OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [gcc/] [tree-ssa-pre.c] - Diff between revs 684 and 783

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 684 Rev 783
/* SSA-PRE for trees.
/* SSA-PRE for trees.
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dan@dberlin.org> and Steven Bosscher
   Contributed by Daniel Berlin <dan@dberlin.org> and Steven Bosscher
   <stevenb@suse.de>
   <stevenb@suse.de>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
the Free Software Foundation; either version 3, or (at your option)
any later version.
any later version.
 
 
GCC is distributed in the hope that it will be useful,
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "tree.h"
#include "tree.h"
#include "basic-block.h"
#include "basic-block.h"
#include "tree-pretty-print.h"
#include "tree-pretty-print.h"
#include "gimple-pretty-print.h"
#include "gimple-pretty-print.h"
#include "tree-inline.h"
#include "tree-inline.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "gimple.h"
#include "gimple.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "timevar.h"
#include "timevar.h"
#include "fibheap.h"
#include "fibheap.h"
#include "hashtab.h"
#include "hashtab.h"
#include "tree-iterator.h"
#include "tree-iterator.h"
#include "alloc-pool.h"
#include "alloc-pool.h"
#include "obstack.h"
#include "obstack.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "flags.h"
#include "flags.h"
#include "bitmap.h"
#include "bitmap.h"
#include "langhooks.h"
#include "langhooks.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "tree-ssa-sccvn.h"
#include "tree-ssa-sccvn.h"
#include "tree-scalar-evolution.h"
#include "tree-scalar-evolution.h"
#include "params.h"
#include "params.h"
#include "dbgcnt.h"
#include "dbgcnt.h"
 
 
/* TODO:
/* TODO:
 
 
   1. Avail sets can be shared by making an avail_find_leader that
   1. Avail sets can be shared by making an avail_find_leader that
      walks up the dominator tree and looks in those avail sets.
      walks up the dominator tree and looks in those avail sets.
      This might affect code optimality, it's unclear right now.
      This might affect code optimality, it's unclear right now.
   2. Strength reduction can be performed by anticipating expressions
   2. Strength reduction can be performed by anticipating expressions
      we can repair later on.
      we can repair later on.
   3. We can do back-substitution or smarter value numbering to catch
   3. We can do back-substitution or smarter value numbering to catch
      commutative expressions split up over multiple statements.
      commutative expressions split up over multiple statements.
*/
*/
 
 
/* For ease of terminology, "expression node" in the below refers to
/* For ease of terminology, "expression node" in the below refers to
   every expression node but GIMPLE_ASSIGN, because GIMPLE_ASSIGNs
   every expression node but GIMPLE_ASSIGN, because GIMPLE_ASSIGNs
   represent the actual statement containing the expressions we care about,
   represent the actual statement containing the expressions we care about,
   and we cache the value number by putting it in the expression.  */
   and we cache the value number by putting it in the expression.  */
 
 
/* Basic algorithm
/* Basic algorithm
 
 
   First we walk the statements to generate the AVAIL sets, the
   First we walk the statements to generate the AVAIL sets, the
   EXP_GEN sets, and the tmp_gen sets.  EXP_GEN sets represent the
   EXP_GEN sets, and the tmp_gen sets.  EXP_GEN sets represent the
   generation of values/expressions by a given block.  We use them
   generation of values/expressions by a given block.  We use them
   when computing the ANTIC sets.  The AVAIL sets consist of
   when computing the ANTIC sets.  The AVAIL sets consist of
   SSA_NAME's that represent values, so we know what values are
   SSA_NAME's that represent values, so we know what values are
   available in what blocks.  AVAIL is a forward dataflow problem.  In
   available in what blocks.  AVAIL is a forward dataflow problem.  In
   SSA, values are never killed, so we don't need a kill set, or a
   SSA, values are never killed, so we don't need a kill set, or a
   fixpoint iteration, in order to calculate the AVAIL sets.  In
   fixpoint iteration, in order to calculate the AVAIL sets.  In
   traditional parlance, AVAIL sets tell us the downsafety of the
   traditional parlance, AVAIL sets tell us the downsafety of the
   expressions/values.
   expressions/values.
 
 
   Next, we generate the ANTIC sets.  These sets represent the
   Next, we generate the ANTIC sets.  These sets represent the
   anticipatable expressions.  ANTIC is a backwards dataflow
   anticipatable expressions.  ANTIC is a backwards dataflow
   problem.  An expression is anticipatable in a given block if it could
   problem.  An expression is anticipatable in a given block if it could
   be generated in that block.  This means that if we had to perform
   be generated in that block.  This means that if we had to perform
   an insertion in that block, of the value of that expression, we
   an insertion in that block, of the value of that expression, we
   could.  Calculating the ANTIC sets requires phi translation of
   could.  Calculating the ANTIC sets requires phi translation of
   expressions, because the flow goes backwards through phis.  We must
   expressions, because the flow goes backwards through phis.  We must
   iterate to a fixpoint of the ANTIC sets, because we have a kill
   iterate to a fixpoint of the ANTIC sets, because we have a kill
   set.  Even in SSA form, values are not live over the entire
   set.  Even in SSA form, values are not live over the entire
   function, only from their definition point onwards.  So we have to
   function, only from their definition point onwards.  So we have to
   remove values from the ANTIC set once we go past the definition
   remove values from the ANTIC set once we go past the definition
   point of the leaders that make them up.
   point of the leaders that make them up.
   compute_antic/compute_antic_aux performs this computation.
   compute_antic/compute_antic_aux performs this computation.
 
 
   Third, we perform insertions to make partially redundant
   Third, we perform insertions to make partially redundant
   expressions fully redundant.
   expressions fully redundant.
 
 
   An expression is partially redundant (excluding partial
   An expression is partially redundant (excluding partial
   anticipation) if:
   anticipation) if:
 
 
   1. It is AVAIL in some, but not all, of the predecessors of a
   1. It is AVAIL in some, but not all, of the predecessors of a
      given block.
      given block.
   2. It is ANTIC in all the predecessors.
   2. It is ANTIC in all the predecessors.
 
 
   In order to make it fully redundant, we insert the expression into
   In order to make it fully redundant, we insert the expression into
   the predecessors where it is not available, but is ANTIC.
   the predecessors where it is not available, but is ANTIC.
 
 
   For the partial anticipation case, we only perform insertion if it
   For the partial anticipation case, we only perform insertion if it
   is partially anticipated in some block, and fully available in all
   is partially anticipated in some block, and fully available in all
   of the predecessors.
   of the predecessors.
 
 
   insert/insert_aux/do_regular_insertion/do_partial_partial_insertion
   insert/insert_aux/do_regular_insertion/do_partial_partial_insertion
   performs these steps.
   performs these steps.
 
 
   Fourth, we eliminate fully redundant expressions.
   Fourth, we eliminate fully redundant expressions.
   This is a simple statement walk that replaces redundant
   This is a simple statement walk that replaces redundant
   calculations with the now available values.  */
   calculations with the now available values.  */
 
 
/* Representations of value numbers:
/* Representations of value numbers:
 
 
   Value numbers are represented by a representative SSA_NAME.  We
   Value numbers are represented by a representative SSA_NAME.  We
   will create fake SSA_NAME's in situations where we need a
   will create fake SSA_NAME's in situations where we need a
   representative but do not have one (because it is a complex
   representative but do not have one (because it is a complex
   expression).  In order to facilitate storing the value numbers in
   expression).  In order to facilitate storing the value numbers in
   bitmaps, and keep the number of wasted SSA_NAME's down, we also
   bitmaps, and keep the number of wasted SSA_NAME's down, we also
   associate a value_id with each value number, and create full blown
   associate a value_id with each value number, and create full blown
   ssa_name's only where we actually need them (IE in operands of
   ssa_name's only where we actually need them (IE in operands of
   existing expressions).
   existing expressions).
 
 
   Theoretically you could replace all the value_id's with
   Theoretically you could replace all the value_id's with
   SSA_NAME_VERSION, but this would allocate a large number of
   SSA_NAME_VERSION, but this would allocate a large number of
   SSA_NAME's (which are each > 30 bytes) just to get a 4 byte number.
   SSA_NAME's (which are each > 30 bytes) just to get a 4 byte number.
   It would also require an additional indirection at each point we
   It would also require an additional indirection at each point we
   use the value id.  */
   use the value id.  */
 
 
/* Representation of expressions on value numbers:
/* Representation of expressions on value numbers:
 
 
   Expressions consisting of value numbers are represented the same
   Expressions consisting of value numbers are represented the same
   way as our VN internally represents them, with an additional
   way as our VN internally represents them, with an additional
   "pre_expr" wrapping around them in order to facilitate storing all
   "pre_expr" wrapping around them in order to facilitate storing all
   of the expressions in the same sets.  */
   of the expressions in the same sets.  */
 
 
/* Representation of sets:
/* Representation of sets:
 
 
   The dataflow sets do not need to be sorted in any particular order
   The dataflow sets do not need to be sorted in any particular order
   for the majority of their lifetime, are simply represented as two
   for the majority of their lifetime, are simply represented as two
   bitmaps, one that keeps track of values present in the set, and one
   bitmaps, one that keeps track of values present in the set, and one
   that keeps track of expressions present in the set.
   that keeps track of expressions present in the set.
 
 
   When we need them in topological order, we produce it on demand by
   When we need them in topological order, we produce it on demand by
   transforming the bitmap into an array and sorting it into topo
   transforming the bitmap into an array and sorting it into topo
   order.  */
   order.  */
 
 
/* Type of expression, used to know which member of the PRE_EXPR union
/* Type of expression, used to know which member of the PRE_EXPR union
   is valid.  */
   is valid.  */
 
 
enum pre_expr_kind
enum pre_expr_kind
{
{
    NAME,
    NAME,
    NARY,
    NARY,
    REFERENCE,
    REFERENCE,
    CONSTANT
    CONSTANT
};
};
 
 
typedef union pre_expr_union_d
typedef union pre_expr_union_d
{
{
  tree name;
  tree name;
  tree constant;
  tree constant;
  vn_nary_op_t nary;
  vn_nary_op_t nary;
  vn_reference_t reference;
  vn_reference_t reference;
} pre_expr_union;
} pre_expr_union;
 
 
typedef struct pre_expr_d
typedef struct pre_expr_d
{
{
  enum pre_expr_kind kind;
  enum pre_expr_kind kind;
  unsigned int id;
  unsigned int id;
  pre_expr_union u;
  pre_expr_union u;
} *pre_expr;
} *pre_expr;
 
 
#define PRE_EXPR_NAME(e) (e)->u.name
#define PRE_EXPR_NAME(e) (e)->u.name
#define PRE_EXPR_NARY(e) (e)->u.nary
#define PRE_EXPR_NARY(e) (e)->u.nary
#define PRE_EXPR_REFERENCE(e) (e)->u.reference
#define PRE_EXPR_REFERENCE(e) (e)->u.reference
#define PRE_EXPR_CONSTANT(e) (e)->u.constant
#define PRE_EXPR_CONSTANT(e) (e)->u.constant
 
 
static int
static int
pre_expr_eq (const void *p1, const void *p2)
pre_expr_eq (const void *p1, const void *p2)
{
{
  const struct pre_expr_d *e1 = (const struct pre_expr_d *) p1;
  const struct pre_expr_d *e1 = (const struct pre_expr_d *) p1;
  const struct pre_expr_d *e2 = (const struct pre_expr_d *) p2;
  const struct pre_expr_d *e2 = (const struct pre_expr_d *) p2;
 
 
  if (e1->kind != e2->kind)
  if (e1->kind != e2->kind)
    return false;
    return false;
 
 
  switch (e1->kind)
  switch (e1->kind)
    {
    {
    case CONSTANT:
    case CONSTANT:
      return vn_constant_eq_with_type (PRE_EXPR_CONSTANT (e1),
      return vn_constant_eq_with_type (PRE_EXPR_CONSTANT (e1),
                                       PRE_EXPR_CONSTANT (e2));
                                       PRE_EXPR_CONSTANT (e2));
    case NAME:
    case NAME:
      return PRE_EXPR_NAME (e1) == PRE_EXPR_NAME (e2);
      return PRE_EXPR_NAME (e1) == PRE_EXPR_NAME (e2);
    case NARY:
    case NARY:
      return vn_nary_op_eq (PRE_EXPR_NARY (e1), PRE_EXPR_NARY (e2));
      return vn_nary_op_eq (PRE_EXPR_NARY (e1), PRE_EXPR_NARY (e2));
    case REFERENCE:
    case REFERENCE:
      return vn_reference_eq (PRE_EXPR_REFERENCE (e1),
      return vn_reference_eq (PRE_EXPR_REFERENCE (e1),
                              PRE_EXPR_REFERENCE (e2));
                              PRE_EXPR_REFERENCE (e2));
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
static hashval_t
static hashval_t
pre_expr_hash (const void *p1)
pre_expr_hash (const void *p1)
{
{
  const struct pre_expr_d *e = (const struct pre_expr_d *) p1;
  const struct pre_expr_d *e = (const struct pre_expr_d *) p1;
  switch (e->kind)
  switch (e->kind)
    {
    {
    case CONSTANT:
    case CONSTANT:
      return vn_hash_constant_with_type (PRE_EXPR_CONSTANT (e));
      return vn_hash_constant_with_type (PRE_EXPR_CONSTANT (e));
    case NAME:
    case NAME:
      return SSA_NAME_VERSION (PRE_EXPR_NAME (e));
      return SSA_NAME_VERSION (PRE_EXPR_NAME (e));
    case NARY:
    case NARY:
      return PRE_EXPR_NARY (e)->hashcode;
      return PRE_EXPR_NARY (e)->hashcode;
    case REFERENCE:
    case REFERENCE:
      return PRE_EXPR_REFERENCE (e)->hashcode;
      return PRE_EXPR_REFERENCE (e)->hashcode;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
 
 
/* Next global expression id number.  */
/* Next global expression id number.  */
static unsigned int next_expression_id;
static unsigned int next_expression_id;
 
 
/* Mapping from expression to id number we can use in bitmap sets.  */
/* Mapping from expression to id number we can use in bitmap sets.  */
DEF_VEC_P (pre_expr);
DEF_VEC_P (pre_expr);
DEF_VEC_ALLOC_P (pre_expr, heap);
DEF_VEC_ALLOC_P (pre_expr, heap);
static VEC(pre_expr, heap) *expressions;
static VEC(pre_expr, heap) *expressions;
static htab_t expression_to_id;
static htab_t expression_to_id;
static VEC(unsigned, heap) *name_to_id;
static VEC(unsigned, heap) *name_to_id;
 
 
/* Allocate an expression id for EXPR.  */
/* Allocate an expression id for EXPR.  */
 
 
static inline unsigned int
static inline unsigned int
alloc_expression_id (pre_expr expr)
alloc_expression_id (pre_expr expr)
{
{
  void **slot;
  void **slot;
  /* Make sure we won't overflow. */
  /* Make sure we won't overflow. */
  gcc_assert (next_expression_id + 1 > next_expression_id);
  gcc_assert (next_expression_id + 1 > next_expression_id);
  expr->id = next_expression_id++;
  expr->id = next_expression_id++;
  VEC_safe_push (pre_expr, heap, expressions, expr);
  VEC_safe_push (pre_expr, heap, expressions, expr);
  if (expr->kind == NAME)
  if (expr->kind == NAME)
    {
    {
      unsigned version = SSA_NAME_VERSION (PRE_EXPR_NAME (expr));
      unsigned version = SSA_NAME_VERSION (PRE_EXPR_NAME (expr));
      /* VEC_safe_grow_cleared allocates no headroom.  Avoid frequent
      /* VEC_safe_grow_cleared allocates no headroom.  Avoid frequent
         re-allocations by using VEC_reserve upfront.  There is no
         re-allocations by using VEC_reserve upfront.  There is no
         VEC_quick_grow_cleared unfortunately.  */
         VEC_quick_grow_cleared unfortunately.  */
      VEC_reserve (unsigned, heap, name_to_id, num_ssa_names);
      VEC_reserve (unsigned, heap, name_to_id, num_ssa_names);
      VEC_safe_grow_cleared (unsigned, heap, name_to_id, num_ssa_names);
      VEC_safe_grow_cleared (unsigned, heap, name_to_id, num_ssa_names);
      gcc_assert (VEC_index (unsigned, name_to_id, version) == 0);
      gcc_assert (VEC_index (unsigned, name_to_id, version) == 0);
      VEC_replace (unsigned, name_to_id, version, expr->id);
      VEC_replace (unsigned, name_to_id, version, expr->id);
    }
    }
  else
  else
    {
    {
      slot = htab_find_slot (expression_to_id, expr, INSERT);
      slot = htab_find_slot (expression_to_id, expr, INSERT);
      gcc_assert (!*slot);
      gcc_assert (!*slot);
      *slot = expr;
      *slot = expr;
    }
    }
  return next_expression_id - 1;
  return next_expression_id - 1;
}
}
 
 
/* Return the expression id for tree EXPR.  */
/* Return the expression id for tree EXPR.  */
 
 
static inline unsigned int
static inline unsigned int
get_expression_id (const pre_expr expr)
get_expression_id (const pre_expr expr)
{
{
  return expr->id;
  return expr->id;
}
}
 
 
static inline unsigned int
static inline unsigned int
lookup_expression_id (const pre_expr expr)
lookup_expression_id (const pre_expr expr)
{
{
  void **slot;
  void **slot;
 
 
  if (expr->kind == NAME)
  if (expr->kind == NAME)
    {
    {
      unsigned version = SSA_NAME_VERSION (PRE_EXPR_NAME (expr));
      unsigned version = SSA_NAME_VERSION (PRE_EXPR_NAME (expr));
      if (VEC_length (unsigned, name_to_id) <= version)
      if (VEC_length (unsigned, name_to_id) <= version)
        return 0;
        return 0;
      return VEC_index (unsigned, name_to_id, version);
      return VEC_index (unsigned, name_to_id, version);
    }
    }
  else
  else
    {
    {
      slot = htab_find_slot (expression_to_id, expr, NO_INSERT);
      slot = htab_find_slot (expression_to_id, expr, NO_INSERT);
      if (!slot)
      if (!slot)
        return 0;
        return 0;
      return ((pre_expr)*slot)->id;
      return ((pre_expr)*slot)->id;
    }
    }
}
}
 
 
/* Return the existing expression id for EXPR, or create one if one
/* Return the existing expression id for EXPR, or create one if one
   does not exist yet.  */
   does not exist yet.  */
 
 
static inline unsigned int
static inline unsigned int
get_or_alloc_expression_id (pre_expr expr)
get_or_alloc_expression_id (pre_expr expr)
{
{
  unsigned int id = lookup_expression_id (expr);
  unsigned int id = lookup_expression_id (expr);
  if (id == 0)
  if (id == 0)
    return alloc_expression_id (expr);
    return alloc_expression_id (expr);
  return expr->id = id;
  return expr->id = id;
}
}
 
 
/* Return the expression that has expression id ID */
/* Return the expression that has expression id ID */
 
 
static inline pre_expr
static inline pre_expr
expression_for_id (unsigned int id)
expression_for_id (unsigned int id)
{
{
  return VEC_index (pre_expr, expressions, id);
  return VEC_index (pre_expr, expressions, id);
}
}
 
 
/* Free the expression id field in all of our expressions,
/* Free the expression id field in all of our expressions,
   and then destroy the expressions array.  */
   and then destroy the expressions array.  */
 
 
static void
static void
clear_expression_ids (void)
clear_expression_ids (void)
{
{
  VEC_free (pre_expr, heap, expressions);
  VEC_free (pre_expr, heap, expressions);
}
}
 
 
static alloc_pool pre_expr_pool;
static alloc_pool pre_expr_pool;
 
 
/* Given an SSA_NAME NAME, get or create a pre_expr to represent it.  */
/* Given an SSA_NAME NAME, get or create a pre_expr to represent it.  */
 
 
static pre_expr
static pre_expr
get_or_alloc_expr_for_name (tree name)
get_or_alloc_expr_for_name (tree name)
{
{
  struct pre_expr_d expr;
  struct pre_expr_d expr;
  pre_expr result;
  pre_expr result;
  unsigned int result_id;
  unsigned int result_id;
 
 
  expr.kind = NAME;
  expr.kind = NAME;
  expr.id = 0;
  expr.id = 0;
  PRE_EXPR_NAME (&expr) = name;
  PRE_EXPR_NAME (&expr) = name;
  result_id = lookup_expression_id (&expr);
  result_id = lookup_expression_id (&expr);
  if (result_id != 0)
  if (result_id != 0)
    return expression_for_id (result_id);
    return expression_for_id (result_id);
 
 
  result = (pre_expr) pool_alloc (pre_expr_pool);
  result = (pre_expr) pool_alloc (pre_expr_pool);
  result->kind = NAME;
  result->kind = NAME;
  PRE_EXPR_NAME (result) = name;
  PRE_EXPR_NAME (result) = name;
  alloc_expression_id (result);
  alloc_expression_id (result);
  return result;
  return result;
}
}
 
 
static bool in_fre = false;
static bool in_fre = false;
 
 
/* An unordered bitmap set.  One bitmap tracks values, the other,
/* An unordered bitmap set.  One bitmap tracks values, the other,
   expressions.  */
   expressions.  */
typedef struct bitmap_set
typedef struct bitmap_set
{
{
  bitmap_head expressions;
  bitmap_head expressions;
  bitmap_head values;
  bitmap_head values;
} *bitmap_set_t;
} *bitmap_set_t;
 
 
#define FOR_EACH_EXPR_ID_IN_SET(set, id, bi)            \
#define FOR_EACH_EXPR_ID_IN_SET(set, id, bi)            \
  EXECUTE_IF_SET_IN_BITMAP(&(set)->expressions, 0, (id), (bi))
  EXECUTE_IF_SET_IN_BITMAP(&(set)->expressions, 0, (id), (bi))
 
 
#define FOR_EACH_VALUE_ID_IN_SET(set, id, bi)           \
#define FOR_EACH_VALUE_ID_IN_SET(set, id, bi)           \
  EXECUTE_IF_SET_IN_BITMAP(&(set)->values, 0, (id), (bi))
  EXECUTE_IF_SET_IN_BITMAP(&(set)->values, 0, (id), (bi))
 
 
/* Mapping from value id to expressions with that value_id.  */
/* Mapping from value id to expressions with that value_id.  */
DEF_VEC_P (bitmap_set_t);
DEF_VEC_P (bitmap_set_t);
DEF_VEC_ALLOC_P (bitmap_set_t, heap);
DEF_VEC_ALLOC_P (bitmap_set_t, heap);
static VEC(bitmap_set_t, heap) *value_expressions;
static VEC(bitmap_set_t, heap) *value_expressions;
 
 
/* Sets that we need to keep track of.  */
/* Sets that we need to keep track of.  */
typedef struct bb_bitmap_sets
typedef struct bb_bitmap_sets
{
{
  /* The EXP_GEN set, which represents expressions/values generated in
  /* The EXP_GEN set, which represents expressions/values generated in
     a basic block.  */
     a basic block.  */
  bitmap_set_t exp_gen;
  bitmap_set_t exp_gen;
 
 
  /* The PHI_GEN set, which represents PHI results generated in a
  /* The PHI_GEN set, which represents PHI results generated in a
     basic block.  */
     basic block.  */
  bitmap_set_t phi_gen;
  bitmap_set_t phi_gen;
 
 
  /* The TMP_GEN set, which represents results/temporaries generated
  /* The TMP_GEN set, which represents results/temporaries generated
     in a basic block. IE the LHS of an expression.  */
     in a basic block. IE the LHS of an expression.  */
  bitmap_set_t tmp_gen;
  bitmap_set_t tmp_gen;
 
 
  /* The AVAIL_OUT set, which represents which values are available in
  /* The AVAIL_OUT set, which represents which values are available in
     a given basic block.  */
     a given basic block.  */
  bitmap_set_t avail_out;
  bitmap_set_t avail_out;
 
 
  /* The ANTIC_IN set, which represents which values are anticipatable
  /* The ANTIC_IN set, which represents which values are anticipatable
     in a given basic block.  */
     in a given basic block.  */
  bitmap_set_t antic_in;
  bitmap_set_t antic_in;
 
 
  /* The PA_IN set, which represents which values are
  /* The PA_IN set, which represents which values are
     partially anticipatable in a given basic block.  */
     partially anticipatable in a given basic block.  */
  bitmap_set_t pa_in;
  bitmap_set_t pa_in;
 
 
  /* The NEW_SETS set, which is used during insertion to augment the
  /* The NEW_SETS set, which is used during insertion to augment the
     AVAIL_OUT set of blocks with the new insertions performed during
     AVAIL_OUT set of blocks with the new insertions performed during
     the current iteration.  */
     the current iteration.  */
  bitmap_set_t new_sets;
  bitmap_set_t new_sets;
 
 
  /* A cache for value_dies_in_block_x.  */
  /* A cache for value_dies_in_block_x.  */
  bitmap expr_dies;
  bitmap expr_dies;
 
 
  /* True if we have visited this block during ANTIC calculation.  */
  /* True if we have visited this block during ANTIC calculation.  */
  unsigned int visited : 1;
  unsigned int visited : 1;
 
 
  /* True we have deferred processing this block during ANTIC
  /* True we have deferred processing this block during ANTIC
     calculation until its successor is processed.  */
     calculation until its successor is processed.  */
  unsigned int deferred : 1;
  unsigned int deferred : 1;
 
 
  /* True when the block contains a call that might not return.  */
  /* True when the block contains a call that might not return.  */
  unsigned int contains_may_not_return_call : 1;
  unsigned int contains_may_not_return_call : 1;
} *bb_value_sets_t;
} *bb_value_sets_t;
 
 
#define EXP_GEN(BB)     ((bb_value_sets_t) ((BB)->aux))->exp_gen
#define EXP_GEN(BB)     ((bb_value_sets_t) ((BB)->aux))->exp_gen
#define PHI_GEN(BB)     ((bb_value_sets_t) ((BB)->aux))->phi_gen
#define PHI_GEN(BB)     ((bb_value_sets_t) ((BB)->aux))->phi_gen
#define TMP_GEN(BB)     ((bb_value_sets_t) ((BB)->aux))->tmp_gen
#define TMP_GEN(BB)     ((bb_value_sets_t) ((BB)->aux))->tmp_gen
#define AVAIL_OUT(BB)   ((bb_value_sets_t) ((BB)->aux))->avail_out
#define AVAIL_OUT(BB)   ((bb_value_sets_t) ((BB)->aux))->avail_out
#define ANTIC_IN(BB)    ((bb_value_sets_t) ((BB)->aux))->antic_in
#define ANTIC_IN(BB)    ((bb_value_sets_t) ((BB)->aux))->antic_in
#define PA_IN(BB)       ((bb_value_sets_t) ((BB)->aux))->pa_in
#define PA_IN(BB)       ((bb_value_sets_t) ((BB)->aux))->pa_in
#define NEW_SETS(BB)    ((bb_value_sets_t) ((BB)->aux))->new_sets
#define NEW_SETS(BB)    ((bb_value_sets_t) ((BB)->aux))->new_sets
#define EXPR_DIES(BB)   ((bb_value_sets_t) ((BB)->aux))->expr_dies
#define EXPR_DIES(BB)   ((bb_value_sets_t) ((BB)->aux))->expr_dies
#define BB_VISITED(BB)  ((bb_value_sets_t) ((BB)->aux))->visited
#define BB_VISITED(BB)  ((bb_value_sets_t) ((BB)->aux))->visited
#define BB_DEFERRED(BB) ((bb_value_sets_t) ((BB)->aux))->deferred
#define BB_DEFERRED(BB) ((bb_value_sets_t) ((BB)->aux))->deferred
#define BB_MAY_NOTRETURN(BB) ((bb_value_sets_t) ((BB)->aux))->contains_may_not_return_call
#define BB_MAY_NOTRETURN(BB) ((bb_value_sets_t) ((BB)->aux))->contains_may_not_return_call
 
 
 
 
/* Basic block list in postorder.  */
/* Basic block list in postorder.  */
static int *postorder;
static int *postorder;
 
 
/* This structure is used to keep track of statistics on what
/* This structure is used to keep track of statistics on what
   optimization PRE was able to perform.  */
   optimization PRE was able to perform.  */
static struct
static struct
{
{
  /* The number of RHS computations eliminated by PRE.  */
  /* The number of RHS computations eliminated by PRE.  */
  int eliminations;
  int eliminations;
 
 
  /* The number of new expressions/temporaries generated by PRE.  */
  /* The number of new expressions/temporaries generated by PRE.  */
  int insertions;
  int insertions;
 
 
  /* The number of inserts found due to partial anticipation  */
  /* The number of inserts found due to partial anticipation  */
  int pa_insert;
  int pa_insert;
 
 
  /* The number of new PHI nodes added by PRE.  */
  /* The number of new PHI nodes added by PRE.  */
  int phis;
  int phis;
 
 
  /* The number of values found constant.  */
  /* The number of values found constant.  */
  int constified;
  int constified;
 
 
} pre_stats;
} pre_stats;
 
 
static bool do_partial_partial;
static bool do_partial_partial;
static pre_expr bitmap_find_leader (bitmap_set_t, unsigned int, gimple);
static pre_expr bitmap_find_leader (bitmap_set_t, unsigned int, gimple);
static void bitmap_value_insert_into_set (bitmap_set_t, pre_expr);
static void bitmap_value_insert_into_set (bitmap_set_t, pre_expr);
static void bitmap_value_replace_in_set (bitmap_set_t, pre_expr);
static void bitmap_value_replace_in_set (bitmap_set_t, pre_expr);
static void bitmap_set_copy (bitmap_set_t, bitmap_set_t);
static void bitmap_set_copy (bitmap_set_t, bitmap_set_t);
static bool bitmap_set_contains_value (bitmap_set_t, unsigned int);
static bool bitmap_set_contains_value (bitmap_set_t, unsigned int);
static void bitmap_insert_into_set (bitmap_set_t, pre_expr);
static void bitmap_insert_into_set (bitmap_set_t, pre_expr);
static void bitmap_insert_into_set_1 (bitmap_set_t, pre_expr,
static void bitmap_insert_into_set_1 (bitmap_set_t, pre_expr,
                                      unsigned int, bool);
                                      unsigned int, bool);
static bitmap_set_t bitmap_set_new (void);
static bitmap_set_t bitmap_set_new (void);
static tree create_expression_by_pieces (basic_block, pre_expr, gimple_seq *,
static tree create_expression_by_pieces (basic_block, pre_expr, gimple_seq *,
                                         gimple, tree);
                                         gimple, tree);
static tree find_or_generate_expression (basic_block, pre_expr, gimple_seq *,
static tree find_or_generate_expression (basic_block, pre_expr, gimple_seq *,
                                         gimple);
                                         gimple);
static unsigned int get_expr_value_id (pre_expr);
static unsigned int get_expr_value_id (pre_expr);
 
 
/* We can add and remove elements and entries to and from sets
/* We can add and remove elements and entries to and from sets
   and hash tables, so we use alloc pools for them.  */
   and hash tables, so we use alloc pools for them.  */
 
 
static alloc_pool bitmap_set_pool;
static alloc_pool bitmap_set_pool;
static bitmap_obstack grand_bitmap_obstack;
static bitmap_obstack grand_bitmap_obstack;
 
 
/* To avoid adding 300 temporary variables when we only need one, we
/* To avoid adding 300 temporary variables when we only need one, we
   only create one temporary variable, on demand, and build ssa names
   only create one temporary variable, on demand, and build ssa names
   off that.  We do have to change the variable if the types don't
   off that.  We do have to change the variable if the types don't
   match the current variable's type.  */
   match the current variable's type.  */
static tree pretemp;
static tree pretemp;
static tree storetemp;
static tree storetemp;
static tree prephitemp;
static tree prephitemp;
 
 
/* Set of blocks with statements that have had their EH properties changed.  */
/* Set of blocks with statements that have had their EH properties changed.  */
static bitmap need_eh_cleanup;
static bitmap need_eh_cleanup;
 
 
/* Set of blocks with statements that have had their AB properties changed.  */
/* Set of blocks with statements that have had their AB properties changed.  */
static bitmap need_ab_cleanup;
static bitmap need_ab_cleanup;
 
 
/* The phi_translate_table caches phi translations for a given
/* The phi_translate_table caches phi translations for a given
   expression and predecessor.  */
   expression and predecessor.  */
 
 
static htab_t phi_translate_table;
static htab_t phi_translate_table;
 
 
/* A three tuple {e, pred, v} used to cache phi translations in the
/* A three tuple {e, pred, v} used to cache phi translations in the
   phi_translate_table.  */
   phi_translate_table.  */
 
 
typedef struct expr_pred_trans_d
typedef struct expr_pred_trans_d
{
{
  /* The expression.  */
  /* The expression.  */
  pre_expr e;
  pre_expr e;
 
 
  /* The predecessor block along which we translated the expression.  */
  /* The predecessor block along which we translated the expression.  */
  basic_block pred;
  basic_block pred;
 
 
  /* The value that resulted from the translation.  */
  /* The value that resulted from the translation.  */
  pre_expr v;
  pre_expr v;
 
 
  /* The hashcode for the expression, pred pair. This is cached for
  /* The hashcode for the expression, pred pair. This is cached for
     speed reasons.  */
     speed reasons.  */
  hashval_t hashcode;
  hashval_t hashcode;
} *expr_pred_trans_t;
} *expr_pred_trans_t;
typedef const struct expr_pred_trans_d *const_expr_pred_trans_t;
typedef const struct expr_pred_trans_d *const_expr_pred_trans_t;
 
