OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [gcc/] [ree.c] - Diff between revs 684 and 783

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 684 Rev 783
/* Redundant Extension Elimination pass for the GNU compiler.
/* Redundant Extension Elimination pass for the GNU compiler.
   Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc.
   Copyright (C) 2010, 2011, 2012 Free Software Foundation, Inc.
   Contributed by Ilya Enkovich (ilya.enkovich@intel.com)
   Contributed by Ilya Enkovich (ilya.enkovich@intel.com)
 
 
   Based on the Redundant Zero-extension elimination pass contributed by
   Based on the Redundant Zero-extension elimination pass contributed by
   Sriraman Tallam (tmsriram@google.com) and Silvius Rus (rus@google.com).
   Sriraman Tallam (tmsriram@google.com) and Silvius Rus (rus@google.com).
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
 
 
/* Problem Description :
/* Problem Description :
   --------------------
   --------------------
   This pass is intended to remove redundant extension instructions.
   This pass is intended to remove redundant extension instructions.
   Such instructions appear for different reasons.  We expect some of
   Such instructions appear for different reasons.  We expect some of
   them due to implicit zero-extension in 64-bit registers after writing
   them due to implicit zero-extension in 64-bit registers after writing
   to their lower 32-bit half (e.g. for the x86-64 architecture).
   to their lower 32-bit half (e.g. for the x86-64 architecture).
   Another possible reason is a type cast which follows a load (for
   Another possible reason is a type cast which follows a load (for
   instance a register restore) and which can be combined into a single
   instance a register restore) and which can be combined into a single
   instruction, and for which earlier local passes, e.g. the combiner,
   instruction, and for which earlier local passes, e.g. the combiner,
   weren't able to optimize.
   weren't able to optimize.
 
 
   How does this pass work  ?
   How does this pass work  ?
   --------------------------
   --------------------------
 
 
   This pass is run after register allocation.  Hence, all registers that
   This pass is run after register allocation.  Hence, all registers that
   this pass deals with are hard registers.  This pass first looks for an
   this pass deals with are hard registers.  This pass first looks for an
   extension instruction that could possibly be redundant.  Such extension
   extension instruction that could possibly be redundant.  Such extension
   instructions show up in RTL with the pattern  :
   instructions show up in RTL with the pattern  :
   (set (reg:<SWI248> x) (any_extend:<SWI248> (reg:<SWI124> x))),
   (set (reg:<SWI248> x) (any_extend:<SWI248> (reg:<SWI124> x))),
   where x can be any hard register.
   where x can be any hard register.
   Now, this pass tries to eliminate this instruction by merging the
   Now, this pass tries to eliminate this instruction by merging the
   extension with the definitions of register x.  For instance, if
   extension with the definitions of register x.  For instance, if
   one of the definitions of register x was  :
   one of the definitions of register x was  :
   (set (reg:SI x) (plus:SI (reg:SI z1) (reg:SI z2))),
   (set (reg:SI x) (plus:SI (reg:SI z1) (reg:SI z2))),
   followed by extension  :
   followed by extension  :
   (set (reg:DI x) (zero_extend:DI (reg:SI x)))
   (set (reg:DI x) (zero_extend:DI (reg:SI x)))
   then the combination converts this into :
   then the combination converts this into :
   (set (reg:DI x) (zero_extend:DI (plus:SI (reg:SI z1) (reg:SI z2)))).
   (set (reg:DI x) (zero_extend:DI (plus:SI (reg:SI z1) (reg:SI z2)))).
   If all the merged definitions are recognizable assembly instructions,
   If all the merged definitions are recognizable assembly instructions,
   the extension is effectively eliminated.
   the extension is effectively eliminated.
 
 
   For example, for the x86-64 architecture, implicit zero-extensions
   For example, for the x86-64 architecture, implicit zero-extensions
   are captured with appropriate patterns in the i386.md file.  Hence,
   are captured with appropriate patterns in the i386.md file.  Hence,
   these merged definition can be matched to a single assembly instruction.
   these merged definition can be matched to a single assembly instruction.
   The original extension instruction is then deleted if all the
   The original extension instruction is then deleted if all the
   definitions can be merged.
   definitions can be merged.
 
 
   However, there are cases where the definition instruction cannot be
   However, there are cases where the definition instruction cannot be
   merged with an extension.  Examples are CALL instructions.  In such
   merged with an extension.  Examples are CALL instructions.  In such
   cases, the original extension is not redundant and this pass does
   cases, the original extension is not redundant and this pass does
   not delete it.
   not delete it.
 
 
   Handling conditional moves :
   Handling conditional moves :
   ----------------------------
   ----------------------------
 
 
   Architectures like x86-64 support conditional moves whose semantics for
   Architectures like x86-64 support conditional moves whose semantics for
   extension differ from the other instructions.  For instance, the
   extension differ from the other instructions.  For instance, the
   instruction *cmov ebx, eax*
   instruction *cmov ebx, eax*
   zero-extends eax onto rax only when the move from ebx to eax happens.
   zero-extends eax onto rax only when the move from ebx to eax happens.
   Otherwise, eax may not be zero-extended.  Consider conditional moves as
   Otherwise, eax may not be zero-extended.  Consider conditional moves as
   RTL instructions of the form
   RTL instructions of the form
   (set (reg:SI x) (if_then_else (cond) (reg:SI y) (reg:SI z))).
   (set (reg:SI x) (if_then_else (cond) (reg:SI y) (reg:SI z))).
   This pass tries to merge an extension with a conditional move by
   This pass tries to merge an extension with a conditional move by
   actually merging the definitions of y and z with an extension and then
   actually merging the definitions of y and z with an extension and then
   converting the conditional move into :
   converting the conditional move into :
   (set (reg:DI x) (if_then_else (cond) (reg:DI y) (reg:DI z))).
   (set (reg:DI x) (if_then_else (cond) (reg:DI y) (reg:DI z))).
   Since registers y and z are extended, register x will also be extended
   Since registers y and z are extended, register x will also be extended
   after the conditional move.  Note that this step has to be done
   after the conditional move.  Note that this step has to be done
   transitively since the definition of a conditional copy can be
   transitively since the definition of a conditional copy can be
   another conditional copy.
   another conditional copy.
 
 
   Motivating Example I :
   Motivating Example I :
   ---------------------
   ---------------------
   For this program :
   For this program :
   **********************************************
   **********************************************
   bad_code.c
   bad_code.c
 
 
   int mask[1000];
   int mask[1000];
 
 
   int foo(unsigned x)
   int foo(unsigned x)
   {
   {
     if (x < 10)
     if (x < 10)
       x = x * 45;
       x = x * 45;
     else
     else
       x = x * 78;
       x = x * 78;
     return mask[x];
     return mask[x];
   }
   }
   **********************************************
   **********************************************
 
 
   $ gcc -O2 bad_code.c
   $ gcc -O2 bad_code.c
     ........
     ........
     400315:       b8 4e 00 00 00          mov    $0x4e,%eax
     400315:       b8 4e 00 00 00          mov    $0x4e,%eax
     40031a:       0f af f8                imul   %eax,%edi
     40031a:       0f af f8                imul   %eax,%edi
     40031d:       89 ff                   mov    %edi,%edi - useless extension
     40031d:       89 ff                   mov    %edi,%edi - useless extension
     40031f:       8b 04 bd 60 19 40 00    mov    0x401960(,%rdi,4),%eax
     40031f:       8b 04 bd 60 19 40 00    mov    0x401960(,%rdi,4),%eax
     400326:       c3                      retq
     400326:       c3                      retq
     ......
     ......
     400330:       ba 2d 00 00 00          mov    $0x2d,%edx
     400330:       ba 2d 00 00 00          mov    $0x2d,%edx
     400335:       0f af fa                imul   %edx,%edi
     400335:       0f af fa                imul   %edx,%edi
     400338:       89 ff                   mov    %edi,%edi - useless extension
     400338:       89 ff                   mov    %edi,%edi - useless extension
     40033a:       8b 04 bd 60 19 40 00    mov    0x401960(,%rdi,4),%eax
     40033a:       8b 04 bd 60 19 40 00    mov    0x401960(,%rdi,4),%eax
     400341:       c3                      retq
     400341:       c3                      retq
 
