
    LOCK();
    if (GC_incremental) goto out;
    if (GC_incremental) goto out;
    GC_setpagesize();
    GC_setpagesize();
    if (GC_no_win32_dlls) goto out;
    if (GC_no_win32_dlls) goto out;
#   ifndef GC_SOLARIS_THREADS 
#   ifndef GC_SOLARIS_THREADS 
      maybe_install_looping_handler();  /* Before write fault handler! */
      maybe_install_looping_handler();  /* Before write fault handler! */
      GC_dirty_init();
      GC_dirty_init();
#   endif
#   endif
    if (!GC_is_initialized) {
    if (!GC_is_initialized) {
        GC_init_inner();
        GC_init_inner();
    }
    }
    if (GC_incremental) goto out;
    if (GC_incremental) goto out;
    if (GC_dont_gc) {
    if (GC_dont_gc) {
        /* Can't easily do it. */
        /* Can't easily do it. */
        UNLOCK();
        UNLOCK();
        ENABLE_SIGNALS();
        ENABLE_SIGNALS();
        return;
        return;
    }
    }
    if (GC_words_allocd > 0) {
    if (GC_words_allocd > 0) {
        /* There may be unmarked reachable objects      */
        /* There may be unmarked reachable objects      */
        GC_gcollect_inner();
        GC_gcollect_inner();
    }   /* else we're OK in assuming everything's       */
    }   /* else we're OK in assuming everything's       */
        /* clean since nothing can point to an          */
        /* clean since nothing can point to an          */
        /* unmarked object.                             */
        /* unmarked object.                             */
    GC_read_dirty();
    GC_read_dirty();
    GC_incremental = TRUE;
    GC_incremental = TRUE;
out:
out:
    UNLOCK();
    UNLOCK();
    ENABLE_SIGNALS();
    ENABLE_SIGNALS();
  }
  }
# endif
# endif
}
}
 
 
 
 
#if defined(MSWIN32) || defined(MSWINCE)
#if defined(MSWIN32) || defined(MSWINCE)
# define LOG_FILE _T("gc.log")
# define LOG_FILE _T("gc.log")
 
 
  HANDLE GC_stdout = 0;
  HANDLE GC_stdout = 0;
 
 
  void GC_deinit()
  void GC_deinit()
  {
  {
      if (GC_is_initialized) {
      if (GC_is_initialized) {
        DeleteCriticalSection(&GC_write_cs);
        DeleteCriticalSection(&GC_write_cs);
      }
      }
  }
  }
 
 
  int GC_write(buf, len)
  int GC_write(buf, len)
  GC_CONST char * buf;
  GC_CONST char * buf;
  size_t len;
  size_t len;
  {
  {
      BOOL tmp;
      BOOL tmp;
      DWORD written;
      DWORD written;
      if (len == 0)
      if (len == 0)
          return 0;
          return 0;
      EnterCriticalSection(&GC_write_cs);
      EnterCriticalSection(&GC_write_cs);
      if (GC_stdout == INVALID_HANDLE_VALUE) {
      if (GC_stdout == INVALID_HANDLE_VALUE) {
          return -1;
          return -1;
      } else if (GC_stdout == 0) {
      } else if (GC_stdout == 0) {
          GC_stdout = CreateFile(LOG_FILE, GENERIC_WRITE,
          GC_stdout = CreateFile(LOG_FILE, GENERIC_WRITE,
                                 FILE_SHARE_READ | FILE_SHARE_WRITE,
                                 FILE_SHARE_READ | FILE_SHARE_WRITE,
                                 NULL, CREATE_ALWAYS, FILE_FLAG_WRITE_THROUGH,
                                 NULL, CREATE_ALWAYS, FILE_FLAG_WRITE_THROUGH,
                                 NULL);
                                 NULL);
          if (GC_stdout == INVALID_HANDLE_VALUE) ABORT("Open of log file failed");
          if (GC_stdout == INVALID_HANDLE_VALUE) ABORT("Open of log file failed");
      }
      }
      tmp = WriteFile(GC_stdout, buf, len, &written, NULL);
      tmp = WriteFile(GC_stdout, buf, len, &written, NULL);
      if (!tmp)
      if (!tmp)
          DebugBreak();
          DebugBreak();
      LeaveCriticalSection(&GC_write_cs);
      LeaveCriticalSection(&GC_write_cs);
      return tmp ? (int)written : -1;
      return tmp ? (int)written : -1;
  }
  }
 
