OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [gcc/] [tree-ssa-loop-im.c] - Diff between revs 684 and 783

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 684 Rev 783
/* Loop invariant motion.
/* Loop invariant motion.
   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010
   Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
Free Software Foundation; either version 3, or (at your option) any
later version.
later version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "tree.h"
#include "tree.h"
#include "tm_p.h"
#include "tm_p.h"
#include "basic-block.h"
#include "basic-block.h"
#include "output.h"
#include "output.h"
#include "tree-pretty-print.h"
#include "tree-pretty-print.h"
#include "gimple-pretty-print.h"
#include "gimple-pretty-print.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "timevar.h"
#include "timevar.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "domwalk.h"
#include "domwalk.h"
#include "params.h"
#include "params.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "flags.h"
#include "flags.h"
#include "hashtab.h"
#include "hashtab.h"
#include "tree-affine.h"
#include "tree-affine.h"
#include "pointer-set.h"
#include "pointer-set.h"
#include "tree-ssa-propagate.h"
#include "tree-ssa-propagate.h"
 
 
/* TODO:  Support for predicated code motion.  I.e.
/* TODO:  Support for predicated code motion.  I.e.
 
 
   while (1)
   while (1)
     {
     {
       if (cond)
       if (cond)
         {
         {
           a = inv;
           a = inv;
           something;
           something;
         }
         }
     }
     }
 
 
   Where COND and INV are is invariants, but evaluating INV may trap or be
   Where COND and INV are is invariants, but evaluating INV may trap or be
   invalid from some other reason if !COND.  This may be transformed to
   invalid from some other reason if !COND.  This may be transformed to
 
 
   if (cond)
   if (cond)
     a = inv;
     a = inv;
   while (1)
   while (1)
     {
     {
       if (cond)
       if (cond)
         something;
         something;
     }  */
     }  */
 
 
/* A type for the list of statements that have to be moved in order to be able
/* A type for the list of statements that have to be moved in order to be able
   to hoist an invariant computation.  */
   to hoist an invariant computation.  */
 
 
struct depend
struct depend
{
{
  gimple stmt;
  gimple stmt;
  struct depend *next;
  struct depend *next;
};
};
 
 
/* The auxiliary data kept for each statement.  */
/* The auxiliary data kept for each statement.  */
 
 
struct lim_aux_data
struct lim_aux_data
{
{
  struct loop *max_loop;        /* The outermost loop in that the statement
  struct loop *max_loop;        /* The outermost loop in that the statement
                                   is invariant.  */
                                   is invariant.  */
 
 
  struct loop *tgt_loop;        /* The loop out of that we want to move the
  struct loop *tgt_loop;        /* The loop out of that we want to move the
                                   invariant.  */
                                   invariant.  */
 
 
  struct loop *always_executed_in;
  struct loop *always_executed_in;
                                /* The outermost loop for that we are sure
                                /* The outermost loop for that we are sure
                                   the statement is executed if the loop
                                   the statement is executed if the loop
                                   is entered.  */
                                   is entered.  */
 
 
  unsigned cost;                /* Cost of the computation performed by the
  unsigned cost;                /* Cost of the computation performed by the
                                   statement.  */
                                   statement.  */
 
 
  struct depend *depends;       /* List of statements that must be also hoisted
  struct depend *depends;       /* List of statements that must be also hoisted
                                   out of the loop when this statement is
                                   out of the loop when this statement is
                                   hoisted; i.e. those that define the operands
                                   hoisted; i.e. those that define the operands
                                   of the statement and are inside of the
                                   of the statement and are inside of the
                                   MAX_LOOP loop.  */
                                   MAX_LOOP loop.  */
};
};
 
 
/* Maps statements to their lim_aux_data.  */
/* Maps statements to their lim_aux_data.  */
 
 
static struct pointer_map_t *lim_aux_data_map;
static struct pointer_map_t *lim_aux_data_map;
 
 
/* Description of a memory reference location.  */
/* Description of a memory reference location.  */
 
 
typedef struct mem_ref_loc
typedef struct mem_ref_loc
{
{
  tree *ref;                    /* The reference itself.  */
  tree *ref;                    /* The reference itself.  */
  gimple stmt;                  /* The statement in that it occurs.  */
  gimple stmt;                  /* The statement in that it occurs.  */
} *mem_ref_loc_p;
} *mem_ref_loc_p;
 
 
DEF_VEC_P(mem_ref_loc_p);
DEF_VEC_P(mem_ref_loc_p);
DEF_VEC_ALLOC_P(mem_ref_loc_p, heap);
DEF_VEC_ALLOC_P(mem_ref_loc_p, heap);
 
 
/* The list of memory reference locations in a loop.  */
/* The list of memory reference locations in a loop.  */
 
 
typedef struct mem_ref_locs
typedef struct mem_ref_locs
{
{
  VEC (mem_ref_loc_p, heap) *locs;
  VEC (mem_ref_loc_p, heap) *locs;
} *mem_ref_locs_p;
} *mem_ref_locs_p;
 
 
DEF_VEC_P(mem_ref_locs_p);
DEF_VEC_P(mem_ref_locs_p);
DEF_VEC_ALLOC_P(mem_ref_locs_p, heap);
DEF_VEC_ALLOC_P(mem_ref_locs_p, heap);
 
 
/* Description of a memory reference.  */
/* Description of a memory reference.  */
 
 
typedef struct mem_ref
typedef struct mem_ref
{
{
  tree mem;                     /* The memory itself.  */
  tree mem;                     /* The memory itself.  */
  unsigned id;                  /* ID assigned to the memory reference
  unsigned id;                  /* ID assigned to the memory reference
                                   (its index in memory_accesses.refs_list)  */
                                   (its index in memory_accesses.refs_list)  */
  hashval_t hash;               /* Its hash value.  */
  hashval_t hash;               /* Its hash value.  */
  bitmap stored;                /* The set of loops in that this memory location
  bitmap stored;                /* The set of loops in that this memory location
                                   is stored to.  */
                                   is stored to.  */
  VEC (mem_ref_locs_p, heap) *accesses_in_loop;
  VEC (mem_ref_locs_p, heap) *accesses_in_loop;
                                /* The locations of the accesses.  Vector
                                /* The locations of the accesses.  Vector
                                   indexed by the loop number.  */
                                   indexed by the loop number.  */
 
 
  /* The following sets are computed on demand.  We keep both set and
  /* The following sets are computed on demand.  We keep both set and
     its complement, so that we know whether the information was
     its complement, so that we know whether the information was
     already computed or not.  */
     already computed or not.  */
  bitmap indep_loop;            /* The set of loops in that the memory
  bitmap indep_loop;            /* The set of loops in that the memory
                                   reference is independent, meaning:
                                   reference is independent, meaning:
                                   If it is stored in the loop, this store
                                   If it is stored in the loop, this store
                                     is independent on all other loads and
                                     is independent on all other loads and
                                     stores.
                                     stores.
                                   If it is only loaded, then it is independent
                                   If it is only loaded, then it is independent
                                     on all stores in the loop.  */
                                     on all stores in the loop.  */
  bitmap dep_loop;              /* The complement of INDEP_LOOP.  */
  bitmap dep_loop;              /* The complement of INDEP_LOOP.  */
 
 
  bitmap indep_ref;             /* The set of memory references on that
  bitmap indep_ref;             /* The set of memory references on that
                                   this reference is independent.  */
                                   this reference is independent.  */
  bitmap dep_ref;               /* The complement of INDEP_REF.  */
  bitmap dep_ref;               /* The complement of INDEP_REF.  */
} *mem_ref_p;
} *mem_ref_p;
 
 
DEF_VEC_P(mem_ref_p);
DEF_VEC_P(mem_ref_p);
DEF_VEC_ALLOC_P(mem_ref_p, heap);
DEF_VEC_ALLOC_P(mem_ref_p, heap);
 
 
DEF_VEC_P(bitmap);
DEF_VEC_P(bitmap);
DEF_VEC_ALLOC_P(bitmap, heap);
DEF_VEC_ALLOC_P(bitmap, heap);
 
 
DEF_VEC_P(htab_t);
DEF_VEC_P(htab_t);
DEF_VEC_ALLOC_P(htab_t, heap);
DEF_VEC_ALLOC_P(htab_t, heap);
 
 
/* Description of memory accesses in loops.  */
/* Description of memory accesses in loops.  */
 
 
static struct
static struct
{
{
  /* The hash table of memory references accessed in loops.  */
  /* The hash table of memory references accessed in loops.  */
  htab_t refs;
  htab_t refs;
 
 
  /* The list of memory references.  */
  /* The list of memory references.  */
  VEC (mem_ref_p, heap) *refs_list;
  VEC (mem_ref_p, heap) *refs_list;
 
 
  /* The set of memory references accessed in each loop.  */
  /* The set of memory references accessed in each loop.  */
  VEC (bitmap, heap) *refs_in_loop;
  VEC (bitmap, heap) *refs_in_loop;
 
 
  /* The set of memory references accessed in each loop, including
  /* The set of memory references accessed in each loop, including
     subloops.  */
     subloops.  */
  VEC (bitmap, heap) *all_refs_in_loop;
  VEC (bitmap, heap) *all_refs_in_loop;
 
 
  /* The set of memory references stored in each loop, including
  /* The set of memory references stored in each loop, including
     subloops.  */
     subloops.  */
  VEC (bitmap, heap) *all_refs_stored_in_loop;
  VEC (bitmap, heap) *all_refs_stored_in_loop;
 
 
  /* Cache for expanding memory addresses.  */
  /* Cache for expanding memory addresses.  */
  struct pointer_map_t *ttae_cache;
  struct pointer_map_t *ttae_cache;
} memory_accesses;
} memory_accesses;
 
 
static bool ref_indep_loop_p (struct loop *, mem_ref_p);
static bool ref_indep_loop_p (struct loop *, mem_ref_p);
 
 
/* Minimum cost of an expensive expression.  */
/* Minimum cost of an expensive expression.  */
#define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
#define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
 
 
/* The outermost loop for which execution of the header guarantees that the
/* The outermost loop for which execution of the header guarantees that the
   block will be executed.  */
   block will be executed.  */
#define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
#define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
#define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
#define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
 
 
/* Whether the reference was analyzable.  */
/* Whether the reference was analyzable.  */
#define MEM_ANALYZABLE(REF) ((REF)->mem != error_mark_node)
#define MEM_ANALYZABLE(REF) ((REF)->mem != error_mark_node)
 
 
static struct lim_aux_data *
static struct lim_aux_data *
init_lim_data (gimple stmt)
init_lim_data (gimple stmt)
{
{
  void **p = pointer_map_insert (lim_aux_data_map, stmt);
  void **p = pointer_map_insert (lim_aux_data_map, stmt);
 
 
  *p = XCNEW (struct lim_aux_data);
  *p = XCNEW (struct lim_aux_data);
  return (struct lim_aux_data *) *p;
  return (struct lim_aux_data *) *p;
}
}
 
 
static struct lim_aux_data *
static struct lim_aux_data *
get_lim_data (gimple stmt)
get_lim_data (gimple stmt)
{
{
  void **p = pointer_map_contains (lim_aux_data_map, stmt);
  void **p = pointer_map_contains (lim_aux_data_map, stmt);
  if (!p)
  if (!p)
    return NULL;
    return NULL;
 
 
  return (struct lim_aux_data *) *p;
  return (struct lim_aux_data *) *p;
}
}
 
 
/* Releases the memory occupied by DATA.  */
/* Releases the memory occupied by DATA.  */
 
 
static void
static void
free_lim_aux_data (struct lim_aux_data *data)
free_lim_aux_data (struct lim_aux_data *data)
{
{
  struct depend *dep, *next;
  struct depend *dep, *next;
 
 
  for (dep = data->depends; dep; dep = next)
  for (dep = data->depends; dep; dep = next)
    {
    {
      next = dep->next;
      next = dep->next;
      free (dep);
      free (dep);
    }
    }
  free (data);
  free (data);
}
}
 
 
static void
static void
clear_lim_data (gimple stmt)
clear_lim_data (gimple stmt)
{
{
  void **p = pointer_map_contains (lim_aux_data_map, stmt);
  void **p = pointer_map_contains (lim_aux_data_map, stmt);
  if (!p)
  if (!p)
    return;
    return;
 
 
  free_lim_aux_data ((struct lim_aux_data *) *p);
  free_lim_aux_data ((struct lim_aux_data *) *p);
  *p = NULL;
  *p = NULL;
}
}
 
 
/* Calls CBCK for each index in memory reference ADDR_P.  There are two
/* Calls CBCK for each index in memory reference ADDR_P.  There are two
   kinds situations handled; in each of these cases, the memory reference
   kinds situations handled; in each of these cases, the memory reference
   and DATA are passed to the callback:
   and DATA are passed to the callback:
 
 
   Access to an array: ARRAY_{RANGE_}REF (base, index).  In this case we also
   Access to an array: ARRAY_{RANGE_}REF (base, index).  In this case we also
   pass the pointer to the index to the callback.
   pass the pointer to the index to the callback.
 
 
   Pointer dereference: INDIRECT_REF (addr).  In this case we also pass the
   Pointer dereference: INDIRECT_REF (addr).  In this case we also pass the
   pointer to addr to the callback.
   pointer to addr to the callback.
 
 
   If the callback returns false, the whole search stops and false is returned.
   If the callback returns false, the whole search stops and false is returned.
   Otherwise the function returns true after traversing through the whole
   Otherwise the function returns true after traversing through the whole
   reference *ADDR_P.  */
   reference *ADDR_P.  */
 
 
bool
bool
for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
{
{
  tree *nxt, *idx;
  tree *nxt, *idx;
 
 
  for (; ; addr_p = nxt)
  for (; ; addr_p = nxt)
    {
    {
      switch (TREE_CODE (*addr_p))
      switch (TREE_CODE (*addr_p))
        {
        {
        case SSA_NAME:
        case SSA_NAME:
          return cbck (*addr_p, addr_p, data);
          return cbck (*addr_p, addr_p, data);
 
 
        case MEM_REF:
        case MEM_REF:
          nxt = &TREE_OPERAND (*addr_p, 0);
          nxt = &TREE_OPERAND (*addr_p, 0);
          return cbck (*addr_p, nxt, data);
          return cbck (*addr_p, nxt, data);
 
 
        case BIT_FIELD_REF:
        case BIT_FIELD_REF:
        case VIEW_CONVERT_EXPR:
        case VIEW_CONVERT_EXPR:
        case REALPART_EXPR:
        case REALPART_EXPR:
        case IMAGPART_EXPR:
        case IMAGPART_EXPR:
          nxt = &TREE_OPERAND (*addr_p, 0);
          nxt = &TREE_OPERAND (*addr_p, 0);
          break;
          break;
 
 
        case COMPONENT_REF:
        case COMPONENT_REF:
          /* If the component has varying offset, it behaves like index
          /* If the component has varying offset, it behaves like index
             as well.  */
             as well.  */
          idx = &TREE_OPERAND (*addr_p, 2);
          idx = &TREE_OPERAND (*addr_p, 2);
          if (*idx
          if (*idx
              && !cbck (*addr_p, idx, data))
              && !cbck (*addr_p, idx, data))
            return false;
            return false;
 
 
          nxt = &TREE_OPERAND (*addr_p, 0);
          nxt = &TREE_OPERAND (*addr_p, 0);
          break;
          break;
 
 
        case ARRAY_REF:
        case ARRAY_REF:
        case ARRAY_RANGE_REF:
        case ARRAY_RANGE_REF:
          nxt = &TREE_OPERAND (*addr_p, 0);
          nxt = &TREE_OPERAND (*addr_p, 0);
          if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
          if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
            return false;
            return false;
          break;
          break;
 
 
        case VAR_DECL:
        case VAR_DECL:
        case PARM_DECL:
        case PARM_DECL:
        case STRING_CST:
        case STRING_CST:
        case RESULT_DECL:
        case RESULT_DECL:
        case VECTOR_CST:
        case VECTOR_CST:
        case COMPLEX_CST:
        case COMPLEX_CST:
        case INTEGER_CST:
        case INTEGER_CST:
        case REAL_CST:
        case REAL_CST:
        case FIXED_CST:
        case FIXED_CST:
        case CONSTRUCTOR:
        case CONSTRUCTOR:
          return true;
          return true;
 
 
        case ADDR_EXPR:
        case ADDR_EXPR:
          gcc_assert (is_gimple_min_invariant (*addr_p));
          gcc_assert (is_gimple_min_invariant (*addr_p));
          return true;
          return true;
 
 
        case TARGET_MEM_REF:
        case TARGET_MEM_REF:
          idx = &TMR_BASE (*addr_p);
          idx = &TMR_BASE (*addr_p);
          if (*idx
          if (*idx
              && !cbck (*addr_p, idx, data))
              && !cbck (*addr_p, idx, data))
            return false;
            return false;
          idx = &TMR_INDEX (*addr_p);
          idx = &TMR_INDEX (*addr_p);
          if (*idx
          if (*idx
              && !cbck (*addr_p, idx, data))
              && !cbck (*addr_p, idx, data))
            return false;
            return false;
          idx = &TMR_INDEX2 (*addr_p);
          idx = &TMR_INDEX2 (*addr_p);
          if (*idx
          if (*idx
              && !cbck (*addr_p, idx, data))
              && !cbck (*addr_p, idx, data))
            return false;
            return false;
          return true;
          return true;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
}
}
 
