OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [gcc/] [gensupport.c] - Diff between revs 684 and 783

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 684 Rev 783
/* Support routines for the various generation passes.
/* Support routines for the various generation passes.
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
   Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
   2010, Free Software Foundation, Inc.
   2010, Free Software Foundation, Inc.
 
 
   This file is part of GCC.
   This file is part of GCC.
 
 
   GCC is free software; you can redistribute it and/or modify it
   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   the Free Software Foundation; either version 3, or (at your option)
   any later version.
   any later version.
 
 
   GCC is distributed in the hope that it will be useful, but WITHOUT
   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.
   License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */
   <http://www.gnu.org/licenses/>.  */
 
 
#include "bconfig.h"
#include "bconfig.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "obstack.h"
#include "obstack.h"
#include "errors.h"
#include "errors.h"
#include "hashtab.h"
#include "hashtab.h"
#include "read-md.h"
#include "read-md.h"
#include "gensupport.h"
#include "gensupport.h"
 
 
 
 
/* In case some macros used by files we include need it, define this here.  */
/* In case some macros used by files we include need it, define this here.  */
int target_flags;
int target_flags;
 
 
int insn_elision = 1;
int insn_elision = 1;
 
 
static struct obstack obstack;
static struct obstack obstack;
struct obstack *rtl_obstack = &obstack;
struct obstack *rtl_obstack = &obstack;
 
 
static int sequence_num;
static int sequence_num;
 
 
static int predicable_default;
static int predicable_default;
static const char *predicable_true;
static const char *predicable_true;
static const char *predicable_false;
static const char *predicable_false;
 
 
static htab_t condition_table;
static htab_t condition_table;
 
 
/* We initially queue all patterns, process the define_insn and
/* We initially queue all patterns, process the define_insn and
   define_cond_exec patterns, then return them one at a time.  */
   define_cond_exec patterns, then return them one at a time.  */
 
 
struct queue_elem
struct queue_elem
{
{
  rtx data;
  rtx data;
  const char *filename;
  const char *filename;
  int lineno;
  int lineno;
  struct queue_elem *next;
  struct queue_elem *next;
  /* In a DEFINE_INSN that came from a DEFINE_INSN_AND_SPLIT, SPLIT
  /* In a DEFINE_INSN that came from a DEFINE_INSN_AND_SPLIT, SPLIT
     points to the generated DEFINE_SPLIT.  */
     points to the generated DEFINE_SPLIT.  */
  struct queue_elem *split;
  struct queue_elem *split;
};
};
 
 
#define MNEMONIC_ATTR_NAME "mnemonic"
#define MNEMONIC_ATTR_NAME "mnemonic"
#define MNEMONIC_HTAB_SIZE 1024
#define MNEMONIC_HTAB_SIZE 1024
 
 
static struct queue_elem *define_attr_queue;
static struct queue_elem *define_attr_queue;
static struct queue_elem **define_attr_tail = &define_attr_queue;
static struct queue_elem **define_attr_tail = &define_attr_queue;
static struct queue_elem *define_pred_queue;
static struct queue_elem *define_pred_queue;
static struct queue_elem **define_pred_tail = &define_pred_queue;
static struct queue_elem **define_pred_tail = &define_pred_queue;
static struct queue_elem *define_insn_queue;
static struct queue_elem *define_insn_queue;
static struct queue_elem **define_insn_tail = &define_insn_queue;
static struct queue_elem **define_insn_tail = &define_insn_queue;
static struct queue_elem *define_cond_exec_queue;
static struct queue_elem *define_cond_exec_queue;
static struct queue_elem **define_cond_exec_tail = &define_cond_exec_queue;
static struct queue_elem **define_cond_exec_tail = &define_cond_exec_queue;
static struct queue_elem *other_queue;
static struct queue_elem *other_queue;
static struct queue_elem **other_tail = &other_queue;
static struct queue_elem **other_tail = &other_queue;
 
 
static struct queue_elem *queue_pattern (rtx, struct queue_elem ***,
static struct queue_elem *queue_pattern (rtx, struct queue_elem ***,
                                         const char *, int);
                                         const char *, int);
 
 
static void remove_constraints (rtx);
static void remove_constraints (rtx);
static void process_rtx (rtx, int);
static void process_rtx (rtx, int);
 
 
static int is_predicable (struct queue_elem *);
static int is_predicable (struct queue_elem *);
static void identify_predicable_attribute (void);
static void identify_predicable_attribute (void);
static int n_alternatives (const char *);
static int n_alternatives (const char *);
static void collect_insn_data (rtx, int *, int *);
static void collect_insn_data (rtx, int *, int *);
static rtx alter_predicate_for_insn (rtx, int, int, int);
static rtx alter_predicate_for_insn (rtx, int, int, int);
static const char *alter_test_for_insn (struct queue_elem *,
static const char *alter_test_for_insn (struct queue_elem *,
                                        struct queue_elem *);
                                        struct queue_elem *);
static char *shift_output_template (char *, const char *, int);
static char *shift_output_template (char *, const char *, int);
static const char *alter_output_for_insn (struct queue_elem *,
static const char *alter_output_for_insn (struct queue_elem *,
                                          struct queue_elem *,
                                          struct queue_elem *,
                                          int, int);
                                          int, int);
static void process_one_cond_exec (struct queue_elem *);
static void process_one_cond_exec (struct queue_elem *);
static void process_define_cond_exec (void);
static void process_define_cond_exec (void);
static void init_predicate_table (void);
static void init_predicate_table (void);
static void record_insn_name (int, const char *);
static void record_insn_name (int, const char *);


/* Make a version of gen_rtx_CONST_INT so that GEN_INT can be used in
/* Make a version of gen_rtx_CONST_INT so that GEN_INT can be used in
   the gensupport programs.  */
   the gensupport programs.  */
 
 
rtx
rtx
gen_rtx_CONST_INT (enum machine_mode ARG_UNUSED (mode),
gen_rtx_CONST_INT (enum machine_mode ARG_UNUSED (mode),
                   HOST_WIDE_INT arg)
                   HOST_WIDE_INT arg)
{
{
  rtx rt = rtx_alloc (CONST_INT);
  rtx rt = rtx_alloc (CONST_INT);
 
 
  XWINT (rt, 0) = arg;
  XWINT (rt, 0) = arg;
  return rt;
  return rt;
}
}


/* Predicate handling.
/* Predicate handling.
 
 
   We construct from the machine description a table mapping each
   We construct from the machine description a table mapping each
   predicate to a list of the rtl codes it can possibly match.  The
   predicate to a list of the rtl codes it can possibly match.  The
   function 'maybe_both_true' uses it to deduce that there are no
   function 'maybe_both_true' uses it to deduce that there are no
   expressions that can be matches by certain pairs of tree nodes.
   expressions that can be matches by certain pairs of tree nodes.
   Also, if a predicate can match only one code, we can hardwire that
   Also, if a predicate can match only one code, we can hardwire that
   code into the node testing the predicate.
   code into the node testing the predicate.
 
 
   Some predicates are flagged as special.  validate_pattern will not
   Some predicates are flagged as special.  validate_pattern will not
   warn about modeless match_operand expressions if they have a
   warn about modeless match_operand expressions if they have a
   special predicate.  Predicates that allow only constants are also
   special predicate.  Predicates that allow only constants are also
   treated as special, for this purpose.
   treated as special, for this purpose.
 
 
   validate_pattern will warn about predicates that allow non-lvalues
   validate_pattern will warn about predicates that allow non-lvalues
   when they appear in destination operands.
   when they appear in destination operands.
 
 
   Calculating the set of rtx codes that can possibly be accepted by a
   Calculating the set of rtx codes that can possibly be accepted by a
   predicate expression EXP requires a three-state logic: any given
   predicate expression EXP requires a three-state logic: any given
   subexpression may definitively accept a code C (Y), definitively
   subexpression may definitively accept a code C (Y), definitively
   reject a code C (N), or may have an indeterminate effect (I).  N
   reject a code C (N), or may have an indeterminate effect (I).  N
   and I is N; Y or I is Y; Y and I, N or I are both I.  Here are full
   and I is N; Y or I is Y; Y and I, N or I are both I.  Here are full
   truth tables.
   truth tables.
 
 
     a b  a&b  a|b
     a b  a&b  a|b
     Y Y   Y    Y
     Y Y   Y    Y
     N Y   N    Y
     N Y   N    Y
     N N   N    N
     N N   N    N
     I Y   I    Y
     I Y   I    Y
     I N   N    I
     I N   N    I
     I I   I    I
     I I   I    I
 
 
   We represent Y with 1, N with 0, I with 2.  If any code is left in
   We represent Y with 1, N with 0, I with 2.  If any code is left in
   an I state by the complete expression, we must assume that that
   an I state by the complete expression, we must assume that that
   code can be accepted.  */
   code can be accepted.  */
 
 
#define N 0
#define N 0
#define Y 1
#define Y 1
#define I 2
#define I 2
 
 
#define TRISTATE_AND(a,b)                       \
#define TRISTATE_AND(a,b)                       \
  ((a) == I ? ((b) == N ? N : I) :              \
  ((a) == I ? ((b) == N ? N : I) :              \
   (b) == I ? ((a) == N ? N : I) :              \
   (b) == I ? ((a) == N ? N : I) :              \
   (a) && (b))
   (a) && (b))
 
 
#define TRISTATE_OR(a,b)                        \
#define TRISTATE_OR(a,b)                        \
  ((a) == I ? ((b) == Y ? Y : I) :              \
  ((a) == I ? ((b) == Y ? Y : I) :              \
   (b) == I ? ((a) == Y ? Y : I) :              \
   (b) == I ? ((a) == Y ? Y : I) :              \
   (a) || (b))
   (a) || (b))
 
 
#define TRISTATE_NOT(a)                         \
#define TRISTATE_NOT(a)                         \
  ((a) == I ? I : !(a))
  ((a) == I ? I : !(a))
 
 
/* 0 means no warning about that code yet, 1 means warned.  */
/* 0 means no warning about that code yet, 1 means warned.  */
static char did_you_mean_codes[NUM_RTX_CODE];
static char did_you_mean_codes[NUM_RTX_CODE];
 
 
/* Recursively calculate the set of rtx codes accepted by the
/* Recursively calculate the set of rtx codes accepted by the
   predicate expression EXP, writing the result to CODES.  LINENO is
   predicate expression EXP, writing the result to CODES.  LINENO is
   the line number on which the directive containing EXP appeared.  */
   the line number on which the directive containing EXP appeared.  */
 
 
static void
static void
compute_predicate_codes (rtx exp, int lineno, char codes[NUM_RTX_CODE])
compute_predicate_codes (rtx exp, int lineno, char codes[NUM_RTX_CODE])
{
{
  char op0_codes[NUM_RTX_CODE];
  char op0_codes[NUM_RTX_CODE];
  char op1_codes[NUM_RTX_CODE];
  char op1_codes[NUM_RTX_CODE];
  char op2_codes[NUM_RTX_CODE];
  char op2_codes[NUM_RTX_CODE];
  int i;
  int i;
 
 
  switch (GET_CODE (exp))
  switch (GET_CODE (exp))
    {
    {
    case AND:
    case AND:
      compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes);
      compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes);
      compute_predicate_codes (XEXP (exp, 1), lineno, op1_codes);
      compute_predicate_codes (XEXP (exp, 1), lineno, op1_codes);
      for (i = 0; i < NUM_RTX_CODE; i++)
      for (i = 0; i < NUM_RTX_CODE; i++)
        codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]);
        codes[i] = TRISTATE_AND (op0_codes[i], op1_codes[i]);
      break;
      break;
 
 
    case IOR:
    case IOR:
      compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes);
      compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes);
      compute_predicate_codes (XEXP (exp, 1), lineno, op1_codes);
      compute_predicate_codes (XEXP (exp, 1), lineno, op1_codes);
      for (i = 0; i < NUM_RTX_CODE; i++)
      for (i = 0; i < NUM_RTX_CODE; i++)
        codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]);
        codes[i] = TRISTATE_OR (op0_codes[i], op1_codes[i]);
      break;
      break;
    case NOT:
    case NOT:
      compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes);
      compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes);
      for (i = 0; i < NUM_RTX_CODE; i++)
      for (i = 0; i < NUM_RTX_CODE; i++)
        codes[i] = TRISTATE_NOT (op0_codes[i]);
        codes[i] = TRISTATE_NOT (op0_codes[i]);
      break;
      break;
 
 
    case IF_THEN_ELSE:
    case IF_THEN_ELSE:
      /* a ? b : c  accepts the same codes as (a & b) | (!a & c).  */
      /* a ? b : c  accepts the same codes as (a & b) | (!a & c).  */
      compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes);
      compute_predicate_codes (XEXP (exp, 0), lineno, op0_codes);
      compute_predicate_codes (XEXP (exp, 1), lineno, op1_codes);
      compute_predicate_codes (XEXP (exp, 1), lineno, op1_codes);
      compute_predicate_codes (XEXP (exp, 2), lineno, op2_codes);
      compute_predicate_codes (XEXP (exp, 2), lineno, op2_codes);
      for (i = 0; i < NUM_RTX_CODE; i++)
      for (i = 0; i < NUM_RTX_CODE; i++)
        codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]),
        codes[i] = TRISTATE_OR (TRISTATE_AND (op0_codes[i], op1_codes[i]),
                                TRISTATE_AND (TRISTATE_NOT (op0_codes[i]),
                                TRISTATE_AND (TRISTATE_NOT (op0_codes[i]),
                                              op2_codes[i]));
                                              op2_codes[i]));
      break;
      break;
 