 
#endif
#endif
 
 
#if defined(OS2) || defined(MACOS)
#if defined(OS2) || defined(MACOS)
FILE * GC_stdout = NULL;
FILE * GC_stdout = NULL;
FILE * GC_stderr = NULL;
FILE * GC_stderr = NULL;
int GC_tmp;  /* Should really be local ... */
int GC_tmp;  /* Should really be local ... */
 
 
  void GC_set_files()
  void GC_set_files()
  {
  {
      if (GC_stdout == NULL) {
      if (GC_stdout == NULL) {
        GC_stdout = stdout;
        GC_stdout = stdout;
    }
    }
    if (GC_stderr == NULL) {
    if (GC_stderr == NULL) {
        GC_stderr = stderr;
        GC_stderr = stderr;
    }
    }
  }
  }
#endif
#endif
 
 
#if !defined(OS2) && !defined(MACOS) && !defined(MSWIN32) && !defined(MSWINCE)
#if !defined(OS2) && !defined(MACOS) && !defined(MSWIN32) && !defined(MSWINCE)
  int GC_stdout = 1;
  int GC_stdout = 1;
  int GC_stderr = 2;
  int GC_stderr = 2;
# if !defined(AMIGA)
# if !defined(AMIGA)
#   include <unistd.h>
#   include <unistd.h>
# endif
# endif
#endif
#endif
 
 
#if !defined(MSWIN32) && !defined(MSWINCE) && !defined(OS2) \
#if !defined(MSWIN32) && !defined(MSWINCE) && !defined(OS2) \
    && !defined(MACOS)  && !defined(ECOS) && !defined(NOSYS)
    && !defined(MACOS)  && !defined(ECOS) && !defined(NOSYS)
int GC_write(fd, buf, len)
int GC_write(fd, buf, len)
int fd;
int fd;
GC_CONST char *buf;
GC_CONST char *buf;
size_t len;
size_t len;
{
{
     register int bytes_written = 0;
     register int bytes_written = 0;
     register int result;
     register int result;
 
 
     while (bytes_written < len) {
     while (bytes_written < len) {
#       ifdef GC_SOLARIS_THREADS
#       ifdef GC_SOLARIS_THREADS
            result = syscall(SYS_write, fd, buf + bytes_written,
            result = syscall(SYS_write, fd, buf + bytes_written,
                                            len - bytes_written);
                                            len - bytes_written);
#       else
#       else
            result = write(fd, buf + bytes_written, len - bytes_written);
            result = write(fd, buf + bytes_written, len - bytes_written);
#       endif
#       endif
        if (-1 == result) return(result);
        if (-1 == result) return(result);
        bytes_written += result;
        bytes_written += result;
    }
    }
    return(bytes_written);
    return(bytes_written);
}
}
#endif /* UN*X */
#endif /* UN*X */
 
 
#ifdef ECOS
#ifdef ECOS
int GC_write(fd, buf, len)
int GC_write(fd, buf, len)
{
{
  _Jv_diag_write (buf, len);
  _Jv_diag_write (buf, len);
  return len;
  return len;
}
}
#endif
#endif
 
 
#ifdef NOSYS
#ifdef NOSYS
int GC_write(fd, buf, len)
int GC_write(fd, buf, len)
{
{
  /* No writing.  */
  /* No writing.  */
  return len;
  return len;
}
}
#endif
#endif
 
 
 
 
#if defined(MSWIN32) || defined(MSWINCE)
#if defined(MSWIN32) || defined(MSWINCE)
#   define WRITE(f, buf, len) GC_write(buf, len)
#   define WRITE(f, buf, len) GC_write(buf, len)
#else
#else
#   if defined(OS2) || defined(MACOS)
#   if defined(OS2) || defined(MACOS)
#   define WRITE(f, buf, len) (GC_set_files(), \
#   define WRITE(f, buf, len) (GC_set_files(), \
                               GC_tmp = fwrite((buf), 1, (len), (f)), \
                               GC_tmp = fwrite((buf), 1, (len), (f)), \
                               fflush(f), GC_tmp)
                               fflush(f), GC_tmp)
#   else
#   else
#     define WRITE(f, buf, len) GC_write((f), (buf), (len))
#     define WRITE(f, buf, len) GC_write((f), (buf), (len))
#   endif
#   endif
#endif
#endif
 
