OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [gcc/] [modulo-sched.c] - Diff between revs 684 and 783

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 684 Rev 783
/* Swing Modulo Scheduling implementation.
/* Swing Modulo Scheduling implementation.
   Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
   Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
   Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "diagnostic-core.h"
#include "diagnostic-core.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "regs.h"
#include "function.h"
#include "function.h"
#include "flags.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "insn-attr.h"
#include "except.h"
#include "except.h"
#include "recog.h"
#include "recog.h"
#include "sched-int.h"
#include "sched-int.h"
#include "target.h"
#include "target.h"
#include "cfglayout.h"
#include "cfglayout.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "cfghooks.h"
#include "cfghooks.h"
#include "expr.h"
#include "expr.h"
#include "params.h"
#include "params.h"
#include "gcov-io.h"
#include "gcov-io.h"
#include "ddg.h"
#include "ddg.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "dbgcnt.h"
#include "dbgcnt.h"
#include "df.h"
#include "df.h"
 
 
#ifdef INSN_SCHEDULING
#ifdef INSN_SCHEDULING
 
 
/* This file contains the implementation of the Swing Modulo Scheduler,
/* This file contains the implementation of the Swing Modulo Scheduler,
   described in the following references:
   described in the following references:
   [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
   [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt.
       Lifetime--sensitive modulo scheduling in a production environment.
       Lifetime--sensitive modulo scheduling in a production environment.
       IEEE Trans. on Comps., 50(3), March 2001
       IEEE Trans. on Comps., 50(3), March 2001
   [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
   [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero.
       Swing Modulo Scheduling: A Lifetime Sensitive Approach.
       Swing Modulo Scheduling: A Lifetime Sensitive Approach.
       PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
       PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA).
 
 
   The basic structure is:
   The basic structure is:
   1. Build a data-dependence graph (DDG) for each loop.
   1. Build a data-dependence graph (DDG) for each loop.
   2. Use the DDG to order the insns of a loop (not in topological order
   2. Use the DDG to order the insns of a loop (not in topological order
      necessarily, but rather) trying to place each insn after all its
      necessarily, but rather) trying to place each insn after all its
      predecessors _or_ after all its successors.
      predecessors _or_ after all its successors.
   3. Compute MII: a lower bound on the number of cycles to schedule the loop.
   3. Compute MII: a lower bound on the number of cycles to schedule the loop.
   4. Use the ordering to perform list-scheduling of the loop:
   4. Use the ordering to perform list-scheduling of the loop:
      1. Set II = MII.  We will try to schedule the loop within II cycles.
      1. Set II = MII.  We will try to schedule the loop within II cycles.
      2. Try to schedule the insns one by one according to the ordering.
      2. Try to schedule the insns one by one according to the ordering.
         For each insn compute an interval of cycles by considering already-
         For each insn compute an interval of cycles by considering already-
         scheduled preds and succs (and associated latencies); try to place
         scheduled preds and succs (and associated latencies); try to place
         the insn in the cycles of this window checking for potential
         the insn in the cycles of this window checking for potential
         resource conflicts (using the DFA interface).
         resource conflicts (using the DFA interface).
         Note: this is different from the cycle-scheduling of schedule_insns;
         Note: this is different from the cycle-scheduling of schedule_insns;
         here the insns are not scheduled monotonically top-down (nor bottom-
         here the insns are not scheduled monotonically top-down (nor bottom-
         up).
         up).
      3. If failed in scheduling all insns - bump II++ and try again, unless
      3. If failed in scheduling all insns - bump II++ and try again, unless
         II reaches an upper bound MaxII, in which case report failure.
         II reaches an upper bound MaxII, in which case report failure.
   5. If we succeeded in scheduling the loop within II cycles, we now
   5. If we succeeded in scheduling the loop within II cycles, we now
      generate prolog and epilog, decrease the counter of the loop, and
      generate prolog and epilog, decrease the counter of the loop, and
      perform modulo variable expansion for live ranges that span more than
      perform modulo variable expansion for live ranges that span more than
      II cycles (i.e. use register copies to prevent a def from overwriting
      II cycles (i.e. use register copies to prevent a def from overwriting
      itself before reaching the use).
      itself before reaching the use).
 
 
    SMS works with countable loops (1) whose control part can be easily
    SMS works with countable loops (1) whose control part can be easily
    decoupled from the rest of the loop and (2) whose loop count can
    decoupled from the rest of the loop and (2) whose loop count can
    be easily adjusted.  This is because we peel a constant number of
    be easily adjusted.  This is because we peel a constant number of
    iterations into a prologue and epilogue for which we want to avoid
    iterations into a prologue and epilogue for which we want to avoid
    emitting the control part, and a kernel which is to iterate that
    emitting the control part, and a kernel which is to iterate that
    constant number of iterations less than the original loop.  So the
    constant number of iterations less than the original loop.  So the
    control part should be a set of insns clearly identified and having
    control part should be a set of insns clearly identified and having
    its own iv, not otherwise used in the loop (at-least for now), which
    its own iv, not otherwise used in the loop (at-least for now), which
    initializes a register before the loop to the number of iterations.
    initializes a register before the loop to the number of iterations.
    Currently SMS relies on the do-loop pattern to recognize such loops,
    Currently SMS relies on the do-loop pattern to recognize such loops,
    where (1) the control part comprises of all insns defining and/or
    where (1) the control part comprises of all insns defining and/or
    using a certain 'count' register and (2) the loop count can be
    using a certain 'count' register and (2) the loop count can be
    adjusted by modifying this register prior to the loop.
    adjusted by modifying this register prior to the loop.
    TODO: Rely on cfgloop analysis instead.  */
    TODO: Rely on cfgloop analysis instead.  */


/* This page defines partial-schedule structures and functions for
/* This page defines partial-schedule structures and functions for
   modulo scheduling.  */
   modulo scheduling.  */
 
 
typedef struct partial_schedule *partial_schedule_ptr;
typedef struct partial_schedule *partial_schedule_ptr;
typedef struct ps_insn *ps_insn_ptr;
typedef struct ps_insn *ps_insn_ptr;
 
 
/* The minimum (absolute) cycle that a node of ps was scheduled in.  */
/* The minimum (absolute) cycle that a node of ps was scheduled in.  */
#define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
#define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle)
 
 
/* The maximum (absolute) cycle that a node of ps was scheduled in.  */
/* The maximum (absolute) cycle that a node of ps was scheduled in.  */
#define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
#define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle)
 
 
/* Perform signed modulo, always returning a non-negative value.  */
/* Perform signed modulo, always returning a non-negative value.  */
#define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
#define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y))
 
 
/* The number of different iterations the nodes in ps span, assuming
/* The number of different iterations the nodes in ps span, assuming
   the stage boundaries are placed efficiently.  */
   the stage boundaries are placed efficiently.  */
#define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
#define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \
                         + 1 + ii - 1) / ii)
                         + 1 + ii - 1) / ii)
/* The stage count of ps.  */
/* The stage count of ps.  */
#define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
#define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count)
 
 
/* A single instruction in the partial schedule.  */
/* A single instruction in the partial schedule.  */
struct ps_insn
struct ps_insn
{
{
  /* Identifies the instruction to be scheduled.  Values smaller than
  /* Identifies the instruction to be scheduled.  Values smaller than
     the ddg's num_nodes refer directly to ddg nodes.  A value of
     the ddg's num_nodes refer directly to ddg nodes.  A value of
     X - num_nodes refers to register move X.  */
     X - num_nodes refers to register move X.  */
  int id;
  int id;
 
 
  /* The (absolute) cycle in which the PS instruction is scheduled.
  /* The (absolute) cycle in which the PS instruction is scheduled.
     Same as SCHED_TIME (node).  */
     Same as SCHED_TIME (node).  */
  int cycle;
  int cycle;
 
 
  /* The next/prev PS_INSN in the same row.  */
  /* The next/prev PS_INSN in the same row.  */
  ps_insn_ptr next_in_row,
  ps_insn_ptr next_in_row,
              prev_in_row;
              prev_in_row;
 
 
};
};
 
 
/* Information about a register move that has been added to a partial
/* Information about a register move that has been added to a partial
   schedule.  */
   schedule.  */
struct ps_reg_move_info
struct ps_reg_move_info
{
{
  /* The source of the move is defined by the ps_insn with id DEF.
  /* The source of the move is defined by the ps_insn with id DEF.
     The destination is used by the ps_insns with the ids in USES.  */
     The destination is used by the ps_insns with the ids in USES.  */
  int def;
  int def;
  sbitmap uses;
  sbitmap uses;
 
 
  /* The original form of USES' instructions used OLD_REG, but they
  /* The original form of USES' instructions used OLD_REG, but they
     should now use NEW_REG.  */
     should now use NEW_REG.  */
  rtx old_reg;
  rtx old_reg;
  rtx new_reg;
  rtx new_reg;
 
 
  /* The number of consecutive stages that the move occupies.  */
  /* The number of consecutive stages that the move occupies.  */
  int num_consecutive_stages;
  int num_consecutive_stages;
 
 
  /* An instruction that sets NEW_REG to the correct value.  The first
  /* An instruction that sets NEW_REG to the correct value.  The first
     move associated with DEF will have an rhs of OLD_REG; later moves
     move associated with DEF will have an rhs of OLD_REG; later moves
     use the result of the previous move.  */
     use the result of the previous move.  */
  rtx insn;
  rtx insn;
};
};
 
 
typedef struct ps_reg_move_info ps_reg_move_info;
typedef struct ps_reg_move_info ps_reg_move_info;
DEF_VEC_O (ps_reg_move_info);
DEF_VEC_O (ps_reg_move_info);
DEF_VEC_ALLOC_O (ps_reg_move_info, heap);
DEF_VEC_ALLOC_O (ps_reg_move_info, heap);
 
 
/* Holds the partial schedule as an array of II rows.  Each entry of the
/* Holds the partial schedule as an array of II rows.  Each entry of the
   array points to a linked list of PS_INSNs, which represents the
   array points to a linked list of PS_INSNs, which represents the
   instructions that are scheduled for that row.  */
   instructions that are scheduled for that row.  */
struct partial_schedule
struct partial_schedule
{
{
  int ii;       /* Number of rows in the partial schedule.  */
  int ii;       /* Number of rows in the partial schedule.  */
  int history;  /* Threshold for conflict checking using DFA.  */
  int history;  /* Threshold for conflict checking using DFA.  */
 
 
  /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii).  */
  /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii).  */
  ps_insn_ptr *rows;
  ps_insn_ptr *rows;
 
 
  /* All the moves added for this partial schedule.  Index X has
  /* All the moves added for this partial schedule.  Index X has
     a ps_insn id of X + g->num_nodes.  */
     a ps_insn id of X + g->num_nodes.  */
  VEC (ps_reg_move_info, heap) *reg_moves;
  VEC (ps_reg_move_info, heap) *reg_moves;
 
 
  /*  rows_length[i] holds the number of instructions in the row.
  /*  rows_length[i] holds the number of instructions in the row.
      It is used only (as an optimization) to back off quickly from
      It is used only (as an optimization) to back off quickly from
      trying to schedule a node in a full row; that is, to avoid running
      trying to schedule a node in a full row; that is, to avoid running
      through futile DFA state transitions.  */
      through futile DFA state transitions.  */
  int *rows_length;
  int *rows_length;
 
 
  /* The earliest absolute cycle of an insn in the partial schedule.  */
  /* The earliest absolute cycle of an insn in the partial schedule.  */
  int min_cycle;
  int min_cycle;
 
 
  /* The latest absolute cycle of an insn in the partial schedule.  */
  /* The latest absolute cycle of an insn in the partial schedule.  */
  int max_cycle;
  int max_cycle;
 
 
  ddg_ptr g;    /* The DDG of the insns in the partial schedule.  */
  ddg_ptr g;    /* The DDG of the insns in the partial schedule.  */
 
 
  int stage_count;  /* The stage count of the partial schedule.  */
  int stage_count;  /* The stage count of the partial schedule.  */
};
};
 
 
 
 
static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history);
static void free_partial_schedule (partial_schedule_ptr);
static void free_partial_schedule (partial_schedule_ptr);
static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
static void reset_partial_schedule (partial_schedule_ptr, int new_ii);
void print_partial_schedule (partial_schedule_ptr, FILE *);
void print_partial_schedule (partial_schedule_ptr, FILE *);
static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
static void verify_partial_schedule (partial_schedule_ptr, sbitmap);
static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr,
                                                int, int, sbitmap, sbitmap);
                                                int, int, sbitmap, sbitmap);
static void rotate_partial_schedule (partial_schedule_ptr, int);
static void rotate_partial_schedule (partial_schedule_ptr, int);
void set_row_column_for_ps (partial_schedule_ptr);
void set_row_column_for_ps (partial_schedule_ptr);
static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap);
static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr);
 
 


/* This page defines constants and structures for the modulo scheduling
/* This page defines constants and structures for the modulo scheduling
   driver.  */
   driver.  */
 
 
static int sms_order_nodes (ddg_ptr, int, int *, int *);
static int sms_order_nodes (ddg_ptr, int, int *, int *);
static void set_node_sched_params (ddg_ptr);
static void set_node_sched_params (ddg_ptr);
static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *);
static void permute_partial_schedule (partial_schedule_ptr, rtx);
static void permute_partial_schedule (partial_schedule_ptr, rtx);
static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
static void generate_prolog_epilog (partial_schedule_ptr, struct loop *,
                                    rtx, rtx);
                                    rtx, rtx);
static int calculate_stage_count (partial_schedule_ptr, int);
static int calculate_stage_count (partial_schedule_ptr, int);
static void calculate_must_precede_follow (ddg_node_ptr, int, int,
static void calculate_must_precede_follow (ddg_node_ptr, int, int,
                                           int, int, sbitmap, sbitmap, sbitmap);
                                           int, int, sbitmap, sbitmap, sbitmap);
static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
static int get_sched_window (partial_schedule_ptr, ddg_node_ptr,
                             sbitmap, int, int *, int *, int *);
                             sbitmap, int, int *, int *, int *);
static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int,
                                          sbitmap, int *, sbitmap, sbitmap);
                                          sbitmap, int *, sbitmap, sbitmap);
static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr);
 
 
#define NODE_ASAP(node) ((node)->aux.count)
#define NODE_ASAP(node) ((node)->aux.count)
 
 
#define SCHED_PARAMS(x) VEC_index (node_sched_params, node_sched_param_vec, x)
#define SCHED_PARAMS(x) VEC_index (node_sched_params, node_sched_param_vec, x)
#define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
#define SCHED_TIME(x) (SCHED_PARAMS (x)->time)
#define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
#define SCHED_ROW(x) (SCHED_PARAMS (x)->row)
#define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
#define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage)
#define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
#define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column)
 
 
/* The scheduling parameters held for each node.  */
/* The scheduling parameters held for each node.  */
typedef struct node_sched_params
typedef struct node_sched_params
{
{
  int time;     /* The absolute scheduling cycle.  */
  int time;     /* The absolute scheduling cycle.  */
 
 
  int row;    /* Holds time % ii.  */
  int row;    /* Holds time % ii.  */
  int stage;  /* Holds time / ii.  */
  int stage;  /* Holds time / ii.  */
 
 
  /* The column of a node inside the ps.  If nodes u, v are on the same row,
  /* The column of a node inside the ps.  If nodes u, v are on the same row,
     u will precede v if column (u) < column (v).  */
     u will precede v if column (u) < column (v).  */
  int column;
  int column;
} *node_sched_params_ptr;
} *node_sched_params_ptr;
 
 
typedef struct node_sched_params node_sched_params;
typedef struct node_sched_params node_sched_params;
DEF_VEC_O (node_sched_params);
DEF_VEC_O (node_sched_params);
DEF_VEC_ALLOC_O (node_sched_params, heap);
DEF_VEC_ALLOC_O (node_sched_params, heap);


/* The following three functions are copied from the current scheduler
/* The following three functions are copied from the current scheduler
   code in order to use sched_analyze() for computing the dependencies.
   code in order to use sched_analyze() for computing the dependencies.
   They are used when initializing the sched_info structure.  */
   They are used when initializing the sched_info structure.  */
static const char *
static const char *
sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
sms_print_insn (const_rtx insn, int aligned ATTRIBUTE_UNUSED)
{
{
  static char tmp[80];
  static char tmp[80];
 
 
  sprintf (tmp, "i%4d", INSN_UID (insn));
  sprintf (tmp, "i%4d", INSN_UID (insn));
  return tmp;
  return tmp;
}
}
 
 
static void
static void
compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
                               regset used ATTRIBUTE_UNUSED)
                               regset used ATTRIBUTE_UNUSED)
{
{
}
}
 
 
static struct common_sched_info_def sms_common_sched_info;
static struct common_sched_info_def sms_common_sched_info;
 
 
static struct sched_deps_info_def sms_sched_deps_info =
static struct sched_deps_info_def sms_sched_deps_info =
  {
  {
    compute_jump_reg_dependencies,
    compute_jump_reg_dependencies,
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
    NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
    NULL,
    NULL,
    0, 0, 0
    0, 0, 0
  };
  };
 
 
static struct haifa_sched_info sms_sched_info =
static struct haifa_sched_info sms_sched_info =
{
{
  NULL,
  NULL,
  NULL,
  NULL,
  NULL,
  NULL,
  NULL,
  NULL,
  NULL,
  NULL,
  sms_print_insn,
  sms_print_insn,
  NULL,
  NULL,
  NULL, /* insn_finishes_block_p */
  NULL, /* insn_finishes_block_p */
  NULL, NULL,
  NULL, NULL,
  NULL, NULL,
  NULL, NULL,
  0, 0,
  0, 0,
 
 
  NULL, NULL, NULL, NULL,
  NULL, NULL, NULL, NULL,
  NULL, NULL,
  NULL, NULL,
  0
  0
};
};
 
 
/* Partial schedule instruction ID in PS is a register move.  Return
/* Partial schedule instruction ID in PS is a register move.  Return
   information about it.  */
   information about it.  */
static struct ps_reg_move_info *
static struct ps_reg_move_info *
ps_reg_move (partial_schedule_ptr ps, int id)
ps_reg_move (partial_schedule_ptr ps, int id)
{
{
  gcc_checking_assert (id >= ps->g->num_nodes);
  gcc_checking_assert (id >= ps->g->num_nodes);
  return VEC_index (ps_reg_move_info, ps->reg_moves, id - ps->g->num_nodes);
  return VEC_index (ps_reg_move_info, ps->reg_moves, id - ps->g->num_nodes);
}
}
 
 
/* Return the rtl instruction that is being scheduled by partial schedule
/* Return the rtl instruction that is being scheduled by partial schedule
   instruction ID, which belongs to schedule PS.  */
   instruction ID, which belongs to schedule PS.  */
static rtx
static rtx
ps_rtl_insn (partial_schedule_ptr ps, int id)
ps_rtl_insn (partial_schedule_ptr ps, int id)
{
{
  if (id < ps->g->num_nodes)
  if (id < ps->g->num_nodes)
    return ps->g->nodes[id].insn;
    return ps->g->nodes[id].insn;
  else
  else
    return ps_reg_move (ps, id)->insn;
    return ps_reg_move (ps, id)->insn;
}
}
 
 
/* Partial schedule instruction ID, which belongs to PS, occured in
/* Partial schedule instruction ID, which belongs to PS, occured in
   the original (unscheduled) loop.  Return the first instruction
   the original (unscheduled) loop.  Return the first instruction
   in the loop that was associated with ps_rtl_insn (PS, ID).
   in the loop that was associated with ps_rtl_insn (PS, ID).
   If the instruction had some notes before it, this is the first
   If the instruction had some notes before it, this is the first
   of those notes.  */
   of those notes.  */
static rtx
static rtx
ps_first_note (partial_schedule_ptr ps, int id)
ps_first_note (partial_schedule_ptr ps, int id)
{
{
  gcc_assert (id < ps->g->num_nodes);
  gcc_assert (id < ps->g->num_nodes);
  return ps->g->nodes[id].first_note;
  return ps->g->nodes[id].first_note;
}
}
 
 
/* Return the number of consecutive stages that are occupied by
/* Return the number of consecutive stages that are occupied by
   partial schedule instruction ID in PS.  */
   partial schedule instruction ID in PS.  */
static int
static int
ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
ps_num_consecutive_stages (partial_schedule_ptr ps, int id)
{
{
  if (id < ps->g->num_nodes)
  if (id < ps->g->num_nodes)
    return 1;
    return 1;
  else
  else
    return ps_reg_move (ps, id)->num_consecutive_stages;
    return ps_reg_move (ps, id)->num_consecutive_stages;
}
}
 
 
/* Given HEAD and TAIL which are the first and last insns in a loop;
/* Given HEAD and TAIL which are the first and last insns in a loop;
   return the register which controls the loop.  Return zero if it has
   return the register which controls the loop.  Return zero if it has
   more than one occurrence in the loop besides the control part or the
   more than one occurrence in the loop besides the control part or the
   do-loop pattern is not of the form we expect.  */
   do-loop pattern is not of the form we expect.  */
static rtx
static rtx
doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
doloop_register_get (rtx head ATTRIBUTE_UNUSED, rtx tail ATTRIBUTE_UNUSED)
{
{
#ifdef HAVE_doloop_end
#ifdef HAVE_doloop_end
  rtx reg, condition, insn, first_insn_not_to_check;
  rtx reg, condition, insn, first_insn_not_to_check;
 
 
  if (!JUMP_P (tail))
  if (!JUMP_P (tail))
    return NULL_RTX;
    return NULL_RTX;
 
 
  /* TODO: Free SMS's dependence on doloop_condition_get.  */
  /* TODO: Free SMS's dependence on doloop_condition_get.  */
  condition = doloop_condition_get (tail);
  condition = doloop_condition_get (tail);
  if (! condition)
  if (! condition)
    return NULL_RTX;
    return NULL_RTX;
 
 
  if (REG_P (XEXP (condition, 0)))
  if (REG_P (XEXP (condition, 0)))
    reg = XEXP (condition, 0);
    reg = XEXP (condition, 0);
  else if (GET_CODE (XEXP (condition, 0)) == PLUS
  else if (GET_CODE (XEXP (condition, 0)) == PLUS
           && REG_P (XEXP (XEXP (condition, 0), 0)))
           && REG_P (XEXP (XEXP (condition, 0), 0)))
    reg = XEXP (XEXP (condition, 0), 0);
    reg = XEXP (XEXP (condition, 0), 0);
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  /* Check that the COUNT_REG has no other occurrences in the loop
  /* Check that the COUNT_REG has no other occurrences in the loop
     until the decrement.  We assume the control part consists of
     until the decrement.  We assume the control part consists of
     either a single (parallel) branch-on-count or a (non-parallel)
     either a single (parallel) branch-on-count or a (non-parallel)
     branch immediately preceded by a single (decrement) insn.  */
     branch immediately preceded by a single (decrement) insn.  */
  first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
  first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail
                             : prev_nondebug_insn (tail));
                             : prev_nondebug_insn (tail));
 
 
  for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
  for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn))
    if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
    if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn))
      {
      {
        if (dump_file)
        if (dump_file)
        {
        {
          fprintf (dump_file, "SMS count_reg found ");
          fprintf (dump_file, "SMS count_reg found ");
          print_rtl_single (dump_file, reg);
          print_rtl_single (dump_file, reg);
          fprintf (dump_file, " outside control in insn:\n");
          fprintf (dump_file, " outside control in insn:\n");
          print_rtl_single (dump_file, insn);
          print_rtl_single (dump_file, insn);
        }
        }
 
 
        return NULL_RTX;
        return NULL_RTX;
      }
      }
 
 
  return reg;
  return reg;
#else
#else
  return NULL_RTX;
  return NULL_RTX;
#endif
#endif
}
}
 