 
/* Return the hash value for a phi translation table entry.  */
/* Return the hash value for a phi translation table entry.  */
 
 
static hashval_t
static hashval_t
expr_pred_trans_hash (const void *p)
expr_pred_trans_hash (const void *p)
{
{
  const_expr_pred_trans_t const ve = (const_expr_pred_trans_t) p;
  const_expr_pred_trans_t const ve = (const_expr_pred_trans_t) p;
  return ve->hashcode;
  return ve->hashcode;
}
}
 
 
/* Return true if two phi translation table entries are the same.
/* Return true if two phi translation table entries are the same.
   P1 and P2 should point to the expr_pred_trans_t's to be compared.*/
   P1 and P2 should point to the expr_pred_trans_t's to be compared.*/
 
 
static int
static int
expr_pred_trans_eq (const void *p1, const void *p2)
expr_pred_trans_eq (const void *p1, const void *p2)
{
{
  const_expr_pred_trans_t const ve1 = (const_expr_pred_trans_t) p1;
  const_expr_pred_trans_t const ve1 = (const_expr_pred_trans_t) p1;
  const_expr_pred_trans_t const ve2 = (const_expr_pred_trans_t) p2;
  const_expr_pred_trans_t const ve2 = (const_expr_pred_trans_t) p2;
  basic_block b1 = ve1->pred;
  basic_block b1 = ve1->pred;
  basic_block b2 = ve2->pred;
  basic_block b2 = ve2->pred;
 
 
  /* If they are not translations for the same basic block, they can't
  /* If they are not translations for the same basic block, they can't
     be equal.  */
     be equal.  */
  if (b1 != b2)
  if (b1 != b2)
    return false;
    return false;
  return pre_expr_eq (ve1->e, ve2->e);
  return pre_expr_eq (ve1->e, ve2->e);
}
}
 
 
/* Search in the phi translation table for the translation of
/* Search in the phi translation table for the translation of
   expression E in basic block PRED.
   expression E in basic block PRED.
   Return the translated value, if found, NULL otherwise.  */
   Return the translated value, if found, NULL otherwise.  */
 
 
static inline pre_expr
static inline pre_expr
phi_trans_lookup (pre_expr e, basic_block pred)
phi_trans_lookup (pre_expr e, basic_block pred)
{
{
  void **slot;
  void **slot;
  struct expr_pred_trans_d ept;
  struct expr_pred_trans_d ept;
 
 
  ept.e = e;
  ept.e = e;
  ept.pred = pred;
  ept.pred = pred;
  ept.hashcode = iterative_hash_hashval_t (pre_expr_hash (e), pred->index);
  ept.hashcode = iterative_hash_hashval_t (pre_expr_hash (e), pred->index);
  slot = htab_find_slot_with_hash (phi_translate_table, &ept, ept.hashcode,
  slot = htab_find_slot_with_hash (phi_translate_table, &ept, ept.hashcode,
                                   NO_INSERT);
                                   NO_INSERT);
  if (!slot)
  if (!slot)
    return NULL;
    return NULL;
  else
  else
    return ((expr_pred_trans_t) *slot)->v;
    return ((expr_pred_trans_t) *slot)->v;
}
}
 
 
 
 
/* Add the tuple mapping from {expression E, basic block PRED} to
/* Add the tuple mapping from {expression E, basic block PRED} to
   value V, to the phi translation table.  */
   value V, to the phi translation table.  */
 
 
static inline void
static inline void
phi_trans_add (pre_expr e, pre_expr v, basic_block pred)
phi_trans_add (pre_expr e, pre_expr v, basic_block pred)
{
{
  void **slot;
  void **slot;
  expr_pred_trans_t new_pair = XNEW (struct expr_pred_trans_d);
  expr_pred_trans_t new_pair = XNEW (struct expr_pred_trans_d);
  new_pair->e = e;
  new_pair->e = e;
  new_pair->pred = pred;
  new_pair->pred = pred;
  new_pair->v = v;
  new_pair->v = v;
  new_pair->hashcode = iterative_hash_hashval_t (pre_expr_hash (e),
  new_pair->hashcode = iterative_hash_hashval_t (pre_expr_hash (e),
                                                 pred->index);
                                                 pred->index);
 
 
  slot = htab_find_slot_with_hash (phi_translate_table, new_pair,
  slot = htab_find_slot_with_hash (phi_translate_table, new_pair,
                                   new_pair->hashcode, INSERT);
                                   new_pair->hashcode, INSERT);
  free (*slot);
  free (*slot);
  *slot = (void *) new_pair;
  *slot = (void *) new_pair;
}
}
 
 
 
 
/* Add expression E to the expression set of value id V.  */
/* Add expression E to the expression set of value id V.  */
 
 
void
void
add_to_value (unsigned int v, pre_expr e)
add_to_value (unsigned int v, pre_expr e)
{
{
  bitmap_set_t set;
  bitmap_set_t set;
 
 
  gcc_assert (get_expr_value_id (e) == v);
  gcc_assert (get_expr_value_id (e) == v);
 
 
  if (v >= VEC_length (bitmap_set_t, value_expressions))
  if (v >= VEC_length (bitmap_set_t, value_expressions))
    {
    {
      VEC_safe_grow_cleared (bitmap_set_t, heap, value_expressions,
      VEC_safe_grow_cleared (bitmap_set_t, heap, value_expressions,
                             v + 1);
                             v + 1);
    }
    }
 
 
  set = VEC_index (bitmap_set_t, value_expressions, v);
  set = VEC_index (bitmap_set_t, value_expressions, v);
  if (!set)
  if (!set)
    {
    {
      set = bitmap_set_new ();
      set = bitmap_set_new ();
      VEC_replace (bitmap_set_t, value_expressions, v, set);
      VEC_replace (bitmap_set_t, value_expressions, v, set);
    }
    }
 
 
  bitmap_insert_into_set_1 (set, e, v, true);
  bitmap_insert_into_set_1 (set, e, v, true);
}
}
 
 
/* Create a new bitmap set and return it.  */
/* Create a new bitmap set and return it.  */
 
 
static bitmap_set_t
static bitmap_set_t
bitmap_set_new (void)
bitmap_set_new (void)
{
{
  bitmap_set_t ret = (bitmap_set_t) pool_alloc (bitmap_set_pool);
  bitmap_set_t ret = (bitmap_set_t) pool_alloc (bitmap_set_pool);
  bitmap_initialize (&ret->expressions, &grand_bitmap_obstack);
  bitmap_initialize (&ret->expressions, &grand_bitmap_obstack);
  bitmap_initialize (&ret->values, &grand_bitmap_obstack);
  bitmap_initialize (&ret->values, &grand_bitmap_obstack);
  return ret;
  return ret;
}
}
 
 
/* Return the value id for a PRE expression EXPR.  */
/* Return the value id for a PRE expression EXPR.  */
 
 
static unsigned int
static unsigned int
get_expr_value_id (pre_expr expr)
get_expr_value_id (pre_expr expr)
{
{
  switch (expr->kind)
  switch (expr->kind)
    {
    {
    case CONSTANT:
    case CONSTANT:
      {
      {
        unsigned int id;
        unsigned int id;
        id = get_constant_value_id (PRE_EXPR_CONSTANT (expr));
        id = get_constant_value_id (PRE_EXPR_CONSTANT (expr));
        if (id == 0)
        if (id == 0)
          {
          {
            id = get_or_alloc_constant_value_id (PRE_EXPR_CONSTANT (expr));
            id = get_or_alloc_constant_value_id (PRE_EXPR_CONSTANT (expr));
            add_to_value (id, expr);
            add_to_value (id, expr);
          }
          }
        return id;
        return id;
      }
      }
    case NAME:
    case NAME:
      return VN_INFO (PRE_EXPR_NAME (expr))->value_id;
      return VN_INFO (PRE_EXPR_NAME (expr))->value_id;
    case NARY:
    case NARY:
      return PRE_EXPR_NARY (expr)->value_id;
      return PRE_EXPR_NARY (expr)->value_id;
    case REFERENCE:
    case REFERENCE:
      return PRE_EXPR_REFERENCE (expr)->value_id;
      return PRE_EXPR_REFERENCE (expr)->value_id;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Remove an expression EXPR from a bitmapped set.  */
/* Remove an expression EXPR from a bitmapped set.  */
 
 
static void
static void
bitmap_remove_from_set (bitmap_set_t set, pre_expr expr)
bitmap_remove_from_set (bitmap_set_t set, pre_expr expr)
{
{
  unsigned int val  = get_expr_value_id (expr);
  unsigned int val  = get_expr_value_id (expr);
  if (!value_id_constant_p (val))
  if (!value_id_constant_p (val))
    {
    {
      bitmap_clear_bit (&set->values, val);
      bitmap_clear_bit (&set->values, val);
      bitmap_clear_bit (&set->expressions, get_expression_id (expr));
      bitmap_clear_bit (&set->expressions, get_expression_id (expr));
    }
    }
}
}
 
 
static void
static void
bitmap_insert_into_set_1 (bitmap_set_t set, pre_expr expr,
bitmap_insert_into_set_1 (bitmap_set_t set, pre_expr expr,
                          unsigned int val, bool allow_constants)
                          unsigned int val, bool allow_constants)
{
{
  if (allow_constants || !value_id_constant_p (val))
  if (allow_constants || !value_id_constant_p (val))
    {
    {
      /* We specifically expect this and only this function to be able to
      /* We specifically expect this and only this function to be able to
         insert constants into a set.  */
         insert constants into a set.  */
      bitmap_set_bit (&set->values, val);
      bitmap_set_bit (&set->values, val);
      bitmap_set_bit (&set->expressions, get_or_alloc_expression_id (expr));
      bitmap_set_bit (&set->expressions, get_or_alloc_expression_id (expr));
    }
    }
}
}
 
 
/* Insert an expression EXPR into a bitmapped set.  */
/* Insert an expression EXPR into a bitmapped set.  */
 
 
static void
static void
bitmap_insert_into_set (bitmap_set_t set, pre_expr expr)
bitmap_insert_into_set (bitmap_set_t set, pre_expr expr)
{
{
  bitmap_insert_into_set_1 (set, expr, get_expr_value_id (expr), false);
  bitmap_insert_into_set_1 (set, expr, get_expr_value_id (expr), false);
}
}
 
 
/* Copy a bitmapped set ORIG, into bitmapped set DEST.  */
/* Copy a bitmapped set ORIG, into bitmapped set DEST.  */
 
 
static void
static void
bitmap_set_copy (bitmap_set_t dest, bitmap_set_t orig)
bitmap_set_copy (bitmap_set_t dest, bitmap_set_t orig)
{
{
  bitmap_copy (&dest->expressions, &orig->expressions);
  bitmap_copy (&dest->expressions, &orig->expressions);
  bitmap_copy (&dest->values, &orig->values);
  bitmap_copy (&dest->values, &orig->values);
}
}
 
 
 
 
/* Free memory used up by SET.  */
/* Free memory used up by SET.  */
static void
static void
bitmap_set_free (bitmap_set_t set)
bitmap_set_free (bitmap_set_t set)
{
{
  bitmap_clear (&set->expressions);
  bitmap_clear (&set->expressions);
  bitmap_clear (&set->values);
  bitmap_clear (&set->values);
}
}
 
 
 
 
/* Generate an topological-ordered array of bitmap set SET.  */
/* Generate an topological-ordered array of bitmap set SET.  */
 
 
static VEC(pre_expr, heap) *
static VEC(pre_expr, heap) *
sorted_array_from_bitmap_set (bitmap_set_t set)
sorted_array_from_bitmap_set (bitmap_set_t set)
{
{
  unsigned int i, j;
  unsigned int i, j;
  bitmap_iterator bi, bj;
  bitmap_iterator bi, bj;
  VEC(pre_expr, heap) *result;
  VEC(pre_expr, heap) *result;
 
 
  /* Pre-allocate roughly enough space for the array.  */
  /* Pre-allocate roughly enough space for the array.  */
  result = VEC_alloc (pre_expr, heap, bitmap_count_bits (&set->values));
  result = VEC_alloc (pre_expr, heap, bitmap_count_bits (&set->values));
 
 
  FOR_EACH_VALUE_ID_IN_SET (set, i, bi)
  FOR_EACH_VALUE_ID_IN_SET (set, i, bi)
    {
    {
      /* The number of expressions having a given value is usually
      /* The number of expressions having a given value is usually
         relatively small.  Thus, rather than making a vector of all
         relatively small.  Thus, rather than making a vector of all
         the expressions and sorting it by value-id, we walk the values
         the expressions and sorting it by value-id, we walk the values
         and check in the reverse mapping that tells us what expressions
         and check in the reverse mapping that tells us what expressions
         have a given value, to filter those in our set.  As a result,
         have a given value, to filter those in our set.  As a result,
         the expressions are inserted in value-id order, which means
         the expressions are inserted in value-id order, which means
         topological order.
         topological order.
 
 
         If this is somehow a significant lose for some cases, we can
         If this is somehow a significant lose for some cases, we can
         choose which set to walk based on the set size.  */
         choose which set to walk based on the set size.  */
      bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, i);
      bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, i);
      FOR_EACH_EXPR_ID_IN_SET (exprset, j, bj)
      FOR_EACH_EXPR_ID_IN_SET (exprset, j, bj)
        {
        {
          if (bitmap_bit_p (&set->expressions, j))
          if (bitmap_bit_p (&set->expressions, j))
            VEC_safe_push (pre_expr, heap, result, expression_for_id (j));
            VEC_safe_push (pre_expr, heap, result, expression_for_id (j));
        }
        }
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* Perform bitmapped set operation DEST &= ORIG.  */
/* Perform bitmapped set operation DEST &= ORIG.  */
 
 
static void
static void
bitmap_set_and (bitmap_set_t dest, bitmap_set_t orig)
bitmap_set_and (bitmap_set_t dest, bitmap_set_t orig)
{
{
  bitmap_iterator bi;
  bitmap_iterator bi;
  unsigned int i;
  unsigned int i;
 
 
  if (dest != orig)
  if (dest != orig)
    {
    {
      bitmap_head temp;
      bitmap_head temp;
      bitmap_initialize (&temp, &grand_bitmap_obstack);
      bitmap_initialize (&temp, &grand_bitmap_obstack);
 
 
      bitmap_and_into (&dest->values, &orig->values);
      bitmap_and_into (&dest->values, &orig->values);
      bitmap_copy (&temp, &dest->expressions);
      bitmap_copy (&temp, &dest->expressions);
      EXECUTE_IF_SET_IN_BITMAP (&temp, 0, i, bi)
      EXECUTE_IF_SET_IN_BITMAP (&temp, 0, i, bi)
        {
        {
          pre_expr expr = expression_for_id (i);
          pre_expr expr = expression_for_id (i);
          unsigned int value_id = get_expr_value_id (expr);
          unsigned int value_id = get_expr_value_id (expr);
          if (!bitmap_bit_p (&dest->values, value_id))
          if (!bitmap_bit_p (&dest->values, value_id))
            bitmap_clear_bit (&dest->expressions, i);
            bitmap_clear_bit (&dest->expressions, i);
        }
        }
      bitmap_clear (&temp);
      bitmap_clear (&temp);
    }
    }
}
}
 
 
/* Subtract all values and expressions contained in ORIG from DEST.  */
/* Subtract all values and expressions contained in ORIG from DEST.  */
 
 
static bitmap_set_t
static bitmap_set_t
bitmap_set_subtract (bitmap_set_t dest, bitmap_set_t orig)
bitmap_set_subtract (bitmap_set_t dest, bitmap_set_t orig)
{
{
  bitmap_set_t result = bitmap_set_new ();
  bitmap_set_t result = bitmap_set_new ();
  bitmap_iterator bi;
  bitmap_iterator bi;
  unsigned int i;
  unsigned int i;
 
 
  bitmap_and_compl (&result->expressions, &dest->expressions,
  bitmap_and_compl (&result->expressions, &dest->expressions,
                    &orig->expressions);
                    &orig->expressions);
 
 
  FOR_EACH_EXPR_ID_IN_SET (result, i, bi)
  FOR_EACH_EXPR_ID_IN_SET (result, i, bi)
    {
    {
      pre_expr expr = expression_for_id (i);
      pre_expr expr = expression_for_id (i);
      unsigned int value_id = get_expr_value_id (expr);
      unsigned int value_id = get_expr_value_id (expr);
      bitmap_set_bit (&result->values, value_id);
      bitmap_set_bit (&result->values, value_id);
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* Subtract all the values in bitmap set B from bitmap set A.  */
/* Subtract all the values in bitmap set B from bitmap set A.  */
 
 
static void
static void
bitmap_set_subtract_values (bitmap_set_t a, bitmap_set_t b)
bitmap_set_subtract_values (bitmap_set_t a, bitmap_set_t b)
{
{
  unsigned int i;
  unsigned int i;
  bitmap_iterator bi;
  bitmap_iterator bi;
  bitmap_head temp;
  bitmap_head temp;
 
 
  bitmap_initialize (&temp, &grand_bitmap_obstack);
  bitmap_initialize (&temp, &grand_bitmap_obstack);
 
 
  bitmap_copy (&temp, &a->expressions);
  bitmap_copy (&temp, &a->expressions);
  EXECUTE_IF_SET_IN_BITMAP (&temp, 0, i, bi)
  EXECUTE_IF_SET_IN_BITMAP (&temp, 0, i, bi)
    {
    {
      pre_expr expr = expression_for_id (i);
      pre_expr expr = expression_for_id (i);
      if (bitmap_set_contains_value (b, get_expr_value_id (expr)))
      if (bitmap_set_contains_value (b, get_expr_value_id (expr)))
        bitmap_remove_from_set (a, expr);
        bitmap_remove_from_set (a, expr);
    }
    }
  bitmap_clear (&temp);
  bitmap_clear (&temp);
}
}
 
 
 
 
/* Return true if bitmapped set SET contains the value VALUE_ID.  */
/* Return true if bitmapped set SET contains the value VALUE_ID.  */
 
 
static bool
static bool
bitmap_set_contains_value (bitmap_set_t set, unsigned int value_id)
bitmap_set_contains_value (bitmap_set_t set, unsigned int value_id)
{
{
  if (value_id_constant_p (value_id))
  if (value_id_constant_p (value_id))
    return true;
    return true;
 
 
  if (!set || bitmap_empty_p (&set->expressions))
  if (!set || bitmap_empty_p (&set->expressions))
    return false;
    return false;
 
 
  return bitmap_bit_p (&set->values, value_id);
  return bitmap_bit_p (&set->values, value_id);
}
}
 
 
static inline bool
static inline bool
bitmap_set_contains_expr (bitmap_set_t set, const pre_expr expr)
bitmap_set_contains_expr (bitmap_set_t set, const pre_expr expr)
{
{
  return bitmap_bit_p (&set->expressions, get_expression_id (expr));
  return bitmap_bit_p (&set->expressions, get_expression_id (expr));
}
}
 
 
/* Replace an instance of value LOOKFOR with expression EXPR in SET.  */
/* Replace an instance of value LOOKFOR with expression EXPR in SET.  */
 
 
static void
static void
bitmap_set_replace_value (bitmap_set_t set, unsigned int lookfor,
bitmap_set_replace_value (bitmap_set_t set, unsigned int lookfor,
                          const pre_expr expr)
                          const pre_expr expr)
{
{
  bitmap_set_t exprset;
  bitmap_set_t exprset;
  unsigned int i;
  unsigned int i;
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  if (value_id_constant_p (lookfor))
  if (value_id_constant_p (lookfor))
    return;
    return;
 
 
  if (!bitmap_set_contains_value (set, lookfor))
  if (!bitmap_set_contains_value (set, lookfor))
    return;
    return;
 
 
  /* The number of expressions having a given value is usually
  /* The number of expressions having a given value is usually
     significantly less than the total number of expressions in SET.
     significantly less than the total number of expressions in SET.
     Thus, rather than check, for each expression in SET, whether it
     Thus, rather than check, for each expression in SET, whether it
     has the value LOOKFOR, we walk the reverse mapping that tells us
     has the value LOOKFOR, we walk the reverse mapping that tells us
     what expressions have a given value, and see if any of those
     what expressions have a given value, and see if any of those
     expressions are in our set.  For large testcases, this is about
     expressions are in our set.  For large testcases, this is about
     5-10x faster than walking the bitmap.  If this is somehow a
     5-10x faster than walking the bitmap.  If this is somehow a
     significant lose for some cases, we can choose which set to walk
     significant lose for some cases, we can choose which set to walk
     based on the set size.  */
     based on the set size.  */
  exprset = VEC_index (bitmap_set_t, value_expressions, lookfor);
  exprset = VEC_index (bitmap_set_t, value_expressions, lookfor);
  FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi)
  FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi)
    {
    {
      if (bitmap_clear_bit (&set->expressions, i))
      if (bitmap_clear_bit (&set->expressions, i))
        {
        {
          bitmap_set_bit (&set->expressions, get_expression_id (expr));
          bitmap_set_bit (&set->expressions, get_expression_id (expr));
          return;
          return;
        }
        }
    }
    }
}
}
 
 
/* Return true if two bitmap sets are equal.  */
/* Return true if two bitmap sets are equal.  */
 
 
static bool
static bool
bitmap_set_equal (bitmap_set_t a, bitmap_set_t b)
bitmap_set_equal (bitmap_set_t a, bitmap_set_t b)
{
{
  return bitmap_equal_p (&a->values, &b->values);
  return bitmap_equal_p (&a->values, &b->values);
}
}
 
 
/* Replace an instance of EXPR's VALUE with EXPR in SET if it exists,
/* Replace an instance of EXPR's VALUE with EXPR in SET if it exists,
   and add it otherwise.  */
   and add it otherwise.  */
 
 
static void
static void
bitmap_value_replace_in_set (bitmap_set_t set, pre_expr expr)
bitmap_value_replace_in_set (bitmap_set_t set, pre_expr expr)
{
{
  unsigned int val = get_expr_value_id (expr);
  unsigned int val = get_expr_value_id (expr);
 
 
  if (bitmap_set_contains_value (set, val))
  if (bitmap_set_contains_value (set, val))
    bitmap_set_replace_value (set, val, expr);
    bitmap_set_replace_value (set, val, expr);
  else
  else
    bitmap_insert_into_set (set, expr);
    bitmap_insert_into_set (set, expr);
}
}
 
 
/* Insert EXPR into SET if EXPR's value is not already present in
/* Insert EXPR into SET if EXPR's value is not already present in
   SET.  */
   SET.  */
 
 
static void
static void
bitmap_value_insert_into_set (bitmap_set_t set, pre_expr expr)
bitmap_value_insert_into_set (bitmap_set_t set, pre_expr expr)
{
{
  unsigned int val = get_expr_value_id (expr);
  unsigned int val = get_expr_value_id (expr);
 
 
  gcc_checking_assert (expr->id == get_or_alloc_expression_id (expr));
  gcc_checking_assert (expr->id == get_or_alloc_expression_id (expr));
 
 
  /* Constant values are always considered to be part of the set.  */
  /* Constant values are always considered to be part of the set.  */
  if (value_id_constant_p (val))
  if (value_id_constant_p (val))
    return;
    return;
 
 
  /* If the value membership changed, add the expression.  */
  /* If the value membership changed, add the expression.  */
  if (bitmap_set_bit (&set->values, val))
  if (bitmap_set_bit (&set->values, val))
    bitmap_set_bit (&set->expressions, expr->id);
    bitmap_set_bit (&set->expressions, expr->id);
}
}
 
 
/* Print out EXPR to outfile.  */
/* Print out EXPR to outfile.  */
 
 
static void
static void
print_pre_expr (FILE *outfile, const pre_expr expr)
print_pre_expr (FILE *outfile, const pre_expr expr)
{
{
  switch (expr->kind)
  switch (expr->kind)
    {
    {
    case CONSTANT:
    case CONSTANT:
      print_generic_expr (outfile, PRE_EXPR_CONSTANT (expr), 0);
      print_generic_expr (outfile, PRE_EXPR_CONSTANT (expr), 0);
      break;
      break;
    case NAME:
    case NAME:
      print_generic_expr (outfile, PRE_EXPR_NAME (expr), 0);
      print_generic_expr (outfile, PRE_EXPR_NAME (expr), 0);
      break;
      break;
    case NARY:
    case NARY:
      {
      {
        unsigned int i;
        unsigned int i;
        vn_nary_op_t nary = PRE_EXPR_NARY (expr);
        vn_nary_op_t nary = PRE_EXPR_NARY (expr);
        fprintf (outfile, "{%s,", tree_code_name [nary->opcode]);
        fprintf (outfile, "{%s,", tree_code_name [nary->opcode]);
        for (i = 0; i < nary->length; i++)
        for (i = 0; i < nary->length; i++)
          {
          {
            print_generic_expr (outfile, nary->op[i], 0);
            print_generic_expr (outfile, nary->op[i], 0);
            if (i != (unsigned) nary->length - 1)
            if (i != (unsigned) nary->length - 1)
              fprintf (outfile, ",");
              fprintf (outfile, ",");
          }
          }
        fprintf (outfile, "}");
        fprintf (outfile, "}");
      }
      }
      break;
      break;
 
 
    case REFERENCE:
    case REFERENCE:
      {
      {
        vn_reference_op_t vro;
        vn_reference_op_t vro;
        unsigned int i;
        unsigned int i;
        vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
        vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
        fprintf (outfile, "{");
        fprintf (outfile, "{");
        for (i = 0;
        for (i = 0;
             VEC_iterate (vn_reference_op_s, ref->operands, i, vro);
             VEC_iterate (vn_reference_op_s, ref->operands, i, vro);
             i++)
             i++)
          {
          {
            bool closebrace = false;
            bool closebrace = false;
            if (vro->opcode != SSA_NAME
            if (vro->opcode != SSA_NAME
                && TREE_CODE_CLASS (vro->opcode) != tcc_declaration)
                && TREE_CODE_CLASS (vro->opcode) != tcc_declaration)
              {
              {
                fprintf (outfile, "%s", tree_code_name [vro->opcode]);
                fprintf (outfile, "%s", tree_code_name [vro->opcode]);
                if (vro->op0)
                if (vro->op0)
                  {
                  {
                    fprintf (outfile, "<");
                    fprintf (outfile, "<");
                    closebrace = true;
                    closebrace = true;
                  }
                  }
              }
              }
            if (vro->op0)
            if (vro->op0)
              {
              {
                print_generic_expr (outfile, vro->op0, 0);
                print_generic_expr (outfile, vro->op0, 0);
                if (vro->op1)
                if (vro->op1)
                  {
                  {
                    fprintf (outfile, ",");
                    fprintf (outfile, ",");
                    print_generic_expr (outfile, vro->op1, 0);
                    print_generic_expr (outfile, vro->op1, 0);
                  }
                  }
                if (vro->op2)
                if (vro->op2)
                  {
                  {
                    fprintf (outfile, ",");
                    fprintf (outfile, ",");
                    print_generic_expr (outfile, vro->op2, 0);
                    print_generic_expr (outfile, vro->op2, 0);
                  }
                  }
              }
              }
            if (closebrace)
            if (closebrace)
                fprintf (outfile, ">");
                fprintf (outfile, ">");
            if (i != VEC_length (vn_reference_op_s, ref->operands) - 1)
            if (i != VEC_length (vn_reference_op_s, ref->operands) - 1)
              fprintf (outfile, ",");
              fprintf (outfile, ",");
          }
          }
        fprintf (outfile, "}");
        fprintf (outfile, "}");
        if (ref->vuse)
        if (ref->vuse)
          {
          {
            fprintf (outfile, "@");
            fprintf (outfile, "@");
            print_generic_expr (outfile, ref->vuse, 0);
            print_generic_expr (outfile, ref->vuse, 0);
          }
          }
      }
      }
      break;
      break;
    }
    }
}
}
void debug_pre_expr (pre_expr);
void debug_pre_expr (pre_expr);
 
 
/* Like print_pre_expr but always prints to stderr.  */
/* Like print_pre_expr but always prints to stderr.  */
DEBUG_FUNCTION void
DEBUG_FUNCTION void
debug_pre_expr (pre_expr e)
debug_pre_expr (pre_expr e)
{
{
  print_pre_expr (stderr, e);
  print_pre_expr (stderr, e);
  fprintf (stderr, "\n");
  fprintf (stderr, "\n");
}
}
 
 
/* Print out SET to OUTFILE.  */
/* Print out SET to OUTFILE.  */
 
 
static void
static void
print_bitmap_set (FILE *outfile, bitmap_set_t set,
print_bitmap_set (FILE *outfile, bitmap_set_t set,
                  const char *setname, int blockindex)
                  const char *setname, int blockindex)
{
{
  fprintf (outfile, "%s[%d] := { ", setname, blockindex);
  fprintf (outfile, "%s[%d] := { ", setname, blockindex);
  if (set)
  if (set)
    {
    {
      bool first = true;
      bool first = true;
      unsigned i;
      unsigned i;
      bitmap_iterator bi;
      bitmap_iterator bi;
 
 
      FOR_EACH_EXPR_ID_IN_SET (set, i, bi)
      FOR_EACH_EXPR_ID_IN_SET (set, i, bi)
        {
        {
          const pre_expr expr = expression_for_id (i);
          const pre_expr expr = expression_for_id (i);
 
 
          if (!first)
          if (!first)
            fprintf (outfile, ", ");
            fprintf (outfile, ", ");
          first = false;
          first = false;
          print_pre_expr (outfile, expr);
          print_pre_expr (outfile, expr);
 
 
          fprintf (outfile, " (%04d)", get_expr_value_id (expr));
          fprintf (outfile, " (%04d)", get_expr_value_id (expr));
        }
        }
    }
    }
  fprintf (outfile, " }\n");
  fprintf (outfile, " }\n");
}
}
 
 
void debug_bitmap_set (bitmap_set_t);
void debug_bitmap_set (bitmap_set_t);
 
 
DEBUG_FUNCTION void
DEBUG_FUNCTION void
debug_bitmap_set (bitmap_set_t set)
debug_bitmap_set (bitmap_set_t set)
{
{
  print_bitmap_set (stderr, set, "debug", 0);
  print_bitmap_set (stderr, set, "debug", 0);
}
}
 
 
/* Print out the expressions that have VAL to OUTFILE.  */
/* Print out the expressions that have VAL to OUTFILE.  */
 
 
void
void
print_value_expressions (FILE *outfile, unsigned int val)
print_value_expressions (FILE *outfile, unsigned int val)
{
{
  bitmap_set_t set = VEC_index (bitmap_set_t, value_expressions, val);
  bitmap_set_t set = VEC_index (bitmap_set_t, value_expressions, val);
  if (set)
  if (set)
    {
    {
      char s[10];
      char s[10];
      sprintf (s, "%04d", val);
      sprintf (s, "%04d", val);
      print_bitmap_set (outfile, set, s, 0);
      print_bitmap_set (outfile, set, s, 0);
    }
    }
}
}
 
 
 
 
DEBUG_FUNCTION void
DEBUG_FUNCTION void
debug_value_expressions (unsigned int val)
debug_value_expressions (unsigned int val)
{
{
  print_value_expressions (stderr, val);
  print_value_expressions (stderr, val);
}
}
 
 
/* Given a CONSTANT, allocate a new CONSTANT type PRE_EXPR to
/* Given a CONSTANT, allocate a new CONSTANT type PRE_EXPR to
   represent it.  */
   represent it.  */
 
 
static pre_expr
static pre_expr
get_or_alloc_expr_for_constant (tree constant)
get_or_alloc_expr_for_constant (tree constant)
{
{
  unsigned int result_id;
  unsigned int result_id;
  unsigned int value_id;
  unsigned int value_id;
  struct pre_expr_d expr;
  struct pre_expr_d expr;
  pre_expr newexpr;
  pre_expr newexpr;
 
 
  expr.kind = CONSTANT;
  expr.kind = CONSTANT;
  PRE_EXPR_CONSTANT (&expr) = constant;
  PRE_EXPR_CONSTANT (&expr) = constant;
  result_id = lookup_expression_id (&expr);
  result_id = lookup_expression_id (&expr);
  if (result_id != 0)
  if (result_id != 0)
    return expression_for_id (result_id);
    return expression_for_id (result_id);
 
 
  newexpr = (pre_expr) pool_alloc (pre_expr_pool);
  newexpr = (pre_expr) pool_alloc (pre_expr_pool);
  newexpr->kind = CONSTANT;
  newexpr->kind = CONSTANT;
  PRE_EXPR_CONSTANT (newexpr) = constant;
  PRE_EXPR_CONSTANT (newexpr) = constant;
  alloc_expression_id (newexpr);
  alloc_expression_id (newexpr);
  value_id = get_or_alloc_constant_value_id (constant);
  value_id = get_or_alloc_constant_value_id (constant);
  add_to_value (value_id, newexpr);
  add_to_value (value_id, newexpr);
  return newexpr;
  return newexpr;
}
}
 
 
/* Given a value id V, find the actual tree representing the constant
/* Given a value id V, find the actual tree representing the constant
   value if there is one, and return it. Return NULL if we can't find
   value if there is one, and return it. Return NULL if we can't find
   a constant.  */
   a constant.  */
 
 
static tree
static tree
get_constant_for_value_id (unsigned int v)
get_constant_for_value_id (unsigned int v)
{
{
  if (value_id_constant_p (v))
  if (value_id_constant_p (v))
    {
    {
      unsigned int i;
      unsigned int i;
      bitmap_iterator bi;
      bitmap_iterator bi;
      bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, v);
      bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, v);
 