 
    case MATCH_CODE:
    case MATCH_CODE:
      /* MATCH_CODE allows a specified list of codes.  However, if it
      /* MATCH_CODE allows a specified list of codes.  However, if it
         does not apply to the top level of the expression, it does not
         does not apply to the top level of the expression, it does not
         constrain the set of codes for the top level.  */
         constrain the set of codes for the top level.  */
      if (XSTR (exp, 1)[0] != '\0')
      if (XSTR (exp, 1)[0] != '\0')
        {
        {
          memset (codes, Y, NUM_RTX_CODE);
          memset (codes, Y, NUM_RTX_CODE);
          break;
          break;
        }
        }
 
 
      memset (codes, N, NUM_RTX_CODE);
      memset (codes, N, NUM_RTX_CODE);
      {
      {
        const char *next_code = XSTR (exp, 0);
        const char *next_code = XSTR (exp, 0);
        const char *code;
        const char *code;
 
 
        if (*next_code == '\0')
        if (*next_code == '\0')
          {
          {
            error_with_line (lineno, "empty match_code expression");
            error_with_line (lineno, "empty match_code expression");
            break;
            break;
          }
          }
 
 
        while ((code = scan_comma_elt (&next_code)) != 0)
        while ((code = scan_comma_elt (&next_code)) != 0)
          {
          {
            size_t n = next_code - code;
            size_t n = next_code - code;
            int found_it = 0;
            int found_it = 0;
 
 
            for (i = 0; i < NUM_RTX_CODE; i++)
            for (i = 0; i < NUM_RTX_CODE; i++)
              if (!strncmp (code, GET_RTX_NAME (i), n)
              if (!strncmp (code, GET_RTX_NAME (i), n)
                  && GET_RTX_NAME (i)[n] == '\0')
                  && GET_RTX_NAME (i)[n] == '\0')
                {
                {
                  codes[i] = Y;
                  codes[i] = Y;
                  found_it = 1;
                  found_it = 1;
                  break;
                  break;
                }
                }
            if (!found_it)
            if (!found_it)
              {
              {
                error_with_line (lineno,
                error_with_line (lineno,
                                 "match_code \"%.*s\" matches nothing",
                                 "match_code \"%.*s\" matches nothing",
                                 (int) n, code);
                                 (int) n, code);
                for (i = 0; i < NUM_RTX_CODE; i++)
                for (i = 0; i < NUM_RTX_CODE; i++)
                  if (!strncasecmp (code, GET_RTX_NAME (i), n)
                  if (!strncasecmp (code, GET_RTX_NAME (i), n)
                      && GET_RTX_NAME (i)[n] == '\0'
                      && GET_RTX_NAME (i)[n] == '\0'
                      && !did_you_mean_codes[i])
                      && !did_you_mean_codes[i])
                    {
                    {
                      did_you_mean_codes[i] = 1;
                      did_you_mean_codes[i] = 1;
                      message_with_line (lineno, "(did you mean \"%s\"?)",
                      message_with_line (lineno, "(did you mean \"%s\"?)",
                                         GET_RTX_NAME (i));
                                         GET_RTX_NAME (i));
                    }
                    }
              }
              }
          }
          }
      }
      }
      break;
      break;
 
 
    case MATCH_OPERAND:
    case MATCH_OPERAND:
      /* MATCH_OPERAND disallows the set of codes that the named predicate
      /* MATCH_OPERAND disallows the set of codes that the named predicate
         disallows, and is indeterminate for the codes that it does allow.  */
         disallows, and is indeterminate for the codes that it does allow.  */
      {
      {
        struct pred_data *p = lookup_predicate (XSTR (exp, 1));
        struct pred_data *p = lookup_predicate (XSTR (exp, 1));
        if (!p)
        if (!p)
          {
          {
            error_with_line (lineno, "reference to unknown predicate '%s'",
            error_with_line (lineno, "reference to unknown predicate '%s'",
                             XSTR (exp, 1));
                             XSTR (exp, 1));
            break;
            break;
          }
          }
        for (i = 0; i < NUM_RTX_CODE; i++)
        for (i = 0; i < NUM_RTX_CODE; i++)
          codes[i] = p->codes[i] ? I : N;
          codes[i] = p->codes[i] ? I : N;
      }
      }
      break;
      break;
 
 
 
 
    case MATCH_TEST:
    case MATCH_TEST:
      /* (match_test WHATEVER) is completely indeterminate.  */
      /* (match_test WHATEVER) is completely indeterminate.  */
      memset (codes, I, NUM_RTX_CODE);
      memset (codes, I, NUM_RTX_CODE);
      break;
      break;
 
 
    default:
    default:
      error_with_line (lineno,
      error_with_line (lineno,
                       "'%s' cannot be used in a define_predicate expression",
                       "'%s' cannot be used in a define_predicate expression",
                       GET_RTX_NAME (GET_CODE (exp)));
                       GET_RTX_NAME (GET_CODE (exp)));
      memset (codes, I, NUM_RTX_CODE);
      memset (codes, I, NUM_RTX_CODE);
      break;
      break;
    }
    }
}
}
 
 
#undef TRISTATE_OR
#undef TRISTATE_OR
#undef TRISTATE_AND
#undef TRISTATE_AND
#undef TRISTATE_NOT
#undef TRISTATE_NOT
 
 
/* Return true if NAME is a valid predicate name.  */
/* Return true if NAME is a valid predicate name.  */
 
 
static bool
static bool
valid_predicate_name_p (const char *name)
valid_predicate_name_p (const char *name)
{
{
  const char *p;
  const char *p;
 
 
  if (!ISALPHA (name[0]) && name[0] != '_')
  if (!ISALPHA (name[0]) && name[0] != '_')
    return false;
    return false;
  for (p = name + 1; *p; p++)
  for (p = name + 1; *p; p++)
    if (!ISALNUM (*p) && *p != '_')
    if (!ISALNUM (*p) && *p != '_')
      return false;
      return false;
  return true;
  return true;
}
}
 
 
/* Process define_predicate directive DESC, which appears on line number
/* Process define_predicate directive DESC, which appears on line number
   LINENO.  Compute the set of codes that can be matched, and record this
   LINENO.  Compute the set of codes that can be matched, and record this
   as a known predicate.  */
   as a known predicate.  */
 
 
static void
static void
process_define_predicate (rtx desc, int lineno)
process_define_predicate (rtx desc, int lineno)
{
{
  struct pred_data *pred;
  struct pred_data *pred;
  char codes[NUM_RTX_CODE];
  char codes[NUM_RTX_CODE];
  int i;
  int i;
 
 
  if (!valid_predicate_name_p (XSTR (desc, 0)))
  if (!valid_predicate_name_p (XSTR (desc, 0)))
    {
    {
      error_with_line (lineno,
      error_with_line (lineno,
                       "%s: predicate name must be a valid C function name",
                       "%s: predicate name must be a valid C function name",
                       XSTR (desc, 0));
                       XSTR (desc, 0));
      return;
      return;
    }
    }
 
 
  pred = XCNEW (struct pred_data);
  pred = XCNEW (struct pred_data);
  pred->name = XSTR (desc, 0);
  pred->name = XSTR (desc, 0);
  pred->exp = XEXP (desc, 1);
  pred->exp = XEXP (desc, 1);
  pred->c_block = XSTR (desc, 2);
  pred->c_block = XSTR (desc, 2);
  if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE)
  if (GET_CODE (desc) == DEFINE_SPECIAL_PREDICATE)
    pred->special = true;
    pred->special = true;
 
 
  compute_predicate_codes (XEXP (desc, 1), lineno, codes);
  compute_predicate_codes (XEXP (desc, 1), lineno, codes);
 
 
  for (i = 0; i < NUM_RTX_CODE; i++)
  for (i = 0; i < NUM_RTX_CODE; i++)
    if (codes[i] != N)
    if (codes[i] != N)
      add_predicate_code (pred, (enum rtx_code) i);
      add_predicate_code (pred, (enum rtx_code) i);
 
 
  add_predicate (pred);
  add_predicate (pred);
}
}
#undef I
#undef I
#undef N
#undef N
#undef Y
#undef Y


/* Queue PATTERN on LIST_TAIL.  Return the address of the new queue
/* Queue PATTERN on LIST_TAIL.  Return the address of the new queue
   element.  */
   element.  */
 
 
static struct queue_elem *
static struct queue_elem *
queue_pattern (rtx pattern, struct queue_elem ***list_tail,
queue_pattern (rtx pattern, struct queue_elem ***list_tail,
               const char *filename, int lineno)
               const char *filename, int lineno)
{
{
  struct queue_elem *e = XNEW(struct queue_elem);
  struct queue_elem *e = XNEW(struct queue_elem);
  e->data = pattern;
  e->data = pattern;
  e->filename = filename;
  e->filename = filename;
  e->lineno = lineno;
  e->lineno = lineno;
  e->next = NULL;
  e->next = NULL;
  e->split = NULL;
  e->split = NULL;
  **list_tail = e;
  **list_tail = e;
  *list_tail = &e->next;
  *list_tail = &e->next;
  return e;
  return e;
}
}
 
 
/* Build a define_attr for an binary attribute with name NAME and
/* Build a define_attr for an binary attribute with name NAME and
   possible values "yes" and "no", and queue it.  */
   possible values "yes" and "no", and queue it.  */
static void
static void
add_define_attr (const char *name)
add_define_attr (const char *name)
{
{
  struct queue_elem *e = XNEW(struct queue_elem);
  struct queue_elem *e = XNEW(struct queue_elem);
  rtx t1 = rtx_alloc (DEFINE_ATTR);
  rtx t1 = rtx_alloc (DEFINE_ATTR);
  XSTR (t1, 0) = name;
  XSTR (t1, 0) = name;
  XSTR (t1, 1) = "no,yes";
  XSTR (t1, 1) = "no,yes";
  XEXP (t1, 2) = rtx_alloc (CONST_STRING);
  XEXP (t1, 2) = rtx_alloc (CONST_STRING);
  XSTR (XEXP (t1, 2), 0) = "yes";
  XSTR (XEXP (t1, 2), 0) = "yes";
  e->data = t1;
  e->data = t1;
  e->filename = "built-in";
  e->filename = "built-in";
  e->lineno = -1;
  e->lineno = -1;
  e->next = define_attr_queue;
  e->next = define_attr_queue;
  define_attr_queue = e;
  define_attr_queue = e;
 
 
}
}
 
 
/* Recursively remove constraints from an rtx.  */
/* Recursively remove constraints from an rtx.  */
 
 
static void
static void
remove_constraints (rtx part)
remove_constraints (rtx part)
{
{
  int i, j;
  int i, j;
  const char *format_ptr;
  const char *format_ptr;
 
 
  if (part == 0)
  if (part == 0)
    return;
    return;
 
 
  if (GET_CODE (part) == MATCH_OPERAND)
  if (GET_CODE (part) == MATCH_OPERAND)
    XSTR (part, 2) = "";
    XSTR (part, 2) = "";
  else if (GET_CODE (part) == MATCH_SCRATCH)
  else if (GET_CODE (part) == MATCH_SCRATCH)
    XSTR (part, 1) = "";
    XSTR (part, 1) = "";
 
 
  format_ptr = GET_RTX_FORMAT (GET_CODE (part));
  format_ptr = GET_RTX_FORMAT (GET_CODE (part));
 
 
  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (part)); i++)
  for (i = 0; i < GET_RTX_LENGTH (GET_CODE (part)); i++)
    switch (*format_ptr++)
    switch (*format_ptr++)
      {
      {
      case 'e':
      case 'e':
      case 'u':
      case 'u':
        remove_constraints (XEXP (part, i));
        remove_constraints (XEXP (part, i));
        break;
        break;
      case 'E':
      case 'E':
        if (XVEC (part, i) != NULL)
        if (XVEC (part, i) != NULL)
          for (j = 0; j < XVECLEN (part, i); j++)
          for (j = 0; j < XVECLEN (part, i); j++)
            remove_constraints (XVECEXP (part, i, j));
            remove_constraints (XVECEXP (part, i, j));
        break;
        break;
      }
      }
}
}
 
 
/* Process a top level rtx in some way, queuing as appropriate.  */
/* Process a top level rtx in some way, queuing as appropriate.  */
 
 
static void
static void
process_rtx (rtx desc, int lineno)
process_rtx (rtx desc, int lineno)
{
{
  switch (GET_CODE (desc))
  switch (GET_CODE (desc))
    {
    {
    case DEFINE_INSN:
    case DEFINE_INSN:
      queue_pattern (desc, &define_insn_tail, read_md_filename, lineno);
      queue_pattern (desc, &define_insn_tail, read_md_filename, lineno);
      break;
      break;
 
 
    case DEFINE_COND_EXEC:
    case DEFINE_COND_EXEC:
      queue_pattern (desc, &define_cond_exec_tail, read_md_filename, lineno);
      queue_pattern (desc, &define_cond_exec_tail, read_md_filename, lineno);
      break;
      break;
 
 
    case DEFINE_ATTR:
    case DEFINE_ATTR:
    case DEFINE_ENUM_ATTR:
    case DEFINE_ENUM_ATTR:
      queue_pattern (desc, &define_attr_tail, read_md_filename, lineno);
      queue_pattern (desc, &define_attr_tail, read_md_filename, lineno);
      break;
      break;
 
 
    case DEFINE_PREDICATE:
    case DEFINE_PREDICATE:
    case DEFINE_SPECIAL_PREDICATE:
    case DEFINE_SPECIAL_PREDICATE:
      process_define_predicate (desc, lineno);
      process_define_predicate (desc, lineno);
      /* Fall through.  */
      /* Fall through.  */
 
 
    case DEFINE_CONSTRAINT:
    case DEFINE_CONSTRAINT:
    case DEFINE_REGISTER_CONSTRAINT:
    case DEFINE_REGISTER_CONSTRAINT:
    case DEFINE_MEMORY_CONSTRAINT:
    case DEFINE_MEMORY_CONSTRAINT:
    case DEFINE_ADDRESS_CONSTRAINT:
    case DEFINE_ADDRESS_CONSTRAINT:
      queue_pattern (desc, &define_pred_tail, read_md_filename, lineno);
      queue_pattern (desc, &define_pred_tail, read_md_filename, lineno);
      break;
      break;
 
 
    case DEFINE_INSN_AND_SPLIT:
    case DEFINE_INSN_AND_SPLIT:
      {
      {
        const char *split_cond;
        const char *split_cond;
        rtx split;
        rtx split;
        rtvec attr;
        rtvec attr;
        int i;
        int i;
        struct queue_elem *insn_elem;
        struct queue_elem *insn_elem;
        struct queue_elem *split_elem;
        struct queue_elem *split_elem;
 
