OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [gcc/] [read-rtl.c] - Diff between revs 684 and 783

Only display areas with differences | Details | Blame | View Log

Rev 684 Rev 783
/* RTL reader for GCC.
/* RTL reader for GCC.
   Copyright (C) 1987, 1988, 1991, 1994, 1997, 1998, 1999, 2000, 2001, 2002,
   Copyright (C) 1987, 1988, 1991, 1994, 1997, 1998, 1999, 2000, 2001, 2002,
   2003, 2004, 2005, 2007, 2008, 2010
   2003, 2004, 2005, 2007, 2008, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "bconfig.h"
#include "bconfig.h"
 
 
/* Disable rtl checking; it conflicts with the iterator handling.  */
/* Disable rtl checking; it conflicts with the iterator handling.  */
#undef ENABLE_RTL_CHECKING
#undef ENABLE_RTL_CHECKING
 
 
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "obstack.h"
#include "obstack.h"
#include "hashtab.h"
#include "hashtab.h"
#include "read-md.h"
#include "read-md.h"
#include "gensupport.h"
#include "gensupport.h"
 
 
/* One element in a singly-linked list of (integer, string) pairs.  */
/* One element in a singly-linked list of (integer, string) pairs.  */
struct map_value {
struct map_value {
  struct map_value *next;
  struct map_value *next;
  int number;
  int number;
  const char *string;
  const char *string;
};
};
 
 
/* Maps an iterator or attribute name to a list of (integer, string) pairs.
/* Maps an iterator or attribute name to a list of (integer, string) pairs.
   The integers are mode or code values; the strings are either C conditions
   The integers are mode or code values; the strings are either C conditions
   or attribute values.  */
   or attribute values.  */
struct mapping {
struct mapping {
  /* The name of the iterator or attribute.  */
  /* The name of the iterator or attribute.  */
  const char *name;
  const char *name;
 
 
  /* The group (modes or codes) to which the iterator or attribute belongs.  */
  /* The group (modes or codes) to which the iterator or attribute belongs.  */
  struct iterator_group *group;
  struct iterator_group *group;
 
 
  /* Gives a unique number to the attribute or iterator.  Numbers are
  /* Gives a unique number to the attribute or iterator.  Numbers are
     allocated consecutively, starting at 0.  */
     allocated consecutively, starting at 0.  */
  int index;
  int index;
 
 
  /* The list of (integer, string) pairs.  */
  /* The list of (integer, string) pairs.  */
  struct map_value *values;
  struct map_value *values;
};
};
 
 
/* A structure for abstracting the common parts of code and mode iterators.  */
/* A structure for abstracting the common parts of code and mode iterators.  */
struct iterator_group {
struct iterator_group {
  /* Tables of "mapping" structures, one for attributes and one for iterators.  */
  /* Tables of "mapping" structures, one for attributes and one for iterators.  */
  htab_t attrs, iterators;
  htab_t attrs, iterators;
 
 
  /* The number of "real" modes or codes (and by extension, the first
  /* The number of "real" modes or codes (and by extension, the first
     number available for use as an iterator placeholder).  */
     number available for use as an iterator placeholder).  */
  int num_builtins;
  int num_builtins;
 
 
  /* Treat the given string as the name of a standard mode or code and
  /* Treat the given string as the name of a standard mode or code and
     return its integer value.  */
     return its integer value.  */
  int (*find_builtin) (const char *);
  int (*find_builtin) (const char *);
 
 
  /* Return true if the given rtx uses the given mode or code.  */
  /* Return true if the given rtx uses the given mode or code.  */
  bool (*uses_iterator_p) (rtx, int);
  bool (*uses_iterator_p) (rtx, int);
 
 
  /* Make the given rtx use the given mode or code.  */
  /* Make the given rtx use the given mode or code.  */
  void (*apply_iterator) (rtx, int);
  void (*apply_iterator) (rtx, int);
};
};
 
 
/* A structure used to pass data from read_rtx to apply_iterator_traverse
/* A structure used to pass data from read_rtx to apply_iterator_traverse
   via htab_traverse.  */
   via htab_traverse.  */
struct iterator_traverse_data {
struct iterator_traverse_data {
  /* Instruction queue.  */
  /* Instruction queue.  */
  rtx queue;
  rtx queue;
  /* Attributes seen for modes.  */
  /* Attributes seen for modes.  */
  struct map_value *mode_maps;
  struct map_value *mode_maps;
  /* The last unknown attribute used as a mode.  */
  /* The last unknown attribute used as a mode.  */
  const char *unknown_mode_attr;
  const char *unknown_mode_attr;
};
};
 
 
/* If CODE is the number of a code iterator, return a real rtx code that
/* If CODE is the number of a code iterator, return a real rtx code that
   has the same format.  Return CODE otherwise.  */
   has the same format.  Return CODE otherwise.  */
#define BELLWETHER_CODE(CODE) \
#define BELLWETHER_CODE(CODE) \
  ((CODE) < NUM_RTX_CODE ? CODE : bellwether_codes[CODE - NUM_RTX_CODE])
  ((CODE) < NUM_RTX_CODE ? CODE : bellwether_codes[CODE - NUM_RTX_CODE])
 
 
static int find_mode (const char *);
static int find_mode (const char *);
static bool uses_mode_iterator_p (rtx, int);
static bool uses_mode_iterator_p (rtx, int);
static void apply_mode_iterator (rtx, int);
static void apply_mode_iterator (rtx, int);
static int find_code (const char *);
static int find_code (const char *);
static bool uses_code_iterator_p (rtx, int);
static bool uses_code_iterator_p (rtx, int);
static void apply_code_iterator (rtx, int);
static void apply_code_iterator (rtx, int);
static const char *apply_iterator_to_string (const char *, struct mapping *, int);
static const char *apply_iterator_to_string (const char *, struct mapping *, int);
static rtx apply_iterator_to_rtx (rtx, struct mapping *, int,
static rtx apply_iterator_to_rtx (rtx, struct mapping *, int,
                                  struct map_value *, const char **);
                                  struct map_value *, const char **);
static bool uses_iterator_p (rtx, struct mapping *);
static bool uses_iterator_p (rtx, struct mapping *);
static const char *add_condition_to_string (const char *, const char *);
static const char *add_condition_to_string (const char *, const char *);
static void add_condition_to_rtx (rtx, const char *);
static void add_condition_to_rtx (rtx, const char *);
static int apply_iterator_traverse (void **, void *);
static int apply_iterator_traverse (void **, void *);
static struct mapping *add_mapping (struct iterator_group *, htab_t t,
static struct mapping *add_mapping (struct iterator_group *, htab_t t,
                                    const char *);
                                    const char *);
static struct map_value **add_map_value (struct map_value **,
static struct map_value **add_map_value (struct map_value **,
                                         int, const char *);
                                         int, const char *);
static void initialize_iterators (void);
static void initialize_iterators (void);
static void read_conditions (void);
static void read_conditions (void);
static void validate_const_int (const char *);
static void validate_const_int (const char *);
static int find_iterator (struct iterator_group *, const char *);
static int find_iterator (struct iterator_group *, const char *);
static struct mapping *read_mapping (struct iterator_group *, htab_t);
static struct mapping *read_mapping (struct iterator_group *, htab_t);
static void check_code_iterator (struct mapping *);
static void check_code_iterator (struct mapping *);
static rtx read_rtx_code (const char *, struct map_value **);
static rtx read_rtx_code (const char *, struct map_value **);
static rtx read_nested_rtx (struct map_value **);
static rtx read_nested_rtx (struct map_value **);
static rtx read_rtx_variadic (struct map_value **, rtx);
static rtx read_rtx_variadic (struct map_value **, rtx);
 
 
/* The mode and code iterator structures.  */
/* The mode and code iterator structures.  */
static struct iterator_group modes, codes;
static struct iterator_group modes, codes;
 
 
/* Index I is the value of BELLWETHER_CODE (I + NUM_RTX_CODE).  */
/* Index I is the value of BELLWETHER_CODE (I + NUM_RTX_CODE).  */
static enum rtx_code *bellwether_codes;
static enum rtx_code *bellwether_codes;
 