 
      FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi)
      FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi)
        {
        {
          pre_expr expr = expression_for_id (i);
          pre_expr expr = expression_for_id (i);
          if (expr->kind == CONSTANT)
          if (expr->kind == CONSTANT)
            return PRE_EXPR_CONSTANT (expr);
            return PRE_EXPR_CONSTANT (expr);
        }
        }
    }
    }
  return NULL;
  return NULL;
}
}
 
 
/* Get or allocate a pre_expr for a piece of GIMPLE, and return it.
/* Get or allocate a pre_expr for a piece of GIMPLE, and return it.
   Currently only supports constants and SSA_NAMES.  */
   Currently only supports constants and SSA_NAMES.  */
static pre_expr
static pre_expr
get_or_alloc_expr_for (tree t)
get_or_alloc_expr_for (tree t)
{
{
  if (TREE_CODE (t) == SSA_NAME)
  if (TREE_CODE (t) == SSA_NAME)
    return get_or_alloc_expr_for_name (t);
    return get_or_alloc_expr_for_name (t);
  else if (is_gimple_min_invariant (t))
  else if (is_gimple_min_invariant (t))
    return get_or_alloc_expr_for_constant (t);
    return get_or_alloc_expr_for_constant (t);
  else
  else
    {
    {
      /* More complex expressions can result from SCCVN expression
      /* More complex expressions can result from SCCVN expression
         simplification that inserts values for them.  As they all
         simplification that inserts values for them.  As they all
         do not have VOPs the get handled by the nary ops struct.  */
         do not have VOPs the get handled by the nary ops struct.  */
      vn_nary_op_t result;
      vn_nary_op_t result;
      unsigned int result_id;
      unsigned int result_id;
      vn_nary_op_lookup (t, &result);
      vn_nary_op_lookup (t, &result);
      if (result != NULL)
      if (result != NULL)
        {
        {
          pre_expr e = (pre_expr) pool_alloc (pre_expr_pool);
          pre_expr e = (pre_expr) pool_alloc (pre_expr_pool);
          e->kind = NARY;
          e->kind = NARY;
          PRE_EXPR_NARY (e) = result;
          PRE_EXPR_NARY (e) = result;
          result_id = lookup_expression_id (e);
          result_id = lookup_expression_id (e);
          if (result_id != 0)
          if (result_id != 0)
            {
            {
              pool_free (pre_expr_pool, e);
              pool_free (pre_expr_pool, e);
              e = expression_for_id (result_id);
              e = expression_for_id (result_id);
              return e;
              return e;
            }
            }
          alloc_expression_id (e);
          alloc_expression_id (e);
          return e;
          return e;
        }
        }
    }
    }
  return NULL;
  return NULL;
}
}
 
 
/* Return the folded version of T if T, when folded, is a gimple
/* Return the folded version of T if T, when folded, is a gimple
   min_invariant.  Otherwise, return T.  */
   min_invariant.  Otherwise, return T.  */
 
 
static pre_expr
static pre_expr
fully_constant_expression (pre_expr e)
fully_constant_expression (pre_expr e)
{
{
  switch (e->kind)
  switch (e->kind)
    {
    {
    case CONSTANT:
    case CONSTANT:
      return e;
      return e;
    case NARY:
    case NARY:
      {
      {
        vn_nary_op_t nary = PRE_EXPR_NARY (e);
        vn_nary_op_t nary = PRE_EXPR_NARY (e);
        switch (TREE_CODE_CLASS (nary->opcode))
        switch (TREE_CODE_CLASS (nary->opcode))
          {
          {
          case tcc_binary:
          case tcc_binary:
          case tcc_comparison:
          case tcc_comparison:
            {
            {
              /* We have to go from trees to pre exprs to value ids to
              /* We have to go from trees to pre exprs to value ids to
                 constants.  */
                 constants.  */
              tree naryop0 = nary->op[0];
              tree naryop0 = nary->op[0];
              tree naryop1 = nary->op[1];
              tree naryop1 = nary->op[1];
              tree result;
              tree result;
              if (!is_gimple_min_invariant (naryop0))
              if (!is_gimple_min_invariant (naryop0))
                {
                {
                  pre_expr rep0 = get_or_alloc_expr_for (naryop0);
                  pre_expr rep0 = get_or_alloc_expr_for (naryop0);
                  unsigned int vrep0 = get_expr_value_id (rep0);
                  unsigned int vrep0 = get_expr_value_id (rep0);
                  tree const0 = get_constant_for_value_id (vrep0);
                  tree const0 = get_constant_for_value_id (vrep0);
                  if (const0)
                  if (const0)
                    naryop0 = fold_convert (TREE_TYPE (naryop0), const0);
                    naryop0 = fold_convert (TREE_TYPE (naryop0), const0);
                }
                }
              if (!is_gimple_min_invariant (naryop1))
              if (!is_gimple_min_invariant (naryop1))
                {
                {
                  pre_expr rep1 = get_or_alloc_expr_for (naryop1);
                  pre_expr rep1 = get_or_alloc_expr_for (naryop1);
                  unsigned int vrep1 = get_expr_value_id (rep1);
                  unsigned int vrep1 = get_expr_value_id (rep1);
                  tree const1 = get_constant_for_value_id (vrep1);
                  tree const1 = get_constant_for_value_id (vrep1);
                  if (const1)
                  if (const1)
                    naryop1 = fold_convert (TREE_TYPE (naryop1), const1);
                    naryop1 = fold_convert (TREE_TYPE (naryop1), const1);
                }
                }
              result = fold_binary (nary->opcode, nary->type,
              result = fold_binary (nary->opcode, nary->type,
                                    naryop0, naryop1);
                                    naryop0, naryop1);
              if (result && is_gimple_min_invariant (result))
              if (result && is_gimple_min_invariant (result))
                return get_or_alloc_expr_for_constant (result);
                return get_or_alloc_expr_for_constant (result);
              /* We might have simplified the expression to a
              /* We might have simplified the expression to a
                 SSA_NAME for example from x_1 * 1.  But we cannot
                 SSA_NAME for example from x_1 * 1.  But we cannot
                 insert a PHI for x_1 unconditionally as x_1 might
                 insert a PHI for x_1 unconditionally as x_1 might
                 not be available readily.  */
                 not be available readily.  */
              return e;
              return e;
            }
            }
          case tcc_reference:
          case tcc_reference:
            if (nary->opcode != REALPART_EXPR
            if (nary->opcode != REALPART_EXPR
                && nary->opcode != IMAGPART_EXPR
                && nary->opcode != IMAGPART_EXPR
                && nary->opcode != VIEW_CONVERT_EXPR)
                && nary->opcode != VIEW_CONVERT_EXPR)
              return e;
              return e;
            /* Fallthrough.  */
            /* Fallthrough.  */
          case tcc_unary:
          case tcc_unary:
            {
            {
              /* We have to go from trees to pre exprs to value ids to
              /* We have to go from trees to pre exprs to value ids to
                 constants.  */
                 constants.  */
              tree naryop0 = nary->op[0];
              tree naryop0 = nary->op[0];
              tree const0, result;
              tree const0, result;
              if (is_gimple_min_invariant (naryop0))
              if (is_gimple_min_invariant (naryop0))
                const0 = naryop0;
                const0 = naryop0;
              else
              else
                {
                {
                  pre_expr rep0 = get_or_alloc_expr_for (naryop0);
                  pre_expr rep0 = get_or_alloc_expr_for (naryop0);
                  unsigned int vrep0 = get_expr_value_id (rep0);
                  unsigned int vrep0 = get_expr_value_id (rep0);
                  const0 = get_constant_for_value_id (vrep0);
                  const0 = get_constant_for_value_id (vrep0);
                }
                }
              result = NULL;
              result = NULL;
              if (const0)
              if (const0)
                {
                {
                  tree type1 = TREE_TYPE (nary->op[0]);
                  tree type1 = TREE_TYPE (nary->op[0]);
                  const0 = fold_convert (type1, const0);
                  const0 = fold_convert (type1, const0);
                  result = fold_unary (nary->opcode, nary->type, const0);
                  result = fold_unary (nary->opcode, nary->type, const0);
                }
                }
              if (result && is_gimple_min_invariant (result))
              if (result && is_gimple_min_invariant (result))
                return get_or_alloc_expr_for_constant (result);
                return get_or_alloc_expr_for_constant (result);
              return e;
              return e;
            }
            }
          default:
          default:
            return e;
            return e;
          }
          }
      }
      }
    case REFERENCE:
    case REFERENCE:
      {
      {
        vn_reference_t ref = PRE_EXPR_REFERENCE (e);
        vn_reference_t ref = PRE_EXPR_REFERENCE (e);
        tree folded;
        tree folded;
        if ((folded = fully_constant_vn_reference_p (ref)))
        if ((folded = fully_constant_vn_reference_p (ref)))
          return get_or_alloc_expr_for_constant (folded);
          return get_or_alloc_expr_for_constant (folded);
        return e;
        return e;
      }
      }
    default:
    default:
      return e;
      return e;
    }
    }
  return e;
  return e;
}
}
 
 
/* Translate the VUSE backwards through phi nodes in PHIBLOCK, so that
/* Translate the VUSE backwards through phi nodes in PHIBLOCK, so that
   it has the value it would have in BLOCK.  Set *SAME_VALID to true
   it has the value it would have in BLOCK.  Set *SAME_VALID to true
   in case the new vuse doesn't change the value id of the OPERANDS.  */
   in case the new vuse doesn't change the value id of the OPERANDS.  */
 
 
static tree
static tree
translate_vuse_through_block (VEC (vn_reference_op_s, heap) *operands,
translate_vuse_through_block (VEC (vn_reference_op_s, heap) *operands,
                              alias_set_type set, tree type, tree vuse,
                              alias_set_type set, tree type, tree vuse,
                              basic_block phiblock,
                              basic_block phiblock,
                              basic_block block, bool *same_valid)
                              basic_block block, bool *same_valid)
{
{
  gimple phi = SSA_NAME_DEF_STMT (vuse);
  gimple phi = SSA_NAME_DEF_STMT (vuse);
  ao_ref ref;
  ao_ref ref;
  edge e = NULL;
  edge e = NULL;
  bool use_oracle;
  bool use_oracle;
 
 
  *same_valid = true;
  *same_valid = true;
 
 
  if (gimple_bb (phi) != phiblock)
  if (gimple_bb (phi) != phiblock)
    return vuse;
    return vuse;
 
 
  use_oracle = ao_ref_init_from_vn_reference (&ref, set, type, operands);
  use_oracle = ao_ref_init_from_vn_reference (&ref, set, type, operands);
 
 
  /* Use the alias-oracle to find either the PHI node in this block,
  /* Use the alias-oracle to find either the PHI node in this block,
     the first VUSE used in this block that is equivalent to vuse or
     the first VUSE used in this block that is equivalent to vuse or
     the first VUSE which definition in this block kills the value.  */
     the first VUSE which definition in this block kills the value.  */
  if (gimple_code (phi) == GIMPLE_PHI)
  if (gimple_code (phi) == GIMPLE_PHI)
    e = find_edge (block, phiblock);
    e = find_edge (block, phiblock);
  else if (use_oracle)
  else if (use_oracle)
    while (!stmt_may_clobber_ref_p_1 (phi, &ref))
    while (!stmt_may_clobber_ref_p_1 (phi, &ref))
      {
      {
        vuse = gimple_vuse (phi);
        vuse = gimple_vuse (phi);
        phi = SSA_NAME_DEF_STMT (vuse);
        phi = SSA_NAME_DEF_STMT (vuse);
        if (gimple_bb (phi) != phiblock)
        if (gimple_bb (phi) != phiblock)
          return vuse;
          return vuse;
        if (gimple_code (phi) == GIMPLE_PHI)
        if (gimple_code (phi) == GIMPLE_PHI)
          {
          {
            e = find_edge (block, phiblock);
            e = find_edge (block, phiblock);
            break;
            break;
          }
          }
      }
      }
  else
  else
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (e)
  if (e)
    {
    {
      if (use_oracle)
      if (use_oracle)
        {
        {
          bitmap visited = NULL;
          bitmap visited = NULL;
          /* Try to find a vuse that dominates this phi node by skipping
          /* Try to find a vuse that dominates this phi node by skipping
             non-clobbering statements.  */
             non-clobbering statements.  */
          vuse = get_continuation_for_phi (phi, &ref, &visited);
          vuse = get_continuation_for_phi (phi, &ref, &visited);
          if (visited)
          if (visited)
            BITMAP_FREE (visited);
            BITMAP_FREE (visited);
        }
        }
      else
      else
        vuse = NULL_TREE;
        vuse = NULL_TREE;
      if (!vuse)
      if (!vuse)
        {
        {
          /* If we didn't find any, the value ID can't stay the same,
          /* If we didn't find any, the value ID can't stay the same,
             but return the translated vuse.  */
             but return the translated vuse.  */
          *same_valid = false;
          *same_valid = false;
          vuse = PHI_ARG_DEF (phi, e->dest_idx);
          vuse = PHI_ARG_DEF (phi, e->dest_idx);
        }
        }
      /* ??? We would like to return vuse here as this is the canonical
      /* ??? We would like to return vuse here as this is the canonical
         upmost vdef that this reference is associated with.  But during
         upmost vdef that this reference is associated with.  But during
         insertion of the references into the hash tables we only ever
         insertion of the references into the hash tables we only ever
         directly insert with their direct gimple_vuse, hence returning
         directly insert with their direct gimple_vuse, hence returning
         something else would make us not find the other expression.  */
         something else would make us not find the other expression.  */
      return PHI_ARG_DEF (phi, e->dest_idx);
      return PHI_ARG_DEF (phi, e->dest_idx);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Like bitmap_find_leader, but checks for the value existing in SET1 *or*
/* Like bitmap_find_leader, but checks for the value existing in SET1 *or*
   SET2.  This is used to avoid making a set consisting of the union
   SET2.  This is used to avoid making a set consisting of the union
   of PA_IN and ANTIC_IN during insert.  */
   of PA_IN and ANTIC_IN during insert.  */
 
 
static inline pre_expr
static inline pre_expr
find_leader_in_sets (unsigned int val, bitmap_set_t set1, bitmap_set_t set2)
find_leader_in_sets (unsigned int val, bitmap_set_t set1, bitmap_set_t set2)
{
{
  pre_expr result;
  pre_expr result;
 
 
  result = bitmap_find_leader (set1, val, NULL);
  result = bitmap_find_leader (set1, val, NULL);
  if (!result && set2)
  if (!result && set2)
    result = bitmap_find_leader (set2, val, NULL);
    result = bitmap_find_leader (set2, val, NULL);
  return result;
  return result;
}
}
 
 
/* Get the tree type for our PRE expression e.  */
/* Get the tree type for our PRE expression e.  */
 
 
static tree
static tree
get_expr_type (const pre_expr e)
get_expr_type (const pre_expr e)
{
{
  switch (e->kind)
  switch (e->kind)
    {
    {
    case NAME:
    case NAME:
      return TREE_TYPE (PRE_EXPR_NAME (e));
      return TREE_TYPE (PRE_EXPR_NAME (e));
    case CONSTANT:
    case CONSTANT:
      return TREE_TYPE (PRE_EXPR_CONSTANT (e));
      return TREE_TYPE (PRE_EXPR_CONSTANT (e));
    case REFERENCE:
    case REFERENCE:
      return PRE_EXPR_REFERENCE (e)->type;
      return PRE_EXPR_REFERENCE (e)->type;
    case NARY:
    case NARY:
      return PRE_EXPR_NARY (e)->type;
      return PRE_EXPR_NARY (e)->type;
    }
    }
  gcc_unreachable();
  gcc_unreachable();
}
}
 
 
/* Get a representative SSA_NAME for a given expression.
/* Get a representative SSA_NAME for a given expression.
   Since all of our sub-expressions are treated as values, we require
   Since all of our sub-expressions are treated as values, we require
   them to be SSA_NAME's for simplicity.
   them to be SSA_NAME's for simplicity.
   Prior versions of GVNPRE used to use "value handles" here, so that
   Prior versions of GVNPRE used to use "value handles" here, so that
   an expression would be VH.11 + VH.10 instead of d_3 + e_6.  In
   an expression would be VH.11 + VH.10 instead of d_3 + e_6.  In
   either case, the operands are really values (IE we do not expect
   either case, the operands are really values (IE we do not expect
   them to be usable without finding leaders).  */
   them to be usable without finding leaders).  */
 
 
static tree
static tree
get_representative_for (const pre_expr e)
get_representative_for (const pre_expr e)
{
{
  tree exprtype;
  tree exprtype;
  tree name;
  tree name;
  unsigned int value_id = get_expr_value_id (e);
  unsigned int value_id = get_expr_value_id (e);
 
 
  switch (e->kind)
  switch (e->kind)
    {
    {
    case NAME:
    case NAME:
      return PRE_EXPR_NAME (e);
      return PRE_EXPR_NAME (e);
    case CONSTANT:
    case CONSTANT:
      return PRE_EXPR_CONSTANT (e);
      return PRE_EXPR_CONSTANT (e);
    case NARY:
    case NARY:
    case REFERENCE:
    case REFERENCE:
      {
      {
        /* Go through all of the expressions representing this value
        /* Go through all of the expressions representing this value
           and pick out an SSA_NAME.  */
           and pick out an SSA_NAME.  */
        unsigned int i;
        unsigned int i;
        bitmap_iterator bi;
        bitmap_iterator bi;
        bitmap_set_t exprs = VEC_index (bitmap_set_t, value_expressions,
        bitmap_set_t exprs = VEC_index (bitmap_set_t, value_expressions,
                                        value_id);
                                        value_id);
        FOR_EACH_EXPR_ID_IN_SET (exprs, i, bi)
        FOR_EACH_EXPR_ID_IN_SET (exprs, i, bi)
          {
          {
            pre_expr rep = expression_for_id (i);
            pre_expr rep = expression_for_id (i);
            if (rep->kind == NAME)
            if (rep->kind == NAME)
              return PRE_EXPR_NAME (rep);
              return PRE_EXPR_NAME (rep);
          }
          }
      }
      }
      break;
      break;
    }
    }
  /* If we reached here we couldn't find an SSA_NAME.  This can
  /* If we reached here we couldn't find an SSA_NAME.  This can
     happen when we've discovered a value that has never appeared in
     happen when we've discovered a value that has never appeared in
     the program as set to an SSA_NAME, most likely as the result of
     the program as set to an SSA_NAME, most likely as the result of
     phi translation.  */
     phi translation.  */
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file,
      fprintf (dump_file,
               "Could not find SSA_NAME representative for expression:");
               "Could not find SSA_NAME representative for expression:");
      print_pre_expr (dump_file, e);
      print_pre_expr (dump_file, e);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
 
 
  exprtype = get_expr_type (e);
  exprtype = get_expr_type (e);
 
 
  /* Build and insert the assignment of the end result to the temporary
  /* Build and insert the assignment of the end result to the temporary
     that we will return.  */
     that we will return.  */
  if (!pretemp || exprtype != TREE_TYPE (pretemp))
  if (!pretemp || exprtype != TREE_TYPE (pretemp))
    {
    {
      pretemp = create_tmp_reg (exprtype, "pretmp");
      pretemp = create_tmp_reg (exprtype, "pretmp");
      add_referenced_var (pretemp);
      add_referenced_var (pretemp);
    }
    }
 
 
  name = make_ssa_name (pretemp, gimple_build_nop ());
  name = make_ssa_name (pretemp, gimple_build_nop ());
  VN_INFO_GET (name)->value_id = value_id;
  VN_INFO_GET (name)->value_id = value_id;
  if (e->kind == CONSTANT)
  if (e->kind == CONSTANT)
    VN_INFO (name)->valnum = PRE_EXPR_CONSTANT (e);
    VN_INFO (name)->valnum = PRE_EXPR_CONSTANT (e);
  else
  else
    VN_INFO (name)->valnum = name;
    VN_INFO (name)->valnum = name;
 
 
  add_to_value (value_id, get_or_alloc_expr_for_name (name));
  add_to_value (value_id, get_or_alloc_expr_for_name (name));
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file, "Created SSA_NAME representative ");
      fprintf (dump_file, "Created SSA_NAME representative ");
      print_generic_expr (dump_file, name, 0);
      print_generic_expr (dump_file, name, 0);
      fprintf (dump_file, " for expression:");
      fprintf (dump_file, " for expression:");
      print_pre_expr (dump_file, e);
      print_pre_expr (dump_file, e);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
 
 
  return name;
  return name;
}
}
 
 
 
 
 
 
static pre_expr
static pre_expr
phi_translate (pre_expr expr, bitmap_set_t set1, bitmap_set_t set2,
phi_translate (pre_expr expr, bitmap_set_t set1, bitmap_set_t set2,
               basic_block pred, basic_block phiblock);
               basic_block pred, basic_block phiblock);
 
 
/* Translate EXPR using phis in PHIBLOCK, so that it has the values of
/* Translate EXPR using phis in PHIBLOCK, so that it has the values of
   the phis in PRED.  Return NULL if we can't find a leader for each part
   the phis in PRED.  Return NULL if we can't find a leader for each part
   of the translated expression.  */
   of the translated expression.  */
 
 
static pre_expr
static pre_expr
phi_translate_1 (pre_expr expr, bitmap_set_t set1, bitmap_set_t set2,
phi_translate_1 (pre_expr expr, bitmap_set_t set1, bitmap_set_t set2,
                 basic_block pred, basic_block phiblock)
                 basic_block pred, basic_block phiblock)
{
{
  switch (expr->kind)
  switch (expr->kind)
    {
    {
    case NARY:
    case NARY:
      {
      {
        unsigned int i;
        unsigned int i;
        bool changed = false;
        bool changed = false;
        vn_nary_op_t nary = PRE_EXPR_NARY (expr);
        vn_nary_op_t nary = PRE_EXPR_NARY (expr);
        vn_nary_op_t newnary = XALLOCAVAR (struct vn_nary_op_s,
        vn_nary_op_t newnary = XALLOCAVAR (struct vn_nary_op_s,
                                           sizeof_vn_nary_op (nary->length));
                                           sizeof_vn_nary_op (nary->length));
        memcpy (newnary, nary, sizeof_vn_nary_op (nary->length));
        memcpy (newnary, nary, sizeof_vn_nary_op (nary->length));
 
 
        for (i = 0; i < newnary->length; i++)
        for (i = 0; i < newnary->length; i++)
          {
          {
            if (TREE_CODE (newnary->op[i]) != SSA_NAME)
            if (TREE_CODE (newnary->op[i]) != SSA_NAME)
              continue;
              continue;
            else
            else
              {
              {
                pre_expr leader, result;
                pre_expr leader, result;
                unsigned int op_val_id = VN_INFO (newnary->op[i])->value_id;
                unsigned int op_val_id = VN_INFO (newnary->op[i])->value_id;
                leader = find_leader_in_sets (op_val_id, set1, set2);
                leader = find_leader_in_sets (op_val_id, set1, set2);
                result = phi_translate (leader, set1, set2, pred, phiblock);
                result = phi_translate (leader, set1, set2, pred, phiblock);
                if (result && result != leader)
                if (result && result != leader)
                  {
                  {
                    tree name = get_representative_for (result);
                    tree name = get_representative_for (result);
                    if (!name)
                    if (!name)
                      return NULL;
                      return NULL;
                    newnary->op[i] = name;
                    newnary->op[i] = name;
                  }
                  }
                else if (!result)
                else if (!result)
                  return NULL;
                  return NULL;
 
 
                changed |= newnary->op[i] != nary->op[i];
                changed |= newnary->op[i] != nary->op[i];
              }
              }
          }
          }
        if (changed)
        if (changed)
          {
          {
            pre_expr constant;
            pre_expr constant;
            unsigned int new_val_id;
            unsigned int new_val_id;
 
 
            tree result = vn_nary_op_lookup_pieces (newnary->length,
            tree result = vn_nary_op_lookup_pieces (newnary->length,
                                                    newnary->opcode,
                                                    newnary->opcode,
                                                    newnary->type,
                                                    newnary->type,
                                                    &newnary->op[0],
                                                    &newnary->op[0],
                                                    &nary);
                                                    &nary);
            if (result && is_gimple_min_invariant (result))
            if (result && is_gimple_min_invariant (result))
              return get_or_alloc_expr_for_constant (result);
              return get_or_alloc_expr_for_constant (result);
 
 
            expr = (pre_expr) pool_alloc (pre_expr_pool);
            expr = (pre_expr) pool_alloc (pre_expr_pool);
            expr->kind = NARY;
            expr->kind = NARY;
            expr->id = 0;
            expr->id = 0;
            if (nary)
            if (nary)
              {
              {
                PRE_EXPR_NARY (expr) = nary;
                PRE_EXPR_NARY (expr) = nary;
                constant = fully_constant_expression (expr);
                constant = fully_constant_expression (expr);
                if (constant != expr)
                if (constant != expr)
                  return constant;
                  return constant;
 
 
                new_val_id = nary->value_id;
                new_val_id = nary->value_id;
                get_or_alloc_expression_id (expr);
                get_or_alloc_expression_id (expr);
              }
              }
            else
            else
              {
              {
                new_val_id = get_next_value_id ();
                new_val_id = get_next_value_id ();
                VEC_safe_grow_cleared (bitmap_set_t, heap,
                VEC_safe_grow_cleared (bitmap_set_t, heap,
                                       value_expressions,
                                       value_expressions,
                                       get_max_value_id() + 1);
                                       get_max_value_id() + 1);
                nary = vn_nary_op_insert_pieces (newnary->length,
                nary = vn_nary_op_insert_pieces (newnary->length,
                                                 newnary->opcode,
                                                 newnary->opcode,
                                                 newnary->type,
                                                 newnary->type,
                                                 &newnary->op[0],
                                                 &newnary->op[0],
                                                 result, new_val_id);
                                                 result, new_val_id);
                PRE_EXPR_NARY (expr) = nary;
                PRE_EXPR_NARY (expr) = nary;
                constant = fully_constant_expression (expr);
                constant = fully_constant_expression (expr);
                if (constant != expr)
                if (constant != expr)
                  return constant;
                  return constant;
                get_or_alloc_expression_id (expr);
                get_or_alloc_expression_id (expr);
              }
              }
            add_to_value (new_val_id, expr);
            add_to_value (new_val_id, expr);
          }
          }
        return expr;
        return expr;
      }
      }
      break;
      break;
 
 
    case REFERENCE:
    case REFERENCE:
      {
      {
        vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
        vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
        VEC (vn_reference_op_s, heap) *operands = ref->operands;
        VEC (vn_reference_op_s, heap) *operands = ref->operands;
        tree vuse = ref->vuse;
        tree vuse = ref->vuse;
        tree newvuse = vuse;
        tree newvuse = vuse;
        VEC (vn_reference_op_s, heap) *newoperands = NULL;
        VEC (vn_reference_op_s, heap) *newoperands = NULL;
        bool changed = false, same_valid = true;
        bool changed = false, same_valid = true;
        unsigned int i, j, n;
        unsigned int i, j, n;
        vn_reference_op_t operand;
        vn_reference_op_t operand;
        vn_reference_t newref;
        vn_reference_t newref;
 
 
        for (i = 0, j = 0;
        for (i = 0, j = 0;
             VEC_iterate (vn_reference_op_s, operands, i, operand); i++, j++)
             VEC_iterate (vn_reference_op_s, operands, i, operand); i++, j++)
          {
          {
            pre_expr opresult;
            pre_expr opresult;
            pre_expr leader;
            pre_expr leader;
            tree op[3];
            tree op[3];
            tree type = operand->type;
            tree type = operand->type;
            vn_reference_op_s newop = *operand;
            vn_reference_op_s newop = *operand;
            op[0] = operand->op0;
            op[0] = operand->op0;
            op[1] = operand->op1;
            op[1] = operand->op1;
            op[2] = operand->op2;
            op[2] = operand->op2;
            for (n = 0; n < 3; ++n)
            for (n = 0; n < 3; ++n)
              {
              {
                unsigned int op_val_id;
                unsigned int op_val_id;
                if (!op[n])
                if (!op[n])
                  continue;
                  continue;
                if (TREE_CODE (op[n]) != SSA_NAME)
                if (TREE_CODE (op[n]) != SSA_NAME)
                  {
                  {
                    /* We can't possibly insert these.  */
                    /* We can't possibly insert these.  */
                    if (n != 0
                    if (n != 0
                        && !is_gimple_min_invariant (op[n]))
                        && !is_gimple_min_invariant (op[n]))
                      break;
                      break;
                    continue;
                    continue;
                  }
                  }
                op_val_id = VN_INFO (op[n])->value_id;
                op_val_id = VN_INFO (op[n])->value_id;
                leader = find_leader_in_sets (op_val_id, set1, set2);
                leader = find_leader_in_sets (op_val_id, set1, set2);
                if (!leader)
                if (!leader)
                  break;
                  break;
                /* Make sure we do not recursively translate ourselves
                /* Make sure we do not recursively translate ourselves
                   like for translating a[n_1] with the leader for
                   like for translating a[n_1] with the leader for
                   n_1 being a[n_1].  */
                   n_1 being a[n_1].  */
                if (get_expression_id (leader) != get_expression_id (expr))
                if (get_expression_id (leader) != get_expression_id (expr))
                  {
                  {
                    opresult = phi_translate (leader, set1, set2,
                    opresult = phi_translate (leader, set1, set2,
                                              pred, phiblock);
                                              pred, phiblock);
                    if (!opresult)
                    if (!opresult)
                      break;
                      break;
                    if (opresult != leader)
                    if (opresult != leader)
                      {
                      {
                        tree name = get_representative_for (opresult);
                        tree name = get_representative_for (opresult);
                        if (!name)
                        if (!name)
                          break;
                          break;
                        changed |= name != op[n];
                        changed |= name != op[n];
                        op[n] = name;
                        op[n] = name;
                      }
                      }
                  }
                  }
              }
              }
            if (n != 3)
            if (n != 3)
              {
              {
                if (newoperands)
                if (newoperands)
                  VEC_free (vn_reference_op_s, heap, newoperands);
                  VEC_free (vn_reference_op_s, heap, newoperands);
                return NULL;
                return NULL;
              }
              }
            if (!newoperands)
            if (!newoperands)
              newoperands = VEC_copy (vn_reference_op_s, heap, operands);
              newoperands = VEC_copy (vn_reference_op_s, heap, operands);
            /* We may have changed from an SSA_NAME to a constant */
            /* We may have changed from an SSA_NAME to a constant */
            if (newop.opcode == SSA_NAME && TREE_CODE (op[0]) != SSA_NAME)
            if (newop.opcode == SSA_NAME && TREE_CODE (op[0]) != SSA_NAME)
              newop.opcode = TREE_CODE (op[0]);
              newop.opcode = TREE_CODE (op[0]);
            newop.type = type;
            newop.type = type;
            newop.op0 = op[0];
            newop.op0 = op[0];
            newop.op1 = op[1];
            newop.op1 = op[1];
            newop.op2 = op[2];
            newop.op2 = op[2];
            /* If it transforms a non-constant ARRAY_REF into a constant
            /* If it transforms a non-constant ARRAY_REF into a constant
               one, adjust the constant offset.  */
               one, adjust the constant offset.  */
            if (newop.opcode == ARRAY_REF
            if (newop.opcode == ARRAY_REF
                && newop.off == -1
                && newop.off == -1
                && TREE_CODE (op[0]) == INTEGER_CST
                && TREE_CODE (op[0]) == INTEGER_CST
                && TREE_CODE (op[1]) == INTEGER_CST
                && TREE_CODE (op[1]) == INTEGER_CST
                && TREE_CODE (op[2]) == INTEGER_CST)
                && TREE_CODE (op[2]) == INTEGER_CST)
              {
              {
                double_int off = tree_to_double_int (op[0]);
                double_int off = tree_to_double_int (op[0]);
                off = double_int_add (off,
                off = double_int_add (off,
                                      double_int_neg
                                      double_int_neg
                                        (tree_to_double_int (op[1])));
                                        (tree_to_double_int (op[1])));
                off = double_int_mul (off, tree_to_double_int (op[2]));
                off = double_int_mul (off, tree_to_double_int (op[2]));
                if (double_int_fits_in_shwi_p (off))
                if (double_int_fits_in_shwi_p (off))
                  newop.off = off.low;
                  newop.off = off.low;
              }
              }
            VEC_replace (vn_reference_op_s, newoperands, j, &newop);
            VEC_replace (vn_reference_op_s, newoperands, j, &newop);
            /* If it transforms from an SSA_NAME to an address, fold with
            /* If it transforms from an SSA_NAME to an address, fold with
               a preceding indirect reference.  */
               a preceding indirect reference.  */
            if (j > 0 && op[0] && TREE_CODE (op[0]) == ADDR_EXPR
            if (j > 0 && op[0] && TREE_CODE (op[0]) == ADDR_EXPR
                && VEC_index (vn_reference_op_s,
                && VEC_index (vn_reference_op_s,
                              newoperands, j - 1)->opcode == MEM_REF)
                              newoperands, j - 1)->opcode == MEM_REF)
              vn_reference_fold_indirect (&newoperands, &j);
              vn_reference_fold_indirect (&newoperands, &j);
          }
          }
        if (i != VEC_length (vn_reference_op_s, operands))
        if (i != VEC_length (vn_reference_op_s, operands))
          {
          {
            if (newoperands)
            if (newoperands)
              VEC_free (vn_reference_op_s, heap, newoperands);
              VEC_free (vn_reference_op_s, heap, newoperands);
            return NULL;
            return NULL;
          }
          }
 
