OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [gcc/] [double-int.c] - Diff between revs 684 and 783

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 684 Rev 783
/* Operations with long integers.
/* Operations with long integers.
   Copyright (C) 2006, 2007, 2009, 2010 Free Software Foundation, Inc.
   Copyright (C) 2006, 2007, 2009, 2010 Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
Free Software Foundation; either version 3, or (at your option) any
later version.
later version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"                 /* For SHIFT_COUNT_TRUNCATED.  */
#include "tm.h"                 /* For SHIFT_COUNT_TRUNCATED.  */
#include "tree.h"
#include "tree.h"
 
 
/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
   overflow.  Suppose A, B and SUM have the same respective signs as A1, B1,
   overflow.  Suppose A, B and SUM have the same respective signs as A1, B1,
   and SUM1.  Then this yields nonzero if overflow occurred during the
   and SUM1.  Then this yields nonzero if overflow occurred during the
   addition.
   addition.
 
 
   Overflow occurs if A and B have the same sign, but A and SUM differ in
   Overflow occurs if A and B have the same sign, but A and SUM differ in
   sign.  Use `^' to test whether signs differ, and `< 0' to isolate the
   sign.  Use `^' to test whether signs differ, and `< 0' to isolate the
   sign.  */
   sign.  */
#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
 
 
/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
   We do that by representing the two-word integer in 4 words, with only
   We do that by representing the two-word integer in 4 words, with only
   HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
   HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
   number.  The value of the word is LOWPART + HIGHPART * BASE.  */
   number.  The value of the word is LOWPART + HIGHPART * BASE.  */
 
 
#define LOWPART(x) \
#define LOWPART(x) \
  ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
  ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
#define HIGHPART(x) \
#define HIGHPART(x) \
  ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
  ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
 
 
/* Unpack a two-word integer into 4 words.
/* Unpack a two-word integer into 4 words.
   LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
   LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
   WORDS points to the array of HOST_WIDE_INTs.  */
   WORDS points to the array of HOST_WIDE_INTs.  */
 
 
static void
static void
encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
{
{
  words[0] = LOWPART (low);
  words[0] = LOWPART (low);
  words[1] = HIGHPART (low);
  words[1] = HIGHPART (low);
  words[2] = LOWPART (hi);
  words[2] = LOWPART (hi);
  words[3] = HIGHPART (hi);
  words[3] = HIGHPART (hi);
}
}
 
 
/* Pack an array of 4 words into a two-word integer.
/* Pack an array of 4 words into a two-word integer.
   WORDS points to the array of words.
   WORDS points to the array of words.
   The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces.  */
   The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces.  */
 
 
static void
static void
decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
        HOST_WIDE_INT *hi)
        HOST_WIDE_INT *hi)
{
{
  *low = words[0] + words[1] * BASE;
  *low = words[0] + words[1] * BASE;
  *hi = words[2] + words[3] * BASE;
  *hi = words[2] + words[3] * BASE;
}
}
 
 
/* Add two doubleword integers with doubleword result.
/* Add two doubleword integers with doubleword result.
   Return nonzero if the operation overflows according to UNSIGNED_P.
   Return nonzero if the operation overflows according to UNSIGNED_P.
   Each argument is given as two `HOST_WIDE_INT' pieces.
   Each argument is given as two `HOST_WIDE_INT' pieces.
   One argument is L1 and H1; the other, L2 and H2.
   One argument is L1 and H1; the other, L2 and H2.
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
 
 
int
int
add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
                      unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
                      unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
                      unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
                      unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
                      bool unsigned_p)
                      bool unsigned_p)
{
{
  unsigned HOST_WIDE_INT l;
  unsigned HOST_WIDE_INT l;
  HOST_WIDE_INT h;
  HOST_WIDE_INT h;
 
 
  l = l1 + l2;
  l = l1 + l2;
  h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
  h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
                       + (unsigned HOST_WIDE_INT) h2
                       + (unsigned HOST_WIDE_INT) h2
                       + (l < l1));
                       + (l < l1));
 
 
  *lv = l;
  *lv = l;
  *hv = h;
  *hv = h;
 
 
  if (unsigned_p)
  if (unsigned_p)
    return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
    return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
            || (h == h1
            || (h == h1
                && l < l1));
                && l < l1));
  else
  else
    return OVERFLOW_SUM_SIGN (h1, h2, h);
    return OVERFLOW_SUM_SIGN (h1, h2, h);
}
}
 
 
/* Negate a doubleword integer with doubleword result.
/* Negate a doubleword integer with doubleword result.
   Return nonzero if the operation overflows, assuming it's signed.
   Return nonzero if the operation overflows, assuming it's signed.
   The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
   The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
 
 
int
int
neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
            unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
            unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
{
{
  if (l1 == 0)
  if (l1 == 0)
    {
    {
      *lv = 0;
      *lv = 0;
      *hv = - h1;
      *hv = - h1;
      return (*hv & h1) < 0;
      return (*hv & h1) < 0;
    }
    }
  else
  else
    {
    {
      *lv = -l1;
      *lv = -l1;
      *hv = ~h1;
      *hv = ~h1;
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Multiply two doubleword integers with doubleword result.
/* Multiply two doubleword integers with doubleword result.
   Return nonzero if the operation overflows according to UNSIGNED_P.
   Return nonzero if the operation overflows according to UNSIGNED_P.
   Each argument is given as two `HOST_WIDE_INT' pieces.
   Each argument is given as two `HOST_WIDE_INT' pieces.
   One argument is L1 and H1; the other, L2 and H2.
   One argument is L1 and H1; the other, L2 and H2.
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
 
 
int
int
mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
                      unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
                      unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
                      unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
                      unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
                      bool unsigned_p)
                      bool unsigned_p)
{
{
  HOST_WIDE_INT arg1[4];
  HOST_WIDE_INT arg1[4];
  HOST_WIDE_INT arg2[4];
  HOST_WIDE_INT arg2[4];
  HOST_WIDE_INT prod[4 * 2];
  HOST_WIDE_INT prod[4 * 2];
  unsigned HOST_WIDE_INT carry;
  unsigned HOST_WIDE_INT carry;
  int i, j, k;
  int i, j, k;
  unsigned HOST_WIDE_INT toplow, neglow;
  unsigned HOST_WIDE_INT toplow, neglow;
  HOST_WIDE_INT tophigh, neghigh;
  HOST_WIDE_INT tophigh, neghigh;
 
 
  encode (arg1, l1, h1);
  encode (arg1, l1, h1);
  encode (arg2, l2, h2);
  encode (arg2, l2, h2);
 
 
  memset (prod, 0, sizeof prod);
  memset (prod, 0, sizeof prod);
 
 
  for (i = 0; i < 4; i++)
  for (i = 0; i < 4; i++)
    {
    {
      carry = 0;
      carry = 0;
      for (j = 0; j < 4; j++)
      for (j = 0; j < 4; j++)
        {
        {
          k = i + j;
          k = i + j;
          /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000.  */
          /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000.  */
          carry += arg1[i] * arg2[j];
          carry += arg1[i] * arg2[j];
          /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF.  */
          /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF.  */
          carry += prod[k];
          carry += prod[k];
          prod[k] = LOWPART (carry);
          prod[k] = LOWPART (carry);
          carry = HIGHPART (carry);
          carry = HIGHPART (carry);
        }
        }
      prod[i + 4] = carry;
      prod[i + 4] = carry;
    }
    }
 
 
  decode (prod, lv, hv);
  decode (prod, lv, hv);
  decode (prod + 4, &toplow, &tophigh);
  decode (prod + 4, &toplow, &tophigh);
 
