OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [gcc/] [sel-sched-ir.h] - Diff between revs 684 and 783

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 684 Rev 783
/* Instruction scheduling pass.  This file contains definitions used
/* Instruction scheduling pass.  This file contains definitions used
   internally in the scheduler.
   internally in the scheduler.
   Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
   Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#ifndef GCC_SEL_SCHED_IR_H
#ifndef GCC_SEL_SCHED_IR_H
#define GCC_SEL_SCHED_IR_H
#define GCC_SEL_SCHED_IR_H
 
 
/* For state_t.  */
/* For state_t.  */
#include "insn-attr.h"
#include "insn-attr.h"
#include "regset.h"
#include "regset.h"
#include "basic-block.h"
#include "basic-block.h"
/* For reg_note.  */
/* For reg_note.  */
#include "rtl.h"
#include "rtl.h"
#include "ggc.h"
#include "ggc.h"
#include "bitmap.h"
#include "bitmap.h"
#include "vecprim.h"
#include "vecprim.h"
#include "sched-int.h"
#include "sched-int.h"
#include "cfgloop.h"
#include "cfgloop.h"
 
 
/* tc_t is a short for target context.  This is a state of the target
/* tc_t is a short for target context.  This is a state of the target
   backend.  */
   backend.  */
typedef void *tc_t;
typedef void *tc_t;
 
 
/* List data types used for av sets, fences, paths, and boundaries.  */
/* List data types used for av sets, fences, paths, and boundaries.  */
 
 
/* Forward declarations for types that are part of some list nodes.  */
/* Forward declarations for types that are part of some list nodes.  */
struct _list_node;
struct _list_node;
 
 
/* List backend.  */
/* List backend.  */
typedef struct _list_node *_list_t;
typedef struct _list_node *_list_t;
#define _LIST_NEXT(L) ((L)->next)
#define _LIST_NEXT(L) ((L)->next)
 
 
/* Instruction data that is part of vinsn type.  */
/* Instruction data that is part of vinsn type.  */
struct idata_def;
struct idata_def;
typedef struct idata_def *idata_t;
typedef struct idata_def *idata_t;
 
 
/* A virtual instruction, i.e. an instruction as seen by the scheduler.  */
/* A virtual instruction, i.e. an instruction as seen by the scheduler.  */
struct vinsn_def;
struct vinsn_def;
typedef struct vinsn_def *vinsn_t;
typedef struct vinsn_def *vinsn_t;
 
 
/* RTX list.
/* RTX list.
   This type is the backend for ilist.  */
   This type is the backend for ilist.  */
typedef _list_t _xlist_t;
typedef _list_t _xlist_t;
#define _XLIST_X(L) ((L)->u.x)
#define _XLIST_X(L) ((L)->u.x)
#define _XLIST_NEXT(L) (_LIST_NEXT (L))
#define _XLIST_NEXT(L) (_LIST_NEXT (L))
 
 
/* Instruction.  */
/* Instruction.  */
typedef rtx insn_t;
typedef rtx insn_t;
 
 
/* List of insns.  */
/* List of insns.  */
typedef _xlist_t ilist_t;
typedef _xlist_t ilist_t;
#define ILIST_INSN(L) (_XLIST_X (L))
#define ILIST_INSN(L) (_XLIST_X (L))
#define ILIST_NEXT(L) (_XLIST_NEXT (L))
#define ILIST_NEXT(L) (_XLIST_NEXT (L))
 
 
/* This lists possible transformations that done locally, i.e. in
/* This lists possible transformations that done locally, i.e. in
   moveup_expr.  */
   moveup_expr.  */
enum local_trans_type
enum local_trans_type
  {
  {
    TRANS_SUBSTITUTION,
    TRANS_SUBSTITUTION,
    TRANS_SPECULATION
    TRANS_SPECULATION
  };
  };
 
 
/* This struct is used to record the history of expression's
/* This struct is used to record the history of expression's
   transformations.  */
   transformations.  */
struct expr_history_def_1
struct expr_history_def_1
{
{
  /* UID of the insn.  */
  /* UID of the insn.  */
  unsigned uid;
  unsigned uid;
 
 
  /* How the expression looked like.  */
  /* How the expression looked like.  */
  vinsn_t old_expr_vinsn;
  vinsn_t old_expr_vinsn;
 
 
  /* How the expression looks after the transformation.  */
  /* How the expression looks after the transformation.  */
  vinsn_t new_expr_vinsn;
  vinsn_t new_expr_vinsn;
 
 
  /* And its speculative status.  */
  /* And its speculative status.  */
  ds_t spec_ds;
  ds_t spec_ds;
 
 
  /* Type of the transformation.  */
  /* Type of the transformation.  */
  enum local_trans_type type;
  enum local_trans_type type;
};
};
 
 
typedef struct expr_history_def_1 expr_history_def;
typedef struct expr_history_def_1 expr_history_def;
 
 
DEF_VEC_O (expr_history_def);
DEF_VEC_O (expr_history_def);
DEF_VEC_ALLOC_O (expr_history_def, heap);
DEF_VEC_ALLOC_O (expr_history_def, heap);
 
 
/* Expression information.  */
/* Expression information.  */
struct _expr
struct _expr
{
{
  /* Insn description.  */
  /* Insn description.  */
  vinsn_t vinsn;
  vinsn_t vinsn;
 
 
  /* SPEC is the degree of speculativeness.
  /* SPEC is the degree of speculativeness.
     FIXME: now spec is increased when an rhs is moved through a
     FIXME: now spec is increased when an rhs is moved through a
     conditional, thus showing only control speculativeness.  In the
     conditional, thus showing only control speculativeness.  In the
     future we'd like to count data spec separately to allow a better
     future we'd like to count data spec separately to allow a better
     control on scheduling.  */
     control on scheduling.  */
  int spec;
  int spec;
 
 
  /* Degree of speculativeness measured as probability of executing
  /* Degree of speculativeness measured as probability of executing
     instruction's original basic block given relative to
     instruction's original basic block given relative to
     the current scheduling point.  */
     the current scheduling point.  */
  int usefulness;
  int usefulness;
 
 
  /* A priority of this expression.  */
  /* A priority of this expression.  */
  int priority;
  int priority;
 
 
  /* A priority adjustment of this expression.  */
  /* A priority adjustment of this expression.  */
  int priority_adj;
  int priority_adj;
 
 
  /* Number of times the insn was scheduled.  */
  /* Number of times the insn was scheduled.  */
  int sched_times;
  int sched_times;
 
 
  /* A basic block index this was originated from.  Zero when there is
  /* A basic block index this was originated from.  Zero when there is
     more than one originator.  */
     more than one originator.  */
  int orig_bb_index;
  int orig_bb_index;
 
 
  /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
  /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
     point.  */
     point.  */
  ds_t spec_done_ds;
  ds_t spec_done_ds;
 
 
  /* SPEC_TO_CHECK_DS hold speculation types that should be checked
  /* SPEC_TO_CHECK_DS hold speculation types that should be checked
     (used only during move_op ()).  */
     (used only during move_op ()).  */
  ds_t spec_to_check_ds;
  ds_t spec_to_check_ds;
 
 
  /* Cycle on which original insn was scheduled.  Zero when it has not yet
  /* Cycle on which original insn was scheduled.  Zero when it has not yet
     been scheduled or more than one originator.  */
     been scheduled or more than one originator.  */
  int orig_sched_cycle;
  int orig_sched_cycle;
 
 
  /* This vector contains the history of insn's transformations.  */
  /* This vector contains the history of insn's transformations.  */
  VEC(expr_history_def, heap) *history_of_changes;
  VEC(expr_history_def, heap) *history_of_changes;
 
 
  /* True (1) when original target (register or memory) of this instruction
  /* True (1) when original target (register or memory) of this instruction
     is available for scheduling, false otherwise.  -1 means we're not sure;
     is available for scheduling, false otherwise.  -1 means we're not sure;
     please run find_used_regs to clarify.  */
     please run find_used_regs to clarify.  */
  signed char target_available;
  signed char target_available;
 
 
  /* True when this expression needs a speculation check to be scheduled.
  /* True when this expression needs a speculation check to be scheduled.
     This is used during find_used_regs.  */
     This is used during find_used_regs.  */
  BOOL_BITFIELD needs_spec_check_p : 1;
  BOOL_BITFIELD needs_spec_check_p : 1;
 
 
  /* True when the expression was substituted.  Used for statistical
  /* True when the expression was substituted.  Used for statistical
     purposes.  */
     purposes.  */
  BOOL_BITFIELD was_substituted : 1;
  BOOL_BITFIELD was_substituted : 1;
 
 
  /* True when the expression was renamed.  */
  /* True when the expression was renamed.  */
  BOOL_BITFIELD was_renamed : 1;
  BOOL_BITFIELD was_renamed : 1;
 
 
  /* True when expression can't be moved.  */
  /* True when expression can't be moved.  */
  BOOL_BITFIELD cant_move : 1;
  BOOL_BITFIELD cant_move : 1;
};
};
 
 
typedef struct _expr expr_def;
typedef struct _expr expr_def;
typedef expr_def *expr_t;
typedef expr_def *expr_t;
 
 
#define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
#define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
#define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
#define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
#define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
#define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
#define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
#define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
#define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
#define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
#define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
#define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
#define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
#define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
 
 
#define EXPR_SPEC(EXPR) ((EXPR)->spec)
#define EXPR_SPEC(EXPR) ((EXPR)->spec)
#define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
#define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
#define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
#define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
#define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
#define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
#define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
#define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
#define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
#define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
#define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
#define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
#define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
#define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
#define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
#define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
#define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
#define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
#define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
#define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
#define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
#define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
#define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
#define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
#define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
#define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
#define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
#define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
 
 
#define EXPR_WAS_CHANGED(EXPR) (VEC_length (expr_history_def, \
#define EXPR_WAS_CHANGED(EXPR) (VEC_length (expr_history_def, \
                                            EXPR_HISTORY_OF_CHANGES (EXPR)) > 0)
                                            EXPR_HISTORY_OF_CHANGES (EXPR)) > 0)
 
 
/* Insn definition for list of original insns in find_used_regs.  */
/* Insn definition for list of original insns in find_used_regs.  */
struct _def
struct _def
{
{
  insn_t orig_insn;
  insn_t orig_insn;
 
 
  /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
  /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
     rhs from two different places, but only one of the code motion paths
     rhs from two different places, but only one of the code motion paths
     crosses a call, we can't use any of the call_used_regs, no matter which
     crosses a call, we can't use any of the call_used_regs, no matter which
     path or whether all paths crosses a call.  Thus we should move CROSSES_CALL
     path or whether all paths crosses a call.  Thus we should move CROSSES_CALL
     to static params.  */
     to static params.  */
  bool crosses_call;
  bool crosses_call;
};
};
typedef struct _def *def_t;
typedef struct _def *def_t;
 
 
 
 
/* Availability sets are sets of expressions we're scheduling.  */
/* Availability sets are sets of expressions we're scheduling.  */
typedef _list_t av_set_t;
typedef _list_t av_set_t;
#define _AV_SET_EXPR(L) (&(L)->u.expr)
#define _AV_SET_EXPR(L) (&(L)->u.expr)
#define _AV_SET_NEXT(L) (_LIST_NEXT (L))
#define _AV_SET_NEXT(L) (_LIST_NEXT (L))
 
 
 
 
/* Boundary of the current fence group.  */
/* Boundary of the current fence group.  */
struct _bnd
struct _bnd
{
{
  /* The actual boundary instruction.  */
  /* The actual boundary instruction.  */
  insn_t to;
  insn_t to;
 
 
  /* Its path to the fence.  */
  /* Its path to the fence.  */
  ilist_t ptr;
  ilist_t ptr;
 
 
  /* Availability set at the boundary.  */
  /* Availability set at the boundary.  */
  av_set_t av;
  av_set_t av;
 
 
  /* This set moved to the fence.  */
  /* This set moved to the fence.  */
  av_set_t av1;
  av_set_t av1;
 