 
/* If it is possible to hoist the statement STMT unconditionally,
/* If it is possible to hoist the statement STMT unconditionally,
   returns MOVE_POSSIBLE.
   returns MOVE_POSSIBLE.
   If it is possible to hoist the statement STMT, but we must avoid making
   If it is possible to hoist the statement STMT, but we must avoid making
   it executed if it would not be executed in the original program (e.g.
   it executed if it would not be executed in the original program (e.g.
   because it may trap), return MOVE_PRESERVE_EXECUTION.
   because it may trap), return MOVE_PRESERVE_EXECUTION.
   Otherwise return MOVE_IMPOSSIBLE.  */
   Otherwise return MOVE_IMPOSSIBLE.  */
 
 
enum move_pos
enum move_pos
movement_possibility (gimple stmt)
movement_possibility (gimple stmt)
{
{
  tree lhs;
  tree lhs;
  enum move_pos ret = MOVE_POSSIBLE;
  enum move_pos ret = MOVE_POSSIBLE;
 
 
  if (flag_unswitch_loops
  if (flag_unswitch_loops
      && gimple_code (stmt) == GIMPLE_COND)
      && gimple_code (stmt) == GIMPLE_COND)
    {
    {
      /* If we perform unswitching, force the operands of the invariant
      /* If we perform unswitching, force the operands of the invariant
         condition to be moved out of the loop.  */
         condition to be moved out of the loop.  */
      return MOVE_POSSIBLE;
      return MOVE_POSSIBLE;
    }
    }
 
 
  if (gimple_code (stmt) == GIMPLE_PHI
  if (gimple_code (stmt) == GIMPLE_PHI
      && gimple_phi_num_args (stmt) <= 2
      && gimple_phi_num_args (stmt) <= 2
      && is_gimple_reg (gimple_phi_result (stmt))
      && is_gimple_reg (gimple_phi_result (stmt))
      && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
      && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
    return MOVE_POSSIBLE;
    return MOVE_POSSIBLE;
 
 
  if (gimple_get_lhs (stmt) == NULL_TREE)
  if (gimple_get_lhs (stmt) == NULL_TREE)
    return MOVE_IMPOSSIBLE;
    return MOVE_IMPOSSIBLE;
 
 
  if (gimple_vdef (stmt))
  if (gimple_vdef (stmt))
    return MOVE_IMPOSSIBLE;
    return MOVE_IMPOSSIBLE;
 
 
  if (stmt_ends_bb_p (stmt)
  if (stmt_ends_bb_p (stmt)
      || gimple_has_volatile_ops (stmt)
      || gimple_has_volatile_ops (stmt)
      || gimple_has_side_effects (stmt)
      || gimple_has_side_effects (stmt)
      || stmt_could_throw_p (stmt))
      || stmt_could_throw_p (stmt))
    return MOVE_IMPOSSIBLE;
    return MOVE_IMPOSSIBLE;
 
 
  if (is_gimple_call (stmt))
  if (is_gimple_call (stmt))
    {
    {
      /* While pure or const call is guaranteed to have no side effects, we
      /* While pure or const call is guaranteed to have no side effects, we
         cannot move it arbitrarily.  Consider code like
         cannot move it arbitrarily.  Consider code like
 
 
         char *s = something ();
         char *s = something ();
 
 
         while (1)
         while (1)
           {
           {
             if (s)
             if (s)
               t = strlen (s);
               t = strlen (s);
             else
             else
               t = 0;
               t = 0;
           }
           }
 
 
         Here the strlen call cannot be moved out of the loop, even though
         Here the strlen call cannot be moved out of the loop, even though
         s is invariant.  In addition to possibly creating a call with
         s is invariant.  In addition to possibly creating a call with
         invalid arguments, moving out a function call that is not executed
         invalid arguments, moving out a function call that is not executed
         may cause performance regressions in case the call is costly and
         may cause performance regressions in case the call is costly and
         not executed at all.  */
         not executed at all.  */
      ret = MOVE_PRESERVE_EXECUTION;
      ret = MOVE_PRESERVE_EXECUTION;
      lhs = gimple_call_lhs (stmt);
      lhs = gimple_call_lhs (stmt);
    }
    }
  else if (is_gimple_assign (stmt))
  else if (is_gimple_assign (stmt))
    lhs = gimple_assign_lhs (stmt);
    lhs = gimple_assign_lhs (stmt);
  else
  else
    return MOVE_IMPOSSIBLE;
    return MOVE_IMPOSSIBLE;
 
 
  if (TREE_CODE (lhs) == SSA_NAME
  if (TREE_CODE (lhs) == SSA_NAME
      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
    return MOVE_IMPOSSIBLE;
    return MOVE_IMPOSSIBLE;
 
 
  if (TREE_CODE (lhs) != SSA_NAME
  if (TREE_CODE (lhs) != SSA_NAME
      || gimple_could_trap_p (stmt))
      || gimple_could_trap_p (stmt))
    return MOVE_PRESERVE_EXECUTION;
    return MOVE_PRESERVE_EXECUTION;
 
 
  /* Non local loads in a transaction cannot be hoisted out.  Well,
  /* Non local loads in a transaction cannot be hoisted out.  Well,
     unless the load happens on every path out of the loop, but we
     unless the load happens on every path out of the loop, but we
     don't take this into account yet.  */
     don't take this into account yet.  */
  if (flag_tm
  if (flag_tm
      && gimple_in_transaction (stmt)
      && gimple_in_transaction (stmt)
      && gimple_assign_single_p (stmt))
      && gimple_assign_single_p (stmt))
    {
    {
      tree rhs = gimple_assign_rhs1 (stmt);
      tree rhs = gimple_assign_rhs1 (stmt);
      if (DECL_P (rhs) && is_global_var (rhs))
      if (DECL_P (rhs) && is_global_var (rhs))
        {
        {
          if (dump_file)
          if (dump_file)
            {
            {
              fprintf (dump_file, "Cannot hoist conditional load of ");
              fprintf (dump_file, "Cannot hoist conditional load of ");
              print_generic_expr (dump_file, rhs, TDF_SLIM);
              print_generic_expr (dump_file, rhs, TDF_SLIM);
              fprintf (dump_file, " because it is in a transaction.\n");
              fprintf (dump_file, " because it is in a transaction.\n");
            }
            }
          return MOVE_IMPOSSIBLE;
          return MOVE_IMPOSSIBLE;
        }
        }
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
/* Suppose that operand DEF is used inside the LOOP.  Returns the outermost
/* Suppose that operand DEF is used inside the LOOP.  Returns the outermost
   loop to that we could move the expression using DEF if it did not have
   loop to that we could move the expression using DEF if it did not have
   other operands, i.e. the outermost loop enclosing LOOP in that the value
   other operands, i.e. the outermost loop enclosing LOOP in that the value
   of DEF is invariant.  */
   of DEF is invariant.  */
 
 
static struct loop *
static struct loop *
outermost_invariant_loop (tree def, struct loop *loop)
outermost_invariant_loop (tree def, struct loop *loop)
{
{
  gimple def_stmt;
  gimple def_stmt;
  basic_block def_bb;
  basic_block def_bb;
  struct loop *max_loop;
  struct loop *max_loop;
  struct lim_aux_data *lim_data;
  struct lim_aux_data *lim_data;
 
 
  if (!def)
  if (!def)
    return superloop_at_depth (loop, 1);
    return superloop_at_depth (loop, 1);
 
 
  if (TREE_CODE (def) != SSA_NAME)
  if (TREE_CODE (def) != SSA_NAME)
    {
    {
      gcc_assert (is_gimple_min_invariant (def));
      gcc_assert (is_gimple_min_invariant (def));
      return superloop_at_depth (loop, 1);
      return superloop_at_depth (loop, 1);
    }
    }
 
 
  def_stmt = SSA_NAME_DEF_STMT (def);
  def_stmt = SSA_NAME_DEF_STMT (def);
  def_bb = gimple_bb (def_stmt);
  def_bb = gimple_bb (def_stmt);
  if (!def_bb)
  if (!def_bb)
    return superloop_at_depth (loop, 1);
    return superloop_at_depth (loop, 1);
 
 
  max_loop = find_common_loop (loop, def_bb->loop_father);
  max_loop = find_common_loop (loop, def_bb->loop_father);
 
 
  lim_data = get_lim_data (def_stmt);
  lim_data = get_lim_data (def_stmt);
  if (lim_data != NULL && lim_data->max_loop != NULL)
  if (lim_data != NULL && lim_data->max_loop != NULL)
    max_loop = find_common_loop (max_loop,
    max_loop = find_common_loop (max_loop,
                                 loop_outer (lim_data->max_loop));
                                 loop_outer (lim_data->max_loop));
  if (max_loop == loop)
  if (max_loop == loop)
    return NULL;
    return NULL;
  max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
  max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
 
 
  return max_loop;
  return max_loop;
}
}
 
 
/* DATA is a structure containing information associated with a statement
/* DATA is a structure containing information associated with a statement
   inside LOOP.  DEF is one of the operands of this statement.
   inside LOOP.  DEF is one of the operands of this statement.
 
 
   Find the outermost loop enclosing LOOP in that value of DEF is invariant
   Find the outermost loop enclosing LOOP in that value of DEF is invariant
   and record this in DATA->max_loop field.  If DEF itself is defined inside
   and record this in DATA->max_loop field.  If DEF itself is defined inside
   this loop as well (i.e. we need to hoist it out of the loop if we want
   this loop as well (i.e. we need to hoist it out of the loop if we want
   to hoist the statement represented by DATA), record the statement in that
   to hoist the statement represented by DATA), record the statement in that
   DEF is defined to the DATA->depends list.  Additionally if ADD_COST is true,
   DEF is defined to the DATA->depends list.  Additionally if ADD_COST is true,
   add the cost of the computation of DEF to the DATA->cost.
   add the cost of the computation of DEF to the DATA->cost.
 
 
   If DEF is not invariant in LOOP, return false.  Otherwise return TRUE.  */
   If DEF is not invariant in LOOP, return false.  Otherwise return TRUE.  */
 
 
static bool
static bool
add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
                bool add_cost)
                bool add_cost)
{
{
  gimple def_stmt = SSA_NAME_DEF_STMT (def);
  gimple def_stmt = SSA_NAME_DEF_STMT (def);
  basic_block def_bb = gimple_bb (def_stmt);
  basic_block def_bb = gimple_bb (def_stmt);
  struct loop *max_loop;
  struct loop *max_loop;
  struct depend *dep;
  struct depend *dep;
  struct lim_aux_data *def_data;
  struct lim_aux_data *def_data;
 
 
  if (!def_bb)
  if (!def_bb)
    return true;
    return true;
 
 
  max_loop = outermost_invariant_loop (def, loop);
  max_loop = outermost_invariant_loop (def, loop);
  if (!max_loop)
  if (!max_loop)
    return false;
    return false;
 
 
  if (flow_loop_nested_p (data->max_loop, max_loop))
  if (flow_loop_nested_p (data->max_loop, max_loop))
    data->max_loop = max_loop;
    data->max_loop = max_loop;
 
 
  def_data = get_lim_data (def_stmt);
  def_data = get_lim_data (def_stmt);
  if (!def_data)
  if (!def_data)
    return true;
    return true;
 
 
  if (add_cost
  if (add_cost
      /* Only add the cost if the statement defining DEF is inside LOOP,
      /* Only add the cost if the statement defining DEF is inside LOOP,
         i.e. if it is likely that by moving the invariants dependent
         i.e. if it is likely that by moving the invariants dependent
         on it, we will be able to avoid creating a new register for
         on it, we will be able to avoid creating a new register for
         it (since it will be only used in these dependent invariants).  */
         it (since it will be only used in these dependent invariants).  */
      && def_bb->loop_father == loop)
      && def_bb->loop_father == loop)
    data->cost += def_data->cost;
    data->cost += def_data->cost;
 
 
  dep = XNEW (struct depend);
  dep = XNEW (struct depend);
  dep->stmt = def_stmt;
  dep->stmt = def_stmt;
  dep->next = data->depends;
  dep->next = data->depends;
  data->depends = dep;
  data->depends = dep;
 
 
  return true;
  return true;
}
}
 
 
/* Returns an estimate for a cost of statement STMT.  The values here
/* Returns an estimate for a cost of statement STMT.  The values here
   are just ad-hoc constants, similar to costs for inlining.  */
   are just ad-hoc constants, similar to costs for inlining.  */
 
 
static unsigned
static unsigned
stmt_cost (gimple stmt)
stmt_cost (gimple stmt)
{
{
  /* Always try to create possibilities for unswitching.  */
  /* Always try to create possibilities for unswitching.  */
  if (gimple_code (stmt) == GIMPLE_COND
  if (gimple_code (stmt) == GIMPLE_COND
      || gimple_code (stmt) == GIMPLE_PHI)
      || gimple_code (stmt) == GIMPLE_PHI)
    return LIM_EXPENSIVE;
    return LIM_EXPENSIVE;
 
 
  /* We should be hoisting calls if possible.  */
  /* We should be hoisting calls if possible.  */
  if (is_gimple_call (stmt))
  if (is_gimple_call (stmt))
    {
    {
      tree fndecl;
      tree fndecl;
 
 
      /* Unless the call is a builtin_constant_p; this always folds to a
      /* Unless the call is a builtin_constant_p; this always folds to a
         constant, so moving it is useless.  */
         constant, so moving it is useless.  */
      fndecl = gimple_call_fndecl (stmt);
      fndecl = gimple_call_fndecl (stmt);
      if (fndecl
      if (fndecl
          && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
          && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
          && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
          && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
        return 0;
        return 0;
 
 
      return LIM_EXPENSIVE;
      return LIM_EXPENSIVE;
    }
    }
 
 
  /* Hoisting memory references out should almost surely be a win.  */
  /* Hoisting memory references out should almost surely be a win.  */
  if (gimple_references_memory_p (stmt))
  if (gimple_references_memory_p (stmt))
    return LIM_EXPENSIVE;
    return LIM_EXPENSIVE;
 
 
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return 1;
    return 1;
 
 
  switch (gimple_assign_rhs_code (stmt))
  switch (gimple_assign_rhs_code (stmt))
    {
    {
    case MULT_EXPR:
    case MULT_EXPR:
    case WIDEN_MULT_EXPR:
    case WIDEN_MULT_EXPR:
    case WIDEN_MULT_PLUS_EXPR:
    case WIDEN_MULT_PLUS_EXPR:
    case WIDEN_MULT_MINUS_EXPR:
    case WIDEN_MULT_MINUS_EXPR:
    case DOT_PROD_EXPR:
    case DOT_PROD_EXPR:
    case FMA_EXPR:
    case FMA_EXPR:
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case CEIL_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case ROUND_MOD_EXPR:
    case TRUNC_MOD_EXPR:
    case TRUNC_MOD_EXPR:
    case RDIV_EXPR:
    case RDIV_EXPR:
      /* Division and multiplication are usually expensive.  */
      /* Division and multiplication are usually expensive.  */
      return LIM_EXPENSIVE;
      return LIM_EXPENSIVE;
 
 
    case LSHIFT_EXPR:
    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case RSHIFT_EXPR:
    case WIDEN_LSHIFT_EXPR:
    case WIDEN_LSHIFT_EXPR:
    case LROTATE_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
    case RROTATE_EXPR:
      /* Shifts and rotates are usually expensive.  */
      /* Shifts and rotates are usually expensive.  */
      return LIM_EXPENSIVE;
      return LIM_EXPENSIVE;
 
 
    case CONSTRUCTOR:
    case CONSTRUCTOR:
      /* Make vector construction cost proportional to the number
      /* Make vector construction cost proportional to the number
         of elements.  */
         of elements.  */
      return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
      return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
 
 
    case SSA_NAME:
    case SSA_NAME:
    case PAREN_EXPR:
    case PAREN_EXPR:
      /* Whether or not something is wrapped inside a PAREN_EXPR
      /* Whether or not something is wrapped inside a PAREN_EXPR
         should not change move cost.  Nor should an intermediate
         should not change move cost.  Nor should an intermediate
         unpropagated SSA name copy.  */
         unpropagated SSA name copy.  */
      return 0;
      return 0;
 
 
    default:
    default:
      return 1;
      return 1;
    }
    }
}
}
 
 
/* Finds the outermost loop between OUTER and LOOP in that the memory reference
/* Finds the outermost loop between OUTER and LOOP in that the memory reference
   REF is independent.  If REF is not independent in LOOP, NULL is returned
   REF is independent.  If REF is not independent in LOOP, NULL is returned
   instead.  */
   instead.  */
 
 
static struct loop *
static struct loop *
outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
{
{
  struct loop *aloop;
  struct loop *aloop;
 
 
  if (bitmap_bit_p (ref->stored, loop->num))
  if (bitmap_bit_p (ref->stored, loop->num))
    return NULL;
    return NULL;
 
 
  for (aloop = outer;
  for (aloop = outer;
       aloop != loop;
       aloop != loop;
       aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
       aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
    if (!bitmap_bit_p (ref->stored, aloop->num)
    if (!bitmap_bit_p (ref->stored, aloop->num)
        && ref_indep_loop_p (aloop, ref))
        && ref_indep_loop_p (aloop, ref))
      return aloop;
      return aloop;
 
 
  if (ref_indep_loop_p (loop, ref))
  if (ref_indep_loop_p (loop, ref))
    return loop;
    return loop;
  else
  else
    return NULL;
    return NULL;
}
}
 