 
        if (vuse)
        if (vuse)
          {
          {
            newvuse = translate_vuse_through_block (newoperands,
            newvuse = translate_vuse_through_block (newoperands,
                                                    ref->set, ref->type,
                                                    ref->set, ref->type,
                                                    vuse, phiblock, pred,
                                                    vuse, phiblock, pred,
                                                    &same_valid);
                                                    &same_valid);
            if (newvuse == NULL_TREE)
            if (newvuse == NULL_TREE)
              {
              {
                VEC_free (vn_reference_op_s, heap, newoperands);
                VEC_free (vn_reference_op_s, heap, newoperands);
                return NULL;
                return NULL;
              }
              }
          }
          }
 
 
        if (changed || newvuse != vuse)
        if (changed || newvuse != vuse)
          {
          {
            unsigned int new_val_id;
            unsigned int new_val_id;
            pre_expr constant;
            pre_expr constant;
            bool converted = false;
            bool converted = false;
 
 
            tree result = vn_reference_lookup_pieces (newvuse, ref->set,
            tree result = vn_reference_lookup_pieces (newvuse, ref->set,
                                                      ref->type,
                                                      ref->type,
                                                      newoperands,
                                                      newoperands,
                                                      &newref, VN_WALK);
                                                      &newref, VN_WALK);
            if (result)
            if (result)
              VEC_free (vn_reference_op_s, heap, newoperands);
              VEC_free (vn_reference_op_s, heap, newoperands);
 
 
            if (result
            if (result
                && !useless_type_conversion_p (ref->type, TREE_TYPE (result)))
                && !useless_type_conversion_p (ref->type, TREE_TYPE (result)))
              {
              {
                result = fold_build1 (VIEW_CONVERT_EXPR, ref->type, result);
                result = fold_build1 (VIEW_CONVERT_EXPR, ref->type, result);
                converted = true;
                converted = true;
              }
              }
            else if (!result && newref
            else if (!result && newref
                     && !useless_type_conversion_p (ref->type, newref->type))
                     && !useless_type_conversion_p (ref->type, newref->type))
              {
              {
                VEC_free (vn_reference_op_s, heap, newoperands);
                VEC_free (vn_reference_op_s, heap, newoperands);
                return NULL;
                return NULL;
              }
              }
 
 
            if (result && is_gimple_min_invariant (result))
            if (result && is_gimple_min_invariant (result))
              {
              {
                gcc_assert (!newoperands);
                gcc_assert (!newoperands);
                return get_or_alloc_expr_for_constant (result);
                return get_or_alloc_expr_for_constant (result);
              }
              }
 
 
            expr = (pre_expr) pool_alloc (pre_expr_pool);
            expr = (pre_expr) pool_alloc (pre_expr_pool);
            expr->kind = REFERENCE;
            expr->kind = REFERENCE;
            expr->id = 0;
            expr->id = 0;
 
 
            if (converted)
            if (converted)
              {
              {
                vn_nary_op_t nary;
                vn_nary_op_t nary;
                tree nresult;
                tree nresult;
 
 
                gcc_assert (CONVERT_EXPR_P (result)
                gcc_assert (CONVERT_EXPR_P (result)
                            || TREE_CODE (result) == VIEW_CONVERT_EXPR);
                            || TREE_CODE (result) == VIEW_CONVERT_EXPR);
 
 
                nresult = vn_nary_op_lookup_pieces (1, TREE_CODE (result),
                nresult = vn_nary_op_lookup_pieces (1, TREE_CODE (result),
                                                    TREE_TYPE (result),
                                                    TREE_TYPE (result),
                                                    &TREE_OPERAND (result, 0),
                                                    &TREE_OPERAND (result, 0),
                                                    &nary);
                                                    &nary);
                if (nresult && is_gimple_min_invariant (nresult))
                if (nresult && is_gimple_min_invariant (nresult))
                  return get_or_alloc_expr_for_constant (nresult);
                  return get_or_alloc_expr_for_constant (nresult);
 
 
                expr->kind = NARY;
                expr->kind = NARY;
                if (nary)
                if (nary)
                  {
                  {
                    PRE_EXPR_NARY (expr) = nary;
                    PRE_EXPR_NARY (expr) = nary;
                    constant = fully_constant_expression (expr);
                    constant = fully_constant_expression (expr);
                    if (constant != expr)
                    if (constant != expr)
                      return constant;
                      return constant;
 
 
                    new_val_id = nary->value_id;
                    new_val_id = nary->value_id;
                    get_or_alloc_expression_id (expr);
                    get_or_alloc_expression_id (expr);
                  }
                  }
                else
                else
                  {
                  {
                    new_val_id = get_next_value_id ();
                    new_val_id = get_next_value_id ();
                    VEC_safe_grow_cleared (bitmap_set_t, heap,
                    VEC_safe_grow_cleared (bitmap_set_t, heap,
                                           value_expressions,
                                           value_expressions,
                                           get_max_value_id() + 1);
                                           get_max_value_id() + 1);
                    nary = vn_nary_op_insert_pieces (1, TREE_CODE (result),
                    nary = vn_nary_op_insert_pieces (1, TREE_CODE (result),
                                                     TREE_TYPE (result),
                                                     TREE_TYPE (result),
                                                     &TREE_OPERAND (result, 0),
                                                     &TREE_OPERAND (result, 0),
                                                     NULL_TREE,
                                                     NULL_TREE,
                                                     new_val_id);
                                                     new_val_id);
                    PRE_EXPR_NARY (expr) = nary;
                    PRE_EXPR_NARY (expr) = nary;
                    constant = fully_constant_expression (expr);
                    constant = fully_constant_expression (expr);
                    if (constant != expr)
                    if (constant != expr)
                      return constant;
                      return constant;
                    get_or_alloc_expression_id (expr);
                    get_or_alloc_expression_id (expr);
                  }
                  }
              }
              }
            else if (newref)
            else if (newref)
              {
              {
                PRE_EXPR_REFERENCE (expr) = newref;
                PRE_EXPR_REFERENCE (expr) = newref;
                constant = fully_constant_expression (expr);
                constant = fully_constant_expression (expr);
                if (constant != expr)
                if (constant != expr)
                  return constant;
                  return constant;
 
 
                new_val_id = newref->value_id;
                new_val_id = newref->value_id;
                get_or_alloc_expression_id (expr);
                get_or_alloc_expression_id (expr);
              }
              }
            else
            else
              {
              {
                if (changed || !same_valid)
                if (changed || !same_valid)
                  {
                  {
                    new_val_id = get_next_value_id ();
                    new_val_id = get_next_value_id ();
                    VEC_safe_grow_cleared (bitmap_set_t, heap,
                    VEC_safe_grow_cleared (bitmap_set_t, heap,
                                           value_expressions,
                                           value_expressions,
                                           get_max_value_id() + 1);
                                           get_max_value_id() + 1);
                  }
                  }
                else
                else
                  new_val_id = ref->value_id;
                  new_val_id = ref->value_id;
                newref = vn_reference_insert_pieces (newvuse, ref->set,
                newref = vn_reference_insert_pieces (newvuse, ref->set,
                                                     ref->type,
                                                     ref->type,
                                                     newoperands,
                                                     newoperands,
                                                     result, new_val_id);
                                                     result, new_val_id);
                newoperands = NULL;
                newoperands = NULL;
                PRE_EXPR_REFERENCE (expr) = newref;
                PRE_EXPR_REFERENCE (expr) = newref;
                constant = fully_constant_expression (expr);
                constant = fully_constant_expression (expr);
                if (constant != expr)
                if (constant != expr)
                  return constant;
                  return constant;
                get_or_alloc_expression_id (expr);
                get_or_alloc_expression_id (expr);
              }
              }
            add_to_value (new_val_id, expr);
            add_to_value (new_val_id, expr);
          }
          }
        VEC_free (vn_reference_op_s, heap, newoperands);
        VEC_free (vn_reference_op_s, heap, newoperands);
        return expr;
        return expr;
      }
      }
      break;
      break;
 
 
    case NAME:
    case NAME:
      {
      {
        gimple phi = NULL;
        gimple phi = NULL;
        edge e;
        edge e;
        gimple def_stmt;
        gimple def_stmt;
        tree name = PRE_EXPR_NAME (expr);
        tree name = PRE_EXPR_NAME (expr);
 
 
        def_stmt = SSA_NAME_DEF_STMT (name);
        def_stmt = SSA_NAME_DEF_STMT (name);
        if (gimple_code (def_stmt) == GIMPLE_PHI
        if (gimple_code (def_stmt) == GIMPLE_PHI
            && gimple_bb (def_stmt) == phiblock)
            && gimple_bb (def_stmt) == phiblock)
          phi = def_stmt;
          phi = def_stmt;
        else
        else
          return expr;
          return expr;
 
 
        e = find_edge (pred, gimple_bb (phi));
        e = find_edge (pred, gimple_bb (phi));
        if (e)
        if (e)
          {
          {
            tree def = PHI_ARG_DEF (phi, e->dest_idx);
            tree def = PHI_ARG_DEF (phi, e->dest_idx);
            pre_expr newexpr;
            pre_expr newexpr;
 
 
            if (TREE_CODE (def) == SSA_NAME)
            if (TREE_CODE (def) == SSA_NAME)
              def = VN_INFO (def)->valnum;
              def = VN_INFO (def)->valnum;
 
 
            /* Handle constant. */
            /* Handle constant. */
            if (is_gimple_min_invariant (def))
            if (is_gimple_min_invariant (def))
              return get_or_alloc_expr_for_constant (def);
              return get_or_alloc_expr_for_constant (def);
 
 
            if (TREE_CODE (def) == SSA_NAME && ssa_undefined_value_p (def))
            if (TREE_CODE (def) == SSA_NAME && ssa_undefined_value_p (def))
              return NULL;
              return NULL;
 
 
            newexpr = get_or_alloc_expr_for_name (def);
            newexpr = get_or_alloc_expr_for_name (def);
            return newexpr;
            return newexpr;
          }
          }
      }
      }
      return expr;
      return expr;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Wrapper around phi_translate_1 providing caching functionality.  */
/* Wrapper around phi_translate_1 providing caching functionality.  */
 
 
static pre_expr
static pre_expr
phi_translate (pre_expr expr, bitmap_set_t set1, bitmap_set_t set2,
phi_translate (pre_expr expr, bitmap_set_t set1, bitmap_set_t set2,
               basic_block pred, basic_block phiblock)
               basic_block pred, basic_block phiblock)
{
{
  pre_expr phitrans;
  pre_expr phitrans;
 
 
  if (!expr)
  if (!expr)
    return NULL;
    return NULL;
 
 
  /* Constants contain no values that need translation.  */
  /* Constants contain no values that need translation.  */
  if (expr->kind == CONSTANT)
  if (expr->kind == CONSTANT)
    return expr;
    return expr;
 
 
  if (value_id_constant_p (get_expr_value_id (expr)))
  if (value_id_constant_p (get_expr_value_id (expr)))
    return expr;
    return expr;
 
 
  if (expr->kind != NAME)
  if (expr->kind != NAME)
    {
    {
      phitrans = phi_trans_lookup (expr, pred);
      phitrans = phi_trans_lookup (expr, pred);
      if (phitrans)
      if (phitrans)
        return phitrans;
        return phitrans;
    }
    }
 
 
  /* Translate.  */
  /* Translate.  */
  phitrans = phi_translate_1 (expr, set1, set2, pred, phiblock);
  phitrans = phi_translate_1 (expr, set1, set2, pred, phiblock);
 
 
  /* Don't add empty translations to the cache.  Neither add
  /* Don't add empty translations to the cache.  Neither add
     translations of NAMEs as those are cheap to translate.  */
     translations of NAMEs as those are cheap to translate.  */
  if (phitrans
  if (phitrans
      && expr->kind != NAME)
      && expr->kind != NAME)
    phi_trans_add (expr, phitrans, pred);
    phi_trans_add (expr, phitrans, pred);
 
 
  return phitrans;
  return phitrans;
}
}
 
 
 
 
/* For each expression in SET, translate the values through phi nodes
/* For each expression in SET, translate the values through phi nodes
   in PHIBLOCK using edge PHIBLOCK->PRED, and store the resulting
   in PHIBLOCK using edge PHIBLOCK->PRED, and store the resulting
   expressions in DEST.  */
   expressions in DEST.  */
 
 
static void
static void
phi_translate_set (bitmap_set_t dest, bitmap_set_t set, basic_block pred,
phi_translate_set (bitmap_set_t dest, bitmap_set_t set, basic_block pred,
                   basic_block phiblock)
                   basic_block phiblock)
{
{
  VEC (pre_expr, heap) *exprs;
  VEC (pre_expr, heap) *exprs;
  pre_expr expr;
  pre_expr expr;
  int i;
  int i;
 
 
  if (gimple_seq_empty_p (phi_nodes (phiblock)))
  if (gimple_seq_empty_p (phi_nodes (phiblock)))
    {
    {
      bitmap_set_copy (dest, set);
      bitmap_set_copy (dest, set);
      return;
      return;
    }
    }
 
 
  exprs = sorted_array_from_bitmap_set (set);
  exprs = sorted_array_from_bitmap_set (set);
  FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
  FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
    {
    {
      pre_expr translated;
      pre_expr translated;
      translated = phi_translate (expr, set, NULL, pred, phiblock);
      translated = phi_translate (expr, set, NULL, pred, phiblock);
      if (!translated)
      if (!translated)
        continue;
        continue;
 
 
      /* We might end up with multiple expressions from SET being
      /* We might end up with multiple expressions from SET being
         translated to the same value.  In this case we do not want
         translated to the same value.  In this case we do not want
         to retain the NARY or REFERENCE expression but prefer a NAME
         to retain the NARY or REFERENCE expression but prefer a NAME
         which would be the leader.  */
         which would be the leader.  */
      if (translated->kind == NAME)
      if (translated->kind == NAME)
        bitmap_value_replace_in_set (dest, translated);
        bitmap_value_replace_in_set (dest, translated);
      else
      else
        bitmap_value_insert_into_set (dest, translated);
        bitmap_value_insert_into_set (dest, translated);
    }
    }
  VEC_free (pre_expr, heap, exprs);
  VEC_free (pre_expr, heap, exprs);
}
}
 
 
/* Find the leader for a value (i.e., the name representing that
/* Find the leader for a value (i.e., the name representing that
   value) in a given set, and return it.  If STMT is non-NULL it
   value) in a given set, and return it.  If STMT is non-NULL it
   makes sure the defining statement for the leader dominates it.
   makes sure the defining statement for the leader dominates it.
   Return NULL if no leader is found.  */
   Return NULL if no leader is found.  */
 
 
static pre_expr
static pre_expr
bitmap_find_leader (bitmap_set_t set, unsigned int val, gimple stmt)
bitmap_find_leader (bitmap_set_t set, unsigned int val, gimple stmt)
{
{
  if (value_id_constant_p (val))
  if (value_id_constant_p (val))
    {
    {
      unsigned int i;
      unsigned int i;
      bitmap_iterator bi;
      bitmap_iterator bi;
      bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, val);
      bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, val);
 
 
      FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi)
      FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi)
        {
        {
          pre_expr expr = expression_for_id (i);
          pre_expr expr = expression_for_id (i);
          if (expr->kind == CONSTANT)
          if (expr->kind == CONSTANT)
            return expr;
            return expr;
        }
        }
    }
    }
  if (bitmap_set_contains_value (set, val))
  if (bitmap_set_contains_value (set, val))
    {
    {
      /* Rather than walk the entire bitmap of expressions, and see
      /* Rather than walk the entire bitmap of expressions, and see
         whether any of them has the value we are looking for, we look
         whether any of them has the value we are looking for, we look
         at the reverse mapping, which tells us the set of expressions
         at the reverse mapping, which tells us the set of expressions
         that have a given value (IE value->expressions with that
         that have a given value (IE value->expressions with that
         value) and see if any of those expressions are in our set.
         value) and see if any of those expressions are in our set.
         The number of expressions per value is usually significantly
         The number of expressions per value is usually significantly
         less than the number of expressions in the set.  In fact, for
         less than the number of expressions in the set.  In fact, for
         large testcases, doing it this way is roughly 5-10x faster
         large testcases, doing it this way is roughly 5-10x faster
         than walking the bitmap.
         than walking the bitmap.
         If this is somehow a significant lose for some cases, we can
         If this is somehow a significant lose for some cases, we can
         choose which set to walk based on which set is smaller.  */
         choose which set to walk based on which set is smaller.  */
      unsigned int i;
      unsigned int i;
      bitmap_iterator bi;
      bitmap_iterator bi;
      bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, val);
      bitmap_set_t exprset = VEC_index (bitmap_set_t, value_expressions, val);
 
 
      EXECUTE_IF_AND_IN_BITMAP (&exprset->expressions,
      EXECUTE_IF_AND_IN_BITMAP (&exprset->expressions,
                                &set->expressions, 0, i, bi)
                                &set->expressions, 0, i, bi)
        {
        {
          pre_expr val = expression_for_id (i);
          pre_expr val = expression_for_id (i);
          /* At the point where stmt is not null, there should always
          /* At the point where stmt is not null, there should always
             be an SSA_NAME first in the list of expressions.  */
             be an SSA_NAME first in the list of expressions.  */
          if (stmt)
          if (stmt)
            {
            {
              gimple def_stmt = SSA_NAME_DEF_STMT (PRE_EXPR_NAME (val));
              gimple def_stmt = SSA_NAME_DEF_STMT (PRE_EXPR_NAME (val));
              if (gimple_code (def_stmt) != GIMPLE_PHI
              if (gimple_code (def_stmt) != GIMPLE_PHI
                  && gimple_bb (def_stmt) == gimple_bb (stmt)
                  && gimple_bb (def_stmt) == gimple_bb (stmt)
                  /* PRE insertions are at the end of the basic-block
                  /* PRE insertions are at the end of the basic-block
                     and have UID 0.  */
                     and have UID 0.  */
                  && (gimple_uid (def_stmt) == 0
                  && (gimple_uid (def_stmt) == 0
                      || gimple_uid (def_stmt) >= gimple_uid (stmt)))
                      || gimple_uid (def_stmt) >= gimple_uid (stmt)))
                continue;
                continue;
            }
            }
          return val;
          return val;
        }
        }
    }
    }
  return NULL;
  return NULL;
}
}
 
 
/* Determine if EXPR, a memory expression, is ANTIC_IN at the top of
/* Determine if EXPR, a memory expression, is ANTIC_IN at the top of
   BLOCK by seeing if it is not killed in the block.  Note that we are
   BLOCK by seeing if it is not killed in the block.  Note that we are
   only determining whether there is a store that kills it.  Because
   only determining whether there is a store that kills it.  Because
   of the order in which clean iterates over values, we are guaranteed
   of the order in which clean iterates over values, we are guaranteed
   that altered operands will have caused us to be eliminated from the
   that altered operands will have caused us to be eliminated from the
   ANTIC_IN set already.  */
   ANTIC_IN set already.  */
 
 
static bool
static bool
value_dies_in_block_x (pre_expr expr, basic_block block)
value_dies_in_block_x (pre_expr expr, basic_block block)
{
{
  tree vuse = PRE_EXPR_REFERENCE (expr)->vuse;
  tree vuse = PRE_EXPR_REFERENCE (expr)->vuse;
  vn_reference_t refx = PRE_EXPR_REFERENCE (expr);
  vn_reference_t refx = PRE_EXPR_REFERENCE (expr);
  gimple def;
  gimple def;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  unsigned id = get_expression_id (expr);
  unsigned id = get_expression_id (expr);
  bool res = false;
  bool res = false;
  ao_ref ref;
  ao_ref ref;
 
 
  if (!vuse)
  if (!vuse)
    return false;
    return false;
 
 
  /* Lookup a previously calculated result.  */
  /* Lookup a previously calculated result.  */
  if (EXPR_DIES (block)
  if (EXPR_DIES (block)
      && bitmap_bit_p (EXPR_DIES (block), id * 2))
      && bitmap_bit_p (EXPR_DIES (block), id * 2))
    return bitmap_bit_p (EXPR_DIES (block), id * 2 + 1);
    return bitmap_bit_p (EXPR_DIES (block), id * 2 + 1);
 
 
  /* A memory expression {e, VUSE} dies in the block if there is a
  /* A memory expression {e, VUSE} dies in the block if there is a
     statement that may clobber e.  If, starting statement walk from the
     statement that may clobber e.  If, starting statement walk from the
     top of the basic block, a statement uses VUSE there can be no kill
     top of the basic block, a statement uses VUSE there can be no kill
     inbetween that use and the original statement that loaded {e, VUSE},
     inbetween that use and the original statement that loaded {e, VUSE},
     so we can stop walking.  */
     so we can stop walking.  */
  ref.base = NULL_TREE;
  ref.base = NULL_TREE;
  for (gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi))
  for (gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi))
    {
    {
      tree def_vuse, def_vdef;
      tree def_vuse, def_vdef;
      def = gsi_stmt (gsi);
      def = gsi_stmt (gsi);
      def_vuse = gimple_vuse (def);
      def_vuse = gimple_vuse (def);
      def_vdef = gimple_vdef (def);
      def_vdef = gimple_vdef (def);
 
 
      /* Not a memory statement.  */
      /* Not a memory statement.  */
      if (!def_vuse)
      if (!def_vuse)
        continue;
        continue;
 
 
      /* Not a may-def.  */
      /* Not a may-def.  */
      if (!def_vdef)
      if (!def_vdef)
        {
        {
          /* A load with the same VUSE, we're done.  */
          /* A load with the same VUSE, we're done.  */
          if (def_vuse == vuse)
          if (def_vuse == vuse)
            break;
            break;
 
 
          continue;
          continue;
        }
        }
 
 
      /* Init ref only if we really need it.  */
      /* Init ref only if we really need it.  */
      if (ref.base == NULL_TREE
      if (ref.base == NULL_TREE
          && !ao_ref_init_from_vn_reference (&ref, refx->set, refx->type,
          && !ao_ref_init_from_vn_reference (&ref, refx->set, refx->type,
                                             refx->operands))
                                             refx->operands))
        {
        {
          res = true;
          res = true;
          break;
          break;
        }
        }
      /* If the statement may clobber expr, it dies.  */
      /* If the statement may clobber expr, it dies.  */
      if (stmt_may_clobber_ref_p_1 (def, &ref))
      if (stmt_may_clobber_ref_p_1 (def, &ref))
        {
        {
          res = true;
          res = true;
          break;
          break;
        }
        }
    }
    }
 
 
  /* Remember the result.  */
  /* Remember the result.  */
  if (!EXPR_DIES (block))
  if (!EXPR_DIES (block))
    EXPR_DIES (block) = BITMAP_ALLOC (&grand_bitmap_obstack);
    EXPR_DIES (block) = BITMAP_ALLOC (&grand_bitmap_obstack);
  bitmap_set_bit (EXPR_DIES (block), id * 2);
  bitmap_set_bit (EXPR_DIES (block), id * 2);
  if (res)
  if (res)
    bitmap_set_bit (EXPR_DIES (block), id * 2 + 1);
    bitmap_set_bit (EXPR_DIES (block), id * 2 + 1);
 
 
  return res;
  return res;
}
}
 
 
 
 
#define union_contains_value(SET1, SET2, VAL)                   \
#define union_contains_value(SET1, SET2, VAL)                   \
  (bitmap_set_contains_value ((SET1), (VAL))                    \
  (bitmap_set_contains_value ((SET1), (VAL))                    \
   || ((SET2) && bitmap_set_contains_value ((SET2), (VAL))))
   || ((SET2) && bitmap_set_contains_value ((SET2), (VAL))))
 
 
/* Determine if vn_reference_op_t VRO is legal in SET1 U SET2.
/* Determine if vn_reference_op_t VRO is legal in SET1 U SET2.
 */
 */
static bool
static bool
vro_valid_in_sets (bitmap_set_t set1, bitmap_set_t set2,
vro_valid_in_sets (bitmap_set_t set1, bitmap_set_t set2,
                   vn_reference_op_t vro)
                   vn_reference_op_t vro)
{
{
  if (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME)
  if (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME)
    {
    {
      struct pre_expr_d temp;
      struct pre_expr_d temp;
      temp.kind = NAME;
      temp.kind = NAME;
      temp.id = 0;
      temp.id = 0;
      PRE_EXPR_NAME (&temp) = vro->op0;
      PRE_EXPR_NAME (&temp) = vro->op0;
      temp.id = lookup_expression_id (&temp);
      temp.id = lookup_expression_id (&temp);
      if (temp.id == 0)
      if (temp.id == 0)
        return false;
        return false;
      if (!union_contains_value (set1, set2,
      if (!union_contains_value (set1, set2,
                                 get_expr_value_id (&temp)))
                                 get_expr_value_id (&temp)))
        return false;
        return false;
    }
    }
  if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME)
  if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME)
    {
    {
      struct pre_expr_d temp;
      struct pre_expr_d temp;
      temp.kind = NAME;
      temp.kind = NAME;
      temp.id = 0;
      temp.id = 0;
      PRE_EXPR_NAME (&temp) = vro->op1;
      PRE_EXPR_NAME (&temp) = vro->op1;
      temp.id = lookup_expression_id (&temp);
      temp.id = lookup_expression_id (&temp);
      if (temp.id == 0)
      if (temp.id == 0)
        return false;
        return false;
      if (!union_contains_value (set1, set2,
      if (!union_contains_value (set1, set2,
                                 get_expr_value_id (&temp)))
                                 get_expr_value_id (&temp)))
        return false;
        return false;
    }
    }
 
 
  if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME)
  if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME)
    {
    {
      struct pre_expr_d temp;
      struct pre_expr_d temp;
      temp.kind = NAME;
      temp.kind = NAME;
      temp.id = 0;
      temp.id = 0;
      PRE_EXPR_NAME (&temp) = vro->op2;
      PRE_EXPR_NAME (&temp) = vro->op2;
      temp.id = lookup_expression_id (&temp);
      temp.id = lookup_expression_id (&temp);
      if (temp.id == 0)
      if (temp.id == 0)
        return false;
        return false;
      if (!union_contains_value (set1, set2,
      if (!union_contains_value (set1, set2,
                                 get_expr_value_id (&temp)))
                                 get_expr_value_id (&temp)))
        return false;
        return false;
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* Determine if the expression EXPR is valid in SET1 U SET2.
/* Determine if the expression EXPR is valid in SET1 U SET2.
   ONLY SET2 CAN BE NULL.
   ONLY SET2 CAN BE NULL.
   This means that we have a leader for each part of the expression
   This means that we have a leader for each part of the expression
   (if it consists of values), or the expression is an SSA_NAME.
   (if it consists of values), or the expression is an SSA_NAME.
   For loads/calls, we also see if the vuse is killed in this block.  */
   For loads/calls, we also see if the vuse is killed in this block.  */
 
 
static bool
static bool
valid_in_sets (bitmap_set_t set1, bitmap_set_t set2, pre_expr expr,
valid_in_sets (bitmap_set_t set1, bitmap_set_t set2, pre_expr expr,
               basic_block block)
               basic_block block)
{
{
  switch (expr->kind)
  switch (expr->kind)
    {
    {
    case NAME:
    case NAME:
      return bitmap_set_contains_expr (AVAIL_OUT (block), expr);
      return bitmap_set_contains_expr (AVAIL_OUT (block), expr);
    case NARY:
    case NARY:
      {
      {
        unsigned int i;
        unsigned int i;
        vn_nary_op_t nary = PRE_EXPR_NARY (expr);
        vn_nary_op_t nary = PRE_EXPR_NARY (expr);
        for (i = 0; i < nary->length; i++)
        for (i = 0; i < nary->length; i++)
          {
          {
            if (TREE_CODE (nary->op[i]) == SSA_NAME)
            if (TREE_CODE (nary->op[i]) == SSA_NAME)
              {
              {
                struct pre_expr_d temp;
                struct pre_expr_d temp;
                temp.kind = NAME;
                temp.kind = NAME;
                temp.id = 0;
                temp.id = 0;
                PRE_EXPR_NAME (&temp) = nary->op[i];
                PRE_EXPR_NAME (&temp) = nary->op[i];
                temp.id = lookup_expression_id (&temp);
                temp.id = lookup_expression_id (&temp);
                if (temp.id == 0)
                if (temp.id == 0)
                  return false;
                  return false;
                if (!union_contains_value (set1, set2,
                if (!union_contains_value (set1, set2,
                                           get_expr_value_id (&temp)))
                                           get_expr_value_id (&temp)))
                  return false;
                  return false;
              }
              }
          }
          }
        /* If the NARY may trap make sure the block does not contain
        /* If the NARY may trap make sure the block does not contain
           a possible exit point.
           a possible exit point.
           ???  This is overly conservative if we translate AVAIL_OUT
           ???  This is overly conservative if we translate AVAIL_OUT
           as the available expression might be after the exit point.  */
           as the available expression might be after the exit point.  */
        if (BB_MAY_NOTRETURN (block)
        if (BB_MAY_NOTRETURN (block)
            && vn_nary_may_trap (nary))
            && vn_nary_may_trap (nary))
          return false;
          return false;
        return true;
        return true;
      }
      }
      break;
      break;
    case REFERENCE:
    case REFERENCE:
      {
      {
        vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
        vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
        vn_reference_op_t vro;
        vn_reference_op_t vro;
        unsigned int i;
        unsigned int i;
 
 
        FOR_EACH_VEC_ELT (vn_reference_op_s, ref->operands, i, vro)
        FOR_EACH_VEC_ELT (vn_reference_op_s, ref->operands, i, vro)
          {
          {
            if (!vro_valid_in_sets (set1, set2, vro))
            if (!vro_valid_in_sets (set1, set2, vro))
              return false;
              return false;
          }
          }
        if (ref->vuse)
        if (ref->vuse)
          {
          {
            gimple def_stmt = SSA_NAME_DEF_STMT (ref->vuse);
            gimple def_stmt = SSA_NAME_DEF_STMT (ref->vuse);
            if (!gimple_nop_p (def_stmt)
            if (!gimple_nop_p (def_stmt)
                && gimple_bb (def_stmt) != block
                && gimple_bb (def_stmt) != block
                && !dominated_by_p (CDI_DOMINATORS,
                && !dominated_by_p (CDI_DOMINATORS,
                                    block, gimple_bb (def_stmt)))
                                    block, gimple_bb (def_stmt)))
              return false;
              return false;
          }
          }
        return !value_dies_in_block_x (expr, block);
        return !value_dies_in_block_x (expr, block);
      }
      }
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Clean the set of expressions that are no longer valid in SET1 or
/* Clean the set of expressions that are no longer valid in SET1 or
   SET2.  This means expressions that are made up of values we have no
   SET2.  This means expressions that are made up of values we have no
   leaders for in SET1 or SET2.  This version is used for partial
   leaders for in SET1 or SET2.  This version is used for partial
   anticipation, which means it is not valid in either ANTIC_IN or
   anticipation, which means it is not valid in either ANTIC_IN or
   PA_IN.  */
   PA_IN.  */
 
 
static void
static void
dependent_clean (bitmap_set_t set1, bitmap_set_t set2, basic_block block)
dependent_clean (bitmap_set_t set1, bitmap_set_t set2, basic_block block)
{
{
  VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (set1);
  VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (set1);
  pre_expr expr;
  pre_expr expr;
  int i;
  int i;
 
 
  FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
  FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
    {
    {
      if (!valid_in_sets (set1, set2, expr, block))
      if (!valid_in_sets (set1, set2, expr, block))
        bitmap_remove_from_set (set1, expr);
        bitmap_remove_from_set (set1, expr);
    }
    }
  VEC_free (pre_expr, heap, exprs);
  VEC_free (pre_expr, heap, exprs);
}
}
 
 
/* Clean the set of expressions that are no longer valid in SET.  This
/* Clean the set of expressions that are no longer valid in SET.  This
   means expressions that are made up of values we have no leaders for
   means expressions that are made up of values we have no leaders for
   in SET.  */
   in SET.  */
 
 
static void
static void
clean (bitmap_set_t set, basic_block block)
clean (bitmap_set_t set, basic_block block)
{
{
  VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (set);
  VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (set);
  pre_expr expr;
  pre_expr expr;
  int i;
  int i;
 
 
  FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
  FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
    {
    {
      if (!valid_in_sets (set, NULL, expr, block))
      if (!valid_in_sets (set, NULL, expr, block))
        bitmap_remove_from_set (set, expr);
        bitmap_remove_from_set (set, expr);
    }
    }
  VEC_free (pre_expr, heap, exprs);
  VEC_free (pre_expr, heap, exprs);
}
}
 
 
static sbitmap has_abnormal_preds;
static sbitmap has_abnormal_preds;
 
 
/* List of blocks that may have changed during ANTIC computation and
/* List of blocks that may have changed during ANTIC computation and
   thus need to be iterated over.  */
   thus need to be iterated over.  */
 
 
static sbitmap changed_blocks;
static sbitmap changed_blocks;
 
 
/* Decide whether to defer a block for a later iteration, or PHI
/* Decide whether to defer a block for a later iteration, or PHI
   translate SOURCE to DEST using phis in PHIBLOCK.  Return false if we
   translate SOURCE to DEST using phis in PHIBLOCK.  Return false if we
   should defer the block, and true if we processed it.  */
   should defer the block, and true if we processed it.  */
 
 
static bool
static bool
defer_or_phi_translate_block (bitmap_set_t dest, bitmap_set_t source,
defer_or_phi_translate_block (bitmap_set_t dest, bitmap_set_t source,
                              basic_block block, basic_block phiblock)
                              basic_block block, basic_block phiblock)
{
{
  if (!BB_VISITED (phiblock))
  if (!BB_VISITED (phiblock))
    {
    {
      SET_BIT (changed_blocks, block->index);
      SET_BIT (changed_blocks, block->index);
      BB_VISITED (block) = 0;
      BB_VISITED (block) = 0;
      BB_DEFERRED (block) = 1;
      BB_DEFERRED (block) = 1;
      return false;
      return false;
    }
    }
  else
  else
    phi_translate_set (dest, source, block, phiblock);
    phi_translate_set (dest, source, block, phiblock);
  return true;
  return true;
}
}
 
 
/* Compute the ANTIC set for BLOCK.
/* Compute the ANTIC set for BLOCK.
 