 
/* A version of printf that is unlikely to call malloc, and is thus safer */
/* A version of printf that is unlikely to call malloc, and is thus safer */
/* to call from the collector in case malloc has been bound to GC_malloc. */
/* to call from the collector in case malloc has been bound to GC_malloc. */
/* Assumes that no more than 1023 characters are written at once.         */
/* Assumes that no more than 1023 characters are written at once.         */
/* Assumes that all arguments have been converted to something of the     */
/* Assumes that all arguments have been converted to something of the     */
/* same size as long, and that the format conversions expect something    */
/* same size as long, and that the format conversions expect something    */
/* of that size.                                                          */
/* of that size.                                                          */
void GC_printf(format, a, b, c, d, e, f)
void GC_printf(format, a, b, c, d, e, f)
GC_CONST char * format;
GC_CONST char * format;
long a, b, c, d, e, f;
long a, b, c, d, e, f;
{
{
    char buf[1025];
    char buf[1025];
 
 
    if (GC_quiet) return;
    if (GC_quiet) return;
    buf[1024] = 0x15;
    buf[1024] = 0x15;
    (void) sprintf(buf, format, a, b, c, d, e, f);
    (void) sprintf(buf, format, a, b, c, d, e, f);
    if (buf[1024] != 0x15) ABORT("GC_printf clobbered stack");
    if (buf[1024] != 0x15) ABORT("GC_printf clobbered stack");
    if (WRITE(GC_stdout, buf, strlen(buf)) < 0) ABORT("write to stdout failed");
    if (WRITE(GC_stdout, buf, strlen(buf)) < 0) ABORT("write to stdout failed");
}
}
 
 
void GC_err_printf(format, a, b, c, d, e, f)
void GC_err_printf(format, a, b, c, d, e, f)
GC_CONST char * format;
GC_CONST char * format;
long a, b, c, d, e, f;
long a, b, c, d, e, f;
{
{
    char buf[1025];
    char buf[1025];
 
 
    buf[1024] = 0x15;
    buf[1024] = 0x15;
    (void) sprintf(buf, format, a, b, c, d, e, f);
    (void) sprintf(buf, format, a, b, c, d, e, f);
    if (buf[1024] != 0x15) ABORT("GC_err_printf clobbered stack");
    if (buf[1024] != 0x15) ABORT("GC_err_printf clobbered stack");
    if (WRITE(GC_stderr, buf, strlen(buf)) < 0) ABORT("write to stderr failed");
    if (WRITE(GC_stderr, buf, strlen(buf)) < 0) ABORT("write to stderr failed");
}
}
 
 
void GC_err_puts(s)
void GC_err_puts(s)
GC_CONST char *s;
GC_CONST char *s;
{
{
    if (WRITE(GC_stderr, s, strlen(s)) < 0) ABORT("write to stderr failed");
    if (WRITE(GC_stderr, s, strlen(s)) < 0) ABORT("write to stderr failed");
}
}
 
 
#if defined(LINUX) && !defined(SMALL_CONFIG)
#if defined(LINUX) && !defined(SMALL_CONFIG)
void GC_err_write(buf, len)
void GC_err_write(buf, len)
GC_CONST char *buf;
GC_CONST char *buf;
size_t len;
size_t len;
{
{
    if (WRITE(GC_stderr, buf, len) < 0) ABORT("write to stderr failed");
    if (WRITE(GC_stderr, buf, len) < 0) ABORT("write to stderr failed");
}
}
#endif
#endif
 
 
# if defined(__STDC__) || defined(__cplusplus)
# if defined(__STDC__) || defined(__cplusplus)
    void GC_default_warn_proc(char *msg, GC_word arg)
    void GC_default_warn_proc(char *msg, GC_word arg)
# else
# else
    void GC_default_warn_proc(msg, arg)
    void GC_default_warn_proc(msg, arg)
    char *msg;
    char *msg;
    GC_word arg;
    GC_word arg;
# endif
# endif
{
{
    GC_err_printf1(msg, (unsigned long)arg);
    GC_err_printf1(msg, (unsigned long)arg);
}
}
 
 
GC_warn_proc GC_current_warn_proc = GC_default_warn_proc;
GC_warn_proc GC_current_warn_proc = GC_default_warn_proc;
 