 
  /* Deps context at this boundary.  As long as we have one boundary per fence,
  /* Deps context at this boundary.  As long as we have one boundary per fence,
     this is just a pointer to the same deps context as in the corresponding
     this is just a pointer to the same deps context as in the corresponding
     fence.  */
     fence.  */
  deps_t dc;
  deps_t dc;
};
};
typedef struct _bnd *bnd_t;
typedef struct _bnd *bnd_t;
#define BND_TO(B) ((B)->to)
#define BND_TO(B) ((B)->to)
 
 
/* PTR stands not for pointer as you might think, but as a Path To Root of the
/* PTR stands not for pointer as you might think, but as a Path To Root of the
   current instruction group from boundary B.  */
   current instruction group from boundary B.  */
#define BND_PTR(B) ((B)->ptr)
#define BND_PTR(B) ((B)->ptr)
#define BND_AV(B) ((B)->av)
#define BND_AV(B) ((B)->av)
#define BND_AV1(B) ((B)->av1)
#define BND_AV1(B) ((B)->av1)
#define BND_DC(B) ((B)->dc)
#define BND_DC(B) ((B)->dc)
 
 
/* List of boundaries.  */
/* List of boundaries.  */
typedef _list_t blist_t;
typedef _list_t blist_t;
#define BLIST_BND(L) (&(L)->u.bnd)
#define BLIST_BND(L) (&(L)->u.bnd)
#define BLIST_NEXT(L) (_LIST_NEXT (L))
#define BLIST_NEXT(L) (_LIST_NEXT (L))
 
 
 
 
/* Fence information.  A fence represents current scheduling point and also
/* Fence information.  A fence represents current scheduling point and also
   blocks code motion through it when pipelining.  */
   blocks code motion through it when pipelining.  */
struct _fence
struct _fence
{
{
  /* Insn before which we gather an instruction group.*/
  /* Insn before which we gather an instruction group.*/
  insn_t insn;
  insn_t insn;
 
 
  /* Modeled state of the processor pipeline.  */
  /* Modeled state of the processor pipeline.  */
  state_t state;
  state_t state;
 
 
  /* Current cycle that is being scheduled on this fence.  */
  /* Current cycle that is being scheduled on this fence.  */
  int cycle;
  int cycle;
 
 
  /* Number of insns that were scheduled on the current cycle.
  /* Number of insns that were scheduled on the current cycle.
     This information has to be local to a fence.  */
     This information has to be local to a fence.  */
  int cycle_issued_insns;
  int cycle_issued_insns;
 
 
  /* At the end of fill_insns () this field holds the list of the instructions
  /* At the end of fill_insns () this field holds the list of the instructions
     that are inner boundaries of the scheduled parallel group.  */
     that are inner boundaries of the scheduled parallel group.  */
  ilist_t bnds;
  ilist_t bnds;
 
 
  /* Deps context at this fence.  It is used to model dependencies at the
  /* Deps context at this fence.  It is used to model dependencies at the
     fence so that insn ticks can be properly evaluated.  */
     fence so that insn ticks can be properly evaluated.  */
  deps_t dc;
  deps_t dc;
 
 
  /* Target context at this fence.  Used to save and load any local target
  /* Target context at this fence.  Used to save and load any local target
     scheduling information when changing fences.  */
     scheduling information when changing fences.  */
  tc_t tc;
  tc_t tc;
 
 
  /* A vector of insns that are scheduled but not yet completed.  */
  /* A vector of insns that are scheduled but not yet completed.  */
  VEC (rtx,gc) *executing_insns;
  VEC (rtx,gc) *executing_insns;
 
 
  /* A vector indexed by UIDs that caches the earliest cycle on which
  /* A vector indexed by UIDs that caches the earliest cycle on which
     an insn can be scheduled on this fence.  */
     an insn can be scheduled on this fence.  */
  int *ready_ticks;
  int *ready_ticks;
 
 
  /* Its size.  */
  /* Its size.  */
  int ready_ticks_size;
  int ready_ticks_size;
 
 
  /* Insn, which has been scheduled last on this fence.  */
  /* Insn, which has been scheduled last on this fence.  */
  rtx last_scheduled_insn;
  rtx last_scheduled_insn;
 
 
  /* The last value of can_issue_more variable on this fence.  */
  /* The last value of can_issue_more variable on this fence.  */
  int issue_more;
  int issue_more;
 
 
  /* If non-NULL force the next scheduled insn to be SCHED_NEXT.  */
  /* If non-NULL force the next scheduled insn to be SCHED_NEXT.  */
  rtx sched_next;
  rtx sched_next;
 
 
  /* True if fill_insns processed this fence.  */
  /* True if fill_insns processed this fence.  */
  BOOL_BITFIELD processed_p : 1;
  BOOL_BITFIELD processed_p : 1;
 
 
  /* True if fill_insns actually scheduled something on this fence.  */
  /* True if fill_insns actually scheduled something on this fence.  */
  BOOL_BITFIELD scheduled_p : 1;
  BOOL_BITFIELD scheduled_p : 1;
 
 
  /* True when the next insn scheduled here would start a cycle.  */
  /* True when the next insn scheduled here would start a cycle.  */
  BOOL_BITFIELD starts_cycle_p : 1;
  BOOL_BITFIELD starts_cycle_p : 1;
 
 
  /* True when the next insn scheduled here would be scheduled after a stall.  */
  /* True when the next insn scheduled here would be scheduled after a stall.  */
  BOOL_BITFIELD after_stall_p : 1;
  BOOL_BITFIELD after_stall_p : 1;
};
};
typedef struct _fence *fence_t;
typedef struct _fence *fence_t;
 
 
#define FENCE_INSN(F) ((F)->insn)
#define FENCE_INSN(F) ((F)->insn)
#define FENCE_STATE(F) ((F)->state)
#define FENCE_STATE(F) ((F)->state)
#define FENCE_BNDS(F) ((F)->bnds)
#define FENCE_BNDS(F) ((F)->bnds)
#define FENCE_PROCESSED_P(F) ((F)->processed_p)
#define FENCE_PROCESSED_P(F) ((F)->processed_p)
#define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
#define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
#define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
#define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
#define FENCE_CYCLE(F) ((F)->cycle)
#define FENCE_CYCLE(F) ((F)->cycle)
#define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
#define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
#define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
#define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
#define FENCE_DC(F) ((F)->dc)
#define FENCE_DC(F) ((F)->dc)
#define FENCE_TC(F) ((F)->tc)
#define FENCE_TC(F) ((F)->tc)
#define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
#define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
#define FENCE_ISSUE_MORE(F) ((F)->issue_more)
#define FENCE_ISSUE_MORE(F) ((F)->issue_more)
#define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
#define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
#define FENCE_READY_TICKS(F) ((F)->ready_ticks)
#define FENCE_READY_TICKS(F) ((F)->ready_ticks)
#define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
#define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
#define FENCE_SCHED_NEXT(F) ((F)->sched_next)
#define FENCE_SCHED_NEXT(F) ((F)->sched_next)
 
 
/* List of fences.  */
/* List of fences.  */
typedef _list_t flist_t;
typedef _list_t flist_t;
#define FLIST_FENCE(L) (&(L)->u.fence)
#define FLIST_FENCE(L) (&(L)->u.fence)
#define FLIST_NEXT(L) (_LIST_NEXT (L))
#define FLIST_NEXT(L) (_LIST_NEXT (L))
 
 
/* List of fences with pointer to the tail node.  */
/* List of fences with pointer to the tail node.  */
struct flist_tail_def
struct flist_tail_def
{
{
  flist_t head;
  flist_t head;
  flist_t *tailp;
  flist_t *tailp;
};
};
 
 
typedef struct flist_tail_def *flist_tail_t;
typedef struct flist_tail_def *flist_tail_t;
#define FLIST_TAIL_HEAD(L) ((L)->head)
#define FLIST_TAIL_HEAD(L) ((L)->head)
#define FLIST_TAIL_TAILP(L) ((L)->tailp)
#define FLIST_TAIL_TAILP(L) ((L)->tailp)
 
 
/* List node information.  A list node can be any of the types above.  */
/* List node information.  A list node can be any of the types above.  */
struct _list_node
struct _list_node
{
{
  _list_t next;
  _list_t next;
 
 
  union
  union
  {
  {
    rtx x;
    rtx x;
    struct _bnd bnd;
    struct _bnd bnd;
    expr_def expr;
    expr_def expr;
    struct _fence fence;
    struct _fence fence;
    struct _def def;
    struct _def def;
    void *data;
    void *data;
  } u;
  } u;
};
};


 
 
/* _list_t functions.
/* _list_t functions.
   All of _*list_* functions are used through accessor macros, thus
   All of _*list_* functions are used through accessor macros, thus
   we can't move them in sel-sched-ir.c.  */
   we can't move them in sel-sched-ir.c.  */
extern alloc_pool sched_lists_pool;
extern alloc_pool sched_lists_pool;
 
 
static inline _list_t
static inline _list_t
_list_alloc (void)
_list_alloc (void)
{
{
  return (_list_t) pool_alloc (sched_lists_pool);
  return (_list_t) pool_alloc (sched_lists_pool);
}
}
 
 
static inline void
static inline void
_list_add (_list_t *lp)
_list_add (_list_t *lp)
{
{
  _list_t l = _list_alloc ();
  _list_t l = _list_alloc ();
 
 
  _LIST_NEXT (l) = *lp;
  _LIST_NEXT (l) = *lp;
  *lp = l;
  *lp = l;
}
}
 
 
static inline void
static inline void
_list_remove_nofree (_list_t *lp)
_list_remove_nofree (_list_t *lp)
{
{
  _list_t n = *lp;
  _list_t n = *lp;
 
 
  *lp = _LIST_NEXT (n);
  *lp = _LIST_NEXT (n);
}
}
 
 
static inline void
static inline void
_list_remove (_list_t *lp)
_list_remove (_list_t *lp)
{
{
  _list_t n = *lp;
  _list_t n = *lp;
 
 
  *lp = _LIST_NEXT (n);
  *lp = _LIST_NEXT (n);
  pool_free (sched_lists_pool, n);
  pool_free (sched_lists_pool, n);
}
}
 
 
static inline void
static inline void
_list_clear (_list_t *l)
_list_clear (_list_t *l)
{
{
  while (*l)
  while (*l)
    _list_remove (l);
    _list_remove (l);
}
}


 
 
/* List iterator backend.  */
/* List iterator backend.  */
typedef struct
typedef struct
{
{
  /* The list we're iterating.  */
  /* The list we're iterating.  */
  _list_t *lp;
  _list_t *lp;
 
 
  /* True when this iterator supprts removing.  */
  /* True when this iterator supprts removing.  */
  bool can_remove_p;
  bool can_remove_p;
 
 
  /* True when we've actually removed something.  */
  /* True when we've actually removed something.  */
  bool removed_p;
  bool removed_p;
} _list_iterator;
} _list_iterator;
 
 
static inline void
static inline void
_list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
_list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
{
{
  ip->lp = lp;
  ip->lp = lp;
  ip->can_remove_p = can_remove_p;
  ip->can_remove_p = can_remove_p;
  ip->removed_p = false;
  ip->removed_p = false;
}
}
 
 
static inline void
static inline void
_list_iter_next (_list_iterator *ip)
_list_iter_next (_list_iterator *ip)
{
{
  if (!ip->removed_p)
  if (!ip->removed_p)
    ip->lp = &_LIST_NEXT (*ip->lp);
    ip->lp = &_LIST_NEXT (*ip->lp);
  else
  else
    ip->removed_p = false;
    ip->removed_p = false;
}
}
 
 
static inline void
static inline void
_list_iter_remove (_list_iterator *ip)
_list_iter_remove (_list_iterator *ip)
{
{
  gcc_assert (!ip->removed_p && ip->can_remove_p);
  gcc_assert (!ip->removed_p && ip->can_remove_p);
  _list_remove (ip->lp);
  _list_remove (ip->lp);
  ip->removed_p = true;
  ip->removed_p = true;
}
}
 
 
static inline void
static inline void
_list_iter_remove_nofree (_list_iterator *ip)
_list_iter_remove_nofree (_list_iterator *ip)
{
{
  gcc_assert (!ip->removed_p && ip->can_remove_p);
  gcc_assert (!ip->removed_p && ip->can_remove_p);
  _list_remove_nofree (ip->lp);
  _list_remove_nofree (ip->lp);
  ip->removed_p = true;
  ip->removed_p = true;
}
}
 