 
        /* Create a split with values from the insn_and_split.  */
        /* Create a split with values from the insn_and_split.  */
        split = rtx_alloc (DEFINE_SPLIT);
        split = rtx_alloc (DEFINE_SPLIT);
 
 
        i = XVECLEN (desc, 1);
        i = XVECLEN (desc, 1);
        XVEC (split, 0) = rtvec_alloc (i);
        XVEC (split, 0) = rtvec_alloc (i);
        while (--i >= 0)
        while (--i >= 0)
          {
          {
            XVECEXP (split, 0, i) = copy_rtx (XVECEXP (desc, 1, i));
            XVECEXP (split, 0, i) = copy_rtx (XVECEXP (desc, 1, i));
            remove_constraints (XVECEXP (split, 0, i));
            remove_constraints (XVECEXP (split, 0, i));
          }
          }
 
 
        /* If the split condition starts with "&&", append it to the
        /* If the split condition starts with "&&", append it to the
           insn condition to create the new split condition.  */
           insn condition to create the new split condition.  */
        split_cond = XSTR (desc, 4);
        split_cond = XSTR (desc, 4);
        if (split_cond[0] == '&' && split_cond[1] == '&')
        if (split_cond[0] == '&' && split_cond[1] == '&')
          {
          {
            copy_md_ptr_loc (split_cond + 2, split_cond);
            copy_md_ptr_loc (split_cond + 2, split_cond);
            split_cond = join_c_conditions (XSTR (desc, 2), split_cond + 2);
            split_cond = join_c_conditions (XSTR (desc, 2), split_cond + 2);
          }
          }
        XSTR (split, 1) = split_cond;
        XSTR (split, 1) = split_cond;
        XVEC (split, 2) = XVEC (desc, 5);
        XVEC (split, 2) = XVEC (desc, 5);
        XSTR (split, 3) = XSTR (desc, 6);
        XSTR (split, 3) = XSTR (desc, 6);
 
 
        /* Fix up the DEFINE_INSN.  */
        /* Fix up the DEFINE_INSN.  */
        attr = XVEC (desc, 7);
        attr = XVEC (desc, 7);
        PUT_CODE (desc, DEFINE_INSN);
        PUT_CODE (desc, DEFINE_INSN);
        XVEC (desc, 4) = attr;
        XVEC (desc, 4) = attr;
 
 
        /* Queue them.  */
        /* Queue them.  */
        insn_elem
        insn_elem
          = queue_pattern (desc, &define_insn_tail, read_md_filename,
          = queue_pattern (desc, &define_insn_tail, read_md_filename,
                           lineno);
                           lineno);
        split_elem
        split_elem
          = queue_pattern (split, &other_tail, read_md_filename, lineno);
          = queue_pattern (split, &other_tail, read_md_filename, lineno);
        insn_elem->split = split_elem;
        insn_elem->split = split_elem;
        break;
        break;
      }
      }
 
 
    default:
    default:
      queue_pattern (desc, &other_tail, read_md_filename, lineno);
      queue_pattern (desc, &other_tail, read_md_filename, lineno);
      break;
      break;
    }
    }
}
}


/* Return true if attribute PREDICABLE is true for ELEM, which holds
/* Return true if attribute PREDICABLE is true for ELEM, which holds
   a DEFINE_INSN.  */
   a DEFINE_INSN.  */
 
 
static int
static int
is_predicable (struct queue_elem *elem)
is_predicable (struct queue_elem *elem)
{
{
  rtvec vec = XVEC (elem->data, 4);
  rtvec vec = XVEC (elem->data, 4);
  const char *value;
  const char *value;
  int i;
  int i;
 
 
  if (! vec)
  if (! vec)
    return predicable_default;
    return predicable_default;
 
 
  for (i = GET_NUM_ELEM (vec) - 1; i >= 0; --i)
  for (i = GET_NUM_ELEM (vec) - 1; i >= 0; --i)
    {
    {
      rtx sub = RTVEC_ELT (vec, i);
      rtx sub = RTVEC_ELT (vec, i);
      switch (GET_CODE (sub))
      switch (GET_CODE (sub))
        {
        {
        case SET_ATTR:
        case SET_ATTR:
          if (strcmp (XSTR (sub, 0), "predicable") == 0)
          if (strcmp (XSTR (sub, 0), "predicable") == 0)
            {
            {
              value = XSTR (sub, 1);
              value = XSTR (sub, 1);
              goto found;
              goto found;
            }
            }
          break;
          break;
 
 
        case SET_ATTR_ALTERNATIVE:
        case SET_ATTR_ALTERNATIVE:
          if (strcmp (XSTR (sub, 0), "predicable") == 0)
          if (strcmp (XSTR (sub, 0), "predicable") == 0)
            {
            {
              error_with_line (elem->lineno,
              error_with_line (elem->lineno,
                               "multiple alternatives for `predicable'");
                               "multiple alternatives for `predicable'");
              return 0;
              return 0;
            }
            }
          break;
          break;
 
 
        case SET:
        case SET:
          if (GET_CODE (SET_DEST (sub)) != ATTR
          if (GET_CODE (SET_DEST (sub)) != ATTR
              || strcmp (XSTR (SET_DEST (sub), 0), "predicable") != 0)
              || strcmp (XSTR (SET_DEST (sub), 0), "predicable") != 0)
            break;
            break;
          sub = SET_SRC (sub);
          sub = SET_SRC (sub);
          if (GET_CODE (sub) == CONST_STRING)
          if (GET_CODE (sub) == CONST_STRING)
            {
            {
              value = XSTR (sub, 0);
              value = XSTR (sub, 0);
              goto found;
              goto found;
            }
            }
 
 
          /* ??? It would be possible to handle this if we really tried.
          /* ??? It would be possible to handle this if we really tried.
             It's not easy though, and I'm not going to bother until it
             It's not easy though, and I'm not going to bother until it
             really proves necessary.  */
             really proves necessary.  */
          error_with_line (elem->lineno,
          error_with_line (elem->lineno,
                           "non-constant value for `predicable'");
                           "non-constant value for `predicable'");
          return 0;
          return 0;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
 
 
  return predicable_default;
  return predicable_default;
 
 
 found:
 found:
  /* Find out which value we're looking at.  Multiple alternatives means at
  /* Find out which value we're looking at.  Multiple alternatives means at
     least one is predicable.  */
     least one is predicable.  */
  if (strchr (value, ',') != NULL)
  if (strchr (value, ',') != NULL)
    return 1;
    return 1;
  if (strcmp (value, predicable_true) == 0)
  if (strcmp (value, predicable_true) == 0)
    return 1;
    return 1;
  if (strcmp (value, predicable_false) == 0)
  if (strcmp (value, predicable_false) == 0)
    return 0;
    return 0;
 
 
  error_with_line (elem->lineno,
  error_with_line (elem->lineno,
                   "unknown value `%s' for `predicable' attribute", value);
                   "unknown value `%s' for `predicable' attribute", value);
  return 0;
  return 0;
}
}
 
 
/* Examine the attribute "predicable"; discover its boolean values
/* Examine the attribute "predicable"; discover its boolean values
   and its default.  */
   and its default.  */
 
 
static void
static void
identify_predicable_attribute (void)
identify_predicable_attribute (void)
{
{
  struct queue_elem *elem;
  struct queue_elem *elem;
  char *p_true, *p_false;
  char *p_true, *p_false;
  const char *value;
  const char *value;
 
 
  /* Look for the DEFINE_ATTR for `predicable', which must exist.  */
  /* Look for the DEFINE_ATTR for `predicable', which must exist.  */
  for (elem = define_attr_queue; elem ; elem = elem->next)
  for (elem = define_attr_queue; elem ; elem = elem->next)
    if (strcmp (XSTR (elem->data, 0), "predicable") == 0)
    if (strcmp (XSTR (elem->data, 0), "predicable") == 0)
      goto found;
      goto found;
 
 
  error_with_line (define_cond_exec_queue->lineno,
  error_with_line (define_cond_exec_queue->lineno,
                   "attribute `predicable' not defined");
                   "attribute `predicable' not defined");
  return;
  return;
 
 
 found:
 found:
  value = XSTR (elem->data, 1);
  value = XSTR (elem->data, 1);
  p_false = xstrdup (value);
  p_false = xstrdup (value);
  p_true = strchr (p_false, ',');
  p_true = strchr (p_false, ',');
  if (p_true == NULL || strchr (++p_true, ',') != NULL)
  if (p_true == NULL || strchr (++p_true, ',') != NULL)
    {
    {
      error_with_line (elem->lineno, "attribute `predicable' is not a boolean");
      error_with_line (elem->lineno, "attribute `predicable' is not a boolean");
      free (p_false);
      free (p_false);
      return;
      return;
    }
    }
  p_true[-1] = '\0';
  p_true[-1] = '\0';
 
 
  predicable_true = p_true;
  predicable_true = p_true;
  predicable_false = p_false;
  predicable_false = p_false;
 
 
  switch (GET_CODE (XEXP (elem->data, 2)))
  switch (GET_CODE (XEXP (elem->data, 2)))
    {
    {
    case CONST_STRING:
    case CONST_STRING:
      value = XSTR (XEXP (elem->data, 2), 0);
      value = XSTR (XEXP (elem->data, 2), 0);
      break;
      break;
 
 
    case CONST:
    case CONST:
      error_with_line (elem->lineno, "attribute `predicable' cannot be const");
      error_with_line (elem->lineno, "attribute `predicable' cannot be const");
      free (p_false);
      free (p_false);
      return;
      return;
 
 
    default:
    default:
      error_with_line (elem->lineno,
      error_with_line (elem->lineno,
                       "attribute `predicable' must have a constant default");
                       "attribute `predicable' must have a constant default");
      free (p_false);
      free (p_false);
      return;
      return;
    }
    }
 
 
  if (strcmp (value, p_true) == 0)
  if (strcmp (value, p_true) == 0)
    predicable_default = 1;
    predicable_default = 1;
  else if (strcmp (value, p_false) == 0)
  else if (strcmp (value, p_false) == 0)
    predicable_default = 0;
    predicable_default = 0;
  else
  else
    {
    {
      error_with_line (elem->lineno,
      error_with_line (elem->lineno,
                       "unknown value `%s' for `predicable' attribute", value);
                       "unknown value `%s' for `predicable' attribute", value);
      free (p_false);
      free (p_false);
    }
    }
}
}
 
 
/* Return the number of alternatives in constraint S.  */
/* Return the number of alternatives in constraint S.  */
 
 
static int
static int
n_alternatives (const char *s)
n_alternatives (const char *s)
{
{
  int n = 1;
  int n = 1;
 
 
  if (s)
  if (s)
    while (*s)
    while (*s)
      n += (*s++ == ',');
      n += (*s++ == ',');
 
 
  return n;
  return n;
}
}
 
 
/* Determine how many alternatives there are in INSN, and how many
/* Determine how many alternatives there are in INSN, and how many
   operands.  */
   operands.  */
 
 
static void
static void
collect_insn_data (rtx pattern, int *palt, int *pmax)
collect_insn_data (rtx pattern, int *palt, int *pmax)
{
{
  const char *fmt;
  const char *fmt;
  enum rtx_code code;
  enum rtx_code code;
  int i, j, len;
  int i, j, len;
 
 
  code = GET_CODE (pattern);
  code = GET_CODE (pattern);
  switch (code)
  switch (code)
    {
    {
    case MATCH_OPERAND:
    case MATCH_OPERAND:
      i = n_alternatives (XSTR (pattern, 2));
      i = n_alternatives (XSTR (pattern, 2));
      *palt = (i > *palt ? i : *palt);
      *palt = (i > *palt ? i : *palt);
      /* Fall through.  */
      /* Fall through.  */
 
 
    case MATCH_OPERATOR:
    case MATCH_OPERATOR:
    case MATCH_SCRATCH:
    case MATCH_SCRATCH:
    case MATCH_PARALLEL:
    case MATCH_PARALLEL:
      i = XINT (pattern, 0);
      i = XINT (pattern, 0);
      if (i > *pmax)
      if (i > *pmax)
        *pmax = i;
        *pmax = i;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  len = GET_RTX_LENGTH (code);
  len = GET_RTX_LENGTH (code);
  for (i = 0; i < len; i++)
  for (i = 0; i < len; i++)
    {
    {
      switch (fmt[i])
      switch (fmt[i])
        {
        {
        case 'e': case 'u':
        case 'e': case 'u':
          collect_insn_data (XEXP (pattern, i), palt, pmax);
          collect_insn_data (XEXP (pattern, i), palt, pmax);
          break;
          break;
 
 
        case 'V':
        case 'V':
          if (XVEC (pattern, i) == NULL)
          if (XVEC (pattern, i) == NULL)
            break;
            break;
          /* Fall through.  */
          /* Fall through.  */
        case 'E':
        case 'E':
          for (j = XVECLEN (pattern, i) - 1; j >= 0; --j)
          for (j = XVECLEN (pattern, i) - 1; j >= 0; --j)
            collect_insn_data (XVECEXP (pattern, i, j), palt, pmax);
            collect_insn_data (XVECEXP (pattern, i, j), palt, pmax);
          break;
          break;
 
 
        case 'i': case 'w': case '0': case 's': case 'S': case 'T':
        case 'i': case 'w': case '0': case 's': case 'S': case 'T':
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
}
}
 
 
static rtx
static rtx
alter_predicate_for_insn (rtx pattern, int alt, int max_op, int lineno)
alter_predicate_for_insn (rtx pattern, int alt, int max_op, int lineno)
{
{
  const char *fmt;
  const char *fmt;
  enum rtx_code code;
  enum rtx_code code;
  int i, j, len;
  int i, j, len;
 
 
  code = GET_CODE (pattern);
  code = GET_CODE (pattern);
  switch (code)
  switch (code)
    {
    {
    case MATCH_OPERAND:
    case MATCH_OPERAND:
      {
      {
        const char *c = XSTR (pattern, 2);
        const char *c = XSTR (pattern, 2);
 
 
        if (n_alternatives (c) != 1)
        if (n_alternatives (c) != 1)
          {
          {
            error_with_line (lineno, "too many alternatives for operand %d",
            error_with_line (lineno, "too many alternatives for operand %d",
                             XINT (pattern, 0));
                             XINT (pattern, 0));
            return NULL;
            return NULL;
          }
          }
 