 
   $ gcc -O2 -free bad_code.c
   $ gcc -O2 -free bad_code.c
     ......
     ......
     400315:       6b ff 4e                imul   $0x4e,%edi,%edi
     400315:       6b ff 4e                imul   $0x4e,%edi,%edi
     400318:       8b 04 bd 40 19 40 00    mov    0x401940(,%rdi,4),%eax
     400318:       8b 04 bd 40 19 40 00    mov    0x401940(,%rdi,4),%eax
     40031f:       c3                      retq
     40031f:       c3                      retq
     400320:       6b ff 2d                imul   $0x2d,%edi,%edi
     400320:       6b ff 2d                imul   $0x2d,%edi,%edi
     400323:       8b 04 bd 40 19 40 00    mov    0x401940(,%rdi,4),%eax
     400323:       8b 04 bd 40 19 40 00    mov    0x401940(,%rdi,4),%eax
     40032a:       c3                      retq
     40032a:       c3                      retq
 
 
   Motivating Example II :
   Motivating Example II :
   ---------------------
   ---------------------
 
 
   Here is an example with a conditional move.
   Here is an example with a conditional move.
 
 
   For this program :
   For this program :
   **********************************************
   **********************************************
 
 
   unsigned long long foo(unsigned x , unsigned y)
   unsigned long long foo(unsigned x , unsigned y)
   {
   {
     unsigned z;
     unsigned z;
     if (x > 100)
     if (x > 100)
       z = x + y;
       z = x + y;
     else
     else
       z = x - y;
       z = x - y;
     return (unsigned long long)(z);
     return (unsigned long long)(z);
   }
   }
 
 
   $ gcc -O2 bad_code.c
   $ gcc -O2 bad_code.c
     ............
     ............
     400360:       8d 14 3e                lea    (%rsi,%rdi,1),%edx
     400360:       8d 14 3e                lea    (%rsi,%rdi,1),%edx
     400363:       89 f8                   mov    %edi,%eax
     400363:       89 f8                   mov    %edi,%eax
     400365:       29 f0                   sub    %esi,%eax
     400365:       29 f0                   sub    %esi,%eax
     400367:       83 ff 65                cmp    $0x65,%edi
     400367:       83 ff 65                cmp    $0x65,%edi
     40036a:       0f 43 c2                cmovae %edx,%eax
     40036a:       0f 43 c2                cmovae %edx,%eax
     40036d:       89 c0                   mov    %eax,%eax - useless extension
     40036d:       89 c0                   mov    %eax,%eax - useless extension
     40036f:       c3                      retq
     40036f:       c3                      retq
 
 
   $ gcc -O2 -free bad_code.c
   $ gcc -O2 -free bad_code.c
     .............
     .............
     400360:       89 fa                   mov    %edi,%edx
     400360:       89 fa                   mov    %edi,%edx
     400362:       8d 04 3e                lea    (%rsi,%rdi,1),%eax
     400362:       8d 04 3e                lea    (%rsi,%rdi,1),%eax
     400365:       29 f2                   sub    %esi,%edx
     400365:       29 f2                   sub    %esi,%edx
     400367:       83 ff 65                cmp    $0x65,%edi
     400367:       83 ff 65                cmp    $0x65,%edi
     40036a:       89 d6                   mov    %edx,%esi
     40036a:       89 d6                   mov    %edx,%esi
     40036c:       48 0f 42 c6             cmovb  %rsi,%rax
     40036c:       48 0f 42 c6             cmovb  %rsi,%rax
     400370:       c3                      retq
     400370:       c3                      retq
 
 
  Motivating Example III :
  Motivating Example III :
  ---------------------
  ---------------------
 
 
  Here is an example with a type cast.
  Here is an example with a type cast.
 
 
  For this program :
  For this program :
  **********************************************
  **********************************************
 
 
  void test(int size, unsigned char *in, unsigned char *out)
  void test(int size, unsigned char *in, unsigned char *out)
  {
  {
    int i;
    int i;
    unsigned char xr, xg, xy=0;
    unsigned char xr, xg, xy=0;
 
 
    for (i = 0; i < size; i++) {
    for (i = 0; i < size; i++) {
      xr = *in++;
      xr = *in++;
      xg = *in++;
      xg = *in++;
      xy = (unsigned char) ((19595*xr + 38470*xg) >> 16);
      xy = (unsigned char) ((19595*xr + 38470*xg) >> 16);
      *out++ = xy;
      *out++ = xy;
    }
    }
  }
  }
 
 
  $ gcc -O2 bad_code.c
  $ gcc -O2 bad_code.c
    ............
    ............
    10:   0f b6 0e                movzbl (%rsi),%ecx
    10:   0f b6 0e                movzbl (%rsi),%ecx
    13:   0f b6 46 01             movzbl 0x1(%rsi),%eax
    13:   0f b6 46 01             movzbl 0x1(%rsi),%eax
    17:   48 83 c6 02             add    $0x2,%rsi
    17:   48 83 c6 02             add    $0x2,%rsi
    1b:   0f b6 c9                movzbl %cl,%ecx - useless extension
    1b:   0f b6 c9                movzbl %cl,%ecx - useless extension
    1e:   0f b6 c0                movzbl %al,%eax - useless extension
    1e:   0f b6 c0                movzbl %al,%eax - useless extension
    21:   69 c9 8b 4c 00 00       imul   $0x4c8b,%ecx,%ecx
    21:   69 c9 8b 4c 00 00       imul   $0x4c8b,%ecx,%ecx
    27:   69 c0 46 96 00 00       imul   $0x9646,%eax,%eax
    27:   69 c0 46 96 00 00       imul   $0x9646,%eax,%eax
 
 
   $ gcc -O2 -free bad_code.c
   $ gcc -O2 -free bad_code.c
     .............
     .............
    10:   0f b6 0e                movzbl (%rsi),%ecx
    10:   0f b6 0e                movzbl (%rsi),%ecx
    13:   0f b6 46 01             movzbl 0x1(%rsi),%eax
    13:   0f b6 46 01             movzbl 0x1(%rsi),%eax
    17:   48 83 c6 02             add    $0x2,%rsi
    17:   48 83 c6 02             add    $0x2,%rsi
    1b:   69 c9 8b 4c 00 00       imul   $0x4c8b,%ecx,%ecx
    1b:   69 c9 8b 4c 00 00       imul   $0x4c8b,%ecx,%ecx
    21:   69 c0 46 96 00 00       imul   $0x9646,%eax,%eax
    21:   69 c0 46 96 00 00       imul   $0x9646,%eax,%eax
 
 
   Usefulness :
   Usefulness :
   ----------
   ----------
 
 
   The original redundant zero-extension elimination pass reported reduction
   The original redundant zero-extension elimination pass reported reduction
   of the dynamic instruction count of a compression benchmark by 2.8% and
   of the dynamic instruction count of a compression benchmark by 2.8% and
   improvement of its run time by about 1%.
   improvement of its run time by about 1%.
 