 
  /* Unsigned overflow is immediate.  */
  /* Unsigned overflow is immediate.  */
  if (unsigned_p)
  if (unsigned_p)
    return (toplow | tophigh) != 0;
    return (toplow | tophigh) != 0;
 
 
  /* Check for signed overflow by calculating the signed representation of the
  /* Check for signed overflow by calculating the signed representation of the
     top half of the result; it should agree with the low half's sign bit.  */
     top half of the result; it should agree with the low half's sign bit.  */
  if (h1 < 0)
  if (h1 < 0)
    {
    {
      neg_double (l2, h2, &neglow, &neghigh);
      neg_double (l2, h2, &neglow, &neghigh);
      add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
      add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
    }
    }
  if (h2 < 0)
  if (h2 < 0)
    {
    {
      neg_double (l1, h1, &neglow, &neghigh);
      neg_double (l1, h1, &neglow, &neghigh);
      add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
      add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
    }
    }
  return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
  return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
}
}
 
 
/* Shift the doubleword integer in L1, H1 left by COUNT places
/* Shift the doubleword integer in L1, H1 left by COUNT places
   keeping only PREC bits of result.
   keeping only PREC bits of result.
   Shift right if COUNT is negative.
   Shift right if COUNT is negative.
   ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
   ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
 
 
void
void
lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
               HOST_WIDE_INT count, unsigned int prec,
               HOST_WIDE_INT count, unsigned int prec,
               unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, bool arith)
               unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, bool arith)
{
{
  unsigned HOST_WIDE_INT signmask;
  unsigned HOST_WIDE_INT signmask;
 
 
  if (count < 0)
  if (count < 0)
    {
    {
      rshift_double (l1, h1, -count, prec, lv, hv, arith);
      rshift_double (l1, h1, -count, prec, lv, hv, arith);
      return;
      return;
    }
    }
 
 
  if (SHIFT_COUNT_TRUNCATED)
  if (SHIFT_COUNT_TRUNCATED)
    count %= prec;
    count %= prec;
 
 
  if (count >= 2 * HOST_BITS_PER_WIDE_INT)
  if (count >= 2 * HOST_BITS_PER_WIDE_INT)
    {
    {
      /* Shifting by the host word size is undefined according to the
      /* Shifting by the host word size is undefined according to the
         ANSI standard, so we must handle this as a special case.  */
         ANSI standard, so we must handle this as a special case.  */
      *hv = 0;
      *hv = 0;
      *lv = 0;
      *lv = 0;
    }
    }
  else if (count >= HOST_BITS_PER_WIDE_INT)
  else if (count >= HOST_BITS_PER_WIDE_INT)
    {
    {
      *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
      *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
      *lv = 0;
      *lv = 0;
    }
    }
  else
  else
    {
    {
      *hv = (((unsigned HOST_WIDE_INT) h1 << count)
      *hv = (((unsigned HOST_WIDE_INT) h1 << count)
             | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
             | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
      *lv = l1 << count;
      *lv = l1 << count;
    }
    }
 
 
  /* Sign extend all bits that are beyond the precision.  */
  /* Sign extend all bits that are beyond the precision.  */
 
 
  signmask = -((prec > HOST_BITS_PER_WIDE_INT
  signmask = -((prec > HOST_BITS_PER_WIDE_INT
                ? ((unsigned HOST_WIDE_INT) *hv
                ? ((unsigned HOST_WIDE_INT) *hv
                   >> (prec - HOST_BITS_PER_WIDE_INT - 1))
                   >> (prec - HOST_BITS_PER_WIDE_INT - 1))
                : (*lv >> (prec - 1))) & 1);
                : (*lv >> (prec - 1))) & 1);
 
 
  if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
  if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
    ;
    ;
  else if (prec >= HOST_BITS_PER_WIDE_INT)
  else if (prec >= HOST_BITS_PER_WIDE_INT)
    {
    {
      *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
      *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
      *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
      *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
    }
    }
  else
  else
    {
    {
      *hv = signmask;
      *hv = signmask;
      *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
      *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
      *lv |= signmask << prec;
      *lv |= signmask << prec;
    }
    }
}
}
 
 
/* Shift the doubleword integer in L1, H1 right by COUNT places
/* Shift the doubleword integer in L1, H1 right by COUNT places
   keeping only PREC bits of result.  Shift left if COUNT is negative.
   keeping only PREC bits of result.  Shift left if COUNT is negative.
   ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
   ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
 
 
void
void
rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
               HOST_WIDE_INT count, unsigned int prec,
               HOST_WIDE_INT count, unsigned int prec,
               unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
               unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
               bool arith)
               bool arith)
{
{
  unsigned HOST_WIDE_INT signmask;
  unsigned HOST_WIDE_INT signmask;
 
 
  if (count < 0)
  if (count < 0)
    {
    {
      lshift_double (l1, h1, -count, prec, lv, hv, arith);
      lshift_double (l1, h1, -count, prec, lv, hv, arith);
      return;
      return;
    }
    }
 
 
  signmask = (arith
  signmask = (arith
              ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
              ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
              : 0);
              : 0);
 
 
  if (SHIFT_COUNT_TRUNCATED)
  if (SHIFT_COUNT_TRUNCATED)
    count %= prec;
    count %= prec;
 
 
  if (count >= 2 * HOST_BITS_PER_WIDE_INT)
  if (count >= 2 * HOST_BITS_PER_WIDE_INT)
    {
    {
      /* Shifting by the host word size is undefined according to the
      /* Shifting by the host word size is undefined according to the
         ANSI standard, so we must handle this as a special case.  */
         ANSI standard, so we must handle this as a special case.  */
      *hv = 0;
      *hv = 0;
      *lv = 0;
      *lv = 0;
    }
    }
  else if (count >= HOST_BITS_PER_WIDE_INT)
  else if (count >= HOST_BITS_PER_WIDE_INT)
    {
    {
      *hv = 0;
      *hv = 0;
      *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
      *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
    }
    }
  else
  else
    {
    {
      *hv = (unsigned HOST_WIDE_INT) h1 >> count;
      *hv = (unsigned HOST_WIDE_INT) h1 >> count;
      *lv = ((l1 >> count)
      *lv = ((l1 >> count)
             | ((unsigned HOST_WIDE_INT) h1
             | ((unsigned HOST_WIDE_INT) h1
                << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
                << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
    }
    }
 
 
  /* Zero / sign extend all bits that are beyond the precision.  */
  /* Zero / sign extend all bits that are beyond the precision.  */
 
 
  if (count >= (HOST_WIDE_INT)prec)
  if (count >= (HOST_WIDE_INT)prec)
    {
    {
      *hv = signmask;
      *hv = signmask;
      *lv = signmask;
      *lv = signmask;
    }
    }
  else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
  else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
    ;
    ;
  else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
  else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
    {
    {
      *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
      *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
      *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
      *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
    }
    }
  else
  else
    {
    {
      *hv = signmask;
      *hv = signmask;
      *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
      *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
      *lv |= signmask << (prec - count);
      *lv |= signmask << (prec - count);
    }
    }
}
}
 