 
        /* Replicate C as needed to fill out ALT alternatives.  */
        /* Replicate C as needed to fill out ALT alternatives.  */
        if (c && *c && alt > 1)
        if (c && *c && alt > 1)
          {
          {
            size_t c_len = strlen (c);
            size_t c_len = strlen (c);
            size_t len = alt * (c_len + 1);
            size_t len = alt * (c_len + 1);
            char *new_c = XNEWVEC(char, len);
            char *new_c = XNEWVEC(char, len);
 
 
            memcpy (new_c, c, c_len);
            memcpy (new_c, c, c_len);
            for (i = 1; i < alt; ++i)
            for (i = 1; i < alt; ++i)
              {
              {
                new_c[i * (c_len + 1) - 1] = ',';
                new_c[i * (c_len + 1) - 1] = ',';
                memcpy (&new_c[i * (c_len + 1)], c, c_len);
                memcpy (&new_c[i * (c_len + 1)], c, c_len);
              }
              }
            new_c[len - 1] = '\0';
            new_c[len - 1] = '\0';
            XSTR (pattern, 2) = new_c;
            XSTR (pattern, 2) = new_c;
          }
          }
      }
      }
      /* Fall through.  */
      /* Fall through.  */
 
 
    case MATCH_OPERATOR:
    case MATCH_OPERATOR:
    case MATCH_SCRATCH:
    case MATCH_SCRATCH:
    case MATCH_PARALLEL:
    case MATCH_PARALLEL:
      XINT (pattern, 0) += max_op;
      XINT (pattern, 0) += max_op;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  len = GET_RTX_LENGTH (code);
  len = GET_RTX_LENGTH (code);
  for (i = 0; i < len; i++)
  for (i = 0; i < len; i++)
    {
    {
      rtx r;
      rtx r;
 
 
      switch (fmt[i])
      switch (fmt[i])
        {
        {
        case 'e': case 'u':
        case 'e': case 'u':
          r = alter_predicate_for_insn (XEXP (pattern, i), alt,
          r = alter_predicate_for_insn (XEXP (pattern, i), alt,
                                        max_op, lineno);
                                        max_op, lineno);
          if (r == NULL)
          if (r == NULL)
            return r;
            return r;
          break;
          break;
 
 
        case 'E':
        case 'E':
          for (j = XVECLEN (pattern, i) - 1; j >= 0; --j)
          for (j = XVECLEN (pattern, i) - 1; j >= 0; --j)
            {
            {
              r = alter_predicate_for_insn (XVECEXP (pattern, i, j),
              r = alter_predicate_for_insn (XVECEXP (pattern, i, j),
                                            alt, max_op, lineno);
                                            alt, max_op, lineno);
              if (r == NULL)
              if (r == NULL)
                return r;
                return r;
            }
            }
          break;
          break;
 
 
        case 'i': case 'w': case '0': case 's':
        case 'i': case 'w': case '0': case 's':
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
 
 
  return pattern;
  return pattern;
}
}
 
 
static const char *
static const char *
alter_test_for_insn (struct queue_elem *ce_elem,
alter_test_for_insn (struct queue_elem *ce_elem,
                     struct queue_elem *insn_elem)
                     struct queue_elem *insn_elem)
{
{
  return join_c_conditions (XSTR (ce_elem->data, 1),
  return join_c_conditions (XSTR (ce_elem->data, 1),
                            XSTR (insn_elem->data, 2));
                            XSTR (insn_elem->data, 2));
}
}
 
 
/* Modify VAL, which is an attribute expression for the "enabled" attribute,
/* Modify VAL, which is an attribute expression for the "enabled" attribute,
   to take "ce_enabled" into account.  Return the new expression.  */
   to take "ce_enabled" into account.  Return the new expression.  */
static rtx
static rtx
modify_attr_enabled_ce (rtx val)
modify_attr_enabled_ce (rtx val)
{
{
  rtx eq_attr, str;
  rtx eq_attr, str;
  rtx ite;
  rtx ite;
  eq_attr = rtx_alloc (EQ_ATTR);
  eq_attr = rtx_alloc (EQ_ATTR);
  ite = rtx_alloc (IF_THEN_ELSE);
  ite = rtx_alloc (IF_THEN_ELSE);
  str = rtx_alloc (CONST_STRING);
  str = rtx_alloc (CONST_STRING);
 
 
  XSTR (eq_attr, 0) = "ce_enabled";
  XSTR (eq_attr, 0) = "ce_enabled";
  XSTR (eq_attr, 1) = "yes";
  XSTR (eq_attr, 1) = "yes";
  XSTR (str, 0) = "no";
  XSTR (str, 0) = "no";
  XEXP (ite, 0) = eq_attr;
  XEXP (ite, 0) = eq_attr;
  XEXP (ite, 1) = val;
  XEXP (ite, 1) = val;
  XEXP (ite, 2) = str;
  XEXP (ite, 2) = str;
 
 
  return ite;
  return ite;
}
}
 
 
/* Alter the attribute vector of INSN, which is a COND_EXEC variant created
/* Alter the attribute vector of INSN, which is a COND_EXEC variant created
   from a define_insn pattern.  We must modify the "predicable" attribute
   from a define_insn pattern.  We must modify the "predicable" attribute
   to be named "ce_enabled", and also change any "enabled" attribute that's
   to be named "ce_enabled", and also change any "enabled" attribute that's
   present so that it takes ce_enabled into account.
   present so that it takes ce_enabled into account.
   We rely on the fact that INSN was created with copy_rtx, and modify data
   We rely on the fact that INSN was created with copy_rtx, and modify data
   in-place.  */
   in-place.  */
 
 
static void
static void
alter_attrs_for_insn (rtx insn)
alter_attrs_for_insn (rtx insn)
{
{
  static bool global_changes_made = false;
  static bool global_changes_made = false;
  rtvec vec = XVEC (insn, 4);
  rtvec vec = XVEC (insn, 4);
  rtvec new_vec;
  rtvec new_vec;
  rtx val, set;
  rtx val, set;
  int num_elem;
  int num_elem;
  int predicable_idx = -1;
  int predicable_idx = -1;
  int enabled_idx = -1;
  int enabled_idx = -1;
  int i;
  int i;
 
 
  if (! vec)
  if (! vec)
    return;
    return;
 
 
  num_elem = GET_NUM_ELEM (vec);
  num_elem = GET_NUM_ELEM (vec);
  for (i = num_elem - 1; i >= 0; --i)
  for (i = num_elem - 1; i >= 0; --i)
    {
    {
      rtx sub = RTVEC_ELT (vec, i);
      rtx sub = RTVEC_ELT (vec, i);
      switch (GET_CODE (sub))
      switch (GET_CODE (sub))
        {
        {
        case SET_ATTR:
        case SET_ATTR:
          if (strcmp (XSTR (sub, 0), "predicable") == 0)
          if (strcmp (XSTR (sub, 0), "predicable") == 0)
            {
            {
              predicable_idx = i;
              predicable_idx = i;
              XSTR (sub, 0) = "ce_enabled";
              XSTR (sub, 0) = "ce_enabled";
            }
            }
          else if (strcmp (XSTR (sub, 0), "enabled") == 0)
          else if (strcmp (XSTR (sub, 0), "enabled") == 0)
            {
            {
              enabled_idx = i;
              enabled_idx = i;
              XSTR (sub, 0) = "nonce_enabled";
              XSTR (sub, 0) = "nonce_enabled";
            }
            }
          break;
          break;
 
 
        case SET_ATTR_ALTERNATIVE:
        case SET_ATTR_ALTERNATIVE:
          if (strcmp (XSTR (sub, 0), "predicable") == 0)
          if (strcmp (XSTR (sub, 0), "predicable") == 0)
            /* We already give an error elsewhere.  */
            /* We already give an error elsewhere.  */
            return;
            return;
          else if (strcmp (XSTR (sub, 0), "enabled") == 0)
          else if (strcmp (XSTR (sub, 0), "enabled") == 0)
            {
            {
              enabled_idx = i;
              enabled_idx = i;
              XSTR (sub, 0) = "nonce_enabled";
              XSTR (sub, 0) = "nonce_enabled";
            }
            }
          break;
          break;
 
 
        case SET:
        case SET:
          if (GET_CODE (SET_DEST (sub)) != ATTR)
          if (GET_CODE (SET_DEST (sub)) != ATTR)
            break;
            break;
          if (strcmp (XSTR (SET_DEST (sub), 0), "predicable") == 0)
          if (strcmp (XSTR (SET_DEST (sub), 0), "predicable") == 0)
            {
            {
              sub = SET_SRC (sub);
              sub = SET_SRC (sub);
              if (GET_CODE (sub) == CONST_STRING)
              if (GET_CODE (sub) == CONST_STRING)
                {
                {
                  predicable_idx = i;
                  predicable_idx = i;
                  XSTR (sub, 0) = "ce_enabled";
                  XSTR (sub, 0) = "ce_enabled";
                }
                }
              else
              else
                /* We already give an error elsewhere.  */
                /* We already give an error elsewhere.  */
                return;
                return;
              break;
              break;
            }
            }
          if (strcmp (XSTR (SET_DEST (sub), 0), "enabled") == 0)
          if (strcmp (XSTR (SET_DEST (sub), 0), "enabled") == 0)
            {
            {
              enabled_idx = i;
              enabled_idx = i;
              XSTR (SET_DEST (sub), 0) = "nonce_enabled";
              XSTR (SET_DEST (sub), 0) = "nonce_enabled";
            }
            }
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
  if (predicable_idx == -1)
  if (predicable_idx == -1)
    return;
    return;
 
 
  if (!global_changes_made)
  if (!global_changes_made)
    {
    {
      struct queue_elem *elem;
      struct queue_elem *elem;
 
 
      global_changes_made = true;
      global_changes_made = true;
      add_define_attr ("ce_enabled");
      add_define_attr ("ce_enabled");
      add_define_attr ("nonce_enabled");
      add_define_attr ("nonce_enabled");
 
 
      for (elem = define_attr_queue; elem ; elem = elem->next)
      for (elem = define_attr_queue; elem ; elem = elem->next)
        if (strcmp (XSTR (elem->data, 0), "enabled") == 0)
        if (strcmp (XSTR (elem->data, 0), "enabled") == 0)
          {
          {
            XEXP (elem->data, 2)
            XEXP (elem->data, 2)
              = modify_attr_enabled_ce (XEXP (elem->data, 2));
              = modify_attr_enabled_ce (XEXP (elem->data, 2));
          }
          }
    }
    }
  if (enabled_idx == -1)
  if (enabled_idx == -1)
    return;
    return;
 
 
  new_vec = rtvec_alloc (num_elem + 1);
  new_vec = rtvec_alloc (num_elem + 1);
  for (i = 0; i < num_elem; i++)
  for (i = 0; i < num_elem; i++)
    RTVEC_ELT (new_vec, i) = RTVEC_ELT (vec, i);
    RTVEC_ELT (new_vec, i) = RTVEC_ELT (vec, i);
  val = rtx_alloc (IF_THEN_ELSE);
  val = rtx_alloc (IF_THEN_ELSE);
  XEXP (val, 0) = rtx_alloc (EQ_ATTR);
  XEXP (val, 0) = rtx_alloc (EQ_ATTR);
  XEXP (val, 1) = rtx_alloc (CONST_STRING);
  XEXP (val, 1) = rtx_alloc (CONST_STRING);
  XEXP (val, 2) = rtx_alloc (CONST_STRING);
  XEXP (val, 2) = rtx_alloc (CONST_STRING);
  XSTR (XEXP (val, 0), 0) = "nonce_enabled";
  XSTR (XEXP (val, 0), 0) = "nonce_enabled";
  XSTR (XEXP (val, 0), 1) = "yes";
  XSTR (XEXP (val, 0), 1) = "yes";
  XSTR (XEXP (val, 1), 0) = "yes";
  XSTR (XEXP (val, 1), 0) = "yes";
  XSTR (XEXP (val, 2), 0) = "no";
  XSTR (XEXP (val, 2), 0) = "no";
  set = rtx_alloc (SET);
  set = rtx_alloc (SET);
  SET_DEST (set) = rtx_alloc (ATTR);
  SET_DEST (set) = rtx_alloc (ATTR);
  XSTR (SET_DEST (set), 0) = "enabled";
  XSTR (SET_DEST (set), 0) = "enabled";
  SET_SRC (set) = modify_attr_enabled_ce (val);
  SET_SRC (set) = modify_attr_enabled_ce (val);
  RTVEC_ELT (new_vec, i) = set;
  RTVEC_ELT (new_vec, i) = set;
  XVEC (insn, 4) = new_vec;
  XVEC (insn, 4) = new_vec;
}
}
 