 
   The additional performance gain with the enhanced pass is mostly expected
   The additional performance gain with the enhanced pass is mostly expected
   on in-order architectures where redundancy cannot be compensated by out of
   on in-order architectures where redundancy cannot be compensated by out of
   order execution.  Measurements showed up to 10% performance gain (reduced
   order execution.  Measurements showed up to 10% performance gain (reduced
   run time) on EEMBC 2.0 benchmarks on Atom processor with geomean performance
   run time) on EEMBC 2.0 benchmarks on Atom processor with geomean performance
   gain 1%.  */
   gain 1%.  */
 
 
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "tree.h"
#include "tree.h"
#include "tm_p.h"
#include "tm_p.h"
#include "flags.h"
#include "flags.h"
#include "regs.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "basic-block.h"
#include "insn-config.h"
#include "insn-config.h"
#include "function.h"
#include "function.h"
#include "expr.h"
#include "expr.h"
#include "insn-attr.h"
#include "insn-attr.h"
#include "recog.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "diagnostic-core.h"
#include "target.h"
#include "target.h"
#include "timevar.h"
#include "timevar.h"
#include "optabs.h"
#include "optabs.h"
#include "insn-codes.h"
#include "insn-codes.h"
#include "rtlhooks-def.h"
#include "rtlhooks-def.h"
/* Include output.h for dump_file.  */
/* Include output.h for dump_file.  */
#include "output.h"
#include "output.h"
#include "params.h"
#include "params.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "df.h"
#include "df.h"
#include "cgraph.h"
#include "cgraph.h"
 
 
/* This structure represents a candidate for elimination.  */
/* This structure represents a candidate for elimination.  */
 
 
typedef struct GTY(()) ext_cand
typedef struct GTY(()) ext_cand
{
{
  /* The expression.  */
  /* The expression.  */
  const_rtx expr;
  const_rtx expr;
 
 
  /* The kind of extension.  */
  /* The kind of extension.  */
  enum rtx_code code;
  enum rtx_code code;
 
 
  /* The destination mode.  */
  /* The destination mode.  */
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  /* The instruction where it lives.  */
  /* The instruction where it lives.  */
  rtx insn;
  rtx insn;
} ext_cand;
} ext_cand;
 
 
DEF_VEC_O(ext_cand);
DEF_VEC_O(ext_cand);
DEF_VEC_ALLOC_O(ext_cand, heap);
DEF_VEC_ALLOC_O(ext_cand, heap);
 
 
static int max_insn_uid;
static int max_insn_uid;
 
 
/* Given a insn (CURR_INSN), an extension candidate for removal (CAND)
/* Given a insn (CURR_INSN), an extension candidate for removal (CAND)
   and a pointer to the SET rtx (ORIG_SET) that needs to be modified,
   and a pointer to the SET rtx (ORIG_SET) that needs to be modified,
   this code modifies the SET rtx to a new SET rtx that extends the
   this code modifies the SET rtx to a new SET rtx that extends the
   right hand expression into a register on the left hand side.  Note
   right hand expression into a register on the left hand side.  Note
   that multiple assumptions are made about the nature of the set that
   that multiple assumptions are made about the nature of the set that
   needs to be true for this to work and is called from merge_def_and_ext.
   needs to be true for this to work and is called from merge_def_and_ext.
 
 
   Original :
   Original :
   (set (reg a) (expression))
   (set (reg a) (expression))
 
 
   Transform :
   Transform :
   (set (reg a) (any_extend (expression)))
   (set (reg a) (any_extend (expression)))
 
 
   Special Cases :
   Special Cases :
   If the expression is a constant or another extension, then directly
   If the expression is a constant or another extension, then directly
   assign it to the register.  */
   assign it to the register.  */
 
 
static bool
static bool
combine_set_extension (ext_cand *cand, rtx curr_insn, rtx *orig_set)
combine_set_extension (ext_cand *cand, rtx curr_insn, rtx *orig_set)
{
{
  rtx orig_src = SET_SRC (*orig_set);
  rtx orig_src = SET_SRC (*orig_set);
  rtx new_reg = gen_rtx_REG (cand->mode, REGNO (SET_DEST (*orig_set)));
  rtx new_reg = gen_rtx_REG (cand->mode, REGNO (SET_DEST (*orig_set)));
  rtx new_set;
  rtx new_set;
 
 
  /* Merge constants by directly moving the constant into the register under
  /* Merge constants by directly moving the constant into the register under
     some conditions.  Recall that RTL constants are sign-extended.  */
     some conditions.  Recall that RTL constants are sign-extended.  */
  if (GET_CODE (orig_src) == CONST_INT
  if (GET_CODE (orig_src) == CONST_INT
      && HOST_BITS_PER_WIDE_INT >= GET_MODE_BITSIZE (cand->mode))
      && HOST_BITS_PER_WIDE_INT >= GET_MODE_BITSIZE (cand->mode))
    {
    {
      if (INTVAL (orig_src) >= 0 || cand->code == SIGN_EXTEND)
      if (INTVAL (orig_src) >= 0 || cand->code == SIGN_EXTEND)
        new_set = gen_rtx_SET (VOIDmode, new_reg, orig_src);
        new_set = gen_rtx_SET (VOIDmode, new_reg, orig_src);
      else
      else
        {
        {
          /* Zero-extend the negative constant by masking out the bits outside
          /* Zero-extend the negative constant by masking out the bits outside
             the source mode.  */
             the source mode.  */
          enum machine_mode src_mode = GET_MODE (SET_DEST (*orig_set));
          enum machine_mode src_mode = GET_MODE (SET_DEST (*orig_set));
          rtx new_const_int
          rtx new_const_int
            = GEN_INT (INTVAL (orig_src) & GET_MODE_MASK (src_mode));
            = GEN_INT (INTVAL (orig_src) & GET_MODE_MASK (src_mode));
          new_set = gen_rtx_SET (VOIDmode, new_reg, new_const_int);
          new_set = gen_rtx_SET (VOIDmode, new_reg, new_const_int);
        }
        }
    }
    }
  else if (GET_MODE (orig_src) == VOIDmode)
  else if (GET_MODE (orig_src) == VOIDmode)
    {
    {
      /* This is mostly due to a call insn that should not be optimized.  */
      /* This is mostly due to a call insn that should not be optimized.  */
      return false;
      return false;
    }
    }
  else if (GET_CODE (orig_src) == cand->code)
  else if (GET_CODE (orig_src) == cand->code)
    {
    {
      /* Here is a sequence of two extensions.  Try to merge them.  */
      /* Here is a sequence of two extensions.  Try to merge them.  */
      rtx temp_extension
      rtx temp_extension
        = gen_rtx_fmt_e (cand->code, cand->mode, XEXP (orig_src, 0));
        = gen_rtx_fmt_e (cand->code, cand->mode, XEXP (orig_src, 0));
      rtx simplified_temp_extension = simplify_rtx (temp_extension);
      rtx simplified_temp_extension = simplify_rtx (temp_extension);
      if (simplified_temp_extension)
      if (simplified_temp_extension)
        temp_extension = simplified_temp_extension;
        temp_extension = simplified_temp_extension;
      new_set = gen_rtx_SET (VOIDmode, new_reg, temp_extension);
      new_set = gen_rtx_SET (VOIDmode, new_reg, temp_extension);
    }
    }
  else if (GET_CODE (orig_src) == IF_THEN_ELSE)
  else if (GET_CODE (orig_src) == IF_THEN_ELSE)
    {
    {
      /* Only IF_THEN_ELSE of phi-type copies are combined.  Otherwise,
      /* Only IF_THEN_ELSE of phi-type copies are combined.  Otherwise,
         in general, IF_THEN_ELSE should not be combined.  */
         in general, IF_THEN_ELSE should not be combined.  */
      return false;
      return false;
    }
    }
  else
  else
    {
    {
      /* This is the normal case.  */
      /* This is the normal case.  */
      rtx temp_extension
      rtx temp_extension
        = gen_rtx_fmt_e (cand->code, cand->mode, orig_src);
        = gen_rtx_fmt_e (cand->code, cand->mode, orig_src);
      rtx simplified_temp_extension = simplify_rtx (temp_extension);
      rtx simplified_temp_extension = simplify_rtx (temp_extension);
      if (simplified_temp_extension)
      if (simplified_temp_extension)
        temp_extension = simplified_temp_extension;
        temp_extension = simplified_temp_extension;
      new_set = gen_rtx_SET (VOIDmode, new_reg, temp_extension);
      new_set = gen_rtx_SET (VOIDmode, new_reg, temp_extension);
    }
    }
 