 
/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
   for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
   for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
   CODE is a tree code for a kind of division, one of
   CODE is a tree code for a kind of division, one of
   TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
   TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
   or EXACT_DIV_EXPR
   or EXACT_DIV_EXPR
   It controls how the quotient is rounded to an integer.
   It controls how the quotient is rounded to an integer.
   Return nonzero if the operation overflows.
   Return nonzero if the operation overflows.
   UNS nonzero says do unsigned division.  */
   UNS nonzero says do unsigned division.  */
 
 
int
int
div_and_round_double (unsigned code, int uns,
div_and_round_double (unsigned code, int uns,
                      /* num == numerator == dividend */
                      /* num == numerator == dividend */
                      unsigned HOST_WIDE_INT lnum_orig,
                      unsigned HOST_WIDE_INT lnum_orig,
                      HOST_WIDE_INT hnum_orig,
                      HOST_WIDE_INT hnum_orig,
                      /* den == denominator == divisor */
                      /* den == denominator == divisor */
                      unsigned HOST_WIDE_INT lden_orig,
                      unsigned HOST_WIDE_INT lden_orig,
                      HOST_WIDE_INT hden_orig,
                      HOST_WIDE_INT hden_orig,
                      unsigned HOST_WIDE_INT *lquo,
                      unsigned HOST_WIDE_INT *lquo,
                      HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
                      HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
                      HOST_WIDE_INT *hrem)
                      HOST_WIDE_INT *hrem)
{
{
  int quo_neg = 0;
  int quo_neg = 0;
  HOST_WIDE_INT num[4 + 1];     /* extra element for scaling.  */
  HOST_WIDE_INT num[4 + 1];     /* extra element for scaling.  */
  HOST_WIDE_INT den[4], quo[4];
  HOST_WIDE_INT den[4], quo[4];
  int i, j;
  int i, j;
  unsigned HOST_WIDE_INT work;
  unsigned HOST_WIDE_INT work;
  unsigned HOST_WIDE_INT carry = 0;
  unsigned HOST_WIDE_INT carry = 0;
  unsigned HOST_WIDE_INT lnum = lnum_orig;
  unsigned HOST_WIDE_INT lnum = lnum_orig;
  HOST_WIDE_INT hnum = hnum_orig;
  HOST_WIDE_INT hnum = hnum_orig;
  unsigned HOST_WIDE_INT lden = lden_orig;
  unsigned HOST_WIDE_INT lden = lden_orig;
  HOST_WIDE_INT hden = hden_orig;
  HOST_WIDE_INT hden = hden_orig;
  int overflow = 0;
  int overflow = 0;
 
 
  if (hden == 0 && lden == 0)
  if (hden == 0 && lden == 0)
    overflow = 1, lden = 1;
    overflow = 1, lden = 1;
 
 
  /* Calculate quotient sign and convert operands to unsigned.  */
  /* Calculate quotient sign and convert operands to unsigned.  */
  if (!uns)
  if (!uns)
    {
    {
      if (hnum < 0)
      if (hnum < 0)
        {
        {
          quo_neg = ~ quo_neg;
          quo_neg = ~ quo_neg;
          /* (minimum integer) / (-1) is the only overflow case.  */
          /* (minimum integer) / (-1) is the only overflow case.  */
          if (neg_double (lnum, hnum, &lnum, &hnum)
          if (neg_double (lnum, hnum, &lnum, &hnum)
              && ((HOST_WIDE_INT) lden & hden) == -1)
              && ((HOST_WIDE_INT) lden & hden) == -1)
            overflow = 1;
            overflow = 1;
        }
        }
      if (hden < 0)
      if (hden < 0)
        {
        {
          quo_neg = ~ quo_neg;
          quo_neg = ~ quo_neg;
          neg_double (lden, hden, &lden, &hden);
          neg_double (lden, hden, &lden, &hden);
        }
        }
    }
    }
 
 
  if (hnum == 0 && hden == 0)
  if (hnum == 0 && hden == 0)
    {                           /* single precision */
    {                           /* single precision */
      *hquo = *hrem = 0;
      *hquo = *hrem = 0;
      /* This unsigned division rounds toward zero.  */
      /* This unsigned division rounds toward zero.  */
      *lquo = lnum / lden;
      *lquo = lnum / lden;
      goto finish_up;
      goto finish_up;
    }
    }
 
 
  if (hnum == 0)
  if (hnum == 0)
    {                           /* trivial case: dividend < divisor */
    {                           /* trivial case: dividend < divisor */
      /* hden != 0 already checked.  */
      /* hden != 0 already checked.  */
      *hquo = *lquo = 0;
      *hquo = *lquo = 0;
      *hrem = hnum;
      *hrem = hnum;
      *lrem = lnum;
      *lrem = lnum;
      goto finish_up;
      goto finish_up;
    }
    }
 
 
  memset (quo, 0, sizeof quo);
  memset (quo, 0, sizeof quo);
 
 
  memset (num, 0, sizeof num);   /* to zero 9th element */
  memset (num, 0, sizeof num);   /* to zero 9th element */
  memset (den, 0, sizeof den);
  memset (den, 0, sizeof den);
 
 
  encode (num, lnum, hnum);
  encode (num, lnum, hnum);
  encode (den, lden, hden);
  encode (den, lden, hden);
 
 
  /* Special code for when the divisor < BASE.  */
  /* Special code for when the divisor < BASE.  */
  if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
  if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
    {
    {
      /* hnum != 0 already checked.  */
      /* hnum != 0 already checked.  */
      for (i = 4 - 1; i >= 0; i--)
      for (i = 4 - 1; i >= 0; i--)
        {
        {
          work = num[i] + carry * BASE;
          work = num[i] + carry * BASE;
          quo[i] = work / lden;
          quo[i] = work / lden;
          carry = work % lden;
          carry = work % lden;
        }
        }
    }
    }
  else
  else
    {
    {
      /* Full double precision division,
      /* Full double precision division,
         with thanks to Don Knuth's "Seminumerical Algorithms".  */
         with thanks to Don Knuth's "Seminumerical Algorithms".  */
      int num_hi_sig, den_hi_sig;
      int num_hi_sig, den_hi_sig;
      unsigned HOST_WIDE_INT quo_est, scale;
      unsigned HOST_WIDE_INT quo_est, scale;
 
 
      /* Find the highest nonzero divisor digit.  */
      /* Find the highest nonzero divisor digit.  */
      for (i = 4 - 1;; i--)
      for (i = 4 - 1;; i--)
        if (den[i] != 0)
        if (den[i] != 0)
          {
          {
            den_hi_sig = i;
            den_hi_sig = i;
            break;
            break;
          }
          }
 
 
      /* Insure that the first digit of the divisor is at least BASE/2.
      /* Insure that the first digit of the divisor is at least BASE/2.
         This is required by the quotient digit estimation algorithm.  */
         This is required by the quotient digit estimation algorithm.  */
 
 
      scale = BASE / (den[den_hi_sig] + 1);
      scale = BASE / (den[den_hi_sig] + 1);
      if (scale > 1)
      if (scale > 1)
        {               /* scale divisor and dividend */
        {               /* scale divisor and dividend */
          carry = 0;
          carry = 0;
          for (i = 0; i <= 4 - 1; i++)
          for (i = 0; i <= 4 - 1; i++)
            {
            {
              work = (num[i] * scale) + carry;
              work = (num[i] * scale) + carry;
              num[i] = LOWPART (work);
              num[i] = LOWPART (work);
              carry = HIGHPART (work);
              carry = HIGHPART (work);
            }
            }
 
 
          num[4] = carry;
          num[4] = carry;
          carry = 0;
          carry = 0;
          for (i = 0; i <= 4 - 1; i++)
          for (i = 0; i <= 4 - 1; i++)
            {
            {
              work = (den[i] * scale) + carry;
              work = (den[i] * scale) + carry;
              den[i] = LOWPART (work);
              den[i] = LOWPART (work);
              carry = HIGHPART (work);
              carry = HIGHPART (work);
              if (den[i] != 0) den_hi_sig = i;
              if (den[i] != 0) den_hi_sig = i;
            }
            }
        }
        }
 
 
      num_hi_sig = 4;
      num_hi_sig = 4;
 