 
   If succs(BLOCK) > 1 then
   If succs(BLOCK) > 1 then
     ANTIC_OUT[BLOCK] = intersection of ANTIC_IN[b] for all succ(BLOCK)
     ANTIC_OUT[BLOCK] = intersection of ANTIC_IN[b] for all succ(BLOCK)
   else if succs(BLOCK) == 1 then
   else if succs(BLOCK) == 1 then
     ANTIC_OUT[BLOCK] = phi_translate (ANTIC_IN[succ(BLOCK)])
     ANTIC_OUT[BLOCK] = phi_translate (ANTIC_IN[succ(BLOCK)])
 
 
   ANTIC_IN[BLOCK] = clean(ANTIC_OUT[BLOCK] U EXP_GEN[BLOCK] - TMP_GEN[BLOCK])
   ANTIC_IN[BLOCK] = clean(ANTIC_OUT[BLOCK] U EXP_GEN[BLOCK] - TMP_GEN[BLOCK])
*/
*/
 
 
static bool
static bool
compute_antic_aux (basic_block block, bool block_has_abnormal_pred_edge)
compute_antic_aux (basic_block block, bool block_has_abnormal_pred_edge)
{
{
  bool changed = false;
  bool changed = false;
  bitmap_set_t S, old, ANTIC_OUT;
  bitmap_set_t S, old, ANTIC_OUT;
  bitmap_iterator bi;
  bitmap_iterator bi;
  unsigned int bii;
  unsigned int bii;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  old = ANTIC_OUT = S = NULL;
  old = ANTIC_OUT = S = NULL;
  BB_VISITED (block) = 1;
  BB_VISITED (block) = 1;
 
 
  /* If any edges from predecessors are abnormal, antic_in is empty,
  /* If any edges from predecessors are abnormal, antic_in is empty,
     so do nothing.  */
     so do nothing.  */
  if (block_has_abnormal_pred_edge)
  if (block_has_abnormal_pred_edge)
    goto maybe_dump_sets;
    goto maybe_dump_sets;
 
 
  old = ANTIC_IN (block);
  old = ANTIC_IN (block);
  ANTIC_OUT = bitmap_set_new ();
  ANTIC_OUT = bitmap_set_new ();
 
 
  /* If the block has no successors, ANTIC_OUT is empty.  */
  /* If the block has no successors, ANTIC_OUT is empty.  */
  if (EDGE_COUNT (block->succs) == 0)
  if (EDGE_COUNT (block->succs) == 0)
    ;
    ;
  /* If we have one successor, we could have some phi nodes to
  /* If we have one successor, we could have some phi nodes to
     translate through.  */
     translate through.  */
  else if (single_succ_p (block))
  else if (single_succ_p (block))
    {
    {
      basic_block succ_bb = single_succ (block);
      basic_block succ_bb = single_succ (block);
 
 
      /* We trade iterations of the dataflow equations for having to
      /* We trade iterations of the dataflow equations for having to
         phi translate the maximal set, which is incredibly slow
         phi translate the maximal set, which is incredibly slow
         (since the maximal set often has 300+ members, even when you
         (since the maximal set often has 300+ members, even when you
         have a small number of blocks).
         have a small number of blocks).
         Basically, we defer the computation of ANTIC for this block
         Basically, we defer the computation of ANTIC for this block
         until we have processed it's successor, which will inevitably
         until we have processed it's successor, which will inevitably
         have a *much* smaller set of values to phi translate once
         have a *much* smaller set of values to phi translate once
         clean has been run on it.
         clean has been run on it.
         The cost of doing this is that we technically perform more
         The cost of doing this is that we technically perform more
         iterations, however, they are lower cost iterations.
         iterations, however, they are lower cost iterations.
 
 
         Timings for PRE on tramp3d-v4:
         Timings for PRE on tramp3d-v4:
         without maximal set fix: 11 seconds
         without maximal set fix: 11 seconds
         with maximal set fix/without deferring: 26 seconds
         with maximal set fix/without deferring: 26 seconds
         with maximal set fix/with deferring: 11 seconds
         with maximal set fix/with deferring: 11 seconds
     */
     */
 
 
      if (!defer_or_phi_translate_block (ANTIC_OUT, ANTIC_IN (succ_bb),
      if (!defer_or_phi_translate_block (ANTIC_OUT, ANTIC_IN (succ_bb),
                                        block, succ_bb))
                                        block, succ_bb))
        {
        {
          changed = true;
          changed = true;
          goto maybe_dump_sets;
          goto maybe_dump_sets;
        }
        }
    }
    }
  /* If we have multiple successors, we take the intersection of all of
  /* If we have multiple successors, we take the intersection of all of
     them.  Note that in the case of loop exit phi nodes, we may have
     them.  Note that in the case of loop exit phi nodes, we may have
     phis to translate through.  */
     phis to translate through.  */
  else
  else
    {
    {
      VEC(basic_block, heap) * worklist;
      VEC(basic_block, heap) * worklist;
      size_t i;
      size_t i;
      basic_block bprime, first = NULL;
      basic_block bprime, first = NULL;
 
 
      worklist = VEC_alloc (basic_block, heap, EDGE_COUNT (block->succs));
      worklist = VEC_alloc (basic_block, heap, EDGE_COUNT (block->succs));
      FOR_EACH_EDGE (e, ei, block->succs)
      FOR_EACH_EDGE (e, ei, block->succs)
        {
        {
          if (!first
          if (!first
              && BB_VISITED (e->dest))
              && BB_VISITED (e->dest))
            first = e->dest;
            first = e->dest;
          else if (BB_VISITED (e->dest))
          else if (BB_VISITED (e->dest))
            VEC_quick_push (basic_block, worklist, e->dest);
            VEC_quick_push (basic_block, worklist, e->dest);
        }
        }
 
 
      /* Of multiple successors we have to have visited one already.  */
      /* Of multiple successors we have to have visited one already.  */
      if (!first)
      if (!first)
        {
        {
          SET_BIT (changed_blocks, block->index);
          SET_BIT (changed_blocks, block->index);
          BB_VISITED (block) = 0;
          BB_VISITED (block) = 0;
          BB_DEFERRED (block) = 1;
          BB_DEFERRED (block) = 1;
          changed = true;
          changed = true;
          VEC_free (basic_block, heap, worklist);
          VEC_free (basic_block, heap, worklist);
          goto maybe_dump_sets;
          goto maybe_dump_sets;
        }
        }
 
 
      if (!gimple_seq_empty_p (phi_nodes (first)))
      if (!gimple_seq_empty_p (phi_nodes (first)))
        phi_translate_set (ANTIC_OUT, ANTIC_IN (first), block, first);
        phi_translate_set (ANTIC_OUT, ANTIC_IN (first), block, first);
      else
      else
        bitmap_set_copy (ANTIC_OUT, ANTIC_IN (first));
        bitmap_set_copy (ANTIC_OUT, ANTIC_IN (first));
 
 
      FOR_EACH_VEC_ELT (basic_block, worklist, i, bprime)
      FOR_EACH_VEC_ELT (basic_block, worklist, i, bprime)
        {
        {
          if (!gimple_seq_empty_p (phi_nodes (bprime)))
          if (!gimple_seq_empty_p (phi_nodes (bprime)))
            {
            {
              bitmap_set_t tmp = bitmap_set_new ();
              bitmap_set_t tmp = bitmap_set_new ();
              phi_translate_set (tmp, ANTIC_IN (bprime), block, bprime);
              phi_translate_set (tmp, ANTIC_IN (bprime), block, bprime);
              bitmap_set_and (ANTIC_OUT, tmp);
              bitmap_set_and (ANTIC_OUT, tmp);
              bitmap_set_free (tmp);
              bitmap_set_free (tmp);
            }
            }
          else
          else
            bitmap_set_and (ANTIC_OUT, ANTIC_IN (bprime));
            bitmap_set_and (ANTIC_OUT, ANTIC_IN (bprime));
        }
        }
      VEC_free (basic_block, heap, worklist);
      VEC_free (basic_block, heap, worklist);
    }
    }
 
 
  /* Generate ANTIC_OUT - TMP_GEN.  */
  /* Generate ANTIC_OUT - TMP_GEN.  */
  S = bitmap_set_subtract (ANTIC_OUT, TMP_GEN (block));
  S = bitmap_set_subtract (ANTIC_OUT, TMP_GEN (block));
 
 
  /* Start ANTIC_IN with EXP_GEN - TMP_GEN.  */
  /* Start ANTIC_IN with EXP_GEN - TMP_GEN.  */
  ANTIC_IN (block) = bitmap_set_subtract (EXP_GEN (block),
  ANTIC_IN (block) = bitmap_set_subtract (EXP_GEN (block),
                                          TMP_GEN (block));
                                          TMP_GEN (block));
 
 
  /* Then union in the ANTIC_OUT - TMP_GEN values,
  /* Then union in the ANTIC_OUT - TMP_GEN values,
     to get ANTIC_OUT U EXP_GEN - TMP_GEN */
     to get ANTIC_OUT U EXP_GEN - TMP_GEN */
  FOR_EACH_EXPR_ID_IN_SET (S, bii, bi)
  FOR_EACH_EXPR_ID_IN_SET (S, bii, bi)
    bitmap_value_insert_into_set (ANTIC_IN (block),
    bitmap_value_insert_into_set (ANTIC_IN (block),
                                  expression_for_id (bii));
                                  expression_for_id (bii));
 
 
  clean (ANTIC_IN (block), block);
  clean (ANTIC_IN (block), block);
 
 
  if (!bitmap_set_equal (old, ANTIC_IN (block)))
  if (!bitmap_set_equal (old, ANTIC_IN (block)))
    {
    {
      changed = true;
      changed = true;
      SET_BIT (changed_blocks, block->index);
      SET_BIT (changed_blocks, block->index);
      FOR_EACH_EDGE (e, ei, block->preds)
      FOR_EACH_EDGE (e, ei, block->preds)
        SET_BIT (changed_blocks, e->src->index);
        SET_BIT (changed_blocks, e->src->index);
    }
    }
  else
  else
    RESET_BIT (changed_blocks, block->index);
    RESET_BIT (changed_blocks, block->index);
 
 
 maybe_dump_sets:
 maybe_dump_sets:
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      if (!BB_DEFERRED (block) || BB_VISITED (block))
      if (!BB_DEFERRED (block) || BB_VISITED (block))
        {
        {
          if (ANTIC_OUT)
          if (ANTIC_OUT)
            print_bitmap_set (dump_file, ANTIC_OUT, "ANTIC_OUT", block->index);
            print_bitmap_set (dump_file, ANTIC_OUT, "ANTIC_OUT", block->index);
 
 
          print_bitmap_set (dump_file, ANTIC_IN (block), "ANTIC_IN",
          print_bitmap_set (dump_file, ANTIC_IN (block), "ANTIC_IN",
                            block->index);
                            block->index);
 
 
          if (S)
          if (S)
            print_bitmap_set (dump_file, S, "S", block->index);
            print_bitmap_set (dump_file, S, "S", block->index);
        }
        }
      else
      else
        {
        {
          fprintf (dump_file,
          fprintf (dump_file,
                   "Block %d was deferred for a future iteration.\n",
                   "Block %d was deferred for a future iteration.\n",
                   block->index);
                   block->index);
        }
        }
    }
    }
  if (old)
  if (old)
    bitmap_set_free (old);
    bitmap_set_free (old);
  if (S)
  if (S)
    bitmap_set_free (S);
    bitmap_set_free (S);
  if (ANTIC_OUT)
  if (ANTIC_OUT)
    bitmap_set_free (ANTIC_OUT);
    bitmap_set_free (ANTIC_OUT);
  return changed;
  return changed;
}
}
 
 
/* Compute PARTIAL_ANTIC for BLOCK.
/* Compute PARTIAL_ANTIC for BLOCK.
 
 
   If succs(BLOCK) > 1 then
   If succs(BLOCK) > 1 then
     PA_OUT[BLOCK] = value wise union of PA_IN[b] + all ANTIC_IN not
     PA_OUT[BLOCK] = value wise union of PA_IN[b] + all ANTIC_IN not
     in ANTIC_OUT for all succ(BLOCK)
     in ANTIC_OUT for all succ(BLOCK)
   else if succs(BLOCK) == 1 then
   else if succs(BLOCK) == 1 then
     PA_OUT[BLOCK] = phi_translate (PA_IN[succ(BLOCK)])
     PA_OUT[BLOCK] = phi_translate (PA_IN[succ(BLOCK)])
 
 
   PA_IN[BLOCK] = dependent_clean(PA_OUT[BLOCK] - TMP_GEN[BLOCK]
   PA_IN[BLOCK] = dependent_clean(PA_OUT[BLOCK] - TMP_GEN[BLOCK]
                                  - ANTIC_IN[BLOCK])
                                  - ANTIC_IN[BLOCK])
 
 
*/
*/
static bool
static bool
compute_partial_antic_aux (basic_block block,
compute_partial_antic_aux (basic_block block,
                           bool block_has_abnormal_pred_edge)
                           bool block_has_abnormal_pred_edge)
{
{
  bool changed = false;
  bool changed = false;
  bitmap_set_t old_PA_IN;
  bitmap_set_t old_PA_IN;
  bitmap_set_t PA_OUT;
  bitmap_set_t PA_OUT;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
  unsigned long max_pa = PARAM_VALUE (PARAM_MAX_PARTIAL_ANTIC_LENGTH);
  unsigned long max_pa = PARAM_VALUE (PARAM_MAX_PARTIAL_ANTIC_LENGTH);
 
 
  old_PA_IN = PA_OUT = NULL;
  old_PA_IN = PA_OUT = NULL;
 
 
  /* If any edges from predecessors are abnormal, antic_in is empty,
  /* If any edges from predecessors are abnormal, antic_in is empty,
     so do nothing.  */
     so do nothing.  */
  if (block_has_abnormal_pred_edge)
  if (block_has_abnormal_pred_edge)
    goto maybe_dump_sets;
    goto maybe_dump_sets;
 
 
  /* If there are too many partially anticipatable values in the
  /* If there are too many partially anticipatable values in the
     block, phi_translate_set can take an exponential time: stop
     block, phi_translate_set can take an exponential time: stop
     before the translation starts.  */
     before the translation starts.  */
  if (max_pa
  if (max_pa
      && single_succ_p (block)
      && single_succ_p (block)
      && bitmap_count_bits (&PA_IN (single_succ (block))->values) > max_pa)
      && bitmap_count_bits (&PA_IN (single_succ (block))->values) > max_pa)
    goto maybe_dump_sets;
    goto maybe_dump_sets;
 
 
  old_PA_IN = PA_IN (block);
  old_PA_IN = PA_IN (block);
  PA_OUT = bitmap_set_new ();
  PA_OUT = bitmap_set_new ();
 
 
  /* If the block has no successors, ANTIC_OUT is empty.  */
  /* If the block has no successors, ANTIC_OUT is empty.  */
  if (EDGE_COUNT (block->succs) == 0)
  if (EDGE_COUNT (block->succs) == 0)
    ;
    ;
  /* If we have one successor, we could have some phi nodes to
  /* If we have one successor, we could have some phi nodes to
     translate through.  Note that we can't phi translate across DFS
     translate through.  Note that we can't phi translate across DFS
     back edges in partial antic, because it uses a union operation on
     back edges in partial antic, because it uses a union operation on
     the successors.  For recurrences like IV's, we will end up
     the successors.  For recurrences like IV's, we will end up
     generating a new value in the set on each go around (i + 3 (VH.1)
     generating a new value in the set on each go around (i + 3 (VH.1)
     VH.1 + 1 (VH.2), VH.2 + 1 (VH.3), etc), forever.  */
     VH.1 + 1 (VH.2), VH.2 + 1 (VH.3), etc), forever.  */
  else if (single_succ_p (block))
  else if (single_succ_p (block))
    {
    {
      basic_block succ = single_succ (block);
      basic_block succ = single_succ (block);
      if (!(single_succ_edge (block)->flags & EDGE_DFS_BACK))
      if (!(single_succ_edge (block)->flags & EDGE_DFS_BACK))
        phi_translate_set (PA_OUT, PA_IN (succ), block, succ);
        phi_translate_set (PA_OUT, PA_IN (succ), block, succ);
    }
    }
  /* If we have multiple successors, we take the union of all of
  /* If we have multiple successors, we take the union of all of
     them.  */
     them.  */
  else
  else
    {
    {
      VEC(basic_block, heap) * worklist;
      VEC(basic_block, heap) * worklist;
      size_t i;
      size_t i;
      basic_block bprime;
      basic_block bprime;
 
 
      worklist = VEC_alloc (basic_block, heap, EDGE_COUNT (block->succs));
      worklist = VEC_alloc (basic_block, heap, EDGE_COUNT (block->succs));
      FOR_EACH_EDGE (e, ei, block->succs)
      FOR_EACH_EDGE (e, ei, block->succs)
        {
        {
          if (e->flags & EDGE_DFS_BACK)
          if (e->flags & EDGE_DFS_BACK)
            continue;
            continue;
          VEC_quick_push (basic_block, worklist, e->dest);
          VEC_quick_push (basic_block, worklist, e->dest);
        }
        }
      if (VEC_length (basic_block, worklist) > 0)
      if (VEC_length (basic_block, worklist) > 0)
        {
        {
          FOR_EACH_VEC_ELT (basic_block, worklist, i, bprime)
          FOR_EACH_VEC_ELT (basic_block, worklist, i, bprime)
            {
            {
              unsigned int i;
              unsigned int i;
              bitmap_iterator bi;
              bitmap_iterator bi;
 
 
              FOR_EACH_EXPR_ID_IN_SET (ANTIC_IN (bprime), i, bi)
              FOR_EACH_EXPR_ID_IN_SET (ANTIC_IN (bprime), i, bi)
                bitmap_value_insert_into_set (PA_OUT,
                bitmap_value_insert_into_set (PA_OUT,
                                              expression_for_id (i));
                                              expression_for_id (i));
              if (!gimple_seq_empty_p (phi_nodes (bprime)))
              if (!gimple_seq_empty_p (phi_nodes (bprime)))
                {
                {
                  bitmap_set_t pa_in = bitmap_set_new ();
                  bitmap_set_t pa_in = bitmap_set_new ();
                  phi_translate_set (pa_in, PA_IN (bprime), block, bprime);
                  phi_translate_set (pa_in, PA_IN (bprime), block, bprime);
                  FOR_EACH_EXPR_ID_IN_SET (pa_in, i, bi)
                  FOR_EACH_EXPR_ID_IN_SET (pa_in, i, bi)
                    bitmap_value_insert_into_set (PA_OUT,
                    bitmap_value_insert_into_set (PA_OUT,
                                                  expression_for_id (i));
                                                  expression_for_id (i));
                  bitmap_set_free (pa_in);
                  bitmap_set_free (pa_in);
                }
                }
              else
              else
                FOR_EACH_EXPR_ID_IN_SET (PA_IN (bprime), i, bi)
                FOR_EACH_EXPR_ID_IN_SET (PA_IN (bprime), i, bi)
                  bitmap_value_insert_into_set (PA_OUT,
                  bitmap_value_insert_into_set (PA_OUT,
                                                expression_for_id (i));
                                                expression_for_id (i));
            }
            }
        }
        }
      VEC_free (basic_block, heap, worklist);
      VEC_free (basic_block, heap, worklist);
    }
    }
 
 
  /* PA_IN starts with PA_OUT - TMP_GEN.
  /* PA_IN starts with PA_OUT - TMP_GEN.
     Then we subtract things from ANTIC_IN.  */
     Then we subtract things from ANTIC_IN.  */
  PA_IN (block) = bitmap_set_subtract (PA_OUT, TMP_GEN (block));
  PA_IN (block) = bitmap_set_subtract (PA_OUT, TMP_GEN (block));
 
 
  /* For partial antic, we want to put back in the phi results, since
  /* For partial antic, we want to put back in the phi results, since
     we will properly avoid making them partially antic over backedges.  */
     we will properly avoid making them partially antic over backedges.  */
  bitmap_ior_into (&PA_IN (block)->values, &PHI_GEN (block)->values);
  bitmap_ior_into (&PA_IN (block)->values, &PHI_GEN (block)->values);
  bitmap_ior_into (&PA_IN (block)->expressions, &PHI_GEN (block)->expressions);
  bitmap_ior_into (&PA_IN (block)->expressions, &PHI_GEN (block)->expressions);
 
 
  /* PA_IN[block] = PA_IN[block] - ANTIC_IN[block] */
  /* PA_IN[block] = PA_IN[block] - ANTIC_IN[block] */
  bitmap_set_subtract_values (PA_IN (block), ANTIC_IN (block));
  bitmap_set_subtract_values (PA_IN (block), ANTIC_IN (block));
 
 
  dependent_clean (PA_IN (block), ANTIC_IN (block), block);
  dependent_clean (PA_IN (block), ANTIC_IN (block), block);
 
 
  if (!bitmap_set_equal (old_PA_IN, PA_IN (block)))
  if (!bitmap_set_equal (old_PA_IN, PA_IN (block)))
    {
    {
      changed = true;
      changed = true;
      SET_BIT (changed_blocks, block->index);
      SET_BIT (changed_blocks, block->index);
      FOR_EACH_EDGE (e, ei, block->preds)
      FOR_EACH_EDGE (e, ei, block->preds)
        SET_BIT (changed_blocks, e->src->index);
        SET_BIT (changed_blocks, e->src->index);
    }
    }
  else
  else
    RESET_BIT (changed_blocks, block->index);
    RESET_BIT (changed_blocks, block->index);
 
 
 maybe_dump_sets:
 maybe_dump_sets:
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      if (PA_OUT)
      if (PA_OUT)
        print_bitmap_set (dump_file, PA_OUT, "PA_OUT", block->index);
        print_bitmap_set (dump_file, PA_OUT, "PA_OUT", block->index);
 
 
      print_bitmap_set (dump_file, PA_IN (block), "PA_IN", block->index);
      print_bitmap_set (dump_file, PA_IN (block), "PA_IN", block->index);
    }
    }
  if (old_PA_IN)
  if (old_PA_IN)
    bitmap_set_free (old_PA_IN);
    bitmap_set_free (old_PA_IN);
  if (PA_OUT)
  if (PA_OUT)
    bitmap_set_free (PA_OUT);
    bitmap_set_free (PA_OUT);
  return changed;
  return changed;
}
}
 
 
/* Compute ANTIC and partial ANTIC sets.  */
/* Compute ANTIC and partial ANTIC sets.  */
 
 
static void
static void
compute_antic (void)
compute_antic (void)
{
{
  bool changed = true;
  bool changed = true;
  int num_iterations = 0;
  int num_iterations = 0;
  basic_block block;
  basic_block block;
  int i;
  int i;
 
 
  /* If any predecessor edges are abnormal, we punt, so antic_in is empty.
  /* If any predecessor edges are abnormal, we punt, so antic_in is empty.
     We pre-build the map of blocks with incoming abnormal edges here.  */
     We pre-build the map of blocks with incoming abnormal edges here.  */
  has_abnormal_preds = sbitmap_alloc (last_basic_block);
  has_abnormal_preds = sbitmap_alloc (last_basic_block);
  sbitmap_zero (has_abnormal_preds);
  sbitmap_zero (has_abnormal_preds);
 
 
  FOR_EACH_BB (block)
  FOR_EACH_BB (block)
    {
    {
      edge_iterator ei;
      edge_iterator ei;
      edge e;
      edge e;
 
 
      FOR_EACH_EDGE (e, ei, block->preds)
      FOR_EACH_EDGE (e, ei, block->preds)
        {
        {
          e->flags &= ~EDGE_DFS_BACK;
          e->flags &= ~EDGE_DFS_BACK;
          if (e->flags & EDGE_ABNORMAL)
          if (e->flags & EDGE_ABNORMAL)
            {
            {
              SET_BIT (has_abnormal_preds, block->index);
              SET_BIT (has_abnormal_preds, block->index);
              break;
              break;
            }
            }
        }
        }
 
 
      BB_VISITED (block) = 0;
      BB_VISITED (block) = 0;
      BB_DEFERRED (block) = 0;
      BB_DEFERRED (block) = 0;
 
 
      /* While we are here, give empty ANTIC_IN sets to each block.  */
      /* While we are here, give empty ANTIC_IN sets to each block.  */
      ANTIC_IN (block) = bitmap_set_new ();
      ANTIC_IN (block) = bitmap_set_new ();
      PA_IN (block) = bitmap_set_new ();
      PA_IN (block) = bitmap_set_new ();
    }
    }
 
 
  /* At the exit block we anticipate nothing.  */
  /* At the exit block we anticipate nothing.  */
  ANTIC_IN (EXIT_BLOCK_PTR) = bitmap_set_new ();
  ANTIC_IN (EXIT_BLOCK_PTR) = bitmap_set_new ();
  BB_VISITED (EXIT_BLOCK_PTR) = 1;
  BB_VISITED (EXIT_BLOCK_PTR) = 1;
  PA_IN (EXIT_BLOCK_PTR) = bitmap_set_new ();
  PA_IN (EXIT_BLOCK_PTR) = bitmap_set_new ();
 
 
  changed_blocks = sbitmap_alloc (last_basic_block + 1);
  changed_blocks = sbitmap_alloc (last_basic_block + 1);
  sbitmap_ones (changed_blocks);
  sbitmap_ones (changed_blocks);
  while (changed)
  while (changed)
    {
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "Starting iteration %d\n", num_iterations);
        fprintf (dump_file, "Starting iteration %d\n", num_iterations);
      /* ???  We need to clear our PHI translation cache here as the
      /* ???  We need to clear our PHI translation cache here as the
         ANTIC sets shrink and we restrict valid translations to
         ANTIC sets shrink and we restrict valid translations to
         those having operands with leaders in ANTIC.  Same below
         those having operands with leaders in ANTIC.  Same below
         for PA ANTIC computation.  */
         for PA ANTIC computation.  */
      num_iterations++;
      num_iterations++;
      changed = false;
      changed = false;
      for (i = n_basic_blocks - NUM_FIXED_BLOCKS - 1; i >= 0; i--)
      for (i = n_basic_blocks - NUM_FIXED_BLOCKS - 1; i >= 0; i--)
        {
        {
          if (TEST_BIT (changed_blocks, postorder[i]))
          if (TEST_BIT (changed_blocks, postorder[i]))
            {
            {
              basic_block block = BASIC_BLOCK (postorder[i]);
              basic_block block = BASIC_BLOCK (postorder[i]);
              changed |= compute_antic_aux (block,
              changed |= compute_antic_aux (block,
                                            TEST_BIT (has_abnormal_preds,
                                            TEST_BIT (has_abnormal_preds,
                                                      block->index));
                                                      block->index));
            }
            }
        }
        }
      /* Theoretically possible, but *highly* unlikely.  */
      /* Theoretically possible, but *highly* unlikely.  */
      gcc_checking_assert (num_iterations < 500);
      gcc_checking_assert (num_iterations < 500);
    }
    }
 
 
  statistics_histogram_event (cfun, "compute_antic iterations",
  statistics_histogram_event (cfun, "compute_antic iterations",
                              num_iterations);
                              num_iterations);
 
 
  if (do_partial_partial)
  if (do_partial_partial)
    {
    {
      sbitmap_ones (changed_blocks);
      sbitmap_ones (changed_blocks);
      mark_dfs_back_edges ();
      mark_dfs_back_edges ();
      num_iterations = 0;
      num_iterations = 0;
      changed = true;
      changed = true;
      while (changed)
      while (changed)
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            fprintf (dump_file, "Starting iteration %d\n", num_iterations);
            fprintf (dump_file, "Starting iteration %d\n", num_iterations);
          num_iterations++;
          num_iterations++;
          changed = false;
          changed = false;
          for (i = n_basic_blocks - NUM_FIXED_BLOCKS - 1 ; i >= 0; i--)
          for (i = n_basic_blocks - NUM_FIXED_BLOCKS - 1 ; i >= 0; i--)
            {
            {
              if (TEST_BIT (changed_blocks, postorder[i]))
              if (TEST_BIT (changed_blocks, postorder[i]))
                {
                {
                  basic_block block = BASIC_BLOCK (postorder[i]);
                  basic_block block = BASIC_BLOCK (postorder[i]);
                  changed
                  changed
                    |= compute_partial_antic_aux (block,
                    |= compute_partial_antic_aux (block,
                                                  TEST_BIT (has_abnormal_preds,
                                                  TEST_BIT (has_abnormal_preds,
                                                            block->index));
                                                            block->index));
                }
                }
            }
            }
          /* Theoretically possible, but *highly* unlikely.  */
          /* Theoretically possible, but *highly* unlikely.  */
          gcc_checking_assert (num_iterations < 500);
          gcc_checking_assert (num_iterations < 500);
        }
        }
      statistics_histogram_event (cfun, "compute_partial_antic iterations",
      statistics_histogram_event (cfun, "compute_partial_antic iterations",
                                  num_iterations);
                                  num_iterations);
    }
    }
  sbitmap_free (has_abnormal_preds);
  sbitmap_free (has_abnormal_preds);
  sbitmap_free (changed_blocks);
  sbitmap_free (changed_blocks);
}
}
 
 
/* Return true if we can value number the call in STMT.  This is true
/* Return true if we can value number the call in STMT.  This is true
   if we have a pure or constant call to a real function.  */
   if we have a pure or constant call to a real function.  */
 
 
static bool
static bool
can_value_number_call (gimple stmt)
can_value_number_call (gimple stmt)
{
{
  if (gimple_call_internal_p (stmt))
  if (gimple_call_internal_p (stmt))
    return false;
    return false;
  if (gimple_call_flags (stmt) & (ECF_PURE | ECF_CONST))
  if (gimple_call_flags (stmt) & (ECF_PURE | ECF_CONST))
    return true;
    return true;
  return false;
  return false;
}
}
 
 
/* Return true if OP is a tree which we can perform PRE on.
/* Return true if OP is a tree which we can perform PRE on.
   This may not match the operations we can value number, but in
   This may not match the operations we can value number, but in
   a perfect world would.  */
   a perfect world would.  */
 
 
static bool
static bool
can_PRE_operation (tree op)
can_PRE_operation (tree op)
{
{
  return UNARY_CLASS_P (op)
  return UNARY_CLASS_P (op)
    || BINARY_CLASS_P (op)
    || BINARY_CLASS_P (op)
    || COMPARISON_CLASS_P (op)
    || COMPARISON_CLASS_P (op)
    || TREE_CODE (op) == MEM_REF
    || TREE_CODE (op) == MEM_REF
    || TREE_CODE (op) == COMPONENT_REF
    || TREE_CODE (op) == COMPONENT_REF
    || TREE_CODE (op) == VIEW_CONVERT_EXPR
    || TREE_CODE (op) == VIEW_CONVERT_EXPR
    || TREE_CODE (op) == CALL_EXPR
    || TREE_CODE (op) == CALL_EXPR
    || TREE_CODE (op) == ARRAY_REF;
    || TREE_CODE (op) == ARRAY_REF;
}
}
 
 
 
 
/* Inserted expressions are placed onto this worklist, which is used
/* Inserted expressions are placed onto this worklist, which is used
   for performing quick dead code elimination of insertions we made
   for performing quick dead code elimination of insertions we made
   that didn't turn out to be necessary.   */
   that didn't turn out to be necessary.   */
static bitmap inserted_exprs;
static bitmap inserted_exprs;
 
 
/* Pool allocated fake store expressions are placed onto this
/* Pool allocated fake store expressions are placed onto this
   worklist, which, after performing dead code elimination, is walked
   worklist, which, after performing dead code elimination, is walked
   to see which expressions need to be put into GC'able memory  */
   to see which expressions need to be put into GC'able memory  */
static VEC(gimple, heap) *need_creation;
static VEC(gimple, heap) *need_creation;
 