 
  /* This change is a part of a group of changes.  Hence,
  /* This change is a part of a group of changes.  Hence,
     validate_change will not try to commit the change.  */
     validate_change will not try to commit the change.  */
  if (validate_change (curr_insn, orig_set, new_set, true))
  if (validate_change (curr_insn, orig_set, new_set, true))
    {
    {
      if (dump_file)
      if (dump_file)
        {
        {
          fprintf (dump_file,
          fprintf (dump_file,
                   "Tentatively merged extension with definition:\n");
                   "Tentatively merged extension with definition:\n");
          print_rtl_single (dump_file, curr_insn);
          print_rtl_single (dump_file, curr_insn);
        }
        }
      return true;
      return true;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
/* Treat if_then_else insns, where the operands of both branches
/* Treat if_then_else insns, where the operands of both branches
   are registers, as copies.  For instance,
   are registers, as copies.  For instance,
   Original :
   Original :
   (set (reg:SI a) (if_then_else (cond) (reg:SI b) (reg:SI c)))
   (set (reg:SI a) (if_then_else (cond) (reg:SI b) (reg:SI c)))
   Transformed :
   Transformed :
   (set (reg:DI a) (if_then_else (cond) (reg:DI b) (reg:DI c)))
   (set (reg:DI a) (if_then_else (cond) (reg:DI b) (reg:DI c)))
   DEF_INSN is the if_then_else insn.  */
   DEF_INSN is the if_then_else insn.  */
 
 
static bool
static bool
transform_ifelse (ext_cand *cand, rtx def_insn)
transform_ifelse (ext_cand *cand, rtx def_insn)
{
{
  rtx set_insn = PATTERN (def_insn);
  rtx set_insn = PATTERN (def_insn);
  rtx srcreg, dstreg, srcreg2;
  rtx srcreg, dstreg, srcreg2;
  rtx map_srcreg, map_dstreg, map_srcreg2;
  rtx map_srcreg, map_dstreg, map_srcreg2;
  rtx ifexpr;
  rtx ifexpr;
  rtx cond;
  rtx cond;
  rtx new_set;
  rtx new_set;
 
 
  gcc_assert (GET_CODE (set_insn) == SET);
  gcc_assert (GET_CODE (set_insn) == SET);
 
 
  cond = XEXP (SET_SRC (set_insn), 0);
  cond = XEXP (SET_SRC (set_insn), 0);
  dstreg = SET_DEST (set_insn);
  dstreg = SET_DEST (set_insn);
  srcreg = XEXP (SET_SRC (set_insn), 1);
  srcreg = XEXP (SET_SRC (set_insn), 1);
  srcreg2 = XEXP (SET_SRC (set_insn), 2);
  srcreg2 = XEXP (SET_SRC (set_insn), 2);
  /* If the conditional move already has the right or wider mode,
  /* If the conditional move already has the right or wider mode,
     there is nothing to do.  */
     there is nothing to do.  */
  if (GET_MODE_SIZE (GET_MODE (dstreg)) >= GET_MODE_SIZE (cand->mode))
  if (GET_MODE_SIZE (GET_MODE (dstreg)) >= GET_MODE_SIZE (cand->mode))
    return true;
    return true;
 
 
  map_srcreg = gen_rtx_REG (cand->mode, REGNO (srcreg));
  map_srcreg = gen_rtx_REG (cand->mode, REGNO (srcreg));
  map_srcreg2 = gen_rtx_REG (cand->mode, REGNO (srcreg2));
  map_srcreg2 = gen_rtx_REG (cand->mode, REGNO (srcreg2));
  map_dstreg = gen_rtx_REG (cand->mode, REGNO (dstreg));
  map_dstreg = gen_rtx_REG (cand->mode, REGNO (dstreg));
  ifexpr = gen_rtx_IF_THEN_ELSE (cand->mode, cond, map_srcreg, map_srcreg2);
  ifexpr = gen_rtx_IF_THEN_ELSE (cand->mode, cond, map_srcreg, map_srcreg2);
  new_set = gen_rtx_SET (VOIDmode, map_dstreg, ifexpr);
  new_set = gen_rtx_SET (VOIDmode, map_dstreg, ifexpr);
 
 
  if (validate_change (def_insn, &PATTERN (def_insn), new_set, true))
  if (validate_change (def_insn, &PATTERN (def_insn), new_set, true))
    {
    {
      if (dump_file)
      if (dump_file)
        {
        {
          fprintf (dump_file,
          fprintf (dump_file,
                   "Mode of conditional move instruction extended:\n");
                   "Mode of conditional move instruction extended:\n");
          print_rtl_single (dump_file, def_insn);
          print_rtl_single (dump_file, def_insn);
        }
        }
      return true;
      return true;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
/* Get all the reaching definitions of an instruction.  The definitions are
/* Get all the reaching definitions of an instruction.  The definitions are
   desired for REG used in INSN.  Return the definition list or NULL if a
   desired for REG used in INSN.  Return the definition list or NULL if a
   definition is missing.  If DEST is non-NULL, additionally push the INSN
   definition is missing.  If DEST is non-NULL, additionally push the INSN
   of the definitions onto DEST.  */
   of the definitions onto DEST.  */
 
 
static struct df_link *
static struct df_link *
get_defs (rtx insn, rtx reg, VEC (rtx,heap) **dest)
get_defs (rtx insn, rtx reg, VEC (rtx,heap) **dest)
{
{
  df_ref reg_info, *uses;
  df_ref reg_info, *uses;
  struct df_link *ref_chain, *ref_link;
  struct df_link *ref_chain, *ref_link;
 
 
  reg_info = NULL;
  reg_info = NULL;
 
 
  for (uses = DF_INSN_USES (insn); *uses; uses++)
  for (uses = DF_INSN_USES (insn); *uses; uses++)
    {
    {
      reg_info = *uses;
      reg_info = *uses;
      if (GET_CODE (DF_REF_REG (reg_info)) == SUBREG)
      if (GET_CODE (DF_REF_REG (reg_info)) == SUBREG)
        return NULL;
        return NULL;
      if (REGNO (DF_REF_REG (reg_info)) == REGNO (reg))
      if (REGNO (DF_REF_REG (reg_info)) == REGNO (reg))
        break;
        break;
    }
    }
 
 
  gcc_assert (reg_info != NULL && uses != NULL);
  gcc_assert (reg_info != NULL && uses != NULL);
 
 
  ref_chain = DF_REF_CHAIN (reg_info);
  ref_chain = DF_REF_CHAIN (reg_info);
 
 
  for (ref_link = ref_chain; ref_link; ref_link = ref_link->next)
  for (ref_link = ref_chain; ref_link; ref_link = ref_link->next)
    {
    {
      /* Problem getting some definition for this instruction.  */
      /* Problem getting some definition for this instruction.  */
      if (ref_link->ref == NULL)
      if (ref_link->ref == NULL)
        return NULL;
        return NULL;
      if (DF_REF_INSN_INFO (ref_link->ref) == NULL)
      if (DF_REF_INSN_INFO (ref_link->ref) == NULL)
        return NULL;
        return NULL;
    }
    }
 
 
  if (dest)
  if (dest)
    for (ref_link = ref_chain; ref_link; ref_link = ref_link->next)
    for (ref_link = ref_chain; ref_link; ref_link = ref_link->next)
      VEC_safe_push (rtx, heap, *dest, DF_REF_INSN (ref_link->ref));
      VEC_safe_push (rtx, heap, *dest, DF_REF_INSN (ref_link->ref));
 
 
  return ref_chain;
  return ref_chain;
}
}
 
 
/* Return true if INSN is
/* Return true if INSN is
     (SET (reg REGNO (def_reg)) (if_then_else (cond) (REG x1) (REG x2)))
     (SET (reg REGNO (def_reg)) (if_then_else (cond) (REG x1) (REG x2)))
   and store x1 and x2 in REG_1 and REG_2.  */
   and store x1 and x2 in REG_1 and REG_2.  */
 
 
static bool
static bool
is_cond_copy_insn (rtx insn, rtx *reg1, rtx *reg2)
is_cond_copy_insn (rtx insn, rtx *reg1, rtx *reg2)
{
{
  rtx expr = single_set (insn);
  rtx expr = single_set (insn);
 