 
/* General macros to traverse a list.  FOR_EACH_* interfaces are
/* General macros to traverse a list.  FOR_EACH_* interfaces are
   implemented using these.  */
   implemented using these.  */
#define _FOR_EACH(TYPE, ELEM, I, L)                             \
#define _FOR_EACH(TYPE, ELEM, I, L)                             \
  for (_list_iter_start (&(I), &(L), false);                    \
  for (_list_iter_start (&(I), &(L), false);                    \
       _list_iter_cond_##TYPE (*(I).lp, &(ELEM));               \
       _list_iter_cond_##TYPE (*(I).lp, &(ELEM));               \
       _list_iter_next (&(I)))
       _list_iter_next (&(I)))
 
 
#define _FOR_EACH_1(TYPE, ELEM, I, LP)                              \
#define _FOR_EACH_1(TYPE, ELEM, I, LP)                              \
  for (_list_iter_start (&(I), (LP), true);                         \
  for (_list_iter_start (&(I), (LP), true);                         \
       _list_iter_cond_##TYPE (*(I).lp, &(ELEM));                   \
       _list_iter_cond_##TYPE (*(I).lp, &(ELEM));                   \
       _list_iter_next (&(I)))
       _list_iter_next (&(I)))


 
 
/* _xlist_t functions.  */
/* _xlist_t functions.  */
 
 
static inline void
static inline void
_xlist_add (_xlist_t *lp, rtx x)
_xlist_add (_xlist_t *lp, rtx x)
{
{
  _list_add (lp);
  _list_add (lp);
  _XLIST_X (*lp) = x;
  _XLIST_X (*lp) = x;
}
}
 
 
#define _xlist_remove(LP) (_list_remove (LP))
#define _xlist_remove(LP) (_list_remove (LP))
#define _xlist_clear(LP) (_list_clear (LP))
#define _xlist_clear(LP) (_list_clear (LP))
 
 
static inline bool
static inline bool
_xlist_is_in_p (_xlist_t l, rtx x)
_xlist_is_in_p (_xlist_t l, rtx x)
{
{
  while (l)
  while (l)
    {
    {
      if (_XLIST_X (l) == x)
      if (_XLIST_X (l) == x)
        return true;
        return true;
      l = _XLIST_NEXT (l);
      l = _XLIST_NEXT (l);
    }
    }
 
 
  return false;
  return false;
}
}
 
 
/* Used through _FOR_EACH.  */
/* Used through _FOR_EACH.  */
static inline bool
static inline bool
_list_iter_cond_x (_xlist_t l, rtx *xp)
_list_iter_cond_x (_xlist_t l, rtx *xp)
{
{
  if (l)
  if (l)
    {
    {
      *xp = _XLIST_X (l);
      *xp = _XLIST_X (l);
      return true;
      return true;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
#define _xlist_iter_remove(IP) (_list_iter_remove (IP))
#define _xlist_iter_remove(IP) (_list_iter_remove (IP))
 
 
typedef _list_iterator _xlist_iterator;
typedef _list_iterator _xlist_iterator;
#define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
#define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
#define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
#define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))


 
 
/* ilist_t functions.  Instruction lists are simply RTX lists.  */
/* ilist_t functions.  Instruction lists are simply RTX lists.  */
 
 
#define ilist_add(LP, INSN) (_xlist_add ((LP), (INSN)))
#define ilist_add(LP, INSN) (_xlist_add ((LP), (INSN)))
#define ilist_remove(LP) (_xlist_remove (LP))
#define ilist_remove(LP) (_xlist_remove (LP))
#define ilist_clear(LP) (_xlist_clear (LP))
#define ilist_clear(LP) (_xlist_clear (LP))
#define ilist_is_in_p(L, INSN) (_xlist_is_in_p ((L), (INSN)))
#define ilist_is_in_p(L, INSN) (_xlist_is_in_p ((L), (INSN)))
#define ilist_iter_remove(IP) (_xlist_iter_remove (IP))
#define ilist_iter_remove(IP) (_xlist_iter_remove (IP))
 
 
typedef _xlist_iterator ilist_iterator;
typedef _xlist_iterator ilist_iterator;
#define FOR_EACH_INSN(INSN, I, L) _FOR_EACH_X (INSN, I, L)
#define FOR_EACH_INSN(INSN, I, L) _FOR_EACH_X (INSN, I, L)
#define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_X_1 (INSN, I, LP)
#define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_X_1 (INSN, I, LP)


 
 
/* Av set iterators.  */
/* Av set iterators.  */
typedef _list_iterator av_set_iterator;
typedef _list_iterator av_set_iterator;
#define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
#define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
#define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
#define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
 
 
static bool
static bool
_list_iter_cond_expr (av_set_t av, expr_t *exprp)
_list_iter_cond_expr (av_set_t av, expr_t *exprp)
{
{
  if (av)
  if (av)
    {
    {
      *exprp = _AV_SET_EXPR (av);
      *exprp = _AV_SET_EXPR (av);
      return true;
      return true;
    }
    }
 
 
  return false;
  return false;
}
}


 
 
/* Def list iterators.  */
/* Def list iterators.  */
typedef _list_t def_list_t;
typedef _list_t def_list_t;
typedef _list_iterator def_list_iterator;
typedef _list_iterator def_list_iterator;
 
 
#define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
#define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
#define DEF_LIST_DEF(L) (&(L)->u.def)
#define DEF_LIST_DEF(L) (&(L)->u.def)
 
 
#define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
#define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
 
 
static inline bool
static inline bool
_list_iter_cond_def (def_list_t def_list, def_t *def)
_list_iter_cond_def (def_list_t def_list, def_t *def)
{
{
  if (def_list)
  if (def_list)
    {
    {
      *def = DEF_LIST_DEF (def_list);
      *def = DEF_LIST_DEF (def_list);
      return true;
      return true;
    }
    }
 
 
  return false;
  return false;
}
}


 
 
/* InstructionData.  Contains information about insn pattern.  */
/* InstructionData.  Contains information about insn pattern.  */
struct idata_def
struct idata_def
{
{
  /* Type of the insn.
  /* Type of the insn.
     o CALL_INSN - Call insn
     o CALL_INSN - Call insn
     o JUMP_INSN - Jump insn
     o JUMP_INSN - Jump insn
     o INSN - INSN that cannot be cloned
     o INSN - INSN that cannot be cloned
     o USE - INSN that can be cloned
     o USE - INSN that can be cloned
     o SET - INSN that can be cloned and separable into lhs and rhs
     o SET - INSN that can be cloned and separable into lhs and rhs
     o PC - simplejump.  Insns that simply redirect control flow should not
     o PC - simplejump.  Insns that simply redirect control flow should not
     have any dependencies.  Sched-deps.c, though, might consider them as
     have any dependencies.  Sched-deps.c, though, might consider them as
     producers or consumers of certain registers.  To avoid that we handle
     producers or consumers of certain registers.  To avoid that we handle
     dependency for simple jumps ourselves.  */
     dependency for simple jumps ourselves.  */
  int type;
  int type;
 
 
  /* If insn is a SET, this is its left hand side.  */
  /* If insn is a SET, this is its left hand side.  */
  rtx lhs;
  rtx lhs;
 
 
  /* If insn is a SET, this is its right hand side.  */
  /* If insn is a SET, this is its right hand side.  */
  rtx rhs;
  rtx rhs;
 
 
  /* Registers that are set/used by this insn.  This info is now gathered
  /* Registers that are set/used by this insn.  This info is now gathered
     via sched-deps.c.  The downside of this is that we also use live info
     via sched-deps.c.  The downside of this is that we also use live info
     from flow that is accumulated in the basic blocks.  These two infos
     from flow that is accumulated in the basic blocks.  These two infos
     can be slightly inconsistent, hence in the beginning we make a pass
     can be slightly inconsistent, hence in the beginning we make a pass
     through CFG and calculating the conservative solution for the info in
     through CFG and calculating the conservative solution for the info in
     basic blocks.  When this scheduler will be switched to use dataflow,
     basic blocks.  When this scheduler will be switched to use dataflow,
     this can be unified as df gives us both per basic block and per
     this can be unified as df gives us both per basic block and per
     instruction info.  Actually, we don't do that pass and just hope
     instruction info.  Actually, we don't do that pass and just hope
     for the best.  */
     for the best.  */
  regset reg_sets;
  regset reg_sets;
 
 
  regset reg_clobbers;
  regset reg_clobbers;
 
 
  regset reg_uses;
  regset reg_uses;
};
};
 
 
#define IDATA_TYPE(ID) ((ID)->type)
#define IDATA_TYPE(ID) ((ID)->type)
#define IDATA_LHS(ID) ((ID)->lhs)
#define IDATA_LHS(ID) ((ID)->lhs)
#define IDATA_RHS(ID) ((ID)->rhs)
#define IDATA_RHS(ID) ((ID)->rhs)
#define IDATA_REG_SETS(ID) ((ID)->reg_sets)
#define IDATA_REG_SETS(ID) ((ID)->reg_sets)
#define IDATA_REG_USES(ID) ((ID)->reg_uses)
#define IDATA_REG_USES(ID) ((ID)->reg_uses)
#define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
#define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
 
 
/* Type to represent all needed info to emit an insn.
/* Type to represent all needed info to emit an insn.
   This is a virtual equivalent of the insn.
   This is a virtual equivalent of the insn.
   Every insn in the stream has an associated vinsn.  This is used
   Every insn in the stream has an associated vinsn.  This is used
   to reduce memory consumption basing on the fact that many insns
   to reduce memory consumption basing on the fact that many insns
   don't change through the scheduler.
   don't change through the scheduler.
 
 
   vinsn can be either normal or unique.
   vinsn can be either normal or unique.
   * Normal vinsn is the one, that can be cloned multiple times and typically
   * Normal vinsn is the one, that can be cloned multiple times and typically
   corresponds to normal instruction.
   corresponds to normal instruction.
 