 
/* The actual worker for create_component_ref_by_pieces.  */
/* The actual worker for create_component_ref_by_pieces.  */
 
 
static tree
static tree
create_component_ref_by_pieces_1 (basic_block block, vn_reference_t ref,
create_component_ref_by_pieces_1 (basic_block block, vn_reference_t ref,
                                  unsigned int *operand, gimple_seq *stmts,
                                  unsigned int *operand, gimple_seq *stmts,
                                  gimple domstmt)
                                  gimple domstmt)
{
{
  vn_reference_op_t currop = VEC_index (vn_reference_op_s, ref->operands,
  vn_reference_op_t currop = VEC_index (vn_reference_op_s, ref->operands,
                                        *operand);
                                        *operand);
  tree genop;
  tree genop;
  ++*operand;
  ++*operand;
  switch (currop->opcode)
  switch (currop->opcode)
    {
    {
    case CALL_EXPR:
    case CALL_EXPR:
      {
      {
        tree folded, sc = NULL_TREE;
        tree folded, sc = NULL_TREE;
        unsigned int nargs = 0;
        unsigned int nargs = 0;
        tree fn, *args;
        tree fn, *args;
        if (TREE_CODE (currop->op0) == FUNCTION_DECL)
        if (TREE_CODE (currop->op0) == FUNCTION_DECL)
          fn = currop->op0;
          fn = currop->op0;
        else
        else
          {
          {
            pre_expr op0 = get_or_alloc_expr_for (currop->op0);
            pre_expr op0 = get_or_alloc_expr_for (currop->op0);
            fn = find_or_generate_expression (block, op0, stmts, domstmt);
            fn = find_or_generate_expression (block, op0, stmts, domstmt);
            if (!fn)
            if (!fn)
              return NULL_TREE;
              return NULL_TREE;
          }
          }
        if (currop->op1)
        if (currop->op1)
          {
          {
            pre_expr scexpr = get_or_alloc_expr_for (currop->op1);
            pre_expr scexpr = get_or_alloc_expr_for (currop->op1);
            sc = find_or_generate_expression (block, scexpr, stmts, domstmt);
            sc = find_or_generate_expression (block, scexpr, stmts, domstmt);
            if (!sc)
            if (!sc)
              return NULL_TREE;
              return NULL_TREE;
          }
          }
        args = XNEWVEC (tree, VEC_length (vn_reference_op_s,
        args = XNEWVEC (tree, VEC_length (vn_reference_op_s,
                                          ref->operands) - 1);
                                          ref->operands) - 1);
        while (*operand < VEC_length (vn_reference_op_s, ref->operands))
        while (*operand < VEC_length (vn_reference_op_s, ref->operands))
          {
          {
            args[nargs] = create_component_ref_by_pieces_1 (block, ref,
            args[nargs] = create_component_ref_by_pieces_1 (block, ref,
                                                            operand, stmts,
                                                            operand, stmts,
                                                            domstmt);
                                                            domstmt);
            if (!args[nargs])
            if (!args[nargs])
              {
              {
                free (args);
                free (args);
                return NULL_TREE;
                return NULL_TREE;
              }
              }
            nargs++;
            nargs++;
          }
          }
        folded = build_call_array (currop->type,
        folded = build_call_array (currop->type,
                                   (TREE_CODE (fn) == FUNCTION_DECL
                                   (TREE_CODE (fn) == FUNCTION_DECL
                                    ? build_fold_addr_expr (fn) : fn),
                                    ? build_fold_addr_expr (fn) : fn),
                                   nargs, args);
                                   nargs, args);
        free (args);
        free (args);
        if (sc)
        if (sc)
          CALL_EXPR_STATIC_CHAIN (folded) = sc;
          CALL_EXPR_STATIC_CHAIN (folded) = sc;
        return folded;
        return folded;
      }
      }
      break;
      break;
    case MEM_REF:
    case MEM_REF:
      {
      {
        tree baseop = create_component_ref_by_pieces_1 (block, ref, operand,
        tree baseop = create_component_ref_by_pieces_1 (block, ref, operand,
                                                        stmts, domstmt);
                                                        stmts, domstmt);
        tree offset = currop->op0;
        tree offset = currop->op0;
        if (!baseop)
        if (!baseop)
          return NULL_TREE;
          return NULL_TREE;
        if (TREE_CODE (baseop) == ADDR_EXPR
        if (TREE_CODE (baseop) == ADDR_EXPR
            && handled_component_p (TREE_OPERAND (baseop, 0)))
            && handled_component_p (TREE_OPERAND (baseop, 0)))
          {
          {
            HOST_WIDE_INT off;
            HOST_WIDE_INT off;
            tree base;
            tree base;
            base = get_addr_base_and_unit_offset (TREE_OPERAND (baseop, 0),
            base = get_addr_base_and_unit_offset (TREE_OPERAND (baseop, 0),
                                                  &off);
                                                  &off);
            gcc_assert (base);
            gcc_assert (base);
            offset = int_const_binop (PLUS_EXPR, offset,
            offset = int_const_binop (PLUS_EXPR, offset,
                                      build_int_cst (TREE_TYPE (offset),
                                      build_int_cst (TREE_TYPE (offset),
                                                     off));
                                                     off));
            baseop = build_fold_addr_expr (base);
            baseop = build_fold_addr_expr (base);
          }
          }
        return fold_build2 (MEM_REF, currop->type, baseop, offset);
        return fold_build2 (MEM_REF, currop->type, baseop, offset);
      }
      }
      break;
      break;
    case TARGET_MEM_REF:
    case TARGET_MEM_REF:
      {
      {
        pre_expr op0expr, op1expr;
        pre_expr op0expr, op1expr;
        tree genop0 = NULL_TREE, genop1 = NULL_TREE;
        tree genop0 = NULL_TREE, genop1 = NULL_TREE;
        vn_reference_op_t nextop = VEC_index (vn_reference_op_s, ref->operands,
        vn_reference_op_t nextop = VEC_index (vn_reference_op_s, ref->operands,
                                              ++*operand);
                                              ++*operand);
        tree baseop = create_component_ref_by_pieces_1 (block, ref, operand,
        tree baseop = create_component_ref_by_pieces_1 (block, ref, operand,
                                                        stmts, domstmt);
                                                        stmts, domstmt);
        if (!baseop)
        if (!baseop)
          return NULL_TREE;
          return NULL_TREE;
        if (currop->op0)
        if (currop->op0)
          {
          {
            op0expr = get_or_alloc_expr_for (currop->op0);
            op0expr = get_or_alloc_expr_for (currop->op0);
            genop0 = find_or_generate_expression (block, op0expr,
            genop0 = find_or_generate_expression (block, op0expr,
                                                  stmts, domstmt);
                                                  stmts, domstmt);
            if (!genop0)
            if (!genop0)
              return NULL_TREE;
              return NULL_TREE;
          }
          }
        if (nextop->op0)
        if (nextop->op0)
          {
          {
            op1expr = get_or_alloc_expr_for (nextop->op0);
            op1expr = get_or_alloc_expr_for (nextop->op0);
            genop1 = find_or_generate_expression (block, op1expr,
            genop1 = find_or_generate_expression (block, op1expr,
                                                  stmts, domstmt);
                                                  stmts, domstmt);
            if (!genop1)
            if (!genop1)
              return NULL_TREE;
              return NULL_TREE;
          }
          }
        return build5 (TARGET_MEM_REF, currop->type,
        return build5 (TARGET_MEM_REF, currop->type,
                       baseop, currop->op2, genop0, currop->op1, genop1);
                       baseop, currop->op2, genop0, currop->op1, genop1);
      }
      }
      break;
      break;
    case ADDR_EXPR:
    case ADDR_EXPR:
      if (currop->op0)
      if (currop->op0)
        {
        {
          gcc_assert (is_gimple_min_invariant (currop->op0));
          gcc_assert (is_gimple_min_invariant (currop->op0));
          return currop->op0;
          return currop->op0;
        }
        }
      /* Fallthrough.  */
      /* Fallthrough.  */
    case REALPART_EXPR:
    case REALPART_EXPR:
    case IMAGPART_EXPR:
    case IMAGPART_EXPR:
    case VIEW_CONVERT_EXPR:
    case VIEW_CONVERT_EXPR:
      {
      {
        tree folded;
        tree folded;
        tree genop0 = create_component_ref_by_pieces_1 (block, ref,
        tree genop0 = create_component_ref_by_pieces_1 (block, ref,
                                                        operand,
                                                        operand,
                                                        stmts, domstmt);
                                                        stmts, domstmt);
        if (!genop0)
        if (!genop0)
          return NULL_TREE;
          return NULL_TREE;
        folded = fold_build1 (currop->opcode, currop->type,
        folded = fold_build1 (currop->opcode, currop->type,
                              genop0);
                              genop0);
        return folded;
        return folded;
      }
      }
      break;
      break;
    case WITH_SIZE_EXPR:
    case WITH_SIZE_EXPR:
      {
      {
        tree genop0 = create_component_ref_by_pieces_1 (block, ref, operand,
        tree genop0 = create_component_ref_by_pieces_1 (block, ref, operand,
                                                        stmts, domstmt);
                                                        stmts, domstmt);
        pre_expr op1expr = get_or_alloc_expr_for (currop->op0);
        pre_expr op1expr = get_or_alloc_expr_for (currop->op0);
        tree genop1;
        tree genop1;
 
 
        if (!genop0)
        if (!genop0)
          return NULL_TREE;
          return NULL_TREE;
 
 
        genop1 = find_or_generate_expression (block, op1expr, stmts, domstmt);
        genop1 = find_or_generate_expression (block, op1expr, stmts, domstmt);
        if (!genop1)
        if (!genop1)
          return NULL_TREE;
          return NULL_TREE;
 
 
        return fold_build2 (currop->opcode, currop->type, genop0, genop1);
        return fold_build2 (currop->opcode, currop->type, genop0, genop1);
      }
      }
      break;
      break;
    case BIT_FIELD_REF:
    case BIT_FIELD_REF:
      {
      {
        tree folded;
        tree folded;
        tree genop0 = create_component_ref_by_pieces_1 (block, ref, operand,
        tree genop0 = create_component_ref_by_pieces_1 (block, ref, operand,
                                                        stmts, domstmt);
                                                        stmts, domstmt);
        pre_expr op1expr = get_or_alloc_expr_for (currop->op0);
        pre_expr op1expr = get_or_alloc_expr_for (currop->op0);
        pre_expr op2expr = get_or_alloc_expr_for (currop->op1);
        pre_expr op2expr = get_or_alloc_expr_for (currop->op1);
        tree genop1;
        tree genop1;
        tree genop2;
        tree genop2;
 
 
        if (!genop0)
        if (!genop0)
          return NULL_TREE;
          return NULL_TREE;
        genop1 = find_or_generate_expression (block, op1expr, stmts, domstmt);
        genop1 = find_or_generate_expression (block, op1expr, stmts, domstmt);
        if (!genop1)
        if (!genop1)
          return NULL_TREE;
          return NULL_TREE;
        genop2 = find_or_generate_expression (block, op2expr, stmts, domstmt);
        genop2 = find_or_generate_expression (block, op2expr, stmts, domstmt);
        if (!genop2)
        if (!genop2)
          return NULL_TREE;
          return NULL_TREE;
        folded = fold_build3 (BIT_FIELD_REF, currop->type, genop0, genop1,
        folded = fold_build3 (BIT_FIELD_REF, currop->type, genop0, genop1,
                              genop2);
                              genop2);
        return folded;
        return folded;
      }
      }
 
 
      /* For array ref vn_reference_op's, operand 1 of the array ref
      /* For array ref vn_reference_op's, operand 1 of the array ref
         is op0 of the reference op and operand 3 of the array ref is
         is op0 of the reference op and operand 3 of the array ref is
         op1.  */
         op1.  */
    case ARRAY_RANGE_REF:
    case ARRAY_RANGE_REF:
    case ARRAY_REF:
    case ARRAY_REF:
      {
      {
        tree genop0;
        tree genop0;
        tree genop1 = currop->op0;
        tree genop1 = currop->op0;
        pre_expr op1expr;
        pre_expr op1expr;
        tree genop2 = currop->op1;
        tree genop2 = currop->op1;
        pre_expr op2expr;
        pre_expr op2expr;
        tree genop3 = currop->op2;
        tree genop3 = currop->op2;
        pre_expr op3expr;
        pre_expr op3expr;
        genop0 = create_component_ref_by_pieces_1 (block, ref, operand,
        genop0 = create_component_ref_by_pieces_1 (block, ref, operand,
                                                   stmts, domstmt);
                                                   stmts, domstmt);
        if (!genop0)
        if (!genop0)
          return NULL_TREE;
          return NULL_TREE;
        op1expr = get_or_alloc_expr_for (genop1);
        op1expr = get_or_alloc_expr_for (genop1);
        genop1 = find_or_generate_expression (block, op1expr, stmts, domstmt);
        genop1 = find_or_generate_expression (block, op1expr, stmts, domstmt);
        if (!genop1)
        if (!genop1)
          return NULL_TREE;
          return NULL_TREE;
        if (genop2)
        if (genop2)
          {
          {
            tree domain_type = TYPE_DOMAIN (TREE_TYPE (genop0));
            tree domain_type = TYPE_DOMAIN (TREE_TYPE (genop0));
            /* Drop zero minimum index if redundant.  */
            /* Drop zero minimum index if redundant.  */
            if (integer_zerop (genop2)
            if (integer_zerop (genop2)
                && (!domain_type
                && (!domain_type
                    || integer_zerop (TYPE_MIN_VALUE (domain_type))))
                    || integer_zerop (TYPE_MIN_VALUE (domain_type))))
              genop2 = NULL_TREE;
              genop2 = NULL_TREE;
            else
            else
              {
              {
                op2expr = get_or_alloc_expr_for (genop2);
                op2expr = get_or_alloc_expr_for (genop2);
                genop2 = find_or_generate_expression (block, op2expr, stmts,
                genop2 = find_or_generate_expression (block, op2expr, stmts,
                                                      domstmt);
                                                      domstmt);
                if (!genop2)
                if (!genop2)
                  return NULL_TREE;
                  return NULL_TREE;
              }
              }
          }
          }
        if (genop3)
        if (genop3)
          {
          {
            tree elmt_type = TREE_TYPE (TREE_TYPE (genop0));
            tree elmt_type = TREE_TYPE (TREE_TYPE (genop0));
            /* We can't always put a size in units of the element alignment
            /* We can't always put a size in units of the element alignment
               here as the element alignment may be not visible.  See
               here as the element alignment may be not visible.  See
               PR43783.  Simply drop the element size for constant
               PR43783.  Simply drop the element size for constant
               sizes.  */
               sizes.  */
            if (tree_int_cst_equal (genop3, TYPE_SIZE_UNIT (elmt_type)))
            if (tree_int_cst_equal (genop3, TYPE_SIZE_UNIT (elmt_type)))
              genop3 = NULL_TREE;
              genop3 = NULL_TREE;
            else
            else
              {
              {
                genop3 = size_binop (EXACT_DIV_EXPR, genop3,
                genop3 = size_binop (EXACT_DIV_EXPR, genop3,
                                     size_int (TYPE_ALIGN_UNIT (elmt_type)));
                                     size_int (TYPE_ALIGN_UNIT (elmt_type)));
                op3expr = get_or_alloc_expr_for (genop3);
                op3expr = get_or_alloc_expr_for (genop3);
                genop3 = find_or_generate_expression (block, op3expr, stmts,
                genop3 = find_or_generate_expression (block, op3expr, stmts,
                                                      domstmt);
                                                      domstmt);
                if (!genop3)
                if (!genop3)
                  return NULL_TREE;
                  return NULL_TREE;
              }
              }
          }
          }
        return build4 (currop->opcode, currop->type, genop0, genop1,
        return build4 (currop->opcode, currop->type, genop0, genop1,
                       genop2, genop3);
                       genop2, genop3);
      }
      }
    case COMPONENT_REF:
    case COMPONENT_REF:
      {
      {
        tree op0;
        tree op0;
        tree op1;
        tree op1;
        tree genop2 = currop->op1;
        tree genop2 = currop->op1;
        pre_expr op2expr;
        pre_expr op2expr;
        op0 = create_component_ref_by_pieces_1 (block, ref, operand,
        op0 = create_component_ref_by_pieces_1 (block, ref, operand,
                                                stmts, domstmt);
                                                stmts, domstmt);
        if (!op0)
        if (!op0)
          return NULL_TREE;
          return NULL_TREE;
        /* op1 should be a FIELD_DECL, which are represented by
        /* op1 should be a FIELD_DECL, which are represented by
           themselves.  */
           themselves.  */
        op1 = currop->op0;
        op1 = currop->op0;
        if (genop2)
        if (genop2)
          {
          {
            op2expr = get_or_alloc_expr_for (genop2);
            op2expr = get_or_alloc_expr_for (genop2);
            genop2 = find_or_generate_expression (block, op2expr, stmts,
            genop2 = find_or_generate_expression (block, op2expr, stmts,
                                                  domstmt);
                                                  domstmt);
            if (!genop2)
            if (!genop2)
              return NULL_TREE;
              return NULL_TREE;
          }
          }
 
 
        return fold_build3 (COMPONENT_REF, TREE_TYPE (op1), op0, op1,
        return fold_build3 (COMPONENT_REF, TREE_TYPE (op1), op0, op1,
                            genop2);
                            genop2);
      }
      }
      break;
      break;
    case SSA_NAME:
    case SSA_NAME:
      {
      {
        pre_expr op0expr = get_or_alloc_expr_for (currop->op0);
        pre_expr op0expr = get_or_alloc_expr_for (currop->op0);
        genop = find_or_generate_expression (block, op0expr, stmts, domstmt);
        genop = find_or_generate_expression (block, op0expr, stmts, domstmt);
        return genop;
        return genop;
      }
      }
    case STRING_CST:
    case STRING_CST:
    case INTEGER_CST:
    case INTEGER_CST:
    case COMPLEX_CST:
    case COMPLEX_CST:
    case VECTOR_CST:
    case VECTOR_CST:
    case REAL_CST:
    case REAL_CST:
    case CONSTRUCTOR:
    case CONSTRUCTOR:
    case VAR_DECL:
    case VAR_DECL:
    case PARM_DECL:
    case PARM_DECL:
    case CONST_DECL:
    case CONST_DECL:
    case RESULT_DECL:
    case RESULT_DECL:
    case FUNCTION_DECL:
    case FUNCTION_DECL:
      return currop->op0;
      return currop->op0;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* For COMPONENT_REF's and ARRAY_REF's, we can't have any intermediates for the
/* For COMPONENT_REF's and ARRAY_REF's, we can't have any intermediates for the
   COMPONENT_REF or MEM_REF or ARRAY_REF portion, because we'd end up with
   COMPONENT_REF or MEM_REF or ARRAY_REF portion, because we'd end up with
   trying to rename aggregates into ssa form directly, which is a no no.
   trying to rename aggregates into ssa form directly, which is a no no.
 
 
   Thus, this routine doesn't create temporaries, it just builds a
   Thus, this routine doesn't create temporaries, it just builds a
   single access expression for the array, calling
   single access expression for the array, calling
   find_or_generate_expression to build the innermost pieces.
   find_or_generate_expression to build the innermost pieces.
 
 
   This function is a subroutine of create_expression_by_pieces, and
   This function is a subroutine of create_expression_by_pieces, and
   should not be called on it's own unless you really know what you
   should not be called on it's own unless you really know what you
   are doing.  */
   are doing.  */
 
 
static tree
static tree
create_component_ref_by_pieces (basic_block block, vn_reference_t ref,
create_component_ref_by_pieces (basic_block block, vn_reference_t ref,
                                gimple_seq *stmts, gimple domstmt)
                                gimple_seq *stmts, gimple domstmt)
{
{
  unsigned int op = 0;
  unsigned int op = 0;
  return create_component_ref_by_pieces_1 (block, ref, &op, stmts, domstmt);
  return create_component_ref_by_pieces_1 (block, ref, &op, stmts, domstmt);
}
}
 
 
/* Find a leader for an expression, or generate one using
/* Find a leader for an expression, or generate one using
   create_expression_by_pieces if it's ANTIC but
   create_expression_by_pieces if it's ANTIC but
   complex.
   complex.
   BLOCK is the basic_block we are looking for leaders in.
   BLOCK is the basic_block we are looking for leaders in.
   EXPR is the expression to find a leader or generate for.
   EXPR is the expression to find a leader or generate for.
   STMTS is the statement list to put the inserted expressions on.
   STMTS is the statement list to put the inserted expressions on.
   Returns the SSA_NAME of the LHS of the generated expression or the
   Returns the SSA_NAME of the LHS of the generated expression or the
   leader.
   leader.
   DOMSTMT if non-NULL is a statement that should be dominated by
   DOMSTMT if non-NULL is a statement that should be dominated by
   all uses in the generated expression.  If DOMSTMT is non-NULL this
   all uses in the generated expression.  If DOMSTMT is non-NULL this
   routine can fail and return NULL_TREE.  Otherwise it will assert
   routine can fail and return NULL_TREE.  Otherwise it will assert
   on failure.  */
   on failure.  */
 
 
static tree
static tree
find_or_generate_expression (basic_block block, pre_expr expr,
find_or_generate_expression (basic_block block, pre_expr expr,
                             gimple_seq *stmts, gimple domstmt)
                             gimple_seq *stmts, gimple domstmt)
{
{
  pre_expr leader = bitmap_find_leader (AVAIL_OUT (block),
  pre_expr leader = bitmap_find_leader (AVAIL_OUT (block),
                                        get_expr_value_id (expr), domstmt);
                                        get_expr_value_id (expr), domstmt);
  tree genop = NULL;
  tree genop = NULL;
  if (leader)
  if (leader)
    {
    {
      if (leader->kind == NAME)
      if (leader->kind == NAME)
        genop = PRE_EXPR_NAME (leader);
        genop = PRE_EXPR_NAME (leader);
      else if (leader->kind == CONSTANT)
      else if (leader->kind == CONSTANT)
        genop = PRE_EXPR_CONSTANT (leader);
        genop = PRE_EXPR_CONSTANT (leader);
    }
    }
 
 
  /* If it's still NULL, it must be a complex expression, so generate
  /* If it's still NULL, it must be a complex expression, so generate
     it recursively.  Not so if inserting expressions for values generated
     it recursively.  Not so if inserting expressions for values generated
     by SCCVN.  */
     by SCCVN.  */
  if (genop == NULL
  if (genop == NULL
      && !domstmt)
      && !domstmt)
    {
    {
      bitmap_set_t exprset;
      bitmap_set_t exprset;
      unsigned int lookfor = get_expr_value_id (expr);
      unsigned int lookfor = get_expr_value_id (expr);
      bool handled = false;
      bool handled = false;
      bitmap_iterator bi;
      bitmap_iterator bi;
      unsigned int i;
      unsigned int i;
 
 
      exprset = VEC_index (bitmap_set_t, value_expressions, lookfor);
      exprset = VEC_index (bitmap_set_t, value_expressions, lookfor);
      FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi)
      FOR_EACH_EXPR_ID_IN_SET (exprset, i, bi)
        {
        {
          pre_expr temp = expression_for_id (i);
          pre_expr temp = expression_for_id (i);
          if (temp->kind != NAME)
          if (temp->kind != NAME)
            {
            {
              handled = true;
              handled = true;
              genop = create_expression_by_pieces (block, temp, stmts,
              genop = create_expression_by_pieces (block, temp, stmts,
                                                   domstmt,
                                                   domstmt,
                                                   get_expr_type (expr));
                                                   get_expr_type (expr));
              break;
              break;
            }
            }
        }
        }
      if (!handled && domstmt)
      if (!handled && domstmt)
        return NULL_TREE;
        return NULL_TREE;
 
 
      gcc_assert (handled);
      gcc_assert (handled);
    }
    }
  return genop;
  return genop;
}
}
 
 
#define NECESSARY GF_PLF_1
#define NECESSARY GF_PLF_1
 
 
/* Create an expression in pieces, so that we can handle very complex
/* Create an expression in pieces, so that we can handle very complex
   expressions that may be ANTIC, but not necessary GIMPLE.
   expressions that may be ANTIC, but not necessary GIMPLE.
   BLOCK is the basic block the expression will be inserted into,
   BLOCK is the basic block the expression will be inserted into,
   EXPR is the expression to insert (in value form)
   EXPR is the expression to insert (in value form)
   STMTS is a statement list to append the necessary insertions into.
   STMTS is a statement list to append the necessary insertions into.
 
 
   This function will die if we hit some value that shouldn't be
   This function will die if we hit some value that shouldn't be
   ANTIC but is (IE there is no leader for it, or its components).
   ANTIC but is (IE there is no leader for it, or its components).
   This function may also generate expressions that are themselves
   This function may also generate expressions that are themselves
   partially or fully redundant.  Those that are will be either made
   partially or fully redundant.  Those that are will be either made
   fully redundant during the next iteration of insert (for partially
   fully redundant during the next iteration of insert (for partially
   redundant ones), or eliminated by eliminate (for fully redundant
   redundant ones), or eliminated by eliminate (for fully redundant
   ones).
   ones).
 
 
   If DOMSTMT is non-NULL then we make sure that all uses in the
   If DOMSTMT is non-NULL then we make sure that all uses in the
   expressions dominate that statement.  In this case the function
   expressions dominate that statement.  In this case the function
   can return NULL_TREE to signal failure.  */
   can return NULL_TREE to signal failure.  */
 
 
static tree
static tree
create_expression_by_pieces (basic_block block, pre_expr expr,
create_expression_by_pieces (basic_block block, pre_expr expr,
                             gimple_seq *stmts, gimple domstmt, tree type)
                             gimple_seq *stmts, gimple domstmt, tree type)
{
{
  tree temp, name;
  tree temp, name;
  tree folded;
  tree folded;
  gimple_seq forced_stmts = NULL;
  gimple_seq forced_stmts = NULL;
  unsigned int value_id;
  unsigned int value_id;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  tree exprtype = type ? type : get_expr_type (expr);
  tree exprtype = type ? type : get_expr_type (expr);
  pre_expr nameexpr;
  pre_expr nameexpr;
  gimple newstmt;
  gimple newstmt;
 
 
  switch (expr->kind)
  switch (expr->kind)
    {
    {
      /* We may hit the NAME/CONSTANT case if we have to convert types
      /* We may hit the NAME/CONSTANT case if we have to convert types
         that value numbering saw through.  */
         that value numbering saw through.  */
    case NAME:
    case NAME:
      folded = PRE_EXPR_NAME (expr);
      folded = PRE_EXPR_NAME (expr);
      break;
      break;
    case CONSTANT:
    case CONSTANT:
      folded = PRE_EXPR_CONSTANT (expr);
      folded = PRE_EXPR_CONSTANT (expr);
      break;
      break;
    case REFERENCE:
    case REFERENCE:
      {
      {
        vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
        vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
        folded = create_component_ref_by_pieces (block, ref, stmts, domstmt);
        folded = create_component_ref_by_pieces (block, ref, stmts, domstmt);
      }
      }
      break;
      break;
    case NARY:
    case NARY:
      {
      {
        vn_nary_op_t nary = PRE_EXPR_NARY (expr);
        vn_nary_op_t nary = PRE_EXPR_NARY (expr);
        tree genop[4];
        tree genop[4];
        unsigned i;
        unsigned i;
        for (i = 0; i < nary->length; ++i)
        for (i = 0; i < nary->length; ++i)
          {
          {
            pre_expr op = get_or_alloc_expr_for (nary->op[i]);
            pre_expr op = get_or_alloc_expr_for (nary->op[i]);
            genop[i] = find_or_generate_expression (block, op,
            genop[i] = find_or_generate_expression (block, op,
                                                    stmts, domstmt);
                                                    stmts, domstmt);
            if (!genop[i])
            if (!genop[i])
              return NULL_TREE;
              return NULL_TREE;
            /* Ensure genop[] is properly typed for POINTER_PLUS_EXPR.  It
            /* Ensure genop[] is properly typed for POINTER_PLUS_EXPR.  It
               may have conversions stripped.  */
               may have conversions stripped.  */
            if (nary->opcode == POINTER_PLUS_EXPR)
            if (nary->opcode == POINTER_PLUS_EXPR)
              {
              {
                if (i == 0)
                if (i == 0)
                  genop[i] = fold_convert (nary->type, genop[i]);
                  genop[i] = fold_convert (nary->type, genop[i]);
                else if (i == 1)
                else if (i == 1)
                  genop[i] = convert_to_ptrofftype (genop[i]);
                  genop[i] = convert_to_ptrofftype (genop[i]);
              }
              }
            else
            else
              genop[i] = fold_convert (TREE_TYPE (nary->op[i]), genop[i]);
              genop[i] = fold_convert (TREE_TYPE (nary->op[i]), genop[i]);
          }
          }
        if (nary->opcode == CONSTRUCTOR)
        if (nary->opcode == CONSTRUCTOR)
          {
          {
            VEC(constructor_elt,gc) *elts = NULL;
            VEC(constructor_elt,gc) *elts = NULL;
            for (i = 0; i < nary->length; ++i)
            for (i = 0; i < nary->length; ++i)
              CONSTRUCTOR_APPEND_ELT (elts, NULL_TREE, genop[i]);
              CONSTRUCTOR_APPEND_ELT (elts, NULL_TREE, genop[i]);
            folded = build_constructor (nary->type, elts);
            folded = build_constructor (nary->type, elts);
          }
          }
        else
        else
          {
          {
            switch (nary->length)
            switch (nary->length)
              {
              {
              case 1:
              case 1:
                folded = fold_build1 (nary->opcode, nary->type,
                folded = fold_build1 (nary->opcode, nary->type,
                                      genop[0]);
                                      genop[0]);
                break;
                break;
              case 2:
              case 2:
                folded = fold_build2 (nary->opcode, nary->type,
                folded = fold_build2 (nary->opcode, nary->type,
                                      genop[0], genop[1]);
                                      genop[0], genop[1]);
                break;
                break;
              case 3:
              case 3:
                folded = fold_build3 (nary->opcode, nary->type,
                folded = fold_build3 (nary->opcode, nary->type,
                                      genop[0], genop[1], genop[3]);
                                      genop[0], genop[1], genop[3]);
                break;
                break;
              default:
              default:
                gcc_unreachable ();
                gcc_unreachable ();
              }
              }
          }
          }
      }
      }
      break;
      break;
    default:
    default:
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  if (!useless_type_conversion_p (exprtype, TREE_TYPE (folded)))
  if (!useless_type_conversion_p (exprtype, TREE_TYPE (folded)))
    folded = fold_convert (exprtype, folded);
    folded = fold_convert (exprtype, folded);
 
 
  /* Force the generated expression to be a sequence of GIMPLE
  /* Force the generated expression to be a sequence of GIMPLE
     statements.
     statements.
     We have to call unshare_expr because force_gimple_operand may
     We have to call unshare_expr because force_gimple_operand may
     modify the tree we pass to it.  */
     modify the tree we pass to it.  */
  folded = force_gimple_operand (unshare_expr (folded), &forced_stmts,
  folded = force_gimple_operand (unshare_expr (folded), &forced_stmts,
                                 false, NULL);
                                 false, NULL);
 
 
  /* If we have any intermediate expressions to the value sets, add them
  /* If we have any intermediate expressions to the value sets, add them
     to the value sets and chain them in the instruction stream.  */
     to the value sets and chain them in the instruction stream.  */
  if (forced_stmts)
  if (forced_stmts)
    {
    {
      gsi = gsi_start (forced_stmts);
      gsi = gsi_start (forced_stmts);
      for (; !gsi_end_p (gsi); gsi_next (&gsi))
      for (; !gsi_end_p (gsi); gsi_next (&gsi))
        {
        {
          gimple stmt = gsi_stmt (gsi);
          gimple stmt = gsi_stmt (gsi);
          tree forcedname = gimple_get_lhs (stmt);
          tree forcedname = gimple_get_lhs (stmt);
          pre_expr nameexpr;
          pre_expr nameexpr;
 
 
          if (TREE_CODE (forcedname) == SSA_NAME)
          if (TREE_CODE (forcedname) == SSA_NAME)
            {
            {
              bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (forcedname));
              bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (forcedname));
              VN_INFO_GET (forcedname)->valnum = forcedname;
              VN_INFO_GET (forcedname)->valnum = forcedname;
              VN_INFO (forcedname)->value_id = get_next_value_id ();
              VN_INFO (forcedname)->value_id = get_next_value_id ();
              nameexpr = get_or_alloc_expr_for_name (forcedname);
              nameexpr = get_or_alloc_expr_for_name (forcedname);
              add_to_value (VN_INFO (forcedname)->value_id, nameexpr);
              add_to_value (VN_INFO (forcedname)->value_id, nameexpr);
              if (!in_fre)
              if (!in_fre)
                bitmap_value_replace_in_set (NEW_SETS (block), nameexpr);
                bitmap_value_replace_in_set (NEW_SETS (block), nameexpr);
              bitmap_value_replace_in_set (AVAIL_OUT (block), nameexpr);
              bitmap_value_replace_in_set (AVAIL_OUT (block), nameexpr);
            }
            }
          mark_symbols_for_renaming (stmt);
          mark_symbols_for_renaming (stmt);
        }
        }
      gimple_seq_add_seq (stmts, forced_stmts);
      gimple_seq_add_seq (stmts, forced_stmts);
    }
    }
 
 
  /* Build and insert the assignment of the end result to the temporary
  /* Build and insert the assignment of the end result to the temporary
     that we will return.  */
     that we will return.  */
  if (!pretemp || exprtype != TREE_TYPE (pretemp))
  if (!pretemp || exprtype != TREE_TYPE (pretemp))
    pretemp = create_tmp_reg (exprtype, "pretmp");
    pretemp = create_tmp_reg (exprtype, "pretmp");
 
 
  temp = pretemp;
  temp = pretemp;
  add_referenced_var (temp);
  add_referenced_var (temp);
 
 
  newstmt = gimple_build_assign (temp, folded);
  newstmt = gimple_build_assign (temp, folded);
  name = make_ssa_name (temp, newstmt);
  name = make_ssa_name (temp, newstmt);
  gimple_assign_set_lhs (newstmt, name);
  gimple_assign_set_lhs (newstmt, name);
  gimple_set_plf (newstmt, NECESSARY, false);
  gimple_set_plf (newstmt, NECESSARY, false);
 
 
  gimple_seq_add_stmt (stmts, newstmt);
  gimple_seq_add_stmt (stmts, newstmt);
  bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (name));
  bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (name));
 
 
  /* All the symbols in NEWEXPR should be put into SSA form.  */
  /* All the symbols in NEWEXPR should be put into SSA form.  */
  mark_symbols_for_renaming (newstmt);
  mark_symbols_for_renaming (newstmt);
 