 
/* Implementations of the iterator_group callbacks for modes.  */
/* Implementations of the iterator_group callbacks for modes.  */
 
 
static int
static int
find_mode (const char *name)
find_mode (const char *name)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < NUM_MACHINE_MODES; i++)
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    if (strcmp (GET_MODE_NAME (i), name) == 0)
    if (strcmp (GET_MODE_NAME (i), name) == 0)
      return i;
      return i;
 
 
  fatal_with_file_and_line ("unknown mode `%s'", name);
  fatal_with_file_and_line ("unknown mode `%s'", name);
}
}
 
 
static bool
static bool
uses_mode_iterator_p (rtx x, int mode)
uses_mode_iterator_p (rtx x, int mode)
{
{
  return (int) GET_MODE (x) == mode;
  return (int) GET_MODE (x) == mode;
}
}
 
 
static void
static void
apply_mode_iterator (rtx x, int mode)
apply_mode_iterator (rtx x, int mode)
{
{
  PUT_MODE (x, (enum machine_mode) mode);
  PUT_MODE (x, (enum machine_mode) mode);
}
}
 
 
/* Implementations of the iterator_group callbacks for codes.  */
/* Implementations of the iterator_group callbacks for codes.  */
 
 
static int
static int
find_code (const char *name)
find_code (const char *name)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < NUM_RTX_CODE; i++)
  for (i = 0; i < NUM_RTX_CODE; i++)
    if (strcmp (GET_RTX_NAME (i), name) == 0)
    if (strcmp (GET_RTX_NAME (i), name) == 0)
      return i;
      return i;
 
 
  fatal_with_file_and_line ("unknown rtx code `%s'", name);
  fatal_with_file_and_line ("unknown rtx code `%s'", name);
}
}
 
 
static bool
static bool
uses_code_iterator_p (rtx x, int code)
uses_code_iterator_p (rtx x, int code)
{
{
  return (int) GET_CODE (x) == code;
  return (int) GET_CODE (x) == code;
}
}
 
 
static void
static void
apply_code_iterator (rtx x, int code)
apply_code_iterator (rtx x, int code)
{
{
  PUT_CODE (x, (enum rtx_code) code);
  PUT_CODE (x, (enum rtx_code) code);
}
}
 
 
/* Map a code or mode attribute string P to the underlying string for
/* Map a code or mode attribute string P to the underlying string for
   ITERATOR and VALUE.  */
   ITERATOR and VALUE.  */
 
 
static struct map_value *
static struct map_value *
map_attr_string (const char *p, struct mapping *iterator, int value)
map_attr_string (const char *p, struct mapping *iterator, int value)
{
{
  const char *attr;
  const char *attr;
  struct mapping *m;
  struct mapping *m;
  struct map_value *v;
  struct map_value *v;
 
 
  /* If there's a "iterator:" prefix, check whether the iterator name matches.
  /* If there's a "iterator:" prefix, check whether the iterator name matches.
     Set ATTR to the start of the attribute name.  */
     Set ATTR to the start of the attribute name.  */
  attr = strchr (p, ':');
  attr = strchr (p, ':');
  if (attr == 0)
  if (attr == 0)
    attr = p;
    attr = p;
  else
  else
    {
    {
      if (strncmp (p, iterator->name, attr - p) != 0
      if (strncmp (p, iterator->name, attr - p) != 0
          || iterator->name[attr - p] != 0)
          || iterator->name[attr - p] != 0)
        return 0;
        return 0;
      attr++;
      attr++;
    }
    }
 
 
  /* Find the attribute specification.  */
  /* Find the attribute specification.  */
  m = (struct mapping *) htab_find (iterator->group->attrs, &attr);
  m = (struct mapping *) htab_find (iterator->group->attrs, &attr);
  if (m == 0)
  if (m == 0)
    return 0;
    return 0;
 
 
  /* Find the attribute value for VALUE.  */
  /* Find the attribute value for VALUE.  */
  for (v = m->values; v != 0; v = v->next)
  for (v = m->values; v != 0; v = v->next)
    if (v->number == value)
    if (v->number == value)
      break;
      break;
 
 
  return v;
  return v;
}
}
 
 
/* Given an attribute string used as a machine mode, return an index
/* Given an attribute string used as a machine mode, return an index
   to store in the machine mode to be translated by
   to store in the machine mode to be translated by
   apply_iterator_to_rtx.  */
   apply_iterator_to_rtx.  */
 
 
static unsigned int
static unsigned int
mode_attr_index (struct map_value **mode_maps, const char *string)
mode_attr_index (struct map_value **mode_maps, const char *string)
{
{
  char *p;
  char *p;
  struct map_value *mv;
  struct map_value *mv;
 
 
  /* Copy the attribute string into permanent storage, without the
  /* Copy the attribute string into permanent storage, without the
     angle brackets around it.  */
     angle brackets around it.  */
  obstack_grow0 (&string_obstack, string + 1, strlen (string) - 2);
  obstack_grow0 (&string_obstack, string + 1, strlen (string) - 2);
  p = XOBFINISH (&string_obstack, char *);
  p = XOBFINISH (&string_obstack, char *);
 
 
  mv = XNEW (struct map_value);
  mv = XNEW (struct map_value);
  mv->number = *mode_maps == 0 ? 0 : (*mode_maps)->number + 1;
  mv->number = *mode_maps == 0 ? 0 : (*mode_maps)->number + 1;
  mv->string = p;
  mv->string = p;
  mv->next = *mode_maps;
  mv->next = *mode_maps;
  *mode_maps = mv;
  *mode_maps = mv;
 
 
  /* We return a code which we can map back into this string: the
  /* We return a code which we can map back into this string: the
     number of machine modes + the number of mode iterators + the index
     number of machine modes + the number of mode iterators + the index
     we just used.  */
     we just used.  */
  return MAX_MACHINE_MODE + htab_elements (modes.iterators) + mv->number;
  return MAX_MACHINE_MODE + htab_elements (modes.iterators) + mv->number;
}
}
 
 
/* Apply MODE_MAPS to the top level of X, expanding cases where an
/* Apply MODE_MAPS to the top level of X, expanding cases where an
   attribute is used for a mode.  ITERATOR is the current iterator we are
   attribute is used for a mode.  ITERATOR is the current iterator we are
   expanding, and VALUE is the value to which we are expanding it.
   expanding, and VALUE is the value to which we are expanding it.
   This sets *UNKNOWN to true if we find a mode attribute which has not
   This sets *UNKNOWN to true if we find a mode attribute which has not
   yet been defined, and does not change it otherwise.  */
   yet been defined, and does not change it otherwise.  */
 
 
static void
static void
apply_mode_maps (rtx x, struct map_value *mode_maps, struct mapping *iterator,
apply_mode_maps (rtx x, struct map_value *mode_maps, struct mapping *iterator,
                 int value, const char **unknown)
                 int value, const char **unknown)
{
{
  unsigned int offset;
  unsigned int offset;
  int indx;
  int indx;
  struct map_value *pm;
  struct map_value *pm;
 
 
  offset = MAX_MACHINE_MODE + htab_elements (modes.iterators);
  offset = MAX_MACHINE_MODE + htab_elements (modes.iterators);
  if (GET_MODE (x) < offset)
  if (GET_MODE (x) < offset)
    return;
    return;
 
 
  indx = GET_MODE (x) - offset;
  indx = GET_MODE (x) - offset;
  for (pm = mode_maps; pm; pm = pm->next)
  for (pm = mode_maps; pm; pm = pm->next)
    {
    {
      if (pm->number == indx)
      if (pm->number == indx)
        {
        {
          struct map_value *v;
          struct map_value *v;
 
 
          v = map_attr_string (pm->string, iterator, value);
          v = map_attr_string (pm->string, iterator, value);
          if (v)
          if (v)
            PUT_MODE (x, (enum machine_mode) find_mode (v->string));
            PUT_MODE (x, (enum machine_mode) find_mode (v->string));
          else
          else
            *unknown = pm->string;
            *unknown = pm->string;
          return;
          return;
        }
        }
    }
    }
}
}
 
 
/* Given that ITERATOR is being expanded as VALUE, apply the appropriate
/* Given that ITERATOR is being expanded as VALUE, apply the appropriate
   string substitutions to STRING.  Return the new string if any changes
   string substitutions to STRING.  Return the new string if any changes
   were needed, otherwise return STRING itself.  */
   were needed, otherwise return STRING itself.  */
 
 
static const char *
static const char *
apply_iterator_to_string (const char *string, struct mapping *iterator, int value)
apply_iterator_to_string (const char *string, struct mapping *iterator, int value)
{
{
  char *base, *copy, *p, *start, *end;
  char *base, *copy, *p, *start, *end;
  struct map_value *v;
  struct map_value *v;
 
 
  if (string == 0)
  if (string == 0)
    return string;
    return string;
 
 
  base = p = copy = ASTRDUP (string);
  base = p = copy = ASTRDUP (string);
  while ((start = strchr (p, '<')) && (end = strchr (start, '>')))
  while ((start = strchr (p, '<')) && (end = strchr (start, '>')))
    {
    {
      p = start + 1;
      p = start + 1;
 