 
      /* Main loop */
      /* Main loop */
      for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
      for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
        {
        {
          /* Guess the next quotient digit, quo_est, by dividing the first
          /* Guess the next quotient digit, quo_est, by dividing the first
             two remaining dividend digits by the high order quotient digit.
             two remaining dividend digits by the high order quotient digit.
             quo_est is never low and is at most 2 high.  */
             quo_est is never low and is at most 2 high.  */
          unsigned HOST_WIDE_INT tmp;
          unsigned HOST_WIDE_INT tmp;
 
 
          num_hi_sig = i + den_hi_sig + 1;
          num_hi_sig = i + den_hi_sig + 1;
          work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
          work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
          if (num[num_hi_sig] != den[den_hi_sig])
          if (num[num_hi_sig] != den[den_hi_sig])
            quo_est = work / den[den_hi_sig];
            quo_est = work / den[den_hi_sig];
          else
          else
            quo_est = BASE - 1;
            quo_est = BASE - 1;
 
 
          /* Refine quo_est so it's usually correct, and at most one high.  */
          /* Refine quo_est so it's usually correct, and at most one high.  */
          tmp = work - quo_est * den[den_hi_sig];
          tmp = work - quo_est * den[den_hi_sig];
          if (tmp < BASE
          if (tmp < BASE
              && (den[den_hi_sig - 1] * quo_est
              && (den[den_hi_sig - 1] * quo_est
                  > (tmp * BASE + num[num_hi_sig - 2])))
                  > (tmp * BASE + num[num_hi_sig - 2])))
            quo_est--;
            quo_est--;
 
 
          /* Try QUO_EST as the quotient digit, by multiplying the
          /* Try QUO_EST as the quotient digit, by multiplying the
             divisor by QUO_EST and subtracting from the remaining dividend.
             divisor by QUO_EST and subtracting from the remaining dividend.
             Keep in mind that QUO_EST is the I - 1st digit.  */
             Keep in mind that QUO_EST is the I - 1st digit.  */
 
 
          carry = 0;
          carry = 0;
          for (j = 0; j <= den_hi_sig; j++)
          for (j = 0; j <= den_hi_sig; j++)
            {
            {
              work = quo_est * den[j] + carry;
              work = quo_est * den[j] + carry;
              carry = HIGHPART (work);
              carry = HIGHPART (work);
              work = num[i + j] - LOWPART (work);
              work = num[i + j] - LOWPART (work);
              num[i + j] = LOWPART (work);
              num[i + j] = LOWPART (work);
              carry += HIGHPART (work) != 0;
              carry += HIGHPART (work) != 0;
            }
            }
 
 
          /* If quo_est was high by one, then num[i] went negative and
          /* If quo_est was high by one, then num[i] went negative and
             we need to correct things.  */
             we need to correct things.  */
          if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
          if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
            {
            {
              quo_est--;
              quo_est--;
              carry = 0;         /* add divisor back in */
              carry = 0;         /* add divisor back in */
              for (j = 0; j <= den_hi_sig; j++)
              for (j = 0; j <= den_hi_sig; j++)
                {
                {
                  work = num[i + j] + den[j] + carry;
                  work = num[i + j] + den[j] + carry;
                  carry = HIGHPART (work);
                  carry = HIGHPART (work);
                  num[i + j] = LOWPART (work);
                  num[i + j] = LOWPART (work);
                }
                }
 
 
              num [num_hi_sig] += carry;
              num [num_hi_sig] += carry;
            }
            }
 
 
          /* Store the quotient digit.  */
          /* Store the quotient digit.  */
          quo[i] = quo_est;
          quo[i] = quo_est;
        }
        }
    }
    }
 
 
  decode (quo, lquo, hquo);
  decode (quo, lquo, hquo);
 
 
 finish_up:
 finish_up:
  /* If result is negative, make it so.  */
  /* If result is negative, make it so.  */
  if (quo_neg)
  if (quo_neg)
    neg_double (*lquo, *hquo, lquo, hquo);
    neg_double (*lquo, *hquo, lquo, hquo);
 
 
  /* Compute trial remainder:  rem = num - (quo * den)  */
  /* Compute trial remainder:  rem = num - (quo * den)  */
  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
  neg_double (*lrem, *hrem, lrem, hrem);
  neg_double (*lrem, *hrem, lrem, hrem);
  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
 
 
  switch (code)
  switch (code)
    {
    {
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case TRUNC_MOD_EXPR:        /* round toward zero */
    case TRUNC_MOD_EXPR:        /* round toward zero */
    case EXACT_DIV_EXPR:        /* for this one, it shouldn't matter */
    case EXACT_DIV_EXPR:        /* for this one, it shouldn't matter */
      return overflow;
      return overflow;
 
 
    case FLOOR_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case FLOOR_MOD_EXPR:        /* round toward negative infinity */
    case FLOOR_MOD_EXPR:        /* round toward negative infinity */
      if (quo_neg && (*lrem != 0 || *hrem != 0))   /* ratio < 0 && rem != 0 */
      if (quo_neg && (*lrem != 0 || *hrem != 0))   /* ratio < 0 && rem != 0 */
        {
        {
          /* quo = quo - 1;  */
          /* quo = quo - 1;  */
          add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT)  -1,
          add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT)  -1,
                      lquo, hquo);
                      lquo, hquo);
        }
        }
      else
      else
        return overflow;
        return overflow;
      break;
      break;
 
 
    case CEIL_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case CEIL_MOD_EXPR:         /* round toward positive infinity */
    case CEIL_MOD_EXPR:         /* round toward positive infinity */
      if (!quo_neg && (*lrem != 0 || *hrem != 0))  /* ratio > 0 && rem != 0 */
      if (!quo_neg && (*lrem != 0 || *hrem != 0))  /* ratio > 0 && rem != 0 */
        {
        {
          add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
          add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
                      lquo, hquo);
                      lquo, hquo);
        }
        }
      else
      else
        return overflow;
        return overflow;
      break;
      break;
 
 
    case ROUND_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case ROUND_MOD_EXPR:        /* round to closest integer */
    case ROUND_MOD_EXPR:        /* round to closest integer */
      {
      {
        unsigned HOST_WIDE_INT labs_rem = *lrem;
        unsigned HOST_WIDE_INT labs_rem = *lrem;
        HOST_WIDE_INT habs_rem = *hrem;
        HOST_WIDE_INT habs_rem = *hrem;
        unsigned HOST_WIDE_INT labs_den = lden, ltwice;
        unsigned HOST_WIDE_INT labs_den = lden, ltwice;
        HOST_WIDE_INT habs_den = hden, htwice;
        HOST_WIDE_INT habs_den = hden, htwice;
 
 
        /* Get absolute values.  */
        /* Get absolute values.  */
        if (*hrem < 0)
        if (*hrem < 0)
          neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
          neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
        if (hden < 0)
        if (hden < 0)
          neg_double (lden, hden, &labs_den, &habs_den);
          neg_double (lden, hden, &labs_den, &habs_den);
 