 
/* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
/* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so
   that the number of iterations is a compile-time constant.  If so,
   that the number of iterations is a compile-time constant.  If so,
   return the rtx that sets COUNT_REG to a constant, and set COUNT to
   return the rtx that sets COUNT_REG to a constant, and set COUNT to
   this constant.  Otherwise return 0.  */
   this constant.  Otherwise return 0.  */
static rtx
static rtx
const_iteration_count (rtx count_reg, basic_block pre_header,
const_iteration_count (rtx count_reg, basic_block pre_header,
                       HOST_WIDEST_INT * count)
                       HOST_WIDEST_INT * count)
{
{
  rtx insn;
  rtx insn;
  rtx head, tail;
  rtx head, tail;
 
 
  if (! pre_header)
  if (! pre_header)
    return NULL_RTX;
    return NULL_RTX;
 
 
  get_ebb_head_tail (pre_header, pre_header, &head, &tail);
  get_ebb_head_tail (pre_header, pre_header, &head, &tail);
 
 
  for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
  for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn))
    if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
    if (NONDEBUG_INSN_P (insn) && single_set (insn) &&
        rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
        rtx_equal_p (count_reg, SET_DEST (single_set (insn))))
      {
      {
        rtx pat = single_set (insn);
        rtx pat = single_set (insn);
 
 
        if (CONST_INT_P (SET_SRC (pat)))
        if (CONST_INT_P (SET_SRC (pat)))
          {
          {
            *count = INTVAL (SET_SRC (pat));
            *count = INTVAL (SET_SRC (pat));
            return insn;
            return insn;
          }
          }
 
 
        return NULL_RTX;
        return NULL_RTX;
      }
      }
 
 
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* A very simple resource-based lower bound on the initiation interval.
/* A very simple resource-based lower bound on the initiation interval.
   ??? Improve the accuracy of this bound by considering the
   ??? Improve the accuracy of this bound by considering the
   utilization of various units.  */
   utilization of various units.  */
static int
static int
res_MII (ddg_ptr g)
res_MII (ddg_ptr g)
{
{
  if (targetm.sched.sms_res_mii)
  if (targetm.sched.sms_res_mii)
    return targetm.sched.sms_res_mii (g);
    return targetm.sched.sms_res_mii (g);
 
 
  return ((g->num_nodes - g->num_debug) / issue_rate);
  return ((g->num_nodes - g->num_debug) / issue_rate);
}
}
 
 
 
 
/* A vector that contains the sched data for each ps_insn.  */
/* A vector that contains the sched data for each ps_insn.  */
static VEC (node_sched_params, heap) *node_sched_param_vec;
static VEC (node_sched_params, heap) *node_sched_param_vec;
 
 
/* Allocate sched_params for each node and initialize it.  */
/* Allocate sched_params for each node and initialize it.  */
static void
static void
set_node_sched_params (ddg_ptr g)
set_node_sched_params (ddg_ptr g)
{
{
  VEC_truncate (node_sched_params, node_sched_param_vec, 0);
  VEC_truncate (node_sched_params, node_sched_param_vec, 0);
  VEC_safe_grow_cleared (node_sched_params, heap,
  VEC_safe_grow_cleared (node_sched_params, heap,
                         node_sched_param_vec, g->num_nodes);
                         node_sched_param_vec, g->num_nodes);
}
}
 
 
/* Make sure that node_sched_param_vec has an entry for every move in PS.  */
/* Make sure that node_sched_param_vec has an entry for every move in PS.  */
static void
static void
extend_node_sched_params (partial_schedule_ptr ps)
extend_node_sched_params (partial_schedule_ptr ps)
{
{
  VEC_safe_grow_cleared (node_sched_params, heap, node_sched_param_vec,
  VEC_safe_grow_cleared (node_sched_params, heap, node_sched_param_vec,
                         ps->g->num_nodes + VEC_length (ps_reg_move_info,
                         ps->g->num_nodes + VEC_length (ps_reg_move_info,
                                                        ps->reg_moves));
                                                        ps->reg_moves));
}
}
 
 
/* Update the sched_params (time, row and stage) for node U using the II,
/* Update the sched_params (time, row and stage) for node U using the II,
   the CYCLE of U and MIN_CYCLE.
   the CYCLE of U and MIN_CYCLE.
   We're not simply taking the following
   We're not simply taking the following
   SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
   SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii);
   because the stages may not be aligned on cycle 0.  */
   because the stages may not be aligned on cycle 0.  */
static void
static void
update_node_sched_params (int u, int ii, int cycle, int min_cycle)
update_node_sched_params (int u, int ii, int cycle, int min_cycle)
{
{
  int sc_until_cycle_zero;
  int sc_until_cycle_zero;
  int stage;
  int stage;
 
 
  SCHED_TIME (u) = cycle;
  SCHED_TIME (u) = cycle;
  SCHED_ROW (u) = SMODULO (cycle, ii);
  SCHED_ROW (u) = SMODULO (cycle, ii);
 
 
  /* The calculation of stage count is done adding the number
  /* The calculation of stage count is done adding the number
     of stages before cycle zero and after cycle zero.  */
     of stages before cycle zero and after cycle zero.  */
  sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
  sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii);
 
 
  if (SCHED_TIME (u) < 0)
  if (SCHED_TIME (u) < 0)
    {
    {
      stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
      stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii);
      SCHED_STAGE (u) = sc_until_cycle_zero - stage;
      SCHED_STAGE (u) = sc_until_cycle_zero - stage;
    }
    }
  else
  else
    {
    {
      stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
      stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii);
      SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
      SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1;
    }
    }
}
}
 
 
static void
static void
print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps)
{
{
  int i;
  int i;
 
 
  if (! file)
  if (! file)
    return;
    return;
  for (i = 0; i < num_nodes; i++)
  for (i = 0; i < num_nodes; i++)
    {
    {
      node_sched_params_ptr nsp = SCHED_PARAMS (i);
      node_sched_params_ptr nsp = SCHED_PARAMS (i);
 
 
      fprintf (file, "Node = %d; INSN = %d\n", i,
      fprintf (file, "Node = %d; INSN = %d\n", i,
               INSN_UID (ps_rtl_insn (ps, i)));
               INSN_UID (ps_rtl_insn (ps, i)));
      fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
      fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i]));
      fprintf (file, " time = %d:\n", nsp->time);
      fprintf (file, " time = %d:\n", nsp->time);
      fprintf (file, " stage = %d:\n", nsp->stage);
      fprintf (file, " stage = %d:\n", nsp->stage);
    }
    }
}
}
 
 
/* Set SCHED_COLUMN for each instruction in row ROW of PS.  */
/* Set SCHED_COLUMN for each instruction in row ROW of PS.  */
static void
static void
set_columns_for_row (partial_schedule_ptr ps, int row)
set_columns_for_row (partial_schedule_ptr ps, int row)
{
{
  ps_insn_ptr cur_insn;
  ps_insn_ptr cur_insn;
  int column;
  int column;
 
 
  column = 0;
  column = 0;
  for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
  for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row)
    SCHED_COLUMN (cur_insn->id) = column++;
    SCHED_COLUMN (cur_insn->id) = column++;
}
}
 
 
/* Set SCHED_COLUMN for each instruction in PS.  */
/* Set SCHED_COLUMN for each instruction in PS.  */
static void
static void
set_columns_for_ps (partial_schedule_ptr ps)
set_columns_for_ps (partial_schedule_ptr ps)
{
{
  int row;
  int row;
 
 
  for (row = 0; row < ps->ii; row++)
  for (row = 0; row < ps->ii; row++)
    set_columns_for_row (ps, row);
    set_columns_for_row (ps, row);
}
}
 
 
/* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
/* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS.
   Its single predecessor has already been scheduled, as has its
   Its single predecessor has already been scheduled, as has its
   ddg node successors.  (The move may have also another move as its
   ddg node successors.  (The move may have also another move as its
   successor, in which case that successor will be scheduled later.)
   successor, in which case that successor will be scheduled later.)
 
 
   The move is part of a chain that satisfies register dependencies
   The move is part of a chain that satisfies register dependencies
   between a producing ddg node and various consuming ddg nodes.
   between a producing ddg node and various consuming ddg nodes.
   If some of these dependencies have a distance of 1 (meaning that
   If some of these dependencies have a distance of 1 (meaning that
   the use is upward-exposed) then DISTANCE1_USES is nonnull and
   the use is upward-exposed) then DISTANCE1_USES is nonnull and
   contains the set of uses with distance-1 dependencies.
   contains the set of uses with distance-1 dependencies.
   DISTANCE1_USES is null otherwise.
   DISTANCE1_USES is null otherwise.
 
 
   MUST_FOLLOW is a scratch bitmap that is big enough to hold
   MUST_FOLLOW is a scratch bitmap that is big enough to hold
   all current ps_insn ids.
   all current ps_insn ids.
 
 
   Return true on success.  */
   Return true on success.  */
static bool
static bool
schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
schedule_reg_move (partial_schedule_ptr ps, int i_reg_move,
                   sbitmap distance1_uses, sbitmap must_follow)
                   sbitmap distance1_uses, sbitmap must_follow)
{
{
  unsigned int u;
  unsigned int u;
  int this_time, this_distance, this_start, this_end, this_latency;
  int this_time, this_distance, this_start, this_end, this_latency;
  int start, end, c, ii;
  int start, end, c, ii;
  sbitmap_iterator sbi;
  sbitmap_iterator sbi;
  ps_reg_move_info *move;
  ps_reg_move_info *move;
  rtx this_insn;
  rtx this_insn;
  ps_insn_ptr psi;
  ps_insn_ptr psi;
 
 
  move = ps_reg_move (ps, i_reg_move);
  move = ps_reg_move (ps, i_reg_move);
  ii = ps->ii;
  ii = ps->ii;
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
      fprintf (dump_file, "Scheduling register move INSN %d; ii = %d"
               ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
               ", min cycle = %d\n\n", INSN_UID (move->insn), ii,
               PS_MIN_CYCLE (ps));
               PS_MIN_CYCLE (ps));
      print_rtl_single (dump_file, move->insn);
      print_rtl_single (dump_file, move->insn);
      fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
      fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time");
      fprintf (dump_file, "=========== =========== =====\n");
      fprintf (dump_file, "=========== =========== =====\n");
    }
    }
 
 
  start = INT_MIN;
  start = INT_MIN;
  end = INT_MAX;
  end = INT_MAX;
 
 
  /* For dependencies of distance 1 between a producer ddg node A
  /* For dependencies of distance 1 between a producer ddg node A
     and consumer ddg node B, we have a chain of dependencies:
     and consumer ddg node B, we have a chain of dependencies:
 
 
        A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
        A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B
 
 
     where Mi is the ith move.  For dependencies of distance 0 between
     where Mi is the ith move.  For dependencies of distance 0 between
     a producer ddg node A and consumer ddg node C, we have a chain of
     a producer ddg node A and consumer ddg node C, we have a chain of
     dependencies:
     dependencies:
 
 
        A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
        A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C
 
 
     where Mi' occupies the same position as Mi but occurs a stage later.
     where Mi' occupies the same position as Mi but occurs a stage later.
     We can only schedule each move once, so if we have both types of
     We can only schedule each move once, so if we have both types of
     chain, we model the second as:
     chain, we model the second as:
 
 
        A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
        A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C
 
 
     First handle the dependencies between the previously-scheduled
     First handle the dependencies between the previously-scheduled
     predecessor and the move.  */
     predecessor and the move.  */
  this_insn = ps_rtl_insn (ps, move->def);
  this_insn = ps_rtl_insn (ps, move->def);
  this_latency = insn_latency (this_insn, move->insn);
  this_latency = insn_latency (this_insn, move->insn);
  this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
  this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0;
  this_time = SCHED_TIME (move->def) - this_distance * ii;
  this_time = SCHED_TIME (move->def) - this_distance * ii;
  this_start = this_time + this_latency;
  this_start = this_time + this_latency;
  this_end = this_time + ii;
  this_end = this_time + ii;
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
    fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
             this_start, this_end, SCHED_TIME (move->def),
             this_start, this_end, SCHED_TIME (move->def),
             INSN_UID (this_insn), this_latency, this_distance,
             INSN_UID (this_insn), this_latency, this_distance,
             INSN_UID (move->insn));
             INSN_UID (move->insn));
 
 
  if (start < this_start)
  if (start < this_start)
    start = this_start;
    start = this_start;
  if (end > this_end)
  if (end > this_end)
    end = this_end;
    end = this_end;
 
 
  /* Handle the dependencies between the move and previously-scheduled
  /* Handle the dependencies between the move and previously-scheduled
     successors.  */
     successors.  */
  EXECUTE_IF_SET_IN_SBITMAP (move->uses, 0, u, sbi)
  EXECUTE_IF_SET_IN_SBITMAP (move->uses, 0, u, sbi)
    {
    {
      this_insn = ps_rtl_insn (ps, u);
      this_insn = ps_rtl_insn (ps, u);
      this_latency = insn_latency (move->insn, this_insn);
      this_latency = insn_latency (move->insn, this_insn);
      if (distance1_uses && !TEST_BIT (distance1_uses, u))
      if (distance1_uses && !TEST_BIT (distance1_uses, u))
        this_distance = -1;
        this_distance = -1;
      else
      else
        this_distance = 0;
        this_distance = 0;
      this_time = SCHED_TIME (u) + this_distance * ii;
      this_time = SCHED_TIME (u) + this_distance * ii;
      this_start = this_time - ii;
      this_start = this_time - ii;
      this_end = this_time - this_latency;
      this_end = this_time - this_latency;
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
        fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n",
                 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
                 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn),
                 this_latency, this_distance, INSN_UID (this_insn));
                 this_latency, this_distance, INSN_UID (this_insn));
 
 
      if (start < this_start)
      if (start < this_start)
        start = this_start;
        start = this_start;
      if (end > this_end)
      if (end > this_end)
        end = this_end;
        end = this_end;
    }
    }
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "----------- ----------- -----\n");
      fprintf (dump_file, "----------- ----------- -----\n");
      fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
      fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)");
    }
    }
 
 
  sbitmap_zero (must_follow);
  sbitmap_zero (must_follow);
  SET_BIT (must_follow, move->def);
  SET_BIT (must_follow, move->def);
 
 
  start = MAX (start, end - (ii - 1));
  start = MAX (start, end - (ii - 1));
  for (c = end; c >= start; c--)
  for (c = end; c >= start; c--)
    {
    {
      psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
      psi = ps_add_node_check_conflicts (ps, i_reg_move, c,
                                         move->uses, must_follow);
                                         move->uses, must_follow);
      if (psi)
      if (psi)
        {
        {
          update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
          update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps));
          if (dump_file)
          if (dump_file)
            fprintf (dump_file, "\nScheduled register move INSN %d at"
            fprintf (dump_file, "\nScheduled register move INSN %d at"
                     " time %d, row %d\n\n", INSN_UID (move->insn), c,
                     " time %d, row %d\n\n", INSN_UID (move->insn), c,
                     SCHED_ROW (i_reg_move));
                     SCHED_ROW (i_reg_move));
          return true;
          return true;
        }
        }
    }
    }
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "\nNo available slot\n\n");
    fprintf (dump_file, "\nNo available slot\n\n");
 
 
  return false;
  return false;
}
}
 
 
/*
/*
   Breaking intra-loop register anti-dependences:
   Breaking intra-loop register anti-dependences:
   Each intra-loop register anti-dependence implies a cross-iteration true
   Each intra-loop register anti-dependence implies a cross-iteration true
   dependence of distance 1. Therefore, we can remove such false dependencies
   dependence of distance 1. Therefore, we can remove such false dependencies
   and figure out if the partial schedule broke them by checking if (for a
   and figure out if the partial schedule broke them by checking if (for a
   true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
   true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and
   if so generate a register move.   The number of such moves is equal to:
   if so generate a register move.   The number of such moves is equal to:
              SCHED_TIME (use) - SCHED_TIME (def)       { 0 broken
              SCHED_TIME (use) - SCHED_TIME (def)       { 0 broken
   nreg_moves = ----------------------------------- + 1 - {   dependence.
   nreg_moves = ----------------------------------- + 1 - {   dependence.
                            ii                          { 1 if not.
                            ii                          { 1 if not.
*/
*/
static bool
static bool
schedule_reg_moves (partial_schedule_ptr ps)
schedule_reg_moves (partial_schedule_ptr ps)
{
{
  ddg_ptr g = ps->g;
  ddg_ptr g = ps->g;
  int ii = ps->ii;
  int ii = ps->ii;
  int i;
  int i;
 
 
  for (i = 0; i < g->num_nodes; i++)
  for (i = 0; i < g->num_nodes; i++)
    {
    {
      ddg_node_ptr u = &g->nodes[i];
      ddg_node_ptr u = &g->nodes[i];
      ddg_edge_ptr e;
      ddg_edge_ptr e;
      int nreg_moves = 0, i_reg_move;
      int nreg_moves = 0, i_reg_move;
      rtx prev_reg, old_reg;
      rtx prev_reg, old_reg;
      int first_move;
      int first_move;
      int distances[2];
      int distances[2];
      sbitmap must_follow;
      sbitmap must_follow;
      sbitmap distance1_uses;
      sbitmap distance1_uses;
      rtx set = single_set (u->insn);
      rtx set = single_set (u->insn);
 
 
      /* Skip instructions that do not set a register.  */
      /* Skip instructions that do not set a register.  */
      if ((set && !REG_P (SET_DEST (set))))
      if ((set && !REG_P (SET_DEST (set))))
        continue;
        continue;
 
 
      /* Compute the number of reg_moves needed for u, by looking at life
      /* Compute the number of reg_moves needed for u, by looking at life
         ranges started at u (excluding self-loops).  */
         ranges started at u (excluding self-loops).  */
      distances[0] = distances[1] = false;
      distances[0] = distances[1] = false;
      for (e = u->out; e; e = e->next_out)
      for (e = u->out; e; e = e->next_out)
        if (e->type == TRUE_DEP && e->dest != e->src)
        if (e->type == TRUE_DEP && e->dest != e->src)
          {
          {
            int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
            int nreg_moves4e = (SCHED_TIME (e->dest->cuid)
                                - SCHED_TIME (e->src->cuid)) / ii;
                                - SCHED_TIME (e->src->cuid)) / ii;
 
 
            if (e->distance == 1)
            if (e->distance == 1)
              nreg_moves4e = (SCHED_TIME (e->dest->cuid)
              nreg_moves4e = (SCHED_TIME (e->dest->cuid)
                              - SCHED_TIME (e->src->cuid) + ii) / ii;
                              - SCHED_TIME (e->src->cuid) + ii) / ii;
 
 
            /* If dest precedes src in the schedule of the kernel, then dest
            /* If dest precedes src in the schedule of the kernel, then dest
               will read before src writes and we can save one reg_copy.  */
               will read before src writes and we can save one reg_copy.  */
            if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
            if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
                && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
                && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
              nreg_moves4e--;
              nreg_moves4e--;
 
 
            if (nreg_moves4e >= 1)
            if (nreg_moves4e >= 1)
              {
              {
                /* !single_set instructions are not supported yet and
                /* !single_set instructions are not supported yet and
                   thus we do not except to encounter them in the loop
                   thus we do not except to encounter them in the loop
                   except from the doloop part.  For the latter case
                   except from the doloop part.  For the latter case
                   we assume no regmoves are generated as the doloop
                   we assume no regmoves are generated as the doloop
                   instructions are tied to the branch with an edge.  */
                   instructions are tied to the branch with an edge.  */
                gcc_assert (set);
                gcc_assert (set);
                /* If the instruction contains auto-inc register then
                /* If the instruction contains auto-inc register then
                   validate that the regmov is being generated for the
                   validate that the regmov is being generated for the
                   target regsiter rather then the inc'ed register.     */
                   target regsiter rather then the inc'ed register.     */
                gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
                gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn));
              }
              }
 
 
            if (nreg_moves4e)
            if (nreg_moves4e)
              {
              {
                gcc_assert (e->distance < 2);
                gcc_assert (e->distance < 2);
                distances[e->distance] = true;
                distances[e->distance] = true;
              }
              }
            nreg_moves = MAX (nreg_moves, nreg_moves4e);
            nreg_moves = MAX (nreg_moves, nreg_moves4e);
          }
          }
 
 
      if (nreg_moves == 0)
      if (nreg_moves == 0)
        continue;
        continue;
 
 
      /* Create NREG_MOVES register moves.  */
      /* Create NREG_MOVES register moves.  */
      first_move = VEC_length (ps_reg_move_info, ps->reg_moves);
      first_move = VEC_length (ps_reg_move_info, ps->reg_moves);
      VEC_safe_grow_cleared (ps_reg_move_info, heap, ps->reg_moves,
      VEC_safe_grow_cleared (ps_reg_move_info, heap, ps->reg_moves,
                             first_move + nreg_moves);
                             first_move + nreg_moves);
      extend_node_sched_params (ps);
      extend_node_sched_params (ps);
 
 
      /* Record the moves associated with this node.  */
      /* Record the moves associated with this node.  */
      first_move += ps->g->num_nodes;
      first_move += ps->g->num_nodes;
 
 
      /* Generate each move.  */
      /* Generate each move.  */
      old_reg = prev_reg = SET_DEST (single_set (u->insn));
      old_reg = prev_reg = SET_DEST (single_set (u->insn));
      for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
      for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
        {
        {
          ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
          ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move);
 
 
          move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
          move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i;
          move->uses = sbitmap_alloc (first_move + nreg_moves);
          move->uses = sbitmap_alloc (first_move + nreg_moves);
          move->old_reg = old_reg;
          move->old_reg = old_reg;
          move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
          move->new_reg = gen_reg_rtx (GET_MODE (prev_reg));
          move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
          move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1;
          move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
          move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg));
          sbitmap_zero (move->uses);
          sbitmap_zero (move->uses);
 
 
          prev_reg = move->new_reg;
          prev_reg = move->new_reg;
        }
        }
 
 
      distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
      distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL;
 
 
      /* Every use of the register defined by node may require a different
      /* Every use of the register defined by node may require a different
         copy of this register, depending on the time the use is scheduled.
         copy of this register, depending on the time the use is scheduled.
         Record which uses require which move results.  */
         Record which uses require which move results.  */
      for (e = u->out; e; e = e->next_out)
      for (e = u->out; e; e = e->next_out)
        if (e->type == TRUE_DEP && e->dest != e->src)
        if (e->type == TRUE_DEP && e->dest != e->src)
          {
          {
            int dest_copy = (SCHED_TIME (e->dest->cuid)
            int dest_copy = (SCHED_TIME (e->dest->cuid)
                             - SCHED_TIME (e->src->cuid)) / ii;
                             - SCHED_TIME (e->src->cuid)) / ii;
 
 
            if (e->distance == 1)
            if (e->distance == 1)
              dest_copy = (SCHED_TIME (e->dest->cuid)
              dest_copy = (SCHED_TIME (e->dest->cuid)
                           - SCHED_TIME (e->src->cuid) + ii) / ii;
                           - SCHED_TIME (e->src->cuid) + ii) / ii;
 
 
            if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
            if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid)
                && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
                && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid))
              dest_copy--;
              dest_copy--;
 
 
            if (dest_copy)
            if (dest_copy)
              {
              {
                ps_reg_move_info *move;
                ps_reg_move_info *move;
 
 
                move = ps_reg_move (ps, first_move + dest_copy - 1);
                move = ps_reg_move (ps, first_move + dest_copy - 1);
                SET_BIT (move->uses, e->dest->cuid);
                SET_BIT (move->uses, e->dest->cuid);
                if (e->distance == 1)
                if (e->distance == 1)
                  SET_BIT (distance1_uses, e->dest->cuid);
                  SET_BIT (distance1_uses, e->dest->cuid);
              }
              }
          }
          }
 
 
      must_follow = sbitmap_alloc (first_move + nreg_moves);
      must_follow = sbitmap_alloc (first_move + nreg_moves);
      for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
      for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++)
        if (!schedule_reg_move (ps, first_move + i_reg_move,
        if (!schedule_reg_move (ps, first_move + i_reg_move,
                                distance1_uses, must_follow))
                                distance1_uses, must_follow))
          break;
          break;
      sbitmap_free (must_follow);
      sbitmap_free (must_follow);
      if (distance1_uses)
      if (distance1_uses)
        sbitmap_free (distance1_uses);
        sbitmap_free (distance1_uses);
      if (i_reg_move < nreg_moves)
      if (i_reg_move < nreg_moves)
        return false;
        return false;
    }
    }
  return true;
  return true;
}
}
 
 
/* Emit the moves associatied with PS.  Apply the substitutions
/* Emit the moves associatied with PS.  Apply the substitutions
   associated with them.  */
   associated with them.  */
static void
static void
apply_reg_moves (partial_schedule_ptr ps)
apply_reg_moves (partial_schedule_ptr ps)
{
{
  ps_reg_move_info *move;
  ps_reg_move_info *move;
  int i;
  int i;
 