 
   * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
   * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
   unusual stuff.  Such a vinsn is described by its INSN field, which is a
   unusual stuff.  Such a vinsn is described by its INSN field, which is a
   reference to the original instruction.  */
   reference to the original instruction.  */
struct vinsn_def
struct vinsn_def
{
{
  /* Associated insn.  */
  /* Associated insn.  */
  rtx insn_rtx;
  rtx insn_rtx;
 
 
  /* Its description.  */
  /* Its description.  */
  struct idata_def id;
  struct idata_def id;
 
 
  /* Hash of vinsn.  It is computed either from pattern or from rhs using
  /* Hash of vinsn.  It is computed either from pattern or from rhs using
     hash_rtx.  It is not placed in ID for faster compares.  */
     hash_rtx.  It is not placed in ID for faster compares.  */
  unsigned hash;
  unsigned hash;
 
 
  /* Hash of the insn_rtx pattern.  */
  /* Hash of the insn_rtx pattern.  */
  unsigned hash_rtx;
  unsigned hash_rtx;
 
 
  /* Smart pointer counter.  */
  /* Smart pointer counter.  */
  int count;
  int count;
 
 
  /* Cached cost of the vinsn.  To access it please use vinsn_cost ().  */
  /* Cached cost of the vinsn.  To access it please use vinsn_cost ().  */
  int cost;
  int cost;
 
 
  /* Mark insns that may trap so we don't move them through jumps.  */
  /* Mark insns that may trap so we don't move them through jumps.  */
  bool may_trap_p;
  bool may_trap_p;
};
};
 
 
#define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
#define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
#define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
#define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
 
 
#define VINSN_ID(VI) (&((VI)->id))
#define VINSN_ID(VI) (&((VI)->id))
#define VINSN_HASH(VI) ((VI)->hash)
#define VINSN_HASH(VI) ((VI)->hash)
#define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
#define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
#define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
#define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
#define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
#define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
#define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
#define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
#define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
#define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
#define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
#define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
#define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
#define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
#define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
#define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
#define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
#define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
#define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
#define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
#define VINSN_COUNT(VI) ((VI)->count)
#define VINSN_COUNT(VI) ((VI)->count)
#define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
#define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)


 
 
/* An entry of the hashtable describing transformations happened when
/* An entry of the hashtable describing transformations happened when
   moving up through an insn.  */
   moving up through an insn.  */
struct transformed_insns
struct transformed_insns
{
{
  /* Previous vinsn.  Used to find the proper element.  */
  /* Previous vinsn.  Used to find the proper element.  */
  vinsn_t vinsn_old;
  vinsn_t vinsn_old;
 
 
  /* A new vinsn.  */
  /* A new vinsn.  */
  vinsn_t vinsn_new;
  vinsn_t vinsn_new;
 
 
  /* Speculative status.  */
  /* Speculative status.  */
  ds_t ds;
  ds_t ds;
 
 
  /* Type of transformation happened.  */
  /* Type of transformation happened.  */
  enum local_trans_type type;
  enum local_trans_type type;
 
 
  /* Whether a conflict on the target register happened.  */
  /* Whether a conflict on the target register happened.  */
  BOOL_BITFIELD was_target_conflict : 1;
  BOOL_BITFIELD was_target_conflict : 1;
 
 
  /* Whether a check was needed.  */
  /* Whether a check was needed.  */
  BOOL_BITFIELD needs_check : 1;
  BOOL_BITFIELD needs_check : 1;
};
};
 
 
/* Indexed by INSN_LUID, the collection of all data associated with
/* Indexed by INSN_LUID, the collection of all data associated with
   a single instruction that is in the stream.  */
   a single instruction that is in the stream.  */
struct _sel_insn_data
struct _sel_insn_data
{
{
  /* The expression that contains vinsn for this insn and some
  /* The expression that contains vinsn for this insn and some
     flow-sensitive data like priority.  */
     flow-sensitive data like priority.  */
  expr_def expr;
  expr_def expr;
 
 
  /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty.  */
  /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty.  */
  int ws_level;
  int ws_level;
 
 
  /* A number that helps in defining a traversing order for a region.  */
  /* A number that helps in defining a traversing order for a region.  */
  int seqno;
  int seqno;
 
 
  /* A liveness data computed above this insn.  */
  /* A liveness data computed above this insn.  */
  regset live;
  regset live;
 
 
  /* An INSN_UID bit is set when deps analysis result is already known.  */
  /* An INSN_UID bit is set when deps analysis result is already known.  */
  bitmap analyzed_deps;
  bitmap analyzed_deps;
 
 
  /* An INSN_UID bit is set when a hard dep was found, not set when
  /* An INSN_UID bit is set when a hard dep was found, not set when
     no dependence is found.  This is meaningful only when the analyzed_deps
     no dependence is found.  This is meaningful only when the analyzed_deps
     bitmap has its bit set.  */
     bitmap has its bit set.  */
  bitmap found_deps;
  bitmap found_deps;
 
 
  /* An INSN_UID bit is set when this is a bookkeeping insn generated from
  /* An INSN_UID bit is set when this is a bookkeeping insn generated from
     a parent with this uid.  If a parent is a bookkeeping copy, all its
     a parent with this uid.  If a parent is a bookkeeping copy, all its
     originators are transitively included in this set.  */
     originators are transitively included in this set.  */
  bitmap originators;
  bitmap originators;
 
 
  /* A hashtable caching the result of insn transformations through this one.  */
  /* A hashtable caching the result of insn transformations through this one.  */
  htab_t transformed_insns;
  htab_t transformed_insns;
 
 
  /* A context incapsulating this insn.  */
  /* A context incapsulating this insn.  */
  struct deps_desc deps_context;
  struct deps_desc deps_context;
 
 
  /* This field is initialized at the beginning of scheduling and is used
  /* This field is initialized at the beginning of scheduling and is used
     to handle sched group instructions.  If it is non-null, then it points
     to handle sched group instructions.  If it is non-null, then it points
     to the instruction, which should be forced to schedule next.  Such
     to the instruction, which should be forced to schedule next.  Such
     instructions are unique.  */
     instructions are unique.  */
  insn_t sched_next;
  insn_t sched_next;
 
 
  /* Cycle at which insn was scheduled.  It is greater than zero if insn was
  /* Cycle at which insn was scheduled.  It is greater than zero if insn was
     scheduled.  This is used for bundling.  */
     scheduled.  This is used for bundling.  */
  int sched_cycle;
  int sched_cycle;
 
 
  /* Cycle at which insn's data will be fully ready.  */
  /* Cycle at which insn's data will be fully ready.  */
  int ready_cycle;
  int ready_cycle;
 
 
  /* Speculations that are being checked by this insn.  */
  /* Speculations that are being checked by this insn.  */
  ds_t spec_checked_ds;
  ds_t spec_checked_ds;
 
 
  /* Whether the live set valid or not.  */
  /* Whether the live set valid or not.  */
  BOOL_BITFIELD live_valid_p : 1;
  BOOL_BITFIELD live_valid_p : 1;
  /* Insn is an ASM.  */
  /* Insn is an ASM.  */
  BOOL_BITFIELD asm_p : 1;
  BOOL_BITFIELD asm_p : 1;
 
 
  /* True when an insn is scheduled after we've determined that a stall is
  /* True when an insn is scheduled after we've determined that a stall is
     required.
     required.
     This is used when emulating the Haifa scheduler for bundling.  */
     This is used when emulating the Haifa scheduler for bundling.  */
  BOOL_BITFIELD after_stall_p : 1;
  BOOL_BITFIELD after_stall_p : 1;
};
};
 
 
typedef struct _sel_insn_data sel_insn_data_def;
typedef struct _sel_insn_data sel_insn_data_def;
typedef sel_insn_data_def *sel_insn_data_t;
typedef sel_insn_data_def *sel_insn_data_t;
 
 
DEF_VEC_O (sel_insn_data_def);
DEF_VEC_O (sel_insn_data_def);
DEF_VEC_ALLOC_O (sel_insn_data_def, heap);
DEF_VEC_ALLOC_O (sel_insn_data_def, heap);
extern VEC (sel_insn_data_def, heap) *s_i_d;
extern VEC (sel_insn_data_def, heap) *s_i_d;
 
 
/* Accessor macros for s_i_d.  */
/* Accessor macros for s_i_d.  */
#define SID(INSN) (VEC_index (sel_insn_data_def, s_i_d, INSN_LUID (INSN)))
#define SID(INSN) (VEC_index (sel_insn_data_def, s_i_d, INSN_LUID (INSN)))
#define SID_BY_UID(UID) (VEC_index (sel_insn_data_def, s_i_d,   LUID_BY_UID (UID)))
#define SID_BY_UID(UID) (VEC_index (sel_insn_data_def, s_i_d,   LUID_BY_UID (UID)))
 
 
extern sel_insn_data_def insn_sid (insn_t);
extern sel_insn_data_def insn_sid (insn_t);
 
 
#define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
#define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
#define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
#define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
#define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
#define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
#define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
#define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
#define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
#define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
#define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
#define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
#define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
#define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
#define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
#define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
 
 
#define INSN_EXPR(INSN) (&SID (INSN)->expr)
#define INSN_EXPR(INSN) (&SID (INSN)->expr)
#define INSN_LIVE(INSN) (SID (INSN)->live)
#define INSN_LIVE(INSN) (SID (INSN)->live)
#define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
#define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
#define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
#define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
#define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
#define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
#define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
#define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
#define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
#define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
#define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
#define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
#define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
#define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
#define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
#define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
#define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
#define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
#define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
#define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
#define INSN_SEQNO(INSN) (SID (INSN)->seqno)
#define INSN_SEQNO(INSN) (SID (INSN)->seqno)
#define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
#define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
#define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
#define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
#define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
#define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
#define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
#define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
 
 
/* A global level shows whether an insn is valid or not.  */
/* A global level shows whether an insn is valid or not.  */
extern int global_level;
extern int global_level;
 
 
#define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
#define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
 
 
extern av_set_t get_av_set (insn_t);
extern av_set_t get_av_set (insn_t);
extern int get_av_level (insn_t);
extern int get_av_level (insn_t);
 
 
#define AV_SET(INSN) (get_av_set (INSN))
#define AV_SET(INSN) (get_av_set (INSN))
#define AV_LEVEL(INSN) (get_av_level (INSN))
#define AV_LEVEL(INSN) (get_av_level (INSN))
#define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
#define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
 
 
/* A list of fences currently in the works.  */
/* A list of fences currently in the works.  */
extern flist_t fences;
extern flist_t fences;
 
 
/* A NOP pattern used as a placeholder for real insns.  */
/* A NOP pattern used as a placeholder for real insns.  */
extern rtx nop_pattern;
extern rtx nop_pattern;
 
 
/* An insn that 'contained' in EXIT block.  */
/* An insn that 'contained' in EXIT block.  */
extern rtx exit_insn;
extern rtx exit_insn;
 
 
/* Provide a separate luid for the insn.  */
/* Provide a separate luid for the insn.  */
#define INSN_INIT_TODO_LUID (1)
#define INSN_INIT_TODO_LUID (1)
 
 
/* Initialize s_s_i_d.  */
/* Initialize s_s_i_d.  */
#define INSN_INIT_TODO_SSID (2)
#define INSN_INIT_TODO_SSID (2)
 
 
/* Initialize data for simplejump.  */
/* Initialize data for simplejump.  */
#define INSN_INIT_TODO_SIMPLEJUMP (4)
#define INSN_INIT_TODO_SIMPLEJUMP (4)
 
 
/* Return true if INSN is a local NOP.  The nop is local in the sense that
/* Return true if INSN is a local NOP.  The nop is local in the sense that
   it was emitted by the scheduler as a temporary insn and will soon be
   it was emitted by the scheduler as a temporary insn and will soon be
   deleted.  These nops are identified by their pattern.  */
   deleted.  These nops are identified by their pattern.  */
#define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
#define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
 
 
/* Return true if INSN is linked into instruction stream.
/* Return true if INSN is linked into instruction stream.
   NB: It is impossible for INSN to have one field null and the other not
   NB: It is impossible for INSN to have one field null and the other not
   null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
   null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
   == (NEXT_INSN (INSN) == NULL_RTX)) is valid.  */
   == (NEXT_INSN (INSN) == NULL_RTX)) is valid.  */
#define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
#define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
 
 
/* Return true if INSN is in current fence.  */
/* Return true if INSN is in current fence.  */
#define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
#define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
 
 
/* Marks loop as being considered for pipelining.  */
/* Marks loop as being considered for pipelining.  */
#define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
#define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
#define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
#define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
 
 
/* Saved loop preheader to transfer when scheduling the loop.  */
/* Saved loop preheader to transfer when scheduling the loop.  */
#define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1         \
#define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1         \
                                     ? NULL                             \
                                     ? NULL                             \
                                     : ((VEC(basic_block, heap) *) (LOOP)->aux))
                                     : ((VEC(basic_block, heap) *) (LOOP)->aux))
#define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux             \
#define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux             \
                                                = (BLOCKS != NULL       \
                                                = (BLOCKS != NULL       \
                                                   ? BLOCKS             \
                                                   ? BLOCKS             \
                                                   : (LOOP)->aux))
                                                   : (LOOP)->aux))
 
 
extern bitmap blocks_to_reschedule;
extern bitmap blocks_to_reschedule;


 
 