 
  if (expr != NULL_RTX
  if (expr != NULL_RTX
      && GET_CODE (expr) == SET
      && GET_CODE (expr) == SET
      && GET_CODE (SET_DEST (expr)) == REG
      && GET_CODE (SET_DEST (expr)) == REG
      && GET_CODE (SET_SRC (expr))  == IF_THEN_ELSE
      && GET_CODE (SET_SRC (expr))  == IF_THEN_ELSE
      && GET_CODE (XEXP (SET_SRC (expr), 1)) == REG
      && GET_CODE (XEXP (SET_SRC (expr), 1)) == REG
      && GET_CODE (XEXP (SET_SRC (expr), 2)) == REG)
      && GET_CODE (XEXP (SET_SRC (expr), 2)) == REG)
    {
    {
      *reg1 = XEXP (SET_SRC (expr), 1);
      *reg1 = XEXP (SET_SRC (expr), 1);
      *reg2 = XEXP (SET_SRC (expr), 2);
      *reg2 = XEXP (SET_SRC (expr), 2);
      return true;
      return true;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
enum ext_modified_kind
enum ext_modified_kind
{
{
  /* The insn hasn't been modified by ree pass yet.  */
  /* The insn hasn't been modified by ree pass yet.  */
  EXT_MODIFIED_NONE,
  EXT_MODIFIED_NONE,
  /* Changed into zero extension.  */
  /* Changed into zero extension.  */
  EXT_MODIFIED_ZEXT,
  EXT_MODIFIED_ZEXT,
  /* Changed into sign extension.  */
  /* Changed into sign extension.  */
  EXT_MODIFIED_SEXT
  EXT_MODIFIED_SEXT
};
};
 
 
struct ext_modified
struct ext_modified
{
{
  /* Mode from which ree has zero or sign extended the destination.  */
  /* Mode from which ree has zero or sign extended the destination.  */
  ENUM_BITFIELD(machine_mode) mode : 8;
  ENUM_BITFIELD(machine_mode) mode : 8;
 
 
  /* Kind of modification of the insn.  */
  /* Kind of modification of the insn.  */
  ENUM_BITFIELD(ext_modified_kind) kind : 2;
  ENUM_BITFIELD(ext_modified_kind) kind : 2;
 
 
  /* True if the insn is scheduled to be deleted.  */
  /* True if the insn is scheduled to be deleted.  */
  unsigned int deleted : 1;
  unsigned int deleted : 1;
};
};
 
 
/* Vectors used by combine_reaching_defs and its helpers.  */
/* Vectors used by combine_reaching_defs and its helpers.  */
typedef struct ext_state
typedef struct ext_state
{
{
  /* In order to avoid constant VEC_alloc/VEC_free, we keep these
  /* In order to avoid constant VEC_alloc/VEC_free, we keep these
     4 vectors live through the entire find_and_remove_re and just
     4 vectors live through the entire find_and_remove_re and just
     VEC_truncate them each time.  */
     VEC_truncate them each time.  */
  VEC (rtx, heap) *defs_list;
  VEC (rtx, heap) *defs_list;
  VEC (rtx, heap) *copies_list;
  VEC (rtx, heap) *copies_list;
  VEC (rtx, heap) *modified_list;
  VEC (rtx, heap) *modified_list;
  VEC (rtx, heap) *work_list;
  VEC (rtx, heap) *work_list;
 
 
  /* For instructions that have been successfully modified, this is
  /* For instructions that have been successfully modified, this is
     the original mode from which the insn is extending and
     the original mode from which the insn is extending and
     kind of extension.  */
     kind of extension.  */
  struct ext_modified *modified;
  struct ext_modified *modified;
} ext_state;
} ext_state;
 
 
/* Reaching Definitions of the extended register could be conditional copies
/* Reaching Definitions of the extended register could be conditional copies
   or regular definitions.  This function separates the two types into two
   or regular definitions.  This function separates the two types into two
   lists, STATE->DEFS_LIST and STATE->COPIES_LIST.  This is necessary because,
   lists, STATE->DEFS_LIST and STATE->COPIES_LIST.  This is necessary because,
   if a reaching definition is a conditional copy, merging the extension with
   if a reaching definition is a conditional copy, merging the extension with
   this definition is wrong.  Conditional copies are merged by transitively
   this definition is wrong.  Conditional copies are merged by transitively
   merging their definitions.  The defs_list is populated with all the reaching
   merging their definitions.  The defs_list is populated with all the reaching
   definitions of the extension instruction (EXTEND_INSN) which must be merged
   definitions of the extension instruction (EXTEND_INSN) which must be merged
   with an extension.  The copies_list contains all the conditional moves that
   with an extension.  The copies_list contains all the conditional moves that
   will later be extended into a wider mode conditional move if all the merges
   will later be extended into a wider mode conditional move if all the merges
   are successful.  The function returns false upon failure, true upon
   are successful.  The function returns false upon failure, true upon
   success.  */
   success.  */
 
 
static bool
static bool
make_defs_and_copies_lists (rtx extend_insn, const_rtx set_pat,
make_defs_and_copies_lists (rtx extend_insn, const_rtx set_pat,
                            ext_state *state)
                            ext_state *state)
{
{
  rtx src_reg = XEXP (SET_SRC (set_pat), 0);
  rtx src_reg = XEXP (SET_SRC (set_pat), 0);
  bool *is_insn_visited;
  bool *is_insn_visited;
  bool ret = true;
  bool ret = true;
 
 
  VEC_truncate (rtx, state->work_list, 0);
  VEC_truncate (rtx, state->work_list, 0);
 
 
  /* Initialize the work list.  */
  /* Initialize the work list.  */
  if (!get_defs (extend_insn, src_reg, &state->work_list))
  if (!get_defs (extend_insn, src_reg, &state->work_list))
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  is_insn_visited = XCNEWVEC (bool, max_insn_uid);
  is_insn_visited = XCNEWVEC (bool, max_insn_uid);
 
 
  /* Perform transitive closure for conditional copies.  */
  /* Perform transitive closure for conditional copies.  */
  while (!VEC_empty (rtx, state->work_list))
  while (!VEC_empty (rtx, state->work_list))
    {
    {
      rtx def_insn = VEC_pop (rtx, state->work_list);
      rtx def_insn = VEC_pop (rtx, state->work_list);
      rtx reg1, reg2;
      rtx reg1, reg2;
 
 
      gcc_assert (INSN_UID (def_insn) < max_insn_uid);
      gcc_assert (INSN_UID (def_insn) < max_insn_uid);
 
 
      if (is_insn_visited[INSN_UID (def_insn)])
      if (is_insn_visited[INSN_UID (def_insn)])
        continue;
        continue;
      is_insn_visited[INSN_UID (def_insn)] = true;
      is_insn_visited[INSN_UID (def_insn)] = true;
 
 
      if (is_cond_copy_insn (def_insn, &reg1, &reg2))
      if (is_cond_copy_insn (def_insn, &reg1, &reg2))
        {
        {
          /* Push it onto the copy list first.  */
          /* Push it onto the copy list first.  */
          VEC_safe_push (rtx, heap, state->copies_list, def_insn);
          VEC_safe_push (rtx, heap, state->copies_list, def_insn);
 
 
          /* Now perform the transitive closure.  */
          /* Now perform the transitive closure.  */
          if (!get_defs (def_insn, reg1, &state->work_list)
          if (!get_defs (def_insn, reg1, &state->work_list)
              || !get_defs (def_insn, reg2, &state->work_list))
              || !get_defs (def_insn, reg2, &state->work_list))
            {
            {
              ret = false;
              ret = false;
              break;
              break;
            }
            }
        }
        }
      else
      else
        VEC_safe_push (rtx, heap, state->defs_list, def_insn);
        VEC_safe_push (rtx, heap, state->defs_list, def_insn);
    }
    }
 