 
  FOR_EACH_VEC_ELT (ps_reg_move_info, ps->reg_moves, i, move)
  FOR_EACH_VEC_ELT (ps_reg_move_info, ps->reg_moves, i, move)
    {
    {
      unsigned int i_use;
      unsigned int i_use;
      sbitmap_iterator sbi;
      sbitmap_iterator sbi;
 
 
      EXECUTE_IF_SET_IN_SBITMAP (move->uses, 0, i_use, sbi)
      EXECUTE_IF_SET_IN_SBITMAP (move->uses, 0, i_use, sbi)
        {
        {
          replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
          replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg);
          df_insn_rescan (ps->g->nodes[i_use].insn);
          df_insn_rescan (ps->g->nodes[i_use].insn);
        }
        }
    }
    }
}
}
 
 
/* Bump the SCHED_TIMEs of all nodes by AMOUNT.  Set the values of
/* Bump the SCHED_TIMEs of all nodes by AMOUNT.  Set the values of
   SCHED_ROW and SCHED_STAGE.  Instruction scheduled on cycle AMOUNT
   SCHED_ROW and SCHED_STAGE.  Instruction scheduled on cycle AMOUNT
   will move to cycle zero.  */
   will move to cycle zero.  */
static void
static void
reset_sched_times (partial_schedule_ptr ps, int amount)
reset_sched_times (partial_schedule_ptr ps, int amount)
{
{
  int row;
  int row;
  int ii = ps->ii;
  int ii = ps->ii;
  ps_insn_ptr crr_insn;
  ps_insn_ptr crr_insn;
 
 
  for (row = 0; row < ii; row++)
  for (row = 0; row < ii; row++)
    for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
    for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
      {
      {
        int u = crr_insn->id;
        int u = crr_insn->id;
        int normalized_time = SCHED_TIME (u) - amount;
        int normalized_time = SCHED_TIME (u) - amount;
        int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
        int new_min_cycle = PS_MIN_CYCLE (ps) - amount;
 
 
        if (dump_file)
        if (dump_file)
          {
          {
            /* Print the scheduling times after the rotation.  */
            /* Print the scheduling times after the rotation.  */
            rtx insn = ps_rtl_insn (ps, u);
            rtx insn = ps_rtl_insn (ps, u);
 
 
            fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
            fprintf (dump_file, "crr_insn->node=%d (insn id %d), "
                     "crr_insn->cycle=%d, min_cycle=%d", u,
                     "crr_insn->cycle=%d, min_cycle=%d", u,
                     INSN_UID (insn), normalized_time, new_min_cycle);
                     INSN_UID (insn), normalized_time, new_min_cycle);
            if (JUMP_P (insn))
            if (JUMP_P (insn))
              fprintf (dump_file, " (branch)");
              fprintf (dump_file, " (branch)");
            fprintf (dump_file, "\n");
            fprintf (dump_file, "\n");
          }
          }
 
 
        gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
        gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
        gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
        gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
 
 
        crr_insn->cycle = normalized_time;
        crr_insn->cycle = normalized_time;
        update_node_sched_params (u, ii, normalized_time, new_min_cycle);
        update_node_sched_params (u, ii, normalized_time, new_min_cycle);
      }
      }
}
}
 
 
/* Permute the insns according to their order in PS, from row 0 to
/* Permute the insns according to their order in PS, from row 0 to
   row ii-1, and position them right before LAST.  This schedules
   row ii-1, and position them right before LAST.  This schedules
   the insns of the loop kernel.  */
   the insns of the loop kernel.  */
static void
static void
permute_partial_schedule (partial_schedule_ptr ps, rtx last)
permute_partial_schedule (partial_schedule_ptr ps, rtx last)
{
{
  int ii = ps->ii;
  int ii = ps->ii;
  int row;
  int row;
  ps_insn_ptr ps_ij;
  ps_insn_ptr ps_ij;
 
 
  for (row = 0; row < ii ; row++)
  for (row = 0; row < ii ; row++)
    for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
    for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
      {
      {
        rtx insn = ps_rtl_insn (ps, ps_ij->id);
        rtx insn = ps_rtl_insn (ps, ps_ij->id);
 
 
        if (PREV_INSN (last) != insn)
        if (PREV_INSN (last) != insn)
          {
          {
            if (ps_ij->id < ps->g->num_nodes)
            if (ps_ij->id < ps->g->num_nodes)
              reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
              reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn,
                                  PREV_INSN (last));
                                  PREV_INSN (last));
            else
            else
              add_insn_before (insn, last, NULL);
              add_insn_before (insn, last, NULL);
          }
          }
      }
      }
}
}
 
 
/* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
/* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE
   respectively only if cycle C falls on the border of the scheduling
   respectively only if cycle C falls on the border of the scheduling
   window boundaries marked by START and END cycles.  STEP is the
   window boundaries marked by START and END cycles.  STEP is the
   direction of the window.  */
   direction of the window.  */
static inline void
static inline void
set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow,
                         sbitmap *tmp_precede, sbitmap must_precede, int c,
                         sbitmap *tmp_precede, sbitmap must_precede, int c,
                         int start, int end, int step)
                         int start, int end, int step)
{
{
  *tmp_precede = NULL;
  *tmp_precede = NULL;
  *tmp_follow = NULL;
  *tmp_follow = NULL;
 
 
  if (c == start)
  if (c == start)
    {
    {
      if (step == 1)
      if (step == 1)
        *tmp_precede = must_precede;
        *tmp_precede = must_precede;
      else                      /* step == -1.  */
      else                      /* step == -1.  */
        *tmp_follow = must_follow;
        *tmp_follow = must_follow;
    }
    }
  if (c == end - step)
  if (c == end - step)
    {
    {
      if (step == 1)
      if (step == 1)
        *tmp_follow = must_follow;
        *tmp_follow = must_follow;
      else                      /* step == -1.  */
      else                      /* step == -1.  */
        *tmp_precede = must_precede;
        *tmp_precede = must_precede;
    }
    }
 
 
}
}
 
 
/* Return True if the branch can be moved to row ii-1 while
/* Return True if the branch can be moved to row ii-1 while
   normalizing the partial schedule PS to start from cycle zero and thus
   normalizing the partial schedule PS to start from cycle zero and thus
   optimize the SC.  Otherwise return False.  */
   optimize the SC.  Otherwise return False.  */
static bool
static bool
optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
optimize_sc (partial_schedule_ptr ps, ddg_ptr g)
{
{
  int amount = PS_MIN_CYCLE (ps);
  int amount = PS_MIN_CYCLE (ps);
  sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
  sbitmap sched_nodes = sbitmap_alloc (g->num_nodes);
  int start, end, step;
  int start, end, step;
  int ii = ps->ii;
  int ii = ps->ii;
  bool ok = false;
  bool ok = false;
  int stage_count, stage_count_curr;
  int stage_count, stage_count_curr;
 
 
  /* Compare the SC after normalization and SC after bringing the branch
  /* Compare the SC after normalization and SC after bringing the branch
     to row ii-1.  If they are equal just bail out.  */
     to row ii-1.  If they are equal just bail out.  */
  stage_count = calculate_stage_count (ps, amount);
  stage_count = calculate_stage_count (ps, amount);
  stage_count_curr =
  stage_count_curr =
    calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
    calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1));
 
 
  if (stage_count == stage_count_curr)
  if (stage_count == stage_count_curr)
    {
    {
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "SMS SC already optimized.\n");
        fprintf (dump_file, "SMS SC already optimized.\n");
 
 
      ok = false;
      ok = false;
      goto clear;
      goto clear;
    }
    }
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "SMS Trying to optimize branch location\n");
      fprintf (dump_file, "SMS Trying to optimize branch location\n");
      fprintf (dump_file, "SMS partial schedule before trial:\n");
      fprintf (dump_file, "SMS partial schedule before trial:\n");
      print_partial_schedule (ps, dump_file);
      print_partial_schedule (ps, dump_file);
    }
    }
 
 
  /* First, normalize the partial scheduling.  */
  /* First, normalize the partial scheduling.  */
  reset_sched_times (ps, amount);
  reset_sched_times (ps, amount);
  rotate_partial_schedule (ps, amount);
  rotate_partial_schedule (ps, amount);
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file,
      fprintf (dump_file,
               "SMS partial schedule after normalization (ii, %d, SC %d):\n",
               "SMS partial schedule after normalization (ii, %d, SC %d):\n",
               ii, stage_count);
               ii, stage_count);
      print_partial_schedule (ps, dump_file);
      print_partial_schedule (ps, dump_file);
    }
    }
 
 
  if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
  if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1)
    {
    {
      ok = true;
      ok = true;
      goto clear;
      goto clear;
    }
    }
 
 
  sbitmap_ones (sched_nodes);
  sbitmap_ones (sched_nodes);
 
 
  /* Calculate the new placement of the branch.  It should be in row
  /* Calculate the new placement of the branch.  It should be in row
     ii-1 and fall into it's scheduling window.  */
     ii-1 and fall into it's scheduling window.  */
  if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
  if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start,
                        &step, &end) == 0)
                        &step, &end) == 0)
    {
    {
      bool success;
      bool success;
      ps_insn_ptr next_ps_i;
      ps_insn_ptr next_ps_i;
      int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
      int branch_cycle = SCHED_TIME (g->closing_branch->cuid);
      int row = SMODULO (branch_cycle, ps->ii);
      int row = SMODULO (branch_cycle, ps->ii);
      int num_splits = 0;
      int num_splits = 0;
      sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
      sbitmap must_precede, must_follow, tmp_precede, tmp_follow;
      int c;
      int c;
 
 
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "\nTrying to schedule node %d "
        fprintf (dump_file, "\nTrying to schedule node %d "
                 "INSN = %d  in (%d .. %d) step %d\n",
                 "INSN = %d  in (%d .. %d) step %d\n",
                 g->closing_branch->cuid,
                 g->closing_branch->cuid,
                 (INSN_UID (g->closing_branch->insn)), start, end, step);
                 (INSN_UID (g->closing_branch->insn)), start, end, step);
 
 
      gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
      gcc_assert ((step > 0 && start < end) || (step < 0 && start > end));
      if (step == 1)
      if (step == 1)
        {
        {
          c = start + ii - SMODULO (start, ii) - 1;
          c = start + ii - SMODULO (start, ii) - 1;
          gcc_assert (c >= start);
          gcc_assert (c >= start);
          if (c >= end)
          if (c >= end)
            {
            {
              ok = false;
              ok = false;
              if (dump_file)
              if (dump_file)
                fprintf (dump_file,
                fprintf (dump_file,
                         "SMS failed to schedule branch at cycle: %d\n", c);
                         "SMS failed to schedule branch at cycle: %d\n", c);
              goto clear;
              goto clear;
            }
            }
        }
        }
      else
      else
        {
        {
          c = start - SMODULO (start, ii) - 1;
          c = start - SMODULO (start, ii) - 1;
          gcc_assert (c <= start);
          gcc_assert (c <= start);
 
 
          if (c <= end)
          if (c <= end)
            {
            {
              if (dump_file)
              if (dump_file)
                fprintf (dump_file,
                fprintf (dump_file,
                         "SMS failed to schedule branch at cycle: %d\n", c);
                         "SMS failed to schedule branch at cycle: %d\n", c);
              ok = false;
              ok = false;
              goto clear;
              goto clear;
            }
            }
        }
        }
 
 
      must_precede = sbitmap_alloc (g->num_nodes);
      must_precede = sbitmap_alloc (g->num_nodes);
      must_follow = sbitmap_alloc (g->num_nodes);
      must_follow = sbitmap_alloc (g->num_nodes);
 
 
      /* Try to schedule the branch is it's new cycle.  */
      /* Try to schedule the branch is it's new cycle.  */
      calculate_must_precede_follow (g->closing_branch, start, end,
      calculate_must_precede_follow (g->closing_branch, start, end,
                                     step, ii, sched_nodes,
                                     step, ii, sched_nodes,
                                     must_precede, must_follow);
                                     must_precede, must_follow);
 
 
      set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
      set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
                               must_precede, c, start, end, step);
                               must_precede, c, start, end, step);
 
 
      /* Find the element in the partial schedule related to the closing
      /* Find the element in the partial schedule related to the closing
         branch so we can remove it from it's current cycle.  */
         branch so we can remove it from it's current cycle.  */
      for (next_ps_i = ps->rows[row];
      for (next_ps_i = ps->rows[row];
           next_ps_i; next_ps_i = next_ps_i->next_in_row)
           next_ps_i; next_ps_i = next_ps_i->next_in_row)
        if (next_ps_i->id == g->closing_branch->cuid)
        if (next_ps_i->id == g->closing_branch->cuid)
          break;
          break;
 
 
      remove_node_from_ps (ps, next_ps_i);
      remove_node_from_ps (ps, next_ps_i);
      success =
      success =
        try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
        try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c,
                                      sched_nodes, &num_splits,
                                      sched_nodes, &num_splits,
                                      tmp_precede, tmp_follow);
                                      tmp_precede, tmp_follow);
      gcc_assert (num_splits == 0);
      gcc_assert (num_splits == 0);
      if (!success)
      if (!success)
        {
        {
          if (dump_file)
          if (dump_file)
            fprintf (dump_file,
            fprintf (dump_file,
                     "SMS failed to schedule branch at cycle: %d, "
                     "SMS failed to schedule branch at cycle: %d, "
                     "bringing it back to cycle %d\n", c, branch_cycle);
                     "bringing it back to cycle %d\n", c, branch_cycle);
 
 
          /* The branch was failed to be placed in row ii - 1.
          /* The branch was failed to be placed in row ii - 1.
             Put it back in it's original place in the partial
             Put it back in it's original place in the partial
             schedualing.  */
             schedualing.  */
          set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
          set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede,
                                   must_precede, branch_cycle, start, end,
                                   must_precede, branch_cycle, start, end,
                                   step);
                                   step);
          success =
          success =
            try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
            try_scheduling_node_in_cycle (ps, g->closing_branch->cuid,
                                          branch_cycle, sched_nodes,
                                          branch_cycle, sched_nodes,
                                          &num_splits, tmp_precede,
                                          &num_splits, tmp_precede,
                                          tmp_follow);
                                          tmp_follow);
          gcc_assert (success && (num_splits == 0));
          gcc_assert (success && (num_splits == 0));
          ok = false;
          ok = false;
        }
        }
      else
      else
        {
        {
          /* The branch is placed in row ii - 1.  */
          /* The branch is placed in row ii - 1.  */
          if (dump_file)
          if (dump_file)
            fprintf (dump_file,
            fprintf (dump_file,
                     "SMS success in moving branch to cycle %d\n", c);
                     "SMS success in moving branch to cycle %d\n", c);
 
 
          update_node_sched_params (g->closing_branch->cuid, ii, c,
          update_node_sched_params (g->closing_branch->cuid, ii, c,
                                    PS_MIN_CYCLE (ps));
                                    PS_MIN_CYCLE (ps));
          ok = true;
          ok = true;
        }
        }
 
 
      free (must_precede);
      free (must_precede);
      free (must_follow);
      free (must_follow);
    }
    }
 
 
clear:
clear:
  free (sched_nodes);
  free (sched_nodes);
  return ok;
  return ok;
}
}
 
 
static void
static void
duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage,
                           int to_stage, rtx count_reg)
                           int to_stage, rtx count_reg)
{
{
  int row;
  int row;
  ps_insn_ptr ps_ij;
  ps_insn_ptr ps_ij;
 
 
  for (row = 0; row < ps->ii; row++)
  for (row = 0; row < ps->ii; row++)
    for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
    for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row)
      {
      {
        int u = ps_ij->id;
        int u = ps_ij->id;
        int first_u, last_u;
        int first_u, last_u;
        rtx u_insn;
        rtx u_insn;
 
 
        /* Do not duplicate any insn which refers to count_reg as it
        /* Do not duplicate any insn which refers to count_reg as it
           belongs to the control part.
           belongs to the control part.
           The closing branch is scheduled as well and thus should
           The closing branch is scheduled as well and thus should
           be ignored.
           be ignored.
           TODO: This should be done by analyzing the control part of
           TODO: This should be done by analyzing the control part of
           the loop.  */
           the loop.  */
        u_insn = ps_rtl_insn (ps, u);
        u_insn = ps_rtl_insn (ps, u);
        if (reg_mentioned_p (count_reg, u_insn)
        if (reg_mentioned_p (count_reg, u_insn)
            || JUMP_P (u_insn))
            || JUMP_P (u_insn))
          continue;
          continue;
 
 
        first_u = SCHED_STAGE (u);
        first_u = SCHED_STAGE (u);
        last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
        last_u = first_u + ps_num_consecutive_stages (ps, u) - 1;
        if (from_stage <= last_u && to_stage >= first_u)
        if (from_stage <= last_u && to_stage >= first_u)
          {
          {
            if (u < ps->g->num_nodes)
            if (u < ps->g->num_nodes)
              duplicate_insn_chain (ps_first_note (ps, u), u_insn);
              duplicate_insn_chain (ps_first_note (ps, u), u_insn);
            else
            else
              emit_insn (copy_rtx (PATTERN (u_insn)));
              emit_insn (copy_rtx (PATTERN (u_insn)));
          }
          }
      }
      }
}
}
 
 
 
 
/* Generate the instructions (including reg_moves) for prolog & epilog.  */
/* Generate the instructions (including reg_moves) for prolog & epilog.  */
static void
static void
generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop,
                        rtx count_reg, rtx count_init)
                        rtx count_reg, rtx count_init)
{
{
  int i;
  int i;
  int last_stage = PS_STAGE_COUNT (ps) - 1;
  int last_stage = PS_STAGE_COUNT (ps) - 1;
  edge e;
  edge e;
 
 
  /* Generate the prolog, inserting its insns on the loop-entry edge.  */
  /* Generate the prolog, inserting its insns on the loop-entry edge.  */
  start_sequence ();
  start_sequence ();
 
 
  if (!count_init)
  if (!count_init)
    {
    {
      /* Generate instructions at the beginning of the prolog to
      /* Generate instructions at the beginning of the prolog to
         adjust the loop count by STAGE_COUNT.  If loop count is constant
         adjust the loop count by STAGE_COUNT.  If loop count is constant
         (count_init), this constant is adjusted by STAGE_COUNT in
         (count_init), this constant is adjusted by STAGE_COUNT in
         generate_prolog_epilog function.  */
         generate_prolog_epilog function.  */
      rtx sub_reg = NULL_RTX;
      rtx sub_reg = NULL_RTX;
 
 
      sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS,
      sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS,
                                     count_reg, GEN_INT (last_stage),
                                     count_reg, GEN_INT (last_stage),
                                     count_reg, 1, OPTAB_DIRECT);
                                     count_reg, 1, OPTAB_DIRECT);
      gcc_assert (REG_P (sub_reg));
      gcc_assert (REG_P (sub_reg));
      if (REGNO (sub_reg) != REGNO (count_reg))
      if (REGNO (sub_reg) != REGNO (count_reg))
        emit_move_insn (count_reg, sub_reg);
        emit_move_insn (count_reg, sub_reg);
    }
    }
 
 
  for (i = 0; i < last_stage; i++)
  for (i = 0; i < last_stage; i++)
    duplicate_insns_of_cycles (ps, 0, i, count_reg);
    duplicate_insns_of_cycles (ps, 0, i, count_reg);
 
 
  /* Put the prolog on the entry edge.  */
  /* Put the prolog on the entry edge.  */
  e = loop_preheader_edge (loop);
  e = loop_preheader_edge (loop);
  split_edge_and_insert (e, get_insns ());
  split_edge_and_insert (e, get_insns ());
  if (!flag_resched_modulo_sched)
  if (!flag_resched_modulo_sched)
    e->dest->flags |= BB_DISABLE_SCHEDULE;
    e->dest->flags |= BB_DISABLE_SCHEDULE;
 
 
  end_sequence ();
  end_sequence ();
 
 
  /* Generate the epilog, inserting its insns on the loop-exit edge.  */
  /* Generate the epilog, inserting its insns on the loop-exit edge.  */
  start_sequence ();
  start_sequence ();
 
 
  for (i = 0; i < last_stage; i++)
  for (i = 0; i < last_stage; i++)
    duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
    duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg);
 
 
  /* Put the epilogue on the exit edge.  */
  /* Put the epilogue on the exit edge.  */
  gcc_assert (single_exit (loop));
  gcc_assert (single_exit (loop));
  e = single_exit (loop);
  e = single_exit (loop);
  split_edge_and_insert (e, get_insns ());
  split_edge_and_insert (e, get_insns ());
  if (!flag_resched_modulo_sched)
  if (!flag_resched_modulo_sched)
    e->dest->flags |= BB_DISABLE_SCHEDULE;
    e->dest->flags |= BB_DISABLE_SCHEDULE;
 
 
  end_sequence ();
  end_sequence ();
}
}
 
 
/* Mark LOOP as software pipelined so the later
/* Mark LOOP as software pipelined so the later
   scheduling passes don't touch it.  */
   scheduling passes don't touch it.  */
static void
static void
mark_loop_unsched (struct loop *loop)
mark_loop_unsched (struct loop *loop)
{
{
  unsigned i;
  unsigned i;
  basic_block *bbs = get_loop_body (loop);
  basic_block *bbs = get_loop_body (loop);
 
 
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    bbs[i]->flags |= BB_DISABLE_SCHEDULE;
    bbs[i]->flags |= BB_DISABLE_SCHEDULE;
 
 
  free (bbs);
  free (bbs);
}
}
 
 
/* Return true if all the BBs of the loop are empty except the
/* Return true if all the BBs of the loop are empty except the
   loop header.  */
   loop header.  */
static bool
static bool
loop_single_full_bb_p (struct loop *loop)
loop_single_full_bb_p (struct loop *loop)
{
{
  unsigned i;
  unsigned i;
  basic_block *bbs = get_loop_body (loop);
  basic_block *bbs = get_loop_body (loop);
 
 
  for (i = 0; i < loop->num_nodes ; i++)
  for (i = 0; i < loop->num_nodes ; i++)
    {
    {
      rtx head, tail;
      rtx head, tail;
      bool empty_bb = true;
      bool empty_bb = true;
 
 
      if (bbs[i] == loop->header)
      if (bbs[i] == loop->header)
        continue;
        continue;
 
 
      /* Make sure that basic blocks other than the header
      /* Make sure that basic blocks other than the header
         have only notes labels or jumps.  */
         have only notes labels or jumps.  */
      get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
      get_ebb_head_tail (bbs[i], bbs[i], &head, &tail);
      for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
      for (; head != NEXT_INSN (tail); head = NEXT_INSN (head))
        {
        {
          if (NOTE_P (head) || LABEL_P (head)
          if (NOTE_P (head) || LABEL_P (head)
              || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
              || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head))))
            continue;
            continue;
          empty_bb = false;
          empty_bb = false;
          break;
          break;
        }
        }
 
 
      if (! empty_bb)
      if (! empty_bb)
        {
        {
          free (bbs);
          free (bbs);
          return false;
          return false;
        }
        }
    }
    }
  free (bbs);
  free (bbs);
  return true;
  return true;
}
}
 
 
/* Dump file:line from INSN's location info to dump_file.  */
/* Dump file:line from INSN's location info to dump_file.  */
 
 
static void
static void
dump_insn_locator (rtx insn)
dump_insn_locator (rtx insn)
{
{
  if (dump_file && INSN_LOCATOR (insn))
  if (dump_file && INSN_LOCATOR (insn))
    {
    {
      const char *file = insn_file (insn);
      const char *file = insn_file (insn);
      if (file)
      if (file)
        fprintf (dump_file, " %s:%i", file, insn_line (insn));
        fprintf (dump_file, " %s:%i", file, insn_line (insn));
    }
    }
}
}
 
 
/* A simple loop from SMS point of view; it is a loop that is composed of
/* A simple loop from SMS point of view; it is a loop that is composed of
   either a single basic block or two BBs - a header and a latch.  */
   either a single basic block or two BBs - a header and a latch.  */
#define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 )                     \
#define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 )                     \
                                  && (EDGE_COUNT (loop->latch->preds) == 1) \
                                  && (EDGE_COUNT (loop->latch->preds) == 1) \
                                  && (EDGE_COUNT (loop->latch->succs) == 1))
                                  && (EDGE_COUNT (loop->latch->succs) == 1))
 