 
# if defined(__STDC__) || defined(__cplusplus)
# if defined(__STDC__) || defined(__cplusplus)
    GC_warn_proc GC_set_warn_proc(GC_warn_proc p)
    GC_warn_proc GC_set_warn_proc(GC_warn_proc p)
# else
# else
    GC_warn_proc GC_set_warn_proc(p)
    GC_warn_proc GC_set_warn_proc(p)
    GC_warn_proc p;
    GC_warn_proc p;
# endif
# endif
{
{
    GC_warn_proc result;
    GC_warn_proc result;
 
 
#   ifdef GC_WIN32_THREADS
#   ifdef GC_WIN32_THREADS
      GC_ASSERT(GC_is_initialized);
      GC_ASSERT(GC_is_initialized);
#   endif
#   endif
    LOCK();
    LOCK();
    result = GC_current_warn_proc;
    result = GC_current_warn_proc;
    GC_current_warn_proc = p;
    GC_current_warn_proc = p;
    UNLOCK();
    UNLOCK();
    return(result);
    return(result);
}
}
 
 
# if defined(__STDC__) || defined(__cplusplus)
# if defined(__STDC__) || defined(__cplusplus)
    GC_word GC_set_free_space_divisor (GC_word value)
    GC_word GC_set_free_space_divisor (GC_word value)
# else
# else
    GC_word GC_set_free_space_divisor (value)
    GC_word GC_set_free_space_divisor (value)
    GC_word value;
    GC_word value;
# endif
# endif
{
{
    GC_word old = GC_free_space_divisor;
    GC_word old = GC_free_space_divisor;
    GC_free_space_divisor = value;
    GC_free_space_divisor = value;
    return old;
    return old;
}
}
 
 
#ifndef PCR
#ifndef PCR
void GC_abort(msg)
void GC_abort(msg)
GC_CONST char * msg;
GC_CONST char * msg;
{
{
#   if defined(MSWIN32)
#   if defined(MSWIN32)
      (void) MessageBoxA(NULL, msg, "Fatal error in gc", MB_ICONERROR|MB_OK);
      (void) MessageBoxA(NULL, msg, "Fatal error in gc", MB_ICONERROR|MB_OK);
#   else
#   else
      GC_err_printf1("%s\n", msg);
      GC_err_printf1("%s\n", msg);
#   endif
#   endif
    if (GETENV("GC_LOOP_ON_ABORT") != NULL) {
    if (GETENV("GC_LOOP_ON_ABORT") != NULL) {
            /* In many cases it's easier to debug a running process.    */
            /* In many cases it's easier to debug a running process.    */
            /* It's arguably nicer to sleep, but that makes it harder   */
            /* It's arguably nicer to sleep, but that makes it harder   */
            /* to look at the thread if the debugger doesn't know much  */
            /* to look at the thread if the debugger doesn't know much  */
            /* about threads.                                           */
            /* about threads.                                           */
            for(;;) {}
            for(;;) {}
    }
    }
#   if defined(MSWIN32) || defined(MSWINCE)
#   if defined(MSWIN32) || defined(MSWINCE)
        DebugBreak();
        DebugBreak();
#   else
#   else
        (void) abort();
        (void) abort();
#   endif
#   endif
}
}
#endif
#endif
 
 
void GC_enable()
void GC_enable()
{
{
    LOCK();
    LOCK();
    GC_dont_gc--;
    GC_dont_gc--;
    UNLOCK();
    UNLOCK();
}
}
 
 
void GC_disable()
void GC_disable()
{
{
    LOCK();
    LOCK();
    GC_dont_gc++;
    GC_dont_gc++;
    UNLOCK();
    UNLOCK();
}
}
 
 
/* Helper procedures for new kind creation.     */
/* Helper procedures for new kind creation.     */
void ** GC_new_free_list_inner()
void ** GC_new_free_list_inner()
{
{
    void *result = GC_INTERNAL_MALLOC((MAXOBJSZ+1)*sizeof(ptr_t), PTRFREE);
    void *result = GC_INTERNAL_MALLOC((MAXOBJSZ+1)*sizeof(ptr_t), PTRFREE);
    if (result == 0) ABORT("Failed to allocate freelist for new kind");
    if (result == 0) ABORT("Failed to allocate freelist for new kind");
    BZERO(result, (MAXOBJSZ+1)*sizeof(ptr_t));
    BZERO(result, (MAXOBJSZ+1)*sizeof(ptr_t));
    return result;
    return result;
}
}
 