 
/* If there is a simple load or store to a memory reference in STMT, returns
/* If there is a simple load or store to a memory reference in STMT, returns
   the location of the memory reference, and sets IS_STORE according to whether
   the location of the memory reference, and sets IS_STORE according to whether
   it is a store or load.  Otherwise, returns NULL.  */
   it is a store or load.  Otherwise, returns NULL.  */
 
 
static tree *
static tree *
simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
{
{
  tree *lhs;
  tree *lhs;
  enum tree_code code;
  enum tree_code code;
 
 
  /* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns.  */
  /* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns.  */
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return NULL;
    return NULL;
 
 
  code = gimple_assign_rhs_code (stmt);
  code = gimple_assign_rhs_code (stmt);
 
 
  lhs = gimple_assign_lhs_ptr (stmt);
  lhs = gimple_assign_lhs_ptr (stmt);
 
 
  if (TREE_CODE (*lhs) == SSA_NAME)
  if (TREE_CODE (*lhs) == SSA_NAME)
    {
    {
      if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
      if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
          || !is_gimple_addressable (gimple_assign_rhs1 (stmt)))
          || !is_gimple_addressable (gimple_assign_rhs1 (stmt)))
        return NULL;
        return NULL;
 
 
      *is_store = false;
      *is_store = false;
      return gimple_assign_rhs1_ptr (stmt);
      return gimple_assign_rhs1_ptr (stmt);
    }
    }
  else if (code == SSA_NAME
  else if (code == SSA_NAME
           || (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
           || (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
               && is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
               && is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
    {
    {
      *is_store = true;
      *is_store = true;
      return lhs;
      return lhs;
    }
    }
  else
  else
    return NULL;
    return NULL;
}
}
 
 
/* Returns the memory reference contained in STMT.  */
/* Returns the memory reference contained in STMT.  */
 
 
static mem_ref_p
static mem_ref_p
mem_ref_in_stmt (gimple stmt)
mem_ref_in_stmt (gimple stmt)
{
{
  bool store;
  bool store;
  tree *mem = simple_mem_ref_in_stmt (stmt, &store);
  tree *mem = simple_mem_ref_in_stmt (stmt, &store);
  hashval_t hash;
  hashval_t hash;
  mem_ref_p ref;
  mem_ref_p ref;
 
 
  if (!mem)
  if (!mem)
    return NULL;
    return NULL;
  gcc_assert (!store);
  gcc_assert (!store);
 
 
  hash = iterative_hash_expr (*mem, 0);
  hash = iterative_hash_expr (*mem, 0);
  ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash);
  ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash);
 
 
  gcc_assert (ref != NULL);
  gcc_assert (ref != NULL);
  return ref;
  return ref;
}
}
 
 
/* From a controlling predicate in DOM determine the arguments from
/* From a controlling predicate in DOM determine the arguments from
   the PHI node PHI that are chosen if the predicate evaluates to
   the PHI node PHI that are chosen if the predicate evaluates to
   true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
   true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
   they are non-NULL.  Returns true if the arguments can be determined,
   they are non-NULL.  Returns true if the arguments can be determined,
   else return false.  */
   else return false.  */
 
 
static bool
static bool
extract_true_false_args_from_phi (basic_block dom, gimple phi,
extract_true_false_args_from_phi (basic_block dom, gimple phi,
                                  tree *true_arg_p, tree *false_arg_p)
                                  tree *true_arg_p, tree *false_arg_p)
{
{
  basic_block bb = gimple_bb (phi);
  basic_block bb = gimple_bb (phi);
  edge true_edge, false_edge, tem;
  edge true_edge, false_edge, tem;
  tree arg0 = NULL_TREE, arg1 = NULL_TREE;
  tree arg0 = NULL_TREE, arg1 = NULL_TREE;
 
 
  /* We have to verify that one edge into the PHI node is dominated
  /* We have to verify that one edge into the PHI node is dominated
     by the true edge of the predicate block and the other edge
     by the true edge of the predicate block and the other edge
     dominated by the false edge.  This ensures that the PHI argument
     dominated by the false edge.  This ensures that the PHI argument
     we are going to take is completely determined by the path we
     we are going to take is completely determined by the path we
     take from the predicate block.
     take from the predicate block.
     We can only use BB dominance checks below if the destination of
     We can only use BB dominance checks below if the destination of
     the true/false edges are dominated by their edge, thus only
     the true/false edges are dominated by their edge, thus only
     have a single predecessor.  */
     have a single predecessor.  */
  extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
  extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
  tem = EDGE_PRED (bb, 0);
  tem = EDGE_PRED (bb, 0);
  if (tem == true_edge
  if (tem == true_edge
      || (single_pred_p (true_edge->dest)
      || (single_pred_p (true_edge->dest)
          && (tem->src == true_edge->dest
          && (tem->src == true_edge->dest
              || dominated_by_p (CDI_DOMINATORS,
              || dominated_by_p (CDI_DOMINATORS,
                                 tem->src, true_edge->dest))))
                                 tem->src, true_edge->dest))))
    arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
    arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
  else if (tem == false_edge
  else if (tem == false_edge
           || (single_pred_p (false_edge->dest)
           || (single_pred_p (false_edge->dest)
               && (tem->src == false_edge->dest
               && (tem->src == false_edge->dest
                   || dominated_by_p (CDI_DOMINATORS,
                   || dominated_by_p (CDI_DOMINATORS,
                                      tem->src, false_edge->dest))))
                                      tem->src, false_edge->dest))))
    arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
    arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
  else
  else
    return false;
    return false;
  tem = EDGE_PRED (bb, 1);
  tem = EDGE_PRED (bb, 1);
  if (tem == true_edge
  if (tem == true_edge
      || (single_pred_p (true_edge->dest)
      || (single_pred_p (true_edge->dest)
          && (tem->src == true_edge->dest
          && (tem->src == true_edge->dest
              || dominated_by_p (CDI_DOMINATORS,
              || dominated_by_p (CDI_DOMINATORS,
                                 tem->src, true_edge->dest))))
                                 tem->src, true_edge->dest))))
    arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
    arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
  else if (tem == false_edge
  else if (tem == false_edge
           || (single_pred_p (false_edge->dest)
           || (single_pred_p (false_edge->dest)
               && (tem->src == false_edge->dest
               && (tem->src == false_edge->dest
                   || dominated_by_p (CDI_DOMINATORS,
                   || dominated_by_p (CDI_DOMINATORS,
                                      tem->src, false_edge->dest))))
                                      tem->src, false_edge->dest))))
    arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
    arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
  else
  else
    return false;
    return false;
  if (!arg0 || !arg1)
  if (!arg0 || !arg1)
    return false;
    return false;
 
 
  if (true_arg_p)
  if (true_arg_p)
    *true_arg_p = arg0;
    *true_arg_p = arg0;
  if (false_arg_p)
  if (false_arg_p)
    *false_arg_p = arg1;
    *false_arg_p = arg1;
 
 
  return true;
  return true;
}
}
 
 
/* Determine the outermost loop to that it is possible to hoist a statement
/* Determine the outermost loop to that it is possible to hoist a statement
   STMT and store it to LIM_DATA (STMT)->max_loop.  To do this we determine
   STMT and store it to LIM_DATA (STMT)->max_loop.  To do this we determine
   the outermost loop in that the value computed by STMT is invariant.
   the outermost loop in that the value computed by STMT is invariant.
   If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
   If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
   we preserve the fact whether STMT is executed.  It also fills other related
   we preserve the fact whether STMT is executed.  It also fills other related
   information to LIM_DATA (STMT).
   information to LIM_DATA (STMT).
 
 
   The function returns false if STMT cannot be hoisted outside of the loop it
   The function returns false if STMT cannot be hoisted outside of the loop it
   is defined in, and true otherwise.  */
   is defined in, and true otherwise.  */
 
 
static bool
static bool
determine_max_movement (gimple stmt, bool must_preserve_exec)
determine_max_movement (gimple stmt, bool must_preserve_exec)
{
{
  basic_block bb = gimple_bb (stmt);
  basic_block bb = gimple_bb (stmt);
  struct loop *loop = bb->loop_father;
  struct loop *loop = bb->loop_father;
  struct loop *level;
  struct loop *level;
  struct lim_aux_data *lim_data = get_lim_data (stmt);
  struct lim_aux_data *lim_data = get_lim_data (stmt);
  tree val;
  tree val;
  ssa_op_iter iter;
  ssa_op_iter iter;
 
 
  if (must_preserve_exec)
  if (must_preserve_exec)
    level = ALWAYS_EXECUTED_IN (bb);
    level = ALWAYS_EXECUTED_IN (bb);
  else
  else
    level = superloop_at_depth (loop, 1);
    level = superloop_at_depth (loop, 1);
  lim_data->max_loop = level;
  lim_data->max_loop = level;
 
 
  if (gimple_code (stmt) == GIMPLE_PHI)
  if (gimple_code (stmt) == GIMPLE_PHI)
    {
    {
      use_operand_p use_p;
      use_operand_p use_p;
      unsigned min_cost = UINT_MAX;
      unsigned min_cost = UINT_MAX;
      unsigned total_cost = 0;
      unsigned total_cost = 0;
      struct lim_aux_data *def_data;
      struct lim_aux_data *def_data;
 
 
      /* We will end up promoting dependencies to be unconditionally
      /* We will end up promoting dependencies to be unconditionally
         evaluated.  For this reason the PHI cost (and thus the
         evaluated.  For this reason the PHI cost (and thus the
         cost we remove from the loop by doing the invariant motion)
         cost we remove from the loop by doing the invariant motion)
         is that of the cheapest PHI argument dependency chain.  */
         is that of the cheapest PHI argument dependency chain.  */
      FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
      FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
        {
        {
          val = USE_FROM_PTR (use_p);
          val = USE_FROM_PTR (use_p);
          if (TREE_CODE (val) != SSA_NAME)
          if (TREE_CODE (val) != SSA_NAME)
            continue;
            continue;
          if (!add_dependency (val, lim_data, loop, false))
          if (!add_dependency (val, lim_data, loop, false))
            return false;
            return false;
          def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
          def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
          if (def_data)
          if (def_data)
            {
            {
              min_cost = MIN (min_cost, def_data->cost);
              min_cost = MIN (min_cost, def_data->cost);
              total_cost += def_data->cost;
              total_cost += def_data->cost;
            }
            }
        }
        }
 
 
      lim_data->cost += min_cost;
      lim_data->cost += min_cost;
 
 
      if (gimple_phi_num_args (stmt) > 1)
      if (gimple_phi_num_args (stmt) > 1)
        {
        {
          basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
          basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
          gimple cond;
          gimple cond;
          if (gsi_end_p (gsi_last_bb (dom)))
          if (gsi_end_p (gsi_last_bb (dom)))
            return false;
            return false;
          cond = gsi_stmt (gsi_last_bb (dom));
          cond = gsi_stmt (gsi_last_bb (dom));
          if (gimple_code (cond) != GIMPLE_COND)
          if (gimple_code (cond) != GIMPLE_COND)
            return false;
            return false;
          /* Verify that this is an extended form of a diamond and
          /* Verify that this is an extended form of a diamond and
             the PHI arguments are completely controlled by the
             the PHI arguments are completely controlled by the
             predicate in DOM.  */
             predicate in DOM.  */
          if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
          if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
            return false;
            return false;
 
 
          /* Fold in dependencies and cost of the condition.  */
          /* Fold in dependencies and cost of the condition.  */
          FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
          FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
            {
            {
              if (!add_dependency (val, lim_data, loop, false))
              if (!add_dependency (val, lim_data, loop, false))
                return false;
                return false;
              def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
              def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
              if (def_data)
              if (def_data)
                total_cost += def_data->cost;
                total_cost += def_data->cost;
            }
            }
 
 
          /* We want to avoid unconditionally executing very expensive
          /* We want to avoid unconditionally executing very expensive
             operations.  As costs for our dependencies cannot be
             operations.  As costs for our dependencies cannot be
             negative just claim we are not invariand for this case.
             negative just claim we are not invariand for this case.
             We also are not sure whether the control-flow inside the
             We also are not sure whether the control-flow inside the
             loop will vanish.  */
             loop will vanish.  */
          if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
          if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
              && !(min_cost != 0
              && !(min_cost != 0
                   && total_cost / min_cost <= 2))
                   && total_cost / min_cost <= 2))
            return false;
            return false;
 
 
          /* Assume that the control-flow in the loop will vanish.
          /* Assume that the control-flow in the loop will vanish.
             ???  We should verify this and not artificially increase
             ???  We should verify this and not artificially increase
             the cost if that is not the case.  */
             the cost if that is not the case.  */
          lim_data->cost += stmt_cost (stmt);
          lim_data->cost += stmt_cost (stmt);
        }
        }
 
 
      return true;
      return true;
    }
    }
  else
  else
    FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
    FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
      if (!add_dependency (val, lim_data, loop, true))
      if (!add_dependency (val, lim_data, loop, true))
        return false;
        return false;
 
 
  if (gimple_vuse (stmt))
  if (gimple_vuse (stmt))
    {
    {
      mem_ref_p ref = mem_ref_in_stmt (stmt);
      mem_ref_p ref = mem_ref_in_stmt (stmt);
 
 
      if (ref)
      if (ref)
        {
        {
          lim_data->max_loop
          lim_data->max_loop
                  = outermost_indep_loop (lim_data->max_loop, loop, ref);
                  = outermost_indep_loop (lim_data->max_loop, loop, ref);
          if (!lim_data->max_loop)
          if (!lim_data->max_loop)
            return false;
            return false;
        }
        }
      else
      else
        {
        {
          if ((val = gimple_vuse (stmt)) != NULL_TREE)
          if ((val = gimple_vuse (stmt)) != NULL_TREE)
            {
            {
              if (!add_dependency (val, lim_data, loop, false))
              if (!add_dependency (val, lim_data, loop, false))
                return false;
                return false;
            }
            }
        }
        }
    }
    }
 
 
  lim_data->cost += stmt_cost (stmt);
  lim_data->cost += stmt_cost (stmt);
 
 
  return true;
  return true;
}
}
 
 
/* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
/* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
   and that one of the operands of this statement is computed by STMT.
   and that one of the operands of this statement is computed by STMT.
   Ensure that STMT (together with all the statements that define its
   Ensure that STMT (together with all the statements that define its
   operands) is hoisted at least out of the loop LEVEL.  */
   operands) is hoisted at least out of the loop LEVEL.  */
 
 
static void
static void
set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
{
{
  struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
  struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
  struct depend *dep;
  struct depend *dep;
  struct lim_aux_data *lim_data;
  struct lim_aux_data *lim_data;
 
 
  stmt_loop = find_common_loop (orig_loop, stmt_loop);
  stmt_loop = find_common_loop (orig_loop, stmt_loop);
  lim_data = get_lim_data (stmt);
  lim_data = get_lim_data (stmt);
  if (lim_data != NULL && lim_data->tgt_loop != NULL)
  if (lim_data != NULL && lim_data->tgt_loop != NULL)
    stmt_loop = find_common_loop (stmt_loop,
    stmt_loop = find_common_loop (stmt_loop,
                                  loop_outer (lim_data->tgt_loop));
                                  loop_outer (lim_data->tgt_loop));
  if (flow_loop_nested_p (stmt_loop, level))
  if (flow_loop_nested_p (stmt_loop, level))
    return;
    return;
 
 
  gcc_assert (level == lim_data->max_loop
  gcc_assert (level == lim_data->max_loop
              || flow_loop_nested_p (lim_data->max_loop, level));
              || flow_loop_nested_p (lim_data->max_loop, level));
 
 
  lim_data->tgt_loop = level;
  lim_data->tgt_loop = level;
  for (dep = lim_data->depends; dep; dep = dep->next)
  for (dep = lim_data->depends; dep; dep = dep->next)
    set_level (dep->stmt, orig_loop, level);
    set_level (dep->stmt, orig_loop, level);
}
}
 