 
/* Return true if the loop is in its canonical form and false if not.
/* Return true if the loop is in its canonical form and false if not.
   i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit.  */
   i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit.  */
static bool
static bool
loop_canon_p (struct loop *loop)
loop_canon_p (struct loop *loop)
{
{
 
 
  if (loop->inner || !loop_outer (loop))
  if (loop->inner || !loop_outer (loop))
  {
  {
    if (dump_file)
    if (dump_file)
      fprintf (dump_file, "SMS loop inner or !loop_outer\n");
      fprintf (dump_file, "SMS loop inner or !loop_outer\n");
    return false;
    return false;
  }
  }
 
 
  if (!single_exit (loop))
  if (!single_exit (loop))
    {
    {
      if (dump_file)
      if (dump_file)
        {
        {
          rtx insn = BB_END (loop->header);
          rtx insn = BB_END (loop->header);
 
 
          fprintf (dump_file, "SMS loop many exits");
          fprintf (dump_file, "SMS loop many exits");
          dump_insn_locator (insn);
          dump_insn_locator (insn);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
      return false;
      return false;
    }
    }
 
 
  if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
  if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop))
    {
    {
      if (dump_file)
      if (dump_file)
        {
        {
          rtx insn = BB_END (loop->header);
          rtx insn = BB_END (loop->header);
 
 
          fprintf (dump_file, "SMS loop many BBs.");
          fprintf (dump_file, "SMS loop many BBs.");
          dump_insn_locator (insn);
          dump_insn_locator (insn);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
      return false;
      return false;
    }
    }
 
 
    return true;
    return true;
}
}
 
 
/* If there are more than one entry for the loop,
/* If there are more than one entry for the loop,
   make it one by splitting the first entry edge and
   make it one by splitting the first entry edge and
   redirecting the others to the new BB.  */
   redirecting the others to the new BB.  */
static void
static void
canon_loop (struct loop *loop)
canon_loop (struct loop *loop)
{
{
  edge e;
  edge e;
  edge_iterator i;
  edge_iterator i;
 
 
  /* Avoid annoying special cases of edges going to exit
  /* Avoid annoying special cases of edges going to exit
     block.  */
     block.  */
  FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
  FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR->preds)
    if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
    if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1))
      split_edge (e);
      split_edge (e);
 
 
  if (loop->latch == loop->header
  if (loop->latch == loop->header
      || EDGE_COUNT (loop->latch->succs) > 1)
      || EDGE_COUNT (loop->latch->succs) > 1)
    {
    {
      FOR_EACH_EDGE (e, i, loop->header->preds)
      FOR_EACH_EDGE (e, i, loop->header->preds)
        if (e->src == loop->latch)
        if (e->src == loop->latch)
          break;
          break;
      split_edge (e);
      split_edge (e);
    }
    }
}
}
 
 
/* Setup infos.  */
/* Setup infos.  */
static void
static void
setup_sched_infos (void)
setup_sched_infos (void)
{
{
  memcpy (&sms_common_sched_info, &haifa_common_sched_info,
  memcpy (&sms_common_sched_info, &haifa_common_sched_info,
          sizeof (sms_common_sched_info));
          sizeof (sms_common_sched_info));
  sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
  sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS;
  common_sched_info = &sms_common_sched_info;
  common_sched_info = &sms_common_sched_info;
 
 
  sched_deps_info = &sms_sched_deps_info;
  sched_deps_info = &sms_sched_deps_info;
  current_sched_info = &sms_sched_info;
  current_sched_info = &sms_sched_info;
}
}
 
 
/* Probability in % that the sms-ed loop rolls enough so that optimized
/* Probability in % that the sms-ed loop rolls enough so that optimized
   version may be entered.  Just a guess.  */
   version may be entered.  Just a guess.  */
#define PROB_SMS_ENOUGH_ITERATIONS 80
#define PROB_SMS_ENOUGH_ITERATIONS 80
 
 
/* Used to calculate the upper bound of ii.  */
/* Used to calculate the upper bound of ii.  */
#define MAXII_FACTOR 2
#define MAXII_FACTOR 2
 
 
/* Main entry point, perform SMS scheduling on the loops of the function
/* Main entry point, perform SMS scheduling on the loops of the function
   that consist of single basic blocks.  */
   that consist of single basic blocks.  */
static void
static void
sms_schedule (void)
sms_schedule (void)
{
{
  rtx insn;
  rtx insn;
  ddg_ptr *g_arr, g;
  ddg_ptr *g_arr, g;
  int * node_order;
  int * node_order;
  int maxii, max_asap;
  int maxii, max_asap;
  loop_iterator li;
  loop_iterator li;
  partial_schedule_ptr ps;
  partial_schedule_ptr ps;
  basic_block bb = NULL;
  basic_block bb = NULL;
  struct loop *loop;
  struct loop *loop;
  basic_block condition_bb = NULL;
  basic_block condition_bb = NULL;
  edge latch_edge;
  edge latch_edge;
  gcov_type trip_count = 0;
  gcov_type trip_count = 0;
 
 
  loop_optimizer_init (LOOPS_HAVE_PREHEADERS
  loop_optimizer_init (LOOPS_HAVE_PREHEADERS
                       | LOOPS_HAVE_RECORDED_EXITS);
                       | LOOPS_HAVE_RECORDED_EXITS);
  if (number_of_loops () <= 1)
  if (number_of_loops () <= 1)
    {
    {
      loop_optimizer_finalize ();
      loop_optimizer_finalize ();
      return;  /* There are no loops to schedule.  */
      return;  /* There are no loops to schedule.  */
    }
    }
 
 
  /* Initialize issue_rate.  */
  /* Initialize issue_rate.  */
  if (targetm.sched.issue_rate)
  if (targetm.sched.issue_rate)
    {
    {
      int temp = reload_completed;
      int temp = reload_completed;
 
 
      reload_completed = 1;
      reload_completed = 1;
      issue_rate = targetm.sched.issue_rate ();
      issue_rate = targetm.sched.issue_rate ();
      reload_completed = temp;
      reload_completed = temp;
    }
    }
  else
  else
    issue_rate = 1;
    issue_rate = 1;
 
 
  /* Initialize the scheduler.  */
  /* Initialize the scheduler.  */
  setup_sched_infos ();
  setup_sched_infos ();
  haifa_sched_init ();
  haifa_sched_init ();
 
 
  /* Allocate memory to hold the DDG array one entry for each loop.
  /* Allocate memory to hold the DDG array one entry for each loop.
     We use loop->num as index into this array.  */
     We use loop->num as index into this array.  */
  g_arr = XCNEWVEC (ddg_ptr, number_of_loops ());
  g_arr = XCNEWVEC (ddg_ptr, number_of_loops ());
 
 
  if (dump_file)
  if (dump_file)
  {
  {
    fprintf (dump_file, "\n\nSMS analysis phase\n");
    fprintf (dump_file, "\n\nSMS analysis phase\n");
    fprintf (dump_file, "===================\n\n");
    fprintf (dump_file, "===================\n\n");
  }
  }
 
 
  /* Build DDGs for all the relevant loops and hold them in G_ARR
  /* Build DDGs for all the relevant loops and hold them in G_ARR
     indexed by the loop index.  */
     indexed by the loop index.  */
  FOR_EACH_LOOP (li, loop, 0)
  FOR_EACH_LOOP (li, loop, 0)
    {
    {
      rtx head, tail;
      rtx head, tail;
      rtx count_reg;
      rtx count_reg;
 
 
      /* For debugging.  */
      /* For debugging.  */
      if (dbg_cnt (sms_sched_loop) == false)
      if (dbg_cnt (sms_sched_loop) == false)
        {
        {
          if (dump_file)
          if (dump_file)
            fprintf (dump_file, "SMS reached max limit... \n");
            fprintf (dump_file, "SMS reached max limit... \n");
 
 
          break;
          break;
        }
        }
 
 
      if (dump_file)
      if (dump_file)
        {
        {
          rtx insn = BB_END (loop->header);
          rtx insn = BB_END (loop->header);
 
 
          fprintf (dump_file, "SMS loop num: %d", loop->num);
          fprintf (dump_file, "SMS loop num: %d", loop->num);
          dump_insn_locator (insn);
          dump_insn_locator (insn);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
 
 
      if (! loop_canon_p (loop))
      if (! loop_canon_p (loop))
        continue;
        continue;
 
 
      if (! loop_single_full_bb_p (loop))
      if (! loop_single_full_bb_p (loop))
      {
      {
        if (dump_file)
        if (dump_file)
          fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
          fprintf (dump_file, "SMS not loop_single_full_bb_p\n");
        continue;
        continue;
      }
      }
 
 
      bb = loop->header;
      bb = loop->header;
 
 
      get_ebb_head_tail (bb, bb, &head, &tail);
      get_ebb_head_tail (bb, bb, &head, &tail);
      latch_edge = loop_latch_edge (loop);
      latch_edge = loop_latch_edge (loop);
      gcc_assert (single_exit (loop));
      gcc_assert (single_exit (loop));
      if (single_exit (loop)->count)
      if (single_exit (loop)->count)
        trip_count = latch_edge->count / single_exit (loop)->count;
        trip_count = latch_edge->count / single_exit (loop)->count;
 
 
      /* Perform SMS only on loops that their average count is above threshold.  */
      /* Perform SMS only on loops that their average count is above threshold.  */
 
 
      if ( latch_edge->count
      if ( latch_edge->count
          && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
          && (latch_edge->count < single_exit (loop)->count * SMS_LOOP_AVERAGE_COUNT_THRESHOLD))
        {
        {
          if (dump_file)
          if (dump_file)
            {
            {
              dump_insn_locator (tail);
              dump_insn_locator (tail);
              fprintf (dump_file, "\nSMS single-bb-loop\n");
              fprintf (dump_file, "\nSMS single-bb-loop\n");
              if (profile_info && flag_branch_probabilities)
              if (profile_info && flag_branch_probabilities)
                {
                {
                  fprintf (dump_file, "SMS loop-count ");
                  fprintf (dump_file, "SMS loop-count ");
                  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
                  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
                           (HOST_WIDEST_INT) bb->count);
                           (HOST_WIDEST_INT) bb->count);
                  fprintf (dump_file, "\n");
                  fprintf (dump_file, "\n");
                  fprintf (dump_file, "SMS trip-count ");
                  fprintf (dump_file, "SMS trip-count ");
                  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
                  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
                           (HOST_WIDEST_INT) trip_count);
                           (HOST_WIDEST_INT) trip_count);
                  fprintf (dump_file, "\n");
                  fprintf (dump_file, "\n");
                  fprintf (dump_file, "SMS profile-sum-max ");
                  fprintf (dump_file, "SMS profile-sum-max ");
                  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
                  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
                           (HOST_WIDEST_INT) profile_info->sum_max);
                           (HOST_WIDEST_INT) profile_info->sum_max);
                  fprintf (dump_file, "\n");
                  fprintf (dump_file, "\n");
                }
                }
            }
            }
          continue;
          continue;
        }
        }
 
 
      /* Make sure this is a doloop.  */
      /* Make sure this is a doloop.  */
      if ( !(count_reg = doloop_register_get (head, tail)))
      if ( !(count_reg = doloop_register_get (head, tail)))
      {
      {
        if (dump_file)
        if (dump_file)
          fprintf (dump_file, "SMS doloop_register_get failed\n");
          fprintf (dump_file, "SMS doloop_register_get failed\n");
        continue;
        continue;
      }
      }
 
 
      /* Don't handle BBs with calls or barriers
      /* Don't handle BBs with calls or barriers
         or !single_set with the exception of instructions that include
         or !single_set with the exception of instructions that include
         count_reg---these instructions are part of the control part
         count_reg---these instructions are part of the control part
         that do-loop recognizes.
         that do-loop recognizes.
         ??? Should handle insns defining subregs.  */
         ??? Should handle insns defining subregs.  */
     for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
     for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn))
      {
      {
         rtx set;
         rtx set;
 
 
        if (CALL_P (insn)
        if (CALL_P (insn)
            || BARRIER_P (insn)
            || BARRIER_P (insn)
            || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
            || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
                && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
                && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE
                && !reg_mentioned_p (count_reg, insn))
                && !reg_mentioned_p (count_reg, insn))
            || (INSN_P (insn) && (set = single_set (insn))
            || (INSN_P (insn) && (set = single_set (insn))
                && GET_CODE (SET_DEST (set)) == SUBREG))
                && GET_CODE (SET_DEST (set)) == SUBREG))
        break;
        break;
      }
      }
 
 
      if (insn != NEXT_INSN (tail))
      if (insn != NEXT_INSN (tail))
        {
        {
          if (dump_file)
          if (dump_file)
            {
            {
              if (CALL_P (insn))
              if (CALL_P (insn))
                fprintf (dump_file, "SMS loop-with-call\n");
                fprintf (dump_file, "SMS loop-with-call\n");
              else if (BARRIER_P (insn))
              else if (BARRIER_P (insn))
                fprintf (dump_file, "SMS loop-with-barrier\n");
                fprintf (dump_file, "SMS loop-with-barrier\n");
              else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
              else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn)
                && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
                && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE))
                fprintf (dump_file, "SMS loop-with-not-single-set\n");
                fprintf (dump_file, "SMS loop-with-not-single-set\n");
              else
              else
               fprintf (dump_file, "SMS loop with subreg in lhs\n");
               fprintf (dump_file, "SMS loop with subreg in lhs\n");
              print_rtl_single (dump_file, insn);
              print_rtl_single (dump_file, insn);
            }
            }
 
 
          continue;
          continue;
        }
        }
 
 
      /* Always schedule the closing branch with the rest of the
      /* Always schedule the closing branch with the rest of the
         instructions. The branch is rotated to be in row ii-1 at the
         instructions. The branch is rotated to be in row ii-1 at the
         end of the scheduling procedure to make sure it's the last
         end of the scheduling procedure to make sure it's the last
         instruction in the iteration.  */
         instruction in the iteration.  */
      if (! (g = create_ddg (bb, 1)))
      if (! (g = create_ddg (bb, 1)))
        {
        {
          if (dump_file)
          if (dump_file)
            fprintf (dump_file, "SMS create_ddg failed\n");
            fprintf (dump_file, "SMS create_ddg failed\n");
          continue;
          continue;
        }
        }
 
 
      g_arr[loop->num] = g;
      g_arr[loop->num] = g;
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "...OK\n");
        fprintf (dump_file, "...OK\n");
 
 
    }
    }
  if (dump_file)
  if (dump_file)
  {
  {
    fprintf (dump_file, "\nSMS transformation phase\n");
    fprintf (dump_file, "\nSMS transformation phase\n");
    fprintf (dump_file, "=========================\n\n");
    fprintf (dump_file, "=========================\n\n");
  }
  }
 
 
  /* We don't want to perform SMS on new loops - created by versioning.  */
  /* We don't want to perform SMS on new loops - created by versioning.  */
  FOR_EACH_LOOP (li, loop, 0)
  FOR_EACH_LOOP (li, loop, 0)
    {
    {
      rtx head, tail;
      rtx head, tail;
      rtx count_reg, count_init;
      rtx count_reg, count_init;
      int mii, rec_mii, stage_count, min_cycle;
      int mii, rec_mii, stage_count, min_cycle;
      HOST_WIDEST_INT loop_count = 0;
      HOST_WIDEST_INT loop_count = 0;
      bool opt_sc_p;
      bool opt_sc_p;
 
 
      if (! (g = g_arr[loop->num]))
      if (! (g = g_arr[loop->num]))
        continue;
        continue;
 
 
      if (dump_file)
      if (dump_file)
        {
        {
          rtx insn = BB_END (loop->header);
          rtx insn = BB_END (loop->header);
 
 
          fprintf (dump_file, "SMS loop num: %d", loop->num);
          fprintf (dump_file, "SMS loop num: %d", loop->num);
          dump_insn_locator (insn);
          dump_insn_locator (insn);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
 
 
          print_ddg (dump_file, g);
          print_ddg (dump_file, g);
        }
        }
 
 
      get_ebb_head_tail (loop->header, loop->header, &head, &tail);
      get_ebb_head_tail (loop->header, loop->header, &head, &tail);
 
 
      latch_edge = loop_latch_edge (loop);
      latch_edge = loop_latch_edge (loop);
      gcc_assert (single_exit (loop));
      gcc_assert (single_exit (loop));
      if (single_exit (loop)->count)
      if (single_exit (loop)->count)
        trip_count = latch_edge->count / single_exit (loop)->count;
        trip_count = latch_edge->count / single_exit (loop)->count;
 
 
      if (dump_file)
      if (dump_file)
        {
        {
          dump_insn_locator (tail);
          dump_insn_locator (tail);
          fprintf (dump_file, "\nSMS single-bb-loop\n");
          fprintf (dump_file, "\nSMS single-bb-loop\n");
          if (profile_info && flag_branch_probabilities)
          if (profile_info && flag_branch_probabilities)
            {
            {
              fprintf (dump_file, "SMS loop-count ");
              fprintf (dump_file, "SMS loop-count ");
              fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
              fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
                       (HOST_WIDEST_INT) bb->count);
                       (HOST_WIDEST_INT) bb->count);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
              fprintf (dump_file, "SMS profile-sum-max ");
              fprintf (dump_file, "SMS profile-sum-max ");
              fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
              fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
                       (HOST_WIDEST_INT) profile_info->sum_max);
                       (HOST_WIDEST_INT) profile_info->sum_max);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
          fprintf (dump_file, "SMS doloop\n");
          fprintf (dump_file, "SMS doloop\n");
          fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
          fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes);
          fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
          fprintf (dump_file, "SMS num-loads %d\n", g->num_loads);
          fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
          fprintf (dump_file, "SMS num-stores %d\n", g->num_stores);
        }
        }
 
 
 
 
      /* In case of th loop have doloop register it gets special
      /* In case of th loop have doloop register it gets special
         handling.  */
         handling.  */
      count_init = NULL_RTX;
      count_init = NULL_RTX;
      if ((count_reg = doloop_register_get (head, tail)))
      if ((count_reg = doloop_register_get (head, tail)))
        {
        {
          basic_block pre_header;
          basic_block pre_header;
 
 
          pre_header = loop_preheader_edge (loop)->src;
          pre_header = loop_preheader_edge (loop)->src;
          count_init = const_iteration_count (count_reg, pre_header,
          count_init = const_iteration_count (count_reg, pre_header,
                                              &loop_count);
                                              &loop_count);
        }
        }
      gcc_assert (count_reg);
      gcc_assert (count_reg);
 
 
      if (dump_file && count_init)
      if (dump_file && count_init)
        {
        {
          fprintf (dump_file, "SMS const-doloop ");
          fprintf (dump_file, "SMS const-doloop ");
          fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
          fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
                     loop_count);
                     loop_count);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
 
 
      node_order = XNEWVEC (int, g->num_nodes);
      node_order = XNEWVEC (int, g->num_nodes);
 
 
      mii = 1; /* Need to pass some estimate of mii.  */
      mii = 1; /* Need to pass some estimate of mii.  */
      rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
      rec_mii = sms_order_nodes (g, mii, node_order, &max_asap);
      mii = MAX (res_MII (g), rec_mii);
      mii = MAX (res_MII (g), rec_mii);
      maxii = MAX (max_asap, MAXII_FACTOR * mii);
      maxii = MAX (max_asap, MAXII_FACTOR * mii);
 
 
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
        fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n",
                 rec_mii, mii, maxii);
                 rec_mii, mii, maxii);
 
 
      for (;;)
      for (;;)
        {
        {
          set_node_sched_params (g);
          set_node_sched_params (g);
 
 
          stage_count = 0;
          stage_count = 0;
          opt_sc_p = false;
          opt_sc_p = false;
          ps = sms_schedule_by_order (g, mii, maxii, node_order);
          ps = sms_schedule_by_order (g, mii, maxii, node_order);
 
 
          if (ps)
          if (ps)
            {
            {
              /* Try to achieve optimized SC by normalizing the partial
              /* Try to achieve optimized SC by normalizing the partial
                 schedule (having the cycles start from cycle zero).
                 schedule (having the cycles start from cycle zero).
                 The branch location must be placed in row ii-1 in the
                 The branch location must be placed in row ii-1 in the
                 final scheduling.      If failed, shift all instructions to
                 final scheduling.      If failed, shift all instructions to
                 position the branch in row ii-1.  */
                 position the branch in row ii-1.  */
              opt_sc_p = optimize_sc (ps, g);
              opt_sc_p = optimize_sc (ps, g);
              if (opt_sc_p)
              if (opt_sc_p)
                stage_count = calculate_stage_count (ps, 0);
                stage_count = calculate_stage_count (ps, 0);
              else
              else
                {
                {
                  /* Bring the branch to cycle ii-1.  */
                  /* Bring the branch to cycle ii-1.  */
                  int amount = (SCHED_TIME (g->closing_branch->cuid)
                  int amount = (SCHED_TIME (g->closing_branch->cuid)
                                - (ps->ii - 1));
                                - (ps->ii - 1));
 
 
                  if (dump_file)
                  if (dump_file)
                    fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
                    fprintf (dump_file, "SMS schedule branch at cycle ii-1\n");
 
 
                  stage_count = calculate_stage_count (ps, amount);
                  stage_count = calculate_stage_count (ps, amount);
                }
                }
 
 
              gcc_assert (stage_count >= 1);
              gcc_assert (stage_count >= 1);
            }
            }
 
 
          /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
          /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of
             1 means that there is no interleaving between iterations thus
             1 means that there is no interleaving between iterations thus
             we let the scheduling passes do the job in this case.  */
             we let the scheduling passes do the job in this case.  */
          if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
          if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC)
              || (count_init && (loop_count <= stage_count))
              || (count_init && (loop_count <= stage_count))
              || (flag_branch_probabilities && (trip_count <= stage_count)))
              || (flag_branch_probabilities && (trip_count <= stage_count)))
            {
            {
              if (dump_file)
              if (dump_file)
                {
                {
                  fprintf (dump_file, "SMS failed... \n");
                  fprintf (dump_file, "SMS failed... \n");
                  fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
                  fprintf (dump_file, "SMS sched-failed (stage-count=%d,"
                           " loop-count=", stage_count);
                           " loop-count=", stage_count);
                  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
                  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, loop_count);
                  fprintf (dump_file, ", trip-count=");
                  fprintf (dump_file, ", trip-count=");
                  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
                  fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, trip_count);
                  fprintf (dump_file, ")\n");
                  fprintf (dump_file, ")\n");
                }
                }
              break;
              break;
            }
            }
 
 
          if (!opt_sc_p)
          if (!opt_sc_p)
            {
            {
              /* Rotate the partial schedule to have the branch in row ii-1.  */
              /* Rotate the partial schedule to have the branch in row ii-1.  */
              int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
              int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1);
 
 
              reset_sched_times (ps, amount);
              reset_sched_times (ps, amount);
              rotate_partial_schedule (ps, amount);
              rotate_partial_schedule (ps, amount);
            }
            }
 
 
          set_columns_for_ps (ps);
          set_columns_for_ps (ps);
 
 
          min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
          min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii);
          if (!schedule_reg_moves (ps))
          if (!schedule_reg_moves (ps))
            {
            {
              mii = ps->ii + 1;
              mii = ps->ii + 1;
              free_partial_schedule (ps);
              free_partial_schedule (ps);
              continue;
              continue;
            }
            }
 
 
          /* Moves that handle incoming values might have been added
          /* Moves that handle incoming values might have been added
             to a new first stage.  Bump the stage count if so.
             to a new first stage.  Bump the stage count if so.
 