 
/* Adjust all of the operand numbers in SRC to match the shift they'll
/* Adjust all of the operand numbers in SRC to match the shift they'll
   get from an operand displacement of DISP.  Return a pointer after the
   get from an operand displacement of DISP.  Return a pointer after the
   adjusted string.  */
   adjusted string.  */
 
 
static char *
static char *
shift_output_template (char *dest, const char *src, int disp)
shift_output_template (char *dest, const char *src, int disp)
{
{
  while (*src)
  while (*src)
    {
    {
      char c = *src++;
      char c = *src++;
      *dest++ = c;
      *dest++ = c;
      if (c == '%')
      if (c == '%')
        {
        {
          c = *src++;
          c = *src++;
          if (ISDIGIT ((unsigned char) c))
          if (ISDIGIT ((unsigned char) c))
            c += disp;
            c += disp;
          else if (ISALPHA (c))
          else if (ISALPHA (c))
            {
            {
              *dest++ = c;
              *dest++ = c;
              c = *src++ + disp;
              c = *src++ + disp;
            }
            }
          *dest++ = c;
          *dest++ = c;
        }
        }
    }
    }
 
 
  return dest;
  return dest;
}
}
 
 
static const char *
static const char *
alter_output_for_insn (struct queue_elem *ce_elem,
alter_output_for_insn (struct queue_elem *ce_elem,
                       struct queue_elem *insn_elem,
                       struct queue_elem *insn_elem,
                       int alt, int max_op)
                       int alt, int max_op)
{
{
  const char *ce_out, *insn_out;
  const char *ce_out, *insn_out;
  char *result, *p;
  char *result, *p;
  size_t len, ce_len, insn_len;
  size_t len, ce_len, insn_len;
 
 
  /* ??? Could coordinate with genoutput to not duplicate code here.  */
  /* ??? Could coordinate with genoutput to not duplicate code here.  */
 
 
  ce_out = XSTR (ce_elem->data, 2);
  ce_out = XSTR (ce_elem->data, 2);
  insn_out = XTMPL (insn_elem->data, 3);
  insn_out = XTMPL (insn_elem->data, 3);
  if (!ce_out || *ce_out == '\0')
  if (!ce_out || *ce_out == '\0')
    return insn_out;
    return insn_out;
 
 
  ce_len = strlen (ce_out);
  ce_len = strlen (ce_out);
  insn_len = strlen (insn_out);
  insn_len = strlen (insn_out);
 
 
  if (*insn_out == '*')
  if (*insn_out == '*')
    /* You must take care of the predicate yourself.  */
    /* You must take care of the predicate yourself.  */
    return insn_out;
    return insn_out;
 
 
  if (*insn_out == '@')
  if (*insn_out == '@')
    {
    {
      len = (ce_len + 1) * alt + insn_len + 1;
      len = (ce_len + 1) * alt + insn_len + 1;
      p = result = XNEWVEC(char, len);
      p = result = XNEWVEC(char, len);
 
 
      do
      do
        {
        {
          do
          do
            *p++ = *insn_out++;
            *p++ = *insn_out++;
          while (ISSPACE ((unsigned char) *insn_out));
          while (ISSPACE ((unsigned char) *insn_out));
 
 
          if (*insn_out != '#')
          if (*insn_out != '#')
            {
            {
              p = shift_output_template (p, ce_out, max_op);
              p = shift_output_template (p, ce_out, max_op);
              *p++ = ' ';
              *p++ = ' ';
            }
            }
 
 
          do
          do
            *p++ = *insn_out++;
            *p++ = *insn_out++;
          while (*insn_out && *insn_out != '\n');
          while (*insn_out && *insn_out != '\n');
        }
        }
      while (*insn_out);
      while (*insn_out);
      *p = '\0';
      *p = '\0';
    }
    }
  else
  else
    {
    {
      len = ce_len + 1 + insn_len + 1;
      len = ce_len + 1 + insn_len + 1;
      result = XNEWVEC (char, len);
      result = XNEWVEC (char, len);
 
 
      p = shift_output_template (result, ce_out, max_op);
      p = shift_output_template (result, ce_out, max_op);
      *p++ = ' ';
      *p++ = ' ';
      memcpy (p, insn_out, insn_len + 1);
      memcpy (p, insn_out, insn_len + 1);
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* Replicate insns as appropriate for the given DEFINE_COND_EXEC.  */
/* Replicate insns as appropriate for the given DEFINE_COND_EXEC.  */
 
 
static void
static void
process_one_cond_exec (struct queue_elem *ce_elem)
process_one_cond_exec (struct queue_elem *ce_elem)
{
{
  struct queue_elem *insn_elem;
  struct queue_elem *insn_elem;
  for (insn_elem = define_insn_queue; insn_elem ; insn_elem = insn_elem->next)
  for (insn_elem = define_insn_queue; insn_elem ; insn_elem = insn_elem->next)
    {
    {
      int alternatives, max_operand;
      int alternatives, max_operand;
      rtx pred, insn, pattern, split;
      rtx pred, insn, pattern, split;
      char *new_name;
      char *new_name;
      int i;
      int i;
 
 
      if (! is_predicable (insn_elem))
      if (! is_predicable (insn_elem))
        continue;
        continue;
 
 
      alternatives = 1;
      alternatives = 1;
      max_operand = -1;
      max_operand = -1;
      collect_insn_data (insn_elem->data, &alternatives, &max_operand);
      collect_insn_data (insn_elem->data, &alternatives, &max_operand);
      max_operand += 1;
      max_operand += 1;
 
 
      if (XVECLEN (ce_elem->data, 0) != 1)
      if (XVECLEN (ce_elem->data, 0) != 1)
        {
        {
          error_with_line (ce_elem->lineno, "too many patterns in predicate");
          error_with_line (ce_elem->lineno, "too many patterns in predicate");
          return;
          return;
        }
        }
 
 
      pred = copy_rtx (XVECEXP (ce_elem->data, 0, 0));
      pred = copy_rtx (XVECEXP (ce_elem->data, 0, 0));
      pred = alter_predicate_for_insn (pred, alternatives, max_operand,
      pred = alter_predicate_for_insn (pred, alternatives, max_operand,
                                       ce_elem->lineno);
                                       ce_elem->lineno);
      if (pred == NULL)
      if (pred == NULL)
        return;
        return;
 
 
      /* Construct a new pattern for the new insn.  */
      /* Construct a new pattern for the new insn.  */
      insn = copy_rtx (insn_elem->data);
      insn = copy_rtx (insn_elem->data);
      new_name = XNEWVAR (char, strlen XSTR (insn_elem->data, 0) + 4);
      new_name = XNEWVAR (char, strlen XSTR (insn_elem->data, 0) + 4);
      sprintf (new_name, "*p %s", XSTR (insn_elem->data, 0));
      sprintf (new_name, "*p %s", XSTR (insn_elem->data, 0));
      XSTR (insn, 0) = new_name;
      XSTR (insn, 0) = new_name;
      pattern = rtx_alloc (COND_EXEC);
      pattern = rtx_alloc (COND_EXEC);
      XEXP (pattern, 0) = pred;
      XEXP (pattern, 0) = pred;
      if (XVECLEN (insn, 1) == 1)
      if (XVECLEN (insn, 1) == 1)
        {
        {
          XEXP (pattern, 1) = XVECEXP (insn, 1, 0);
          XEXP (pattern, 1) = XVECEXP (insn, 1, 0);
          XVECEXP (insn, 1, 0) = pattern;
          XVECEXP (insn, 1, 0) = pattern;
          PUT_NUM_ELEM (XVEC (insn, 1), 1);
          PUT_NUM_ELEM (XVEC (insn, 1), 1);
        }
        }
      else
      else
        {
        {
          XEXP (pattern, 1) = rtx_alloc (PARALLEL);
          XEXP (pattern, 1) = rtx_alloc (PARALLEL);
          XVEC (XEXP (pattern, 1), 0) = XVEC (insn, 1);
          XVEC (XEXP (pattern, 1), 0) = XVEC (insn, 1);
          XVEC (insn, 1) = rtvec_alloc (1);
          XVEC (insn, 1) = rtvec_alloc (1);
          XVECEXP (insn, 1, 0) = pattern;
          XVECEXP (insn, 1, 0) = pattern;
        }
        }
 
 
      XSTR (insn, 2) = alter_test_for_insn (ce_elem, insn_elem);
      XSTR (insn, 2) = alter_test_for_insn (ce_elem, insn_elem);
      XTMPL (insn, 3) = alter_output_for_insn (ce_elem, insn_elem,
      XTMPL (insn, 3) = alter_output_for_insn (ce_elem, insn_elem,
                                              alternatives, max_operand);
                                              alternatives, max_operand);
      alter_attrs_for_insn (insn);
      alter_attrs_for_insn (insn);
 
 
      /* Put the new pattern on the `other' list so that it
      /* Put the new pattern on the `other' list so that it
         (a) is not reprocessed by other define_cond_exec patterns
         (a) is not reprocessed by other define_cond_exec patterns
         (b) appears after all normal define_insn patterns.
         (b) appears after all normal define_insn patterns.
 
 
         ??? B is debatable.  If one has normal insns that match
         ??? B is debatable.  If one has normal insns that match
         cond_exec patterns, they will be preferred over these
         cond_exec patterns, they will be preferred over these
         generated patterns.  Whether this matters in practice, or if
         generated patterns.  Whether this matters in practice, or if
         it's a good thing, or whether we should thread these new
         it's a good thing, or whether we should thread these new
         patterns into the define_insn chain just after their generator
         patterns into the define_insn chain just after their generator
         is something we'll have to experiment with.  */
         is something we'll have to experiment with.  */
 
 
      queue_pattern (insn, &other_tail, insn_elem->filename,
      queue_pattern (insn, &other_tail, insn_elem->filename,
                     insn_elem->lineno);
                     insn_elem->lineno);
 
 
      if (!insn_elem->split)
      if (!insn_elem->split)
        continue;
        continue;
 
 
      /* If the original insn came from a define_insn_and_split,
      /* If the original insn came from a define_insn_and_split,
         generate a new split to handle the predicated insn.  */
         generate a new split to handle the predicated insn.  */
      split = copy_rtx (insn_elem->split->data);
      split = copy_rtx (insn_elem->split->data);
      /* Predicate the pattern matched by the split.  */
      /* Predicate the pattern matched by the split.  */
      pattern = rtx_alloc (COND_EXEC);
      pattern = rtx_alloc (COND_EXEC);
      XEXP (pattern, 0) = pred;
      XEXP (pattern, 0) = pred;
      if (XVECLEN (split, 0) == 1)
      if (XVECLEN (split, 0) == 1)
        {
        {
          XEXP (pattern, 1) = XVECEXP (split, 0, 0);
          XEXP (pattern, 1) = XVECEXP (split, 0, 0);
          XVECEXP (split, 0, 0) = pattern;
          XVECEXP (split, 0, 0) = pattern;
          PUT_NUM_ELEM (XVEC (split, 0), 1);
          PUT_NUM_ELEM (XVEC (split, 0), 1);
        }
        }
      else
      else
        {
        {
          XEXP (pattern, 1) = rtx_alloc (PARALLEL);
          XEXP (pattern, 1) = rtx_alloc (PARALLEL);
          XVEC (XEXP (pattern, 1), 0) = XVEC (split, 0);
          XVEC (XEXP (pattern, 1), 0) = XVEC (split, 0);
          XVEC (split, 0) = rtvec_alloc (1);
          XVEC (split, 0) = rtvec_alloc (1);
          XVECEXP (split, 0, 0) = pattern;
          XVECEXP (split, 0, 0) = pattern;
        }
        }
      /* Predicate all of the insns generated by the split.  */
      /* Predicate all of the insns generated by the split.  */
      for (i = 0; i < XVECLEN (split, 2); i++)
      for (i = 0; i < XVECLEN (split, 2); i++)
        {
        {
          pattern = rtx_alloc (COND_EXEC);
          pattern = rtx_alloc (COND_EXEC);
          XEXP (pattern, 0) = pred;
          XEXP (pattern, 0) = pred;
          XEXP (pattern, 1) = XVECEXP (split, 2, i);
          XEXP (pattern, 1) = XVECEXP (split, 2, i);
          XVECEXP (split, 2, i) = pattern;
          XVECEXP (split, 2, i) = pattern;
        }
        }
      /* Add the new split to the queue.  */
      /* Add the new split to the queue.  */
      queue_pattern (split, &other_tail, read_md_filename,
      queue_pattern (split, &other_tail, read_md_filename,
                     insn_elem->split->lineno);
                     insn_elem->split->lineno);
    }
    }
}
}
 