 
        /* If (2 * abs (lrem) >= abs (lden)), adjust the quotient.  */
        /* If (2 * abs (lrem) >= abs (lden)), adjust the quotient.  */
        mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
        mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
                    labs_rem, habs_rem, &ltwice, &htwice);
                    labs_rem, habs_rem, &ltwice, &htwice);
 
 
        if (((unsigned HOST_WIDE_INT) habs_den
        if (((unsigned HOST_WIDE_INT) habs_den
             < (unsigned HOST_WIDE_INT) htwice)
             < (unsigned HOST_WIDE_INT) htwice)
            || (((unsigned HOST_WIDE_INT) habs_den
            || (((unsigned HOST_WIDE_INT) habs_den
                 == (unsigned HOST_WIDE_INT) htwice)
                 == (unsigned HOST_WIDE_INT) htwice)
                && (labs_den <= ltwice)))
                && (labs_den <= ltwice)))
          {
          {
            if (*hquo < 0)
            if (*hquo < 0)
              /* quo = quo - 1;  */
              /* quo = quo - 1;  */
              add_double (*lquo, *hquo,
              add_double (*lquo, *hquo,
                          (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
                          (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
            else
            else
              /* quo = quo + 1; */
              /* quo = quo + 1; */
              add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
              add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
                          lquo, hquo);
                          lquo, hquo);
          }
          }
        else
        else
          return overflow;
          return overflow;
      }
      }
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Compute true remainder:  rem = num - (quo * den)  */
  /* Compute true remainder:  rem = num - (quo * den)  */
  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
  neg_double (*lrem, *hrem, lrem, hrem);
  neg_double (*lrem, *hrem, lrem, hrem);
  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
  return overflow;
  return overflow;
}
}
 
 
 
 
/* Returns mask for PREC bits.  */
/* Returns mask for PREC bits.  */
 
 
double_int
double_int
double_int_mask (unsigned prec)
double_int_mask (unsigned prec)
{
{
  unsigned HOST_WIDE_INT m;
  unsigned HOST_WIDE_INT m;
  double_int mask;
  double_int mask;
 
 
  if (prec > HOST_BITS_PER_WIDE_INT)
  if (prec > HOST_BITS_PER_WIDE_INT)
    {
    {
      prec -= HOST_BITS_PER_WIDE_INT;
      prec -= HOST_BITS_PER_WIDE_INT;
      m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
      m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
      mask.high = (HOST_WIDE_INT) m;
      mask.high = (HOST_WIDE_INT) m;
      mask.low = ALL_ONES;
      mask.low = ALL_ONES;
    }
    }
  else
  else
    {
    {
      mask.high = 0;
      mask.high = 0;
      mask.low = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
      mask.low = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
    }
    }
 
 
  return mask;
  return mask;
}
}
 
 
/* Clears the bits of CST over the precision PREC.  If UNS is false, the bits
/* Clears the bits of CST over the precision PREC.  If UNS is false, the bits
   outside of the precision are set to the sign bit (i.e., the PREC-th one),
   outside of the precision are set to the sign bit (i.e., the PREC-th one),
   otherwise they are set to zero.
   otherwise they are set to zero.
 
 
   This corresponds to returning the value represented by PREC lowermost bits
   This corresponds to returning the value represented by PREC lowermost bits
   of CST, with the given signedness.  */
   of CST, with the given signedness.  */
 
 
double_int
double_int
double_int_ext (double_int cst, unsigned prec, bool uns)
double_int_ext (double_int cst, unsigned prec, bool uns)
{
{
  if (uns)
  if (uns)
    return double_int_zext (cst, prec);
    return double_int_zext (cst, prec);
  else
  else
    return double_int_sext (cst, prec);
    return double_int_sext (cst, prec);
}
}
 
 
/* The same as double_int_ext with UNS = true.  */
/* The same as double_int_ext with UNS = true.  */
 
 
double_int
double_int
double_int_zext (double_int cst, unsigned prec)
double_int_zext (double_int cst, unsigned prec)
{
{
  double_int mask = double_int_mask (prec);
  double_int mask = double_int_mask (prec);
  double_int r;
  double_int r;
 
 
  r.low = cst.low & mask.low;
  r.low = cst.low & mask.low;
  r.high = cst.high & mask.high;
  r.high = cst.high & mask.high;
 
 
  return r;
  return r;
}
}
 
 
/* The same as double_int_ext with UNS = false.  */
/* The same as double_int_ext with UNS = false.  */
 
 
double_int
double_int
double_int_sext (double_int cst, unsigned prec)
double_int_sext (double_int cst, unsigned prec)
{
{
  double_int mask = double_int_mask (prec);
  double_int mask = double_int_mask (prec);
  double_int r;
  double_int r;
  unsigned HOST_WIDE_INT snum;
  unsigned HOST_WIDE_INT snum;
 
 
  if (prec <= HOST_BITS_PER_WIDE_INT)
  if (prec <= HOST_BITS_PER_WIDE_INT)
    snum = cst.low;
    snum = cst.low;
  else
  else
    {
    {
      prec -= HOST_BITS_PER_WIDE_INT;
      prec -= HOST_BITS_PER_WIDE_INT;
      snum = (unsigned HOST_WIDE_INT) cst.high;
      snum = (unsigned HOST_WIDE_INT) cst.high;
    }
    }
  if (((snum >> (prec - 1)) & 1) == 1)
  if (((snum >> (prec - 1)) & 1) == 1)
    {
    {
      r.low = cst.low | ~mask.low;
      r.low = cst.low | ~mask.low;
      r.high = cst.high | ~mask.high;
      r.high = cst.high | ~mask.high;
    }
    }
  else
  else
    {
    {
      r.low = cst.low & mask.low;
      r.low = cst.low & mask.low;
      r.high = cst.high & mask.high;
      r.high = cst.high & mask.high;
    }
    }
 
 
  return r;
  return r;
}
}
 
 
/* Returns true if CST fits in signed HOST_WIDE_INT.  */
/* Returns true if CST fits in signed HOST_WIDE_INT.  */
 
 
bool
bool
double_int_fits_in_shwi_p (double_int cst)
double_int_fits_in_shwi_p (double_int cst)
{
{
  if (cst.high == 0)
  if (cst.high == 0)
    return (HOST_WIDE_INT) cst.low >= 0;
    return (HOST_WIDE_INT) cst.low >= 0;
  else if (cst.high == -1)
  else if (cst.high == -1)
    return (HOST_WIDE_INT) cst.low < 0;
    return (HOST_WIDE_INT) cst.low < 0;
  else
  else
    return false;
    return false;
}
}
 
 
/* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
/* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
   unsigned HOST_WIDE_INT if UNS is true.  */
   unsigned HOST_WIDE_INT if UNS is true.  */
 
 
bool
bool
double_int_fits_in_hwi_p (double_int cst, bool uns)
double_int_fits_in_hwi_p (double_int cst, bool uns)
{
{
  if (uns)
  if (uns)
    return double_int_fits_in_uhwi_p (cst);
    return double_int_fits_in_uhwi_p (cst);
  else
  else
    return double_int_fits_in_shwi_p (cst);
    return double_int_fits_in_shwi_p (cst);
}
}
 
 
/* Returns A * B.  */
/* Returns A * B.  */
 
 
double_int
double_int
double_int_mul (double_int a, double_int b)
double_int_mul (double_int a, double_int b)
{
{
  double_int ret;
  double_int ret;
  mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
  mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
  return ret;
  return ret;
}
}
 