 
             ??? Perhaps we could consider rotating the schedule here
             ??? Perhaps we could consider rotating the schedule here
             instead?  */
             instead?  */
          if (PS_MIN_CYCLE (ps) < min_cycle)
          if (PS_MIN_CYCLE (ps) < min_cycle)
            {
            {
              reset_sched_times (ps, 0);
              reset_sched_times (ps, 0);
              stage_count++;
              stage_count++;
            }
            }
 
 
          /* The stage count should now be correct without rotation.  */
          /* The stage count should now be correct without rotation.  */
          gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
          gcc_checking_assert (stage_count == calculate_stage_count (ps, 0));
          PS_STAGE_COUNT (ps) = stage_count;
          PS_STAGE_COUNT (ps) = stage_count;
 
 
          canon_loop (loop);
          canon_loop (loop);
 
 
          if (dump_file)
          if (dump_file)
            {
            {
              dump_insn_locator (tail);
              dump_insn_locator (tail);
              fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
              fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n",
                       ps->ii, stage_count);
                       ps->ii, stage_count);
              print_partial_schedule (ps, dump_file);
              print_partial_schedule (ps, dump_file);
            }
            }
 
 
          /* case the BCT count is not known , Do loop-versioning */
          /* case the BCT count is not known , Do loop-versioning */
          if (count_reg && ! count_init)
          if (count_reg && ! count_init)
            {
            {
              rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
              rtx comp_rtx = gen_rtx_fmt_ee (GT, VOIDmode, count_reg,
                                             GEN_INT(stage_count));
                                             GEN_INT(stage_count));
              unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
              unsigned prob = (PROB_SMS_ENOUGH_ITERATIONS
                               * REG_BR_PROB_BASE) / 100;
                               * REG_BR_PROB_BASE) / 100;
 
 
              loop_version (loop, comp_rtx, &condition_bb,
              loop_version (loop, comp_rtx, &condition_bb,
                            prob, prob, REG_BR_PROB_BASE - prob,
                            prob, prob, REG_BR_PROB_BASE - prob,
                            true);
                            true);
             }
             }
 
 
          /* Set new iteration count of loop kernel.  */
          /* Set new iteration count of loop kernel.  */
          if (count_reg && count_init)
          if (count_reg && count_init)
            SET_SRC (single_set (count_init)) = GEN_INT (loop_count
            SET_SRC (single_set (count_init)) = GEN_INT (loop_count
                                                     - stage_count + 1);
                                                     - stage_count + 1);
 
 
          /* Now apply the scheduled kernel to the RTL of the loop.  */
          /* Now apply the scheduled kernel to the RTL of the loop.  */
          permute_partial_schedule (ps, g->closing_branch->first_note);
          permute_partial_schedule (ps, g->closing_branch->first_note);
 
 
          /* Mark this loop as software pipelined so the later
          /* Mark this loop as software pipelined so the later
             scheduling passes don't touch it.  */
             scheduling passes don't touch it.  */
          if (! flag_resched_modulo_sched)
          if (! flag_resched_modulo_sched)
            mark_loop_unsched (loop);
            mark_loop_unsched (loop);
 
 
          /* The life-info is not valid any more.  */
          /* The life-info is not valid any more.  */
          df_set_bb_dirty (g->bb);
          df_set_bb_dirty (g->bb);
 
 
          apply_reg_moves (ps);
          apply_reg_moves (ps);
          if (dump_file)
          if (dump_file)
            print_node_sched_params (dump_file, g->num_nodes, ps);
            print_node_sched_params (dump_file, g->num_nodes, ps);
          /* Generate prolog and epilog.  */
          /* Generate prolog and epilog.  */
          generate_prolog_epilog (ps, loop, count_reg, count_init);
          generate_prolog_epilog (ps, loop, count_reg, count_init);
          break;
          break;
        }
        }
 
 
      free_partial_schedule (ps);
      free_partial_schedule (ps);
      VEC_free (node_sched_params, heap, node_sched_param_vec);
      VEC_free (node_sched_params, heap, node_sched_param_vec);
      free (node_order);
      free (node_order);
      free_ddg (g);
      free_ddg (g);
    }
    }
 
 
  free (g_arr);
  free (g_arr);
 
 
  /* Release scheduler data, needed until now because of DFA.  */
  /* Release scheduler data, needed until now because of DFA.  */
  haifa_sched_finish ();
  haifa_sched_finish ();
  loop_optimizer_finalize ();
  loop_optimizer_finalize ();
}
}
 
 
/* The SMS scheduling algorithm itself
/* The SMS scheduling algorithm itself
   -----------------------------------
   -----------------------------------
   Input: 'O' an ordered list of insns of a loop.
   Input: 'O' an ordered list of insns of a loop.
   Output: A scheduling of the loop - kernel, prolog, and epilogue.
   Output: A scheduling of the loop - kernel, prolog, and epilogue.
 
 
   'Q' is the empty Set
   'Q' is the empty Set
   'PS' is the partial schedule; it holds the currently scheduled nodes with
   'PS' is the partial schedule; it holds the currently scheduled nodes with
        their cycle/slot.
        their cycle/slot.
   'PSP' previously scheduled predecessors.
   'PSP' previously scheduled predecessors.
   'PSS' previously scheduled successors.
   'PSS' previously scheduled successors.
   't(u)' the cycle where u is scheduled.
   't(u)' the cycle where u is scheduled.
   'l(u)' is the latency of u.
   'l(u)' is the latency of u.
   'd(v,u)' is the dependence distance from v to u.
   'd(v,u)' is the dependence distance from v to u.
   'ASAP(u)' the earliest time at which u could be scheduled as computed in
   'ASAP(u)' the earliest time at which u could be scheduled as computed in
             the node ordering phase.
             the node ordering phase.
   'check_hardware_resources_conflicts(u, PS, c)'
   'check_hardware_resources_conflicts(u, PS, c)'
                             run a trace around cycle/slot through DFA model
                             run a trace around cycle/slot through DFA model
                             to check resource conflicts involving instruction u
                             to check resource conflicts involving instruction u
                             at cycle c given the partial schedule PS.
                             at cycle c given the partial schedule PS.
   'add_to_partial_schedule_at_time(u, PS, c)'
   'add_to_partial_schedule_at_time(u, PS, c)'
                             Add the node/instruction u to the partial schedule
                             Add the node/instruction u to the partial schedule
                             PS at time c.
                             PS at time c.
   'calculate_register_pressure(PS)'
   'calculate_register_pressure(PS)'
                             Given a schedule of instructions, calculate the register
                             Given a schedule of instructions, calculate the register
                             pressure it implies.  One implementation could be the
                             pressure it implies.  One implementation could be the
                             maximum number of overlapping live ranges.
                             maximum number of overlapping live ranges.
   'maxRP' The maximum allowed register pressure, it is usually derived from the number
   'maxRP' The maximum allowed register pressure, it is usually derived from the number
           registers available in the hardware.
           registers available in the hardware.
 
 
   1. II = MII.
   1. II = MII.
   2. PS = empty list
   2. PS = empty list
   3. for each node u in O in pre-computed order
   3. for each node u in O in pre-computed order
   4.   if (PSP(u) != Q && PSS(u) == Q) then
   4.   if (PSP(u) != Q && PSS(u) == Q) then
   5.     Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
   5.     Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
   6.     start = Early_start; end = Early_start + II - 1; step = 1
   6.     start = Early_start; end = Early_start + II - 1; step = 1
   11.  else if (PSP(u) == Q && PSS(u) != Q) then
   11.  else if (PSP(u) == Q && PSS(u) != Q) then
   12.      Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
   12.      Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
   13.     start = Late_start; end = Late_start - II + 1; step = -1
   13.     start = Late_start; end = Late_start - II + 1; step = -1
   14.  else if (PSP(u) != Q && PSS(u) != Q) then
   14.  else if (PSP(u) != Q && PSS(u) != Q) then
   15.     Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
   15.     Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u).
   16.     Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
   16.     Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u).
   17.     start = Early_start;
   17.     start = Early_start;
   18.     end = min(Early_start + II - 1 , Late_start);
   18.     end = min(Early_start + II - 1 , Late_start);
   19.     step = 1
   19.     step = 1
   20.     else "if (PSP(u) == Q && PSS(u) == Q)"
   20.     else "if (PSP(u) == Q && PSS(u) == Q)"
   21.    start = ASAP(u); end = start + II - 1; step = 1
   21.    start = ASAP(u); end = start + II - 1; step = 1
   22.  endif
   22.  endif
 
 
   23.  success = false
   23.  success = false
   24.  for (c = start ; c != end ; c += step)
   24.  for (c = start ; c != end ; c += step)
   25.     if check_hardware_resources_conflicts(u, PS, c) then
   25.     if check_hardware_resources_conflicts(u, PS, c) then
   26.       add_to_partial_schedule_at_time(u, PS, c)
   26.       add_to_partial_schedule_at_time(u, PS, c)
   27.       success = true
   27.       success = true
   28.       break
   28.       break
   29.     endif
   29.     endif
   30.  endfor
   30.  endfor
   31.  if (success == false) then
   31.  if (success == false) then
   32.    II = II + 1
   32.    II = II + 1
   33.    if (II > maxII) then
   33.    if (II > maxII) then
   34.       finish - failed to schedule
   34.       finish - failed to schedule
   35.   endif
   35.   endif
   36.    goto 2.
   36.    goto 2.
   37.  endif
   37.  endif
   38. endfor
   38. endfor
   39. if (calculate_register_pressure(PS) > maxRP) then
   39. if (calculate_register_pressure(PS) > maxRP) then
   40.    goto 32.
   40.    goto 32.
   41. endif
   41. endif
   42. compute epilogue & prologue
   42. compute epilogue & prologue
   43. finish - succeeded to schedule
   43. finish - succeeded to schedule
 
 
   ??? The algorithm restricts the scheduling window to II cycles.
   ??? The algorithm restricts the scheduling window to II cycles.
   In rare cases, it may be better to allow windows of II+1 cycles.
   In rare cases, it may be better to allow windows of II+1 cycles.
   The window would then start and end on the same row, but with
   The window would then start and end on the same row, but with
   different "must precede" and "must follow" requirements.  */
   different "must precede" and "must follow" requirements.  */
 
 
/* A limit on the number of cycles that resource conflicts can span.  ??? Should
/* A limit on the number of cycles that resource conflicts can span.  ??? Should
   be provided by DFA, and be dependent on the type of insn scheduled.  Currently
   be provided by DFA, and be dependent on the type of insn scheduled.  Currently
   set to 0 to save compile time.  */
   set to 0 to save compile time.  */
#define DFA_HISTORY SMS_DFA_HISTORY
#define DFA_HISTORY SMS_DFA_HISTORY
 
 
/* A threshold for the number of repeated unsuccessful attempts to insert
/* A threshold for the number of repeated unsuccessful attempts to insert
   an empty row, before we flush the partial schedule and start over.  */
   an empty row, before we flush the partial schedule and start over.  */
#define MAX_SPLIT_NUM 10
#define MAX_SPLIT_NUM 10
/* Given the partial schedule PS, this function calculates and returns the
/* Given the partial schedule PS, this function calculates and returns the
   cycles in which we can schedule the node with the given index I.
   cycles in which we can schedule the node with the given index I.
   NOTE: Here we do the backtracking in SMS, in some special cases. We have
   NOTE: Here we do the backtracking in SMS, in some special cases. We have
   noticed that there are several cases in which we fail    to SMS the loop
   noticed that there are several cases in which we fail    to SMS the loop
   because the sched window of a node is empty    due to tight data-deps. In
   because the sched window of a node is empty    due to tight data-deps. In
   such cases we want to unschedule    some of the predecessors/successors
   such cases we want to unschedule    some of the predecessors/successors
   until we get non-empty    scheduling window.  It returns -1 if the
   until we get non-empty    scheduling window.  It returns -1 if the
   scheduling window is empty and zero otherwise.  */
   scheduling window is empty and zero otherwise.  */
 
 
static int
static int
get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node,
                  sbitmap sched_nodes, int ii, int *start_p, int *step_p,
                  sbitmap sched_nodes, int ii, int *start_p, int *step_p,
                  int *end_p)
                  int *end_p)
{
{
  int start, step, end;
  int start, step, end;
  int early_start, late_start;
  int early_start, late_start;
  ddg_edge_ptr e;
  ddg_edge_ptr e;
  sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
  sbitmap psp = sbitmap_alloc (ps->g->num_nodes);
  sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
  sbitmap pss = sbitmap_alloc (ps->g->num_nodes);
  sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
  sbitmap u_node_preds = NODE_PREDECESSORS (u_node);
  sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
  sbitmap u_node_succs = NODE_SUCCESSORS (u_node);
  int psp_not_empty;
  int psp_not_empty;
  int pss_not_empty;
  int pss_not_empty;
  int count_preds;
  int count_preds;
  int count_succs;
  int count_succs;
 
 
  /* 1. compute sched window for u (start, end, step).  */
  /* 1. compute sched window for u (start, end, step).  */
  sbitmap_zero (psp);
  sbitmap_zero (psp);
  sbitmap_zero (pss);
  sbitmap_zero (pss);
  psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
  psp_not_empty = sbitmap_a_and_b_cg (psp, u_node_preds, sched_nodes);
  pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
  pss_not_empty = sbitmap_a_and_b_cg (pss, u_node_succs, sched_nodes);
 
 
  /* We first compute a forward range (start <= end), then decide whether
  /* We first compute a forward range (start <= end), then decide whether
     to reverse it.  */
     to reverse it.  */
  early_start = INT_MIN;
  early_start = INT_MIN;
  late_start = INT_MAX;
  late_start = INT_MAX;
  start = INT_MIN;
  start = INT_MIN;
  end = INT_MAX;
  end = INT_MAX;
  step = 1;
  step = 1;
 
 
  count_preds = 0;
  count_preds = 0;
  count_succs = 0;
  count_succs = 0;
 
 
  if (dump_file && (psp_not_empty || pss_not_empty))
  if (dump_file && (psp_not_empty || pss_not_empty))
    {
    {
      fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
      fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)"
               "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
               "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii);
      fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
      fprintf (dump_file, "%11s %11s %11s %11s %5s\n",
               "start", "early start", "late start", "end", "time");
               "start", "early start", "late start", "end", "time");
      fprintf (dump_file, "=========== =========== =========== ==========="
      fprintf (dump_file, "=========== =========== =========== ==========="
               " =====\n");
               " =====\n");
    }
    }
  /* Calculate early_start and limit end.  Both bounds are inclusive.  */
  /* Calculate early_start and limit end.  Both bounds are inclusive.  */
  if (psp_not_empty)
  if (psp_not_empty)
    for (e = u_node->in; e != 0; e = e->next_in)
    for (e = u_node->in; e != 0; e = e->next_in)
      {
      {
        int v = e->src->cuid;
        int v = e->src->cuid;
 
 
        if (TEST_BIT (sched_nodes, v))
        if (TEST_BIT (sched_nodes, v))
          {
          {
            int p_st = SCHED_TIME (v);
            int p_st = SCHED_TIME (v);
            int earliest = p_st + e->latency - (e->distance * ii);
            int earliest = p_st + e->latency - (e->distance * ii);
            int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
            int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX);
 
 
            if (dump_file)
            if (dump_file)
              {
              {
                fprintf (dump_file, "%11s %11d %11s %11d %5d",
                fprintf (dump_file, "%11s %11d %11s %11d %5d",
                         "", earliest, "", latest, p_st);
                         "", earliest, "", latest, p_st);
                print_ddg_edge (dump_file, e);
                print_ddg_edge (dump_file, e);
                fprintf (dump_file, "\n");
                fprintf (dump_file, "\n");
              }
              }
 
 
            early_start = MAX (early_start, earliest);
            early_start = MAX (early_start, earliest);
            end = MIN (end, latest);
            end = MIN (end, latest);
 
 
            if (e->type == TRUE_DEP && e->data_type == REG_DEP)
            if (e->type == TRUE_DEP && e->data_type == REG_DEP)
              count_preds++;
              count_preds++;
          }
          }
      }
      }
 
 
  /* Calculate late_start and limit start.  Both bounds are inclusive.  */
  /* Calculate late_start and limit start.  Both bounds are inclusive.  */
  if (pss_not_empty)
  if (pss_not_empty)
    for (e = u_node->out; e != 0; e = e->next_out)
    for (e = u_node->out; e != 0; e = e->next_out)
      {
      {
        int v = e->dest->cuid;
        int v = e->dest->cuid;
 
 
        if (TEST_BIT (sched_nodes, v))
        if (TEST_BIT (sched_nodes, v))
          {
          {
            int s_st = SCHED_TIME (v);
            int s_st = SCHED_TIME (v);
            int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
            int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN);
            int latest = s_st - e->latency + (e->distance * ii);
            int latest = s_st - e->latency + (e->distance * ii);
 
 
            if (dump_file)
            if (dump_file)
              {
              {
                fprintf (dump_file, "%11d %11s %11d %11s %5d",
                fprintf (dump_file, "%11d %11s %11d %11s %5d",
                         earliest, "", latest, "", s_st);
                         earliest, "", latest, "", s_st);
                print_ddg_edge (dump_file, e);
                print_ddg_edge (dump_file, e);
                fprintf (dump_file, "\n");
                fprintf (dump_file, "\n");
              }
              }
 
 
            start = MAX (start, earliest);
            start = MAX (start, earliest);
            late_start = MIN (late_start, latest);
            late_start = MIN (late_start, latest);
 
 
            if (e->type == TRUE_DEP && e->data_type == REG_DEP)
            if (e->type == TRUE_DEP && e->data_type == REG_DEP)
              count_succs++;
              count_succs++;
          }
          }
      }
      }
 
 
  if (dump_file && (psp_not_empty || pss_not_empty))
  if (dump_file && (psp_not_empty || pss_not_empty))
    {
    {
      fprintf (dump_file, "----------- ----------- ----------- -----------"
      fprintf (dump_file, "----------- ----------- ----------- -----------"
               " -----\n");
               " -----\n");
      fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
      fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n",
               start, early_start, late_start, end, "",
               start, early_start, late_start, end, "",
               "(max, max, min, min)");
               "(max, max, min, min)");
    }
    }
 
 
  /* Get a target scheduling window no bigger than ii.  */
  /* Get a target scheduling window no bigger than ii.  */
  if (early_start == INT_MIN && late_start == INT_MAX)
  if (early_start == INT_MIN && late_start == INT_MAX)
    early_start = NODE_ASAP (u_node);
    early_start = NODE_ASAP (u_node);
  else if (early_start == INT_MIN)
  else if (early_start == INT_MIN)
    early_start = late_start - (ii - 1);
    early_start = late_start - (ii - 1);
  late_start = MIN (late_start, early_start + (ii - 1));
  late_start = MIN (late_start, early_start + (ii - 1));
 
 
  /* Apply memory dependence limits.  */
  /* Apply memory dependence limits.  */
  start = MAX (start, early_start);
  start = MAX (start, early_start);
  end = MIN (end, late_start);
  end = MIN (end, late_start);
 
 
  if (dump_file && (psp_not_empty || pss_not_empty))
  if (dump_file && (psp_not_empty || pss_not_empty))
    fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
    fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n",
             "", start, end, "", "");
             "", start, end, "", "");
 
 
  /* If there are at least as many successors as predecessors, schedule the
  /* If there are at least as many successors as predecessors, schedule the
     node close to its successors.  */
     node close to its successors.  */
  if (pss_not_empty && count_succs >= count_preds)
  if (pss_not_empty && count_succs >= count_preds)
    {
    {
      int tmp = end;
      int tmp = end;
      end = start;
      end = start;
      start = tmp;
      start = tmp;
      step = -1;
      step = -1;
    }
    }
 
 
  /* Now that we've finalized the window, make END an exclusive rather
  /* Now that we've finalized the window, make END an exclusive rather
     than an inclusive bound.  */
     than an inclusive bound.  */
  end += step;
  end += step;
 
 
  *start_p = start;
  *start_p = start;
  *step_p = step;
  *step_p = step;
  *end_p = end;
  *end_p = end;
  sbitmap_free (psp);
  sbitmap_free (psp);
  sbitmap_free (pss);
  sbitmap_free (pss);
 
 
  if ((start >= end && step == 1) || (start <= end && step == -1))
  if ((start >= end && step == 1) || (start <= end && step == -1))
    {
    {
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
        fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n",
                 start, end, step);
                 start, end, step);
      return -1;
      return -1;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
/* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the
   node currently been scheduled.  At the end of the calculation
   node currently been scheduled.  At the end of the calculation
   MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
   MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of
   U_NODE which are (1) already scheduled in the first/last row of
   U_NODE which are (1) already scheduled in the first/last row of
   U_NODE's scheduling window, (2) whose dependence inequality with U
   U_NODE's scheduling window, (2) whose dependence inequality with U
   becomes an equality when U is scheduled in this same row, and (3)
   becomes an equality when U is scheduled in this same row, and (3)
   whose dependence latency is zero.
   whose dependence latency is zero.
 
 
   The first and last rows are calculated using the following parameters:
   The first and last rows are calculated using the following parameters:
   START/END rows - The cycles that begins/ends the traversal on the window;
   START/END rows - The cycles that begins/ends the traversal on the window;
   searching for an empty cycle to schedule U_NODE.
   searching for an empty cycle to schedule U_NODE.
   STEP - The direction in which we traverse the window.
   STEP - The direction in which we traverse the window.
   II - The initiation interval.  */
   II - The initiation interval.  */
 
 
static void
static void
calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end,
                               int step, int ii, sbitmap sched_nodes,
                               int step, int ii, sbitmap sched_nodes,
                               sbitmap must_precede, sbitmap must_follow)
                               sbitmap must_precede, sbitmap must_follow)
{
{
  ddg_edge_ptr e;
  ddg_edge_ptr e;
  int first_cycle_in_window, last_cycle_in_window;
  int first_cycle_in_window, last_cycle_in_window;
 
 
  gcc_assert (must_precede && must_follow);
  gcc_assert (must_precede && must_follow);
 
 
  /* Consider the following scheduling window:
  /* Consider the following scheduling window:
     {first_cycle_in_window, first_cycle_in_window+1, ...,
     {first_cycle_in_window, first_cycle_in_window+1, ...,
     last_cycle_in_window}.  If step is 1 then the following will be
     last_cycle_in_window}.  If step is 1 then the following will be
     the order we traverse the window: {start=first_cycle_in_window,
     the order we traverse the window: {start=first_cycle_in_window,
     first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
     first_cycle_in_window+1, ..., end=last_cycle_in_window+1},
     or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
     or {start=last_cycle_in_window, last_cycle_in_window-1, ...,
     end=first_cycle_in_window-1} if step is -1.  */
     end=first_cycle_in_window-1} if step is -1.  */
  first_cycle_in_window = (step == 1) ? start : end - step;
  first_cycle_in_window = (step == 1) ? start : end - step;
  last_cycle_in_window = (step == 1) ? end - step : start;
  last_cycle_in_window = (step == 1) ? end - step : start;
 
 
  sbitmap_zero (must_precede);
  sbitmap_zero (must_precede);
  sbitmap_zero (must_follow);
  sbitmap_zero (must_follow);
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "\nmust_precede: ");
    fprintf (dump_file, "\nmust_precede: ");
 
 
  /* Instead of checking if:
  /* Instead of checking if:
      (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
      (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window)
      && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
      && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) ==
             first_cycle_in_window)
             first_cycle_in_window)
      && e->latency == 0
      && e->latency == 0
     we use the fact that latency is non-negative:
     we use the fact that latency is non-negative:
      SCHED_TIME (e->src) - (e->distance * ii) <=
      SCHED_TIME (e->src) - (e->distance * ii) <=
      SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
      SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <=
      first_cycle_in_window
      first_cycle_in_window
     and check only if
     and check only if
      SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window  */
      SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window  */
  for (e = u_node->in; e != 0; e = e->next_in)
  for (e = u_node->in; e != 0; e = e->next_in)
    if (TEST_BIT (sched_nodes, e->src->cuid)
    if (TEST_BIT (sched_nodes, e->src->cuid)
        && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
        && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) ==
             first_cycle_in_window))
             first_cycle_in_window))
      {
      {
        if (dump_file)
        if (dump_file)
          fprintf (dump_file, "%d ", e->src->cuid);
          fprintf (dump_file, "%d ", e->src->cuid);
 
 
        SET_BIT (must_precede, e->src->cuid);
        SET_BIT (must_precede, e->src->cuid);
      }
      }
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "\nmust_follow: ");
    fprintf (dump_file, "\nmust_follow: ");
 
 
  /* Instead of checking if:
  /* Instead of checking if:
      (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
      (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window)
      && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
      && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) ==
             last_cycle_in_window)
             last_cycle_in_window)
      && e->latency == 0
      && e->latency == 0
     we use the fact that latency is non-negative:
     we use the fact that latency is non-negative:
      SCHED_TIME (e->dest) + (e->distance * ii) >=
      SCHED_TIME (e->dest) + (e->distance * ii) >=
      SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
      SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >=
      last_cycle_in_window
      last_cycle_in_window
     and check only if
     and check only if
      SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window  */
      SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window  */
  for (e = u_node->out; e != 0; e = e->next_out)
  for (e = u_node->out; e != 0; e = e->next_out)
    if (TEST_BIT (sched_nodes, e->dest->cuid)
    if (TEST_BIT (sched_nodes, e->dest->cuid)
        && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
        && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) ==
             last_cycle_in_window))
             last_cycle_in_window))
      {
      {
        if (dump_file)
        if (dump_file)
          fprintf (dump_file, "%d ", e->dest->cuid);
          fprintf (dump_file, "%d ", e->dest->cuid);
 