 
/* If we have any DEFINE_COND_EXEC patterns, expand the DEFINE_INSN
/* If we have any DEFINE_COND_EXEC patterns, expand the DEFINE_INSN
   patterns appropriately.  */
   patterns appropriately.  */
 
 
static void
static void
process_define_cond_exec (void)
process_define_cond_exec (void)
{
{
  struct queue_elem *elem;
  struct queue_elem *elem;
 
 
  identify_predicable_attribute ();
  identify_predicable_attribute ();
  if (have_error)
  if (have_error)
    return;
    return;
 
 
  for (elem = define_cond_exec_queue; elem ; elem = elem->next)
  for (elem = define_cond_exec_queue; elem ; elem = elem->next)
    process_one_cond_exec (elem);
    process_one_cond_exec (elem);
}
}


/* A read_md_files callback for reading an rtx.  */
/* A read_md_files callback for reading an rtx.  */
 
 
static void
static void
rtx_handle_directive (int lineno, const char *rtx_name)
rtx_handle_directive (int lineno, const char *rtx_name)
{
{
  rtx queue, x;
  rtx queue, x;
 
 
  if (read_rtx (rtx_name, &queue))
  if (read_rtx (rtx_name, &queue))
    for (x = queue; x; x = XEXP (x, 1))
    for (x = queue; x; x = XEXP (x, 1))
      process_rtx (XEXP (x, 0), lineno);
      process_rtx (XEXP (x, 0), lineno);
}
}
 
 
/* Comparison function for the mnemonic hash table.  */
/* Comparison function for the mnemonic hash table.  */
 
 
static int
static int
htab_eq_string (const void *s1, const void *s2)
htab_eq_string (const void *s1, const void *s2)
{
{
  return strcmp ((const char*)s1, (const char*)s2) == 0;
  return strcmp ((const char*)s1, (const char*)s2) == 0;
}
}
 
 
/* Add mnemonic STR with length LEN to the mnemonic hash table
/* Add mnemonic STR with length LEN to the mnemonic hash table
   MNEMONIC_HTAB.  A trailing zero end character is appendend to STR
   MNEMONIC_HTAB.  A trailing zero end character is appendend to STR
   and a permanent heap copy of STR is created.  */
   and a permanent heap copy of STR is created.  */
 
 
static void
static void
add_mnemonic_string (htab_t mnemonic_htab, const char *str, int len)
add_mnemonic_string (htab_t mnemonic_htab, const char *str, int len)
{
{
  char *new_str;
  char *new_str;
  void **slot;
  void **slot;
  char *str_zero = (char*)alloca (len + 1);
  char *str_zero = (char*)alloca (len + 1);
 
 
  memcpy (str_zero, str, len);
  memcpy (str_zero, str, len);
  str_zero[len] = '\0';
  str_zero[len] = '\0';
 
 
  slot = htab_find_slot (mnemonic_htab, str_zero, INSERT);
  slot = htab_find_slot (mnemonic_htab, str_zero, INSERT);
 
 
  if (*slot)
  if (*slot)
    return;
    return;
 
 
  /* Not found; create a permanent copy and add it to the hash table.  */
  /* Not found; create a permanent copy and add it to the hash table.  */
  new_str = XNEWVAR (char, len + 1);
  new_str = XNEWVAR (char, len + 1);
  memcpy (new_str, str_zero, len + 1);
  memcpy (new_str, str_zero, len + 1);
  *slot = new_str;
  *slot = new_str;
}
}
 
 
/* Scan INSN for mnemonic strings and add them to the mnemonic hash
/* Scan INSN for mnemonic strings and add them to the mnemonic hash
   table in MNEMONIC_HTAB.
   table in MNEMONIC_HTAB.
 
 
   The mnemonics cannot be found if they are emitted using C code.
   The mnemonics cannot be found if they are emitted using C code.
 
 
   If a mnemonic string contains ';' or a newline the string assumed
   If a mnemonic string contains ';' or a newline the string assumed
   to consist of more than a single instruction.  The attribute value
   to consist of more than a single instruction.  The attribute value
   will then be set to the user defined default value.  */
   will then be set to the user defined default value.  */
 
 
static void
static void
gen_mnemonic_setattr (htab_t mnemonic_htab, rtx insn)
gen_mnemonic_setattr (htab_t mnemonic_htab, rtx insn)
{
{
  const char *template_code, *cp;
  const char *template_code, *cp;
  int i;
  int i;
  int vec_len;
  int vec_len;
  rtx set_attr;
  rtx set_attr;
  char *attr_name;
  char *attr_name;
  rtvec new_vec;
  rtvec new_vec;
 
 
  template_code = XTMPL (insn, 3);
  template_code = XTMPL (insn, 3);
 
 
  /* Skip patterns which use C code to emit the template.  */
  /* Skip patterns which use C code to emit the template.  */
  if (template_code[0] == '*')
  if (template_code[0] == '*')
    return;
    return;
 
 
  if (template_code[0] == '@')
  if (template_code[0] == '@')
    cp = &template_code[1];
    cp = &template_code[1];
  else
  else
    cp = &template_code[0];
    cp = &template_code[0];
 
 
  for (i = 0; *cp; )
  for (i = 0; *cp; )
    {
    {
      const char *ep, *sp;
      const char *ep, *sp;
      int size = 0;
      int size = 0;
 
 
      while (ISSPACE (*cp))
      while (ISSPACE (*cp))
        cp++;
        cp++;
 
 
      for (ep = sp = cp; !IS_VSPACE (*ep) && *ep != '\0'; ++ep)
      for (ep = sp = cp; !IS_VSPACE (*ep) && *ep != '\0'; ++ep)
        if (!ISSPACE (*ep))
        if (!ISSPACE (*ep))
          sp = ep + 1;
          sp = ep + 1;
 
 
      if (i > 0)
      if (i > 0)
        obstack_1grow (&string_obstack, ',');
        obstack_1grow (&string_obstack, ',');
 
 
      while (cp < sp && ((*cp >= '0' && *cp <= '9')
      while (cp < sp && ((*cp >= '0' && *cp <= '9')
                         || (*cp >= 'a' && *cp <= 'z')))
                         || (*cp >= 'a' && *cp <= 'z')))
 
 
        {
        {
          obstack_1grow (&string_obstack, *cp);
          obstack_1grow (&string_obstack, *cp);
          cp++;
          cp++;
          size++;
          size++;
        }
        }
 
 
      while (cp < sp)
      while (cp < sp)
        {
        {
          if (*cp == ';' || (*cp == '\\' && cp[1] == 'n'))
          if (*cp == ';' || (*cp == '\\' && cp[1] == 'n'))
            {
            {
              /* Don't set a value if there are more than one
              /* Don't set a value if there are more than one
                 instruction in the string.  */
                 instruction in the string.  */
              obstack_next_free (&string_obstack) =
              obstack_next_free (&string_obstack) =
                obstack_next_free (&string_obstack) - size;
                obstack_next_free (&string_obstack) - size;
              size = 0;
              size = 0;
 
 
              cp = sp;
              cp = sp;
              break;
              break;
            }
            }
          cp++;
          cp++;
        }
        }
      if (size == 0)
      if (size == 0)
        obstack_1grow (&string_obstack, '*');
        obstack_1grow (&string_obstack, '*');
      else
      else
        add_mnemonic_string (mnemonic_htab,
        add_mnemonic_string (mnemonic_htab,
                             obstack_next_free (&string_obstack) - size,
                             obstack_next_free (&string_obstack) - size,
                             size);
                             size);
      i++;
      i++;
    }
    }
 
 
  /* An insn definition might emit an empty string.  */
  /* An insn definition might emit an empty string.  */
  if (obstack_object_size (&string_obstack) == 0)
  if (obstack_object_size (&string_obstack) == 0)
    return;
    return;
 
 
  obstack_1grow (&string_obstack, '\0');
  obstack_1grow (&string_obstack, '\0');
 
 
  set_attr = rtx_alloc (SET_ATTR);
  set_attr = rtx_alloc (SET_ATTR);
  XSTR (set_attr, 1) = XOBFINISH (&string_obstack, char *);
  XSTR (set_attr, 1) = XOBFINISH (&string_obstack, char *);
  attr_name = XNEWVAR (char, strlen (MNEMONIC_ATTR_NAME) + 1);
  attr_name = XNEWVAR (char, strlen (MNEMONIC_ATTR_NAME) + 1);
  strcpy (attr_name, MNEMONIC_ATTR_NAME);
  strcpy (attr_name, MNEMONIC_ATTR_NAME);
  XSTR (set_attr, 0) = attr_name;
  XSTR (set_attr, 0) = attr_name;
 
 
  if (!XVEC (insn, 4))
  if (!XVEC (insn, 4))
    vec_len = 0;
    vec_len = 0;
  else
  else
    vec_len = XVECLEN (insn, 4);
    vec_len = XVECLEN (insn, 4);
 
 
  new_vec = rtvec_alloc (vec_len + 1);
  new_vec = rtvec_alloc (vec_len + 1);
  for (i = 0; i < vec_len; i++)
  for (i = 0; i < vec_len; i++)
    RTVEC_ELT (new_vec, i) = XVECEXP (insn, 4, i);
    RTVEC_ELT (new_vec, i) = XVECEXP (insn, 4, i);
  RTVEC_ELT (new_vec, vec_len) = set_attr;
  RTVEC_ELT (new_vec, vec_len) = set_attr;
  XVEC (insn, 4) = new_vec;
  XVEC (insn, 4) = new_vec;
}
}
 
 
/* This function is called for the elements in the mnemonic hashtable
/* This function is called for the elements in the mnemonic hashtable
   and generates a comma separated list of the mnemonics.  */
   and generates a comma separated list of the mnemonics.  */
 
 
static int
static int
mnemonic_htab_callback (void **slot, void *info ATTRIBUTE_UNUSED)
mnemonic_htab_callback (void **slot, void *info ATTRIBUTE_UNUSED)
{
{
  obstack_grow (&string_obstack, (char*)*slot, strlen ((char*)*slot));
  obstack_grow (&string_obstack, (char*)*slot, strlen ((char*)*slot));
  obstack_1grow (&string_obstack, ',');
  obstack_1grow (&string_obstack, ',');
  return 1;
  return 1;
}
}
 
 
/* Generate (set_attr "mnemonic" "..") RTXs and append them to every
/* Generate (set_attr "mnemonic" "..") RTXs and append them to every
   insn definition in case the back end requests it by defining the
   insn definition in case the back end requests it by defining the
   mnemonic attribute.  The values for the attribute will be extracted
   mnemonic attribute.  The values for the attribute will be extracted
   from the output patterns of the insn definitions as far as
   from the output patterns of the insn definitions as far as
   possible.  */
   possible.  */
 
 
static void
static void
gen_mnemonic_attr (void)
gen_mnemonic_attr (void)
{
{
  struct queue_elem *elem;
  struct queue_elem *elem;
  rtx mnemonic_attr = NULL;
  rtx mnemonic_attr = NULL;
  htab_t mnemonic_htab;
  htab_t mnemonic_htab;
  const char *str, *p;
  const char *str, *p;
  int i;
  int i;
 
 
  if (have_error)
  if (have_error)
    return;
    return;
 
 
  /* Look for the DEFINE_ATTR for `mnemonic'.  */
  /* Look for the DEFINE_ATTR for `mnemonic'.  */
  for (elem = define_attr_queue; elem != *define_attr_tail; elem = elem->next)
  for (elem = define_attr_queue; elem != *define_attr_tail; elem = elem->next)
    if (GET_CODE (elem->data) == DEFINE_ATTR
    if (GET_CODE (elem->data) == DEFINE_ATTR
        && strcmp (XSTR (elem->data, 0), MNEMONIC_ATTR_NAME) == 0)
        && strcmp (XSTR (elem->data, 0), MNEMONIC_ATTR_NAME) == 0)
      {
      {
        mnemonic_attr = elem->data;
        mnemonic_attr = elem->data;
        break;
        break;
      }
      }
 
 
  /* A (define_attr "mnemonic" "...") indicates that the back-end
  /* A (define_attr "mnemonic" "...") indicates that the back-end
     wants a mnemonic attribute to be generated.  */
     wants a mnemonic attribute to be generated.  */
  if (!mnemonic_attr)
  if (!mnemonic_attr)
    return;
    return;
 
 
  mnemonic_htab = htab_create_alloc (MNEMONIC_HTAB_SIZE, htab_hash_string,
  mnemonic_htab = htab_create_alloc (MNEMONIC_HTAB_SIZE, htab_hash_string,
                                     htab_eq_string, 0, xcalloc, free);
                                     htab_eq_string, 0, xcalloc, free);
 
 
  for (elem = define_insn_queue; elem; elem = elem->next)
  for (elem = define_insn_queue; elem; elem = elem->next)
    {
    {
      rtx insn = elem->data;
      rtx insn = elem->data;
      bool found = false;
      bool found = false;
 
 
      /* Check if the insn definition already has
      /* Check if the insn definition already has
         (set_attr "mnemonic" ...).  */
         (set_attr "mnemonic" ...).  */
      if (XVEC (insn, 4))
      if (XVEC (insn, 4))
        for (i = 0; i < XVECLEN (insn, 4); i++)
        for (i = 0; i < XVECLEN (insn, 4); i++)
          if (strcmp (XSTR (XVECEXP (insn, 4, i), 0), MNEMONIC_ATTR_NAME) == 0)
          if (strcmp (XSTR (XVECEXP (insn, 4, i), 0), MNEMONIC_ATTR_NAME) == 0)
            {
            {
              found = true;
              found = true;
              break;
              break;
            }
            }
 
 
      if (!found)
      if (!found)
        gen_mnemonic_setattr (mnemonic_htab, insn);
        gen_mnemonic_setattr (mnemonic_htab, insn);
    }
    }
 