 
      *end = 0;
      *end = 0;
      v = map_attr_string (p, iterator, value);
      v = map_attr_string (p, iterator, value);
      *end = '>';
      *end = '>';
      if (v == 0)
      if (v == 0)
        continue;
        continue;
 
 
      /* Add everything between the last copied byte and the '<',
      /* Add everything between the last copied byte and the '<',
         then add in the attribute value.  */
         then add in the attribute value.  */
      obstack_grow (&string_obstack, base, start - base);
      obstack_grow (&string_obstack, base, start - base);
      obstack_grow (&string_obstack, v->string, strlen (v->string));
      obstack_grow (&string_obstack, v->string, strlen (v->string));
      base = end + 1;
      base = end + 1;
    }
    }
  if (base != copy)
  if (base != copy)
    {
    {
      obstack_grow (&string_obstack, base, strlen (base) + 1);
      obstack_grow (&string_obstack, base, strlen (base) + 1);
      copy = XOBFINISH (&string_obstack, char *);
      copy = XOBFINISH (&string_obstack, char *);
      copy_md_ptr_loc (copy, string);
      copy_md_ptr_loc (copy, string);
      return copy;
      return copy;
    }
    }
  return string;
  return string;
}
}
 
 
/* Return a copy of ORIGINAL in which all uses of ITERATOR have been
/* Return a copy of ORIGINAL in which all uses of ITERATOR have been
   replaced by VALUE.  MODE_MAPS holds information about attribute
   replaced by VALUE.  MODE_MAPS holds information about attribute
   strings used for modes.  This sets *UNKNOWN_MODE_ATTR to the value of
   strings used for modes.  This sets *UNKNOWN_MODE_ATTR to the value of
   an unknown mode attribute, and does not change it otherwise.  */
   an unknown mode attribute, and does not change it otherwise.  */
 
 
static rtx
static rtx
apply_iterator_to_rtx (rtx original, struct mapping *iterator, int value,
apply_iterator_to_rtx (rtx original, struct mapping *iterator, int value,
                       struct map_value *mode_maps,
                       struct map_value *mode_maps,
                       const char **unknown_mode_attr)
                       const char **unknown_mode_attr)
{
{
  struct iterator_group *group;
  struct iterator_group *group;
  const char *format_ptr;
  const char *format_ptr;
  int i, j;
  int i, j;
  rtx x;
  rtx x;
  enum rtx_code bellwether_code;
  enum rtx_code bellwether_code;
 
 
  if (original == 0)
  if (original == 0)
    return original;
    return original;
 
 
  /* Create a shallow copy of ORIGINAL.  */
  /* Create a shallow copy of ORIGINAL.  */
  bellwether_code = BELLWETHER_CODE (GET_CODE (original));
  bellwether_code = BELLWETHER_CODE (GET_CODE (original));
  x = rtx_alloc (bellwether_code);
  x = rtx_alloc (bellwether_code);
  memcpy (x, original, RTX_CODE_SIZE (bellwether_code));
  memcpy (x, original, RTX_CODE_SIZE (bellwether_code));
 
 
  /* Change the mode or code itself.  */
  /* Change the mode or code itself.  */
  group = iterator->group;
  group = iterator->group;
  if (group->uses_iterator_p (x, iterator->index + group->num_builtins))
  if (group->uses_iterator_p (x, iterator->index + group->num_builtins))
    group->apply_iterator (x, value);
    group->apply_iterator (x, value);
 
 
  if (mode_maps)
  if (mode_maps)
    apply_mode_maps (x, mode_maps, iterator, value, unknown_mode_attr);
    apply_mode_maps (x, mode_maps, iterator, value, unknown_mode_attr);
 
 
  /* Change each string and recursively change each rtx.  */
  /* Change each string and recursively change each rtx.  */
  format_ptr = GET_RTX_FORMAT (bellwether_code);
  format_ptr = GET_RTX_FORMAT (bellwether_code);
  for (i = 0; format_ptr[i] != 0; i++)
  for (i = 0; format_ptr[i] != 0; i++)
    switch (format_ptr[i])
    switch (format_ptr[i])
      {
      {
      case 'T':
      case 'T':
        XTMPL (x, i) = apply_iterator_to_string (XTMPL (x, i), iterator, value);
        XTMPL (x, i) = apply_iterator_to_string (XTMPL (x, i), iterator, value);
        break;
        break;
 
 
      case 'S':
      case 'S':
      case 's':
      case 's':
        XSTR (x, i) = apply_iterator_to_string (XSTR (x, i), iterator, value);
        XSTR (x, i) = apply_iterator_to_string (XSTR (x, i), iterator, value);
        break;
        break;
 
 
      case 'e':
      case 'e':
        XEXP (x, i) = apply_iterator_to_rtx (XEXP (x, i), iterator, value,
        XEXP (x, i) = apply_iterator_to_rtx (XEXP (x, i), iterator, value,
                                             mode_maps, unknown_mode_attr);
                                             mode_maps, unknown_mode_attr);
        break;
        break;
 
 
      case 'V':
      case 'V':
      case 'E':
      case 'E':
        if (XVEC (original, i))
        if (XVEC (original, i))
          {
          {
            XVEC (x, i) = rtvec_alloc (XVECLEN (original, i));
            XVEC (x, i) = rtvec_alloc (XVECLEN (original, i));
            for (j = 0; j < XVECLEN (x, i); j++)
            for (j = 0; j < XVECLEN (x, i); j++)
              XVECEXP (x, i, j) = apply_iterator_to_rtx (XVECEXP (original, i, j),
              XVECEXP (x, i, j) = apply_iterator_to_rtx (XVECEXP (original, i, j),
                                                         iterator, value, mode_maps,
                                                         iterator, value, mode_maps,
                                                         unknown_mode_attr);
                                                         unknown_mode_attr);
          }
          }
        break;
        break;
 
 
      default:
      default:
        break;
        break;
      }
      }
  return x;
  return x;
}
}
 
 
/* Return true if X (or some subexpression of X) uses iterator ITERATOR.  */
/* Return true if X (or some subexpression of X) uses iterator ITERATOR.  */
 
 
static bool
static bool
uses_iterator_p (rtx x, struct mapping *iterator)
uses_iterator_p (rtx x, struct mapping *iterator)
{
{
  struct iterator_group *group;
  struct iterator_group *group;
  const char *format_ptr;
  const char *format_ptr;
  int i, j;
  int i, j;
 
 
  if (x == 0)
  if (x == 0)
    return false;
    return false;
 
 
  group = iterator->group;
  group = iterator->group;
  if (group->uses_iterator_p (x, iterator->index + group->num_builtins))
  if (group->uses_iterator_p (x, iterator->index + group->num_builtins))
    return true;
    return true;
 
 
  format_ptr = GET_RTX_FORMAT (BELLWETHER_CODE (GET_CODE (x)));
  format_ptr = GET_RTX_FORMAT (BELLWETHER_CODE (GET_CODE (x)));
  for (i = 0; format_ptr[i] != 0; i++)
  for (i = 0; format_ptr[i] != 0; i++)
    switch (format_ptr[i])
    switch (format_ptr[i])
      {
      {
      case 'e':
      case 'e':
        if (uses_iterator_p (XEXP (x, i), iterator))
        if (uses_iterator_p (XEXP (x, i), iterator))
          return true;
          return true;
        break;
        break;
 
 
      case 'V':
      case 'V':
      case 'E':
      case 'E':
        if (XVEC (x, i))
        if (XVEC (x, i))
          for (j = 0; j < XVECLEN (x, i); j++)
          for (j = 0; j < XVECLEN (x, i); j++)
            if (uses_iterator_p (XVECEXP (x, i, j), iterator))
            if (uses_iterator_p (XVECEXP (x, i, j), iterator))
              return true;
              return true;
        break;
        break;
 
 
      default:
      default:
        break;
        break;
      }
      }
  return false;
  return false;
}
}
 
 
/* Return a condition that must satisfy both ORIGINAL and EXTRA.  If ORIGINAL
/* Return a condition that must satisfy both ORIGINAL and EXTRA.  If ORIGINAL
   has the form "&& ..." (as used in define_insn_and_splits), assume that
   has the form "&& ..." (as used in define_insn_and_splits), assume that
   EXTRA is already satisfied.  Empty strings are treated like "true".  */
   EXTRA is already satisfied.  Empty strings are treated like "true".  */
 
 
static const char *
static const char *
add_condition_to_string (const char *original, const char *extra)
add_condition_to_string (const char *original, const char *extra)
{
{
  if (original != 0 && original[0] == '&' && original[1] == '&')
  if (original != 0 && original[0] == '&' && original[1] == '&')
    return original;
    return original;
  return join_c_conditions (original, extra);
  return join_c_conditions (original, extra);
}
}
 