 
  /* Fold the last statement.  */
  /* Fold the last statement.  */
  gsi = gsi_last (*stmts);
  gsi = gsi_last (*stmts);
  if (fold_stmt_inplace (&gsi))
  if (fold_stmt_inplace (&gsi))
    update_stmt (gsi_stmt (gsi));
    update_stmt (gsi_stmt (gsi));
 
 
  /* Add a value number to the temporary.
  /* Add a value number to the temporary.
     The value may already exist in either NEW_SETS, or AVAIL_OUT, because
     The value may already exist in either NEW_SETS, or AVAIL_OUT, because
     we are creating the expression by pieces, and this particular piece of
     we are creating the expression by pieces, and this particular piece of
     the expression may have been represented.  There is no harm in replacing
     the expression may have been represented.  There is no harm in replacing
     here.  */
     here.  */
  VN_INFO_GET (name)->valnum = name;
  VN_INFO_GET (name)->valnum = name;
  value_id = get_expr_value_id (expr);
  value_id = get_expr_value_id (expr);
  VN_INFO (name)->value_id = value_id;
  VN_INFO (name)->value_id = value_id;
  nameexpr = get_or_alloc_expr_for_name (name);
  nameexpr = get_or_alloc_expr_for_name (name);
  add_to_value (value_id, nameexpr);
  add_to_value (value_id, nameexpr);
  if (NEW_SETS (block))
  if (NEW_SETS (block))
    bitmap_value_replace_in_set (NEW_SETS (block), nameexpr);
    bitmap_value_replace_in_set (NEW_SETS (block), nameexpr);
  bitmap_value_replace_in_set (AVAIL_OUT (block), nameexpr);
  bitmap_value_replace_in_set (AVAIL_OUT (block), nameexpr);
 
 
  pre_stats.insertions++;
  pre_stats.insertions++;
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "Inserted ");
      fprintf (dump_file, "Inserted ");
      print_gimple_stmt (dump_file, newstmt, 0, 0);
      print_gimple_stmt (dump_file, newstmt, 0, 0);
      fprintf (dump_file, " in predecessor %d\n", block->index);
      fprintf (dump_file, " in predecessor %d\n", block->index);
    }
    }
 
 
  return name;
  return name;
}
}
 
 
 
 
/* Returns true if we want to inhibit the insertions of PHI nodes
/* Returns true if we want to inhibit the insertions of PHI nodes
   for the given EXPR for basic block BB (a member of a loop).
   for the given EXPR for basic block BB (a member of a loop).
   We want to do this, when we fear that the induction variable we
   We want to do this, when we fear that the induction variable we
   create might inhibit vectorization.  */
   create might inhibit vectorization.  */
 
 
static bool
static bool
inhibit_phi_insertion (basic_block bb, pre_expr expr)
inhibit_phi_insertion (basic_block bb, pre_expr expr)
{
{
  vn_reference_t vr = PRE_EXPR_REFERENCE (expr);
  vn_reference_t vr = PRE_EXPR_REFERENCE (expr);
  VEC (vn_reference_op_s, heap) *ops = vr->operands;
  VEC (vn_reference_op_s, heap) *ops = vr->operands;
  vn_reference_op_t op;
  vn_reference_op_t op;
  unsigned i;
  unsigned i;
 
 
  /* If we aren't going to vectorize we don't inhibit anything.  */
  /* If we aren't going to vectorize we don't inhibit anything.  */
  if (!flag_tree_vectorize)
  if (!flag_tree_vectorize)
    return false;
    return false;
 
 
  /* Otherwise we inhibit the insertion when the address of the
  /* Otherwise we inhibit the insertion when the address of the
     memory reference is a simple induction variable.  In other
     memory reference is a simple induction variable.  In other
     cases the vectorizer won't do anything anyway (either it's
     cases the vectorizer won't do anything anyway (either it's
     loop invariant or a complicated expression).  */
     loop invariant or a complicated expression).  */
  FOR_EACH_VEC_ELT (vn_reference_op_s, ops, i, op)
  FOR_EACH_VEC_ELT (vn_reference_op_s, ops, i, op)
    {
    {
      switch (op->opcode)
      switch (op->opcode)
        {
        {
        case ARRAY_REF:
        case ARRAY_REF:
        case ARRAY_RANGE_REF:
        case ARRAY_RANGE_REF:
          if (TREE_CODE (op->op0) != SSA_NAME)
          if (TREE_CODE (op->op0) != SSA_NAME)
            break;
            break;
          /* Fallthru.  */
          /* Fallthru.  */
        case SSA_NAME:
        case SSA_NAME:
          {
          {
            basic_block defbb = gimple_bb (SSA_NAME_DEF_STMT (op->op0));
            basic_block defbb = gimple_bb (SSA_NAME_DEF_STMT (op->op0));
            affine_iv iv;
            affine_iv iv;
            /* Default defs are loop invariant.  */
            /* Default defs are loop invariant.  */
            if (!defbb)
            if (!defbb)
              break;
              break;
            /* Defined outside this loop, also loop invariant.  */
            /* Defined outside this loop, also loop invariant.  */
            if (!flow_bb_inside_loop_p (bb->loop_father, defbb))
            if (!flow_bb_inside_loop_p (bb->loop_father, defbb))
              break;
              break;
            /* If it's a simple induction variable inhibit insertion,
            /* If it's a simple induction variable inhibit insertion,
               the vectorizer might be interested in this one.  */
               the vectorizer might be interested in this one.  */
            if (simple_iv (bb->loop_father, bb->loop_father,
            if (simple_iv (bb->loop_father, bb->loop_father,
                           op->op0, &iv, true))
                           op->op0, &iv, true))
              return true;
              return true;
            /* No simple IV, vectorizer can't do anything, hence no
            /* No simple IV, vectorizer can't do anything, hence no
               reason to inhibit the transformation for this operand.  */
               reason to inhibit the transformation for this operand.  */
            break;
            break;
          }
          }
        default:
        default:
          break;
          break;
        }
        }
    }
    }
  return false;
  return false;
}
}
 
 
/* Insert the to-be-made-available values of expression EXPRNUM for each
/* Insert the to-be-made-available values of expression EXPRNUM for each
   predecessor, stored in AVAIL, into the predecessors of BLOCK, and
   predecessor, stored in AVAIL, into the predecessors of BLOCK, and
   merge the result with a phi node, given the same value number as
   merge the result with a phi node, given the same value number as
   NODE.  Return true if we have inserted new stuff.  */
   NODE.  Return true if we have inserted new stuff.  */
 
 
static bool
static bool
insert_into_preds_of_block (basic_block block, unsigned int exprnum,
insert_into_preds_of_block (basic_block block, unsigned int exprnum,
                            pre_expr *avail)
                            pre_expr *avail)
{
{
  pre_expr expr = expression_for_id (exprnum);
  pre_expr expr = expression_for_id (exprnum);
  pre_expr newphi;
  pre_expr newphi;
  unsigned int val = get_expr_value_id (expr);
  unsigned int val = get_expr_value_id (expr);
  edge pred;
  edge pred;
  bool insertions = false;
  bool insertions = false;
  bool nophi = false;
  bool nophi = false;
  basic_block bprime;
  basic_block bprime;
  pre_expr eprime;
  pre_expr eprime;
  edge_iterator ei;
  edge_iterator ei;
  tree type = get_expr_type (expr);
  tree type = get_expr_type (expr);
  tree temp;
  tree temp;
  gimple phi;
  gimple phi;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "Found partial redundancy for expression ");
      fprintf (dump_file, "Found partial redundancy for expression ");
      print_pre_expr (dump_file, expr);
      print_pre_expr (dump_file, expr);
      fprintf (dump_file, " (%04d)\n", val);
      fprintf (dump_file, " (%04d)\n", val);
    }
    }
 
 
  /* Make sure we aren't creating an induction variable.  */
  /* Make sure we aren't creating an induction variable.  */
  if (block->loop_depth > 0 && EDGE_COUNT (block->preds) == 2)
  if (block->loop_depth > 0 && EDGE_COUNT (block->preds) == 2)
    {
    {
      bool firstinsideloop = false;
      bool firstinsideloop = false;
      bool secondinsideloop = false;
      bool secondinsideloop = false;
      firstinsideloop = flow_bb_inside_loop_p (block->loop_father,
      firstinsideloop = flow_bb_inside_loop_p (block->loop_father,
                                               EDGE_PRED (block, 0)->src);
                                               EDGE_PRED (block, 0)->src);
      secondinsideloop = flow_bb_inside_loop_p (block->loop_father,
      secondinsideloop = flow_bb_inside_loop_p (block->loop_father,
                                                EDGE_PRED (block, 1)->src);
                                                EDGE_PRED (block, 1)->src);
      /* Induction variables only have one edge inside the loop.  */
      /* Induction variables only have one edge inside the loop.  */
      if ((firstinsideloop ^ secondinsideloop)
      if ((firstinsideloop ^ secondinsideloop)
          && (expr->kind != REFERENCE
          && (expr->kind != REFERENCE
              || inhibit_phi_insertion (block, expr)))
              || inhibit_phi_insertion (block, expr)))
        {
        {
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            fprintf (dump_file, "Skipping insertion of phi for partial redundancy: Looks like an induction variable\n");
            fprintf (dump_file, "Skipping insertion of phi for partial redundancy: Looks like an induction variable\n");
          nophi = true;
          nophi = true;
        }
        }
    }
    }
 
 
  /* Make the necessary insertions.  */
  /* Make the necessary insertions.  */
  FOR_EACH_EDGE (pred, ei, block->preds)
  FOR_EACH_EDGE (pred, ei, block->preds)
    {
    {
      gimple_seq stmts = NULL;
      gimple_seq stmts = NULL;
      tree builtexpr;
      tree builtexpr;
      bprime = pred->src;
      bprime = pred->src;
      eprime = avail[bprime->index];
      eprime = avail[bprime->index];
 
 
      if (eprime->kind != NAME && eprime->kind != CONSTANT)
      if (eprime->kind != NAME && eprime->kind != CONSTANT)
        {
        {
          builtexpr = create_expression_by_pieces (bprime,
          builtexpr = create_expression_by_pieces (bprime,
                                                   eprime,
                                                   eprime,
                                                   &stmts, NULL,
                                                   &stmts, NULL,
                                                   type);
                                                   type);
          gcc_assert (!(pred->flags & EDGE_ABNORMAL));
          gcc_assert (!(pred->flags & EDGE_ABNORMAL));
          gsi_insert_seq_on_edge (pred, stmts);
          gsi_insert_seq_on_edge (pred, stmts);
          avail[bprime->index] = get_or_alloc_expr_for_name (builtexpr);
          avail[bprime->index] = get_or_alloc_expr_for_name (builtexpr);
          insertions = true;
          insertions = true;
        }
        }
      else if (eprime->kind == CONSTANT)
      else if (eprime->kind == CONSTANT)
        {
        {
          /* Constants may not have the right type, fold_convert
          /* Constants may not have the right type, fold_convert
             should give us back a constant with the right type.
             should give us back a constant with the right type.
          */
          */
          tree constant = PRE_EXPR_CONSTANT (eprime);
          tree constant = PRE_EXPR_CONSTANT (eprime);
          if (!useless_type_conversion_p (type, TREE_TYPE (constant)))
          if (!useless_type_conversion_p (type, TREE_TYPE (constant)))
            {
            {
              tree builtexpr = fold_convert (type, constant);
              tree builtexpr = fold_convert (type, constant);
              if (!is_gimple_min_invariant (builtexpr))
              if (!is_gimple_min_invariant (builtexpr))
                {
                {
                  tree forcedexpr = force_gimple_operand (builtexpr,
                  tree forcedexpr = force_gimple_operand (builtexpr,
                                                          &stmts, true,
                                                          &stmts, true,
                                                          NULL);
                                                          NULL);
                  if (!is_gimple_min_invariant (forcedexpr))
                  if (!is_gimple_min_invariant (forcedexpr))
                    {
                    {
                      if (forcedexpr != builtexpr)
                      if (forcedexpr != builtexpr)
                        {
                        {
                          VN_INFO_GET (forcedexpr)->valnum = PRE_EXPR_CONSTANT (eprime);
                          VN_INFO_GET (forcedexpr)->valnum = PRE_EXPR_CONSTANT (eprime);
                          VN_INFO (forcedexpr)->value_id = get_expr_value_id (eprime);
                          VN_INFO (forcedexpr)->value_id = get_expr_value_id (eprime);
                        }
                        }
                      if (stmts)
                      if (stmts)
                        {
                        {
                          gimple_stmt_iterator gsi;
                          gimple_stmt_iterator gsi;
                          gsi = gsi_start (stmts);
                          gsi = gsi_start (stmts);
                          for (; !gsi_end_p (gsi); gsi_next (&gsi))
                          for (; !gsi_end_p (gsi); gsi_next (&gsi))
                            {
                            {
                              gimple stmt = gsi_stmt (gsi);
                              gimple stmt = gsi_stmt (gsi);
                              tree lhs = gimple_get_lhs (stmt);
                              tree lhs = gimple_get_lhs (stmt);
                              if (TREE_CODE (lhs) == SSA_NAME)
                              if (TREE_CODE (lhs) == SSA_NAME)
                                bitmap_set_bit (inserted_exprs,
                                bitmap_set_bit (inserted_exprs,
                                                SSA_NAME_VERSION (lhs));
                                                SSA_NAME_VERSION (lhs));
                              gimple_set_plf (stmt, NECESSARY, false);
                              gimple_set_plf (stmt, NECESSARY, false);
                            }
                            }
                          gsi_insert_seq_on_edge (pred, stmts);
                          gsi_insert_seq_on_edge (pred, stmts);
                        }
                        }
                      avail[bprime->index] = get_or_alloc_expr_for_name (forcedexpr);
                      avail[bprime->index] = get_or_alloc_expr_for_name (forcedexpr);
                    }
                    }
                }
                }
              else
              else
                avail[bprime->index] = get_or_alloc_expr_for_constant (builtexpr);
                avail[bprime->index] = get_or_alloc_expr_for_constant (builtexpr);
            }
            }
        }
        }
      else if (eprime->kind == NAME)
      else if (eprime->kind == NAME)
        {
        {
          /* We may have to do a conversion because our value
          /* We may have to do a conversion because our value
             numbering can look through types in certain cases, but
             numbering can look through types in certain cases, but
             our IL requires all operands of a phi node have the same
             our IL requires all operands of a phi node have the same
             type.  */
             type.  */
          tree name = PRE_EXPR_NAME (eprime);
          tree name = PRE_EXPR_NAME (eprime);
          if (!useless_type_conversion_p (type, TREE_TYPE (name)))
          if (!useless_type_conversion_p (type, TREE_TYPE (name)))
            {
            {
              tree builtexpr;
              tree builtexpr;
              tree forcedexpr;
              tree forcedexpr;
              builtexpr = fold_convert (type, name);
              builtexpr = fold_convert (type, name);
              forcedexpr = force_gimple_operand (builtexpr,
              forcedexpr = force_gimple_operand (builtexpr,
                                                 &stmts, true,
                                                 &stmts, true,
                                                 NULL);
                                                 NULL);
 
 
              if (forcedexpr != name)
              if (forcedexpr != name)
                {
                {
                  VN_INFO_GET (forcedexpr)->valnum = VN_INFO (name)->valnum;
                  VN_INFO_GET (forcedexpr)->valnum = VN_INFO (name)->valnum;
                  VN_INFO (forcedexpr)->value_id = VN_INFO (name)->value_id;
                  VN_INFO (forcedexpr)->value_id = VN_INFO (name)->value_id;
                }
                }
 
 
              if (stmts)
              if (stmts)
                {
                {
                  gimple_stmt_iterator gsi;
                  gimple_stmt_iterator gsi;
                  gsi = gsi_start (stmts);
                  gsi = gsi_start (stmts);
                  for (; !gsi_end_p (gsi); gsi_next (&gsi))
                  for (; !gsi_end_p (gsi); gsi_next (&gsi))
                    {
                    {
                      gimple stmt = gsi_stmt (gsi);
                      gimple stmt = gsi_stmt (gsi);
                      tree lhs = gimple_get_lhs (stmt);
                      tree lhs = gimple_get_lhs (stmt);
                      if (TREE_CODE (lhs) == SSA_NAME)
                      if (TREE_CODE (lhs) == SSA_NAME)
                        bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (lhs));
                        bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (lhs));
                      gimple_set_plf (stmt, NECESSARY, false);
                      gimple_set_plf (stmt, NECESSARY, false);
                    }
                    }
                  gsi_insert_seq_on_edge (pred, stmts);
                  gsi_insert_seq_on_edge (pred, stmts);
                }
                }
              avail[bprime->index] = get_or_alloc_expr_for_name (forcedexpr);
              avail[bprime->index] = get_or_alloc_expr_for_name (forcedexpr);
            }
            }
        }
        }
    }
    }
  /* If we didn't want a phi node, and we made insertions, we still have
  /* If we didn't want a phi node, and we made insertions, we still have
     inserted new stuff, and thus return true.  If we didn't want a phi node,
     inserted new stuff, and thus return true.  If we didn't want a phi node,
     and didn't make insertions, we haven't added anything new, so return
     and didn't make insertions, we haven't added anything new, so return
     false.  */
     false.  */
  if (nophi && insertions)
  if (nophi && insertions)
    return true;
    return true;
  else if (nophi && !insertions)
  else if (nophi && !insertions)
    return false;
    return false;
 
 
  /* Now build a phi for the new variable.  */
  /* Now build a phi for the new variable.  */
  if (!prephitemp || TREE_TYPE (prephitemp) != type)
  if (!prephitemp || TREE_TYPE (prephitemp) != type)
    prephitemp = create_tmp_var (type, "prephitmp");
    prephitemp = create_tmp_var (type, "prephitmp");
 
 
  temp = prephitemp;
  temp = prephitemp;
  add_referenced_var (temp);
  add_referenced_var (temp);
 
 
  if (TREE_CODE (type) == COMPLEX_TYPE
  if (TREE_CODE (type) == COMPLEX_TYPE
      || TREE_CODE (type) == VECTOR_TYPE)
      || TREE_CODE (type) == VECTOR_TYPE)
    DECL_GIMPLE_REG_P (temp) = 1;
    DECL_GIMPLE_REG_P (temp) = 1;
  phi = create_phi_node (temp, block);
  phi = create_phi_node (temp, block);
 
 
  gimple_set_plf (phi, NECESSARY, false);
  gimple_set_plf (phi, NECESSARY, false);
  VN_INFO_GET (gimple_phi_result (phi))->valnum = gimple_phi_result (phi);
  VN_INFO_GET (gimple_phi_result (phi))->valnum = gimple_phi_result (phi);
  VN_INFO (gimple_phi_result (phi))->value_id = val;
  VN_INFO (gimple_phi_result (phi))->value_id = val;
  bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (gimple_phi_result (phi)));
  bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (gimple_phi_result (phi)));
  FOR_EACH_EDGE (pred, ei, block->preds)
  FOR_EACH_EDGE (pred, ei, block->preds)
    {
    {
      pre_expr ae = avail[pred->src->index];
      pre_expr ae = avail[pred->src->index];
      gcc_assert (get_expr_type (ae) == type
      gcc_assert (get_expr_type (ae) == type
                  || useless_type_conversion_p (type, get_expr_type (ae)));
                  || useless_type_conversion_p (type, get_expr_type (ae)));
      if (ae->kind == CONSTANT)
      if (ae->kind == CONSTANT)
        add_phi_arg (phi, PRE_EXPR_CONSTANT (ae), pred, UNKNOWN_LOCATION);
        add_phi_arg (phi, PRE_EXPR_CONSTANT (ae), pred, UNKNOWN_LOCATION);
      else
      else
        add_phi_arg (phi, PRE_EXPR_NAME (avail[pred->src->index]), pred,
        add_phi_arg (phi, PRE_EXPR_NAME (avail[pred->src->index]), pred,
                     UNKNOWN_LOCATION);
                     UNKNOWN_LOCATION);
    }
    }
 
 
  newphi = get_or_alloc_expr_for_name (gimple_phi_result (phi));
  newphi = get_or_alloc_expr_for_name (gimple_phi_result (phi));
  add_to_value (val, newphi);
  add_to_value (val, newphi);
 
 
  /* The value should *not* exist in PHI_GEN, or else we wouldn't be doing
  /* The value should *not* exist in PHI_GEN, or else we wouldn't be doing
     this insertion, since we test for the existence of this value in PHI_GEN
     this insertion, since we test for the existence of this value in PHI_GEN
     before proceeding with the partial redundancy checks in insert_aux.
     before proceeding with the partial redundancy checks in insert_aux.
 
 
     The value may exist in AVAIL_OUT, in particular, it could be represented
     The value may exist in AVAIL_OUT, in particular, it could be represented
     by the expression we are trying to eliminate, in which case we want the
     by the expression we are trying to eliminate, in which case we want the
     replacement to occur.  If it's not existing in AVAIL_OUT, we want it
     replacement to occur.  If it's not existing in AVAIL_OUT, we want it
     inserted there.
     inserted there.
 
 
     Similarly, to the PHI_GEN case, the value should not exist in NEW_SETS of
     Similarly, to the PHI_GEN case, the value should not exist in NEW_SETS of
     this block, because if it did, it would have existed in our dominator's
     this block, because if it did, it would have existed in our dominator's
     AVAIL_OUT, and would have been skipped due to the full redundancy check.
     AVAIL_OUT, and would have been skipped due to the full redundancy check.
  */
  */
 
 
  bitmap_insert_into_set (PHI_GEN (block), newphi);
  bitmap_insert_into_set (PHI_GEN (block), newphi);
  bitmap_value_replace_in_set (AVAIL_OUT (block),
  bitmap_value_replace_in_set (AVAIL_OUT (block),
                               newphi);
                               newphi);
  bitmap_insert_into_set (NEW_SETS (block),
  bitmap_insert_into_set (NEW_SETS (block),
                          newphi);
                          newphi);
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "Created phi ");
      fprintf (dump_file, "Created phi ");
      print_gimple_stmt (dump_file, phi, 0, 0);
      print_gimple_stmt (dump_file, phi, 0, 0);
      fprintf (dump_file, " in block %d\n", block->index);
      fprintf (dump_file, " in block %d\n", block->index);
    }
    }
  pre_stats.phis++;
  pre_stats.phis++;
  return true;
  return true;
}
}
 
 
 
 
 
 
/* Perform insertion of partially redundant values.
/* Perform insertion of partially redundant values.
   For BLOCK, do the following:
   For BLOCK, do the following:
   1.  Propagate the NEW_SETS of the dominator into the current block.
   1.  Propagate the NEW_SETS of the dominator into the current block.
   If the block has multiple predecessors,
   If the block has multiple predecessors,
       2a. Iterate over the ANTIC expressions for the block to see if
       2a. Iterate over the ANTIC expressions for the block to see if
           any of them are partially redundant.
           any of them are partially redundant.
       2b. If so, insert them into the necessary predecessors to make
       2b. If so, insert them into the necessary predecessors to make
           the expression fully redundant.
           the expression fully redundant.
       2c. Insert a new PHI merging the values of the predecessors.
       2c. Insert a new PHI merging the values of the predecessors.
       2d. Insert the new PHI, and the new expressions, into the
       2d. Insert the new PHI, and the new expressions, into the
           NEW_SETS set.
           NEW_SETS set.
   3. Recursively call ourselves on the dominator children of BLOCK.
   3. Recursively call ourselves on the dominator children of BLOCK.
 
 
   Steps 1, 2a, and 3 are done by insert_aux. 2b, 2c and 2d are done by
   Steps 1, 2a, and 3 are done by insert_aux. 2b, 2c and 2d are done by
   do_regular_insertion and do_partial_insertion.
   do_regular_insertion and do_partial_insertion.
 
 
*/
*/
 
 
static bool
static bool
do_regular_insertion (basic_block block, basic_block dom)
do_regular_insertion (basic_block block, basic_block dom)
{
{
  bool new_stuff = false;
  bool new_stuff = false;
  VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (ANTIC_IN (block));
  VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (ANTIC_IN (block));
  pre_expr expr;
  pre_expr expr;
  int i;
  int i;
 
 
  FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
  FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
    {
    {
      if (expr->kind != NAME)
      if (expr->kind != NAME)
        {
        {
          pre_expr *avail;
          pre_expr *avail;
          unsigned int val;
          unsigned int val;
          bool by_some = false;
          bool by_some = false;
          bool cant_insert = false;
          bool cant_insert = false;
          bool all_same = true;
          bool all_same = true;
          pre_expr first_s = NULL;
          pre_expr first_s = NULL;
          edge pred;
          edge pred;
          basic_block bprime;
          basic_block bprime;
          pre_expr eprime = NULL;
          pre_expr eprime = NULL;
          edge_iterator ei;
          edge_iterator ei;
          pre_expr edoubleprime = NULL;
          pre_expr edoubleprime = NULL;
          bool do_insertion = false;
          bool do_insertion = false;
 
 
          val = get_expr_value_id (expr);
          val = get_expr_value_id (expr);
          if (bitmap_set_contains_value (PHI_GEN (block), val))
          if (bitmap_set_contains_value (PHI_GEN (block), val))
            continue;
            continue;
          if (bitmap_set_contains_value (AVAIL_OUT (dom), val))
          if (bitmap_set_contains_value (AVAIL_OUT (dom), val))
            {
            {
              if (dump_file && (dump_flags & TDF_DETAILS))
              if (dump_file && (dump_flags & TDF_DETAILS))
                fprintf (dump_file, "Found fully redundant value\n");
                fprintf (dump_file, "Found fully redundant value\n");
              continue;
              continue;
            }
            }
 
 
          avail = XCNEWVEC (pre_expr, last_basic_block);
          avail = XCNEWVEC (pre_expr, last_basic_block);
          FOR_EACH_EDGE (pred, ei, block->preds)
          FOR_EACH_EDGE (pred, ei, block->preds)
            {
            {
              unsigned int vprime;
              unsigned int vprime;
 
 
              /* We should never run insertion for the exit block
              /* We should never run insertion for the exit block
                 and so not come across fake pred edges.  */
                 and so not come across fake pred edges.  */
              gcc_assert (!(pred->flags & EDGE_FAKE));
              gcc_assert (!(pred->flags & EDGE_FAKE));
              bprime = pred->src;
              bprime = pred->src;
              eprime = phi_translate (expr, ANTIC_IN (block), NULL,
              eprime = phi_translate (expr, ANTIC_IN (block), NULL,
                                      bprime, block);
                                      bprime, block);
 
 
              /* eprime will generally only be NULL if the
              /* eprime will generally only be NULL if the
                 value of the expression, translated
                 value of the expression, translated
                 through the PHI for this predecessor, is
                 through the PHI for this predecessor, is
                 undefined.  If that is the case, we can't
                 undefined.  If that is the case, we can't
                 make the expression fully redundant,
                 make the expression fully redundant,
                 because its value is undefined along a
                 because its value is undefined along a
                 predecessor path.  We can thus break out
                 predecessor path.  We can thus break out
                 early because it doesn't matter what the
                 early because it doesn't matter what the
                 rest of the results are.  */
                 rest of the results are.  */
              if (eprime == NULL)
              if (eprime == NULL)
                {
                {
                  cant_insert = true;
                  cant_insert = true;
                  break;
                  break;
                }
                }
 
 
              eprime = fully_constant_expression (eprime);
              eprime = fully_constant_expression (eprime);
              vprime = get_expr_value_id (eprime);
              vprime = get_expr_value_id (eprime);
              edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime),
              edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime),
                                                 vprime, NULL);
                                                 vprime, NULL);
              if (edoubleprime == NULL)
              if (edoubleprime == NULL)
                {
                {
                  avail[bprime->index] = eprime;
                  avail[bprime->index] = eprime;
                  all_same = false;
                  all_same = false;
                }
                }
              else
              else
                {
                {
                  avail[bprime->index] = edoubleprime;
                  avail[bprime->index] = edoubleprime;
                  by_some = true;
                  by_some = true;
                  /* We want to perform insertions to remove a redundancy on
                  /* We want to perform insertions to remove a redundancy on
                     a path in the CFG we want to optimize for speed.  */
                     a path in the CFG we want to optimize for speed.  */
                  if (optimize_edge_for_speed_p (pred))
                  if (optimize_edge_for_speed_p (pred))
                    do_insertion = true;
                    do_insertion = true;
                  if (first_s == NULL)
                  if (first_s == NULL)
                    first_s = edoubleprime;
                    first_s = edoubleprime;
                  else if (!pre_expr_eq (first_s, edoubleprime))
                  else if (!pre_expr_eq (first_s, edoubleprime))
                    all_same = false;
                    all_same = false;
                }
                }
            }
            }
          /* If we can insert it, it's not the same value
          /* If we can insert it, it's not the same value
             already existing along every predecessor, and
             already existing along every predecessor, and
             it's defined by some predecessor, it is
             it's defined by some predecessor, it is
             partially redundant.  */
             partially redundant.  */
          if (!cant_insert && !all_same && by_some)
          if (!cant_insert && !all_same && by_some)
            {
            {
              if (!do_insertion)
              if (!do_insertion)
                {
                {
                  if (dump_file && (dump_flags & TDF_DETAILS))
                  if (dump_file && (dump_flags & TDF_DETAILS))
                    {
                    {
                      fprintf (dump_file, "Skipping partial redundancy for "
                      fprintf (dump_file, "Skipping partial redundancy for "
                               "expression ");
                               "expression ");
                      print_pre_expr (dump_file, expr);
                      print_pre_expr (dump_file, expr);
                      fprintf (dump_file, " (%04d), no redundancy on to be "
                      fprintf (dump_file, " (%04d), no redundancy on to be "
                               "optimized for speed edge\n", val);
                               "optimized for speed edge\n", val);
                    }
                    }
                }
                }
              else if (dbg_cnt (treepre_insert)
              else if (dbg_cnt (treepre_insert)
                       && insert_into_preds_of_block (block,
                       && insert_into_preds_of_block (block,
                                                      get_expression_id (expr),
                                                      get_expression_id (expr),
                                                      avail))
                                                      avail))
                new_stuff = true;
                new_stuff = true;
            }
            }
          /* If all edges produce the same value and that value is
          /* If all edges produce the same value and that value is
             an invariant, then the PHI has the same value on all
             an invariant, then the PHI has the same value on all
             edges.  Note this.  */
             edges.  Note this.  */
          else if (!cant_insert && all_same && eprime
          else if (!cant_insert && all_same && eprime
                   && (edoubleprime->kind == CONSTANT
                   && (edoubleprime->kind == CONSTANT
                       || edoubleprime->kind == NAME)
                       || edoubleprime->kind == NAME)
                   && !value_id_constant_p (val))
                   && !value_id_constant_p (val))
            {
            {
              unsigned int j;
              unsigned int j;
              bitmap_iterator bi;
              bitmap_iterator bi;
              bitmap_set_t exprset = VEC_index (bitmap_set_t,
              bitmap_set_t exprset = VEC_index (bitmap_set_t,
                                                value_expressions, val);
                                                value_expressions, val);
 
 
              unsigned int new_val = get_expr_value_id (edoubleprime);
              unsigned int new_val = get_expr_value_id (edoubleprime);
              FOR_EACH_EXPR_ID_IN_SET (exprset, j, bi)
              FOR_EACH_EXPR_ID_IN_SET (exprset, j, bi)
                {
                {
                  pre_expr expr = expression_for_id (j);
                  pre_expr expr = expression_for_id (j);
 
 
                  if (expr->kind == NAME)
                  if (expr->kind == NAME)
                    {
                    {
                      vn_ssa_aux_t info = VN_INFO (PRE_EXPR_NAME (expr));
                      vn_ssa_aux_t info = VN_INFO (PRE_EXPR_NAME (expr));
                      /* Just reset the value id and valnum so it is
                      /* Just reset the value id and valnum so it is
                         the same as the constant we have discovered.  */
                         the same as the constant we have discovered.  */
                      if (edoubleprime->kind == CONSTANT)
                      if (edoubleprime->kind == CONSTANT)
                        {
                        {
                          info->valnum = PRE_EXPR_CONSTANT (edoubleprime);
                          info->valnum = PRE_EXPR_CONSTANT (edoubleprime);
                          pre_stats.constified++;
                          pre_stats.constified++;
                        }
                        }
                      else
                      else
                        info->valnum = VN_INFO (PRE_EXPR_NAME (edoubleprime))->valnum;
                        info->valnum = VN_INFO (PRE_EXPR_NAME (edoubleprime))->valnum;
                      info->value_id = new_val;
                      info->value_id = new_val;
                    }
                    }
                }
                }
            }
            }
          free (avail);
          free (avail);
        }
        }
    }
    }
 
 
  VEC_free (pre_expr, heap, exprs);
  VEC_free (pre_expr, heap, exprs);
  return new_stuff;
  return new_stuff;
}
}
 
 
 
 
/* Perform insertion for partially anticipatable expressions.  There
/* Perform insertion for partially anticipatable expressions.  There
   is only one case we will perform insertion for these.  This case is
   is only one case we will perform insertion for these.  This case is
   if the expression is partially anticipatable, and fully available.
   if the expression is partially anticipatable, and fully available.
   In this case, we know that putting it earlier will enable us to
   In this case, we know that putting it earlier will enable us to
   remove the later computation.  */
   remove the later computation.  */
 