 
/* Returns A * B. If the operation overflows according to UNSIGNED_P,
/* Returns A * B. If the operation overflows according to UNSIGNED_P,
   *OVERFLOW is set to nonzero.  */
   *OVERFLOW is set to nonzero.  */
 
 
double_int
double_int
double_int_mul_with_sign (double_int a, double_int b,
double_int_mul_with_sign (double_int a, double_int b,
                          bool unsigned_p, int *overflow)
                          bool unsigned_p, int *overflow)
{
{
  double_int ret;
  double_int ret;
  *overflow = mul_double_with_sign (a.low, a.high, b.low, b.high,
  *overflow = mul_double_with_sign (a.low, a.high, b.low, b.high,
                                    &ret.low, &ret.high, unsigned_p);
                                    &ret.low, &ret.high, unsigned_p);
  return ret;
  return ret;
}
}
 
 
/* Returns A + B.  */
/* Returns A + B.  */
 
 
double_int
double_int
double_int_add (double_int a, double_int b)
double_int_add (double_int a, double_int b)
{
{
  double_int ret;
  double_int ret;
  add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
  add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
  return ret;
  return ret;
}
}
 
 
/* Returns A - B.  */
/* Returns A - B.  */
 
 
double_int
double_int
double_int_sub (double_int a, double_int b)
double_int_sub (double_int a, double_int b)
{
{
  double_int ret;
  double_int ret;
  neg_double (b.low, b.high, &b.low, &b.high);
  neg_double (b.low, b.high, &b.low, &b.high);
  add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
  add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
  return ret;
  return ret;
}
}
 
 
/* Returns -A.  */
/* Returns -A.  */
 
 
double_int
double_int
double_int_neg (double_int a)
double_int_neg (double_int a)
{
{
  double_int ret;
  double_int ret;
  neg_double (a.low, a.high, &ret.low, &ret.high);
  neg_double (a.low, a.high, &ret.low, &ret.high);
  return ret;
  return ret;
}
}
 
 
/* Returns A / B (computed as unsigned depending on UNS, and rounded as
/* Returns A / B (computed as unsigned depending on UNS, and rounded as
   specified by CODE).  CODE is enum tree_code in fact, but double_int.h
   specified by CODE).  CODE is enum tree_code in fact, but double_int.h
   must be included before tree.h.  The remainder after the division is
   must be included before tree.h.  The remainder after the division is
   stored to MOD.  */
   stored to MOD.  */
 
 
double_int
double_int
double_int_divmod (double_int a, double_int b, bool uns, unsigned code,
double_int_divmod (double_int a, double_int b, bool uns, unsigned code,
                   double_int *mod)
                   double_int *mod)
{
{
  double_int ret;
  double_int ret;
 
 
  div_and_round_double (code, uns, a.low, a.high,
  div_and_round_double (code, uns, a.low, a.high,
                        b.low, b.high, &ret.low, &ret.high,
                        b.low, b.high, &ret.low, &ret.high,
                        &mod->low, &mod->high);
                        &mod->low, &mod->high);
  return ret;
  return ret;
}
}
 
 
/* The same as double_int_divmod with UNS = false.  */
/* The same as double_int_divmod with UNS = false.  */
 
 
double_int
double_int
double_int_sdivmod (double_int a, double_int b, unsigned code, double_int *mod)
double_int_sdivmod (double_int a, double_int b, unsigned code, double_int *mod)
{
{
  return double_int_divmod (a, b, false, code, mod);
  return double_int_divmod (a, b, false, code, mod);
}
}
 
 
/* The same as double_int_divmod with UNS = true.  */
/* The same as double_int_divmod with UNS = true.  */
 
 
double_int
double_int
double_int_udivmod (double_int a, double_int b, unsigned code, double_int *mod)
double_int_udivmod (double_int a, double_int b, unsigned code, double_int *mod)
{
{
  return double_int_divmod (a, b, true, code, mod);
  return double_int_divmod (a, b, true, code, mod);
}
}
 
 
/* Returns A / B (computed as unsigned depending on UNS, and rounded as
/* Returns A / B (computed as unsigned depending on UNS, and rounded as
   specified by CODE).  CODE is enum tree_code in fact, but double_int.h
   specified by CODE).  CODE is enum tree_code in fact, but double_int.h
   must be included before tree.h.  */
   must be included before tree.h.  */
 
 
double_int
double_int
double_int_div (double_int a, double_int b, bool uns, unsigned code)
double_int_div (double_int a, double_int b, bool uns, unsigned code)
{
{
  double_int mod;
  double_int mod;
 
 
  return double_int_divmod (a, b, uns, code, &mod);
  return double_int_divmod (a, b, uns, code, &mod);
}
}
 
 
/* The same as double_int_div with UNS = false.  */
/* The same as double_int_div with UNS = false.  */
 
 
double_int
double_int
double_int_sdiv (double_int a, double_int b, unsigned code)
double_int_sdiv (double_int a, double_int b, unsigned code)
{
{
  return double_int_div (a, b, false, code);
  return double_int_div (a, b, false, code);
}
}
 
 
/* The same as double_int_div with UNS = true.  */
/* The same as double_int_div with UNS = true.  */
 
 
double_int
double_int
double_int_udiv (double_int a, double_int b, unsigned code)
double_int_udiv (double_int a, double_int b, unsigned code)
{
{
  return double_int_div (a, b, true, code);
  return double_int_div (a, b, true, code);
}
}
 
 
/* Returns A % B (computed as unsigned depending on UNS, and rounded as
/* Returns A % B (computed as unsigned depending on UNS, and rounded as
   specified by CODE).  CODE is enum tree_code in fact, but double_int.h
   specified by CODE).  CODE is enum tree_code in fact, but double_int.h
   must be included before tree.h.  */
   must be included before tree.h.  */
 
 
double_int
double_int
double_int_mod (double_int a, double_int b, bool uns, unsigned code)
double_int_mod (double_int a, double_int b, bool uns, unsigned code)
{
{
  double_int mod;
  double_int mod;
 
 
  double_int_divmod (a, b, uns, code, &mod);
  double_int_divmod (a, b, uns, code, &mod);
  return mod;
  return mod;
}
}
 
 
/* The same as double_int_mod with UNS = false.  */
/* The same as double_int_mod with UNS = false.  */
 
 
double_int
double_int
double_int_smod (double_int a, double_int b, unsigned code)
double_int_smod (double_int a, double_int b, unsigned code)
{
{
  return double_int_mod (a, b, false, code);
  return double_int_mod (a, b, false, code);
}
}
 
 
/* The same as double_int_mod with UNS = true.  */
/* The same as double_int_mod with UNS = true.  */
 
 
double_int
double_int
double_int_umod (double_int a, double_int b, unsigned code)
double_int_umod (double_int a, double_int b, unsigned code)
{
{
  return double_int_mod (a, b, true, code);
  return double_int_mod (a, b, true, code);
}
}
 
 
/* Set BITPOS bit in A.  */
/* Set BITPOS bit in A.  */
double_int
double_int
double_int_setbit (double_int a, unsigned bitpos)
double_int_setbit (double_int a, unsigned bitpos)
{
{
  if (bitpos < HOST_BITS_PER_WIDE_INT)
  if (bitpos < HOST_BITS_PER_WIDE_INT)
    a.low |= (unsigned HOST_WIDE_INT) 1 << bitpos;
    a.low |= (unsigned HOST_WIDE_INT) 1 << bitpos;
  else
  else
    a.high |= (HOST_WIDE_INT) 1 <<  (bitpos - HOST_BITS_PER_WIDE_INT);
    a.high |= (HOST_WIDE_INT) 1 <<  (bitpos - HOST_BITS_PER_WIDE_INT);
 
 
  return a;
  return a;
}
}
 
 
/* Count trailing zeros in A.  */
/* Count trailing zeros in A.  */
int
int
double_int_ctz (double_int a)
double_int_ctz (double_int a)
{
{
  unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
  unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
  unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
  unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
  if (!w)
  if (!w)
    return HOST_BITS_PER_DOUBLE_INT;
    return HOST_BITS_PER_DOUBLE_INT;
  bits += ctz_hwi (w);
  bits += ctz_hwi (w);
  return bits;
  return bits;
}
}
 