 
  /* Add the user defined values to the hash table.  */
  /* Add the user defined values to the hash table.  */
  str = XSTR (mnemonic_attr, 1);
  str = XSTR (mnemonic_attr, 1);
  while ((p = scan_comma_elt (&str)) != NULL)
  while ((p = scan_comma_elt (&str)) != NULL)
    add_mnemonic_string (mnemonic_htab, p, str - p);
    add_mnemonic_string (mnemonic_htab, p, str - p);
 
 
  htab_traverse (mnemonic_htab, mnemonic_htab_callback, NULL);
  htab_traverse (mnemonic_htab, mnemonic_htab_callback, NULL);
 
 
  /* Replace the last ',' with the zero end character.  */
  /* Replace the last ',' with the zero end character.  */
  *((char *)obstack_next_free (&string_obstack) - 1) = '\0';
  *((char *)obstack_next_free (&string_obstack) - 1) = '\0';
  XSTR (mnemonic_attr, 1) = XOBFINISH (&string_obstack, char *);
  XSTR (mnemonic_attr, 1) = XOBFINISH (&string_obstack, char *);
}
}
 
 
/* The entry point for initializing the reader.  */
/* The entry point for initializing the reader.  */
 
 
bool
bool
init_rtx_reader_args_cb (int argc, char **argv,
init_rtx_reader_args_cb (int argc, char **argv,
                         bool (*parse_opt) (const char *))
                         bool (*parse_opt) (const char *))
{
{
  /* Prepare to read input.  */
  /* Prepare to read input.  */
  condition_table = htab_create (500, hash_c_test, cmp_c_test, NULL);
  condition_table = htab_create (500, hash_c_test, cmp_c_test, NULL);
  init_predicate_table ();
  init_predicate_table ();
  obstack_init (rtl_obstack);
  obstack_init (rtl_obstack);
  sequence_num = 0;
  sequence_num = 0;
 
 
  read_md_files (argc, argv, parse_opt, rtx_handle_directive);
  read_md_files (argc, argv, parse_opt, rtx_handle_directive);
 
 
  /* Process define_cond_exec patterns.  */
  /* Process define_cond_exec patterns.  */
  if (define_cond_exec_queue != NULL)
  if (define_cond_exec_queue != NULL)
    process_define_cond_exec ();
    process_define_cond_exec ();
 
 
  if (define_attr_queue != NULL)
  if (define_attr_queue != NULL)
    gen_mnemonic_attr ();
    gen_mnemonic_attr ();
 
 
  return !have_error;
  return !have_error;
}
}
 
 
/* Programs that don't have their own options can use this entry point
/* Programs that don't have their own options can use this entry point
   instead.  */
   instead.  */
bool
bool
init_rtx_reader_args (int argc, char **argv)
init_rtx_reader_args (int argc, char **argv)
{
{
  return init_rtx_reader_args_cb (argc, argv, 0);
  return init_rtx_reader_args_cb (argc, argv, 0);
}
}


/* The entry point for reading a single rtx from an md file.  */
/* The entry point for reading a single rtx from an md file.  */
 
 
rtx
rtx
read_md_rtx (int *lineno, int *seqnr)
read_md_rtx (int *lineno, int *seqnr)
{
{
  struct queue_elem **queue, *elem;
  struct queue_elem **queue, *elem;
  rtx desc;
  rtx desc;
 
 
 discard:
 discard:
 
 
  /* Read all patterns from a given queue before moving on to the next.  */
  /* Read all patterns from a given queue before moving on to the next.  */
  if (define_attr_queue != NULL)
  if (define_attr_queue != NULL)
    queue = &define_attr_queue;
    queue = &define_attr_queue;
  else if (define_pred_queue != NULL)
  else if (define_pred_queue != NULL)
    queue = &define_pred_queue;
    queue = &define_pred_queue;
  else if (define_insn_queue != NULL)
  else if (define_insn_queue != NULL)
    queue = &define_insn_queue;
    queue = &define_insn_queue;
  else if (other_queue != NULL)
  else if (other_queue != NULL)
    queue = &other_queue;
    queue = &other_queue;
  else
  else
    return NULL_RTX;
    return NULL_RTX;
 
 
  elem = *queue;
  elem = *queue;
  *queue = elem->next;
  *queue = elem->next;
  desc = elem->data;
  desc = elem->data;
  read_md_filename = elem->filename;
  read_md_filename = elem->filename;
  *lineno = elem->lineno;
  *lineno = elem->lineno;
  *seqnr = sequence_num;
  *seqnr = sequence_num;
 
 
  free (elem);
  free (elem);
 
 
  /* Discard insn patterns which we know can never match (because
  /* Discard insn patterns which we know can never match (because
     their C test is provably always false).  If insn_elision is
     their C test is provably always false).  If insn_elision is
     false, our caller needs to see all the patterns.  Note that the
     false, our caller needs to see all the patterns.  Note that the
     elided patterns are never counted by the sequence numbering; it
     elided patterns are never counted by the sequence numbering; it
     is the caller's responsibility, when insn_elision is false, not
     is the caller's responsibility, when insn_elision is false, not
     to use elided pattern numbers for anything.  */
     to use elided pattern numbers for anything.  */
  switch (GET_CODE (desc))
  switch (GET_CODE (desc))
    {
    {
    case DEFINE_INSN:
    case DEFINE_INSN:
    case DEFINE_EXPAND:
    case DEFINE_EXPAND:
      if (maybe_eval_c_test (XSTR (desc, 2)) != 0)
      if (maybe_eval_c_test (XSTR (desc, 2)) != 0)
        sequence_num++;
        sequence_num++;
      else if (insn_elision)
      else if (insn_elision)
        goto discard;
        goto discard;
 
 
      /* *seqnr is used here so the name table will match caller's
      /* *seqnr is used here so the name table will match caller's
         idea of insn numbering, whether or not elision is active.  */
         idea of insn numbering, whether or not elision is active.  */
      record_insn_name (*seqnr, XSTR (desc, 0));
      record_insn_name (*seqnr, XSTR (desc, 0));
      break;
      break;
 
 
    case DEFINE_SPLIT:
    case DEFINE_SPLIT:
    case DEFINE_PEEPHOLE:
    case DEFINE_PEEPHOLE:
    case DEFINE_PEEPHOLE2:
    case DEFINE_PEEPHOLE2:
      if (maybe_eval_c_test (XSTR (desc, 1)) != 0)
      if (maybe_eval_c_test (XSTR (desc, 1)) != 0)
        sequence_num++;
        sequence_num++;
      else if (insn_elision)
      else if (insn_elision)
            goto discard;
            goto discard;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return desc;
  return desc;
}
}
 
 
/* Helper functions for insn elision.  */
/* Helper functions for insn elision.  */
 
 
/* Compute a hash function of a c_test structure, which is keyed
/* Compute a hash function of a c_test structure, which is keyed
   by its ->expr field.  */
   by its ->expr field.  */
hashval_t
hashval_t
hash_c_test (const void *x)
hash_c_test (const void *x)
{
{
  const struct c_test *a = (const struct c_test *) x;
  const struct c_test *a = (const struct c_test *) x;
  const unsigned char *base, *s = (const unsigned char *) a->expr;
  const unsigned char *base, *s = (const unsigned char *) a->expr;
  hashval_t hash;
  hashval_t hash;
  unsigned char c;
  unsigned char c;
  unsigned int len;
  unsigned int len;
 
 
  base = s;
  base = s;
  hash = 0;
  hash = 0;
 
 
  while ((c = *s++) != '\0')
  while ((c = *s++) != '\0')
    {
    {
      hash += c + (c << 17);
      hash += c + (c << 17);
      hash ^= hash >> 2;
      hash ^= hash >> 2;
    }
    }
 
 
  len = s - base;
  len = s - base;
  hash += len + (len << 17);
  hash += len + (len << 17);
  hash ^= hash >> 2;
  hash ^= hash >> 2;
 
 
  return hash;
  return hash;
}
}
 
 
/* Compare two c_test expression structures.  */
/* Compare two c_test expression structures.  */
int
int
cmp_c_test (const void *x, const void *y)
cmp_c_test (const void *x, const void *y)
{
{
  const struct c_test *a = (const struct c_test *) x;
  const struct c_test *a = (const struct c_test *) x;
  const struct c_test *b = (const struct c_test *) y;
  const struct c_test *b = (const struct c_test *) y;
 
 
  return !strcmp (a->expr, b->expr);
  return !strcmp (a->expr, b->expr);
}
}
 
 
/* Given a string representing a C test expression, look it up in the
/* Given a string representing a C test expression, look it up in the
   condition_table and report whether or not its value is known
   condition_table and report whether or not its value is known
   at compile time.  Returns a tristate: 1 for known true, 0 for
   at compile time.  Returns a tristate: 1 for known true, 0 for
   known false, -1 for unknown.  */
   known false, -1 for unknown.  */
int
int
maybe_eval_c_test (const char *expr)
maybe_eval_c_test (const char *expr)
{
{
  const struct c_test *test;
  const struct c_test *test;
  struct c_test dummy;
  struct c_test dummy;
 
 
  if (expr[0] == 0)
  if (expr[0] == 0)
    return 1;
    return 1;
 
 
  dummy.expr = expr;
  dummy.expr = expr;
  test = (const struct c_test *)htab_find (condition_table, &dummy);
  test = (const struct c_test *)htab_find (condition_table, &dummy);
  if (!test)
  if (!test)
    return -1;
    return -1;
  return test->value;
  return test->value;
}
}
 
 
/* Record the C test expression EXPR in the condition_table, with
/* Record the C test expression EXPR in the condition_table, with
   value VAL.  Duplicates clobber previous entries.  */
   value VAL.  Duplicates clobber previous entries.  */
 
 
void
void
add_c_test (const char *expr, int value)
add_c_test (const char *expr, int value)
{
{
  struct c_test *test;
  struct c_test *test;
 
 
  if (expr[0] == 0)
  if (expr[0] == 0)
    return;
    return;
 
 
  test = XNEW (struct c_test);
  test = XNEW (struct c_test);
  test->expr = expr;
  test->expr = expr;
  test->value = value;
  test->value = value;
 
 
  *(htab_find_slot (condition_table, test, INSERT)) = test;
  *(htab_find_slot (condition_table, test, INSERT)) = test;
}
}
 
 
/* For every C test, call CALLBACK with two arguments: a pointer to
/* For every C test, call CALLBACK with two arguments: a pointer to
   the condition structure and INFO.  Stops when CALLBACK returns zero.  */
   the condition structure and INFO.  Stops when CALLBACK returns zero.  */
void
void
traverse_c_tests (htab_trav callback, void *info)
traverse_c_tests (htab_trav callback, void *info)
{
{
  if (condition_table)
  if (condition_table)
    htab_traverse (condition_table, callback, info);
    htab_traverse (condition_table, callback, info);
}
}
 
 
/* Helper functions for define_predicate and define_special_predicate
/* Helper functions for define_predicate and define_special_predicate
   processing.  Shared between genrecog.c and genpreds.c.  */
   processing.  Shared between genrecog.c and genpreds.c.  */
 
 
static htab_t predicate_table;
static htab_t predicate_table;
struct pred_data *first_predicate;
struct pred_data *first_predicate;
static struct pred_data **last_predicate = &first_predicate;
static struct pred_data **last_predicate = &first_predicate;
 
 
static hashval_t
static hashval_t
hash_struct_pred_data (const void *ptr)
hash_struct_pred_data (const void *ptr)
{
{
  return htab_hash_string (((const struct pred_data *)ptr)->name);
  return htab_hash_string (((const struct pred_data *)ptr)->name);
}
}
 
 
static int
static int
eq_struct_pred_data (const void *a, const void *b)
eq_struct_pred_data (const void *a, const void *b)
{
{
  return !strcmp (((const struct pred_data *)a)->name,
  return !strcmp (((const struct pred_data *)a)->name,
                  ((const struct pred_data *)b)->name);
                  ((const struct pred_data *)b)->name);
}
}
 
 
struct pred_data *
struct pred_data *
lookup_predicate (const char *name)
lookup_predicate (const char *name)
{
{
  struct pred_data key;
  struct pred_data key;
  key.name = name;
  key.name = name;
  return (struct pred_data *) htab_find (predicate_table, &key);
  return (struct pred_data *) htab_find (predicate_table, &key);
}
}
 