 
        SET_BIT (must_follow, e->dest->cuid);
        SET_BIT (must_follow, e->dest->cuid);
      }
      }
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "\n");
    fprintf (dump_file, "\n");
}
}
 
 
/* Return 1 if U_NODE can be scheduled in CYCLE.  Use the following
/* Return 1 if U_NODE can be scheduled in CYCLE.  Use the following
   parameters to decide if that's possible:
   parameters to decide if that's possible:
   PS - The partial schedule.
   PS - The partial schedule.
   U - The serial number of U_NODE.
   U - The serial number of U_NODE.
   NUM_SPLITS - The number of row splits made so far.
   NUM_SPLITS - The number of row splits made so far.
   MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
   MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at
   the first row of the scheduling window)
   the first row of the scheduling window)
   MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
   MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the
   last row of the scheduling window)  */
   last row of the scheduling window)  */
 
 
static bool
static bool
try_scheduling_node_in_cycle (partial_schedule_ptr ps,
try_scheduling_node_in_cycle (partial_schedule_ptr ps,
                              int u, int cycle, sbitmap sched_nodes,
                              int u, int cycle, sbitmap sched_nodes,
                              int *num_splits, sbitmap must_precede,
                              int *num_splits, sbitmap must_precede,
                              sbitmap must_follow)
                              sbitmap must_follow)
{
{
  ps_insn_ptr psi;
  ps_insn_ptr psi;
  bool success = 0;
  bool success = 0;
 
 
  verify_partial_schedule (ps, sched_nodes);
  verify_partial_schedule (ps, sched_nodes);
  psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
  psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow);
  if (psi)
  if (psi)
    {
    {
      SCHED_TIME (u) = cycle;
      SCHED_TIME (u) = cycle;
      SET_BIT (sched_nodes, u);
      SET_BIT (sched_nodes, u);
      success = 1;
      success = 1;
      *num_splits = 0;
      *num_splits = 0;
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
        fprintf (dump_file, "Scheduled w/o split in %d\n", cycle);
 
 
    }
    }
 
 
  return success;
  return success;
}
}
 
 
/* This function implements the scheduling algorithm for SMS according to the
/* This function implements the scheduling algorithm for SMS according to the
   above algorithm.  */
   above algorithm.  */
static partial_schedule_ptr
static partial_schedule_ptr
sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order)
{
{
  int ii = mii;
  int ii = mii;
  int i, c, success, num_splits = 0;
  int i, c, success, num_splits = 0;
  int flush_and_start_over = true;
  int flush_and_start_over = true;
  int num_nodes = g->num_nodes;
  int num_nodes = g->num_nodes;
  int start, end, step; /* Place together into one struct?  */
  int start, end, step; /* Place together into one struct?  */
  sbitmap sched_nodes = sbitmap_alloc (num_nodes);
  sbitmap sched_nodes = sbitmap_alloc (num_nodes);
  sbitmap must_precede = sbitmap_alloc (num_nodes);
  sbitmap must_precede = sbitmap_alloc (num_nodes);
  sbitmap must_follow = sbitmap_alloc (num_nodes);
  sbitmap must_follow = sbitmap_alloc (num_nodes);
  sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
  sbitmap tobe_scheduled = sbitmap_alloc (num_nodes);
 
 
  partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
  partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY);
 
 
  sbitmap_ones (tobe_scheduled);
  sbitmap_ones (tobe_scheduled);
  sbitmap_zero (sched_nodes);
  sbitmap_zero (sched_nodes);
 
 
  while (flush_and_start_over && (ii < maxii))
  while (flush_and_start_over && (ii < maxii))
    {
    {
 
 
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "Starting with ii=%d\n", ii);
        fprintf (dump_file, "Starting with ii=%d\n", ii);
      flush_and_start_over = false;
      flush_and_start_over = false;
      sbitmap_zero (sched_nodes);
      sbitmap_zero (sched_nodes);
 
 
      for (i = 0; i < num_nodes; i++)
      for (i = 0; i < num_nodes; i++)
        {
        {
          int u = nodes_order[i];
          int u = nodes_order[i];
          ddg_node_ptr u_node = &ps->g->nodes[u];
          ddg_node_ptr u_node = &ps->g->nodes[u];
          rtx insn = u_node->insn;
          rtx insn = u_node->insn;
 
 
          if (!NONDEBUG_INSN_P (insn))
          if (!NONDEBUG_INSN_P (insn))
            {
            {
              RESET_BIT (tobe_scheduled, u);
              RESET_BIT (tobe_scheduled, u);
              continue;
              continue;
            }
            }
 
 
          if (TEST_BIT (sched_nodes, u))
          if (TEST_BIT (sched_nodes, u))
            continue;
            continue;
 
 
          /* Try to get non-empty scheduling window.  */
          /* Try to get non-empty scheduling window.  */
         success = 0;
         success = 0;
         if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
         if (get_sched_window (ps, u_node, sched_nodes, ii, &start,
                                &step, &end) == 0)
                                &step, &end) == 0)
            {
            {
              if (dump_file)
              if (dump_file)
                fprintf (dump_file, "\nTrying to schedule node %d "
                fprintf (dump_file, "\nTrying to schedule node %d "
                         "INSN = %d  in (%d .. %d) step %d\n", u, (INSN_UID
                         "INSN = %d  in (%d .. %d) step %d\n", u, (INSN_UID
                        (g->nodes[u].insn)), start, end, step);
                        (g->nodes[u].insn)), start, end, step);
 
 
              gcc_assert ((step > 0 && start < end)
              gcc_assert ((step > 0 && start < end)
                          || (step < 0 && start > end));
                          || (step < 0 && start > end));
 
 
              calculate_must_precede_follow (u_node, start, end, step, ii,
              calculate_must_precede_follow (u_node, start, end, step, ii,
                                             sched_nodes, must_precede,
                                             sched_nodes, must_precede,
                                             must_follow);
                                             must_follow);
 
 
              for (c = start; c != end; c += step)
              for (c = start; c != end; c += step)
                {
                {
                  sbitmap tmp_precede, tmp_follow;
                  sbitmap tmp_precede, tmp_follow;
 
 
                  set_must_precede_follow (&tmp_follow, must_follow,
                  set_must_precede_follow (&tmp_follow, must_follow,
                                           &tmp_precede, must_precede,
                                           &tmp_precede, must_precede,
                                           c, start, end, step);
                                           c, start, end, step);
                  success =
                  success =
                    try_scheduling_node_in_cycle (ps, u, c,
                    try_scheduling_node_in_cycle (ps, u, c,
                                                  sched_nodes,
                                                  sched_nodes,
                                                  &num_splits, tmp_precede,
                                                  &num_splits, tmp_precede,
                                                  tmp_follow);
                                                  tmp_follow);
                  if (success)
                  if (success)
                    break;
                    break;
                }
                }
 
 
              verify_partial_schedule (ps, sched_nodes);
              verify_partial_schedule (ps, sched_nodes);
            }
            }
            if (!success)
            if (!success)
            {
            {
              int split_row;
              int split_row;
 
 
              if (ii++ == maxii)
              if (ii++ == maxii)
                break;
                break;
 
 
              if (num_splits >= MAX_SPLIT_NUM)
              if (num_splits >= MAX_SPLIT_NUM)
                {
                {
                  num_splits = 0;
                  num_splits = 0;
                  flush_and_start_over = true;
                  flush_and_start_over = true;
                  verify_partial_schedule (ps, sched_nodes);
                  verify_partial_schedule (ps, sched_nodes);
                  reset_partial_schedule (ps, ii);
                  reset_partial_schedule (ps, ii);
                  verify_partial_schedule (ps, sched_nodes);
                  verify_partial_schedule (ps, sched_nodes);
                  break;
                  break;
                }
                }
 
 
              num_splits++;
              num_splits++;
              /* The scheduling window is exclusive of 'end'
              /* The scheduling window is exclusive of 'end'
                 whereas compute_split_window() expects an inclusive,
                 whereas compute_split_window() expects an inclusive,
                 ordered range.  */
                 ordered range.  */
              if (step == 1)
              if (step == 1)
                split_row = compute_split_row (sched_nodes, start, end - 1,
                split_row = compute_split_row (sched_nodes, start, end - 1,
                                               ps->ii, u_node);
                                               ps->ii, u_node);
              else
              else
                split_row = compute_split_row (sched_nodes, end + 1, start,
                split_row = compute_split_row (sched_nodes, end + 1, start,
                                               ps->ii, u_node);
                                               ps->ii, u_node);
 
 
              ps_insert_empty_row (ps, split_row, sched_nodes);
              ps_insert_empty_row (ps, split_row, sched_nodes);
              i--;              /* Go back and retry node i.  */
              i--;              /* Go back and retry node i.  */
 
 
              if (dump_file)
              if (dump_file)
                fprintf (dump_file, "num_splits=%d\n", num_splits);
                fprintf (dump_file, "num_splits=%d\n", num_splits);
            }
            }
 
 
          /* ??? If (success), check register pressure estimates.  */
          /* ??? If (success), check register pressure estimates.  */
        }                       /* Continue with next node.  */
        }                       /* Continue with next node.  */
    }                           /* While flush_and_start_over.  */
    }                           /* While flush_and_start_over.  */
  if (ii >= maxii)
  if (ii >= maxii)
    {
    {
      free_partial_schedule (ps);
      free_partial_schedule (ps);
      ps = NULL;
      ps = NULL;
    }
    }
  else
  else
    gcc_assert (sbitmap_equal (tobe_scheduled, sched_nodes));
    gcc_assert (sbitmap_equal (tobe_scheduled, sched_nodes));
 
 
  sbitmap_free (sched_nodes);
  sbitmap_free (sched_nodes);
  sbitmap_free (must_precede);
  sbitmap_free (must_precede);
  sbitmap_free (must_follow);
  sbitmap_free (must_follow);
  sbitmap_free (tobe_scheduled);
  sbitmap_free (tobe_scheduled);
 
 
  return ps;
  return ps;
}
}
 
 
/* This function inserts a new empty row into PS at the position
/* This function inserts a new empty row into PS at the position
   according to SPLITROW, keeping all already scheduled instructions
   according to SPLITROW, keeping all already scheduled instructions
   intact and updating their SCHED_TIME and cycle accordingly.  */
   intact and updating their SCHED_TIME and cycle accordingly.  */
static void
static void
ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
ps_insert_empty_row (partial_schedule_ptr ps, int split_row,
                     sbitmap sched_nodes)
                     sbitmap sched_nodes)
{
{
  ps_insn_ptr crr_insn;
  ps_insn_ptr crr_insn;
  ps_insn_ptr *rows_new;
  ps_insn_ptr *rows_new;
  int ii = ps->ii;
  int ii = ps->ii;
  int new_ii = ii + 1;
  int new_ii = ii + 1;
  int row;
  int row;
  int *rows_length_new;
  int *rows_length_new;
 
 
  verify_partial_schedule (ps, sched_nodes);
  verify_partial_schedule (ps, sched_nodes);
 
 
  /* We normalize sched_time and rotate ps to have only non-negative sched
  /* We normalize sched_time and rotate ps to have only non-negative sched
     times, for simplicity of updating cycles after inserting new row.  */
     times, for simplicity of updating cycles after inserting new row.  */
  split_row -= ps->min_cycle;
  split_row -= ps->min_cycle;
  split_row = SMODULO (split_row, ii);
  split_row = SMODULO (split_row, ii);
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "split_row=%d\n", split_row);
    fprintf (dump_file, "split_row=%d\n", split_row);
 
 
  reset_sched_times (ps, PS_MIN_CYCLE (ps));
  reset_sched_times (ps, PS_MIN_CYCLE (ps));
  rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
  rotate_partial_schedule (ps, PS_MIN_CYCLE (ps));
 
 
  rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
  rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr));
  rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
  rows_length_new = (int *) xcalloc (new_ii, sizeof (int));
  for (row = 0; row < split_row; row++)
  for (row = 0; row < split_row; row++)
    {
    {
      rows_new[row] = ps->rows[row];
      rows_new[row] = ps->rows[row];
      rows_length_new[row] = ps->rows_length[row];
      rows_length_new[row] = ps->rows_length[row];
      ps->rows[row] = NULL;
      ps->rows[row] = NULL;
      for (crr_insn = rows_new[row];
      for (crr_insn = rows_new[row];
           crr_insn; crr_insn = crr_insn->next_in_row)
           crr_insn; crr_insn = crr_insn->next_in_row)
        {
        {
          int u = crr_insn->id;
          int u = crr_insn->id;
          int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
          int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii);
 
 
          SCHED_TIME (u) = new_time;
          SCHED_TIME (u) = new_time;
          crr_insn->cycle = new_time;
          crr_insn->cycle = new_time;
          SCHED_ROW (u) = new_time % new_ii;
          SCHED_ROW (u) = new_time % new_ii;
          SCHED_STAGE (u) = new_time / new_ii;
          SCHED_STAGE (u) = new_time / new_ii;
        }
        }
 
 
    }
    }
 
 
  rows_new[split_row] = NULL;
  rows_new[split_row] = NULL;
 
 
  for (row = split_row; row < ii; row++)
  for (row = split_row; row < ii; row++)
    {
    {
      rows_new[row + 1] = ps->rows[row];
      rows_new[row + 1] = ps->rows[row];
      rows_length_new[row + 1] = ps->rows_length[row];
      rows_length_new[row + 1] = ps->rows_length[row];
      ps->rows[row] = NULL;
      ps->rows[row] = NULL;
      for (crr_insn = rows_new[row + 1];
      for (crr_insn = rows_new[row + 1];
           crr_insn; crr_insn = crr_insn->next_in_row)
           crr_insn; crr_insn = crr_insn->next_in_row)
        {
        {
          int u = crr_insn->id;
          int u = crr_insn->id;
          int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
          int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1;
 
 
          SCHED_TIME (u) = new_time;
          SCHED_TIME (u) = new_time;
          crr_insn->cycle = new_time;
          crr_insn->cycle = new_time;
          SCHED_ROW (u) = new_time % new_ii;
          SCHED_ROW (u) = new_time % new_ii;
          SCHED_STAGE (u) = new_time / new_ii;
          SCHED_STAGE (u) = new_time / new_ii;
        }
        }
    }
    }
 
 
  /* Updating ps.  */
  /* Updating ps.  */
  ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
  ps->min_cycle = ps->min_cycle + ps->min_cycle / ii
    + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
    + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0);
  ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
  ps->max_cycle = ps->max_cycle + ps->max_cycle / ii
    + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
    + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0);
  free (ps->rows);
  free (ps->rows);
  ps->rows = rows_new;
  ps->rows = rows_new;
  free (ps->rows_length);
  free (ps->rows_length);
  ps->rows_length = rows_length_new;
  ps->rows_length = rows_length_new;
  ps->ii = new_ii;
  ps->ii = new_ii;
  gcc_assert (ps->min_cycle >= 0);
  gcc_assert (ps->min_cycle >= 0);
 
 
  verify_partial_schedule (ps, sched_nodes);
  verify_partial_schedule (ps, sched_nodes);
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
    fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle,
             ps->max_cycle);
             ps->max_cycle);
}
}
 
 
/* Given U_NODE which is the node that failed to be scheduled; LOW and
/* Given U_NODE which is the node that failed to be scheduled; LOW and
   UP which are the boundaries of it's scheduling window; compute using
   UP which are the boundaries of it's scheduling window; compute using
   SCHED_NODES and II a row in the partial schedule that can be split
   SCHED_NODES and II a row in the partial schedule that can be split
   which will separate a critical predecessor from a critical successor
   which will separate a critical predecessor from a critical successor
   thereby expanding the window, and return it.  */
   thereby expanding the window, and return it.  */
static int
static int
compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
compute_split_row (sbitmap sched_nodes, int low, int up, int ii,
                   ddg_node_ptr u_node)
                   ddg_node_ptr u_node)
{
{
  ddg_edge_ptr e;
  ddg_edge_ptr e;
  int lower = INT_MIN, upper = INT_MAX;
  int lower = INT_MIN, upper = INT_MAX;
  int crit_pred = -1;
  int crit_pred = -1;
  int crit_succ = -1;
  int crit_succ = -1;
  int crit_cycle;
  int crit_cycle;
 
 
  for (e = u_node->in; e != 0; e = e->next_in)
  for (e = u_node->in; e != 0; e = e->next_in)
    {
    {
      int v = e->src->cuid;
      int v = e->src->cuid;
 
 
      if (TEST_BIT (sched_nodes, v)
      if (TEST_BIT (sched_nodes, v)
          && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
          && (low == SCHED_TIME (v) + e->latency - (e->distance * ii)))
        if (SCHED_TIME (v) > lower)
        if (SCHED_TIME (v) > lower)
          {
          {
            crit_pred = v;
            crit_pred = v;
            lower = SCHED_TIME (v);
            lower = SCHED_TIME (v);
          }
          }
    }
    }
 
 
  if (crit_pred >= 0)
  if (crit_pred >= 0)
    {
    {
      crit_cycle = SCHED_TIME (crit_pred) + 1;
      crit_cycle = SCHED_TIME (crit_pred) + 1;
      return SMODULO (crit_cycle, ii);
      return SMODULO (crit_cycle, ii);
    }
    }
 
 
  for (e = u_node->out; e != 0; e = e->next_out)
  for (e = u_node->out; e != 0; e = e->next_out)
    {
    {
      int v = e->dest->cuid;
      int v = e->dest->cuid;
 
 
      if (TEST_BIT (sched_nodes, v)
      if (TEST_BIT (sched_nodes, v)
          && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
          && (up == SCHED_TIME (v) - e->latency + (e->distance * ii)))
        if (SCHED_TIME (v) < upper)
        if (SCHED_TIME (v) < upper)
          {
          {
            crit_succ = v;
            crit_succ = v;
            upper = SCHED_TIME (v);
            upper = SCHED_TIME (v);
          }
          }
    }
    }
 
 
  if (crit_succ >= 0)
  if (crit_succ >= 0)
    {
    {
      crit_cycle = SCHED_TIME (crit_succ);
      crit_cycle = SCHED_TIME (crit_succ);
      return SMODULO (crit_cycle, ii);
      return SMODULO (crit_cycle, ii);
    }
    }
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
    fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n");
 
 
  return SMODULO ((low + up + 1) / 2, ii);
  return SMODULO ((low + up + 1) / 2, ii);
}
}
 
 
static void
static void
verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes)
{
{
  int row;
  int row;
  ps_insn_ptr crr_insn;
  ps_insn_ptr crr_insn;
 
 
  for (row = 0; row < ps->ii; row++)
  for (row = 0; row < ps->ii; row++)
    {
    {
      int length = 0;
      int length = 0;
 
 
      for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
      for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row)
        {
        {
          int u = crr_insn->id;
          int u = crr_insn->id;
 
 
          length++;
          length++;
          gcc_assert (TEST_BIT (sched_nodes, u));
          gcc_assert (TEST_BIT (sched_nodes, u));
          /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
          /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by
             popcount (sched_nodes) == number of insns in ps.  */
             popcount (sched_nodes) == number of insns in ps.  */
          gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
          gcc_assert (SCHED_TIME (u) >= ps->min_cycle);
          gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
          gcc_assert (SCHED_TIME (u) <= ps->max_cycle);
        }
        }
 
 
      gcc_assert (ps->rows_length[row] == length);
      gcc_assert (ps->rows_length[row] == length);
    }
    }
}
}
 
 


/* This page implements the algorithm for ordering the nodes of a DDG
/* This page implements the algorithm for ordering the nodes of a DDG
   for modulo scheduling, activated through the
   for modulo scheduling, activated through the
   "int sms_order_nodes (ddg_ptr, int mii, int * result)" API.  */
   "int sms_order_nodes (ddg_ptr, int mii, int * result)" API.  */
 
 
#define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
#define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info)
#define ASAP(x) (ORDER_PARAMS ((x))->asap)
#define ASAP(x) (ORDER_PARAMS ((x))->asap)
#define ALAP(x) (ORDER_PARAMS ((x))->alap)
#define ALAP(x) (ORDER_PARAMS ((x))->alap)
#define HEIGHT(x) (ORDER_PARAMS ((x))->height)
#define HEIGHT(x) (ORDER_PARAMS ((x))->height)
#define MOB(x) (ALAP ((x)) - ASAP ((x)))
#define MOB(x) (ALAP ((x)) - ASAP ((x)))
#define DEPTH(x) (ASAP ((x)))
#define DEPTH(x) (ASAP ((x)))
 
 
typedef struct node_order_params * nopa;
typedef struct node_order_params * nopa;
 
 
static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result);
static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int);
static nopa  calculate_order_params (ddg_ptr, int, int *);
static nopa  calculate_order_params (ddg_ptr, int, int *);
static int find_max_asap (ddg_ptr, sbitmap);
static int find_max_asap (ddg_ptr, sbitmap);
static int find_max_hv_min_mob (ddg_ptr, sbitmap);
static int find_max_hv_min_mob (ddg_ptr, sbitmap);
static int find_max_dv_min_mob (ddg_ptr, sbitmap);
static int find_max_dv_min_mob (ddg_ptr, sbitmap);
 
 
enum sms_direction {BOTTOMUP, TOPDOWN};
enum sms_direction {BOTTOMUP, TOPDOWN};
 
 
struct node_order_params
struct node_order_params
{
{
  int asap;
  int asap;
  int alap;
  int alap;
  int height;
  int height;
};
};
 
 
/* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1.  */
/* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1.  */
static void
static void
check_nodes_order (int *node_order, int num_nodes)
check_nodes_order (int *node_order, int num_nodes)
{
{
  int i;
  int i;
  sbitmap tmp = sbitmap_alloc (num_nodes);
  sbitmap tmp = sbitmap_alloc (num_nodes);
 
 
  sbitmap_zero (tmp);
  sbitmap_zero (tmp);
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "SMS final nodes order: \n");
    fprintf (dump_file, "SMS final nodes order: \n");
 
 
  for (i = 0; i < num_nodes; i++)
  for (i = 0; i < num_nodes; i++)
    {
    {
      int u = node_order[i];
      int u = node_order[i];
 
 
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "%d ", u);
        fprintf (dump_file, "%d ", u);
      gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
      gcc_assert (u < num_nodes && u >= 0 && !TEST_BIT (tmp, u));
 
 
      SET_BIT (tmp, u);
      SET_BIT (tmp, u);
    }
    }
 
 
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "\n");
    fprintf (dump_file, "\n");
 
 
  sbitmap_free (tmp);
  sbitmap_free (tmp);
}
}
 
 
/* Order the nodes of G for scheduling and pass the result in
/* Order the nodes of G for scheduling and pass the result in
   NODE_ORDER.  Also set aux.count of each node to ASAP.
   NODE_ORDER.  Also set aux.count of each node to ASAP.
   Put maximal ASAP to PMAX_ASAP.  Return the recMII for the given DDG.  */
   Put maximal ASAP to PMAX_ASAP.  Return the recMII for the given DDG.  */
static int
static int
sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap)
{
{
  int i;
  int i;
  int rec_mii = 0;
  int rec_mii = 0;
  ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
  ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g);
 
 
  nopa nops = calculate_order_params (g, mii, pmax_asap);
  nopa nops = calculate_order_params (g, mii, pmax_asap);
 
 
  if (dump_file)
  if (dump_file)
    print_sccs (dump_file, sccs, g);
    print_sccs (dump_file, sccs, g);
 
 
  order_nodes_of_sccs (sccs, node_order);
  order_nodes_of_sccs (sccs, node_order);
 
 
  if (sccs->num_sccs > 0)
  if (sccs->num_sccs > 0)
    /* First SCC has the largest recurrence_length.  */
    /* First SCC has the largest recurrence_length.  */
    rec_mii = sccs->sccs[0]->recurrence_length;
    rec_mii = sccs->sccs[0]->recurrence_length;
 