 
  XDELETEVEC (is_insn_visited);
  XDELETEVEC (is_insn_visited);
 
 
  return ret;
  return ret;
}
}
 
 
/* Merge the DEF_INSN with an extension.  Calls combine_set_extension
/* Merge the DEF_INSN with an extension.  Calls combine_set_extension
   on the SET pattern.  */
   on the SET pattern.  */
 
 
static bool
static bool
merge_def_and_ext (ext_cand *cand, rtx def_insn, ext_state *state)
merge_def_and_ext (ext_cand *cand, rtx def_insn, ext_state *state)
{
{
  enum machine_mode ext_src_mode;
  enum machine_mode ext_src_mode;
  enum rtx_code code;
  enum rtx_code code;
  rtx *sub_rtx;
  rtx *sub_rtx;
  rtx s_expr;
  rtx s_expr;
  int i;
  int i;
 
 
  ext_src_mode = GET_MODE (XEXP (SET_SRC (cand->expr), 0));
  ext_src_mode = GET_MODE (XEXP (SET_SRC (cand->expr), 0));
  code = GET_CODE (PATTERN (def_insn));
  code = GET_CODE (PATTERN (def_insn));
  sub_rtx = NULL;
  sub_rtx = NULL;
 
 
  if (code == PARALLEL)
  if (code == PARALLEL)
    {
    {
      for (i = 0; i < XVECLEN (PATTERN (def_insn), 0); i++)
      for (i = 0; i < XVECLEN (PATTERN (def_insn), 0); i++)
        {
        {
          s_expr = XVECEXP (PATTERN (def_insn), 0, i);
          s_expr = XVECEXP (PATTERN (def_insn), 0, i);
          if (GET_CODE (s_expr) != SET)
          if (GET_CODE (s_expr) != SET)
            continue;
            continue;
 
 
          if (sub_rtx == NULL)
          if (sub_rtx == NULL)
            sub_rtx = &XVECEXP (PATTERN (def_insn), 0, i);
            sub_rtx = &XVECEXP (PATTERN (def_insn), 0, i);
          else
          else
            {
            {
              /* PARALLEL with multiple SETs.  */
              /* PARALLEL with multiple SETs.  */
              return false;
              return false;
            }
            }
        }
        }
    }
    }
  else if (code == SET)
  else if (code == SET)
    sub_rtx = &PATTERN (def_insn);
    sub_rtx = &PATTERN (def_insn);
  else
  else
    {
    {
      /* It is not a PARALLEL or a SET, what could it be ? */
      /* It is not a PARALLEL or a SET, what could it be ? */
      return false;
      return false;
    }
    }
 
 
  gcc_assert (sub_rtx != NULL);
  gcc_assert (sub_rtx != NULL);
 
 
  if (REG_P (SET_DEST (*sub_rtx))
  if (REG_P (SET_DEST (*sub_rtx))
      && (GET_MODE (SET_DEST (*sub_rtx)) == ext_src_mode
      && (GET_MODE (SET_DEST (*sub_rtx)) == ext_src_mode
          || ((state->modified[INSN_UID (def_insn)].kind
          || ((state->modified[INSN_UID (def_insn)].kind
               == (cand->code == ZERO_EXTEND
               == (cand->code == ZERO_EXTEND
                   ? EXT_MODIFIED_ZEXT : EXT_MODIFIED_SEXT))
                   ? EXT_MODIFIED_ZEXT : EXT_MODIFIED_SEXT))
              && state->modified[INSN_UID (def_insn)].mode
              && state->modified[INSN_UID (def_insn)].mode
                 == ext_src_mode)))
                 == ext_src_mode)))
    {
    {
      if (GET_MODE_SIZE (GET_MODE (SET_DEST (*sub_rtx)))
      if (GET_MODE_SIZE (GET_MODE (SET_DEST (*sub_rtx)))
          >= GET_MODE_SIZE (cand->mode))
          >= GET_MODE_SIZE (cand->mode))
        return true;
        return true;
      /* If def_insn is already scheduled to be deleted, don't attempt
      /* If def_insn is already scheduled to be deleted, don't attempt
         to modify it.  */
         to modify it.  */
      if (state->modified[INSN_UID (def_insn)].deleted)
      if (state->modified[INSN_UID (def_insn)].deleted)
        return false;
        return false;
      if (combine_set_extension (cand, def_insn, sub_rtx))
      if (combine_set_extension (cand, def_insn, sub_rtx))
        {
        {
          if (state->modified[INSN_UID (def_insn)].kind == EXT_MODIFIED_NONE)
          if (state->modified[INSN_UID (def_insn)].kind == EXT_MODIFIED_NONE)
            state->modified[INSN_UID (def_insn)].mode = ext_src_mode;
            state->modified[INSN_UID (def_insn)].mode = ext_src_mode;
          return true;
          return true;
        }
        }
    }
    }
 
 
  return false;
  return false;
}
}
 
 
/* This function goes through all reaching defs of the source
/* This function goes through all reaching defs of the source
   of the candidate for elimination (CAND) and tries to combine
   of the candidate for elimination (CAND) and tries to combine
   the extension with the definition instruction.  The changes
   the extension with the definition instruction.  The changes
   are made as a group so that even if one definition cannot be
   are made as a group so that even if one definition cannot be
   merged, all reaching definitions end up not being merged.
   merged, all reaching definitions end up not being merged.
   When a conditional copy is encountered, merging is attempted
   When a conditional copy is encountered, merging is attempted
   transitively on its definitions.  It returns true upon success
   transitively on its definitions.  It returns true upon success
   and false upon failure.  */
   and false upon failure.  */
 
 
static bool
static bool
combine_reaching_defs (ext_cand *cand, const_rtx set_pat, ext_state *state)
combine_reaching_defs (ext_cand *cand, const_rtx set_pat, ext_state *state)
{
{
  rtx def_insn;
  rtx def_insn;
  bool merge_successful = true;
  bool merge_successful = true;
  int i;
  int i;
  int defs_ix;
  int defs_ix;
  bool outcome;
  bool outcome;
 
 
  VEC_truncate (rtx, state->defs_list, 0);
  VEC_truncate (rtx, state->defs_list, 0);
  VEC_truncate (rtx, state->copies_list, 0);
  VEC_truncate (rtx, state->copies_list, 0);
 
 
  outcome = make_defs_and_copies_lists (cand->insn, set_pat, state);
  outcome = make_defs_and_copies_lists (cand->insn, set_pat, state);
 
 
  if (!outcome)
  if (!outcome)
    return false;
    return false;
 
 
  merge_successful = true;
  merge_successful = true;
 
 
  /* Go through the defs vector and try to merge all the definitions
  /* Go through the defs vector and try to merge all the definitions
     in this vector.  */
     in this vector.  */
  VEC_truncate (rtx, state->modified_list, 0);
  VEC_truncate (rtx, state->modified_list, 0);
  FOR_EACH_VEC_ELT (rtx, state->defs_list, defs_ix, def_insn)
  FOR_EACH_VEC_ELT (rtx, state->defs_list, defs_ix, def_insn)
    {
    {
      if (merge_def_and_ext (cand, def_insn, state))
      if (merge_def_and_ext (cand, def_insn, state))
        VEC_safe_push (rtx, heap, state->modified_list, def_insn);
        VEC_safe_push (rtx, heap, state->modified_list, def_insn);
      else
      else
        {
        {
          merge_successful = false;
          merge_successful = false;
          break;
          break;
        }
        }
    }
    }
 