 
/* Like add_condition, but applied to all conditions in rtx X.  */
/* Like add_condition, but applied to all conditions in rtx X.  */
 
 
static void
static void
add_condition_to_rtx (rtx x, const char *extra)
add_condition_to_rtx (rtx x, const char *extra)
{
{
  switch (GET_CODE (x))
  switch (GET_CODE (x))
    {
    {
    case DEFINE_INSN:
    case DEFINE_INSN:
    case DEFINE_EXPAND:
    case DEFINE_EXPAND:
      XSTR (x, 2) = add_condition_to_string (XSTR (x, 2), extra);
      XSTR (x, 2) = add_condition_to_string (XSTR (x, 2), extra);
      break;
      break;
 
 
    case DEFINE_SPLIT:
    case DEFINE_SPLIT:
    case DEFINE_PEEPHOLE:
    case DEFINE_PEEPHOLE:
    case DEFINE_PEEPHOLE2:
    case DEFINE_PEEPHOLE2:
    case DEFINE_COND_EXEC:
    case DEFINE_COND_EXEC:
      XSTR (x, 1) = add_condition_to_string (XSTR (x, 1), extra);
      XSTR (x, 1) = add_condition_to_string (XSTR (x, 1), extra);
      break;
      break;
 
 
    case DEFINE_INSN_AND_SPLIT:
    case DEFINE_INSN_AND_SPLIT:
      XSTR (x, 2) = add_condition_to_string (XSTR (x, 2), extra);
      XSTR (x, 2) = add_condition_to_string (XSTR (x, 2), extra);
      XSTR (x, 4) = add_condition_to_string (XSTR (x, 4), extra);
      XSTR (x, 4) = add_condition_to_string (XSTR (x, 4), extra);
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
}
}
 
 
/* A htab_traverse callback.  Search the EXPR_LIST given by DATA
/* A htab_traverse callback.  Search the EXPR_LIST given by DATA
   for rtxes that use the iterator in *SLOT.  Replace each such rtx
   for rtxes that use the iterator in *SLOT.  Replace each such rtx
   with a list of expansions.  */
   with a list of expansions.  */
 
 
static int
static int
apply_iterator_traverse (void **slot, void *data)
apply_iterator_traverse (void **slot, void *data)
{
{
  struct iterator_traverse_data *mtd = (struct iterator_traverse_data *) data;
  struct iterator_traverse_data *mtd = (struct iterator_traverse_data *) data;
  struct mapping *iterator;
  struct mapping *iterator;
  struct map_value *v;
  struct map_value *v;
  rtx elem, new_elem, original, x;
  rtx elem, new_elem, original, x;
 
 
  iterator = (struct mapping *) *slot;
  iterator = (struct mapping *) *slot;
  for (elem = mtd->queue; elem != 0; elem = XEXP (elem, 1))
  for (elem = mtd->queue; elem != 0; elem = XEXP (elem, 1))
    if (uses_iterator_p (XEXP (elem, 0), iterator))
    if (uses_iterator_p (XEXP (elem, 0), iterator))
      {
      {
        /* For each iterator we expand, we set UNKNOWN_MODE_ATTR to NULL.
        /* For each iterator we expand, we set UNKNOWN_MODE_ATTR to NULL.
           If apply_iterator_rtx finds an unknown attribute for a mode,
           If apply_iterator_rtx finds an unknown attribute for a mode,
           it will set it to the attribute.  We want to know whether
           it will set it to the attribute.  We want to know whether
           the attribute is unknown after we have expanded all
           the attribute is unknown after we have expanded all
           possible iterators, so setting it to NULL here gives us the
           possible iterators, so setting it to NULL here gives us the
           right result when the hash table traversal is complete.  */
           right result when the hash table traversal is complete.  */
        mtd->unknown_mode_attr = NULL;
        mtd->unknown_mode_attr = NULL;
 
 
        original = XEXP (elem, 0);
        original = XEXP (elem, 0);
        for (v = iterator->values; v != 0; v = v->next)
        for (v = iterator->values; v != 0; v = v->next)
          {
          {
            x = apply_iterator_to_rtx (original, iterator, v->number,
            x = apply_iterator_to_rtx (original, iterator, v->number,
                                       mtd->mode_maps,
                                       mtd->mode_maps,
                                       &mtd->unknown_mode_attr);
                                       &mtd->unknown_mode_attr);
            add_condition_to_rtx (x, v->string);
            add_condition_to_rtx (x, v->string);
            if (v != iterator->values)
            if (v != iterator->values)
              {
              {
                /* Insert a new EXPR_LIST node after ELEM and put the
                /* Insert a new EXPR_LIST node after ELEM and put the
                   new expansion there.  */
                   new expansion there.  */
                new_elem = rtx_alloc (EXPR_LIST);
                new_elem = rtx_alloc (EXPR_LIST);
                XEXP (new_elem, 1) = XEXP (elem, 1);
                XEXP (new_elem, 1) = XEXP (elem, 1);
                XEXP (elem, 1) = new_elem;
                XEXP (elem, 1) = new_elem;
                elem = new_elem;
                elem = new_elem;
              }
              }
            XEXP (elem, 0) = x;
            XEXP (elem, 0) = x;
          }
          }
    }
    }
  return 1;
  return 1;
}
}
 
 
/* Add a new "mapping" structure to hashtable TABLE.  NAME is the name
/* Add a new "mapping" structure to hashtable TABLE.  NAME is the name
   of the mapping and GROUP is the group to which it belongs.  */
   of the mapping and GROUP is the group to which it belongs.  */
 
 
static struct mapping *
static struct mapping *
add_mapping (struct iterator_group *group, htab_t table, const char *name)
add_mapping (struct iterator_group *group, htab_t table, const char *name)
{
{
  struct mapping *m;
  struct mapping *m;
  void **slot;
  void **slot;
 
 
  m = XNEW (struct mapping);
  m = XNEW (struct mapping);
  m->name = xstrdup (name);
  m->name = xstrdup (name);
  m->group = group;
  m->group = group;
  m->index = htab_elements (table);
  m->index = htab_elements (table);
  m->values = 0;
  m->values = 0;
 
 
  slot = htab_find_slot (table, m, INSERT);
  slot = htab_find_slot (table, m, INSERT);
  if (*slot != 0)
  if (*slot != 0)
    fatal_with_file_and_line ("`%s' already defined", name);
    fatal_with_file_and_line ("`%s' already defined", name);
 
 
  *slot = m;
  *slot = m;
  return m;
  return m;
}
}
 
 
/* Add the pair (NUMBER, STRING) to a list of map_value structures.
/* Add the pair (NUMBER, STRING) to a list of map_value structures.
   END_PTR points to the current null terminator for the list; return
   END_PTR points to the current null terminator for the list; return
   a pointer the new null terminator.  */
   a pointer the new null terminator.  */
 
 
static struct map_value **
static struct map_value **
add_map_value (struct map_value **end_ptr, int number, const char *string)
add_map_value (struct map_value **end_ptr, int number, const char *string)
{
{
  struct map_value *value;
  struct map_value *value;
 
 
  value = XNEW (struct map_value);
  value = XNEW (struct map_value);
  value->next = 0;
  value->next = 0;
  value->number = number;
  value->number = number;
  value->string = string;
  value->string = string;
 
 
  *end_ptr = value;
  *end_ptr = value;
  return &value->next;
  return &value->next;
}
}
 