 
/* Determines an outermost loop from that we want to hoist the statement STMT.
/* Determines an outermost loop from that we want to hoist the statement STMT.
   For now we chose the outermost possible loop.  TODO -- use profiling
   For now we chose the outermost possible loop.  TODO -- use profiling
   information to set it more sanely.  */
   information to set it more sanely.  */
 
 
static void
static void
set_profitable_level (gimple stmt)
set_profitable_level (gimple stmt)
{
{
  set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
  set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
}
}
 
 
/* Returns true if STMT is a call that has side effects.  */
/* Returns true if STMT is a call that has side effects.  */
 
 
static bool
static bool
nonpure_call_p (gimple stmt)
nonpure_call_p (gimple stmt)
{
{
  if (gimple_code (stmt) != GIMPLE_CALL)
  if (gimple_code (stmt) != GIMPLE_CALL)
    return false;
    return false;
 
 
  return gimple_has_side_effects (stmt);
  return gimple_has_side_effects (stmt);
}
}
 
 
/* Rewrite a/b to a*(1/b).  Return the invariant stmt to process.  */
/* Rewrite a/b to a*(1/b).  Return the invariant stmt to process.  */
 
 
static gimple
static gimple
rewrite_reciprocal (gimple_stmt_iterator *bsi)
rewrite_reciprocal (gimple_stmt_iterator *bsi)
{
{
  gimple stmt, stmt1, stmt2;
  gimple stmt, stmt1, stmt2;
  tree var, name, lhs, type;
  tree var, name, lhs, type;
  tree real_one;
  tree real_one;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
 
 
  stmt = gsi_stmt (*bsi);
  stmt = gsi_stmt (*bsi);
  lhs = gimple_assign_lhs (stmt);
  lhs = gimple_assign_lhs (stmt);
  type = TREE_TYPE (lhs);
  type = TREE_TYPE (lhs);
 
 
  var = create_tmp_var (type, "reciptmp");
  var = create_tmp_var (type, "reciptmp");
  add_referenced_var (var);
  add_referenced_var (var);
  DECL_GIMPLE_REG_P (var) = 1;
  DECL_GIMPLE_REG_P (var) = 1;
 
 
  real_one = build_one_cst (type);
  real_one = build_one_cst (type);
 
 
  stmt1 = gimple_build_assign_with_ops (RDIV_EXPR,
  stmt1 = gimple_build_assign_with_ops (RDIV_EXPR,
                var, real_one, gimple_assign_rhs2 (stmt));
                var, real_one, gimple_assign_rhs2 (stmt));
  name = make_ssa_name (var, stmt1);
  name = make_ssa_name (var, stmt1);
  gimple_assign_set_lhs (stmt1, name);
  gimple_assign_set_lhs (stmt1, name);
 
 
  stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
  stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
                                        gimple_assign_rhs1 (stmt));
                                        gimple_assign_rhs1 (stmt));
 
 
  /* Replace division stmt with reciprocal and multiply stmts.
  /* Replace division stmt with reciprocal and multiply stmts.
     The multiply stmt is not invariant, so update iterator
     The multiply stmt is not invariant, so update iterator
     and avoid rescanning.  */
     and avoid rescanning.  */
  gsi = *bsi;
  gsi = *bsi;
  gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
  gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
  gsi_replace (&gsi, stmt2, true);
  gsi_replace (&gsi, stmt2, true);
 
 
  /* Continue processing with invariant reciprocal statement.  */
  /* Continue processing with invariant reciprocal statement.  */
  return stmt1;
  return stmt1;
}
}
 
 
/* Check if the pattern at *BSI is a bittest of the form
/* Check if the pattern at *BSI is a bittest of the form
   (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0.  */
   (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0.  */
 
 
static gimple
static gimple
rewrite_bittest (gimple_stmt_iterator *bsi)
rewrite_bittest (gimple_stmt_iterator *bsi)
{
{
  gimple stmt, use_stmt, stmt1, stmt2;
  gimple stmt, use_stmt, stmt1, stmt2;
  tree lhs, var, name, t, a, b;
  tree lhs, var, name, t, a, b;
  use_operand_p use;
  use_operand_p use;
 
 
  stmt = gsi_stmt (*bsi);
  stmt = gsi_stmt (*bsi);
  lhs = gimple_assign_lhs (stmt);
  lhs = gimple_assign_lhs (stmt);
 
 
  /* Verify that the single use of lhs is a comparison against zero.  */
  /* Verify that the single use of lhs is a comparison against zero.  */
  if (TREE_CODE (lhs) != SSA_NAME
  if (TREE_CODE (lhs) != SSA_NAME
      || !single_imm_use (lhs, &use, &use_stmt)
      || !single_imm_use (lhs, &use, &use_stmt)
      || gimple_code (use_stmt) != GIMPLE_COND)
      || gimple_code (use_stmt) != GIMPLE_COND)
    return stmt;
    return stmt;
  if (gimple_cond_lhs (use_stmt) != lhs
  if (gimple_cond_lhs (use_stmt) != lhs
      || (gimple_cond_code (use_stmt) != NE_EXPR
      || (gimple_cond_code (use_stmt) != NE_EXPR
          && gimple_cond_code (use_stmt) != EQ_EXPR)
          && gimple_cond_code (use_stmt) != EQ_EXPR)
      || !integer_zerop (gimple_cond_rhs (use_stmt)))
      || !integer_zerop (gimple_cond_rhs (use_stmt)))
    return stmt;
    return stmt;
 
 
  /* Get at the operands of the shift.  The rhs is TMP1 & 1.  */
  /* Get at the operands of the shift.  The rhs is TMP1 & 1.  */
  stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
  stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
  if (gimple_code (stmt1) != GIMPLE_ASSIGN)
  if (gimple_code (stmt1) != GIMPLE_ASSIGN)
    return stmt;
    return stmt;
 
 
  /* There is a conversion in between possibly inserted by fold.  */
  /* There is a conversion in between possibly inserted by fold.  */
  if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
  if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
    {
    {
      t = gimple_assign_rhs1 (stmt1);
      t = gimple_assign_rhs1 (stmt1);
      if (TREE_CODE (t) != SSA_NAME
      if (TREE_CODE (t) != SSA_NAME
          || !has_single_use (t))
          || !has_single_use (t))
        return stmt;
        return stmt;
      stmt1 = SSA_NAME_DEF_STMT (t);
      stmt1 = SSA_NAME_DEF_STMT (t);
      if (gimple_code (stmt1) != GIMPLE_ASSIGN)
      if (gimple_code (stmt1) != GIMPLE_ASSIGN)
        return stmt;
        return stmt;
    }
    }
 
 
  /* Verify that B is loop invariant but A is not.  Verify that with
  /* Verify that B is loop invariant but A is not.  Verify that with
     all the stmt walking we are still in the same loop.  */
     all the stmt walking we are still in the same loop.  */
  if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
  if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
      || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
      || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
    return stmt;
    return stmt;
 
 
  a = gimple_assign_rhs1 (stmt1);
  a = gimple_assign_rhs1 (stmt1);
  b = gimple_assign_rhs2 (stmt1);
  b = gimple_assign_rhs2 (stmt1);
 
 
  if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
  if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
      && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
      && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
    {
    {
      gimple_stmt_iterator rsi;
      gimple_stmt_iterator rsi;
 
 
      /* 1 << B */
      /* 1 << B */
      var = create_tmp_var (TREE_TYPE (a), "shifttmp");
      var = create_tmp_var (TREE_TYPE (a), "shifttmp");
      add_referenced_var (var);
      add_referenced_var (var);
      t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
      t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
                       build_int_cst (TREE_TYPE (a), 1), b);
                       build_int_cst (TREE_TYPE (a), 1), b);
      stmt1 = gimple_build_assign (var, t);
      stmt1 = gimple_build_assign (var, t);
      name = make_ssa_name (var, stmt1);
      name = make_ssa_name (var, stmt1);
      gimple_assign_set_lhs (stmt1, name);
      gimple_assign_set_lhs (stmt1, name);
 
 
      /* A & (1 << B) */
      /* A & (1 << B) */
      t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
      t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
      stmt2 = gimple_build_assign (var, t);
      stmt2 = gimple_build_assign (var, t);
      name = make_ssa_name (var, stmt2);
      name = make_ssa_name (var, stmt2);
      gimple_assign_set_lhs (stmt2, name);
      gimple_assign_set_lhs (stmt2, name);
 
 
      /* Replace the SSA_NAME we compare against zero.  Adjust
      /* Replace the SSA_NAME we compare against zero.  Adjust
         the type of zero accordingly.  */
         the type of zero accordingly.  */
      SET_USE (use, name);
      SET_USE (use, name);
      gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
      gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
 
 
      /* Don't use gsi_replace here, none of the new assignments sets
      /* Don't use gsi_replace here, none of the new assignments sets
         the variable originally set in stmt.  Move bsi to stmt1, and
         the variable originally set in stmt.  Move bsi to stmt1, and
         then remove the original stmt, so that we get a chance to
         then remove the original stmt, so that we get a chance to
         retain debug info for it.  */
         retain debug info for it.  */
      rsi = *bsi;
      rsi = *bsi;
      gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
      gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
      gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
      gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
      gsi_remove (&rsi, true);
      gsi_remove (&rsi, true);
 
 
      return stmt1;
      return stmt1;
    }
    }
 
 
  return stmt;
  return stmt;
}
}
 
 
 
 
/* Determine the outermost loops in that statements in basic block BB are
/* Determine the outermost loops in that statements in basic block BB are
   invariant, and record them to the LIM_DATA associated with the statements.
   invariant, and record them to the LIM_DATA associated with the statements.
   Callback for walk_dominator_tree.  */
   Callback for walk_dominator_tree.  */
 
 
static void
static void
determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
                              basic_block bb)
                              basic_block bb)
{
{
  enum move_pos pos;
  enum move_pos pos;
  gimple_stmt_iterator bsi;
  gimple_stmt_iterator bsi;
  gimple stmt;
  gimple stmt;
  bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
  bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
  struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
  struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
  struct lim_aux_data *lim_data;
  struct lim_aux_data *lim_data;
 
 
  if (!loop_outer (bb->loop_father))
  if (!loop_outer (bb->loop_father))
    return;
    return;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
    fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
             bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
             bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
 
 
  /* Look at PHI nodes, but only if there is at most two.
  /* Look at PHI nodes, but only if there is at most two.
     ???  We could relax this further by post-processing the inserted
     ???  We could relax this further by post-processing the inserted
     code and transforming adjacent cond-exprs with the same predicate
     code and transforming adjacent cond-exprs with the same predicate
     to control flow again.  */
     to control flow again.  */
  bsi = gsi_start_phis (bb);
  bsi = gsi_start_phis (bb);
  if (!gsi_end_p (bsi)
  if (!gsi_end_p (bsi)
      && ((gsi_next (&bsi), gsi_end_p (bsi))
      && ((gsi_next (&bsi), gsi_end_p (bsi))
          || (gsi_next (&bsi), gsi_end_p (bsi))))
          || (gsi_next (&bsi), gsi_end_p (bsi))))
    for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
    for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
      {
      {
        stmt = gsi_stmt (bsi);
        stmt = gsi_stmt (bsi);
 
 
        pos = movement_possibility (stmt);
        pos = movement_possibility (stmt);
        if (pos == MOVE_IMPOSSIBLE)
        if (pos == MOVE_IMPOSSIBLE)
          continue;
          continue;
 
 
        lim_data = init_lim_data (stmt);
        lim_data = init_lim_data (stmt);
        lim_data->always_executed_in = outermost;
        lim_data->always_executed_in = outermost;
 
 
        if (!determine_max_movement (stmt, false))
        if (!determine_max_movement (stmt, false))
          {
          {
            lim_data->max_loop = NULL;
            lim_data->max_loop = NULL;
            continue;
            continue;
          }
          }
 
 
        if (dump_file && (dump_flags & TDF_DETAILS))
        if (dump_file && (dump_flags & TDF_DETAILS))
          {
          {
            print_gimple_stmt (dump_file, stmt, 2, 0);
            print_gimple_stmt (dump_file, stmt, 2, 0);
            fprintf (dump_file, "  invariant up to level %d, cost %d.\n\n",
            fprintf (dump_file, "  invariant up to level %d, cost %d.\n\n",
                     loop_depth (lim_data->max_loop),
                     loop_depth (lim_data->max_loop),
                     lim_data->cost);
                     lim_data->cost);
          }
          }
 
 
        if (lim_data->cost >= LIM_EXPENSIVE)
        if (lim_data->cost >= LIM_EXPENSIVE)
          set_profitable_level (stmt);
          set_profitable_level (stmt);
      }
      }
 
 
  for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
  for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
    {
    {
      stmt = gsi_stmt (bsi);
      stmt = gsi_stmt (bsi);
 
 
      pos = movement_possibility (stmt);
      pos = movement_possibility (stmt);
      if (pos == MOVE_IMPOSSIBLE)
      if (pos == MOVE_IMPOSSIBLE)
        {
        {
          if (nonpure_call_p (stmt))
          if (nonpure_call_p (stmt))
            {
            {
              maybe_never = true;
              maybe_never = true;
              outermost = NULL;
              outermost = NULL;
            }
            }
          /* Make sure to note always_executed_in for stores to make
          /* Make sure to note always_executed_in for stores to make
             store-motion work.  */
             store-motion work.  */
          else if (stmt_makes_single_store (stmt))
          else if (stmt_makes_single_store (stmt))
            {
            {
              struct lim_aux_data *lim_data = init_lim_data (stmt);
              struct lim_aux_data *lim_data = init_lim_data (stmt);
              lim_data->always_executed_in = outermost;
              lim_data->always_executed_in = outermost;
            }
            }
          continue;
          continue;
        }
        }
 
 
      if (is_gimple_assign (stmt)
      if (is_gimple_assign (stmt)
          && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
          && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
              == GIMPLE_BINARY_RHS))
              == GIMPLE_BINARY_RHS))
        {
        {
          tree op0 = gimple_assign_rhs1 (stmt);
          tree op0 = gimple_assign_rhs1 (stmt);
          tree op1 = gimple_assign_rhs2 (stmt);
          tree op1 = gimple_assign_rhs2 (stmt);
          struct loop *ol1 = outermost_invariant_loop (op1,
          struct loop *ol1 = outermost_invariant_loop (op1,
                                        loop_containing_stmt (stmt));
                                        loop_containing_stmt (stmt));
 
 
          /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
          /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
             to be hoisted out of loop, saving expensive divide.  */
             to be hoisted out of loop, saving expensive divide.  */
          if (pos == MOVE_POSSIBLE
          if (pos == MOVE_POSSIBLE
              && gimple_assign_rhs_code (stmt) == RDIV_EXPR
              && gimple_assign_rhs_code (stmt) == RDIV_EXPR
              && flag_unsafe_math_optimizations
              && flag_unsafe_math_optimizations
              && !flag_trapping_math
              && !flag_trapping_math
              && ol1 != NULL
              && ol1 != NULL
              && outermost_invariant_loop (op0, ol1) == NULL)
              && outermost_invariant_loop (op0, ol1) == NULL)
            stmt = rewrite_reciprocal (&bsi);
            stmt = rewrite_reciprocal (&bsi);
 
 
          /* If the shift count is invariant, convert (A >> B) & 1 to
          /* If the shift count is invariant, convert (A >> B) & 1 to
             A & (1 << B) allowing the bit mask to be hoisted out of the loop
             A & (1 << B) allowing the bit mask to be hoisted out of the loop
             saving an expensive shift.  */
             saving an expensive shift.  */
          if (pos == MOVE_POSSIBLE
          if (pos == MOVE_POSSIBLE
              && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
              && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
              && integer_onep (op1)
              && integer_onep (op1)
              && TREE_CODE (op0) == SSA_NAME
              && TREE_CODE (op0) == SSA_NAME
              && has_single_use (op0))
              && has_single_use (op0))
            stmt = rewrite_bittest (&bsi);
            stmt = rewrite_bittest (&bsi);
        }
        }
 
 
      lim_data = init_lim_data (stmt);
      lim_data = init_lim_data (stmt);
      lim_data->always_executed_in = outermost;
      lim_data->always_executed_in = outermost;
 
 
      if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
      if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
        continue;
        continue;
 
 
      if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
      if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
        {
        {
          lim_data->max_loop = NULL;
          lim_data->max_loop = NULL;
          continue;
          continue;
        }
        }
 
 
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          print_gimple_stmt (dump_file, stmt, 2, 0);
          print_gimple_stmt (dump_file, stmt, 2, 0);
          fprintf (dump_file, "  invariant up to level %d, cost %d.\n\n",
          fprintf (dump_file, "  invariant up to level %d, cost %d.\n\n",
                   loop_depth (lim_data->max_loop),
                   loop_depth (lim_data->max_loop),
                   lim_data->cost);
                   lim_data->cost);
        }
        }
 
 
      if (lim_data->cost >= LIM_EXPENSIVE)
      if (lim_data->cost >= LIM_EXPENSIVE)
        set_profitable_level (stmt);
        set_profitable_level (stmt);
    }
    }
}
}
 