 
/* Shift A left by COUNT places keeping only PREC bits of result.  Shift
/* Shift A left by COUNT places keeping only PREC bits of result.  Shift
   right if COUNT is negative.  ARITH true specifies arithmetic shifting;
   right if COUNT is negative.  ARITH true specifies arithmetic shifting;
   otherwise use logical shift.  */
   otherwise use logical shift.  */
 
 
double_int
double_int
double_int_lshift (double_int a, HOST_WIDE_INT count, unsigned int prec, bool arith)
double_int_lshift (double_int a, HOST_WIDE_INT count, unsigned int prec, bool arith)
{
{
  double_int ret;
  double_int ret;
  lshift_double (a.low, a.high, count, prec, &ret.low, &ret.high, arith);
  lshift_double (a.low, a.high, count, prec, &ret.low, &ret.high, arith);
  return ret;
  return ret;
}
}
 
 
/* Shift A rigth by COUNT places keeping only PREC bits of result.  Shift
/* Shift A rigth by COUNT places keeping only PREC bits of result.  Shift
   left if COUNT is negative.  ARITH true specifies arithmetic shifting;
   left if COUNT is negative.  ARITH true specifies arithmetic shifting;
   otherwise use logical shift.  */
   otherwise use logical shift.  */
 
 
double_int
double_int
double_int_rshift (double_int a, HOST_WIDE_INT count, unsigned int prec, bool arith)
double_int_rshift (double_int a, HOST_WIDE_INT count, unsigned int prec, bool arith)
{
{
  double_int ret;
  double_int ret;
  rshift_double (a.low, a.high, count, prec, &ret.low, &ret.high, arith);
  rshift_double (a.low, a.high, count, prec, &ret.low, &ret.high, arith);
  return ret;
  return ret;
}
}
 
 
/* Rotate  A left by COUNT places keeping only PREC bits of result.
/* Rotate  A left by COUNT places keeping only PREC bits of result.
   Rotate right if COUNT is negative.  */
   Rotate right if COUNT is negative.  */
 
 
double_int
double_int
double_int_lrotate (double_int a, HOST_WIDE_INT count, unsigned int prec)
double_int_lrotate (double_int a, HOST_WIDE_INT count, unsigned int prec)
{
{
  double_int t1, t2;
  double_int t1, t2;
 
 
  count %= prec;
  count %= prec;
  if (count < 0)
  if (count < 0)
    count += prec;
    count += prec;
 
 
  t1 = double_int_lshift (a, count, prec, false);
  t1 = double_int_lshift (a, count, prec, false);
  t2 = double_int_rshift (a, prec - count, prec, false);
  t2 = double_int_rshift (a, prec - count, prec, false);
 
 
  return double_int_ior (t1, t2);
  return double_int_ior (t1, t2);
}
}
 
 
/* Rotate A rigth by COUNT places keeping only PREC bits of result.
/* Rotate A rigth by COUNT places keeping only PREC bits of result.
   Rotate right if COUNT is negative.  */
   Rotate right if COUNT is negative.  */
 
 
double_int
double_int
double_int_rrotate (double_int a, HOST_WIDE_INT count, unsigned int prec)
double_int_rrotate (double_int a, HOST_WIDE_INT count, unsigned int prec)
{
{
  double_int t1, t2;
  double_int t1, t2;
 
 
  count %= prec;
  count %= prec;
  if (count < 0)
  if (count < 0)
    count += prec;
    count += prec;
 
 
  t1 = double_int_rshift (a, count, prec, false);
  t1 = double_int_rshift (a, count, prec, false);
  t2 = double_int_lshift (a, prec - count, prec, false);
  t2 = double_int_lshift (a, prec - count, prec, false);
 
 
  return double_int_ior (t1, t2);
  return double_int_ior (t1, t2);
}
}
 
 
/* Returns -1 if A < B, 0 if A == B and 1 if A > B.  Signedness of the
/* Returns -1 if A < B, 0 if A == B and 1 if A > B.  Signedness of the
   comparison is given by UNS.  */
   comparison is given by UNS.  */
 
 
int
int
double_int_cmp (double_int a, double_int b, bool uns)
double_int_cmp (double_int a, double_int b, bool uns)
{
{
  if (uns)
  if (uns)
    return double_int_ucmp (a, b);
    return double_int_ucmp (a, b);
  else
  else
    return double_int_scmp (a, b);
    return double_int_scmp (a, b);
}
}
 
 
/* Compares two unsigned values A and B.  Returns -1 if A < B, 0 if A == B,
/* Compares two unsigned values A and B.  Returns -1 if A < B, 0 if A == B,
   and 1 if A > B.  */
   and 1 if A > B.  */
 
 
int
int
double_int_ucmp (double_int a, double_int b)
double_int_ucmp (double_int a, double_int b)
{
{
  if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
  if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
    return -1;
    return -1;
  if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
  if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
    return 1;
    return 1;
  if (a.low < b.low)
  if (a.low < b.low)
    return -1;
    return -1;
  if (a.low > b.low)
  if (a.low > b.low)
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Compares two signed values A and B.  Returns -1 if A < B, 0 if A == B,
/* Compares two signed values A and B.  Returns -1 if A < B, 0 if A == B,
   and 1 if A > B.  */
   and 1 if A > B.  */
 
 
int
int
double_int_scmp (double_int a, double_int b)
double_int_scmp (double_int a, double_int b)
{
{
  if (a.high < b.high)
  if (a.high < b.high)
    return -1;
    return -1;
  if (a.high > b.high)
  if (a.high > b.high)
    return 1;
    return 1;
  if (a.low < b.low)
  if (a.low < b.low)
    return -1;
    return -1;
  if (a.low > b.low)
  if (a.low > b.low)
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Compares two values A and B.  Returns max value.  Signedness of the
/* Compares two values A and B.  Returns max value.  Signedness of the
   comparison is given by UNS.  */
   comparison is given by UNS.  */
 
 
double_int
double_int
double_int_max (double_int a, double_int b, bool uns)
double_int_max (double_int a, double_int b, bool uns)
{
{
  return (double_int_cmp (a, b, uns) == 1) ? a : b;
  return (double_int_cmp (a, b, uns) == 1) ? a : b;
}
}
 
 
/* Compares two signed values A and B.  Returns max value.  */
/* Compares two signed values A and B.  Returns max value.  */
 
 
double_int double_int_smax (double_int a, double_int b)
double_int double_int_smax (double_int a, double_int b)
{
{
  return (double_int_scmp (a, b) == 1) ? a : b;
  return (double_int_scmp (a, b) == 1) ? a : b;
}
}
 
 
/* Compares two unsigned values A and B.  Returns max value.  */
/* Compares two unsigned values A and B.  Returns max value.  */
 
 
double_int double_int_umax (double_int a, double_int b)
double_int double_int_umax (double_int a, double_int b)
{
{
  return (double_int_ucmp (a, b) == 1) ? a : b;
  return (double_int_ucmp (a, b) == 1) ? a : b;
}
}
 