 
  /* Now go through the conditional copies vector and try to merge all
  /* Now go through the conditional copies vector and try to merge all
     the copies in this vector.  */
     the copies in this vector.  */
  if (merge_successful)
  if (merge_successful)
    {
    {
      FOR_EACH_VEC_ELT (rtx, state->copies_list, i, def_insn)
      FOR_EACH_VEC_ELT (rtx, state->copies_list, i, def_insn)
        {
        {
          if (transform_ifelse (cand, def_insn))
          if (transform_ifelse (cand, def_insn))
            VEC_safe_push (rtx, heap, state->modified_list, def_insn);
            VEC_safe_push (rtx, heap, state->modified_list, def_insn);
          else
          else
            {
            {
              merge_successful = false;
              merge_successful = false;
              break;
              break;
            }
            }
        }
        }
    }
    }
 
 
  if (merge_successful)
  if (merge_successful)
    {
    {
      /* Commit the changes here if possible
      /* Commit the changes here if possible
         FIXME: It's an all-or-nothing scenario.  Even if only one definition
         FIXME: It's an all-or-nothing scenario.  Even if only one definition
         cannot be merged, we entirely give up.  In the future, we should allow
         cannot be merged, we entirely give up.  In the future, we should allow
         extensions to be partially eliminated along those paths where the
         extensions to be partially eliminated along those paths where the
         definitions could be merged.  */
         definitions could be merged.  */
      if (apply_change_group ())
      if (apply_change_group ())
        {
        {
          if (dump_file)
          if (dump_file)
            fprintf (dump_file, "All merges were successful.\n");
            fprintf (dump_file, "All merges were successful.\n");
 
 
          FOR_EACH_VEC_ELT (rtx, state->modified_list, i, def_insn)
          FOR_EACH_VEC_ELT (rtx, state->modified_list, i, def_insn)
            if (state->modified[INSN_UID (def_insn)].kind == EXT_MODIFIED_NONE)
            if (state->modified[INSN_UID (def_insn)].kind == EXT_MODIFIED_NONE)
              state->modified[INSN_UID (def_insn)].kind
              state->modified[INSN_UID (def_insn)].kind
                = (cand->code == ZERO_EXTEND
                = (cand->code == ZERO_EXTEND
                   ? EXT_MODIFIED_ZEXT : EXT_MODIFIED_SEXT);
                   ? EXT_MODIFIED_ZEXT : EXT_MODIFIED_SEXT);
 
 
          return true;
          return true;
        }
        }
      else
      else
        {
        {
          /* Changes need not be cancelled explicitly as apply_change_group
          /* Changes need not be cancelled explicitly as apply_change_group
             does it.  Print list of definitions in the dump_file for debug
             does it.  Print list of definitions in the dump_file for debug
             purposes.  This extension cannot be deleted.  */
             purposes.  This extension cannot be deleted.  */
          if (dump_file)
          if (dump_file)
            {
            {
              fprintf (dump_file,
              fprintf (dump_file,
                       "Merge cancelled, non-mergeable definitions:\n");
                       "Merge cancelled, non-mergeable definitions:\n");
              FOR_EACH_VEC_ELT (rtx, state->modified_list, i, def_insn)
              FOR_EACH_VEC_ELT (rtx, state->modified_list, i, def_insn)
                print_rtl_single (dump_file, def_insn);
                print_rtl_single (dump_file, def_insn);
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      /* Cancel any changes that have been made so far.  */
      /* Cancel any changes that have been made so far.  */
      cancel_changes (0);
      cancel_changes (0);
    }
    }
 
 
  return false;
  return false;
}
}
 
 
/* Add an extension pattern that could be eliminated.  */
/* Add an extension pattern that could be eliminated.  */
 
 
static void
static void
add_removable_extension (const_rtx expr, rtx insn,
add_removable_extension (const_rtx expr, rtx insn,
                         VEC (ext_cand, heap) **insn_list,
                         VEC (ext_cand, heap) **insn_list,
                         unsigned *def_map)
                         unsigned *def_map)
{
{
  enum rtx_code code;
  enum rtx_code code;
  enum machine_mode mode;
  enum machine_mode mode;
  unsigned int idx;
  unsigned int idx;
  rtx src, dest;
  rtx src, dest;
 
 
  /* We are looking for SET (REG N) (ANY_EXTEND (REG N)).  */
  /* We are looking for SET (REG N) (ANY_EXTEND (REG N)).  */
  if (GET_CODE (expr) != SET)
  if (GET_CODE (expr) != SET)
    return;
    return;
 
 
  src = SET_SRC (expr);
  src = SET_SRC (expr);
  code = GET_CODE (src);
  code = GET_CODE (src);
  dest = SET_DEST (expr);
  dest = SET_DEST (expr);
  mode = GET_MODE (dest);
  mode = GET_MODE (dest);
 
 
  if (REG_P (dest)
  if (REG_P (dest)
      && (code == SIGN_EXTEND || code == ZERO_EXTEND)
      && (code == SIGN_EXTEND || code == ZERO_EXTEND)
      && REG_P (XEXP (src, 0))
      && REG_P (XEXP (src, 0))
      && REGNO (dest) == REGNO (XEXP (src, 0)))
      && REGNO (dest) == REGNO (XEXP (src, 0)))
    {
    {
      struct df_link *defs, *def;
      struct df_link *defs, *def;
      ext_cand *cand;
      ext_cand *cand;
 
 
      /* First, make sure we can get all the reaching definitions.  */
      /* First, make sure we can get all the reaching definitions.  */
      defs = get_defs (insn, XEXP (src, 0), NULL);
      defs = get_defs (insn, XEXP (src, 0), NULL);
      if (!defs)
      if (!defs)
        {
        {
          if (dump_file)
          if (dump_file)
            {
            {
              fprintf (dump_file, "Cannot eliminate extension:\n");
              fprintf (dump_file, "Cannot eliminate extension:\n");
              print_rtl_single (dump_file, insn);
              print_rtl_single (dump_file, insn);
              fprintf (dump_file, " because of missing definition(s)\n");
              fprintf (dump_file, " because of missing definition(s)\n");
            }
            }
          return;
          return;
        }
        }
 
 
      /* Second, make sure the reaching definitions don't feed another and
      /* Second, make sure the reaching definitions don't feed another and
         different extension.  FIXME: this obviously can be improved.  */
         different extension.  FIXME: this obviously can be improved.  */
      for (def = defs; def; def = def->next)
      for (def = defs; def; def = def->next)
        if ((idx = def_map[INSN_UID(DF_REF_INSN (def->ref))])
        if ((idx = def_map[INSN_UID(DF_REF_INSN (def->ref))])
            && (cand = VEC_index (ext_cand, *insn_list, idx - 1))
            && (cand = VEC_index (ext_cand, *insn_list, idx - 1))
            && (cand->code != code || cand->mode != mode))
            && (cand->code != code || cand->mode != mode))
          {
          {
            if (dump_file)
            if (dump_file)
              {
              {
                fprintf (dump_file, "Cannot eliminate extension:\n");
                fprintf (dump_file, "Cannot eliminate extension:\n");
                print_rtl_single (dump_file, insn);
                print_rtl_single (dump_file, insn);
                fprintf (dump_file, " because of other extension\n");
                fprintf (dump_file, " because of other extension\n");
              }
              }
            return;
            return;
          }
          }
 
 
      /* Then add the candidate to the list and insert the reaching definitions
      /* Then add the candidate to the list and insert the reaching definitions
         into the definition map.  */
         into the definition map.  */
      cand = VEC_safe_push (ext_cand, heap, *insn_list, NULL);
      cand = VEC_safe_push (ext_cand, heap, *insn_list, NULL);
      cand->expr = expr;
      cand->expr = expr;
      cand->code = code;
      cand->code = code;
      cand->mode = mode;
      cand->mode = mode;
      cand->insn = insn;
      cand->insn = insn;
      idx = VEC_length (ext_cand, *insn_list);
      idx = VEC_length (ext_cand, *insn_list);
 
 
      for (def = defs; def; def = def->next)
      for (def = defs; def; def = def->next)
        def_map[INSN_UID(DF_REF_INSN (def->ref))] = idx;
        def_map[INSN_UID(DF_REF_INSN (def->ref))] = idx;
    }
    }
}
}
 