 
/* For each statement determines the outermost loop in that it is invariant,
/* For each statement determines the outermost loop in that it is invariant,
   statements on whose motion it depends and the cost of the computation.
   statements on whose motion it depends and the cost of the computation.
   This information is stored to the LIM_DATA structure associated with
   This information is stored to the LIM_DATA structure associated with
   each statement.  */
   each statement.  */
 
 
static void
static void
determine_invariantness (void)
determine_invariantness (void)
{
{
  struct dom_walk_data walk_data;
  struct dom_walk_data walk_data;
 
 
  memset (&walk_data, 0, sizeof (struct dom_walk_data));
  memset (&walk_data, 0, sizeof (struct dom_walk_data));
  walk_data.dom_direction = CDI_DOMINATORS;
  walk_data.dom_direction = CDI_DOMINATORS;
  walk_data.before_dom_children = determine_invariantness_stmt;
  walk_data.before_dom_children = determine_invariantness_stmt;
 
 
  init_walk_dominator_tree (&walk_data);
  init_walk_dominator_tree (&walk_data);
  walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
  walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
  fini_walk_dominator_tree (&walk_data);
  fini_walk_dominator_tree (&walk_data);
}
}
 
 
/* Hoist the statements in basic block BB out of the loops prescribed by
/* Hoist the statements in basic block BB out of the loops prescribed by
   data stored in LIM_DATA structures associated with each statement.  Callback
   data stored in LIM_DATA structures associated with each statement.  Callback
   for walk_dominator_tree.  */
   for walk_dominator_tree.  */
 
 
static void
static void
move_computations_stmt (struct dom_walk_data *dw_data,
move_computations_stmt (struct dom_walk_data *dw_data,
                        basic_block bb)
                        basic_block bb)
{
{
  struct loop *level;
  struct loop *level;
  gimple_stmt_iterator bsi;
  gimple_stmt_iterator bsi;
  gimple stmt;
  gimple stmt;
  unsigned cost = 0;
  unsigned cost = 0;
  struct lim_aux_data *lim_data;
  struct lim_aux_data *lim_data;
 
 
  if (!loop_outer (bb->loop_father))
  if (!loop_outer (bb->loop_father))
    return;
    return;
 
 
  for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
  for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
    {
    {
      gimple new_stmt;
      gimple new_stmt;
      stmt = gsi_stmt (bsi);
      stmt = gsi_stmt (bsi);
 
 
      lim_data = get_lim_data (stmt);
      lim_data = get_lim_data (stmt);
      if (lim_data == NULL)
      if (lim_data == NULL)
        {
        {
          gsi_next (&bsi);
          gsi_next (&bsi);
          continue;
          continue;
        }
        }
 
 
      cost = lim_data->cost;
      cost = lim_data->cost;
      level = lim_data->tgt_loop;
      level = lim_data->tgt_loop;
      clear_lim_data (stmt);
      clear_lim_data (stmt);
 
 
      if (!level)
      if (!level)
        {
        {
          gsi_next (&bsi);
          gsi_next (&bsi);
          continue;
          continue;
        }
        }
 
 
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "Moving PHI node\n");
          fprintf (dump_file, "Moving PHI node\n");
          print_gimple_stmt (dump_file, stmt, 0, 0);
          print_gimple_stmt (dump_file, stmt, 0, 0);
          fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
          fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
                   cost, level->num);
                   cost, level->num);
        }
        }
 
 
      if (gimple_phi_num_args (stmt) == 1)
      if (gimple_phi_num_args (stmt) == 1)
        {
        {
          tree arg = PHI_ARG_DEF (stmt, 0);
          tree arg = PHI_ARG_DEF (stmt, 0);
          new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
          new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
                                                   gimple_phi_result (stmt),
                                                   gimple_phi_result (stmt),
                                                   arg, NULL_TREE);
                                                   arg, NULL_TREE);
          SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
          SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
        }
        }
      else
      else
        {
        {
          basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
          basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
          gimple cond = gsi_stmt (gsi_last_bb (dom));
          gimple cond = gsi_stmt (gsi_last_bb (dom));
          tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
          tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
          /* Get the PHI arguments corresponding to the true and false
          /* Get the PHI arguments corresponding to the true and false
             edges of COND.  */
             edges of COND.  */
          extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
          extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
          gcc_assert (arg0 && arg1);
          gcc_assert (arg0 && arg1);
          t = build2 (gimple_cond_code (cond), boolean_type_node,
          t = build2 (gimple_cond_code (cond), boolean_type_node,
                      gimple_cond_lhs (cond), gimple_cond_rhs (cond));
                      gimple_cond_lhs (cond), gimple_cond_rhs (cond));
          new_stmt = gimple_build_assign_with_ops3 (COND_EXPR,
          new_stmt = gimple_build_assign_with_ops3 (COND_EXPR,
                                                    gimple_phi_result (stmt),
                                                    gimple_phi_result (stmt),
                                                    t, arg0, arg1);
                                                    t, arg0, arg1);
          SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
          SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
          *((unsigned int *)(dw_data->global_data)) |= TODO_cleanup_cfg;
          *((unsigned int *)(dw_data->global_data)) |= TODO_cleanup_cfg;
        }
        }
      gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
      gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
      remove_phi_node (&bsi, false);
      remove_phi_node (&bsi, false);
    }
    }
 
 
  for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
  for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
    {
    {
      stmt = gsi_stmt (bsi);
      stmt = gsi_stmt (bsi);
 
 
      lim_data = get_lim_data (stmt);
      lim_data = get_lim_data (stmt);
      if (lim_data == NULL)
      if (lim_data == NULL)
        {
        {
          gsi_next (&bsi);
          gsi_next (&bsi);
          continue;
          continue;
        }
        }
 
 
      cost = lim_data->cost;
      cost = lim_data->cost;
      level = lim_data->tgt_loop;
      level = lim_data->tgt_loop;
      clear_lim_data (stmt);
      clear_lim_data (stmt);
 
 
      if (!level)
      if (!level)
        {
        {
          gsi_next (&bsi);
          gsi_next (&bsi);
          continue;
          continue;
        }
        }
 
 
      /* We do not really want to move conditionals out of the loop; we just
      /* We do not really want to move conditionals out of the loop; we just
         placed it here to force its operands to be moved if necessary.  */
         placed it here to force its operands to be moved if necessary.  */
      if (gimple_code (stmt) == GIMPLE_COND)
      if (gimple_code (stmt) == GIMPLE_COND)
        continue;
        continue;
 
 
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "Moving statement\n");
          fprintf (dump_file, "Moving statement\n");
          print_gimple_stmt (dump_file, stmt, 0, 0);
          print_gimple_stmt (dump_file, stmt, 0, 0);
          fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
          fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
                   cost, level->num);
                   cost, level->num);
        }
        }
 
 
      mark_virtual_ops_for_renaming (stmt);
      mark_virtual_ops_for_renaming (stmt);
      gsi_insert_on_edge (loop_preheader_edge (level), stmt);
      gsi_insert_on_edge (loop_preheader_edge (level), stmt);
      gsi_remove (&bsi, false);
      gsi_remove (&bsi, false);
    }
    }
}
}
 
 
/* Hoist the statements out of the loops prescribed by data stored in
/* Hoist the statements out of the loops prescribed by data stored in
   LIM_DATA structures associated with each statement.*/
   LIM_DATA structures associated with each statement.*/
 
 
static unsigned int
static unsigned int
move_computations (void)
move_computations (void)
{
{
  struct dom_walk_data walk_data;
  struct dom_walk_data walk_data;
  unsigned int todo = 0;
  unsigned int todo = 0;
 
 
  memset (&walk_data, 0, sizeof (struct dom_walk_data));
  memset (&walk_data, 0, sizeof (struct dom_walk_data));
  walk_data.global_data = &todo;
  walk_data.global_data = &todo;
  walk_data.dom_direction = CDI_DOMINATORS;
  walk_data.dom_direction = CDI_DOMINATORS;
  walk_data.before_dom_children = move_computations_stmt;
  walk_data.before_dom_children = move_computations_stmt;
 
 
  init_walk_dominator_tree (&walk_data);
  init_walk_dominator_tree (&walk_data);
  walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
  walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
  fini_walk_dominator_tree (&walk_data);
  fini_walk_dominator_tree (&walk_data);
 
 
  gsi_commit_edge_inserts ();
  gsi_commit_edge_inserts ();
  if (need_ssa_update_p (cfun))
  if (need_ssa_update_p (cfun))
    rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
    rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
 
 
  return todo;
  return todo;
}
}
 
 
/* Checks whether the statement defining variable *INDEX can be hoisted
/* Checks whether the statement defining variable *INDEX can be hoisted
   out of the loop passed in DATA.  Callback for for_each_index.  */
   out of the loop passed in DATA.  Callback for for_each_index.  */
 
 
static bool
static bool
may_move_till (tree ref, tree *index, void *data)
may_move_till (tree ref, tree *index, void *data)
{
{
  struct loop *loop = (struct loop *) data, *max_loop;
  struct loop *loop = (struct loop *) data, *max_loop;
 
 
  /* If REF is an array reference, check also that the step and the lower
  /* If REF is an array reference, check also that the step and the lower
     bound is invariant in LOOP.  */
     bound is invariant in LOOP.  */
  if (TREE_CODE (ref) == ARRAY_REF)
  if (TREE_CODE (ref) == ARRAY_REF)
    {
    {
      tree step = TREE_OPERAND (ref, 3);
      tree step = TREE_OPERAND (ref, 3);
      tree lbound = TREE_OPERAND (ref, 2);
      tree lbound = TREE_OPERAND (ref, 2);
 
 
      max_loop = outermost_invariant_loop (step, loop);
      max_loop = outermost_invariant_loop (step, loop);
      if (!max_loop)
      if (!max_loop)
        return false;
        return false;
 
 
      max_loop = outermost_invariant_loop (lbound, loop);
      max_loop = outermost_invariant_loop (lbound, loop);
      if (!max_loop)
      if (!max_loop)
        return false;
        return false;
    }
    }
 
 
  max_loop = outermost_invariant_loop (*index, loop);
  max_loop = outermost_invariant_loop (*index, loop);
  if (!max_loop)
  if (!max_loop)
    return false;
    return false;
 
 
  return true;
  return true;
}
}
 
 
/* If OP is SSA NAME, force the statement that defines it to be
/* If OP is SSA NAME, force the statement that defines it to be
   moved out of the LOOP.  ORIG_LOOP is the loop in that EXPR is used.  */
   moved out of the LOOP.  ORIG_LOOP is the loop in that EXPR is used.  */
 
 
static void
static void
force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
{
{
  gimple stmt;
  gimple stmt;
 
 
  if (!op
  if (!op
      || is_gimple_min_invariant (op))
      || is_gimple_min_invariant (op))
    return;
    return;
 
 
  gcc_assert (TREE_CODE (op) == SSA_NAME);
  gcc_assert (TREE_CODE (op) == SSA_NAME);
 
 
  stmt = SSA_NAME_DEF_STMT (op);
  stmt = SSA_NAME_DEF_STMT (op);
  if (gimple_nop_p (stmt))
  if (gimple_nop_p (stmt))
    return;
    return;
 
 
  set_level (stmt, orig_loop, loop);
  set_level (stmt, orig_loop, loop);
}
}
 
 
/* Forces statement defining invariants in REF (and *INDEX) to be moved out of
/* Forces statement defining invariants in REF (and *INDEX) to be moved out of
   the LOOP.  The reference REF is used in the loop ORIG_LOOP.  Callback for
   the LOOP.  The reference REF is used in the loop ORIG_LOOP.  Callback for
   for_each_index.  */
   for_each_index.  */
 
 
struct fmt_data
struct fmt_data
{
{
  struct loop *loop;
  struct loop *loop;
  struct loop *orig_loop;
  struct loop *orig_loop;
};
};
 
 
static bool
static bool
force_move_till (tree ref, tree *index, void *data)
force_move_till (tree ref, tree *index, void *data)
{
{
  struct fmt_data *fmt_data = (struct fmt_data *) data;
  struct fmt_data *fmt_data = (struct fmt_data *) data;
 
 
  if (TREE_CODE (ref) == ARRAY_REF)
  if (TREE_CODE (ref) == ARRAY_REF)
    {
    {
      tree step = TREE_OPERAND (ref, 3);
      tree step = TREE_OPERAND (ref, 3);
      tree lbound = TREE_OPERAND (ref, 2);
      tree lbound = TREE_OPERAND (ref, 2);
 
 
      force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
      force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
      force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
      force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
    }
    }
 
 
  force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
  force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
 
 
  return true;
  return true;
}
}
 
 
/* A hash function for struct mem_ref object OBJ.  */
/* A hash function for struct mem_ref object OBJ.  */
 
 
static hashval_t
static hashval_t
memref_hash (const void *obj)
memref_hash (const void *obj)
{
{
  const struct mem_ref *const mem = (const struct mem_ref *) obj;
  const struct mem_ref *const mem = (const struct mem_ref *) obj;
 
 
  return mem->hash;
  return mem->hash;
}
}
 
 
/* An equality function for struct mem_ref object OBJ1 with
/* An equality function for struct mem_ref object OBJ1 with
   memory reference OBJ2.  */
   memory reference OBJ2.  */
 
 
static int
static int
memref_eq (const void *obj1, const void *obj2)
memref_eq (const void *obj1, const void *obj2)
{
{
  const struct mem_ref *const mem1 = (const struct mem_ref *) obj1;
  const struct mem_ref *const mem1 = (const struct mem_ref *) obj1;
 
 
  return operand_equal_p (mem1->mem, (const_tree) obj2, 0);
  return operand_equal_p (mem1->mem, (const_tree) obj2, 0);
}
}
 
 
/* Releases list of memory reference locations ACCS.  */
/* Releases list of memory reference locations ACCS.  */
 
 
static void
static void
free_mem_ref_locs (mem_ref_locs_p accs)
free_mem_ref_locs (mem_ref_locs_p accs)
{
{
  unsigned i;
  unsigned i;
  mem_ref_loc_p loc;
  mem_ref_loc_p loc;
 
 
  if (!accs)
  if (!accs)
    return;
    return;
 
 
  FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
  FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
    free (loc);
    free (loc);
  VEC_free (mem_ref_loc_p, heap, accs->locs);
  VEC_free (mem_ref_loc_p, heap, accs->locs);
  free (accs);
  free (accs);
}
}
 
 
/* A function to free the mem_ref object OBJ.  */
/* A function to free the mem_ref object OBJ.  */
 
 
static void
static void
memref_free (void *obj)
memref_free (void *obj)
{
{
  struct mem_ref *const mem = (struct mem_ref *) obj;
  struct mem_ref *const mem = (struct mem_ref *) obj;
  unsigned i;
  unsigned i;
  mem_ref_locs_p accs;
  mem_ref_locs_p accs;
 
 
  BITMAP_FREE (mem->stored);
  BITMAP_FREE (mem->stored);
  BITMAP_FREE (mem->indep_loop);
  BITMAP_FREE (mem->indep_loop);
  BITMAP_FREE (mem->dep_loop);
  BITMAP_FREE (mem->dep_loop);
  BITMAP_FREE (mem->indep_ref);
  BITMAP_FREE (mem->indep_ref);
  BITMAP_FREE (mem->dep_ref);
  BITMAP_FREE (mem->dep_ref);
 
 
  FOR_EACH_VEC_ELT (mem_ref_locs_p, mem->accesses_in_loop, i, accs)
  FOR_EACH_VEC_ELT (mem_ref_locs_p, mem->accesses_in_loop, i, accs)
    free_mem_ref_locs (accs);
    free_mem_ref_locs (accs);
  VEC_free (mem_ref_locs_p, heap, mem->accesses_in_loop);
  VEC_free (mem_ref_locs_p, heap, mem->accesses_in_loop);
 
 
  free (mem);
  free (mem);
}
}
 
 
/* Allocates and returns a memory reference description for MEM whose hash
/* Allocates and returns a memory reference description for MEM whose hash
   value is HASH and id is ID.  */
   value is HASH and id is ID.  */
 
 
static mem_ref_p
static mem_ref_p
mem_ref_alloc (tree mem, unsigned hash, unsigned id)
mem_ref_alloc (tree mem, unsigned hash, unsigned id)
{
{
  mem_ref_p ref = XNEW (struct mem_ref);
  mem_ref_p ref = XNEW (struct mem_ref);
  ref->mem = mem;
  ref->mem = mem;
  ref->id = id;
  ref->id = id;
  ref->hash = hash;
  ref->hash = hash;
  ref->stored = BITMAP_ALLOC (NULL);
  ref->stored = BITMAP_ALLOC (NULL);
  ref->indep_loop = BITMAP_ALLOC (NULL);
  ref->indep_loop = BITMAP_ALLOC (NULL);
  ref->dep_loop = BITMAP_ALLOC (NULL);
  ref->dep_loop = BITMAP_ALLOC (NULL);
  ref->indep_ref = BITMAP_ALLOC (NULL);
  ref->indep_ref = BITMAP_ALLOC (NULL);
  ref->dep_ref = BITMAP_ALLOC (NULL);
  ref->dep_ref = BITMAP_ALLOC (NULL);
  ref->accesses_in_loop = NULL;
  ref->accesses_in_loop = NULL;
 
 
  return ref;
  return ref;
}
}
 
 
/* Allocates and returns the new list of locations.  */
/* Allocates and returns the new list of locations.  */
 
 
static mem_ref_locs_p
static mem_ref_locs_p
mem_ref_locs_alloc (void)
mem_ref_locs_alloc (void)
{
{
  mem_ref_locs_p accs = XNEW (struct mem_ref_locs);
  mem_ref_locs_p accs = XNEW (struct mem_ref_locs);
  accs->locs = NULL;
  accs->locs = NULL;
  return accs;
  return accs;
}
}
 