 
  /* Save ASAP before destroying node_order_params.  */
  /* Save ASAP before destroying node_order_params.  */
  for (i = 0; i < g->num_nodes; i++)
  for (i = 0; i < g->num_nodes; i++)
    {
    {
      ddg_node_ptr v = &g->nodes[i];
      ddg_node_ptr v = &g->nodes[i];
      v->aux.count = ASAP (v);
      v->aux.count = ASAP (v);
    }
    }
 
 
  free (nops);
  free (nops);
  free_ddg_all_sccs (sccs);
  free_ddg_all_sccs (sccs);
  check_nodes_order (node_order, g->num_nodes);
  check_nodes_order (node_order, g->num_nodes);
 
 
  return rec_mii;
  return rec_mii;
}
}
 
 
static void
static void
order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order)
{
{
  int i, pos = 0;
  int i, pos = 0;
  ddg_ptr g = all_sccs->ddg;
  ddg_ptr g = all_sccs->ddg;
  int num_nodes = g->num_nodes;
  int num_nodes = g->num_nodes;
  sbitmap prev_sccs = sbitmap_alloc (num_nodes);
  sbitmap prev_sccs = sbitmap_alloc (num_nodes);
  sbitmap on_path = sbitmap_alloc (num_nodes);
  sbitmap on_path = sbitmap_alloc (num_nodes);
  sbitmap tmp = sbitmap_alloc (num_nodes);
  sbitmap tmp = sbitmap_alloc (num_nodes);
  sbitmap ones = sbitmap_alloc (num_nodes);
  sbitmap ones = sbitmap_alloc (num_nodes);
 
 
  sbitmap_zero (prev_sccs);
  sbitmap_zero (prev_sccs);
  sbitmap_ones (ones);
  sbitmap_ones (ones);
 
 
  /* Perform the node ordering starting from the SCC with the highest recMII.
  /* Perform the node ordering starting from the SCC with the highest recMII.
     For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc.  */
     For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc.  */
  for (i = 0; i < all_sccs->num_sccs; i++)
  for (i = 0; i < all_sccs->num_sccs; i++)
    {
    {
      ddg_scc_ptr scc = all_sccs->sccs[i];
      ddg_scc_ptr scc = all_sccs->sccs[i];
 
 
      /* Add nodes on paths from previous SCCs to the current SCC.  */
      /* Add nodes on paths from previous SCCs to the current SCC.  */
      find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
      find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes);
      sbitmap_a_or_b (tmp, scc->nodes, on_path);
      sbitmap_a_or_b (tmp, scc->nodes, on_path);
 
 
      /* Add nodes on paths from the current SCC to previous SCCs.  */
      /* Add nodes on paths from the current SCC to previous SCCs.  */
      find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
      find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs);
      sbitmap_a_or_b (tmp, tmp, on_path);
      sbitmap_a_or_b (tmp, tmp, on_path);
 
 
      /* Remove nodes of previous SCCs from current extended SCC.  */
      /* Remove nodes of previous SCCs from current extended SCC.  */
      sbitmap_difference (tmp, tmp, prev_sccs);
      sbitmap_difference (tmp, tmp, prev_sccs);
 
 
      pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
      pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
      /* Above call to order_nodes_in_scc updated prev_sccs |= tmp.  */
      /* Above call to order_nodes_in_scc updated prev_sccs |= tmp.  */
    }
    }
 
 
  /* Handle the remaining nodes that do not belong to any scc.  Each call
  /* Handle the remaining nodes that do not belong to any scc.  Each call
     to order_nodes_in_scc handles a single connected component.  */
     to order_nodes_in_scc handles a single connected component.  */
  while (pos < g->num_nodes)
  while (pos < g->num_nodes)
    {
    {
      sbitmap_difference (tmp, ones, prev_sccs);
      sbitmap_difference (tmp, ones, prev_sccs);
      pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
      pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos);
    }
    }
  sbitmap_free (prev_sccs);
  sbitmap_free (prev_sccs);
  sbitmap_free (on_path);
  sbitmap_free (on_path);
  sbitmap_free (tmp);
  sbitmap_free (tmp);
  sbitmap_free (ones);
  sbitmap_free (ones);
}
}
 
 
/* MII is needed if we consider backarcs (that do not close recursive cycles).  */
/* MII is needed if we consider backarcs (that do not close recursive cycles).  */
static struct node_order_params *
static struct node_order_params *
calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap)
{
{
  int u;
  int u;
  int max_asap;
  int max_asap;
  int num_nodes = g->num_nodes;
  int num_nodes = g->num_nodes;
  ddg_edge_ptr e;
  ddg_edge_ptr e;
  /* Allocate a place to hold ordering params for each node in the DDG.  */
  /* Allocate a place to hold ordering params for each node in the DDG.  */
  nopa node_order_params_arr;
  nopa node_order_params_arr;
 
 
  /* Initialize of ASAP/ALAP/HEIGHT to zero.  */
  /* Initialize of ASAP/ALAP/HEIGHT to zero.  */
  node_order_params_arr = (nopa) xcalloc (num_nodes,
  node_order_params_arr = (nopa) xcalloc (num_nodes,
                                          sizeof (struct node_order_params));
                                          sizeof (struct node_order_params));
 
 
  /* Set the aux pointer of each node to point to its order_params structure.  */
  /* Set the aux pointer of each node to point to its order_params structure.  */
  for (u = 0; u < num_nodes; u++)
  for (u = 0; u < num_nodes; u++)
    g->nodes[u].aux.info = &node_order_params_arr[u];
    g->nodes[u].aux.info = &node_order_params_arr[u];
 
 
  /* Disregarding a backarc from each recursive cycle to obtain a DAG,
  /* Disregarding a backarc from each recursive cycle to obtain a DAG,
     calculate ASAP, ALAP, mobility, distance, and height for each node
     calculate ASAP, ALAP, mobility, distance, and height for each node
     in the dependence (direct acyclic) graph.  */
     in the dependence (direct acyclic) graph.  */
 
 
  /* We assume that the nodes in the array are in topological order.  */
  /* We assume that the nodes in the array are in topological order.  */
 
 
  max_asap = 0;
  max_asap = 0;
  for (u = 0; u < num_nodes; u++)
  for (u = 0; u < num_nodes; u++)
    {
    {
      ddg_node_ptr u_node = &g->nodes[u];
      ddg_node_ptr u_node = &g->nodes[u];
 
 
      ASAP (u_node) = 0;
      ASAP (u_node) = 0;
      for (e = u_node->in; e; e = e->next_in)
      for (e = u_node->in; e; e = e->next_in)
        if (e->distance == 0)
        if (e->distance == 0)
          ASAP (u_node) = MAX (ASAP (u_node),
          ASAP (u_node) = MAX (ASAP (u_node),
                               ASAP (e->src) + e->latency);
                               ASAP (e->src) + e->latency);
      max_asap = MAX (max_asap, ASAP (u_node));
      max_asap = MAX (max_asap, ASAP (u_node));
    }
    }
 
 
  for (u = num_nodes - 1; u > -1; u--)
  for (u = num_nodes - 1; u > -1; u--)
    {
    {
      ddg_node_ptr u_node = &g->nodes[u];
      ddg_node_ptr u_node = &g->nodes[u];
 
 
      ALAP (u_node) = max_asap;
      ALAP (u_node) = max_asap;
      HEIGHT (u_node) = 0;
      HEIGHT (u_node) = 0;
      for (e = u_node->out; e; e = e->next_out)
      for (e = u_node->out; e; e = e->next_out)
        if (e->distance == 0)
        if (e->distance == 0)
          {
          {
            ALAP (u_node) = MIN (ALAP (u_node),
            ALAP (u_node) = MIN (ALAP (u_node),
                                 ALAP (e->dest) - e->latency);
                                 ALAP (e->dest) - e->latency);
            HEIGHT (u_node) = MAX (HEIGHT (u_node),
            HEIGHT (u_node) = MAX (HEIGHT (u_node),
                                   HEIGHT (e->dest) + e->latency);
                                   HEIGHT (e->dest) + e->latency);
          }
          }
    }
    }
  if (dump_file)
  if (dump_file)
  {
  {
    fprintf (dump_file, "\nOrder params\n");
    fprintf (dump_file, "\nOrder params\n");
    for (u = 0; u < num_nodes; u++)
    for (u = 0; u < num_nodes; u++)
      {
      {
        ddg_node_ptr u_node = &g->nodes[u];
        ddg_node_ptr u_node = &g->nodes[u];
 
 
        fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
        fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u,
                 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
                 ASAP (u_node), ALAP (u_node), HEIGHT (u_node));
      }
      }
  }
  }
 
 
  *pmax_asap = max_asap;
  *pmax_asap = max_asap;
  return node_order_params_arr;
  return node_order_params_arr;
}
}
 
 
static int
static int
find_max_asap (ddg_ptr g, sbitmap nodes)
find_max_asap (ddg_ptr g, sbitmap nodes)
{
{
  unsigned int u = 0;
  unsigned int u = 0;
  int max_asap = -1;
  int max_asap = -1;
  int result = -1;
  int result = -1;
  sbitmap_iterator sbi;
  sbitmap_iterator sbi;
 
 
  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
    {
    {
      ddg_node_ptr u_node = &g->nodes[u];
      ddg_node_ptr u_node = &g->nodes[u];
 
 
      if (max_asap < ASAP (u_node))
      if (max_asap < ASAP (u_node))
        {
        {
          max_asap = ASAP (u_node);
          max_asap = ASAP (u_node);
          result = u;
          result = u;
        }
        }
    }
    }
  return result;
  return result;
}
}
 
 
static int
static int
find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
find_max_hv_min_mob (ddg_ptr g, sbitmap nodes)
{
{
  unsigned int u = 0;
  unsigned int u = 0;
  int max_hv = -1;
  int max_hv = -1;
  int min_mob = INT_MAX;
  int min_mob = INT_MAX;
  int result = -1;
  int result = -1;
  sbitmap_iterator sbi;
  sbitmap_iterator sbi;
 
 
  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
    {
    {
      ddg_node_ptr u_node = &g->nodes[u];
      ddg_node_ptr u_node = &g->nodes[u];
 
 
      if (max_hv < HEIGHT (u_node))
      if (max_hv < HEIGHT (u_node))
        {
        {
          max_hv = HEIGHT (u_node);
          max_hv = HEIGHT (u_node);
          min_mob = MOB (u_node);
          min_mob = MOB (u_node);
          result = u;
          result = u;
        }
        }
      else if ((max_hv == HEIGHT (u_node))
      else if ((max_hv == HEIGHT (u_node))
               && (min_mob > MOB (u_node)))
               && (min_mob > MOB (u_node)))
        {
        {
          min_mob = MOB (u_node);
          min_mob = MOB (u_node);
          result = u;
          result = u;
        }
        }
    }
    }
  return result;
  return result;
}
}
 
 
static int
static int
find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
find_max_dv_min_mob (ddg_ptr g, sbitmap nodes)
{
{
  unsigned int u = 0;
  unsigned int u = 0;
  int max_dv = -1;
  int max_dv = -1;
  int min_mob = INT_MAX;
  int min_mob = INT_MAX;
  int result = -1;
  int result = -1;
  sbitmap_iterator sbi;
  sbitmap_iterator sbi;
 
 
  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
  EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
    {
    {
      ddg_node_ptr u_node = &g->nodes[u];
      ddg_node_ptr u_node = &g->nodes[u];
 
 
      if (max_dv < DEPTH (u_node))
      if (max_dv < DEPTH (u_node))
        {
        {
          max_dv = DEPTH (u_node);
          max_dv = DEPTH (u_node);
          min_mob = MOB (u_node);
          min_mob = MOB (u_node);
          result = u;
          result = u;
        }
        }
      else if ((max_dv == DEPTH (u_node))
      else if ((max_dv == DEPTH (u_node))
               && (min_mob > MOB (u_node)))
               && (min_mob > MOB (u_node)))
        {
        {
          min_mob = MOB (u_node);
          min_mob = MOB (u_node);
          result = u;
          result = u;
        }
        }
    }
    }
  return result;
  return result;
}
}
 
 
/* Places the nodes of SCC into the NODE_ORDER array starting
/* Places the nodes of SCC into the NODE_ORDER array starting
   at position POS, according to the SMS ordering algorithm.
   at position POS, according to the SMS ordering algorithm.
   NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
   NODES_ORDERED (in&out parameter) holds the bitset of all nodes in
   the NODE_ORDER array, starting from position zero.  */
   the NODE_ORDER array, starting from position zero.  */
static int
static int
order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc,
                    int * node_order, int pos)
                    int * node_order, int pos)
{
{
  enum sms_direction dir;
  enum sms_direction dir;
  int num_nodes = g->num_nodes;
  int num_nodes = g->num_nodes;
  sbitmap workset = sbitmap_alloc (num_nodes);
  sbitmap workset = sbitmap_alloc (num_nodes);
  sbitmap tmp = sbitmap_alloc (num_nodes);
  sbitmap tmp = sbitmap_alloc (num_nodes);
  sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
  sbitmap zero_bitmap = sbitmap_alloc (num_nodes);
  sbitmap predecessors = sbitmap_alloc (num_nodes);
  sbitmap predecessors = sbitmap_alloc (num_nodes);
  sbitmap successors = sbitmap_alloc (num_nodes);
  sbitmap successors = sbitmap_alloc (num_nodes);
 
 
  sbitmap_zero (predecessors);
  sbitmap_zero (predecessors);
  find_predecessors (predecessors, g, nodes_ordered);
  find_predecessors (predecessors, g, nodes_ordered);
 
 
  sbitmap_zero (successors);
  sbitmap_zero (successors);
  find_successors (successors, g, nodes_ordered);
  find_successors (successors, g, nodes_ordered);
 
 
  sbitmap_zero (tmp);
  sbitmap_zero (tmp);
  if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
  if (sbitmap_a_and_b_cg (tmp, predecessors, scc))
    {
    {
      sbitmap_copy (workset, tmp);
      sbitmap_copy (workset, tmp);
      dir = BOTTOMUP;
      dir = BOTTOMUP;
    }
    }
  else if (sbitmap_a_and_b_cg (tmp, successors, scc))
  else if (sbitmap_a_and_b_cg (tmp, successors, scc))
    {
    {
      sbitmap_copy (workset, tmp);
      sbitmap_copy (workset, tmp);
      dir = TOPDOWN;
      dir = TOPDOWN;
    }
    }
  else
  else
    {
    {
      int u;
      int u;
 
 
      sbitmap_zero (workset);
      sbitmap_zero (workset);
      if ((u = find_max_asap (g, scc)) >= 0)
      if ((u = find_max_asap (g, scc)) >= 0)
        SET_BIT (workset, u);
        SET_BIT (workset, u);
      dir = BOTTOMUP;
      dir = BOTTOMUP;
    }
    }
 
 
  sbitmap_zero (zero_bitmap);
  sbitmap_zero (zero_bitmap);
  while (!sbitmap_equal (workset, zero_bitmap))
  while (!sbitmap_equal (workset, zero_bitmap))
    {
    {
      int v;
      int v;
      ddg_node_ptr v_node;
      ddg_node_ptr v_node;
      sbitmap v_node_preds;
      sbitmap v_node_preds;
      sbitmap v_node_succs;
      sbitmap v_node_succs;
 
 
      if (dir == TOPDOWN)
      if (dir == TOPDOWN)
        {
        {
          while (!sbitmap_equal (workset, zero_bitmap))
          while (!sbitmap_equal (workset, zero_bitmap))
            {
            {
              v = find_max_hv_min_mob (g, workset);
              v = find_max_hv_min_mob (g, workset);
              v_node = &g->nodes[v];
              v_node = &g->nodes[v];
              node_order[pos++] = v;
              node_order[pos++] = v;
              v_node_succs = NODE_SUCCESSORS (v_node);
              v_node_succs = NODE_SUCCESSORS (v_node);
              sbitmap_a_and_b (tmp, v_node_succs, scc);
              sbitmap_a_and_b (tmp, v_node_succs, scc);
 
 
              /* Don't consider the already ordered successors again.  */
              /* Don't consider the already ordered successors again.  */
              sbitmap_difference (tmp, tmp, nodes_ordered);
              sbitmap_difference (tmp, tmp, nodes_ordered);
              sbitmap_a_or_b (workset, workset, tmp);
              sbitmap_a_or_b (workset, workset, tmp);
              RESET_BIT (workset, v);
              RESET_BIT (workset, v);
              SET_BIT (nodes_ordered, v);
              SET_BIT (nodes_ordered, v);
            }
            }
          dir = BOTTOMUP;
          dir = BOTTOMUP;
          sbitmap_zero (predecessors);
          sbitmap_zero (predecessors);
          find_predecessors (predecessors, g, nodes_ordered);
          find_predecessors (predecessors, g, nodes_ordered);
          sbitmap_a_and_b (workset, predecessors, scc);
          sbitmap_a_and_b (workset, predecessors, scc);
        }
        }
      else
      else
        {
        {
          while (!sbitmap_equal (workset, zero_bitmap))
          while (!sbitmap_equal (workset, zero_bitmap))
            {
            {
              v = find_max_dv_min_mob (g, workset);
              v = find_max_dv_min_mob (g, workset);
              v_node = &g->nodes[v];
              v_node = &g->nodes[v];
              node_order[pos++] = v;
              node_order[pos++] = v;
              v_node_preds = NODE_PREDECESSORS (v_node);
              v_node_preds = NODE_PREDECESSORS (v_node);
              sbitmap_a_and_b (tmp, v_node_preds, scc);
              sbitmap_a_and_b (tmp, v_node_preds, scc);
 
 
              /* Don't consider the already ordered predecessors again.  */
              /* Don't consider the already ordered predecessors again.  */
              sbitmap_difference (tmp, tmp, nodes_ordered);
              sbitmap_difference (tmp, tmp, nodes_ordered);
              sbitmap_a_or_b (workset, workset, tmp);
              sbitmap_a_or_b (workset, workset, tmp);
              RESET_BIT (workset, v);
              RESET_BIT (workset, v);
              SET_BIT (nodes_ordered, v);
              SET_BIT (nodes_ordered, v);
            }
            }
          dir = TOPDOWN;
          dir = TOPDOWN;
          sbitmap_zero (successors);
          sbitmap_zero (successors);
          find_successors (successors, g, nodes_ordered);
          find_successors (successors, g, nodes_ordered);
          sbitmap_a_and_b (workset, successors, scc);
          sbitmap_a_and_b (workset, successors, scc);
        }
        }
    }
    }
  sbitmap_free (tmp);
  sbitmap_free (tmp);
  sbitmap_free (workset);
  sbitmap_free (workset);
  sbitmap_free (zero_bitmap);
  sbitmap_free (zero_bitmap);
  sbitmap_free (predecessors);
  sbitmap_free (predecessors);
  sbitmap_free (successors);
  sbitmap_free (successors);
  return pos;
  return pos;
}
}
 
 


/* This page contains functions for manipulating partial-schedules during
/* This page contains functions for manipulating partial-schedules during
   modulo scheduling.  */
   modulo scheduling.  */
 
 
/* Create a partial schedule and allocate a memory to hold II rows.  */
/* Create a partial schedule and allocate a memory to hold II rows.  */
 
 
static partial_schedule_ptr
static partial_schedule_ptr
create_partial_schedule (int ii, ddg_ptr g, int history)
create_partial_schedule (int ii, ddg_ptr g, int history)
{
{
  partial_schedule_ptr ps = XNEW (struct partial_schedule);
  partial_schedule_ptr ps = XNEW (struct partial_schedule);
  ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
  ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr));
  ps->rows_length = (int *) xcalloc (ii, sizeof (int));
  ps->rows_length = (int *) xcalloc (ii, sizeof (int));
  ps->reg_moves = NULL;
  ps->reg_moves = NULL;
  ps->ii = ii;
  ps->ii = ii;
  ps->history = history;
  ps->history = history;
  ps->min_cycle = INT_MAX;
  ps->min_cycle = INT_MAX;
  ps->max_cycle = INT_MIN;
  ps->max_cycle = INT_MIN;
  ps->g = g;
  ps->g = g;
 
 
  return ps;
  return ps;
}
}
 
 
/* Free the PS_INSNs in rows array of the given partial schedule.
/* Free the PS_INSNs in rows array of the given partial schedule.
   ??? Consider caching the PS_INSN's.  */
   ??? Consider caching the PS_INSN's.  */
static void
static void
free_ps_insns (partial_schedule_ptr ps)
free_ps_insns (partial_schedule_ptr ps)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < ps->ii; i++)
  for (i = 0; i < ps->ii; i++)
    {
    {
      while (ps->rows[i])
      while (ps->rows[i])
        {
        {
          ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
          ps_insn_ptr ps_insn = ps->rows[i]->next_in_row;
 
 
          free (ps->rows[i]);
          free (ps->rows[i]);
          ps->rows[i] = ps_insn;
          ps->rows[i] = ps_insn;
        }
        }
      ps->rows[i] = NULL;
      ps->rows[i] = NULL;
    }
    }
}
}
 
 
/* Free all the memory allocated to the partial schedule.  */
/* Free all the memory allocated to the partial schedule.  */
 
 
static void
static void
free_partial_schedule (partial_schedule_ptr ps)
free_partial_schedule (partial_schedule_ptr ps)
{
{
  ps_reg_move_info *move;
  ps_reg_move_info *move;
  unsigned int i;
  unsigned int i;
 
 
  if (!ps)
  if (!ps)
    return;
    return;
 
 
  FOR_EACH_VEC_ELT (ps_reg_move_info, ps->reg_moves, i, move)
  FOR_EACH_VEC_ELT (ps_reg_move_info, ps->reg_moves, i, move)
    sbitmap_free (move->uses);
    sbitmap_free (move->uses);
  VEC_free (ps_reg_move_info, heap, ps->reg_moves);
  VEC_free (ps_reg_move_info, heap, ps->reg_moves);
 
 
  free_ps_insns (ps);
  free_ps_insns (ps);
  free (ps->rows);
  free (ps->rows);
  free (ps->rows_length);
  free (ps->rows_length);
  free (ps);
  free (ps);
}
}
 
 
/* Clear the rows array with its PS_INSNs, and create a new one with
/* Clear the rows array with its PS_INSNs, and create a new one with
   NEW_II rows.  */
   NEW_II rows.  */
 
 
static void
static void
reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
reset_partial_schedule (partial_schedule_ptr ps, int new_ii)
{
{
  if (!ps)
  if (!ps)
    return;
    return;
  free_ps_insns (ps);
  free_ps_insns (ps);
  if (new_ii == ps->ii)
  if (new_ii == ps->ii)
    return;
    return;
  ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
  ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii
                                                 * sizeof (ps_insn_ptr));
                                                 * sizeof (ps_insn_ptr));
  memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
  memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr));
  ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
  ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int));
  memset (ps->rows_length, 0, new_ii * sizeof (int));
  memset (ps->rows_length, 0, new_ii * sizeof (int));
  ps->ii = new_ii;
  ps->ii = new_ii;
  ps->min_cycle = INT_MAX;
  ps->min_cycle = INT_MAX;
  ps->max_cycle = INT_MIN;
  ps->max_cycle = INT_MIN;
}
}
 
 
/* Prints the partial schedule as an ii rows array, for each rows
/* Prints the partial schedule as an ii rows array, for each rows
   print the ids of the insns in it.  */
   print the ids of the insns in it.  */
void
void
print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
print_partial_schedule (partial_schedule_ptr ps, FILE *dump)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < ps->ii; i++)
  for (i = 0; i < ps->ii; i++)
    {
    {
      ps_insn_ptr ps_i = ps->rows[i];
      ps_insn_ptr ps_i = ps->rows[i];
 
 
      fprintf (dump, "\n[ROW %d ]: ", i);
      fprintf (dump, "\n[ROW %d ]: ", i);
      while (ps_i)
      while (ps_i)
        {
        {
          rtx insn = ps_rtl_insn (ps, ps_i->id);
          rtx insn = ps_rtl_insn (ps, ps_i->id);
 
 
          if (JUMP_P (insn))
          if (JUMP_P (insn))
            fprintf (dump, "%d (branch), ", INSN_UID (insn));
            fprintf (dump, "%d (branch), ", INSN_UID (insn));
          else
          else
            fprintf (dump, "%d, ", INSN_UID (insn));
            fprintf (dump, "%d, ", INSN_UID (insn));
 
 
          ps_i = ps_i->next_in_row;
          ps_i = ps_i->next_in_row;
        }
        }
    }
    }
}
}
 