 
void ** GC_new_free_list()
void ** GC_new_free_list()
{
{
    void *result;
    void *result;
    LOCK(); DISABLE_SIGNALS();
    LOCK(); DISABLE_SIGNALS();
    result = GC_new_free_list_inner();
    result = GC_new_free_list_inner();
    UNLOCK(); ENABLE_SIGNALS();
    UNLOCK(); ENABLE_SIGNALS();
    return result;
    return result;
}
}
 
 
int GC_new_kind_inner(fl, descr, adjust, clear)
int GC_new_kind_inner(fl, descr, adjust, clear)
void **fl;
void **fl;
GC_word descr;
GC_word descr;
int adjust;
int adjust;
int clear;
int clear;
{
{
    int result = GC_n_kinds++;
    int result = GC_n_kinds++;
 
 
    if (GC_n_kinds > MAXOBJKINDS) ABORT("Too many kinds");
    if (GC_n_kinds > MAXOBJKINDS) ABORT("Too many kinds");
    GC_obj_kinds[result].ok_freelist = (ptr_t *)fl;
    GC_obj_kinds[result].ok_freelist = (ptr_t *)fl;
    GC_obj_kinds[result].ok_reclaim_list = 0;
    GC_obj_kinds[result].ok_reclaim_list = 0;
    GC_obj_kinds[result].ok_descriptor = descr;
    GC_obj_kinds[result].ok_descriptor = descr;
    GC_obj_kinds[result].ok_relocate_descr = adjust;
    GC_obj_kinds[result].ok_relocate_descr = adjust;
    GC_obj_kinds[result].ok_init = clear;
    GC_obj_kinds[result].ok_init = clear;
    return result;
    return result;
}
}
 
 
int GC_new_kind(fl, descr, adjust, clear)
int GC_new_kind(fl, descr, adjust, clear)
void **fl;
void **fl;
GC_word descr;
GC_word descr;
int adjust;
int adjust;
int clear;
int clear;
{
{
    int result;
    int result;
    LOCK(); DISABLE_SIGNALS();
    LOCK(); DISABLE_SIGNALS();
    result = GC_new_kind_inner(fl, descr, adjust, clear);
    result = GC_new_kind_inner(fl, descr, adjust, clear);
    UNLOCK(); ENABLE_SIGNALS();
    UNLOCK(); ENABLE_SIGNALS();
    return result;
    return result;
}
}
 
 
int GC_new_proc_inner(proc)
int GC_new_proc_inner(proc)
GC_mark_proc proc;
GC_mark_proc proc;
{
{
    int result = GC_n_mark_procs++;
    int result = GC_n_mark_procs++;
 
 
    if (GC_n_mark_procs > MAX_MARK_PROCS) ABORT("Too many mark procedures");
    if (GC_n_mark_procs > MAX_MARK_PROCS) ABORT("Too many mark procedures");
    GC_mark_procs[result] = proc;
    GC_mark_procs[result] = proc;
    return result;
    return result;
}
}
 
 
int GC_new_proc(proc)
int GC_new_proc(proc)
GC_mark_proc proc;
GC_mark_proc proc;
{
{
    int result;
    int result;
    LOCK(); DISABLE_SIGNALS();
    LOCK(); DISABLE_SIGNALS();
    result = GC_new_proc_inner(proc);
    result = GC_new_proc_inner(proc);
    UNLOCK(); ENABLE_SIGNALS();
    UNLOCK(); ENABLE_SIGNALS();
    return result;
    return result;
}
}
 
 
 
 
#if !defined(NO_DEBUGGING)
#if !defined(NO_DEBUGGING)
 
 
void GC_dump()
void GC_dump()
{
{
    GC_printf0("***Static roots:\n");
    GC_printf0("***Static roots:\n");
    GC_print_static_roots();
    GC_print_static_roots();
    GC_printf0("\n***Heap sections:\n");
    GC_printf0("\n***Heap sections:\n");
    GC_print_heap_sects();
    GC_print_heap_sects();
    GC_printf0("\n***Free blocks:\n");
    GC_printf0("\n***Free blocks:\n");
    GC_print_hblkfreelist();
    GC_print_hblkfreelist();
    GC_printf0("\n***Blocks in use:\n");
    GC_printf0("\n***Blocks in use:\n");
    GC_print_block_list();
    GC_print_block_list();
    GC_printf0("\n***Finalization statistics:\n");
    GC_printf0("\n***Finalization statistics:\n");
    GC_print_finalization_stats();
    GC_print_finalization_stats();
}
}
 
 
#endif /* NO_DEBUGGING */
#endif /* NO_DEBUGGING */
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.