/* A variable to track which part of rtx we are scanning in
/* A variable to track which part of rtx we are scanning in
   sched-deps.c: sched_analyze_insn ().  */
   sched-deps.c: sched_analyze_insn ().  */
enum deps_where_def
enum deps_where_def
  {
  {
    DEPS_IN_INSN,
    DEPS_IN_INSN,
    DEPS_IN_LHS,
    DEPS_IN_LHS,
    DEPS_IN_RHS,
    DEPS_IN_RHS,
    DEPS_IN_NOWHERE
    DEPS_IN_NOWHERE
  };
  };
typedef enum deps_where_def deps_where_t;
typedef enum deps_where_def deps_where_t;


 
 
/* Per basic block data for the whole CFG.  */
/* Per basic block data for the whole CFG.  */
typedef struct
typedef struct
{
{
  /* For each bb header this field contains a set of live registers.
  /* For each bb header this field contains a set of live registers.
     For all other insns this field has a NULL.
     For all other insns this field has a NULL.
     We also need to know LV sets for the instructions, that are immediatly
     We also need to know LV sets for the instructions, that are immediatly
     after the border of the region.  */
     after the border of the region.  */
  regset lv_set;
  regset lv_set;
 
 
  /* Status of LV_SET.
  /* Status of LV_SET.
     true - block has usable LV_SET.
     true - block has usable LV_SET.
     false - block's LV_SET should be recomputed.  */
     false - block's LV_SET should be recomputed.  */
  bool lv_set_valid_p;
  bool lv_set_valid_p;
} sel_global_bb_info_def;
} sel_global_bb_info_def;
 
 
typedef sel_global_bb_info_def *sel_global_bb_info_t;
typedef sel_global_bb_info_def *sel_global_bb_info_t;
 
 
DEF_VEC_O (sel_global_bb_info_def);
DEF_VEC_O (sel_global_bb_info_def);
DEF_VEC_ALLOC_O (sel_global_bb_info_def, heap);
DEF_VEC_ALLOC_O (sel_global_bb_info_def, heap);
 
 
/* Per basic block data.  This array is indexed by basic block index.  */
/* Per basic block data.  This array is indexed by basic block index.  */
extern VEC (sel_global_bb_info_def, heap) *sel_global_bb_info;
extern VEC (sel_global_bb_info_def, heap) *sel_global_bb_info;
 
 
extern void sel_extend_global_bb_info (void);
extern void sel_extend_global_bb_info (void);
extern void sel_finish_global_bb_info (void);
extern void sel_finish_global_bb_info (void);
 
 
/* Get data for BB.  */
/* Get data for BB.  */
#define SEL_GLOBAL_BB_INFO(BB)                                  \
#define SEL_GLOBAL_BB_INFO(BB)                                  \
  (VEC_index (sel_global_bb_info_def, sel_global_bb_info, (BB)->index))
  (VEC_index (sel_global_bb_info_def, sel_global_bb_info, (BB)->index))
 
 
/* Access macros.  */
/* Access macros.  */
#define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
#define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
#define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
#define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
 
 
/* Per basic block data for the region.  */
/* Per basic block data for the region.  */
typedef struct
typedef struct
{
{
  /* This insn stream is constructed in such a way that it should be
  /* This insn stream is constructed in such a way that it should be
     traversed by PREV_INSN field - (*not* NEXT_INSN).  */
     traversed by PREV_INSN field - (*not* NEXT_INSN).  */
  rtx note_list;
  rtx note_list;
 
 
  /* Cached availability set at the beginning of a block.
  /* Cached availability set at the beginning of a block.
     See also AV_LEVEL () for conditions when this av_set can be used.  */
     See also AV_LEVEL () for conditions when this av_set can be used.  */
  av_set_t av_set;
  av_set_t av_set;
 
 
  /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid.  */
  /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid.  */
  int av_level;
  int av_level;
} sel_region_bb_info_def;
} sel_region_bb_info_def;
 
 
typedef sel_region_bb_info_def *sel_region_bb_info_t;
typedef sel_region_bb_info_def *sel_region_bb_info_t;
 
 
DEF_VEC_O (sel_region_bb_info_def);
DEF_VEC_O (sel_region_bb_info_def);
DEF_VEC_ALLOC_O (sel_region_bb_info_def, heap);
DEF_VEC_ALLOC_O (sel_region_bb_info_def, heap);
 
 
/* Per basic block data.  This array is indexed by basic block index.  */
/* Per basic block data.  This array is indexed by basic block index.  */
extern VEC (sel_region_bb_info_def, heap) *sel_region_bb_info;
extern VEC (sel_region_bb_info_def, heap) *sel_region_bb_info;
 
 
/* Get data for BB.  */
/* Get data for BB.  */
#define SEL_REGION_BB_INFO(BB) (VEC_index (sel_region_bb_info_def,      \
#define SEL_REGION_BB_INFO(BB) (VEC_index (sel_region_bb_info_def,      \
                                           sel_region_bb_info, (BB)->index))
                                           sel_region_bb_info, (BB)->index))
 
 
/* Get BB's note_list.
/* Get BB's note_list.
   A note_list is a list of various notes that was scattered across BB
   A note_list is a list of various notes that was scattered across BB
   before scheduling, and will be appended at the beginning of BB after
   before scheduling, and will be appended at the beginning of BB after
   scheduling is finished.  */
   scheduling is finished.  */
#define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
#define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
 
 
#define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
#define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
#define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
#define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
#define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
#define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
 
 
/* Used in bb_in_ebb_p.  */
/* Used in bb_in_ebb_p.  */
extern bitmap_head *forced_ebb_heads;
extern bitmap_head *forced_ebb_heads;
 
 
/* The loop nest being pipelined.  */
/* The loop nest being pipelined.  */
extern struct loop *current_loop_nest;
extern struct loop *current_loop_nest;
 
 
/* Saves pipelined blocks.  Bitmap is indexed by bb->index.  */
/* Saves pipelined blocks.  Bitmap is indexed by bb->index.  */
extern sbitmap bbs_pipelined;
extern sbitmap bbs_pipelined;
 
 
/* Various flags.  */
/* Various flags.  */
extern bool enable_moveup_set_path_p;
extern bool enable_moveup_set_path_p;
extern bool pipelining_p;
extern bool pipelining_p;
extern bool bookkeeping_p;
extern bool bookkeeping_p;
extern int max_insns_to_rename;
extern int max_insns_to_rename;
extern bool preheader_removed;
extern bool preheader_removed;
 
 
/* Software lookahead window size.
/* Software lookahead window size.
   According to the results in Nakatani and Ebcioglu [1993], window size of 16
   According to the results in Nakatani and Ebcioglu [1993], window size of 16
   is enough to extract most ILP in integer code.  */
   is enough to extract most ILP in integer code.  */
#define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
#define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
 
 
extern regset sel_all_regs;
extern regset sel_all_regs;


 
 
/* Successor iterator backend.  */
/* Successor iterator backend.  */
typedef struct
typedef struct
{
{
  /* True if we're at BB end.  */
  /* True if we're at BB end.  */
  bool bb_end;
  bool bb_end;
 
 
  /* An edge on which we're iterating.  */
  /* An edge on which we're iterating.  */
  edge e1;
  edge e1;
 
 
  /* The previous edge saved after skipping empty blocks.  */
  /* The previous edge saved after skipping empty blocks.  */
  edge e2;
  edge e2;
 
 
  /* Edge iterator used when there are successors in other basic blocks.  */
  /* Edge iterator used when there are successors in other basic blocks.  */
  edge_iterator ei;
  edge_iterator ei;
 
 
  /* Successor block we're traversing.  */
  /* Successor block we're traversing.  */
  basic_block bb;
  basic_block bb;
 
 
  /* Flags that are passed to the iterator.  We return only successors
  /* Flags that are passed to the iterator.  We return only successors
     that comply to these flags.  */
     that comply to these flags.  */
  short flags;
  short flags;
 
 
  /* When flags include SUCCS_ALL, this will be set to the exact type
  /* When flags include SUCCS_ALL, this will be set to the exact type
     of the sucessor we're traversing now.  */
     of the sucessor we're traversing now.  */
  short current_flags;
  short current_flags;
 
 
  /* If skip to loop exits, save here information about loop exits.  */
  /* If skip to loop exits, save here information about loop exits.  */
  int current_exit;
  int current_exit;
  VEC (edge, heap) *loop_exits;
  VEC (edge, heap) *loop_exits;
} succ_iterator;
} succ_iterator;
 
 
/* A structure returning all successor's information.  */
/* A structure returning all successor's information.  */
struct succs_info
struct succs_info
{
{
  /* Flags that these succcessors were computed with.  */
  /* Flags that these succcessors were computed with.  */
  short flags;
  short flags;
 
 
  /* Successors that correspond to the flags.  */
  /* Successors that correspond to the flags.  */
  insn_vec_t succs_ok;
  insn_vec_t succs_ok;
 
 
  /* Their probabilities.  As of now, we don't need this for other
  /* Their probabilities.  As of now, we don't need this for other
     successors.  */
     successors.  */
  VEC(int,heap) *probs_ok;
  VEC(int,heap) *probs_ok;
 
 
  /* Other successors.  */
  /* Other successors.  */
  insn_vec_t succs_other;
  insn_vec_t succs_other;
 
 
  /* Probability of all successors.  */
  /* Probability of all successors.  */
  int all_prob;
  int all_prob;
 
 
  /* The number of all successors.  */
  /* The number of all successors.  */
  int all_succs_n;
  int all_succs_n;
 
 
  /* The number of good successors.  */
  /* The number of good successors.  */
  int succs_ok_n;
  int succs_ok_n;
};
};
 
 
/* Some needed definitions.  */
/* Some needed definitions.  */
extern basic_block after_recovery;
extern basic_block after_recovery;
 
 
extern insn_t sel_bb_head (basic_block);
extern insn_t sel_bb_head (basic_block);
extern insn_t sel_bb_end (basic_block);
extern insn_t sel_bb_end (basic_block);
extern bool sel_bb_empty_p (basic_block);
extern bool sel_bb_empty_p (basic_block);
extern bool in_current_region_p (basic_block);
extern bool in_current_region_p (basic_block);
 
 
/* True when BB is a header of the inner loop.  */
/* True when BB is a header of the inner loop.  */
static inline bool
static inline bool
inner_loop_header_p (basic_block bb)
inner_loop_header_p (basic_block bb)
{
{
  struct loop *inner_loop;
  struct loop *inner_loop;
 
 
  if (!current_loop_nest)
  if (!current_loop_nest)
    return false;
    return false;
 
 
  if (bb == EXIT_BLOCK_PTR)
  if (bb == EXIT_BLOCK_PTR)
    return false;
    return false;
 
 
  inner_loop = bb->loop_father;
  inner_loop = bb->loop_father;
  if (inner_loop == current_loop_nest)
  if (inner_loop == current_loop_nest)
    return false;
    return false;
 