 
/* Do one-time initialization of the mode and code attributes.  */
/* Do one-time initialization of the mode and code attributes.  */
 
 
static void
static void
initialize_iterators (void)
initialize_iterators (void)
{
{
  struct mapping *lower, *upper;
  struct mapping *lower, *upper;
  struct map_value **lower_ptr, **upper_ptr;
  struct map_value **lower_ptr, **upper_ptr;
  char *copy, *p;
  char *copy, *p;
  int i;
  int i;
 
 
  modes.attrs = htab_create (13, leading_string_hash, leading_string_eq_p, 0);
  modes.attrs = htab_create (13, leading_string_hash, leading_string_eq_p, 0);
  modes.iterators = htab_create (13, leading_string_hash,
  modes.iterators = htab_create (13, leading_string_hash,
                                 leading_string_eq_p, 0);
                                 leading_string_eq_p, 0);
  modes.num_builtins = MAX_MACHINE_MODE;
  modes.num_builtins = MAX_MACHINE_MODE;
  modes.find_builtin = find_mode;
  modes.find_builtin = find_mode;
  modes.uses_iterator_p = uses_mode_iterator_p;
  modes.uses_iterator_p = uses_mode_iterator_p;
  modes.apply_iterator = apply_mode_iterator;
  modes.apply_iterator = apply_mode_iterator;
 
 
  codes.attrs = htab_create (13, leading_string_hash, leading_string_eq_p, 0);
  codes.attrs = htab_create (13, leading_string_hash, leading_string_eq_p, 0);
  codes.iterators = htab_create (13, leading_string_hash,
  codes.iterators = htab_create (13, leading_string_hash,
                                 leading_string_eq_p, 0);
                                 leading_string_eq_p, 0);
  codes.num_builtins = NUM_RTX_CODE;
  codes.num_builtins = NUM_RTX_CODE;
  codes.find_builtin = find_code;
  codes.find_builtin = find_code;
  codes.uses_iterator_p = uses_code_iterator_p;
  codes.uses_iterator_p = uses_code_iterator_p;
  codes.apply_iterator = apply_code_iterator;
  codes.apply_iterator = apply_code_iterator;
 
 
  lower = add_mapping (&modes, modes.attrs, "mode");
  lower = add_mapping (&modes, modes.attrs, "mode");
  upper = add_mapping (&modes, modes.attrs, "MODE");
  upper = add_mapping (&modes, modes.attrs, "MODE");
  lower_ptr = &lower->values;
  lower_ptr = &lower->values;
  upper_ptr = &upper->values;
  upper_ptr = &upper->values;
  for (i = 0; i < MAX_MACHINE_MODE; i++)
  for (i = 0; i < MAX_MACHINE_MODE; i++)
    {
    {
      copy = xstrdup (GET_MODE_NAME (i));
      copy = xstrdup (GET_MODE_NAME (i));
      for (p = copy; *p != 0; p++)
      for (p = copy; *p != 0; p++)
        *p = TOLOWER (*p);
        *p = TOLOWER (*p);
 
 
      upper_ptr = add_map_value (upper_ptr, i, GET_MODE_NAME (i));
      upper_ptr = add_map_value (upper_ptr, i, GET_MODE_NAME (i));
      lower_ptr = add_map_value (lower_ptr, i, copy);
      lower_ptr = add_map_value (lower_ptr, i, copy);
    }
    }
 
 
  lower = add_mapping (&codes, codes.attrs, "code");
  lower = add_mapping (&codes, codes.attrs, "code");
  upper = add_mapping (&codes, codes.attrs, "CODE");
  upper = add_mapping (&codes, codes.attrs, "CODE");
  lower_ptr = &lower->values;
  lower_ptr = &lower->values;
  upper_ptr = &upper->values;
  upper_ptr = &upper->values;
  for (i = 0; i < NUM_RTX_CODE; i++)
  for (i = 0; i < NUM_RTX_CODE; i++)
    {
    {
      copy = xstrdup (GET_RTX_NAME (i));
      copy = xstrdup (GET_RTX_NAME (i));
      for (p = copy; *p != 0; p++)
      for (p = copy; *p != 0; p++)
        *p = TOUPPER (*p);
        *p = TOUPPER (*p);
 
 
      lower_ptr = add_map_value (lower_ptr, i, GET_RTX_NAME (i));
      lower_ptr = add_map_value (lower_ptr, i, GET_RTX_NAME (i));
      upper_ptr = add_map_value (upper_ptr, i, copy);
      upper_ptr = add_map_value (upper_ptr, i, copy);
    }
    }
}
}


/* Provide a version of a function to read a long long if the system does
/* Provide a version of a function to read a long long if the system does
   not provide one.  */
   not provide one.  */
#if HOST_BITS_PER_WIDE_INT > HOST_BITS_PER_LONG && !defined(HAVE_ATOLL) && !defined(HAVE_ATOQ)
#if HOST_BITS_PER_WIDE_INT > HOST_BITS_PER_LONG && !defined(HAVE_ATOLL) && !defined(HAVE_ATOQ)
HOST_WIDE_INT atoll (const char *);
HOST_WIDE_INT atoll (const char *);
 
 
HOST_WIDE_INT
HOST_WIDE_INT
atoll (const char *p)
atoll (const char *p)
{
{
  int neg = 0;
  int neg = 0;
  HOST_WIDE_INT tmp_wide;
  HOST_WIDE_INT tmp_wide;
 
 
  while (ISSPACE (*p))
  while (ISSPACE (*p))
    p++;
    p++;
  if (*p == '-')
  if (*p == '-')
    neg = 1, p++;
    neg = 1, p++;
  else if (*p == '+')
  else if (*p == '+')
    p++;
    p++;
 
 
  tmp_wide = 0;
  tmp_wide = 0;
  while (ISDIGIT (*p))
  while (ISDIGIT (*p))
    {
    {
      HOST_WIDE_INT new_wide = tmp_wide*10 + (*p - '0');
      HOST_WIDE_INT new_wide = tmp_wide*10 + (*p - '0');
      if (new_wide < tmp_wide)
      if (new_wide < tmp_wide)
        {
        {
          /* Return INT_MAX equiv on overflow.  */
          /* Return INT_MAX equiv on overflow.  */
          tmp_wide = (~(unsigned HOST_WIDE_INT) 0) >> 1;
          tmp_wide = (~(unsigned HOST_WIDE_INT) 0) >> 1;
          break;
          break;
        }
        }
      tmp_wide = new_wide;
      tmp_wide = new_wide;
      p++;
      p++;
    }
    }
 
 
  if (neg)
  if (neg)
    tmp_wide = -tmp_wide;
    tmp_wide = -tmp_wide;
  return tmp_wide;
  return tmp_wide;
}
}
#endif
#endif


/* Process a define_conditions directive, starting with the optional
/* Process a define_conditions directive, starting with the optional
   space after the "define_conditions".  The directive looks like this:
   space after the "define_conditions".  The directive looks like this:
 
 
     (define_conditions [
     (define_conditions [
        (number "string")
        (number "string")
        (number "string")
        (number "string")
        ...
        ...
     ])
     ])
 
 
   It's not intended to appear in machine descriptions.  It is
   It's not intended to appear in machine descriptions.  It is
   generated by (the program generated by) genconditions.c, and
   generated by (the program generated by) genconditions.c, and
   slipped in at the beginning of the sequence of MD files read by
   slipped in at the beginning of the sequence of MD files read by
   most of the other generators.  */
   most of the other generators.  */
static void
static void
read_conditions (void)
read_conditions (void)
{
{
  int c;
  int c;
 
 
  c = read_skip_spaces ();
  c = read_skip_spaces ();
  if (c != '[')
  if (c != '[')
    fatal_expected_char ('[', c);
    fatal_expected_char ('[', c);
 
 
  while ( (c = read_skip_spaces ()) != ']')
  while ( (c = read_skip_spaces ()) != ']')
    {
    {
      struct md_name name;
      struct md_name name;
      char *expr;
      char *expr;
      int value;
      int value;
 
 
      if (c != '(')
      if (c != '(')
        fatal_expected_char ('(', c);
        fatal_expected_char ('(', c);
 
 
      read_name (&name);
      read_name (&name);
      validate_const_int (name.string);
      validate_const_int (name.string);
      value = atoi (name.string);
      value = atoi (name.string);
 
 
      c = read_skip_spaces ();
      c = read_skip_spaces ();
      if (c != '"')
      if (c != '"')
        fatal_expected_char ('"', c);
        fatal_expected_char ('"', c);
      expr = read_quoted_string ();
      expr = read_quoted_string ();
 
 
      c = read_skip_spaces ();
      c = read_skip_spaces ();
      if (c != ')')
      if (c != ')')
        fatal_expected_char (')', c);
        fatal_expected_char (')', c);
 
 
      add_c_test (expr, value);
      add_c_test (expr, value);
    }
    }
}
}
 
 
static void
static void
validate_const_int (const char *string)
validate_const_int (const char *string)
{
{
  const char *cp;
  const char *cp;
  int valid = 1;
  int valid = 1;
 
 
  cp = string;
  cp = string;
  while (*cp && ISSPACE (*cp))
  while (*cp && ISSPACE (*cp))
    cp++;
    cp++;
  if (*cp == '-' || *cp == '+')
  if (*cp == '-' || *cp == '+')
    cp++;
    cp++;
  if (*cp == 0)
  if (*cp == 0)
    valid = 0;
    valid = 0;
  for (; *cp; cp++)
  for (; *cp; cp++)
    if (! ISDIGIT (*cp))
    if (! ISDIGIT (*cp))
      valid = 0;
      valid = 0;
  if (!valid)
  if (!valid)
    fatal_with_file_and_line ("invalid decimal constant \"%s\"\n", string);
    fatal_with_file_and_line ("invalid decimal constant \"%s\"\n", string);
}
}
 
 
/* Search GROUP for a mode or code called NAME and return its numerical
/* Search GROUP for a mode or code called NAME and return its numerical
   identifier.  */
   identifier.  */
 
 
static int
static int
find_iterator (struct iterator_group *group, const char *name)
find_iterator (struct iterator_group *group, const char *name)
{
{
  struct mapping *m;
  struct mapping *m;
 
 
  m = (struct mapping *) htab_find (group->iterators, &name);
  m = (struct mapping *) htab_find (group->iterators, &name);
  if (m != 0)
  if (m != 0)
    return m->index + group->num_builtins;
    return m->index + group->num_builtins;
  return group->find_builtin (name);
  return group->find_builtin (name);
}
}
 
 
/* Finish reading a declaration of the form:
/* Finish reading a declaration of the form:
 
 
       (define... <name> [<value1> ... <valuen>])
       (define... <name> [<value1> ... <valuen>])
 
 
   from the MD file, where each <valuei> is either a bare symbol name or a
   from the MD file, where each <valuei> is either a bare symbol name or a
   "(<name> <string>)" pair.  The "(define..." part has already been read.
   "(<name> <string>)" pair.  The "(define..." part has already been read.
 