 
/* Traverse the instruction stream looking for extensions and return the
/* Traverse the instruction stream looking for extensions and return the
   list of candidates.  */
   list of candidates.  */
 
 
static VEC (ext_cand, heap)*
static VEC (ext_cand, heap)*
find_removable_extensions (void)
find_removable_extensions (void)
{
{
  VEC (ext_cand, heap) *insn_list = NULL;
  VEC (ext_cand, heap) *insn_list = NULL;
  basic_block bb;
  basic_block bb;
  rtx insn, set;
  rtx insn, set;
  unsigned *def_map = XCNEWVEC (unsigned, max_insn_uid);
  unsigned *def_map = XCNEWVEC (unsigned, max_insn_uid);
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    FOR_BB_INSNS (bb, insn)
    FOR_BB_INSNS (bb, insn)
      {
      {
        if (!NONDEBUG_INSN_P (insn))
        if (!NONDEBUG_INSN_P (insn))
          continue;
          continue;
 
 
        set = single_set (insn);
        set = single_set (insn);
        if (set == NULL_RTX)
        if (set == NULL_RTX)
          continue;
          continue;
        add_removable_extension (set, insn, &insn_list, def_map);
        add_removable_extension (set, insn, &insn_list, def_map);
      }
      }
 
 
  XDELETEVEC (def_map);
  XDELETEVEC (def_map);
 
 
  return insn_list;
  return insn_list;
}
}
 
 
/* This is the main function that checks the insn stream for redundant
/* This is the main function that checks the insn stream for redundant
   extensions and tries to remove them if possible.  */
   extensions and tries to remove them if possible.  */
 
 
static void
static void
find_and_remove_re (void)
find_and_remove_re (void)
{
{
  ext_cand *curr_cand;
  ext_cand *curr_cand;
  rtx curr_insn = NULL_RTX;
  rtx curr_insn = NULL_RTX;
  int num_re_opportunities = 0, num_realized = 0, i;
  int num_re_opportunities = 0, num_realized = 0, i;
  VEC (ext_cand, heap) *reinsn_list;
  VEC (ext_cand, heap) *reinsn_list;
  VEC (rtx, heap) *reinsn_del_list;
  VEC (rtx, heap) *reinsn_del_list;
  ext_state state;
  ext_state state;
 
 
  /* Construct DU chain to get all reaching definitions of each
  /* Construct DU chain to get all reaching definitions of each
     extension instruction.  */
     extension instruction.  */
  df_chain_add_problem (DF_UD_CHAIN + DF_DU_CHAIN);
  df_chain_add_problem (DF_UD_CHAIN + DF_DU_CHAIN);
  df_analyze ();
  df_analyze ();
  df_set_flags (DF_DEFER_INSN_RESCAN);
  df_set_flags (DF_DEFER_INSN_RESCAN);
 
 
  max_insn_uid = get_max_uid ();
  max_insn_uid = get_max_uid ();
  reinsn_del_list = NULL;
  reinsn_del_list = NULL;
  reinsn_list = find_removable_extensions ();
  reinsn_list = find_removable_extensions ();
  state.defs_list = NULL;
  state.defs_list = NULL;
  state.copies_list = NULL;
  state.copies_list = NULL;
  state.modified_list = NULL;
  state.modified_list = NULL;
  state.work_list = NULL;
  state.work_list = NULL;
  if (VEC_empty (ext_cand, reinsn_list))
  if (VEC_empty (ext_cand, reinsn_list))
    state.modified = NULL;
    state.modified = NULL;
  else
  else
    state.modified = XCNEWVEC (struct ext_modified, max_insn_uid);
    state.modified = XCNEWVEC (struct ext_modified, max_insn_uid);
 
 
  FOR_EACH_VEC_ELT (ext_cand, reinsn_list, i, curr_cand)
  FOR_EACH_VEC_ELT (ext_cand, reinsn_list, i, curr_cand)
    {
    {
      num_re_opportunities++;
      num_re_opportunities++;
 
 
      /* Try to combine the extension with the definition.  */
      /* Try to combine the extension with the definition.  */
      if (dump_file)
      if (dump_file)
        {
        {
          fprintf (dump_file, "Trying to eliminate extension:\n");
          fprintf (dump_file, "Trying to eliminate extension:\n");
          print_rtl_single (dump_file, curr_cand->insn);
          print_rtl_single (dump_file, curr_cand->insn);
        }
        }
 
 
      if (combine_reaching_defs (curr_cand, curr_cand->expr, &state))
      if (combine_reaching_defs (curr_cand, curr_cand->expr, &state))
        {
        {
          if (dump_file)
          if (dump_file)
            fprintf (dump_file, "Eliminated the extension.\n");
            fprintf (dump_file, "Eliminated the extension.\n");
          num_realized++;
          num_realized++;
          VEC_safe_push (rtx, heap, reinsn_del_list, curr_cand->insn);
          VEC_safe_push (rtx, heap, reinsn_del_list, curr_cand->insn);
          state.modified[INSN_UID (curr_cand->insn)].deleted = 1;
          state.modified[INSN_UID (curr_cand->insn)].deleted = 1;
        }
        }
    }
    }
 
 
  /* Delete all useless extensions here in one sweep.  */
  /* Delete all useless extensions here in one sweep.  */
  FOR_EACH_VEC_ELT (rtx, reinsn_del_list, i, curr_insn)
  FOR_EACH_VEC_ELT (rtx, reinsn_del_list, i, curr_insn)
    delete_insn (curr_insn);
    delete_insn (curr_insn);
 
 
  VEC_free (ext_cand, heap, reinsn_list);
  VEC_free (ext_cand, heap, reinsn_list);
  VEC_free (rtx, heap, reinsn_del_list);
  VEC_free (rtx, heap, reinsn_del_list);
  VEC_free (rtx, heap, state.defs_list);
  VEC_free (rtx, heap, state.defs_list);
  VEC_free (rtx, heap, state.copies_list);
  VEC_free (rtx, heap, state.copies_list);
  VEC_free (rtx, heap, state.modified_list);
  VEC_free (rtx, heap, state.modified_list);
  VEC_free (rtx, heap, state.work_list);
  VEC_free (rtx, heap, state.work_list);
  XDELETEVEC (state.modified);
  XDELETEVEC (state.modified);
 
 
  if (dump_file && num_re_opportunities > 0)
  if (dump_file && num_re_opportunities > 0)
    fprintf (dump_file, "Elimination opportunities = %d realized = %d\n",
    fprintf (dump_file, "Elimination opportunities = %d realized = %d\n",
             num_re_opportunities, num_realized);
             num_re_opportunities, num_realized);
 
 
  df_finish_pass (false);
  df_finish_pass (false);
}
}
 
 
/* Find and remove redundant extensions.  */
/* Find and remove redundant extensions.  */
 
 
static unsigned int
static unsigned int
rest_of_handle_ree (void)
rest_of_handle_ree (void)
{
{
  timevar_push (TV_REE);
  timevar_push (TV_REE);
  find_and_remove_re ();
  find_and_remove_re ();
  timevar_pop (TV_REE);
  timevar_pop (TV_REE);
  return 0;
  return 0;
}
}
 
 
/* Run REE pass when flag_ree is set at optimization level > 0.  */
/* Run REE pass when flag_ree is set at optimization level > 0.  */
 
 
static bool
static bool
gate_handle_ree (void)
gate_handle_ree (void)
{
{
  return (optimize > 0 && flag_ree);
  return (optimize > 0 && flag_ree);
}
}
 
 
struct rtl_opt_pass pass_ree =
struct rtl_opt_pass pass_ree =
{
{
 {
 {
  RTL_PASS,
  RTL_PASS,
  "ree",                                /* name */
  "ree",                                /* name */
  gate_handle_ree,                      /* gate */
  gate_handle_ree,                      /* gate */
  rest_of_handle_ree,                   /* execute */
  rest_of_handle_ree,                   /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_REE,                               /* tv_id */
  TV_REE,                               /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_ggc_collect |
  TODO_ggc_collect |
  TODO_verify_rtl_sharing,              /* todo_flags_finish */
  TODO_verify_rtl_sharing,              /* todo_flags_finish */
 }
 }
};
};
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.