 
  /* If successor belongs to another loop.  */
  /* If successor belongs to another loop.  */
  if (bb == inner_loop->header
  if (bb == inner_loop->header
      && flow_bb_inside_loop_p (current_loop_nest, bb))
      && flow_bb_inside_loop_p (current_loop_nest, bb))
    {
    {
      /* Could be '=' here because of wrong loop depths.  */
      /* Could be '=' here because of wrong loop depths.  */
      gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
      gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
      return true;
      return true;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
/* Return exit edges of LOOP, filtering out edges with the same dest bb.  */
/* Return exit edges of LOOP, filtering out edges with the same dest bb.  */
static inline VEC (edge, heap) *
static inline VEC (edge, heap) *
get_loop_exit_edges_unique_dests (const struct loop *loop)
get_loop_exit_edges_unique_dests (const struct loop *loop)
{
{
  VEC (edge, heap) *edges = NULL;
  VEC (edge, heap) *edges = NULL;
  struct loop_exit *exit;
  struct loop_exit *exit;
 
 
  gcc_assert (loop->latch != EXIT_BLOCK_PTR
  gcc_assert (loop->latch != EXIT_BLOCK_PTR
              && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
              && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
 
 
  for (exit = loop->exits->next; exit->e; exit = exit->next)
  for (exit = loop->exits->next; exit->e; exit = exit->next)
    {
    {
      int i;
      int i;
      edge e;
      edge e;
      bool was_dest = false;
      bool was_dest = false;
 
 
      for (i = 0; VEC_iterate (edge, edges, i, e); i++)
      for (i = 0; VEC_iterate (edge, edges, i, e); i++)
        if (e->dest == exit->e->dest)
        if (e->dest == exit->e->dest)
          {
          {
            was_dest = true;
            was_dest = true;
            break;
            break;
          }
          }
 
 
      if (!was_dest)
      if (!was_dest)
        VEC_safe_push (edge, heap, edges, exit->e);
        VEC_safe_push (edge, heap, edges, exit->e);
    }
    }
  return edges;
  return edges;
}
}
 
 
static bool
static bool
sel_bb_empty_or_nop_p (basic_block bb)
sel_bb_empty_or_nop_p (basic_block bb)
{
{
  insn_t first = sel_bb_head (bb), last;
  insn_t first = sel_bb_head (bb), last;
 
 
  if (first == NULL_RTX)
  if (first == NULL_RTX)
    return true;
    return true;
 
 
  if (!INSN_NOP_P (first))
  if (!INSN_NOP_P (first))
    return false;
    return false;
 
 
  if (bb == EXIT_BLOCK_PTR)
  if (bb == EXIT_BLOCK_PTR)
    return false;
    return false;
 
 
  last = sel_bb_end (bb);
  last = sel_bb_end (bb);
  if (first != last)
  if (first != last)
    return false;
    return false;
 
 
  return true;
  return true;
}
}
 
 
/* Collect all loop exits recursively, skipping empty BBs between them.
/* Collect all loop exits recursively, skipping empty BBs between them.
   E.g. if BB is a loop header which has several loop exits,
   E.g. if BB is a loop header which has several loop exits,
   traverse all of them and if any of them turns out to be another loop header
   traverse all of them and if any of them turns out to be another loop header
   (after skipping empty BBs), add its loop exits to the resulting vector
   (after skipping empty BBs), add its loop exits to the resulting vector
   as well.  */
   as well.  */
static inline VEC(edge, heap) *
static inline VEC(edge, heap) *
get_all_loop_exits (basic_block bb)
get_all_loop_exits (basic_block bb)
{
{
  VEC(edge, heap) *exits = NULL;
  VEC(edge, heap) *exits = NULL;
 
 
  /* If bb is empty, and we're skipping to loop exits, then
  /* If bb is empty, and we're skipping to loop exits, then
     consider bb as a possible gate to the inner loop now.  */
     consider bb as a possible gate to the inner loop now.  */
  while (sel_bb_empty_or_nop_p (bb)
  while (sel_bb_empty_or_nop_p (bb)
         && in_current_region_p (bb)
         && in_current_region_p (bb)
         && EDGE_COUNT (bb->succs) > 0)
         && EDGE_COUNT (bb->succs) > 0)
    {
    {
      bb = single_succ (bb);
      bb = single_succ (bb);
 
 
      /* This empty block could only lead outside the region.  */
      /* This empty block could only lead outside the region.  */
      gcc_assert (! in_current_region_p (bb));
      gcc_assert (! in_current_region_p (bb));
    }
    }
 
 
  /* And now check whether we should skip over inner loop.  */
  /* And now check whether we should skip over inner loop.  */
  if (inner_loop_header_p (bb))
  if (inner_loop_header_p (bb))
    {
    {
      struct loop *this_loop;
      struct loop *this_loop;
      struct loop *pred_loop = NULL;
      struct loop *pred_loop = NULL;
      int i;
      int i;
      edge e;
      edge e;
 
 
      for (this_loop = bb->loop_father;
      for (this_loop = bb->loop_father;
           this_loop && this_loop != current_loop_nest;
           this_loop && this_loop != current_loop_nest;
           this_loop = loop_outer (this_loop))
           this_loop = loop_outer (this_loop))
        pred_loop = this_loop;
        pred_loop = this_loop;
 
 
      this_loop = pred_loop;
      this_loop = pred_loop;
      gcc_assert (this_loop != NULL);
      gcc_assert (this_loop != NULL);
 
 
      exits = get_loop_exit_edges_unique_dests (this_loop);
      exits = get_loop_exit_edges_unique_dests (this_loop);
 
 
      /* Traverse all loop headers.  */
      /* Traverse all loop headers.  */
      for (i = 0; VEC_iterate (edge, exits, i, e); i++)
      for (i = 0; VEC_iterate (edge, exits, i, e); i++)
        if (in_current_region_p (e->dest)
        if (in_current_region_p (e->dest)
            || inner_loop_header_p (e->dest))
            || inner_loop_header_p (e->dest))
          {
          {
            VEC(edge, heap) *next_exits = get_all_loop_exits (e->dest);
            VEC(edge, heap) *next_exits = get_all_loop_exits (e->dest);
 
 
            if (next_exits)
            if (next_exits)
              {
              {
                int j;
                int j;
                edge ne;
                edge ne;
 
 
                /* Add all loop exits for the current edge into the
                /* Add all loop exits for the current edge into the
                   resulting vector.  */
                   resulting vector.  */
                for (j = 0; VEC_iterate (edge, next_exits, j, ne); j++)
                for (j = 0; VEC_iterate (edge, next_exits, j, ne); j++)
                  VEC_safe_push (edge, heap, exits, ne);
                  VEC_safe_push (edge, heap, exits, ne);
 
 
                /* Remove the original edge.  */
                /* Remove the original edge.  */
                VEC_ordered_remove (edge, exits, i);
                VEC_ordered_remove (edge, exits, i);
 
 
                /*  Decrease the loop counter so we won't skip anything.  */
                /*  Decrease the loop counter so we won't skip anything.  */
                i--;
                i--;
                continue;
                continue;
              }
              }
          }
          }
    }
    }
 
 
  return exits;
  return exits;
}
}
 
 
/* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
/* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
   Any successor will fall into exactly one category.   */
   Any successor will fall into exactly one category.   */
 
 
/* Include normal successors.  */
/* Include normal successors.  */
#define SUCCS_NORMAL (1)
#define SUCCS_NORMAL (1)
 
 
/* Include back-edge successors.  */
/* Include back-edge successors.  */
#define SUCCS_BACK (2)
#define SUCCS_BACK (2)
 
 
/* Include successors that are outside of the current region.  */
/* Include successors that are outside of the current region.  */
#define SUCCS_OUT (4)
#define SUCCS_OUT (4)
 
 
/* When pipelining of the outer loops is enabled, skip innermost loops
/* When pipelining of the outer loops is enabled, skip innermost loops
   to their exits.  */
   to their exits.  */
#define SUCCS_SKIP_TO_LOOP_EXITS (8)
#define SUCCS_SKIP_TO_LOOP_EXITS (8)
 
 
/* Include all successors.  */
/* Include all successors.  */
#define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
#define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
 
 
/* We need to return a succ_iterator to avoid 'unitialized' warning
/* We need to return a succ_iterator to avoid 'unitialized' warning
   during bootstrap.  */
   during bootstrap.  */
static inline succ_iterator
static inline succ_iterator
_succ_iter_start (insn_t *succp, insn_t insn, int flags)
_succ_iter_start (insn_t *succp, insn_t insn, int flags)
{
{
  succ_iterator i;
  succ_iterator i;
 
 
  basic_block bb = BLOCK_FOR_INSN (insn);
  basic_block bb = BLOCK_FOR_INSN (insn);
 
 
  gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
  gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
 
 
  i.flags = flags;
  i.flags = flags;
 
 
  /* Avoid 'uninitialized' warning.  */
  /* Avoid 'uninitialized' warning.  */
  *succp = NULL;
  *succp = NULL;
  i.e1 = NULL;
  i.e1 = NULL;
  i.e2 = NULL;
  i.e2 = NULL;
  i.bb = bb;
  i.bb = bb;
  i.current_flags = 0;
  i.current_flags = 0;
  i.current_exit = -1;
  i.current_exit = -1;
  i.loop_exits = NULL;
  i.loop_exits = NULL;
 
 
  if (bb != EXIT_BLOCK_PTR && BB_END (bb) != insn)
  if (bb != EXIT_BLOCK_PTR && BB_END (bb) != insn)
    {
    {
      i.bb_end = false;
      i.bb_end = false;
 
 
      /* Avoid 'uninitialized' warning.  */
      /* Avoid 'uninitialized' warning.  */
      i.ei.index = 0;
      i.ei.index = 0;
      i.ei.container = NULL;
      i.ei.container = NULL;
    }
    }
  else
  else
    {
    {
      i.ei = ei_start (bb->succs);
      i.ei = ei_start (bb->succs);
      i.bb_end = true;
      i.bb_end = true;
    }
    }
 
 
  return i;
  return i;
}
}
 
 
static inline bool
static inline bool
_succ_iter_cond (succ_iterator *ip, rtx *succp, rtx insn,
_succ_iter_cond (succ_iterator *ip, rtx *succp, rtx insn,
                 bool check (edge, succ_iterator *))
                 bool check (edge, succ_iterator *))
{
{
  if (!ip->bb_end)
  if (!ip->bb_end)
    {
    {
      /* When we're in a middle of a basic block, return
      /* When we're in a middle of a basic block, return
         the next insn immediately, but only when SUCCS_NORMAL is set.  */
         the next insn immediately, but only when SUCCS_NORMAL is set.  */
      if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
      if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
        return false;
        return false;
 
 
      *succp = NEXT_INSN (insn);
      *succp = NEXT_INSN (insn);
      ip->current_flags = SUCCS_NORMAL;
      ip->current_flags = SUCCS_NORMAL;
      return true;
      return true;
    }
    }
  else
  else
    {
    {
      while (1)
      while (1)
        {
        {
          edge e_tmp = NULL;
          edge e_tmp = NULL;
 
 
          /* First, try loop exits, if we have them.  */
          /* First, try loop exits, if we have them.  */
          if (ip->loop_exits)
          if (ip->loop_exits)
            {
            {
              do
              do
                {
                {
                  VEC_iterate (edge, ip->loop_exits,
                  VEC_iterate (edge, ip->loop_exits,
                               ip->current_exit, e_tmp);
                               ip->current_exit, e_tmp);
                  ip->current_exit++;
                  ip->current_exit++;
                }
                }
              while (e_tmp && !check (e_tmp, ip));
              while (e_tmp && !check (e_tmp, ip));
 
 
              if (!e_tmp)
              if (!e_tmp)
                VEC_free (edge, heap, ip->loop_exits);
                VEC_free (edge, heap, ip->loop_exits);
            }
            }
 
 
          /* If we have found a successor, then great.  */
          /* If we have found a successor, then great.  */
          if (e_tmp)
          if (e_tmp)
            {
            {
              ip->e1 = e_tmp;
              ip->e1 = e_tmp;
              break;
              break;
            }
            }
 
 
          /* If not, then try the next edge.  */
          /* If not, then try the next edge.  */
          while (ei_cond (ip->ei, &(ip->e1)))
          while (ei_cond (ip->ei, &(ip->e1)))
            {
            {
              basic_block bb = ip->e1->dest;
              basic_block bb = ip->e1->dest;
 
 
              /* Consider bb as a possible loop header.  */
              /* Consider bb as a possible loop header.  */
              if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
              if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
                  && flag_sel_sched_pipelining_outer_loops
                  && flag_sel_sched_pipelining_outer_loops
                  && (!in_current_region_p (bb)
                  && (!in_current_region_p (bb)
                      || BLOCK_TO_BB (ip->bb->index)
                      || BLOCK_TO_BB (ip->bb->index)
                         < BLOCK_TO_BB (bb->index)))
                         < BLOCK_TO_BB (bb->index)))
                {
                {
                  /* Get all loop exits recursively.  */
                  /* Get all loop exits recursively.  */
                  ip->loop_exits = get_all_loop_exits (bb);
                  ip->loop_exits = get_all_loop_exits (bb);
 
 
                  if (ip->loop_exits)
                  if (ip->loop_exits)
                    {
                    {
                      ip->current_exit = 0;
                      ip->current_exit = 0;
                      /* Move the iterator now, because we won't do
                      /* Move the iterator now, because we won't do
                         succ_iter_next until loop exits will end.  */
                         succ_iter_next until loop exits will end.  */
                      ei_next (&(ip->ei));
                      ei_next (&(ip->ei));
                      break;
                      break;
                    }
                    }
                }
                }
 