 
/* Creates an object of PS_INSN and initializes it to the given parameters.  */
/* Creates an object of PS_INSN and initializes it to the given parameters.  */
static ps_insn_ptr
static ps_insn_ptr
create_ps_insn (int id, int cycle)
create_ps_insn (int id, int cycle)
{
{
  ps_insn_ptr ps_i = XNEW (struct ps_insn);
  ps_insn_ptr ps_i = XNEW (struct ps_insn);
 
 
  ps_i->id = id;
  ps_i->id = id;
  ps_i->next_in_row = NULL;
  ps_i->next_in_row = NULL;
  ps_i->prev_in_row = NULL;
  ps_i->prev_in_row = NULL;
  ps_i->cycle = cycle;
  ps_i->cycle = cycle;
 
 
  return ps_i;
  return ps_i;
}
}
 
 
 
 
/* Removes the given PS_INSN from the partial schedule.  */
/* Removes the given PS_INSN from the partial schedule.  */
static void
static void
remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i)
{
{
  int row;
  int row;
 
 
  gcc_assert (ps && ps_i);
  gcc_assert (ps && ps_i);
 
 
  row = SMODULO (ps_i->cycle, ps->ii);
  row = SMODULO (ps_i->cycle, ps->ii);
  if (! ps_i->prev_in_row)
  if (! ps_i->prev_in_row)
    {
    {
      gcc_assert (ps_i == ps->rows[row]);
      gcc_assert (ps_i == ps->rows[row]);
      ps->rows[row] = ps_i->next_in_row;
      ps->rows[row] = ps_i->next_in_row;
      if (ps->rows[row])
      if (ps->rows[row])
        ps->rows[row]->prev_in_row = NULL;
        ps->rows[row]->prev_in_row = NULL;
    }
    }
  else
  else
    {
    {
      ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
      ps_i->prev_in_row->next_in_row = ps_i->next_in_row;
      if (ps_i->next_in_row)
      if (ps_i->next_in_row)
        ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
        ps_i->next_in_row->prev_in_row = ps_i->prev_in_row;
    }
    }
 
 
  ps->rows_length[row] -= 1;
  ps->rows_length[row] -= 1;
  free (ps_i);
  free (ps_i);
  return;
  return;
}
}
 
 
/* Unlike what literature describes for modulo scheduling (which focuses
/* Unlike what literature describes for modulo scheduling (which focuses
   on VLIW machines) the order of the instructions inside a cycle is
   on VLIW machines) the order of the instructions inside a cycle is
   important.  Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
   important.  Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know
   where the current instruction should go relative to the already
   where the current instruction should go relative to the already
   scheduled instructions in the given cycle.  Go over these
   scheduled instructions in the given cycle.  Go over these
   instructions and find the first possible column to put it in.  */
   instructions and find the first possible column to put it in.  */
static bool
static bool
ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
                     sbitmap must_precede, sbitmap must_follow)
                     sbitmap must_precede, sbitmap must_follow)
{
{
  ps_insn_ptr next_ps_i;
  ps_insn_ptr next_ps_i;
  ps_insn_ptr first_must_follow = NULL;
  ps_insn_ptr first_must_follow = NULL;
  ps_insn_ptr last_must_precede = NULL;
  ps_insn_ptr last_must_precede = NULL;
  ps_insn_ptr last_in_row = NULL;
  ps_insn_ptr last_in_row = NULL;
  int row;
  int row;
 
 
  if (! ps_i)
  if (! ps_i)
    return false;
    return false;
 
 
  row = SMODULO (ps_i->cycle, ps->ii);
  row = SMODULO (ps_i->cycle, ps->ii);
 
 
  /* Find the first must follow and the last must precede
  /* Find the first must follow and the last must precede
     and insert the node immediately after the must precede
     and insert the node immediately after the must precede
     but make sure that it there is no must follow after it.  */
     but make sure that it there is no must follow after it.  */
  for (next_ps_i = ps->rows[row];
  for (next_ps_i = ps->rows[row];
       next_ps_i;
       next_ps_i;
       next_ps_i = next_ps_i->next_in_row)
       next_ps_i = next_ps_i->next_in_row)
    {
    {
      if (must_follow
      if (must_follow
          && TEST_BIT (must_follow, next_ps_i->id)
          && TEST_BIT (must_follow, next_ps_i->id)
          && ! first_must_follow)
          && ! first_must_follow)
        first_must_follow = next_ps_i;
        first_must_follow = next_ps_i;
      if (must_precede && TEST_BIT (must_precede, next_ps_i->id))
      if (must_precede && TEST_BIT (must_precede, next_ps_i->id))
        {
        {
          /* If we have already met a node that must follow, then
          /* If we have already met a node that must follow, then
             there is no possible column.  */
             there is no possible column.  */
          if (first_must_follow)
          if (first_must_follow)
            return false;
            return false;
          else
          else
            last_must_precede = next_ps_i;
            last_must_precede = next_ps_i;
        }
        }
      /* The closing branch must be the last in the row.  */
      /* The closing branch must be the last in the row.  */
      if (must_precede
      if (must_precede
          && TEST_BIT (must_precede, next_ps_i->id)
          && TEST_BIT (must_precede, next_ps_i->id)
          && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
          && JUMP_P (ps_rtl_insn (ps, next_ps_i->id)))
        return false;
        return false;
 
 
       last_in_row = next_ps_i;
       last_in_row = next_ps_i;
    }
    }
 
 
  /* The closing branch is scheduled as well.  Make sure there is no
  /* The closing branch is scheduled as well.  Make sure there is no
     dependent instruction after it as the branch should be the last
     dependent instruction after it as the branch should be the last
     instruction in the row.  */
     instruction in the row.  */
  if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
  if (JUMP_P (ps_rtl_insn (ps, ps_i->id)))
    {
    {
      if (first_must_follow)
      if (first_must_follow)
        return false;
        return false;
      if (last_in_row)
      if (last_in_row)
        {
        {
          /* Make the branch the last in the row.  New instructions
          /* Make the branch the last in the row.  New instructions
             will be inserted at the beginning of the row or after the
             will be inserted at the beginning of the row or after the
             last must_precede instruction thus the branch is guaranteed
             last must_precede instruction thus the branch is guaranteed
             to remain the last instruction in the row.  */
             to remain the last instruction in the row.  */
          last_in_row->next_in_row = ps_i;
          last_in_row->next_in_row = ps_i;
          ps_i->prev_in_row = last_in_row;
          ps_i->prev_in_row = last_in_row;
          ps_i->next_in_row = NULL;
          ps_i->next_in_row = NULL;
        }
        }
      else
      else
        ps->rows[row] = ps_i;
        ps->rows[row] = ps_i;
      return true;
      return true;
    }
    }
 
 
  /* Now insert the node after INSERT_AFTER_PSI.  */
  /* Now insert the node after INSERT_AFTER_PSI.  */
 
 
  if (! last_must_precede)
  if (! last_must_precede)
    {
    {
      ps_i->next_in_row = ps->rows[row];
      ps_i->next_in_row = ps->rows[row];
      ps_i->prev_in_row = NULL;
      ps_i->prev_in_row = NULL;
      if (ps_i->next_in_row)
      if (ps_i->next_in_row)
        ps_i->next_in_row->prev_in_row = ps_i;
        ps_i->next_in_row->prev_in_row = ps_i;
      ps->rows[row] = ps_i;
      ps->rows[row] = ps_i;
    }
    }
  else
  else
    {
    {
      ps_i->next_in_row = last_must_precede->next_in_row;
      ps_i->next_in_row = last_must_precede->next_in_row;
      last_must_precede->next_in_row = ps_i;
      last_must_precede->next_in_row = ps_i;
      ps_i->prev_in_row = last_must_precede;
      ps_i->prev_in_row = last_must_precede;
      if (ps_i->next_in_row)
      if (ps_i->next_in_row)
        ps_i->next_in_row->prev_in_row = ps_i;
        ps_i->next_in_row->prev_in_row = ps_i;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Advances the PS_INSN one column in its current row; returns false
/* Advances the PS_INSN one column in its current row; returns false
   in failure and true in success.  Bit N is set in MUST_FOLLOW if
   in failure and true in success.  Bit N is set in MUST_FOLLOW if
   the node with cuid N must be come after the node pointed to by
   the node with cuid N must be come after the node pointed to by
   PS_I when scheduled in the same cycle.  */
   PS_I when scheduled in the same cycle.  */
static int
static int
ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i,
                        sbitmap must_follow)
                        sbitmap must_follow)
{
{
  ps_insn_ptr prev, next;
  ps_insn_ptr prev, next;
  int row;
  int row;
 
 
  if (!ps || !ps_i)
  if (!ps || !ps_i)
    return false;
    return false;
 
 
  row = SMODULO (ps_i->cycle, ps->ii);
  row = SMODULO (ps_i->cycle, ps->ii);
 
 
  if (! ps_i->next_in_row)
  if (! ps_i->next_in_row)
    return false;
    return false;
 
 
  /* Check if next_in_row is dependent on ps_i, both having same sched
  /* Check if next_in_row is dependent on ps_i, both having same sched
     times (typically ANTI_DEP).  If so, ps_i cannot skip over it.  */
     times (typically ANTI_DEP).  If so, ps_i cannot skip over it.  */
  if (must_follow && TEST_BIT (must_follow, ps_i->next_in_row->id))
  if (must_follow && TEST_BIT (must_follow, ps_i->next_in_row->id))
    return false;
    return false;
 
 
  /* Advance PS_I over its next_in_row in the doubly linked list.  */
  /* Advance PS_I over its next_in_row in the doubly linked list.  */
  prev = ps_i->prev_in_row;
  prev = ps_i->prev_in_row;
  next = ps_i->next_in_row;
  next = ps_i->next_in_row;
 
 
  if (ps_i == ps->rows[row])
  if (ps_i == ps->rows[row])
    ps->rows[row] = next;
    ps->rows[row] = next;
 
 
  ps_i->next_in_row = next->next_in_row;
  ps_i->next_in_row = next->next_in_row;
 
 
  if (next->next_in_row)
  if (next->next_in_row)
    next->next_in_row->prev_in_row = ps_i;
    next->next_in_row->prev_in_row = ps_i;
 
 
  next->next_in_row = ps_i;
  next->next_in_row = ps_i;
  ps_i->prev_in_row = next;
  ps_i->prev_in_row = next;
 
 
  next->prev_in_row = prev;
  next->prev_in_row = prev;
  if (prev)
  if (prev)
    prev->next_in_row = next;
    prev->next_in_row = next;
 
 
  return true;
  return true;
}
}
 
 
/* Inserts a DDG_NODE to the given partial schedule at the given cycle.
/* Inserts a DDG_NODE to the given partial schedule at the given cycle.
   Returns 0 if this is not possible and a PS_INSN otherwise.  Bit N is
   Returns 0 if this is not possible and a PS_INSN otherwise.  Bit N is
   set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
   set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come
   before/after (respectively) the node pointed to by PS_I when scheduled
   before/after (respectively) the node pointed to by PS_I when scheduled
   in the same cycle.  */
   in the same cycle.  */
static ps_insn_ptr
static ps_insn_ptr
add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
add_node_to_ps (partial_schedule_ptr ps, int id, int cycle,
                sbitmap must_precede, sbitmap must_follow)
                sbitmap must_precede, sbitmap must_follow)
{
{
  ps_insn_ptr ps_i;
  ps_insn_ptr ps_i;
  int row = SMODULO (cycle, ps->ii);
  int row = SMODULO (cycle, ps->ii);
 
 
  if (ps->rows_length[row] >= issue_rate)
  if (ps->rows_length[row] >= issue_rate)
    return NULL;
    return NULL;
 
 
  ps_i = create_ps_insn (id, cycle);
  ps_i = create_ps_insn (id, cycle);
 
 
  /* Finds and inserts PS_I according to MUST_FOLLOW and
  /* Finds and inserts PS_I according to MUST_FOLLOW and
     MUST_PRECEDE.  */
     MUST_PRECEDE.  */
  if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
  if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow))
    {
    {
      free (ps_i);
      free (ps_i);
      return NULL;
      return NULL;
    }
    }
 
 
  ps->rows_length[row] += 1;
  ps->rows_length[row] += 1;
  return ps_i;
  return ps_i;
}
}
 
 
/* Advance time one cycle.  Assumes DFA is being used.  */
/* Advance time one cycle.  Assumes DFA is being used.  */
static void
static void
advance_one_cycle (void)
advance_one_cycle (void)
{
{
  if (targetm.sched.dfa_pre_cycle_insn)
  if (targetm.sched.dfa_pre_cycle_insn)
    state_transition (curr_state,
    state_transition (curr_state,
                      targetm.sched.dfa_pre_cycle_insn ());
                      targetm.sched.dfa_pre_cycle_insn ());
 
 
  state_transition (curr_state, NULL);
  state_transition (curr_state, NULL);
 
 
  if (targetm.sched.dfa_post_cycle_insn)
  if (targetm.sched.dfa_post_cycle_insn)
    state_transition (curr_state,
    state_transition (curr_state,
                      targetm.sched.dfa_post_cycle_insn ());
                      targetm.sched.dfa_post_cycle_insn ());
}
}
 
 
 
 
 
 
/* Checks if PS has resource conflicts according to DFA, starting from
/* Checks if PS has resource conflicts according to DFA, starting from
   FROM cycle to TO cycle; returns true if there are conflicts and false
   FROM cycle to TO cycle; returns true if there are conflicts and false
   if there are no conflicts.  Assumes DFA is being used.  */
   if there are no conflicts.  Assumes DFA is being used.  */
static int
static int
ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
ps_has_conflicts (partial_schedule_ptr ps, int from, int to)
{
{
  int cycle;
  int cycle;
 
 
  state_reset (curr_state);
  state_reset (curr_state);
 
 
  for (cycle = from; cycle <= to; cycle++)
  for (cycle = from; cycle <= to; cycle++)
    {
    {
      ps_insn_ptr crr_insn;
      ps_insn_ptr crr_insn;
      /* Holds the remaining issue slots in the current row.  */
      /* Holds the remaining issue slots in the current row.  */
      int can_issue_more = issue_rate;
      int can_issue_more = issue_rate;
 
 
      /* Walk through the DFA for the current row.  */
      /* Walk through the DFA for the current row.  */
      for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
      for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)];
           crr_insn;
           crr_insn;
           crr_insn = crr_insn->next_in_row)
           crr_insn = crr_insn->next_in_row)
        {
        {
          rtx insn = ps_rtl_insn (ps, crr_insn->id);
          rtx insn = ps_rtl_insn (ps, crr_insn->id);
 
 
          if (!NONDEBUG_INSN_P (insn))
          if (!NONDEBUG_INSN_P (insn))
            continue;
            continue;
 
 
          /* Check if there is room for the current insn.  */
          /* Check if there is room for the current insn.  */
          if (!can_issue_more || state_dead_lock_p (curr_state))
          if (!can_issue_more || state_dead_lock_p (curr_state))
            return true;
            return true;
 
 
          /* Update the DFA state and return with failure if the DFA found
          /* Update the DFA state and return with failure if the DFA found
             resource conflicts.  */
             resource conflicts.  */
          if (state_transition (curr_state, insn) >= 0)
          if (state_transition (curr_state, insn) >= 0)
            return true;
            return true;
 
 
          if (targetm.sched.variable_issue)
          if (targetm.sched.variable_issue)
            can_issue_more =
            can_issue_more =
              targetm.sched.variable_issue (sched_dump, sched_verbose,
              targetm.sched.variable_issue (sched_dump, sched_verbose,
                                            insn, can_issue_more);
                                            insn, can_issue_more);
          /* A naked CLOBBER or USE generates no instruction, so don't
          /* A naked CLOBBER or USE generates no instruction, so don't
             let them consume issue slots.  */
             let them consume issue slots.  */
          else if (GET_CODE (PATTERN (insn)) != USE
          else if (GET_CODE (PATTERN (insn)) != USE
                   && GET_CODE (PATTERN (insn)) != CLOBBER)
                   && GET_CODE (PATTERN (insn)) != CLOBBER)
            can_issue_more--;
            can_issue_more--;
        }
        }
 
 
      /* Advance the DFA to the next cycle.  */
      /* Advance the DFA to the next cycle.  */
      advance_one_cycle ();
      advance_one_cycle ();
    }
    }
  return false;
  return false;
}
}
 
 
/* Checks if the given node causes resource conflicts when added to PS at
/* Checks if the given node causes resource conflicts when added to PS at
   cycle C.  If not the node is added to PS and returned; otherwise zero
   cycle C.  If not the node is added to PS and returned; otherwise zero
   is returned.  Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
   is returned.  Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with
   cuid N must be come before/after (respectively) the node pointed to by
   cuid N must be come before/after (respectively) the node pointed to by
   PS_I when scheduled in the same cycle.  */
   PS_I when scheduled in the same cycle.  */
ps_insn_ptr
ps_insn_ptr
ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
ps_add_node_check_conflicts (partial_schedule_ptr ps, int n,
                             int c, sbitmap must_precede,
                             int c, sbitmap must_precede,
                             sbitmap must_follow)
                             sbitmap must_follow)
{
{
  int has_conflicts = 0;
  int has_conflicts = 0;
  ps_insn_ptr ps_i;
  ps_insn_ptr ps_i;
 
 
  /* First add the node to the PS, if this succeeds check for
  /* First add the node to the PS, if this succeeds check for
     conflicts, trying different issue slots in the same row.  */
     conflicts, trying different issue slots in the same row.  */
  if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
  if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow)))
    return NULL; /* Failed to insert the node at the given cycle.  */
    return NULL; /* Failed to insert the node at the given cycle.  */
 
 
  has_conflicts = ps_has_conflicts (ps, c, c)
  has_conflicts = ps_has_conflicts (ps, c, c)
                  || (ps->history > 0
                  || (ps->history > 0
                      && ps_has_conflicts (ps,
                      && ps_has_conflicts (ps,
                                           c - ps->history,
                                           c - ps->history,
                                           c + ps->history));
                                           c + ps->history));
 
 
  /* Try different issue slots to find one that the given node can be
  /* Try different issue slots to find one that the given node can be
     scheduled in without conflicts.  */
     scheduled in without conflicts.  */
  while (has_conflicts)
  while (has_conflicts)
    {
    {
      if (! ps_insn_advance_column (ps, ps_i, must_follow))
      if (! ps_insn_advance_column (ps, ps_i, must_follow))
        break;
        break;
      has_conflicts = ps_has_conflicts (ps, c, c)
      has_conflicts = ps_has_conflicts (ps, c, c)
                      || (ps->history > 0
                      || (ps->history > 0
                          && ps_has_conflicts (ps,
                          && ps_has_conflicts (ps,
                                               c - ps->history,
                                               c - ps->history,
                                               c + ps->history));
                                               c + ps->history));
    }
    }
 
 
  if (has_conflicts)
  if (has_conflicts)
    {
    {
      remove_node_from_ps (ps, ps_i);
      remove_node_from_ps (ps, ps_i);
      return NULL;
      return NULL;
    }
    }
 
 
  ps->min_cycle = MIN (ps->min_cycle, c);
  ps->min_cycle = MIN (ps->min_cycle, c);
  ps->max_cycle = MAX (ps->max_cycle, c);
  ps->max_cycle = MAX (ps->max_cycle, c);
  return ps_i;
  return ps_i;
}
}
 
 
/* Calculate the stage count of the partial schedule PS.  The calculation
/* Calculate the stage count of the partial schedule PS.  The calculation
   takes into account the rotation amount passed in ROTATION_AMOUNT.  */
   takes into account the rotation amount passed in ROTATION_AMOUNT.  */
int
int
calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
calculate_stage_count (partial_schedule_ptr ps, int rotation_amount)
{
{
  int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
  int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount;
  int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
  int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount;
  int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
  int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii);
 
 
  /* The calculation of stage count is done adding the number of stages
  /* The calculation of stage count is done adding the number of stages
     before cycle zero and after cycle zero.  */
     before cycle zero and after cycle zero.  */
  stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
  stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii);
 
 
  return stage_count;
  return stage_count;
}
}
 
 
/* Rotate the rows of PS such that insns scheduled at time
/* Rotate the rows of PS such that insns scheduled at time
   START_CYCLE will appear in row 0.  Updates max/min_cycles.  */
   START_CYCLE will appear in row 0.  Updates max/min_cycles.  */
void
void
rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle)
{
{
  int i, row, backward_rotates;
  int i, row, backward_rotates;
  int last_row = ps->ii - 1;
  int last_row = ps->ii - 1;
 
 
  if (start_cycle == 0)
  if (start_cycle == 0)
    return;
    return;
 
 
  backward_rotates = SMODULO (start_cycle, ps->ii);
  backward_rotates = SMODULO (start_cycle, ps->ii);
 
 
  /* Revisit later and optimize this into a single loop.  */
  /* Revisit later and optimize this into a single loop.  */
  for (i = 0; i < backward_rotates; i++)
  for (i = 0; i < backward_rotates; i++)
    {
    {
      ps_insn_ptr first_row = ps->rows[0];
      ps_insn_ptr first_row = ps->rows[0];
      int first_row_length = ps->rows_length[0];
      int first_row_length = ps->rows_length[0];
 
 
      for (row = 0; row < last_row; row++)
      for (row = 0; row < last_row; row++)
        {
        {
          ps->rows[row] = ps->rows[row + 1];
          ps->rows[row] = ps->rows[row + 1];
          ps->rows_length[row] = ps->rows_length[row + 1];
          ps->rows_length[row] = ps->rows_length[row + 1];
        }
        }
 
 
      ps->rows[last_row] = first_row;
      ps->rows[last_row] = first_row;
      ps->rows_length[last_row] = first_row_length;
      ps->rows_length[last_row] = first_row_length;
    }
    }
 
 
  ps->max_cycle -= start_cycle;
  ps->max_cycle -= start_cycle;
  ps->min_cycle -= start_cycle;
  ps->min_cycle -= start_cycle;
}
}
 
 
#endif /* INSN_SCHEDULING */
#endif /* INSN_SCHEDULING */


static bool
static bool
gate_handle_sms (void)
gate_handle_sms (void)
{
{
  return (optimize > 0 && flag_modulo_sched);
  return (optimize > 0 && flag_modulo_sched);
}
}
 
 
 
 
/* Run instruction scheduler.  */
/* Run instruction scheduler.  */
/* Perform SMS module scheduling.  */
/* Perform SMS module scheduling.  */
static unsigned int
static unsigned int
rest_of_handle_sms (void)
rest_of_handle_sms (void)
{
{
#ifdef INSN_SCHEDULING
#ifdef INSN_SCHEDULING
  basic_block bb;
  basic_block bb;
 
 
  /* Collect loop information to be used in SMS.  */
  /* Collect loop information to be used in SMS.  */
  cfg_layout_initialize (0);
  cfg_layout_initialize (0);
  sms_schedule ();
  sms_schedule ();
 
 
  /* Update the life information, because we add pseudos.  */
  /* Update the life information, because we add pseudos.  */
  max_regno = max_reg_num ();
  max_regno = max_reg_num ();
 
 
  /* Finalize layout changes.  */
  /* Finalize layout changes.  */
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    if (bb->next_bb != EXIT_BLOCK_PTR)
    if (bb->next_bb != EXIT_BLOCK_PTR)
      bb->aux = bb->next_bb;
      bb->aux = bb->next_bb;
  free_dominance_info (CDI_DOMINATORS);
  free_dominance_info (CDI_DOMINATORS);
  cfg_layout_finalize ();
  cfg_layout_finalize ();
#endif /* INSN_SCHEDULING */
#endif /* INSN_SCHEDULING */
  return 0;
  return 0;
}
}
 
 
struct rtl_opt_pass pass_sms =
struct rtl_opt_pass pass_sms =
{
{
 {
 {
  RTL_PASS,
  RTL_PASS,
  "sms",                                /* name */
  "sms",                                /* name */
  gate_handle_sms,                      /* gate */
  gate_handle_sms,                      /* gate */
  rest_of_handle_sms,                   /* execute */
  rest_of_handle_sms,                   /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_SMS,                               /* tv_id */
  TV_SMS,                               /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_df_finish
  TODO_df_finish
    | TODO_verify_flow
    | TODO_verify_flow
    | TODO_verify_rtl_sharing
    | TODO_verify_rtl_sharing
    | TODO_ggc_collect                  /* todo_flags_finish */
    | TODO_ggc_collect                  /* todo_flags_finish */
 }
 }
};
};
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.