 
   Represent the declaration as a "mapping" structure; add it to TABLE
   Represent the declaration as a "mapping" structure; add it to TABLE
   (which belongs to GROUP) and return it.  */
   (which belongs to GROUP) and return it.  */
 
 
static struct mapping *
static struct mapping *
read_mapping (struct iterator_group *group, htab_t table)
read_mapping (struct iterator_group *group, htab_t table)
{
{
  struct md_name name;
  struct md_name name;
  struct mapping *m;
  struct mapping *m;
  struct map_value **end_ptr;
  struct map_value **end_ptr;
  const char *string;
  const char *string;
  int number, c;
  int number, c;
 
 
  /* Read the mapping name and create a structure for it.  */
  /* Read the mapping name and create a structure for it.  */
  read_name (&name);
  read_name (&name);
  m = add_mapping (group, table, name.string);
  m = add_mapping (group, table, name.string);
 
 
  c = read_skip_spaces ();
  c = read_skip_spaces ();
  if (c != '[')
  if (c != '[')
    fatal_expected_char ('[', c);
    fatal_expected_char ('[', c);
 
 
  /* Read each value.  */
  /* Read each value.  */
  end_ptr = &m->values;
  end_ptr = &m->values;
  c = read_skip_spaces ();
  c = read_skip_spaces ();
  do
  do
    {
    {
      if (c != '(')
      if (c != '(')
        {
        {
          /* A bare symbol name that is implicitly paired to an
          /* A bare symbol name that is implicitly paired to an
             empty string.  */
             empty string.  */
          unread_char (c);
          unread_char (c);
          read_name (&name);
          read_name (&name);
          string = "";
          string = "";
        }
        }
      else
      else
        {
        {
          /* A "(name string)" pair.  */
          /* A "(name string)" pair.  */
          read_name (&name);
          read_name (&name);
          string = read_string (false);
          string = read_string (false);
          c = read_skip_spaces ();
          c = read_skip_spaces ();
          if (c != ')')
          if (c != ')')
            fatal_expected_char (')', c);
            fatal_expected_char (')', c);
        }
        }
      number = group->find_builtin (name.string);
      number = group->find_builtin (name.string);
      end_ptr = add_map_value (end_ptr, number, string);
      end_ptr = add_map_value (end_ptr, number, string);
      c = read_skip_spaces ();
      c = read_skip_spaces ();
    }
    }
  while (c != ']');
  while (c != ']');
 
 
  return m;
  return m;
}
}
 
 
/* Check newly-created code iterator ITERATOR to see whether every code has the
/* Check newly-created code iterator ITERATOR to see whether every code has the
   same format.  Initialize the iterator's entry in bellwether_codes.  */
   same format.  Initialize the iterator's entry in bellwether_codes.  */
 
 
static void
static void
check_code_iterator (struct mapping *iterator)
check_code_iterator (struct mapping *iterator)
{
{
  struct map_value *v;
  struct map_value *v;
  enum rtx_code bellwether;
  enum rtx_code bellwether;
 
 
  bellwether = (enum rtx_code) iterator->values->number;
  bellwether = (enum rtx_code) iterator->values->number;
  for (v = iterator->values->next; v != 0; v = v->next)
  for (v = iterator->values->next; v != 0; v = v->next)
    if (strcmp (GET_RTX_FORMAT (bellwether), GET_RTX_FORMAT (v->number)) != 0)
    if (strcmp (GET_RTX_FORMAT (bellwether), GET_RTX_FORMAT (v->number)) != 0)
      fatal_with_file_and_line ("code iterator `%s' combines "
      fatal_with_file_and_line ("code iterator `%s' combines "
                                "different rtx formats", iterator->name);
                                "different rtx formats", iterator->name);
 
 
  bellwether_codes = XRESIZEVEC (enum rtx_code, bellwether_codes,
  bellwether_codes = XRESIZEVEC (enum rtx_code, bellwether_codes,
                                 iterator->index + 1);
                                 iterator->index + 1);
  bellwether_codes[iterator->index] = bellwether;
  bellwether_codes[iterator->index] = bellwether;
}
}
 
 
/* Read an rtx-related declaration from the MD file, given that it
/* Read an rtx-related declaration from the MD file, given that it
   starts with directive name RTX_NAME.  Return true if it expands to
   starts with directive name RTX_NAME.  Return true if it expands to
   one or more rtxes (as defined by rtx.def).  When returning true,
   one or more rtxes (as defined by rtx.def).  When returning true,
   store the list of rtxes as an EXPR_LIST in *X.  */
   store the list of rtxes as an EXPR_LIST in *X.  */
 
 
bool
bool
read_rtx (const char *rtx_name, rtx *x)
read_rtx (const char *rtx_name, rtx *x)
{
{
  static rtx queue_head;
  static rtx queue_head;
  struct map_value *mode_maps;
  struct map_value *mode_maps;
  struct iterator_traverse_data mtd;
  struct iterator_traverse_data mtd;
 
 
  /* Do one-time initialization.  */
  /* Do one-time initialization.  */
  if (queue_head == 0)
  if (queue_head == 0)
    {
    {
      initialize_iterators ();
      initialize_iterators ();
      queue_head = rtx_alloc (EXPR_LIST);
      queue_head = rtx_alloc (EXPR_LIST);
    }
    }
 
 
  /* Handle various rtx-related declarations that aren't themselves
  /* Handle various rtx-related declarations that aren't themselves
     encoded as rtxes.  */
     encoded as rtxes.  */
  if (strcmp (rtx_name, "define_conditions") == 0)
  if (strcmp (rtx_name, "define_conditions") == 0)
    {
    {
      read_conditions ();
      read_conditions ();
      return false;
      return false;
    }
    }
  if (strcmp (rtx_name, "define_mode_attr") == 0)
  if (strcmp (rtx_name, "define_mode_attr") == 0)
    {
    {
      read_mapping (&modes, modes.attrs);
      read_mapping (&modes, modes.attrs);
      return false;
      return false;
    }
    }
  if (strcmp (rtx_name, "define_mode_iterator") == 0)
  if (strcmp (rtx_name, "define_mode_iterator") == 0)
    {
    {
      read_mapping (&modes, modes.iterators);
      read_mapping (&modes, modes.iterators);
      return false;
      return false;
    }
    }
  if (strcmp (rtx_name, "define_code_attr") == 0)
  if (strcmp (rtx_name, "define_code_attr") == 0)
    {
    {
      read_mapping (&codes, codes.attrs);
      read_mapping (&codes, codes.attrs);
      return false;
      return false;
    }
    }
  if (strcmp (rtx_name, "define_code_iterator") == 0)
  if (strcmp (rtx_name, "define_code_iterator") == 0)
    {
    {
      check_code_iterator (read_mapping (&codes, codes.iterators));
      check_code_iterator (read_mapping (&codes, codes.iterators));
      return false;
      return false;
    }
    }
 
 
  mode_maps = 0;
  mode_maps = 0;
  XEXP (queue_head, 0) = read_rtx_code (rtx_name, &mode_maps);
  XEXP (queue_head, 0) = read_rtx_code (rtx_name, &mode_maps);
  XEXP (queue_head, 1) = 0;
  XEXP (queue_head, 1) = 0;
 
 
  mtd.queue = queue_head;
  mtd.queue = queue_head;
  mtd.mode_maps = mode_maps;
  mtd.mode_maps = mode_maps;
  mtd.unknown_mode_attr = mode_maps ? mode_maps->string : NULL;
  mtd.unknown_mode_attr = mode_maps ? mode_maps->string : NULL;
  htab_traverse (modes.iterators, apply_iterator_traverse, &mtd);
  htab_traverse (modes.iterators, apply_iterator_traverse, &mtd);
  htab_traverse (codes.iterators, apply_iterator_traverse, &mtd);
  htab_traverse (codes.iterators, apply_iterator_traverse, &mtd);
  if (mtd.unknown_mode_attr)
  if (mtd.unknown_mode_attr)
    fatal_with_file_and_line ("undefined attribute '%s' used for mode",
    fatal_with_file_and_line ("undefined attribute '%s' used for mode",
                              mtd.unknown_mode_attr);
                              mtd.unknown_mode_attr);
 