 
/* Records memory reference location *LOC in LOOP to the memory reference
/* Records memory reference location *LOC in LOOP to the memory reference
   description REF.  The reference occurs in statement STMT.  */
   description REF.  The reference occurs in statement STMT.  */
 
 
static void
static void
record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
{
{
  mem_ref_loc_p aref = XNEW (struct mem_ref_loc);
  mem_ref_loc_p aref = XNEW (struct mem_ref_loc);
  mem_ref_locs_p accs;
  mem_ref_locs_p accs;
  bitmap ril = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
  bitmap ril = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
 
 
  if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
  if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
      <= (unsigned) loop->num)
      <= (unsigned) loop->num)
    VEC_safe_grow_cleared (mem_ref_locs_p, heap, ref->accesses_in_loop,
    VEC_safe_grow_cleared (mem_ref_locs_p, heap, ref->accesses_in_loop,
                           loop->num + 1);
                           loop->num + 1);
  accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
  accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
  if (!accs)
  if (!accs)
    {
    {
      accs = mem_ref_locs_alloc ();
      accs = mem_ref_locs_alloc ();
      VEC_replace (mem_ref_locs_p, ref->accesses_in_loop, loop->num, accs);
      VEC_replace (mem_ref_locs_p, ref->accesses_in_loop, loop->num, accs);
    }
    }
 
 
  aref->stmt = stmt;
  aref->stmt = stmt;
  aref->ref = loc;
  aref->ref = loc;
 
 
  VEC_safe_push (mem_ref_loc_p, heap, accs->locs, aref);
  VEC_safe_push (mem_ref_loc_p, heap, accs->locs, aref);
  bitmap_set_bit (ril, ref->id);
  bitmap_set_bit (ril, ref->id);
}
}
 
 
/* Marks reference REF as stored in LOOP.  */
/* Marks reference REF as stored in LOOP.  */
 
 
static void
static void
mark_ref_stored (mem_ref_p ref, struct loop *loop)
mark_ref_stored (mem_ref_p ref, struct loop *loop)
{
{
  for (;
  for (;
       loop != current_loops->tree_root
       loop != current_loops->tree_root
       && !bitmap_bit_p (ref->stored, loop->num);
       && !bitmap_bit_p (ref->stored, loop->num);
       loop = loop_outer (loop))
       loop = loop_outer (loop))
    bitmap_set_bit (ref->stored, loop->num);
    bitmap_set_bit (ref->stored, loop->num);
}
}
 
 
/* Gathers memory references in statement STMT in LOOP, storing the
/* Gathers memory references in statement STMT in LOOP, storing the
   information about them in the memory_accesses structure.  Marks
   information about them in the memory_accesses structure.  Marks
   the vops accessed through unrecognized statements there as
   the vops accessed through unrecognized statements there as
   well.  */
   well.  */
 
 
static void
static void
gather_mem_refs_stmt (struct loop *loop, gimple stmt)
gather_mem_refs_stmt (struct loop *loop, gimple stmt)
{
{
  tree *mem = NULL;
  tree *mem = NULL;
  hashval_t hash;
  hashval_t hash;
  PTR *slot;
  PTR *slot;
  mem_ref_p ref;
  mem_ref_p ref;
  bool is_stored;
  bool is_stored;
  unsigned id;
  unsigned id;
 
 
  if (!gimple_vuse (stmt))
  if (!gimple_vuse (stmt))
    return;
    return;
 
 
  mem = simple_mem_ref_in_stmt (stmt, &is_stored);
  mem = simple_mem_ref_in_stmt (stmt, &is_stored);
  if (!mem)
  if (!mem)
    {
    {
      id = VEC_length (mem_ref_p, memory_accesses.refs_list);
      id = VEC_length (mem_ref_p, memory_accesses.refs_list);
      ref = mem_ref_alloc (error_mark_node, 0, id);
      ref = mem_ref_alloc (error_mark_node, 0, id);
      VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
      VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
          fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
          print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
          print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
        }
        }
      if (gimple_vdef (stmt))
      if (gimple_vdef (stmt))
        mark_ref_stored (ref, loop);
        mark_ref_stored (ref, loop);
      record_mem_ref_loc (ref, loop, stmt, mem);
      record_mem_ref_loc (ref, loop, stmt, mem);
      return;
      return;
    }
    }
 
 
  hash = iterative_hash_expr (*mem, 0);
  hash = iterative_hash_expr (*mem, 0);
  slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT);
  slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT);
 
 
  if (*slot)
  if (*slot)
    {
    {
      ref = (mem_ref_p) *slot;
      ref = (mem_ref_p) *slot;
      id = ref->id;
      id = ref->id;
    }
    }
  else
  else
    {
    {
      id = VEC_length (mem_ref_p, memory_accesses.refs_list);
      id = VEC_length (mem_ref_p, memory_accesses.refs_list);
      ref = mem_ref_alloc (*mem, hash, id);
      ref = mem_ref_alloc (*mem, hash, id);
      VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
      VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
      *slot = ref;
      *slot = ref;
 
 
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "Memory reference %u: ", id);
          fprintf (dump_file, "Memory reference %u: ", id);
          print_generic_expr (dump_file, ref->mem, TDF_SLIM);
          print_generic_expr (dump_file, ref->mem, TDF_SLIM);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
    }
    }
  if (is_stored)
  if (is_stored)
    mark_ref_stored (ref, loop);
    mark_ref_stored (ref, loop);
 
 
  record_mem_ref_loc (ref, loop, stmt, mem);
  record_mem_ref_loc (ref, loop, stmt, mem);
  return;
  return;
}
}
 
 
/* Gathers memory references in loops.  */
/* Gathers memory references in loops.  */
 
 
static void
static void
gather_mem_refs_in_loops (void)
gather_mem_refs_in_loops (void)
{
{
  gimple_stmt_iterator bsi;
  gimple_stmt_iterator bsi;
  basic_block bb;
  basic_block bb;
  struct loop *loop;
  struct loop *loop;
  loop_iterator li;
  loop_iterator li;
  bitmap lrefs, alrefs, alrefso;
  bitmap lrefs, alrefs, alrefso;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      loop = bb->loop_father;
      loop = bb->loop_father;
      if (loop == current_loops->tree_root)
      if (loop == current_loops->tree_root)
        continue;
        continue;
 
 
      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
        gather_mem_refs_stmt (loop, gsi_stmt (bsi));
        gather_mem_refs_stmt (loop, gsi_stmt (bsi));
    }
    }
 
 
  /* Propagate the information about accessed memory references up
  /* Propagate the information about accessed memory references up
     the loop hierarchy.  */
     the loop hierarchy.  */
  FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
  FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
    {
    {
      lrefs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
      lrefs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
      alrefs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, loop->num);
      alrefs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, loop->num);
      bitmap_ior_into (alrefs, lrefs);
      bitmap_ior_into (alrefs, lrefs);
 
 
      if (loop_outer (loop) == current_loops->tree_root)
      if (loop_outer (loop) == current_loops->tree_root)
        continue;
        continue;
 
 
      alrefso = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
      alrefso = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
                           loop_outer (loop)->num);
                           loop_outer (loop)->num);
      bitmap_ior_into (alrefso, alrefs);
      bitmap_ior_into (alrefso, alrefs);
    }
    }
}
}
 
 
/* Create a mapping from virtual operands to references that touch them
/* Create a mapping from virtual operands to references that touch them
   in LOOP.  */
   in LOOP.  */
 
 
static void
static void
create_vop_ref_mapping_loop (struct loop *loop)
create_vop_ref_mapping_loop (struct loop *loop)
{
{
  bitmap refs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
  bitmap refs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
  struct loop *sloop;
  struct loop *sloop;
  bitmap_iterator bi;
  bitmap_iterator bi;
  unsigned i;
  unsigned i;
  mem_ref_p ref;
  mem_ref_p ref;
 
 
  EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
  EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
    {
    {
      ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
      ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
      for (sloop = loop; sloop != current_loops->tree_root;
      for (sloop = loop; sloop != current_loops->tree_root;
           sloop = loop_outer (sloop))
           sloop = loop_outer (sloop))
        if (bitmap_bit_p (ref->stored, loop->num))
        if (bitmap_bit_p (ref->stored, loop->num))
          {
          {
            bitmap refs_stored
            bitmap refs_stored
              = VEC_index (bitmap, memory_accesses.all_refs_stored_in_loop,
              = VEC_index (bitmap, memory_accesses.all_refs_stored_in_loop,
                           sloop->num);
                           sloop->num);
            bitmap_set_bit (refs_stored, ref->id);
            bitmap_set_bit (refs_stored, ref->id);
          }
          }
    }
    }
}
}
 
 
/* For each non-clobbered virtual operand and each loop, record the memory
/* For each non-clobbered virtual operand and each loop, record the memory
   references in this loop that touch the operand.  */
   references in this loop that touch the operand.  */
 
 
static void
static void
create_vop_ref_mapping (void)
create_vop_ref_mapping (void)
{
{
  loop_iterator li;
  loop_iterator li;
  struct loop *loop;
  struct loop *loop;
 
 
  FOR_EACH_LOOP (li, loop, 0)
  FOR_EACH_LOOP (li, loop, 0)
    {
    {
      create_vop_ref_mapping_loop (loop);
      create_vop_ref_mapping_loop (loop);
    }
    }
}
}
 
 
/* Gathers information about memory accesses in the loops.  */
/* Gathers information about memory accesses in the loops.  */
 
 
static void
static void
analyze_memory_references (void)
analyze_memory_references (void)
{
{
  unsigned i;
  unsigned i;
  bitmap empty;
  bitmap empty;
 
 
  memory_accesses.refs
  memory_accesses.refs
          = htab_create (100, memref_hash, memref_eq, memref_free);
          = htab_create (100, memref_hash, memref_eq, memref_free);
  memory_accesses.refs_list = NULL;
  memory_accesses.refs_list = NULL;
  memory_accesses.refs_in_loop = VEC_alloc (bitmap, heap,
  memory_accesses.refs_in_loop = VEC_alloc (bitmap, heap,
                                            number_of_loops ());
                                            number_of_loops ());
  memory_accesses.all_refs_in_loop = VEC_alloc (bitmap, heap,
  memory_accesses.all_refs_in_loop = VEC_alloc (bitmap, heap,
                                                number_of_loops ());
                                                number_of_loops ());
  memory_accesses.all_refs_stored_in_loop = VEC_alloc (bitmap, heap,
  memory_accesses.all_refs_stored_in_loop = VEC_alloc (bitmap, heap,
                                                       number_of_loops ());
                                                       number_of_loops ());
 
 
  for (i = 0; i < number_of_loops (); i++)
  for (i = 0; i < number_of_loops (); i++)
    {
    {
      empty = BITMAP_ALLOC (NULL);
      empty = BITMAP_ALLOC (NULL);
      VEC_quick_push (bitmap, memory_accesses.refs_in_loop, empty);
      VEC_quick_push (bitmap, memory_accesses.refs_in_loop, empty);
      empty = BITMAP_ALLOC (NULL);
      empty = BITMAP_ALLOC (NULL);
      VEC_quick_push (bitmap, memory_accesses.all_refs_in_loop, empty);
      VEC_quick_push (bitmap, memory_accesses.all_refs_in_loop, empty);
      empty = BITMAP_ALLOC (NULL);
      empty = BITMAP_ALLOC (NULL);
      VEC_quick_push (bitmap, memory_accesses.all_refs_stored_in_loop, empty);
      VEC_quick_push (bitmap, memory_accesses.all_refs_stored_in_loop, empty);
    }
    }
 
 
  memory_accesses.ttae_cache = NULL;
  memory_accesses.ttae_cache = NULL;
 
 
  gather_mem_refs_in_loops ();
  gather_mem_refs_in_loops ();
  create_vop_ref_mapping ();
  create_vop_ref_mapping ();
}
}
 
 
/* Returns true if MEM1 and MEM2 may alias.  TTAE_CACHE is used as a cache in
/* Returns true if MEM1 and MEM2 may alias.  TTAE_CACHE is used as a cache in
   tree_to_aff_combination_expand.  */
   tree_to_aff_combination_expand.  */
 
 
static bool
static bool
mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache)
mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache)
{
{
  /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
  /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
     object and their offset differ in such a way that the locations cannot
     object and their offset differ in such a way that the locations cannot
     overlap, then they cannot alias.  */
     overlap, then they cannot alias.  */
  double_int size1, size2;
  double_int size1, size2;
  aff_tree off1, off2;
  aff_tree off1, off2;
 
 
  /* Perform basic offset and type-based disambiguation.  */
  /* Perform basic offset and type-based disambiguation.  */
  if (!refs_may_alias_p (mem1, mem2))
  if (!refs_may_alias_p (mem1, mem2))
    return false;
    return false;
 
 
  /* The expansion of addresses may be a bit expensive, thus we only do
  /* The expansion of addresses may be a bit expensive, thus we only do
     the check at -O2 and higher optimization levels.  */
     the check at -O2 and higher optimization levels.  */
  if (optimize < 2)
  if (optimize < 2)
    return true;
    return true;
 
 
  get_inner_reference_aff (mem1, &off1, &size1);
  get_inner_reference_aff (mem1, &off1, &size1);
  get_inner_reference_aff (mem2, &off2, &size2);
  get_inner_reference_aff (mem2, &off2, &size2);
  aff_combination_expand (&off1, ttae_cache);
  aff_combination_expand (&off1, ttae_cache);
  aff_combination_expand (&off2, ttae_cache);
  aff_combination_expand (&off2, ttae_cache);
  aff_combination_scale (&off1, double_int_minus_one);
  aff_combination_scale (&off1, double_int_minus_one);
  aff_combination_add (&off2, &off1);
  aff_combination_add (&off2, &off1);
 
 
  if (aff_comb_cannot_overlap_p (&off2, size1, size2))
  if (aff_comb_cannot_overlap_p (&off2, size1, size2))
    return false;
    return false;
 
 
  return true;
  return true;
}
}
 
 
/* Rewrites location LOC by TMP_VAR.  */
/* Rewrites location LOC by TMP_VAR.  */
 
 
static void
static void
rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var)
rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var)
{
{
  mark_virtual_ops_for_renaming (loc->stmt);
  mark_virtual_ops_for_renaming (loc->stmt);
  *loc->ref = tmp_var;
  *loc->ref = tmp_var;
  update_stmt (loc->stmt);
  update_stmt (loc->stmt);
}
}
 
 
/* Adds all locations of REF in LOOP and its subloops to LOCS.  */
/* Adds all locations of REF in LOOP and its subloops to LOCS.  */
 
 
static void
static void
get_all_locs_in_loop (struct loop *loop, mem_ref_p ref,
get_all_locs_in_loop (struct loop *loop, mem_ref_p ref,
                      VEC (mem_ref_loc_p, heap) **locs)
                      VEC (mem_ref_loc_p, heap) **locs)
{
{
  mem_ref_locs_p accs;
  mem_ref_locs_p accs;
  unsigned i;
  unsigned i;
  mem_ref_loc_p loc;
  mem_ref_loc_p loc;
  bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
  bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
                           loop->num);
                           loop->num);
  struct loop *subloop;
  struct loop *subloop;
 
 
  if (!bitmap_bit_p (refs, ref->id))
  if (!bitmap_bit_p (refs, ref->id))
    return;
    return;
 
 
  if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
  if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
      > (unsigned) loop->num)
      > (unsigned) loop->num)
    {
    {
      accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
      accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
      if (accs)
      if (accs)
        {
        {
          FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
          FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
            VEC_safe_push (mem_ref_loc_p, heap, *locs, loc);
            VEC_safe_push (mem_ref_loc_p, heap, *locs, loc);
        }
        }
    }
    }
 
 
  for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
  for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
    get_all_locs_in_loop (subloop, ref, locs);
    get_all_locs_in_loop (subloop, ref, locs);
}
}
 