 
              /* bb is not a loop header, check as usual.  */
              /* bb is not a loop header, check as usual.  */
              if (check (ip->e1, ip))
              if (check (ip->e1, ip))
                break;
                break;
 
 
              ei_next (&(ip->ei));
              ei_next (&(ip->ei));
            }
            }
 
 
          /* If loop_exits are non null, we have found an inner loop;
          /* If loop_exits are non null, we have found an inner loop;
             do one more iteration to fetch an edge from these exits.  */
             do one more iteration to fetch an edge from these exits.  */
          if (ip->loop_exits)
          if (ip->loop_exits)
            continue;
            continue;
 
 
          /* Otherwise, we've found an edge in a usual way.  Break now.  */
          /* Otherwise, we've found an edge in a usual way.  Break now.  */
          break;
          break;
        }
        }
 
 
      if (ip->e1)
      if (ip->e1)
        {
        {
          basic_block bb = ip->e2->dest;
          basic_block bb = ip->e2->dest;
 
 
          if (bb == EXIT_BLOCK_PTR || bb == after_recovery)
          if (bb == EXIT_BLOCK_PTR || bb == after_recovery)
            *succp = exit_insn;
            *succp = exit_insn;
          else
          else
            {
            {
              *succp = sel_bb_head (bb);
              *succp = sel_bb_head (bb);
 
 
              gcc_assert (ip->flags != SUCCS_NORMAL
              gcc_assert (ip->flags != SUCCS_NORMAL
                          || *succp == NEXT_INSN (bb_note (bb)));
                          || *succp == NEXT_INSN (bb_note (bb)));
              gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
              gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
            }
            }
 
 
          return true;
          return true;
        }
        }
      else
      else
        return false;
        return false;
    }
    }
}
}
 
 
static inline void
static inline void
_succ_iter_next (succ_iterator *ip)
_succ_iter_next (succ_iterator *ip)
{
{
  gcc_assert (!ip->e2 || ip->e1);
  gcc_assert (!ip->e2 || ip->e1);
 
 
  if (ip->bb_end && ip->e1 && !ip->loop_exits)
  if (ip->bb_end && ip->e1 && !ip->loop_exits)
    ei_next (&(ip->ei));
    ei_next (&(ip->ei));
}
}
 
 
/* Returns true when E1 is an eligible successor edge, possibly skipping
/* Returns true when E1 is an eligible successor edge, possibly skipping
   empty blocks.  When E2P is not null, the resulting edge is written there.
   empty blocks.  When E2P is not null, the resulting edge is written there.
   FLAGS are used to specify whether back edges and out-of-region edges
   FLAGS are used to specify whether back edges and out-of-region edges
   should be considered.  */
   should be considered.  */
static inline bool
static inline bool
_eligible_successor_edge_p (edge e1, succ_iterator *ip)
_eligible_successor_edge_p (edge e1, succ_iterator *ip)
{
{
  edge e2 = e1;
  edge e2 = e1;
  basic_block bb;
  basic_block bb;
  int flags = ip->flags;
  int flags = ip->flags;
  bool src_outside_rgn = !in_current_region_p (e1->src);
  bool src_outside_rgn = !in_current_region_p (e1->src);
 
 
  gcc_assert (flags != 0);
  gcc_assert (flags != 0);
 
 
  if (src_outside_rgn)
  if (src_outside_rgn)
    {
    {
      /* Any successor of the block that is outside current region is
      /* Any successor of the block that is outside current region is
         ineligible, except when we're skipping to loop exits.  */
         ineligible, except when we're skipping to loop exits.  */
      gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
      gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
 
 
      if (flags & SUCCS_OUT)
      if (flags & SUCCS_OUT)
        return false;
        return false;
    }
    }
 
 
  bb = e2->dest;
  bb = e2->dest;
 
 
  /* Skip empty blocks, but be careful not to leave the region.  */
  /* Skip empty blocks, but be careful not to leave the region.  */
  while (1)
  while (1)
    {
    {
      if (!sel_bb_empty_p (bb))
      if (!sel_bb_empty_p (bb))
        {
        {
          edge ne;
          edge ne;
          basic_block nbb;
          basic_block nbb;
 
 
          if (!sel_bb_empty_or_nop_p (bb))
          if (!sel_bb_empty_or_nop_p (bb))
            break;
            break;
 
 
          ne = EDGE_SUCC (bb, 0);
          ne = EDGE_SUCC (bb, 0);
          nbb = ne->dest;
          nbb = ne->dest;
 
 
          if (!in_current_region_p (nbb)
          if (!in_current_region_p (nbb)
              && !(flags & SUCCS_OUT))
              && !(flags & SUCCS_OUT))
            break;
            break;
 
 
          e2 = ne;
          e2 = ne;
          bb = nbb;
          bb = nbb;
          continue;
          continue;
        }
        }
 
 
      if (!in_current_region_p (bb)
      if (!in_current_region_p (bb)
          && !(flags & SUCCS_OUT))
          && !(flags & SUCCS_OUT))
        return false;
        return false;
 
 
      if (EDGE_COUNT (bb->succs) == 0)
      if (EDGE_COUNT (bb->succs) == 0)
        return false;
        return false;
 
 
      e2 = EDGE_SUCC (bb, 0);
      e2 = EDGE_SUCC (bb, 0);
      bb = e2->dest;
      bb = e2->dest;
    }
    }
 
 
  /* Save the second edge for later checks.  */
  /* Save the second edge for later checks.  */
  ip->e2 = e2;
  ip->e2 = e2;
 
 
  if (in_current_region_p (bb))
  if (in_current_region_p (bb))
    {
    {
      /* BLOCK_TO_BB sets topological order of the region here.
      /* BLOCK_TO_BB sets topological order of the region here.
         It is important to use real predecessor here, which is ip->bb,
         It is important to use real predecessor here, which is ip->bb,
         as we may well have e1->src outside current region,
         as we may well have e1->src outside current region,
         when skipping to loop exits.  */
         when skipping to loop exits.  */
      bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
      bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
                                    < BLOCK_TO_BB (bb->index));
                                    < BLOCK_TO_BB (bb->index));
 
 
      /* This is true for the all cases except the last one.  */
      /* This is true for the all cases except the last one.  */
      ip->current_flags = SUCCS_NORMAL;
      ip->current_flags = SUCCS_NORMAL;
 
 
      /* We are advancing forward in the region, as usual.  */
      /* We are advancing forward in the region, as usual.  */
      if (succeeds_in_top_order)
      if (succeeds_in_top_order)
        {
        {
          /* We are skipping to loop exits here.  */
          /* We are skipping to loop exits here.  */
          gcc_assert (!src_outside_rgn
          gcc_assert (!src_outside_rgn
                      || flag_sel_sched_pipelining_outer_loops);
                      || flag_sel_sched_pipelining_outer_loops);
          return !!(flags & SUCCS_NORMAL);
          return !!(flags & SUCCS_NORMAL);
        }
        }
 
 
      /* This is a back edge.  During pipelining we ignore back edges,
      /* This is a back edge.  During pipelining we ignore back edges,
         but only when it leads to the same loop.  It can lead to the header
         but only when it leads to the same loop.  It can lead to the header
         of the outer loop, which will also be the preheader of
         of the outer loop, which will also be the preheader of
         the current loop.  */
         the current loop.  */
      if (pipelining_p
      if (pipelining_p
           && e1->src->loop_father == bb->loop_father)
           && e1->src->loop_father == bb->loop_father)
        return !!(flags & SUCCS_NORMAL);
        return !!(flags & SUCCS_NORMAL);
 
 
      /* A back edge should be requested explicitly.  */
      /* A back edge should be requested explicitly.  */
      ip->current_flags = SUCCS_BACK;
      ip->current_flags = SUCCS_BACK;
      return !!(flags & SUCCS_BACK);
      return !!(flags & SUCCS_BACK);
    }
    }
 
 
  ip->current_flags = SUCCS_OUT;
  ip->current_flags = SUCCS_OUT;
  return !!(flags & SUCCS_OUT);
  return !!(flags & SUCCS_OUT);
}
}
 
 
#define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS)                        \
#define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS)                        \
  for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS));            \
  for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS));            \
       _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
       _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
       _succ_iter_next (&(ITER)))
       _succ_iter_next (&(ITER)))
 
 
#define FOR_EACH_SUCC(SUCC, ITER, INSN)                 \
#define FOR_EACH_SUCC(SUCC, ITER, INSN)                 \
  FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
  FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
 
 
/* Return the current edge along which a successor was built.  */
/* Return the current edge along which a successor was built.  */
#define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
#define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
 
 
/* Return the next block of BB not running into inconsistencies.  */
/* Return the next block of BB not running into inconsistencies.  */
static inline basic_block
static inline basic_block
bb_next_bb (basic_block bb)
bb_next_bb (basic_block bb)
{
{
  switch (EDGE_COUNT (bb->succs))
  switch (EDGE_COUNT (bb->succs))
    {
    {
    case 0:
    case 0:
      return bb->next_bb;
      return bb->next_bb;
 
 
    case 1:
    case 1:
      return single_succ (bb);
      return single_succ (bb);
 
 
    case 2:
    case 2:
      return FALLTHRU_EDGE (bb)->dest;
      return FALLTHRU_EDGE (bb)->dest;
 
 
    default:
    default:
      return bb->next_bb;
      return bb->next_bb;
    }
    }
 
 
  gcc_unreachable ();
  gcc_unreachable ();
}
}
 
 


 
 
/* Functions that are used in sel-sched.c.  */
/* Functions that are used in sel-sched.c.  */
 
 
/* List functions.  */
/* List functions.  */
extern ilist_t ilist_copy (ilist_t);
extern ilist_t ilist_copy (ilist_t);
extern ilist_t ilist_invert (ilist_t);
extern ilist_t ilist_invert (ilist_t);
extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
extern void blist_remove (blist_t *);
extern void blist_remove (blist_t *);
extern void flist_tail_init (flist_tail_t);
extern void flist_tail_init (flist_tail_t);
 
 
extern fence_t flist_lookup (flist_t, insn_t);
extern fence_t flist_lookup (flist_t, insn_t);
extern void flist_clear (flist_t *);
extern void flist_clear (flist_t *);
extern void def_list_add (def_list_t *, insn_t, bool);
extern void def_list_add (def_list_t *, insn_t, bool);
 
 
/* Target context functions.  */
/* Target context functions.  */
extern tc_t create_target_context (bool);
extern tc_t create_target_context (bool);
extern void set_target_context (tc_t);
extern void set_target_context (tc_t);
extern void reset_target_context (tc_t, bool);
extern void reset_target_context (tc_t, bool);
 
 
/* Deps context functions.  */
/* Deps context functions.  */
extern void advance_deps_context (deps_t, insn_t);
extern void advance_deps_context (deps_t, insn_t);
 
 
/* Fences functions.  */
/* Fences functions.  */
extern void init_fences (insn_t);
extern void init_fences (insn_t);
extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
extern void move_fence_to_fences (flist_t, flist_tail_t);
extern void move_fence_to_fences (flist_t, flist_tail_t);
 