 
  *x = queue_head;
  *x = queue_head;
  return true;
  return true;
}
}
 
 
/* Subroutine of read_rtx and read_nested_rtx.  CODE_NAME is the name of
/* Subroutine of read_rtx and read_nested_rtx.  CODE_NAME is the name of
   either an rtx code or a code iterator.  Parse the rest of the rtx and
   either an rtx code or a code iterator.  Parse the rest of the rtx and
   return it.  MODE_MAPS is as for iterator_traverse_data.  */
   return it.  MODE_MAPS is as for iterator_traverse_data.  */
 
 
static rtx
static rtx
read_rtx_code (const char *code_name, struct map_value **mode_maps)
read_rtx_code (const char *code_name, struct map_value **mode_maps)
{
{
  int i;
  int i;
  RTX_CODE real_code, bellwether_code;
  RTX_CODE real_code, bellwether_code;
  const char *format_ptr;
  const char *format_ptr;
  struct md_name name;
  struct md_name name;
  rtx return_rtx;
  rtx return_rtx;
  int c;
  int c;
  int tmp_int;
  int tmp_int;
  HOST_WIDE_INT tmp_wide;
  HOST_WIDE_INT tmp_wide;
 
 
  /* Linked list structure for making RTXs: */
  /* Linked list structure for making RTXs: */
  struct rtx_list
  struct rtx_list
    {
    {
      struct rtx_list *next;
      struct rtx_list *next;
      rtx value;                /* Value of this node.  */
      rtx value;                /* Value of this node.  */
    };
    };
 
 
  real_code = (enum rtx_code) find_iterator (&codes, code_name);
  real_code = (enum rtx_code) find_iterator (&codes, code_name);
  bellwether_code = BELLWETHER_CODE (real_code);
  bellwether_code = BELLWETHER_CODE (real_code);
 
 
  /* If we end up with an insn expression then we free this space below.  */
  /* If we end up with an insn expression then we free this space below.  */
  return_rtx = rtx_alloc (bellwether_code);
  return_rtx = rtx_alloc (bellwether_code);
  format_ptr = GET_RTX_FORMAT (bellwether_code);
  format_ptr = GET_RTX_FORMAT (bellwether_code);
  PUT_CODE (return_rtx, real_code);
  PUT_CODE (return_rtx, real_code);
 
 
  /* If what follows is `: mode ', read it and
  /* If what follows is `: mode ', read it and
     store the mode in the rtx.  */
     store the mode in the rtx.  */
 
 
  i = read_skip_spaces ();
  i = read_skip_spaces ();
  if (i == ':')
  if (i == ':')
    {
    {
      unsigned int mode;
      unsigned int mode;
 
 
      read_name (&name);
      read_name (&name);
      if (name.string[0] != '<' || name.string[strlen (name.string) - 1] != '>')
      if (name.string[0] != '<' || name.string[strlen (name.string) - 1] != '>')
        mode = find_iterator (&modes, name.string);
        mode = find_iterator (&modes, name.string);
      else
      else
        mode = mode_attr_index (mode_maps, name.string);
        mode = mode_attr_index (mode_maps, name.string);
      PUT_MODE (return_rtx, (enum machine_mode) mode);
      PUT_MODE (return_rtx, (enum machine_mode) mode);
      if (GET_MODE (return_rtx) != mode)
      if (GET_MODE (return_rtx) != mode)
        fatal_with_file_and_line ("mode too large");
        fatal_with_file_and_line ("mode too large");
    }
    }
  else
  else
    unread_char (i);
    unread_char (i);
 
 
  for (i = 0; format_ptr[i] != 0; i++)
  for (i = 0; format_ptr[i] != 0; i++)
    switch (format_ptr[i])
    switch (format_ptr[i])
      {
      {
        /* 0 means a field for internal use only.
        /* 0 means a field for internal use only.
           Don't expect it to be present in the input.  */
           Don't expect it to be present in the input.  */
      case '0':
      case '0':
        break;
        break;
 
 
      case 'e':
      case 'e':
      case 'u':
      case 'u':
        XEXP (return_rtx, i) = read_nested_rtx (mode_maps);
        XEXP (return_rtx, i) = read_nested_rtx (mode_maps);
        break;
        break;
 
 
      case 'V':
      case 'V':
        /* 'V' is an optional vector: if a closeparen follows,
        /* 'V' is an optional vector: if a closeparen follows,
           just store NULL for this element.  */
           just store NULL for this element.  */
        c = read_skip_spaces ();
        c = read_skip_spaces ();
        unread_char (c);
        unread_char (c);
        if (c == ')')
        if (c == ')')
          {
          {
            XVEC (return_rtx, i) = 0;
            XVEC (return_rtx, i) = 0;
            break;
            break;
          }
          }
        /* Now process the vector.  */
        /* Now process the vector.  */
 
 
      case 'E':
      case 'E':
        {
        {
          /* Obstack to store scratch vector in.  */
          /* Obstack to store scratch vector in.  */
          struct obstack vector_stack;
          struct obstack vector_stack;
          int list_counter = 0;
          int list_counter = 0;
          rtvec return_vec = NULL_RTVEC;
          rtvec return_vec = NULL_RTVEC;
 
 
          c = read_skip_spaces ();
          c = read_skip_spaces ();
          if (c != '[')
          if (c != '[')
            fatal_expected_char ('[', c);
            fatal_expected_char ('[', c);
 
 
          /* Add expressions to a list, while keeping a count.  */
          /* Add expressions to a list, while keeping a count.  */
          obstack_init (&vector_stack);
          obstack_init (&vector_stack);
          while ((c = read_skip_spaces ()) && c != ']')
          while ((c = read_skip_spaces ()) && c != ']')
            {
            {
              if (c == EOF)
              if (c == EOF)
                fatal_expected_char (']', c);
                fatal_expected_char (']', c);
              unread_char (c);
              unread_char (c);
              list_counter++;
              list_counter++;
              obstack_ptr_grow (&vector_stack, read_nested_rtx (mode_maps));
              obstack_ptr_grow (&vector_stack, read_nested_rtx (mode_maps));
            }
            }
          if (list_counter > 0)
          if (list_counter > 0)
            {
            {
              return_vec = rtvec_alloc (list_counter);
              return_vec = rtvec_alloc (list_counter);
              memcpy (&return_vec->elem[0], obstack_finish (&vector_stack),
              memcpy (&return_vec->elem[0], obstack_finish (&vector_stack),
                      list_counter * sizeof (rtx));
                      list_counter * sizeof (rtx));
            }
            }
          else if (format_ptr[i] == 'E')
          else if (format_ptr[i] == 'E')
            fatal_with_file_and_line ("vector must have at least one element");
            fatal_with_file_and_line ("vector must have at least one element");
          XVEC (return_rtx, i) = return_vec;
          XVEC (return_rtx, i) = return_vec;
          obstack_free (&vector_stack, NULL);
          obstack_free (&vector_stack, NULL);
          /* close bracket gotten */
          /* close bracket gotten */
        }
        }
        break;
        break;
 
 
      case 'S':
      case 'S':
      case 'T':
      case 'T':
      case 's':
      case 's':
        {
        {
          char *stringbuf;
          char *stringbuf;
          int star_if_braced;
          int star_if_braced;
 
 
          c = read_skip_spaces ();
          c = read_skip_spaces ();
          unread_char (c);
          unread_char (c);
          if (c == ')')
          if (c == ')')
            {
            {
              /* 'S' fields are optional and should be NULL if no string
              /* 'S' fields are optional and should be NULL if no string
                 was given.  Also allow normal 's' and 'T' strings to be
                 was given.  Also allow normal 's' and 'T' strings to be
                 omitted, treating them in the same way as empty strings.  */
                 omitted, treating them in the same way as empty strings.  */
              XSTR (return_rtx, i) = (format_ptr[i] == 'S' ? NULL : "");
              XSTR (return_rtx, i) = (format_ptr[i] == 'S' ? NULL : "");
              break;
              break;
            }
            }
 