 
/* Record that predicate PRED can accept CODE.  */
/* Record that predicate PRED can accept CODE.  */
 
 
void
void
add_predicate_code (struct pred_data *pred, enum rtx_code code)
add_predicate_code (struct pred_data *pred, enum rtx_code code)
{
{
  if (!pred->codes[code])
  if (!pred->codes[code])
    {
    {
      pred->num_codes++;
      pred->num_codes++;
      pred->codes[code] = true;
      pred->codes[code] = true;
 
 
      if (GET_RTX_CLASS (code) != RTX_CONST_OBJ)
      if (GET_RTX_CLASS (code) != RTX_CONST_OBJ)
        pred->allows_non_const = true;
        pred->allows_non_const = true;
 
 
      if (code != REG
      if (code != REG
          && code != SUBREG
          && code != SUBREG
          && code != MEM
          && code != MEM
          && code != CONCAT
          && code != CONCAT
          && code != PARALLEL
          && code != PARALLEL
          && code != STRICT_LOW_PART)
          && code != STRICT_LOW_PART)
        pred->allows_non_lvalue = true;
        pred->allows_non_lvalue = true;
 
 
      if (pred->num_codes == 1)
      if (pred->num_codes == 1)
        pred->singleton = code;
        pred->singleton = code;
      else if (pred->num_codes == 2)
      else if (pred->num_codes == 2)
        pred->singleton = UNKNOWN;
        pred->singleton = UNKNOWN;
    }
    }
}
}
 
 
void
void
add_predicate (struct pred_data *pred)
add_predicate (struct pred_data *pred)
{
{
  void **slot = htab_find_slot (predicate_table, pred, INSERT);
  void **slot = htab_find_slot (predicate_table, pred, INSERT);
  if (*slot)
  if (*slot)
    {
    {
      error ("duplicate predicate definition for '%s'", pred->name);
      error ("duplicate predicate definition for '%s'", pred->name);
      return;
      return;
    }
    }
  *slot = pred;
  *slot = pred;
  *last_predicate = pred;
  *last_predicate = pred;
  last_predicate = &pred->next;
  last_predicate = &pred->next;
}
}
 
 
/* This array gives the initial content of the predicate table.  It
/* This array gives the initial content of the predicate table.  It
   has entries for all predicates defined in recog.c.  */
   has entries for all predicates defined in recog.c.  */
 
 
struct std_pred_table
struct std_pred_table
{
{
  const char *name;
  const char *name;
  bool special;
  bool special;
  bool allows_const_p;
  bool allows_const_p;
  RTX_CODE codes[NUM_RTX_CODE];
  RTX_CODE codes[NUM_RTX_CODE];
};
};
 
 
static const struct std_pred_table std_preds[] = {
static const struct std_pred_table std_preds[] = {
  {"general_operand", false, true, {SUBREG, REG, MEM}},
  {"general_operand", false, true, {SUBREG, REG, MEM}},
  {"address_operand", true, true, {SUBREG, REG, MEM, PLUS, MINUS, MULT}},
  {"address_operand", true, true, {SUBREG, REG, MEM, PLUS, MINUS, MULT}},
  {"register_operand", false, false, {SUBREG, REG}},
  {"register_operand", false, false, {SUBREG, REG}},
  {"pmode_register_operand", true, false, {SUBREG, REG}},
  {"pmode_register_operand", true, false, {SUBREG, REG}},
  {"scratch_operand", false, false, {SCRATCH, REG}},
  {"scratch_operand", false, false, {SCRATCH, REG}},
  {"immediate_operand", false, true, {UNKNOWN}},
  {"immediate_operand", false, true, {UNKNOWN}},
  {"const_int_operand", false, false, {CONST_INT}},
  {"const_int_operand", false, false, {CONST_INT}},
  {"const_double_operand", false, false, {CONST_INT, CONST_DOUBLE}},
  {"const_double_operand", false, false, {CONST_INT, CONST_DOUBLE}},
  {"nonimmediate_operand", false, false, {SUBREG, REG, MEM}},
  {"nonimmediate_operand", false, false, {SUBREG, REG, MEM}},
  {"nonmemory_operand", false, true, {SUBREG, REG}},
  {"nonmemory_operand", false, true, {SUBREG, REG}},
  {"push_operand", false, false, {MEM}},
  {"push_operand", false, false, {MEM}},
  {"pop_operand", false, false, {MEM}},
  {"pop_operand", false, false, {MEM}},
  {"memory_operand", false, false, {SUBREG, MEM}},
  {"memory_operand", false, false, {SUBREG, MEM}},
  {"indirect_operand", false, false, {SUBREG, MEM}},
  {"indirect_operand", false, false, {SUBREG, MEM}},
  {"ordered_comparison_operator", false, false, {EQ, NE,
  {"ordered_comparison_operator", false, false, {EQ, NE,
                                                 LE, LT, GE, GT,
                                                 LE, LT, GE, GT,
                                                 LEU, LTU, GEU, GTU}},
                                                 LEU, LTU, GEU, GTU}},
  {"comparison_operator", false, false, {EQ, NE,
  {"comparison_operator", false, false, {EQ, NE,
                                         LE, LT, GE, GT,
                                         LE, LT, GE, GT,
                                         LEU, LTU, GEU, GTU,
                                         LEU, LTU, GEU, GTU,
                                         UNORDERED, ORDERED,
                                         UNORDERED, ORDERED,
                                         UNEQ, UNGE, UNGT,
                                         UNEQ, UNGE, UNGT,
                                         UNLE, UNLT, LTGT}}
                                         UNLE, UNLT, LTGT}}
};
};
#define NUM_KNOWN_STD_PREDS ARRAY_SIZE (std_preds)
#define NUM_KNOWN_STD_PREDS ARRAY_SIZE (std_preds)
 
 
/* Initialize the table of predicate definitions, starting with
/* Initialize the table of predicate definitions, starting with
   the information we have on generic predicates.  */
   the information we have on generic predicates.  */
 
 
static void
static void
init_predicate_table (void)
init_predicate_table (void)
{
{
  size_t i, j;
  size_t i, j;
  struct pred_data *pred;
  struct pred_data *pred;
 
 
  predicate_table = htab_create_alloc (37, hash_struct_pred_data,
  predicate_table = htab_create_alloc (37, hash_struct_pred_data,
                                       eq_struct_pred_data, 0,
                                       eq_struct_pred_data, 0,
                                       xcalloc, free);
                                       xcalloc, free);
 
 
  for (i = 0; i < NUM_KNOWN_STD_PREDS; i++)
  for (i = 0; i < NUM_KNOWN_STD_PREDS; i++)
    {
    {
      pred = XCNEW (struct pred_data);
      pred = XCNEW (struct pred_data);
      pred->name = std_preds[i].name;
      pred->name = std_preds[i].name;
      pred->special = std_preds[i].special;
      pred->special = std_preds[i].special;
 
 
      for (j = 0; std_preds[i].codes[j] != 0; j++)
      for (j = 0; std_preds[i].codes[j] != 0; j++)
        add_predicate_code (pred, std_preds[i].codes[j]);
        add_predicate_code (pred, std_preds[i].codes[j]);
 
 
      if (std_preds[i].allows_const_p)
      if (std_preds[i].allows_const_p)
        for (j = 0; j < NUM_RTX_CODE; j++)
        for (j = 0; j < NUM_RTX_CODE; j++)
          if (GET_RTX_CLASS (j) == RTX_CONST_OBJ)
          if (GET_RTX_CLASS (j) == RTX_CONST_OBJ)
            add_predicate_code (pred, (enum rtx_code) j);
            add_predicate_code (pred, (enum rtx_code) j);
 
 
      add_predicate (pred);
      add_predicate (pred);
    }
    }
}
}


/* These functions allow linkage with print-rtl.c.  Also, some generators
/* These functions allow linkage with print-rtl.c.  Also, some generators
   like to annotate their output with insn names.  */
   like to annotate their output with insn names.  */
 
 
/* Holds an array of names indexed by insn_code_number.  */
/* Holds an array of names indexed by insn_code_number.  */
static char **insn_name_ptr = 0;
static char **insn_name_ptr = 0;
static int insn_name_ptr_size = 0;
static int insn_name_ptr_size = 0;
 
 
const char *
const char *
get_insn_name (int code)
get_insn_name (int code)
{
{
  if (code < insn_name_ptr_size)
  if (code < insn_name_ptr_size)
    return insn_name_ptr[code];
    return insn_name_ptr[code];
  else
  else
    return NULL;
    return NULL;
}
}
 
 
static void
static void
record_insn_name (int code, const char *name)
record_insn_name (int code, const char *name)
{
{
  static const char *last_real_name = "insn";
  static const char *last_real_name = "insn";
  static int last_real_code = 0;
  static int last_real_code = 0;
  char *new_name;
  char *new_name;
 
 
  if (insn_name_ptr_size <= code)
  if (insn_name_ptr_size <= code)
    {
    {
      int new_size;
      int new_size;
      new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
      new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
      insn_name_ptr = XRESIZEVEC (char *, insn_name_ptr, new_size);
      insn_name_ptr = XRESIZEVEC (char *, insn_name_ptr, new_size);
      memset (insn_name_ptr + insn_name_ptr_size, 0,
      memset (insn_name_ptr + insn_name_ptr_size, 0,
              sizeof(char *) * (new_size - insn_name_ptr_size));
              sizeof(char *) * (new_size - insn_name_ptr_size));
      insn_name_ptr_size = new_size;
      insn_name_ptr_size = new_size;
    }
    }
 
 
  if (!name || name[0] == '\0')
  if (!name || name[0] == '\0')
    {
    {
      new_name = XNEWVAR (char, strlen (last_real_name) + 10);
      new_name = XNEWVAR (char, strlen (last_real_name) + 10);
      sprintf (new_name, "%s+%d", last_real_name, code - last_real_code);
      sprintf (new_name, "%s+%d", last_real_name, code - last_real_code);
    }
    }
  else
  else
    {
    {
      last_real_name = new_name = xstrdup (name);
      last_real_name = new_name = xstrdup (name);
      last_real_code = code;
      last_real_code = code;
    }
    }
 
 
  insn_name_ptr[code] = new_name;
  insn_name_ptr[code] = new_name;
}
}


/* Make STATS describe the operands that appear in rtx X.  */
/* Make STATS describe the operands that appear in rtx X.  */
 
 
static void
static void
get_pattern_stats_1 (struct pattern_stats *stats, rtx x)
get_pattern_stats_1 (struct pattern_stats *stats, rtx x)
{
{
  RTX_CODE code;
  RTX_CODE code;
  int i;
  int i;
  int len;
  int len;
  const char *fmt;
  const char *fmt;
 
 
  if (x == NULL_RTX)
  if (x == NULL_RTX)
    return;
    return;
 
 
  code = GET_CODE (x);
  code = GET_CODE (x);
  switch (code)
  switch (code)
    {
    {
    case MATCH_OPERAND:
    case MATCH_OPERAND:
    case MATCH_OPERATOR:
    case MATCH_OPERATOR:
    case MATCH_PARALLEL:
    case MATCH_PARALLEL:
      stats->max_opno = MAX (stats->max_opno, XINT (x, 0));
      stats->max_opno = MAX (stats->max_opno, XINT (x, 0));
      break;
      break;
 
 
    case MATCH_DUP:
    case MATCH_DUP:
    case MATCH_OP_DUP:
    case MATCH_OP_DUP:
    case MATCH_PAR_DUP:
    case MATCH_PAR_DUP:
      stats->num_dups++;
      stats->num_dups++;
      stats->max_dup_opno = MAX (stats->max_dup_opno, XINT (x, 0));
      stats->max_dup_opno = MAX (stats->max_dup_opno, XINT (x, 0));
      break;
      break;
 
 
    case MATCH_SCRATCH:
    case MATCH_SCRATCH:
      stats->max_scratch_opno = MAX (stats->max_scratch_opno, XINT (x, 0));
      stats->max_scratch_opno = MAX (stats->max_scratch_opno, XINT (x, 0));
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  len = GET_RTX_LENGTH (code);
  len = GET_RTX_LENGTH (code);
  for (i = 0; i < len; i++)
  for (i = 0; i < len; i++)
    {
    {
      if (fmt[i] == 'e' || fmt[i] == 'u')
      if (fmt[i] == 'e' || fmt[i] == 'u')
        get_pattern_stats_1 (stats, XEXP (x, i));
        get_pattern_stats_1 (stats, XEXP (x, i));
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          int j;
          int j;
          for (j = 0; j < XVECLEN (x, i); j++)
          for (j = 0; j < XVECLEN (x, i); j++)
            get_pattern_stats_1 (stats, XVECEXP (x, i, j));
            get_pattern_stats_1 (stats, XVECEXP (x, i, j));
        }
        }
    }
    }
}
}
 
 
/* Make STATS describe the operands that appear in instruction pattern
/* Make STATS describe the operands that appear in instruction pattern
   PATTERN.  */
   PATTERN.  */
 
 
void
void
get_pattern_stats (struct pattern_stats *stats, rtvec pattern)
get_pattern_stats (struct pattern_stats *stats, rtvec pattern)
{
{
  int i, len;
  int i, len;
 
 
  stats->max_opno = -1;
  stats->max_opno = -1;
  stats->max_dup_opno = -1;
  stats->max_dup_opno = -1;
  stats->max_scratch_opno = -1;
  stats->max_scratch_opno = -1;
  stats->num_dups = 0;
  stats->num_dups = 0;
 
 
  len = GET_NUM_ELEM (pattern);
  len = GET_NUM_ELEM (pattern);
  for (i = 0; i < len; i++)
  for (i = 0; i < len; i++)
    get_pattern_stats_1 (stats, RTVEC_ELT (pattern, i));
    get_pattern_stats_1 (stats, RTVEC_ELT (pattern, i));
 
 
  stats->num_generator_args = stats->max_opno + 1;
  stats->num_generator_args = stats->max_opno + 1;
  stats->num_insn_operands = MAX (stats->max_opno,
  stats->num_insn_operands = MAX (stats->max_opno,
                                  stats->max_scratch_opno) + 1;
                                  stats->max_scratch_opno) + 1;
  stats->num_operand_vars = MAX (stats->max_opno,
  stats->num_operand_vars = MAX (stats->max_opno,
                                  MAX (stats->max_dup_opno,
                                  MAX (stats->max_dup_opno,
                                       stats->max_scratch_opno)) + 1;
                                       stats->max_scratch_opno)) + 1;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.