 
/* Pool functions.  */
/* Pool functions.  */
extern regset get_regset_from_pool (void);
extern regset get_regset_from_pool (void);
extern regset get_clear_regset_from_pool (void);
extern regset get_clear_regset_from_pool (void);
extern void return_regset_to_pool (regset);
extern void return_regset_to_pool (regset);
extern void free_regset_pool (void);
extern void free_regset_pool (void);
 
 
extern insn_t get_nop_from_pool (insn_t);
extern insn_t get_nop_from_pool (insn_t);
extern void return_nop_to_pool (insn_t, bool);
extern void return_nop_to_pool (insn_t, bool);
extern void free_nop_pool (void);
extern void free_nop_pool (void);
 
 
/* Vinsns functions.  */
/* Vinsns functions.  */
extern bool vinsn_separable_p (vinsn_t);
extern bool vinsn_separable_p (vinsn_t);
extern bool vinsn_cond_branch_p (vinsn_t);
extern bool vinsn_cond_branch_p (vinsn_t);
extern void recompute_vinsn_lhs_rhs (vinsn_t);
extern void recompute_vinsn_lhs_rhs (vinsn_t);
extern int sel_vinsn_cost (vinsn_t);
extern int sel_vinsn_cost (vinsn_t);
extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
extern insn_t  sel_move_insn (expr_t, int, insn_t);
extern insn_t  sel_move_insn (expr_t, int, insn_t);
extern void vinsn_attach (vinsn_t);
extern void vinsn_attach (vinsn_t);
extern void vinsn_detach (vinsn_t);
extern void vinsn_detach (vinsn_t);
extern vinsn_t vinsn_copy (vinsn_t, bool);
extern vinsn_t vinsn_copy (vinsn_t, bool);
extern bool vinsn_equal_p (vinsn_t, vinsn_t);
extern bool vinsn_equal_p (vinsn_t, vinsn_t);
 
 
/* EXPR functions.  */
/* EXPR functions.  */
extern void copy_expr (expr_t, expr_t);
extern void copy_expr (expr_t, expr_t);
extern void copy_expr_onside (expr_t, expr_t);
extern void copy_expr_onside (expr_t, expr_t);
extern void merge_expr_data (expr_t, expr_t, insn_t);
extern void merge_expr_data (expr_t, expr_t, insn_t);
extern void merge_expr (expr_t, expr_t, insn_t);
extern void merge_expr (expr_t, expr_t, insn_t);
extern void clear_expr (expr_t);
extern void clear_expr (expr_t);
extern unsigned expr_dest_regno (expr_t);
extern unsigned expr_dest_regno (expr_t);
extern rtx expr_dest_reg (expr_t);
extern rtx expr_dest_reg (expr_t);
extern int find_in_history_vect (VEC(expr_history_def, heap) *,
extern int find_in_history_vect (VEC(expr_history_def, heap) *,
                                 rtx, vinsn_t, bool);
                                 rtx, vinsn_t, bool);
extern void insert_in_history_vect (VEC(expr_history_def, heap) **,
extern void insert_in_history_vect (VEC(expr_history_def, heap) **,
                                    unsigned, enum local_trans_type,
                                    unsigned, enum local_trans_type,
                                    vinsn_t, vinsn_t, ds_t);
                                    vinsn_t, vinsn_t, ds_t);
extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
extern int speculate_expr (expr_t, ds_t);
extern int speculate_expr (expr_t, ds_t);
 
 
/* Av set functions.  */
/* Av set functions.  */
extern void av_set_add (av_set_t *, expr_t);
extern void av_set_add (av_set_t *, expr_t);
extern void av_set_iter_remove (av_set_iterator *);
extern void av_set_iter_remove (av_set_iterator *);
extern expr_t av_set_lookup (av_set_t, vinsn_t);
extern expr_t av_set_lookup (av_set_t, vinsn_t);
extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
extern bool av_set_is_in_p (av_set_t, vinsn_t);
extern bool av_set_is_in_p (av_set_t, vinsn_t);
extern av_set_t av_set_copy (av_set_t);
extern av_set_t av_set_copy (av_set_t);
extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
extern void av_set_clear (av_set_t *);
extern void av_set_clear (av_set_t *);
extern void av_set_leave_one_nonspec (av_set_t *);
extern void av_set_leave_one_nonspec (av_set_t *);
extern expr_t av_set_element (av_set_t, int);
extern expr_t av_set_element (av_set_t, int);
extern void av_set_substract_cond_branches (av_set_t *);
extern void av_set_substract_cond_branches (av_set_t *);
extern void av_set_split_usefulness (av_set_t, int, int);
extern void av_set_split_usefulness (av_set_t, int, int);
extern void av_set_code_motion_filter (av_set_t *, av_set_t);
extern void av_set_code_motion_filter (av_set_t *, av_set_t);
 
 
extern void sel_save_haifa_priorities (void);
extern void sel_save_haifa_priorities (void);
 
 
extern void sel_init_global_and_expr (bb_vec_t);
extern void sel_init_global_and_expr (bb_vec_t);
extern void sel_finish_global_and_expr (void);
extern void sel_finish_global_and_expr (void);
 
 
extern regset compute_live (insn_t);
extern regset compute_live (insn_t);
extern bool register_unavailable_p (regset, rtx);
extern bool register_unavailable_p (regset, rtx);
 
 
/* Dependence analysis functions.  */
/* Dependence analysis functions.  */
extern void sel_clear_has_dependence (void);
extern void sel_clear_has_dependence (void);
extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
 
 
extern int tick_check_p (expr_t, deps_t, fence_t);
extern int tick_check_p (expr_t, deps_t, fence_t);
 
 
/* Functions to work with insns.  */
/* Functions to work with insns.  */
extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
extern bool insn_eligible_for_subst_p (insn_t);
extern bool insn_eligible_for_subst_p (insn_t);
extern void get_dest_and_mode (rtx, rtx *, enum machine_mode *);
extern void get_dest_and_mode (rtx, rtx *, enum machine_mode *);
 
 
extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
extern bool sel_remove_insn (insn_t, bool, bool);
extern bool sel_remove_insn (insn_t, bool, bool);
extern bool bb_header_p (insn_t);
extern bool bb_header_p (insn_t);
extern void sel_init_invalid_data_sets (insn_t);
extern void sel_init_invalid_data_sets (insn_t);
extern bool insn_at_boundary_p (insn_t);
extern bool insn_at_boundary_p (insn_t);
 
 
/* Basic block and CFG functions.  */
/* Basic block and CFG functions.  */
 
 
extern insn_t sel_bb_head (basic_block);
extern insn_t sel_bb_head (basic_block);
extern bool sel_bb_head_p (insn_t);
extern bool sel_bb_head_p (insn_t);
extern insn_t sel_bb_end (basic_block);
extern insn_t sel_bb_end (basic_block);
extern bool sel_bb_end_p (insn_t);
extern bool sel_bb_end_p (insn_t);
extern bool sel_bb_empty_p (basic_block);
extern bool sel_bb_empty_p (basic_block);
 
 
extern bool in_current_region_p (basic_block);
extern bool in_current_region_p (basic_block);
extern basic_block fallthru_bb_of_jump (rtx);
extern basic_block fallthru_bb_of_jump (rtx);
 
 
extern void sel_init_bbs (bb_vec_t);
extern void sel_init_bbs (bb_vec_t);
extern void sel_finish_bbs (void);
extern void sel_finish_bbs (void);
 
 
extern struct succs_info * compute_succs_info (insn_t, short);
extern struct succs_info * compute_succs_info (insn_t, short);
extern void free_succs_info (struct succs_info *);
extern void free_succs_info (struct succs_info *);
extern bool sel_insn_has_single_succ_p (insn_t, int);
extern bool sel_insn_has_single_succ_p (insn_t, int);
extern bool sel_num_cfg_preds_gt_1 (insn_t);
extern bool sel_num_cfg_preds_gt_1 (insn_t);
extern int get_seqno_by_preds (rtx);
extern int get_seqno_by_preds (rtx);
 
 
extern bool bb_ends_ebb_p (basic_block);
extern bool bb_ends_ebb_p (basic_block);
extern bool in_same_ebb_p (insn_t, insn_t);
extern bool in_same_ebb_p (insn_t, insn_t);
 
 
extern bool tidy_control_flow (basic_block, bool);
extern bool tidy_control_flow (basic_block, bool);
extern void free_bb_note_pool (void);
extern void free_bb_note_pool (void);
 
 
extern void purge_empty_blocks (void);
extern void purge_empty_blocks (void);
extern basic_block sel_split_edge (edge);
extern basic_block sel_split_edge (edge);
extern basic_block sel_create_recovery_block (insn_t);
extern basic_block sel_create_recovery_block (insn_t);
extern bool sel_redirect_edge_and_branch (edge, basic_block);
extern bool sel_redirect_edge_and_branch (edge, basic_block);
extern void sel_redirect_edge_and_branch_force (edge, basic_block);
extern void sel_redirect_edge_and_branch_force (edge, basic_block);
extern void sel_init_pipelining (void);
extern void sel_init_pipelining (void);
extern void sel_finish_pipelining (void);
extern void sel_finish_pipelining (void);
extern void sel_sched_region (int);
extern void sel_sched_region (int);
extern loop_p get_loop_nest_for_rgn (unsigned int);
extern loop_p get_loop_nest_for_rgn (unsigned int);
extern bool considered_for_pipelining_p (struct loop *);
extern bool considered_for_pipelining_p (struct loop *);
extern void make_region_from_loop_preheader (VEC(basic_block, heap) **);
extern void make_region_from_loop_preheader (VEC(basic_block, heap) **);
extern void sel_add_loop_preheaders (bb_vec_t *);
extern void sel_add_loop_preheaders (bb_vec_t *);
extern bool sel_is_loop_preheader_p (basic_block);
extern bool sel_is_loop_preheader_p (basic_block);
extern void clear_outdated_rtx_info (basic_block);
extern void clear_outdated_rtx_info (basic_block);
extern void free_data_sets (basic_block);
extern void free_data_sets (basic_block);
extern void exchange_data_sets (basic_block, basic_block);
extern void exchange_data_sets (basic_block, basic_block);
extern void copy_data_sets (basic_block, basic_block);
extern void copy_data_sets (basic_block, basic_block);
 
 
extern void sel_register_cfg_hooks (void);
extern void sel_register_cfg_hooks (void);
extern void sel_unregister_cfg_hooks (void);
extern void sel_unregister_cfg_hooks (void);
 
 
/* Expression transformation routines.  */
/* Expression transformation routines.  */
extern rtx create_insn_rtx_from_pattern (rtx, rtx);
extern rtx create_insn_rtx_from_pattern (rtx, rtx);
extern vinsn_t create_vinsn_from_insn_rtx (rtx, bool);
extern vinsn_t create_vinsn_from_insn_rtx (rtx, bool);
extern rtx create_copy_of_insn_rtx (rtx);
extern rtx create_copy_of_insn_rtx (rtx);
extern void change_vinsn_in_expr (expr_t, vinsn_t);
extern void change_vinsn_in_expr (expr_t, vinsn_t);
 
 
/* Various initialization functions.  */
/* Various initialization functions.  */
extern void init_lv_sets (void);
extern void init_lv_sets (void);
extern void free_lv_sets (void);
extern void free_lv_sets (void);
extern void setup_nop_and_exit_insns (void);
extern void setup_nop_and_exit_insns (void);
extern void free_nop_and_exit_insns (void);
extern void free_nop_and_exit_insns (void);
extern void free_data_for_scheduled_insn (insn_t);
extern void free_data_for_scheduled_insn (insn_t);
extern void setup_nop_vinsn (void);
extern void setup_nop_vinsn (void);
extern void free_nop_vinsn (void);
extern void free_nop_vinsn (void);
extern void sel_set_sched_flags (void);
extern void sel_set_sched_flags (void);
extern void sel_setup_sched_infos (void);
extern void sel_setup_sched_infos (void);
extern void alloc_sched_pools (void);
extern void alloc_sched_pools (void);
extern void free_sched_pools (void);
extern void free_sched_pools (void);
 
 
#endif /* GCC_SEL_SCHED_IR_H */
#endif /* GCC_SEL_SCHED_IR_H */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.