 
          /* The output template slot of a DEFINE_INSN,
          /* The output template slot of a DEFINE_INSN,
             DEFINE_INSN_AND_SPLIT, or DEFINE_PEEPHOLE automatically
             DEFINE_INSN_AND_SPLIT, or DEFINE_PEEPHOLE automatically
             gets a star inserted as its first character, if it is
             gets a star inserted as its first character, if it is
             written with a brace block instead of a string constant.  */
             written with a brace block instead of a string constant.  */
          star_if_braced = (format_ptr[i] == 'T');
          star_if_braced = (format_ptr[i] == 'T');
 
 
          stringbuf = read_string (star_if_braced);
          stringbuf = read_string (star_if_braced);
 
 
          /* For insn patterns, we want to provide a default name
          /* For insn patterns, we want to provide a default name
             based on the file and line, like "*foo.md:12", if the
             based on the file and line, like "*foo.md:12", if the
             given name is blank.  These are only for define_insn and
             given name is blank.  These are only for define_insn and
             define_insn_and_split, to aid debugging.  */
             define_insn_and_split, to aid debugging.  */
          if (*stringbuf == '\0'
          if (*stringbuf == '\0'
              && i == 0
              && i == 0
              && (GET_CODE (return_rtx) == DEFINE_INSN
              && (GET_CODE (return_rtx) == DEFINE_INSN
                  || GET_CODE (return_rtx) == DEFINE_INSN_AND_SPLIT))
                  || GET_CODE (return_rtx) == DEFINE_INSN_AND_SPLIT))
            {
            {
              char line_name[20];
              char line_name[20];
              const char *fn = (read_md_filename ? read_md_filename : "rtx");
              const char *fn = (read_md_filename ? read_md_filename : "rtx");
              const char *slash;
              const char *slash;
              for (slash = fn; *slash; slash ++)
              for (slash = fn; *slash; slash ++)
                if (*slash == '/' || *slash == '\\' || *slash == ':')
                if (*slash == '/' || *slash == '\\' || *slash == ':')
                  fn = slash + 1;
                  fn = slash + 1;
              obstack_1grow (&string_obstack, '*');
              obstack_1grow (&string_obstack, '*');
              obstack_grow (&string_obstack, fn, strlen (fn));
              obstack_grow (&string_obstack, fn, strlen (fn));
              sprintf (line_name, ":%d", read_md_lineno);
              sprintf (line_name, ":%d", read_md_lineno);
              obstack_grow (&string_obstack, line_name, strlen (line_name)+1);
              obstack_grow (&string_obstack, line_name, strlen (line_name)+1);
              stringbuf = XOBFINISH (&string_obstack, char *);
              stringbuf = XOBFINISH (&string_obstack, char *);
            }
            }
 
 
          if (star_if_braced)
          if (star_if_braced)
            XTMPL (return_rtx, i) = stringbuf;
            XTMPL (return_rtx, i) = stringbuf;
          else
          else
            XSTR (return_rtx, i) = stringbuf;
            XSTR (return_rtx, i) = stringbuf;
        }
        }
        break;
        break;
 
 
      case 'w':
      case 'w':
        read_name (&name);
        read_name (&name);
        validate_const_int (name.string);
        validate_const_int (name.string);
#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
        tmp_wide = atoi (name.string);
        tmp_wide = atoi (name.string);
#else
#else
#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
        tmp_wide = atol (name.string);
        tmp_wide = atol (name.string);
#else
#else
        /* Prefer atoll over atoq, since the former is in the ISO C99 standard.
        /* Prefer atoll over atoq, since the former is in the ISO C99 standard.
           But prefer not to use our hand-rolled function above either.  */
           But prefer not to use our hand-rolled function above either.  */
#if defined(HAVE_ATOLL) || !defined(HAVE_ATOQ)
#if defined(HAVE_ATOLL) || !defined(HAVE_ATOQ)
        tmp_wide = atoll (name.string);
        tmp_wide = atoll (name.string);
#else
#else
        tmp_wide = atoq (name.string);
        tmp_wide = atoq (name.string);
#endif
#endif
#endif
#endif
#endif
#endif
        XWINT (return_rtx, i) = tmp_wide;
        XWINT (return_rtx, i) = tmp_wide;
        break;
        break;
 
 
      case 'i':
      case 'i':
      case 'n':
      case 'n':
        read_name (&name);
        read_name (&name);
        validate_const_int (name.string);
        validate_const_int (name.string);
        tmp_int = atoi (name.string);
        tmp_int = atoi (name.string);
        XINT (return_rtx, i) = tmp_int;
        XINT (return_rtx, i) = tmp_int;
        break;
        break;
 
 
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
      }
      }
 
 
  c = read_skip_spaces ();
  c = read_skip_spaces ();
  /* Syntactic sugar for AND and IOR, allowing Lisp-like
  /* Syntactic sugar for AND and IOR, allowing Lisp-like
     arbitrary number of arguments for them.  */
     arbitrary number of arguments for them.  */
  if (c == '('
  if (c == '('
      && (GET_CODE (return_rtx) == AND
      && (GET_CODE (return_rtx) == AND
          || GET_CODE (return_rtx) == IOR))
          || GET_CODE (return_rtx) == IOR))
    return read_rtx_variadic (mode_maps, return_rtx);
    return read_rtx_variadic (mode_maps, return_rtx);
 
 
  unread_char (c);
  unread_char (c);
  return return_rtx;
  return return_rtx;
}
}
 
 
/* Read a nested rtx construct from the MD file and return it.
/* Read a nested rtx construct from the MD file and return it.
   MODE_MAPS is as for iterator_traverse_data.  */
   MODE_MAPS is as for iterator_traverse_data.  */
 
 
static rtx
static rtx
read_nested_rtx (struct map_value **mode_maps)
read_nested_rtx (struct map_value **mode_maps)
{
{
  struct md_name name;
  struct md_name name;
  int c;
  int c;
  rtx return_rtx;
  rtx return_rtx;
 
 
  c = read_skip_spaces ();
  c = read_skip_spaces ();
  if (c != '(')
  if (c != '(')
    fatal_expected_char ('(', c);
    fatal_expected_char ('(', c);
 
 
  read_name (&name);
  read_name (&name);
  if (strcmp (name.string, "nil") == 0)
  if (strcmp (name.string, "nil") == 0)
    return_rtx = NULL;
    return_rtx = NULL;
  else
  else
    return_rtx = read_rtx_code (name.string, mode_maps);
    return_rtx = read_rtx_code (name.string, mode_maps);
 
 
  c = read_skip_spaces ();
  c = read_skip_spaces ();
  if (c != ')')
  if (c != ')')
    fatal_expected_char (')', c);
    fatal_expected_char (')', c);
 
 
  return return_rtx;
  return return_rtx;
}
}
 
 
/* Mutually recursive subroutine of read_rtx which reads
/* Mutually recursive subroutine of read_rtx which reads
   (thing x1 x2 x3 ...) and produces RTL as if
   (thing x1 x2 x3 ...) and produces RTL as if
   (thing x1 (thing x2 (thing x3 ...)))  had been written.
   (thing x1 (thing x2 (thing x3 ...)))  had been written.
   When called, FORM is (thing x1 x2), and the file position
   When called, FORM is (thing x1 x2), and the file position
   is just past the leading parenthesis of x3.  Only works
   is just past the leading parenthesis of x3.  Only works
   for THINGs which are dyadic expressions, e.g. AND, IOR.  */
   for THINGs which are dyadic expressions, e.g. AND, IOR.  */
static rtx
static rtx
read_rtx_variadic (struct map_value **mode_maps, rtx form)
read_rtx_variadic (struct map_value **mode_maps, rtx form)
{
{
  char c = '(';
  char c = '(';
  rtx p = form, q;
  rtx p = form, q;
 
 
  do
  do
    {
    {
      unread_char (c);
      unread_char (c);
 
 
      q = rtx_alloc (GET_CODE (p));
      q = rtx_alloc (GET_CODE (p));
      PUT_MODE (q, GET_MODE (p));
      PUT_MODE (q, GET_MODE (p));
 
 
      XEXP (q, 0) = XEXP (p, 1);
      XEXP (q, 0) = XEXP (p, 1);
      XEXP (q, 1) = read_nested_rtx (mode_maps);
      XEXP (q, 1) = read_nested_rtx (mode_maps);
 
 
      XEXP (p, 1) = q;
      XEXP (p, 1) = q;
      p = q;
      p = q;
      c = read_skip_spaces ();
      c = read_skip_spaces ();
    }
    }
  while (c == '(');
  while (c == '(');
  unread_char (c);
  unread_char (c);
  return form;
  return form;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.