 
/* Compares two values A and B.  Returns mix value.  Signedness of the
/* Compares two values A and B.  Returns mix value.  Signedness of the
   comparison is given by UNS.  */
   comparison is given by UNS.  */
 
 
double_int double_int_min (double_int a, double_int b, bool uns)
double_int double_int_min (double_int a, double_int b, bool uns)
{
{
  return (double_int_cmp (a, b, uns) == -1) ? a : b;
  return (double_int_cmp (a, b, uns) == -1) ? a : b;
}
}
 
 
/* Compares two signed values A and B.  Returns min value.  */
/* Compares two signed values A and B.  Returns min value.  */
 
 
double_int double_int_smin (double_int a, double_int b)
double_int double_int_smin (double_int a, double_int b)
{
{
  return (double_int_scmp (a, b) == -1) ? a : b;
  return (double_int_scmp (a, b) == -1) ? a : b;
}
}
 
 
/* Compares two unsigned values A and B.  Returns min value.  */
/* Compares two unsigned values A and B.  Returns min value.  */
 
 
double_int double_int_umin (double_int a, double_int b)
double_int double_int_umin (double_int a, double_int b)
{
{
  return (double_int_ucmp (a, b) == -1) ? a : b;
  return (double_int_ucmp (a, b) == -1) ? a : b;
}
}
 
 
/* Splits last digit of *CST (taken as unsigned) in BASE and returns it.  */
/* Splits last digit of *CST (taken as unsigned) in BASE and returns it.  */
 
 
static unsigned
static unsigned
double_int_split_digit (double_int *cst, unsigned base)
double_int_split_digit (double_int *cst, unsigned base)
{
{
  unsigned HOST_WIDE_INT resl, reml;
  unsigned HOST_WIDE_INT resl, reml;
  HOST_WIDE_INT resh, remh;
  HOST_WIDE_INT resh, remh;
 
 
  div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0,
  div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0,
                        &resl, &resh, &reml, &remh);
                        &resl, &resh, &reml, &remh);
  cst->high = resh;
  cst->high = resh;
  cst->low = resl;
  cst->low = resl;
 
 
  return reml;
  return reml;
}
}
 
 
/* Dumps CST to FILE.  If UNS is true, CST is considered to be unsigned,
/* Dumps CST to FILE.  If UNS is true, CST is considered to be unsigned,
   otherwise it is signed.  */
   otherwise it is signed.  */
 
 
void
void
dump_double_int (FILE *file, double_int cst, bool uns)
dump_double_int (FILE *file, double_int cst, bool uns)
{
{
  unsigned digits[100], n;
  unsigned digits[100], n;
  int i;
  int i;
 
 
  if (double_int_zero_p (cst))
  if (double_int_zero_p (cst))
    {
    {
      fprintf (file, "0");
      fprintf (file, "0");
      return;
      return;
    }
    }
 
 
  if (!uns && double_int_negative_p (cst))
  if (!uns && double_int_negative_p (cst))
    {
    {
      fprintf (file, "-");
      fprintf (file, "-");
      cst = double_int_neg (cst);
      cst = double_int_neg (cst);
    }
    }
 
 
  for (n = 0; !double_int_zero_p (cst); n++)
  for (n = 0; !double_int_zero_p (cst); n++)
    digits[n] = double_int_split_digit (&cst, 10);
    digits[n] = double_int_split_digit (&cst, 10);
  for (i = n - 1; i >= 0; i--)
  for (i = n - 1; i >= 0; i--)
    fprintf (file, "%u", digits[i]);
    fprintf (file, "%u", digits[i]);
}
}
 
 
 
 
/* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
/* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
   otherwise.  */
   otherwise.  */
 
 
void
void
mpz_set_double_int (mpz_t result, double_int val, bool uns)
mpz_set_double_int (mpz_t result, double_int val, bool uns)
{
{
  bool negate = false;
  bool negate = false;
  unsigned HOST_WIDE_INT vp[2];
  unsigned HOST_WIDE_INT vp[2];
 
 
  if (!uns && double_int_negative_p (val))
  if (!uns && double_int_negative_p (val))
    {
    {
      negate = true;
      negate = true;
      val = double_int_neg (val);
      val = double_int_neg (val);
    }
    }
 
 
  vp[0] = val.low;
  vp[0] = val.low;
  vp[1] = (unsigned HOST_WIDE_INT) val.high;
  vp[1] = (unsigned HOST_WIDE_INT) val.high;
  mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
  mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
 
 
  if (negate)
  if (negate)
    mpz_neg (result, result);
    mpz_neg (result, result);
}
}
 
 
/* Returns VAL converted to TYPE.  If WRAP is true, then out-of-range
/* Returns VAL converted to TYPE.  If WRAP is true, then out-of-range
   values of VAL will be wrapped; otherwise, they will be set to the
   values of VAL will be wrapped; otherwise, they will be set to the
   appropriate minimum or maximum TYPE bound.  */
   appropriate minimum or maximum TYPE bound.  */
 
 
double_int
double_int
mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
{
{
  unsigned HOST_WIDE_INT *vp;
  unsigned HOST_WIDE_INT *vp;
  size_t count, numb;
  size_t count, numb;
  double_int res;
  double_int res;
 
 
  if (!wrap)
  if (!wrap)
    {
    {
      mpz_t min, max;
      mpz_t min, max;
 
 
      mpz_init (min);
      mpz_init (min);
      mpz_init (max);
      mpz_init (max);
      get_type_static_bounds (type, min, max);
      get_type_static_bounds (type, min, max);
 
 
      if (mpz_cmp (val, min) < 0)
      if (mpz_cmp (val, min) < 0)
        mpz_set (val, min);
        mpz_set (val, min);
      else if (mpz_cmp (val, max) > 0)
      else if (mpz_cmp (val, max) > 0)
        mpz_set (val, max);
        mpz_set (val, max);
 
 
      mpz_clear (min);
      mpz_clear (min);
      mpz_clear (max);
      mpz_clear (max);
    }
    }
 
 
  /* Determine the number of unsigned HOST_WIDE_INT that are required
  /* Determine the number of unsigned HOST_WIDE_INT that are required
     for representing the value.  The code to calculate count is
     for representing the value.  The code to calculate count is
     extracted from the GMP manual, section "Integer Import and Export":
     extracted from the GMP manual, section "Integer Import and Export":
     http://gmplib.org/manual/Integer-Import-and-Export.html  */
     http://gmplib.org/manual/Integer-Import-and-Export.html  */
  numb = 8*sizeof(HOST_WIDE_INT);
  numb = 8*sizeof(HOST_WIDE_INT);
  count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
  count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
  if (count < 2)
  if (count < 2)
    count = 2;
    count = 2;
  vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof(HOST_WIDE_INT));
  vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof(HOST_WIDE_INT));
 
 
  vp[0] = 0;
  vp[0] = 0;
  vp[1] = 0;
  vp[1] = 0;
  mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
  mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
 
 
  gcc_assert (wrap || count <= 2);
  gcc_assert (wrap || count <= 2);
 
 
  res.low = vp[0];
  res.low = vp[0];
  res.high = (HOST_WIDE_INT) vp[1];
  res.high = (HOST_WIDE_INT) vp[1];
 
 
  res = double_int_ext (res, TYPE_PRECISION (type), TYPE_UNSIGNED (type));
  res = double_int_ext (res, TYPE_PRECISION (type), TYPE_UNSIGNED (type));
  if (mpz_sgn (val) < 0)
  if (mpz_sgn (val) < 0)
    res = double_int_neg (res);
    res = double_int_neg (res);
 
 
  return res;
  return res;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.