 
/* Rewrites all references to REF in LOOP by variable TMP_VAR.  */
/* Rewrites all references to REF in LOOP by variable TMP_VAR.  */
 
 
static void
static void
rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
{
{
  unsigned i;
  unsigned i;
  mem_ref_loc_p loc;
  mem_ref_loc_p loc;
  VEC (mem_ref_loc_p, heap) *locs = NULL;
  VEC (mem_ref_loc_p, heap) *locs = NULL;
 
 
  get_all_locs_in_loop (loop, ref, &locs);
  get_all_locs_in_loop (loop, ref, &locs);
  FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
  FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
    rewrite_mem_ref_loc (loc, tmp_var);
    rewrite_mem_ref_loc (loc, tmp_var);
  VEC_free (mem_ref_loc_p, heap, locs);
  VEC_free (mem_ref_loc_p, heap, locs);
}
}
 
 
/* The name and the length of the currently generated variable
/* The name and the length of the currently generated variable
   for lsm.  */
   for lsm.  */
#define MAX_LSM_NAME_LENGTH 40
#define MAX_LSM_NAME_LENGTH 40
static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
static int lsm_tmp_name_length;
static int lsm_tmp_name_length;
 
 
/* Adds S to lsm_tmp_name.  */
/* Adds S to lsm_tmp_name.  */
 
 
static void
static void
lsm_tmp_name_add (const char *s)
lsm_tmp_name_add (const char *s)
{
{
  int l = strlen (s) + lsm_tmp_name_length;
  int l = strlen (s) + lsm_tmp_name_length;
  if (l > MAX_LSM_NAME_LENGTH)
  if (l > MAX_LSM_NAME_LENGTH)
    return;
    return;
 
 
  strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
  strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
  lsm_tmp_name_length = l;
  lsm_tmp_name_length = l;
}
}
 
 
/* Stores the name for temporary variable that replaces REF to
/* Stores the name for temporary variable that replaces REF to
   lsm_tmp_name.  */
   lsm_tmp_name.  */
 
 
static void
static void
gen_lsm_tmp_name (tree ref)
gen_lsm_tmp_name (tree ref)
{
{
  const char *name;
  const char *name;
 
 
  switch (TREE_CODE (ref))
  switch (TREE_CODE (ref))
    {
    {
    case MEM_REF:
    case MEM_REF:
    case TARGET_MEM_REF:
    case TARGET_MEM_REF:
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      lsm_tmp_name_add ("_");
      lsm_tmp_name_add ("_");
      break;
      break;
 
 
    case ADDR_EXPR:
    case ADDR_EXPR:
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      break;
      break;
 
 
    case BIT_FIELD_REF:
    case BIT_FIELD_REF:
    case VIEW_CONVERT_EXPR:
    case VIEW_CONVERT_EXPR:
    case ARRAY_RANGE_REF:
    case ARRAY_RANGE_REF:
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      break;
      break;
 
 
    case REALPART_EXPR:
    case REALPART_EXPR:
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      lsm_tmp_name_add ("_RE");
      lsm_tmp_name_add ("_RE");
      break;
      break;
 
 
    case IMAGPART_EXPR:
    case IMAGPART_EXPR:
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      lsm_tmp_name_add ("_IM");
      lsm_tmp_name_add ("_IM");
      break;
      break;
 
 
    case COMPONENT_REF:
    case COMPONENT_REF:
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      lsm_tmp_name_add ("_");
      lsm_tmp_name_add ("_");
      name = get_name (TREE_OPERAND (ref, 1));
      name = get_name (TREE_OPERAND (ref, 1));
      if (!name)
      if (!name)
        name = "F";
        name = "F";
      lsm_tmp_name_add (name);
      lsm_tmp_name_add (name);
      break;
      break;
 
 
    case ARRAY_REF:
    case ARRAY_REF:
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
      lsm_tmp_name_add ("_I");
      lsm_tmp_name_add ("_I");
      break;
      break;
 
 
    case SSA_NAME:
    case SSA_NAME:
      ref = SSA_NAME_VAR (ref);
      ref = SSA_NAME_VAR (ref);
      /* Fallthru.  */
      /* Fallthru.  */
 
 
    case VAR_DECL:
    case VAR_DECL:
    case PARM_DECL:
    case PARM_DECL:
      name = get_name (ref);
      name = get_name (ref);
      if (!name)
      if (!name)
        name = "D";
        name = "D";
      lsm_tmp_name_add (name);
      lsm_tmp_name_add (name);
      break;
      break;
 
 
    case STRING_CST:
    case STRING_CST:
      lsm_tmp_name_add ("S");
      lsm_tmp_name_add ("S");
      break;
      break;
 
 
    case RESULT_DECL:
    case RESULT_DECL:
      lsm_tmp_name_add ("R");
      lsm_tmp_name_add ("R");
      break;
      break;
 
 
    case INTEGER_CST:
    case INTEGER_CST:
      /* Nothing.  */
      /* Nothing.  */
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Determines name for temporary variable that replaces REF.
/* Determines name for temporary variable that replaces REF.
   The name is accumulated into the lsm_tmp_name variable.
   The name is accumulated into the lsm_tmp_name variable.
   N is added to the name of the temporary.  */
   N is added to the name of the temporary.  */
 
 
char *
char *
get_lsm_tmp_name (tree ref, unsigned n)
get_lsm_tmp_name (tree ref, unsigned n)
{
{
  char ns[2];
  char ns[2];
 
 
  lsm_tmp_name_length = 0;
  lsm_tmp_name_length = 0;
  gen_lsm_tmp_name (ref);
  gen_lsm_tmp_name (ref);
  lsm_tmp_name_add ("_lsm");
  lsm_tmp_name_add ("_lsm");
  if (n < 10)
  if (n < 10)
    {
    {
      ns[0] = '0' + n;
      ns[0] = '0' + n;
      ns[1] = 0;
      ns[1] = 0;
      lsm_tmp_name_add (ns);
      lsm_tmp_name_add (ns);
    }
    }
  return lsm_tmp_name;
  return lsm_tmp_name;
}
}
 
 
/* Executes store motion of memory reference REF from LOOP.
/* Executes store motion of memory reference REF from LOOP.
   Exits from the LOOP are stored in EXITS.  The initialization of the
   Exits from the LOOP are stored in EXITS.  The initialization of the
   temporary variable is put to the preheader of the loop, and assignments
   temporary variable is put to the preheader of the loop, and assignments
   to the reference from the temporary variable are emitted to exits.  */
   to the reference from the temporary variable are emitted to exits.  */
 
 
static void
static void
execute_sm (struct loop *loop, VEC (edge, heap) *exits, mem_ref_p ref)
execute_sm (struct loop *loop, VEC (edge, heap) *exits, mem_ref_p ref)
{
{
  tree tmp_var;
  tree tmp_var;
  unsigned i;
  unsigned i;
  gimple load, store;
  gimple load, store;
  struct fmt_data fmt_data;
  struct fmt_data fmt_data;
  edge ex;
  edge ex;
  struct lim_aux_data *lim_data;
  struct lim_aux_data *lim_data;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "Executing store motion of ");
      fprintf (dump_file, "Executing store motion of ");
      print_generic_expr (dump_file, ref->mem, 0);
      print_generic_expr (dump_file, ref->mem, 0);
      fprintf (dump_file, " from loop %d\n", loop->num);
      fprintf (dump_file, " from loop %d\n", loop->num);
    }
    }
 
 
  tmp_var = make_rename_temp (TREE_TYPE (ref->mem),
  tmp_var = make_rename_temp (TREE_TYPE (ref->mem),
                              get_lsm_tmp_name (ref->mem, ~0));
                              get_lsm_tmp_name (ref->mem, ~0));
 
 
  fmt_data.loop = loop;
  fmt_data.loop = loop;
  fmt_data.orig_loop = loop;
  fmt_data.orig_loop = loop;
  for_each_index (&ref->mem, force_move_till, &fmt_data);
  for_each_index (&ref->mem, force_move_till, &fmt_data);
 
 
  rewrite_mem_refs (loop, ref, tmp_var);
  rewrite_mem_refs (loop, ref, tmp_var);
 
 
  /* Emit the load & stores.  */
  /* Emit the load & stores.  */
  load = gimple_build_assign (tmp_var, unshare_expr (ref->mem));
  load = gimple_build_assign (tmp_var, unshare_expr (ref->mem));
  lim_data = init_lim_data (load);
  lim_data = init_lim_data (load);
  lim_data->max_loop = loop;
  lim_data->max_loop = loop;
  lim_data->tgt_loop = loop;
  lim_data->tgt_loop = loop;
 
 
  /* Put this into the latch, so that we are sure it will be processed after
  /* Put this into the latch, so that we are sure it will be processed after
     all dependencies.  */
     all dependencies.  */
  gsi_insert_on_edge (loop_latch_edge (loop), load);
  gsi_insert_on_edge (loop_latch_edge (loop), load);
 
 
  FOR_EACH_VEC_ELT (edge, exits, i, ex)
  FOR_EACH_VEC_ELT (edge, exits, i, ex)
    {
    {
      store = gimple_build_assign (unshare_expr (ref->mem), tmp_var);
      store = gimple_build_assign (unshare_expr (ref->mem), tmp_var);
      gsi_insert_on_edge (ex, store);
      gsi_insert_on_edge (ex, store);
    }
    }
}
}
 
 
/* Hoists memory references MEM_REFS out of LOOP.  EXITS is the list of exit
/* Hoists memory references MEM_REFS out of LOOP.  EXITS is the list of exit
   edges of the LOOP.  */
   edges of the LOOP.  */
 
 
static void
static void
hoist_memory_references (struct loop *loop, bitmap mem_refs,
hoist_memory_references (struct loop *loop, bitmap mem_refs,
                         VEC (edge, heap) *exits)
                         VEC (edge, heap) *exits)
{
{
  mem_ref_p ref;
  mem_ref_p ref;
  unsigned  i;
  unsigned  i;
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
  EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
    {
    {
      ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
      ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
      execute_sm (loop, exits, ref);
      execute_sm (loop, exits, ref);
    }
    }
}
}
 
 
/* Returns true if REF is always accessed in LOOP.  If STORED_P is true
/* Returns true if REF is always accessed in LOOP.  If STORED_P is true
   make sure REF is always stored to in LOOP.  */
   make sure REF is always stored to in LOOP.  */
 
 
static bool
static bool
ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
{
{
  VEC (mem_ref_loc_p, heap) *locs = NULL;
  VEC (mem_ref_loc_p, heap) *locs = NULL;
  unsigned i;
  unsigned i;
  mem_ref_loc_p loc;
  mem_ref_loc_p loc;
  bool ret = false;
  bool ret = false;
  struct loop *must_exec;
  struct loop *must_exec;
  tree base;
  tree base;
 
 
  base = get_base_address (ref->mem);
  base = get_base_address (ref->mem);
  if (INDIRECT_REF_P (base)
  if (INDIRECT_REF_P (base)
      || TREE_CODE (base) == MEM_REF)
      || TREE_CODE (base) == MEM_REF)
    base = TREE_OPERAND (base, 0);
    base = TREE_OPERAND (base, 0);
 
 
  get_all_locs_in_loop (loop, ref, &locs);
  get_all_locs_in_loop (loop, ref, &locs);
  FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
  FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
    {
    {
      if (!get_lim_data (loc->stmt))
      if (!get_lim_data (loc->stmt))
        continue;
        continue;
 
 
      /* If we require an always executed store make sure the statement
      /* If we require an always executed store make sure the statement
         stores to the reference.  */
         stores to the reference.  */
      if (stored_p)
      if (stored_p)
        {
        {
          tree lhs;
          tree lhs;
          if (!gimple_get_lhs (loc->stmt))
          if (!gimple_get_lhs (loc->stmt))
            continue;
            continue;
          lhs = get_base_address (gimple_get_lhs (loc->stmt));
          lhs = get_base_address (gimple_get_lhs (loc->stmt));
          if (!lhs)
          if (!lhs)
            continue;
            continue;
          if (INDIRECT_REF_P (lhs)
          if (INDIRECT_REF_P (lhs)
              || TREE_CODE (lhs) == MEM_REF)
              || TREE_CODE (lhs) == MEM_REF)
            lhs = TREE_OPERAND (lhs, 0);
            lhs = TREE_OPERAND (lhs, 0);
          if (lhs != base)
          if (lhs != base)
            continue;
            continue;
        }
        }
 
 
      must_exec = get_lim_data (loc->stmt)->always_executed_in;
      must_exec = get_lim_data (loc->stmt)->always_executed_in;
      if (!must_exec)
      if (!must_exec)
        continue;
        continue;
 
 
      if (must_exec == loop
      if (must_exec == loop
          || flow_loop_nested_p (must_exec, loop))
          || flow_loop_nested_p (must_exec, loop))
        {
        {
          ret = true;
          ret = true;
          break;
          break;
        }
        }
    }
    }
  VEC_free (mem_ref_loc_p, heap, locs);
  VEC_free (mem_ref_loc_p, heap, locs);
 
 
  return ret;
  return ret;
}
}
 
 
/* Returns true if REF1 and REF2 are independent.  */
/* Returns true if REF1 and REF2 are independent.  */
 
 
static bool
static bool
refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
{
{
  if (ref1 == ref2
  if (ref1 == ref2
      || bitmap_bit_p (ref1->indep_ref, ref2->id))
      || bitmap_bit_p (ref1->indep_ref, ref2->id))
    return true;
    return true;
  if (bitmap_bit_p (ref1->dep_ref, ref2->id))
  if (bitmap_bit_p (ref1->dep_ref, ref2->id))
    return false;
    return false;
  if (!MEM_ANALYZABLE (ref1)
  if (!MEM_ANALYZABLE (ref1)
      || !MEM_ANALYZABLE (ref2))
      || !MEM_ANALYZABLE (ref2))
    return false;
    return false;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Querying dependency of refs %u and %u: ",
    fprintf (dump_file, "Querying dependency of refs %u and %u: ",
             ref1->id, ref2->id);
             ref1->id, ref2->id);
 
 
  if (mem_refs_may_alias_p (ref1->mem, ref2->mem,
  if (mem_refs_may_alias_p (ref1->mem, ref2->mem,
                            &memory_accesses.ttae_cache))
                            &memory_accesses.ttae_cache))
    {
    {
      bitmap_set_bit (ref1->dep_ref, ref2->id);
      bitmap_set_bit (ref1->dep_ref, ref2->id);
      bitmap_set_bit (ref2->dep_ref, ref1->id);
      bitmap_set_bit (ref2->dep_ref, ref1->id);
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "dependent.\n");
        fprintf (dump_file, "dependent.\n");
      return false;
      return false;
    }
    }
  else
  else
    {
    {
      bitmap_set_bit (ref1->indep_ref, ref2->id);
      bitmap_set_bit (ref1->indep_ref, ref2->id);
      bitmap_set_bit (ref2->indep_ref, ref1->id);
      bitmap_set_bit (ref2->indep_ref, ref1->id);
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "independent.\n");
        fprintf (dump_file, "independent.\n");
      return true;
      return true;
    }
    }
}
}
 
 
/* Records the information whether REF is independent in LOOP (according
/* Records the information whether REF is independent in LOOP (according
   to INDEP).  */
   to INDEP).  */
 
 
static void
static void
record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep)
record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep)
{
{
  if (indep)
  if (indep)
    bitmap_set_bit (ref->indep_loop, loop->num);
    bitmap_set_bit (ref->indep_loop, loop->num);
  else
  else
    bitmap_set_bit (ref->dep_loop, loop->num);
    bitmap_set_bit (ref->dep_loop, loop->num);
}
}
 
 
/* Returns true if REF is independent on all other memory references in
/* Returns true if REF is independent on all other memory references in
   LOOP.  */
   LOOP.  */
 
 
static bool
static bool
ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref)
ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref)
{
{
  bitmap refs_to_check;
  bitmap refs_to_check;
  unsigned i;
  unsigned i;
  bitmap_iterator bi;
  bitmap_iterator bi;
  bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num);
  bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num);
  mem_ref_p aref;
  mem_ref_p aref;
 
 
  if (stored)
  if (stored)
    refs_to_check = VEC_index (bitmap,
    refs_to_check = VEC_index (bitmap,
                               memory_accesses.all_refs_in_loop, loop->num);
                               memory_accesses.all_refs_in_loop, loop->num);
  else
  else
    refs_to_check = VEC_index (bitmap,
    refs_to_check = VEC_index (bitmap,
                               memory_accesses.all_refs_stored_in_loop,
                               memory_accesses.all_refs_stored_in_loop,
                               loop->num);
                               loop->num);
 
 
  EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
  EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
    {
    {
      aref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
      aref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
      if (!MEM_ANALYZABLE (aref)
      if (!MEM_ANALYZABLE (aref)
          || !refs_independent_p (ref, aref))
          || !refs_independent_p (ref, aref))
        {
        {
          ret = false;
          ret = false;
          record_indep_loop (loop, aref, false);
          record_indep_loop (loop, aref, false);
          break;
          break;
        }
        }
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
/* Returns true if REF is independent on all other memory references in
/* Returns true if REF is independent on all other memory references in
   LOOP.  Wrapper over ref_indep_loop_p_1, caching its results.  */
   LOOP.  Wrapper over ref_indep_loop_p_1, caching its results.  */
 
 
static bool
static bool
ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
{
{
  bool ret;
  bool ret;
 
 
  if (bitmap_bit_p (ref->indep_loop, loop->num))
  if (bitmap_bit_p (ref->indep_loop, loop->num))
    return true;
    return true;
  if (bitmap_bit_p (ref->dep_loop, loop->num))
  if (bitmap_bit_p (ref->dep_loop, loop->num))
    return false;
    return false;
 
 
  ret = ref_indep_loop_p_1 (loop, ref);
  ret = ref_indep_loop_p_1 (loop, ref);
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
    fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
             ref->id, loop->num, ret ? "independent" : "dependent");
             ref->id, loop->num, ret ? "independent" : "dependent");
 
 
  record_indep_loop (loop, ref, ret);
  record_indep_loop (loop, ref, ret);
 
 
  return ret;
  return ret;
}
}
 
 
/* Returns true if we can perform store motion of REF from LOOP.  */
/* Returns true if we can perform store motion of REF from LOOP.  */
 
 
static bool
static bool
can_sm_ref_p (struct loop *loop, mem_ref_p ref)
can_sm_ref_p (struct loop *loop, mem_ref_p ref)
{
{
  tree base;
  tree base;
 
 
  /* Can't hoist unanalyzable refs.  */
  /* Can't hoist unanalyzable refs.  */
  if (!MEM_ANALYZABLE (ref))
  if (!MEM_ANALYZABLE (ref))
    return false;
    return false;
 
 
  /* Unless the reference is stored in the loop, there is nothing to do.  */
  /* Unless the reference is stored in the loop, there is nothing to do.  */
  if (!bitmap_bit_p (ref->stored, loop->num))
  if (!bitmap_bit_p (ref->stored, loop->num))
    return false;
    return false;
 
 
  /* It should be movable.  */
  /* It should be movable.  */
  if (!is_gimple_reg_type (TREE_TYPE (ref->mem))
  if (!is_gimple_reg_type (TREE_TYPE (ref->mem))
      || TREE_THIS_VOLATILE (ref->mem)
      || TREE_THIS_VOLATILE (ref->mem)
      || !for_each_index (&ref->mem, may_move_till, loop))
      || !for_each_index (&ref->mem, may_move_till, loop))
    return false;
    return false;
 
 
  /* If it can throw fail, we do not properly update EH info.  */
  /* If it can throw fail, we do not properly update EH info.  */
  if (tree_could_throw_p (ref->mem))
  if (tree_could_throw_p (ref->mem))
    return false;
    return false;
 
 
  /* If it can trap, it must be always executed in LOOP.
  /* If it can trap, it must be always executed in LOOP.
     Readonly memory locations may trap when storing to them, but
     Readonly memory locations may trap when storing to them, but
     tree_could_trap_p is a predicate for rvalues, so check that
     tree_could_trap_p is a predicate for rvalues, so check that
     explicitly.  */
     explicitly.  */
  base = get_base_address (ref->mem);
  base = get_base_address (ref->mem);
  if ((tree_could_trap_p (ref->mem)
  if ((tree_could_trap_p (ref->mem)
       || (DECL_P (base) && TREE_READONLY (base)))
       || (DECL_P (base) && TREE_READONLY (base)))
      && !ref_always_accessed_p (loop, ref, true))
      && !ref_always_accessed_p (loop, ref, true))
    return false;
    return false;
 
 
  /* And it must be independent on all other memory references
  /* And it must be independent on all other memory references
     in LOOP.  */
     in LOOP.  */
  if (!ref_indep_loop_p (loop, ref))
  if (!ref_indep_loop_p (loop, ref))
    return false;
    return false;
 
 
  return true;
  return true;
}
}
 
 
/* Marks the references in LOOP for that store motion should be performed
/* Marks the references in LOOP for that store motion should be performed
   in REFS_TO_SM.  SM_EXECUTED is the set of references for that store
   in REFS_TO_SM.  SM_EXECUTED is the set of references for that store
   motion was performed in one of the outer loops.  */
   motion was performed in one of the outer loops.  */
 
 
static void
static void
find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
{
{
  bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
  bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
                           loop->num);
                           loop->num);
  unsigned i;
  unsigned i;
  bitmap_iterator bi;
  bitmap_iterator bi;
  mem_ref_p ref;
  mem_ref_p ref;
 
 
  EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
  EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
    {
    {
      ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
      ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
      if (can_sm_ref_p (loop, ref))
      if (can_sm_ref_p (loop, ref))
        bitmap_set_bit (refs_to_sm, i);
        bitmap_set_bit (refs_to_sm, i);
    }
    }
}
}
 
 
/* Checks whether LOOP (with exits stored in EXITS array) is suitable
/* Checks whether LOOP (with exits stored in EXITS array) is suitable
   for a store motion optimization (i.e. whether we can insert statement
   for a store motion optimization (i.e. whether we can insert statement
   on its exits).  */
   on its exits).  */
 
 
static bool
static bool
loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
                      VEC (edge, heap) *exits)
                      VEC (edge, heap) *exits)
{
{
  unsigned i;
  unsigned i;
  edge ex;
  edge ex;
 
 
  FOR_EACH_VEC_ELT (edge, exits, i, ex)
  FOR_EACH_VEC_ELT (edge, exits, i, ex)
    if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
    if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
      return false;
      return false;
 
 
  return true;
  return true;
}
}
 
 
/* Try to perform store motion for all memory references modified inside
/* Try to perform store motion for all memory references modified inside
   LOOP.  SM_EXECUTED is the bitmap of the memory references for that
   LOOP.  SM_EXECUTED is the bitmap of the memory references for that
   store motion was executed in one of the outer loops.  */
   store motion was executed in one of the outer loops.  */
 
 
static void
static void
store_motion_loop (struct loop *loop, bitmap sm_executed)
store_motion_loop (struct loop *loop, bitmap sm_executed)
{
{
  VEC (edge, heap) *exits = get_loop_exit_edges (loop);
  VEC (edge, heap) *exits = get_loop_exit_edges (loop);
  struct loop *subloop;
  struct loop *subloop;
  bitmap sm_in_loop = BITMAP_ALLOC (NULL);
  bitmap sm_in_loop = BITMAP_ALLOC (NULL);
 
 
  if (loop_suitable_for_sm (loop, exits))
  if (loop_suitable_for_sm (loop, exits))
    {
    {
      find_refs_for_sm (loop, sm_executed, sm_in_loop);
      find_refs_for_sm (loop, sm_executed, sm_in_loop);
      hoist_memory_references (loop, sm_in_loop, exits);
      hoist_memory_references (loop, sm_in_loop, exits);
    }
    }
  VEC_free (edge, heap, exits);
  VEC_free (edge, heap, exits);
 
 
  bitmap_ior_into (sm_executed, sm_in_loop);
  bitmap_ior_into (sm_executed, sm_in_loop);
  for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
  for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
    store_motion_loop (subloop, sm_executed);
    store_motion_loop (subloop, sm_executed);
  bitmap_and_compl_into (sm_executed, sm_in_loop);
  bitmap_and_compl_into (sm_executed, sm_in_loop);
  BITMAP_FREE (sm_in_loop);
  BITMAP_FREE (sm_in_loop);
}
}
 
 
/* Try to perform store motion for all memory references modified inside
/* Try to perform store motion for all memory references modified inside
   loops.  */
   loops.  */
 
 
static void
static void
store_motion (void)
store_motion (void)
{
{
  struct loop *loop;
  struct loop *loop;
  bitmap sm_executed = BITMAP_ALLOC (NULL);
  bitmap sm_executed = BITMAP_ALLOC (NULL);
 
 
  for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
  for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
    store_motion_loop (loop, sm_executed);
    store_motion_loop (loop, sm_executed);
 
 
  BITMAP_FREE (sm_executed);
  BITMAP_FREE (sm_executed);
  gsi_commit_edge_inserts ();
  gsi_commit_edge_inserts ();
}
}
 
 
/* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
/* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
   for each such basic block bb records the outermost loop for that execution
   for each such basic block bb records the outermost loop for that execution
   of its header implies execution of bb.  CONTAINS_CALL is the bitmap of
   of its header implies execution of bb.  CONTAINS_CALL is the bitmap of
   blocks that contain a nonpure call.  */
   blocks that contain a nonpure call.  */
 
 
static void
static void
fill_always_executed_in (struct loop *loop, sbitmap contains_call)
fill_always_executed_in (struct loop *loop, sbitmap contains_call)
{
{
  basic_block bb = NULL, *bbs, last = NULL;
  basic_block bb = NULL, *bbs, last = NULL;
  unsigned i;
  unsigned i;
  edge e;
  edge e;
  struct loop *inn_loop = loop;
  struct loop *inn_loop = loop;
 
 
  if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
  if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
    {
    {
      bbs = get_loop_body_in_dom_order (loop);
      bbs = get_loop_body_in_dom_order (loop);
 
 
      for (i = 0; i < loop->num_nodes; i++)
      for (i = 0; i < loop->num_nodes; i++)
        {
        {
          edge_iterator ei;
          edge_iterator ei;
          bb = bbs[i];
          bb = bbs[i];
 
 
          if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
          if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
            last = bb;
            last = bb;
 
 
          if (TEST_BIT (contains_call, bb->index))
          if (TEST_BIT (contains_call, bb->index))
            break;
            break;
 
 
          FOR_EACH_EDGE (e, ei, bb->succs)
          FOR_EACH_EDGE (e, ei, bb->succs)
            if (!flow_bb_inside_loop_p (loop, e->dest))
            if (!flow_bb_inside_loop_p (loop, e->dest))
              break;
              break;
          if (e)
          if (e)
            break;
            break;
 
 
          /* A loop might be infinite (TODO use simple loop analysis
          /* A loop might be infinite (TODO use simple loop analysis
             to disprove this if possible).  */
             to disprove this if possible).  */
          if (bb->flags & BB_IRREDUCIBLE_LOOP)
          if (bb->flags & BB_IRREDUCIBLE_LOOP)
            break;
            break;
 
 
          if (!flow_bb_inside_loop_p (inn_loop, bb))
          if (!flow_bb_inside_loop_p (inn_loop, bb))
            break;
            break;
 
 
          if (bb->loop_father->header == bb)
          if (bb->loop_father->header == bb)
            {
            {
              if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
              if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
                break;
                break;
 
 
              /* In a loop that is always entered we may proceed anyway.
              /* In a loop that is always entered we may proceed anyway.
                 But record that we entered it and stop once we leave it.  */
                 But record that we entered it and stop once we leave it.  */
              inn_loop = bb->loop_father;
              inn_loop = bb->loop_father;
            }
            }
        }
        }
 
 
      while (1)
      while (1)
        {
        {
          SET_ALWAYS_EXECUTED_IN (last, loop);
          SET_ALWAYS_EXECUTED_IN (last, loop);
          if (last == loop->header)
          if (last == loop->header)
            break;
            break;
          last = get_immediate_dominator (CDI_DOMINATORS, last);
          last = get_immediate_dominator (CDI_DOMINATORS, last);
        }
        }
 
 
      free (bbs);
      free (bbs);
    }
    }
 
 
  for (loop = loop->inner; loop; loop = loop->next)
  for (loop = loop->inner; loop; loop = loop->next)
    fill_always_executed_in (loop, contains_call);
    fill_always_executed_in (loop, contains_call);
}
}
 
 
/* Compute the global information needed by the loop invariant motion pass.  */
/* Compute the global information needed by the loop invariant motion pass.  */
 
 
static void
static void
tree_ssa_lim_initialize (void)
tree_ssa_lim_initialize (void)
{
{
  sbitmap contains_call = sbitmap_alloc (last_basic_block);
  sbitmap contains_call = sbitmap_alloc (last_basic_block);
  gimple_stmt_iterator bsi;
  gimple_stmt_iterator bsi;
  struct loop *loop;
  struct loop *loop;
  basic_block bb;
  basic_block bb;
 
 
  sbitmap_zero (contains_call);
  sbitmap_zero (contains_call);
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
      for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
        {
        {
          if (nonpure_call_p (gsi_stmt (bsi)))
          if (nonpure_call_p (gsi_stmt (bsi)))
            break;
            break;
        }
        }
 
 
      if (!gsi_end_p (bsi))
      if (!gsi_end_p (bsi))
        SET_BIT (contains_call, bb->index);
        SET_BIT (contains_call, bb->index);
    }
    }
 
 
  for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
  for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
    fill_always_executed_in (loop, contains_call);
    fill_always_executed_in (loop, contains_call);
 
 
  sbitmap_free (contains_call);
  sbitmap_free (contains_call);
 
 
  lim_aux_data_map = pointer_map_create ();
  lim_aux_data_map = pointer_map_create ();
 
 
  if (flag_tm)
  if (flag_tm)
    compute_transaction_bits ();
    compute_transaction_bits ();
}
}
 
 
/* Cleans up after the invariant motion pass.  */
/* Cleans up after the invariant motion pass.  */
 
 
static void
static void
tree_ssa_lim_finalize (void)
tree_ssa_lim_finalize (void)
{
{
  basic_block bb;
  basic_block bb;
  unsigned i;
  unsigned i;
  bitmap b;
  bitmap b;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    SET_ALWAYS_EXECUTED_IN (bb, NULL);
    SET_ALWAYS_EXECUTED_IN (bb, NULL);
 
 
  pointer_map_destroy (lim_aux_data_map);
  pointer_map_destroy (lim_aux_data_map);
 
 
  VEC_free (mem_ref_p, heap, memory_accesses.refs_list);
  VEC_free (mem_ref_p, heap, memory_accesses.refs_list);
  htab_delete (memory_accesses.refs);
  htab_delete (memory_accesses.refs);
 
 
  FOR_EACH_VEC_ELT (bitmap, memory_accesses.refs_in_loop, i, b)
  FOR_EACH_VEC_ELT (bitmap, memory_accesses.refs_in_loop, i, b)
    BITMAP_FREE (b);
    BITMAP_FREE (b);
  VEC_free (bitmap, heap, memory_accesses.refs_in_loop);
  VEC_free (bitmap, heap, memory_accesses.refs_in_loop);
 
 
  FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_in_loop, i, b)
  FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_in_loop, i, b)
    BITMAP_FREE (b);
    BITMAP_FREE (b);
  VEC_free (bitmap, heap, memory_accesses.all_refs_in_loop);
  VEC_free (bitmap, heap, memory_accesses.all_refs_in_loop);
 
 
  FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_stored_in_loop, i, b)
  FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_stored_in_loop, i, b)
    BITMAP_FREE (b);
    BITMAP_FREE (b);
  VEC_free (bitmap, heap, memory_accesses.all_refs_stored_in_loop);
  VEC_free (bitmap, heap, memory_accesses.all_refs_stored_in_loop);
 
 
  if (memory_accesses.ttae_cache)
  if (memory_accesses.ttae_cache)
    pointer_map_destroy (memory_accesses.ttae_cache);
    pointer_map_destroy (memory_accesses.ttae_cache);
}
}
 
 
/* Moves invariants from loops.  Only "expensive" invariants are moved out --
/* Moves invariants from loops.  Only "expensive" invariants are moved out --
   i.e. those that are likely to be win regardless of the register pressure.  */
   i.e. those that are likely to be win regardless of the register pressure.  */
 
 
unsigned int
unsigned int
tree_ssa_lim (void)
tree_ssa_lim (void)
{
{
  unsigned int todo;
  unsigned int todo;
 
 
  tree_ssa_lim_initialize ();
  tree_ssa_lim_initialize ();
 
 
  /* Gathers information about memory accesses in the loops.  */
  /* Gathers information about memory accesses in the loops.  */
  analyze_memory_references ();
  analyze_memory_references ();
 
 
  /* For each statement determine the outermost loop in that it is
  /* For each statement determine the outermost loop in that it is
     invariant and cost for computing the invariant.  */
     invariant and cost for computing the invariant.  */
  determine_invariantness ();
  determine_invariantness ();
 
 
  /* Execute store motion.  Force the necessary invariants to be moved
  /* Execute store motion.  Force the necessary invariants to be moved
     out of the loops as well.  */
     out of the loops as well.  */
  store_motion ();
  store_motion ();
 
 
  /* Move the expressions that are expensive enough.  */
  /* Move the expressions that are expensive enough.  */
  todo = move_computations ();
  todo = move_computations ();
 
 
  tree_ssa_lim_finalize ();
  tree_ssa_lim_finalize ();
 
 
  return todo;
  return todo;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.