 
 
 
static bool
static bool
do_partial_partial_insertion (basic_block block, basic_block dom)
do_partial_partial_insertion (basic_block block, basic_block dom)
{
{
  bool new_stuff = false;
  bool new_stuff = false;
  VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (PA_IN (block));
  VEC (pre_expr, heap) *exprs = sorted_array_from_bitmap_set (PA_IN (block));
  pre_expr expr;
  pre_expr expr;
  int i;
  int i;
 
 
  FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
  FOR_EACH_VEC_ELT (pre_expr, exprs, i, expr)
    {
    {
      if (expr->kind != NAME)
      if (expr->kind != NAME)
        {
        {
          pre_expr *avail;
          pre_expr *avail;
          unsigned int val;
          unsigned int val;
          bool by_all = true;
          bool by_all = true;
          bool cant_insert = false;
          bool cant_insert = false;
          edge pred;
          edge pred;
          basic_block bprime;
          basic_block bprime;
          pre_expr eprime = NULL;
          pre_expr eprime = NULL;
          edge_iterator ei;
          edge_iterator ei;
 
 
          val = get_expr_value_id (expr);
          val = get_expr_value_id (expr);
          if (bitmap_set_contains_value (PHI_GEN (block), val))
          if (bitmap_set_contains_value (PHI_GEN (block), val))
            continue;
            continue;
          if (bitmap_set_contains_value (AVAIL_OUT (dom), val))
          if (bitmap_set_contains_value (AVAIL_OUT (dom), val))
            continue;
            continue;
 
 
          avail = XCNEWVEC (pre_expr, last_basic_block);
          avail = XCNEWVEC (pre_expr, last_basic_block);
          FOR_EACH_EDGE (pred, ei, block->preds)
          FOR_EACH_EDGE (pred, ei, block->preds)
            {
            {
              unsigned int vprime;
              unsigned int vprime;
              pre_expr edoubleprime;
              pre_expr edoubleprime;
 
 
              /* We should never run insertion for the exit block
              /* We should never run insertion for the exit block
                 and so not come across fake pred edges.  */
                 and so not come across fake pred edges.  */
              gcc_assert (!(pred->flags & EDGE_FAKE));
              gcc_assert (!(pred->flags & EDGE_FAKE));
              bprime = pred->src;
              bprime = pred->src;
              eprime = phi_translate (expr, ANTIC_IN (block),
              eprime = phi_translate (expr, ANTIC_IN (block),
                                      PA_IN (block),
                                      PA_IN (block),
                                      bprime, block);
                                      bprime, block);
 
 
              /* eprime will generally only be NULL if the
              /* eprime will generally only be NULL if the
                 value of the expression, translated
                 value of the expression, translated
                 through the PHI for this predecessor, is
                 through the PHI for this predecessor, is
                 undefined.  If that is the case, we can't
                 undefined.  If that is the case, we can't
                 make the expression fully redundant,
                 make the expression fully redundant,
                 because its value is undefined along a
                 because its value is undefined along a
                 predecessor path.  We can thus break out
                 predecessor path.  We can thus break out
                 early because it doesn't matter what the
                 early because it doesn't matter what the
                 rest of the results are.  */
                 rest of the results are.  */
              if (eprime == NULL)
              if (eprime == NULL)
                {
                {
                  cant_insert = true;
                  cant_insert = true;
                  break;
                  break;
                }
                }
 
 
              eprime = fully_constant_expression (eprime);
              eprime = fully_constant_expression (eprime);
              vprime = get_expr_value_id (eprime);
              vprime = get_expr_value_id (eprime);
              edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime),
              edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime),
                                                 vprime, NULL);
                                                 vprime, NULL);
              if (edoubleprime == NULL)
              if (edoubleprime == NULL)
                {
                {
                  by_all = false;
                  by_all = false;
                  break;
                  break;
                }
                }
              else
              else
                avail[bprime->index] = edoubleprime;
                avail[bprime->index] = edoubleprime;
 
 
            }
            }
 
 
          /* If we can insert it, it's not the same value
          /* If we can insert it, it's not the same value
             already existing along every predecessor, and
             already existing along every predecessor, and
             it's defined by some predecessor, it is
             it's defined by some predecessor, it is
             partially redundant.  */
             partially redundant.  */
          if (!cant_insert && by_all && dbg_cnt (treepre_insert))
          if (!cant_insert && by_all && dbg_cnt (treepre_insert))
            {
            {
              pre_stats.pa_insert++;
              pre_stats.pa_insert++;
              if (insert_into_preds_of_block (block, get_expression_id (expr),
              if (insert_into_preds_of_block (block, get_expression_id (expr),
                                              avail))
                                              avail))
                new_stuff = true;
                new_stuff = true;
            }
            }
          free (avail);
          free (avail);
        }
        }
    }
    }
 
 
  VEC_free (pre_expr, heap, exprs);
  VEC_free (pre_expr, heap, exprs);
  return new_stuff;
  return new_stuff;
}
}
 
 
static bool
static bool
insert_aux (basic_block block)
insert_aux (basic_block block)
{
{
  basic_block son;
  basic_block son;
  bool new_stuff = false;
  bool new_stuff = false;
 
 
  if (block)
  if (block)
    {
    {
      basic_block dom;
      basic_block dom;
      dom = get_immediate_dominator (CDI_DOMINATORS, block);
      dom = get_immediate_dominator (CDI_DOMINATORS, block);
      if (dom)
      if (dom)
        {
        {
          unsigned i;
          unsigned i;
          bitmap_iterator bi;
          bitmap_iterator bi;
          bitmap_set_t newset = NEW_SETS (dom);
          bitmap_set_t newset = NEW_SETS (dom);
          if (newset)
          if (newset)
            {
            {
              /* Note that we need to value_replace both NEW_SETS, and
              /* Note that we need to value_replace both NEW_SETS, and
                 AVAIL_OUT. For both the case of NEW_SETS, the value may be
                 AVAIL_OUT. For both the case of NEW_SETS, the value may be
                 represented by some non-simple expression here that we want
                 represented by some non-simple expression here that we want
                 to replace it with.  */
                 to replace it with.  */
              FOR_EACH_EXPR_ID_IN_SET (newset, i, bi)
              FOR_EACH_EXPR_ID_IN_SET (newset, i, bi)
                {
                {
                  pre_expr expr = expression_for_id (i);
                  pre_expr expr = expression_for_id (i);
                  bitmap_value_replace_in_set (NEW_SETS (block), expr);
                  bitmap_value_replace_in_set (NEW_SETS (block), expr);
                  bitmap_value_replace_in_set (AVAIL_OUT (block), expr);
                  bitmap_value_replace_in_set (AVAIL_OUT (block), expr);
                }
                }
            }
            }
          if (!single_pred_p (block))
          if (!single_pred_p (block))
            {
            {
              new_stuff |= do_regular_insertion (block, dom);
              new_stuff |= do_regular_insertion (block, dom);
              if (do_partial_partial)
              if (do_partial_partial)
                new_stuff |= do_partial_partial_insertion (block, dom);
                new_stuff |= do_partial_partial_insertion (block, dom);
            }
            }
        }
        }
    }
    }
  for (son = first_dom_son (CDI_DOMINATORS, block);
  for (son = first_dom_son (CDI_DOMINATORS, block);
       son;
       son;
       son = next_dom_son (CDI_DOMINATORS, son))
       son = next_dom_son (CDI_DOMINATORS, son))
    {
    {
      new_stuff |= insert_aux (son);
      new_stuff |= insert_aux (son);
    }
    }
 
 
  return new_stuff;
  return new_stuff;
}
}
 
 
/* Perform insertion of partially redundant values.  */
/* Perform insertion of partially redundant values.  */
 
 
static void
static void
insert (void)
insert (void)
{
{
  bool new_stuff = true;
  bool new_stuff = true;
  basic_block bb;
  basic_block bb;
  int num_iterations = 0;
  int num_iterations = 0;
 
 
  FOR_ALL_BB (bb)
  FOR_ALL_BB (bb)
    NEW_SETS (bb) = bitmap_set_new ();
    NEW_SETS (bb) = bitmap_set_new ();
 
 
  while (new_stuff)
  while (new_stuff)
    {
    {
      num_iterations++;
      num_iterations++;
      new_stuff = insert_aux (ENTRY_BLOCK_PTR);
      new_stuff = insert_aux (ENTRY_BLOCK_PTR);
    }
    }
  statistics_histogram_event (cfun, "insert iterations", num_iterations);
  statistics_histogram_event (cfun, "insert iterations", num_iterations);
}
}
 
 
 
 
/* Add OP to EXP_GEN (block), and possibly to the maximal set.  */
/* Add OP to EXP_GEN (block), and possibly to the maximal set.  */
 
 
static void
static void
add_to_exp_gen (basic_block block, tree op)
add_to_exp_gen (basic_block block, tree op)
{
{
  if (!in_fre)
  if (!in_fre)
    {
    {
      pre_expr result;
      pre_expr result;
      if (TREE_CODE (op) == SSA_NAME && ssa_undefined_value_p (op))
      if (TREE_CODE (op) == SSA_NAME && ssa_undefined_value_p (op))
        return;
        return;
      result = get_or_alloc_expr_for_name (op);
      result = get_or_alloc_expr_for_name (op);
      bitmap_value_insert_into_set (EXP_GEN (block), result);
      bitmap_value_insert_into_set (EXP_GEN (block), result);
    }
    }
}
}
 
 
/* Create value ids for PHI in BLOCK.  */
/* Create value ids for PHI in BLOCK.  */
 
 
static void
static void
make_values_for_phi (gimple phi, basic_block block)
make_values_for_phi (gimple phi, basic_block block)
{
{
  tree result = gimple_phi_result (phi);
  tree result = gimple_phi_result (phi);
 
 
  /* We have no need for virtual phis, as they don't represent
  /* We have no need for virtual phis, as they don't represent
     actual computations.  */
     actual computations.  */
  if (is_gimple_reg (result))
  if (is_gimple_reg (result))
    {
    {
      pre_expr e = get_or_alloc_expr_for_name (result);
      pre_expr e = get_or_alloc_expr_for_name (result);
      add_to_value (get_expr_value_id (e), e);
      add_to_value (get_expr_value_id (e), e);
      bitmap_insert_into_set (PHI_GEN (block), e);
      bitmap_insert_into_set (PHI_GEN (block), e);
      bitmap_value_insert_into_set (AVAIL_OUT (block), e);
      bitmap_value_insert_into_set (AVAIL_OUT (block), e);
      if (!in_fre)
      if (!in_fre)
        {
        {
          unsigned i;
          unsigned i;
          for (i = 0; i < gimple_phi_num_args (phi); ++i)
          for (i = 0; i < gimple_phi_num_args (phi); ++i)
            {
            {
              tree arg = gimple_phi_arg_def (phi, i);
              tree arg = gimple_phi_arg_def (phi, i);
              if (TREE_CODE (arg) == SSA_NAME)
              if (TREE_CODE (arg) == SSA_NAME)
                {
                {
                  e = get_or_alloc_expr_for_name (arg);
                  e = get_or_alloc_expr_for_name (arg);
                  add_to_value (get_expr_value_id (e), e);
                  add_to_value (get_expr_value_id (e), e);
                }
                }
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Compute the AVAIL set for all basic blocks.
/* Compute the AVAIL set for all basic blocks.
 
 
   This function performs value numbering of the statements in each basic
   This function performs value numbering of the statements in each basic
   block.  The AVAIL sets are built from information we glean while doing
   block.  The AVAIL sets are built from information we glean while doing
   this value numbering, since the AVAIL sets contain only one entry per
   this value numbering, since the AVAIL sets contain only one entry per
   value.
   value.
 
 
   AVAIL_IN[BLOCK] = AVAIL_OUT[dom(BLOCK)].
   AVAIL_IN[BLOCK] = AVAIL_OUT[dom(BLOCK)].
   AVAIL_OUT[BLOCK] = AVAIL_IN[BLOCK] U PHI_GEN[BLOCK] U TMP_GEN[BLOCK].  */
   AVAIL_OUT[BLOCK] = AVAIL_IN[BLOCK] U PHI_GEN[BLOCK] U TMP_GEN[BLOCK].  */
 
 
static void
static void
compute_avail (void)
compute_avail (void)
{
{
 
 
  basic_block block, son;
  basic_block block, son;
  basic_block *worklist;
  basic_block *worklist;
  size_t sp = 0;
  size_t sp = 0;
  unsigned i;
  unsigned i;
 
 
  /* We pretend that default definitions are defined in the entry block.
  /* We pretend that default definitions are defined in the entry block.
     This includes function arguments and the static chain decl.  */
     This includes function arguments and the static chain decl.  */
  for (i = 1; i < num_ssa_names; ++i)
  for (i = 1; i < num_ssa_names; ++i)
    {
    {
      tree name = ssa_name (i);
      tree name = ssa_name (i);
      pre_expr e;
      pre_expr e;
      if (!name
      if (!name
          || !SSA_NAME_IS_DEFAULT_DEF (name)
          || !SSA_NAME_IS_DEFAULT_DEF (name)
          || has_zero_uses (name)
          || has_zero_uses (name)
          || !is_gimple_reg (name))
          || !is_gimple_reg (name))
        continue;
        continue;
 
 
      e = get_or_alloc_expr_for_name (name);
      e = get_or_alloc_expr_for_name (name);
      add_to_value (get_expr_value_id (e), e);
      add_to_value (get_expr_value_id (e), e);
      if (!in_fre)
      if (!in_fre)
        bitmap_insert_into_set (TMP_GEN (ENTRY_BLOCK_PTR), e);
        bitmap_insert_into_set (TMP_GEN (ENTRY_BLOCK_PTR), e);
      bitmap_value_insert_into_set (AVAIL_OUT (ENTRY_BLOCK_PTR), e);
      bitmap_value_insert_into_set (AVAIL_OUT (ENTRY_BLOCK_PTR), e);
    }
    }
 
 
  /* Allocate the worklist.  */
  /* Allocate the worklist.  */
  worklist = XNEWVEC (basic_block, n_basic_blocks);
  worklist = XNEWVEC (basic_block, n_basic_blocks);
 
 
  /* Seed the algorithm by putting the dominator children of the entry
  /* Seed the algorithm by putting the dominator children of the entry
     block on the worklist.  */
     block on the worklist.  */
  for (son = first_dom_son (CDI_DOMINATORS, ENTRY_BLOCK_PTR);
  for (son = first_dom_son (CDI_DOMINATORS, ENTRY_BLOCK_PTR);
       son;
       son;
       son = next_dom_son (CDI_DOMINATORS, son))
       son = next_dom_son (CDI_DOMINATORS, son))
    worklist[sp++] = son;
    worklist[sp++] = son;
 
 
  /* Loop until the worklist is empty.  */
  /* Loop until the worklist is empty.  */
  while (sp)
  while (sp)
    {
    {
      gimple_stmt_iterator gsi;
      gimple_stmt_iterator gsi;
      gimple stmt;
      gimple stmt;
      basic_block dom;
      basic_block dom;
      unsigned int stmt_uid = 1;
      unsigned int stmt_uid = 1;
 
 
      /* Pick a block from the worklist.  */
      /* Pick a block from the worklist.  */
      block = worklist[--sp];
      block = worklist[--sp];
 
 
      /* Initially, the set of available values in BLOCK is that of
      /* Initially, the set of available values in BLOCK is that of
         its immediate dominator.  */
         its immediate dominator.  */
      dom = get_immediate_dominator (CDI_DOMINATORS, block);
      dom = get_immediate_dominator (CDI_DOMINATORS, block);
      if (dom)
      if (dom)
        bitmap_set_copy (AVAIL_OUT (block), AVAIL_OUT (dom));
        bitmap_set_copy (AVAIL_OUT (block), AVAIL_OUT (dom));
 
 
      /* Generate values for PHI nodes.  */
      /* Generate values for PHI nodes.  */
      for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
      for (gsi = gsi_start_phis (block); !gsi_end_p (gsi); gsi_next (&gsi))
        make_values_for_phi (gsi_stmt (gsi), block);
        make_values_for_phi (gsi_stmt (gsi), block);
 
 
      BB_MAY_NOTRETURN (block) = 0;
      BB_MAY_NOTRETURN (block) = 0;
 
 
      /* Now compute value numbers and populate value sets with all
      /* Now compute value numbers and populate value sets with all
         the expressions computed in BLOCK.  */
         the expressions computed in BLOCK.  */
      for (gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi))
      for (gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi))
        {
        {
          ssa_op_iter iter;
          ssa_op_iter iter;
          tree op;
          tree op;
 
 
          stmt = gsi_stmt (gsi);
          stmt = gsi_stmt (gsi);
          gimple_set_uid (stmt, stmt_uid++);
          gimple_set_uid (stmt, stmt_uid++);
 
 
          /* Cache whether the basic-block has any non-visible side-effect
          /* Cache whether the basic-block has any non-visible side-effect
             or control flow.
             or control flow.
             If this isn't a call or it is the last stmt in the
             If this isn't a call or it is the last stmt in the
             basic-block then the CFG represents things correctly.  */
             basic-block then the CFG represents things correctly.  */
          if (is_gimple_call (stmt)
          if (is_gimple_call (stmt)
              && !stmt_ends_bb_p (stmt))
              && !stmt_ends_bb_p (stmt))
            {
            {
              /* Non-looping const functions always return normally.
              /* Non-looping const functions always return normally.
                 Otherwise the call might not return or have side-effects
                 Otherwise the call might not return or have side-effects
                 that forbids hoisting possibly trapping expressions
                 that forbids hoisting possibly trapping expressions
                 before it.  */
                 before it.  */
              int flags = gimple_call_flags (stmt);
              int flags = gimple_call_flags (stmt);
              if (!(flags & ECF_CONST)
              if (!(flags & ECF_CONST)
                  || (flags & ECF_LOOPING_CONST_OR_PURE))
                  || (flags & ECF_LOOPING_CONST_OR_PURE))
                BB_MAY_NOTRETURN (block) = 1;
                BB_MAY_NOTRETURN (block) = 1;
            }
            }
 
 
          FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
          FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
            {
            {
              pre_expr e = get_or_alloc_expr_for_name (op);
              pre_expr e = get_or_alloc_expr_for_name (op);
 
 
              add_to_value (get_expr_value_id (e), e);
              add_to_value (get_expr_value_id (e), e);
              if (!in_fre)
              if (!in_fre)
                bitmap_insert_into_set (TMP_GEN (block), e);
                bitmap_insert_into_set (TMP_GEN (block), e);
              bitmap_value_insert_into_set (AVAIL_OUT (block), e);
              bitmap_value_insert_into_set (AVAIL_OUT (block), e);
            }
            }
 
 
          if (gimple_has_volatile_ops (stmt)
          if (gimple_has_volatile_ops (stmt)
              || stmt_could_throw_p (stmt))
              || stmt_could_throw_p (stmt))
            continue;
            continue;
 
 
          switch (gimple_code (stmt))
          switch (gimple_code (stmt))
            {
            {
            case GIMPLE_RETURN:
            case GIMPLE_RETURN:
              FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
              FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
                add_to_exp_gen (block, op);
                add_to_exp_gen (block, op);
              continue;
              continue;
 
 
            case GIMPLE_CALL:
            case GIMPLE_CALL:
              {
              {
                vn_reference_t ref;
                vn_reference_t ref;
                unsigned int i;
                unsigned int i;
                vn_reference_op_t vro;
                vn_reference_op_t vro;
                pre_expr result = NULL;
                pre_expr result = NULL;
                VEC(vn_reference_op_s, heap) *ops = NULL;
                VEC(vn_reference_op_s, heap) *ops = NULL;
 
 
                if (!can_value_number_call (stmt))
                if (!can_value_number_call (stmt))
                  continue;
                  continue;
 
 
                copy_reference_ops_from_call (stmt, &ops);
                copy_reference_ops_from_call (stmt, &ops);
                vn_reference_lookup_pieces (gimple_vuse (stmt), 0,
                vn_reference_lookup_pieces (gimple_vuse (stmt), 0,
                                            gimple_expr_type (stmt),
                                            gimple_expr_type (stmt),
                                            ops, &ref, VN_NOWALK);
                                            ops, &ref, VN_NOWALK);
                VEC_free (vn_reference_op_s, heap, ops);
                VEC_free (vn_reference_op_s, heap, ops);
                if (!ref)
                if (!ref)
                  continue;
                  continue;
 
 
                for (i = 0; VEC_iterate (vn_reference_op_s,
                for (i = 0; VEC_iterate (vn_reference_op_s,
                                         ref->operands, i,
                                         ref->operands, i,
                                         vro); i++)
                                         vro); i++)
                  {
                  {
                    if (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME)
                    if (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME)
                      add_to_exp_gen (block, vro->op0);
                      add_to_exp_gen (block, vro->op0);
                    if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME)
                    if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME)
                      add_to_exp_gen (block, vro->op1);
                      add_to_exp_gen (block, vro->op1);
                    if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME)
                    if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME)
                      add_to_exp_gen (block, vro->op2);
                      add_to_exp_gen (block, vro->op2);
                  }
                  }
                result = (pre_expr) pool_alloc (pre_expr_pool);
                result = (pre_expr) pool_alloc (pre_expr_pool);
                result->kind = REFERENCE;
                result->kind = REFERENCE;
                result->id = 0;
                result->id = 0;
                PRE_EXPR_REFERENCE (result) = ref;
                PRE_EXPR_REFERENCE (result) = ref;
 
 
                get_or_alloc_expression_id (result);
                get_or_alloc_expression_id (result);
                add_to_value (get_expr_value_id (result), result);
                add_to_value (get_expr_value_id (result), result);
                if (!in_fre)
                if (!in_fre)
                  bitmap_value_insert_into_set (EXP_GEN (block), result);
                  bitmap_value_insert_into_set (EXP_GEN (block), result);
                continue;
                continue;
              }
              }
 
 
            case GIMPLE_ASSIGN:
            case GIMPLE_ASSIGN:
              {
              {
                pre_expr result = NULL;
                pre_expr result = NULL;
                switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)))
                switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)))
                  {
                  {
                  case tcc_unary:
                  case tcc_unary:
                  case tcc_binary:
                  case tcc_binary:
                  case tcc_comparison:
                  case tcc_comparison:
                    {
                    {
                      vn_nary_op_t nary;
                      vn_nary_op_t nary;
                      unsigned int i;
                      unsigned int i;
 
 
                      vn_nary_op_lookup_pieces (gimple_num_ops (stmt) - 1,
                      vn_nary_op_lookup_pieces (gimple_num_ops (stmt) - 1,
                                                gimple_assign_rhs_code (stmt),
                                                gimple_assign_rhs_code (stmt),
                                                gimple_expr_type (stmt),
                                                gimple_expr_type (stmt),
                                                gimple_assign_rhs1_ptr (stmt),
                                                gimple_assign_rhs1_ptr (stmt),
                                                &nary);
                                                &nary);
 
 
                      if (!nary)
                      if (!nary)
                        continue;
                        continue;
 
 
                      for (i = 0; i < nary->length; i++)
                      for (i = 0; i < nary->length; i++)
                        if (TREE_CODE (nary->op[i]) == SSA_NAME)
                        if (TREE_CODE (nary->op[i]) == SSA_NAME)
                          add_to_exp_gen (block, nary->op[i]);
                          add_to_exp_gen (block, nary->op[i]);
 
 
                      result = (pre_expr) pool_alloc (pre_expr_pool);
                      result = (pre_expr) pool_alloc (pre_expr_pool);
                      result->kind = NARY;
                      result->kind = NARY;
                      result->id = 0;
                      result->id = 0;
                      PRE_EXPR_NARY (result) = nary;
                      PRE_EXPR_NARY (result) = nary;
                      break;
                      break;
                    }
                    }
 
 
                  case tcc_declaration:
                  case tcc_declaration:
                  case tcc_reference:
                  case tcc_reference:
                    {
                    {
                      vn_reference_t ref;
                      vn_reference_t ref;
                      unsigned int i;
                      unsigned int i;
                      vn_reference_op_t vro;
                      vn_reference_op_t vro;
 
 
                      vn_reference_lookup (gimple_assign_rhs1 (stmt),
                      vn_reference_lookup (gimple_assign_rhs1 (stmt),
                                           gimple_vuse (stmt),
                                           gimple_vuse (stmt),
                                           VN_WALK, &ref);
                                           VN_WALK, &ref);
                      if (!ref)
                      if (!ref)
                        continue;
                        continue;
 
 
                      for (i = 0; VEC_iterate (vn_reference_op_s,
                      for (i = 0; VEC_iterate (vn_reference_op_s,
                                               ref->operands, i,
                                               ref->operands, i,
                                               vro); i++)
                                               vro); i++)
                        {
                        {
                          if (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME)
                          if (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME)
                            add_to_exp_gen (block, vro->op0);
                            add_to_exp_gen (block, vro->op0);
                          if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME)
                          if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME)
                            add_to_exp_gen (block, vro->op1);
                            add_to_exp_gen (block, vro->op1);
                          if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME)
                          if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME)
                            add_to_exp_gen (block, vro->op2);
                            add_to_exp_gen (block, vro->op2);
                        }
                        }
                      result = (pre_expr) pool_alloc (pre_expr_pool);
                      result = (pre_expr) pool_alloc (pre_expr_pool);
                      result->kind = REFERENCE;
                      result->kind = REFERENCE;
                      result->id = 0;
                      result->id = 0;
                      PRE_EXPR_REFERENCE (result) = ref;
                      PRE_EXPR_REFERENCE (result) = ref;
                      break;
                      break;
                    }
                    }
 
 
                  default:
                  default:
                    /* For any other statement that we don't
                    /* For any other statement that we don't
                       recognize, simply add all referenced
                       recognize, simply add all referenced
                       SSA_NAMEs to EXP_GEN.  */
                       SSA_NAMEs to EXP_GEN.  */
                    FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
                    FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
                      add_to_exp_gen (block, op);
                      add_to_exp_gen (block, op);
                    continue;
                    continue;
                  }
                  }
 
 
                get_or_alloc_expression_id (result);
                get_or_alloc_expression_id (result);
                add_to_value (get_expr_value_id (result), result);
                add_to_value (get_expr_value_id (result), result);
                if (!in_fre)
                if (!in_fre)
                  bitmap_value_insert_into_set (EXP_GEN (block), result);
                  bitmap_value_insert_into_set (EXP_GEN (block), result);
 
 
                continue;
                continue;
              }
              }
            default:
            default:
              break;
              break;
            }
            }
        }
        }
 
 
      /* Put the dominator children of BLOCK on the worklist of blocks
      /* Put the dominator children of BLOCK on the worklist of blocks
         to compute available sets for.  */
         to compute available sets for.  */
      for (son = first_dom_son (CDI_DOMINATORS, block);
      for (son = first_dom_son (CDI_DOMINATORS, block);
           son;
           son;
           son = next_dom_son (CDI_DOMINATORS, son))
           son = next_dom_son (CDI_DOMINATORS, son))
        worklist[sp++] = son;
        worklist[sp++] = son;
    }
    }
 
 
  free (worklist);
  free (worklist);
}
}
 
 
/* Insert the expression for SSA_VN that SCCVN thought would be simpler
/* Insert the expression for SSA_VN that SCCVN thought would be simpler
   than the available expressions for it.  The insertion point is
   than the available expressions for it.  The insertion point is
   right before the first use in STMT.  Returns the SSA_NAME that should
   right before the first use in STMT.  Returns the SSA_NAME that should
   be used for replacement.  */
   be used for replacement.  */
 
 
static tree
static tree
do_SCCVN_insertion (gimple stmt, tree ssa_vn)
do_SCCVN_insertion (gimple stmt, tree ssa_vn)
{
{
  basic_block bb = gimple_bb (stmt);
  basic_block bb = gimple_bb (stmt);
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  gimple_seq stmts = NULL;
  gimple_seq stmts = NULL;
  tree expr;
  tree expr;
  pre_expr e;
  pre_expr e;
 
 
  /* First create a value expression from the expression we want
  /* First create a value expression from the expression we want
     to insert and associate it with the value handle for SSA_VN.  */
     to insert and associate it with the value handle for SSA_VN.  */
  e = get_or_alloc_expr_for (vn_get_expr_for (ssa_vn));
  e = get_or_alloc_expr_for (vn_get_expr_for (ssa_vn));
  if (e == NULL)
  if (e == NULL)
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Then use create_expression_by_pieces to generate a valid
  /* Then use create_expression_by_pieces to generate a valid
     expression to insert at this point of the IL stream.  */
     expression to insert at this point of the IL stream.  */
  expr = create_expression_by_pieces (bb, e, &stmts, stmt, NULL);
  expr = create_expression_by_pieces (bb, e, &stmts, stmt, NULL);
  if (expr == NULL_TREE)
  if (expr == NULL_TREE)
    return NULL_TREE;
    return NULL_TREE;
  gsi = gsi_for_stmt (stmt);
  gsi = gsi_for_stmt (stmt);
  gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
  gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
 
 
  return expr;
  return expr;
}
}
 
 
/* Eliminate fully redundant computations.  */
/* Eliminate fully redundant computations.  */
 
 
static unsigned int
static unsigned int
eliminate (void)
eliminate (void)
{
{
  VEC (gimple, heap) *to_remove = NULL;
  VEC (gimple, heap) *to_remove = NULL;
  VEC (gimple, heap) *to_update = NULL;
  VEC (gimple, heap) *to_update = NULL;
  basic_block b;
  basic_block b;
  unsigned int todo = 0;
  unsigned int todo = 0;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  gimple stmt;
  gimple stmt;
  unsigned i;
  unsigned i;
 
 
  FOR_EACH_BB (b)
  FOR_EACH_BB (b)
    {
    {
      for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
      for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
        {
        {
          tree lhs = NULL_TREE;
          tree lhs = NULL_TREE;
          tree rhs = NULL_TREE;
          tree rhs = NULL_TREE;
 
 
          stmt = gsi_stmt (gsi);
          stmt = gsi_stmt (gsi);
 
 
          if (gimple_has_lhs (stmt))
          if (gimple_has_lhs (stmt))
            lhs = gimple_get_lhs (stmt);
            lhs = gimple_get_lhs (stmt);
 
 
          if (gimple_assign_single_p (stmt))
          if (gimple_assign_single_p (stmt))
            rhs = gimple_assign_rhs1 (stmt);
            rhs = gimple_assign_rhs1 (stmt);
 
 
          /* Lookup the RHS of the expression, see if we have an
          /* Lookup the RHS of the expression, see if we have an
             available computation for it.  If so, replace the RHS with
             available computation for it.  If so, replace the RHS with
             the available computation.
             the available computation.
 
 
             See PR43491.
             See PR43491.
             We don't replace global register variable when it is a the RHS of
             We don't replace global register variable when it is a the RHS of
             a single assign. We do replace local register variable since gcc
             a single assign. We do replace local register variable since gcc
             does not guarantee local variable will be allocated in register.  */
             does not guarantee local variable will be allocated in register.  */
          if (gimple_has_lhs (stmt)
          if (gimple_has_lhs (stmt)
              && TREE_CODE (lhs) == SSA_NAME
              && TREE_CODE (lhs) == SSA_NAME
              && !gimple_assign_ssa_name_copy_p (stmt)
              && !gimple_assign_ssa_name_copy_p (stmt)
              && (!gimple_assign_single_p (stmt)
              && (!gimple_assign_single_p (stmt)
                  || (!is_gimple_min_invariant (rhs)
                  || (!is_gimple_min_invariant (rhs)
                      && (gimple_assign_rhs_code (stmt) != VAR_DECL
                      && (gimple_assign_rhs_code (stmt) != VAR_DECL
                          || !is_global_var (rhs)
                          || !is_global_var (rhs)
                          || !DECL_HARD_REGISTER (rhs))))
                          || !DECL_HARD_REGISTER (rhs))))
              && !gimple_has_volatile_ops  (stmt)
              && !gimple_has_volatile_ops  (stmt)
              && !has_zero_uses (lhs))
              && !has_zero_uses (lhs))
            {
            {
              tree sprime = NULL;
              tree sprime = NULL;
              pre_expr lhsexpr = get_or_alloc_expr_for_name (lhs);
              pre_expr lhsexpr = get_or_alloc_expr_for_name (lhs);
              pre_expr sprimeexpr;
              pre_expr sprimeexpr;
              gimple orig_stmt = stmt;
              gimple orig_stmt = stmt;
 
 
              sprimeexpr = bitmap_find_leader (AVAIL_OUT (b),
              sprimeexpr = bitmap_find_leader (AVAIL_OUT (b),
                                               get_expr_value_id (lhsexpr),
                                               get_expr_value_id (lhsexpr),
                                               NULL);
                                               NULL);
 
 
              if (sprimeexpr)
              if (sprimeexpr)
                {
                {
                  if (sprimeexpr->kind == CONSTANT)
                  if (sprimeexpr->kind == CONSTANT)
                    sprime = PRE_EXPR_CONSTANT (sprimeexpr);
                    sprime = PRE_EXPR_CONSTANT (sprimeexpr);
                  else if (sprimeexpr->kind == NAME)
                  else if (sprimeexpr->kind == NAME)
                    sprime = PRE_EXPR_NAME (sprimeexpr);
                    sprime = PRE_EXPR_NAME (sprimeexpr);
                  else
                  else
                    gcc_unreachable ();
                    gcc_unreachable ();
                }
                }
 
 
              /* If there is no existing leader but SCCVN knows this
              /* If there is no existing leader but SCCVN knows this
                 value is constant, use that constant.  */
                 value is constant, use that constant.  */
              if (!sprime && is_gimple_min_invariant (VN_INFO (lhs)->valnum))
              if (!sprime && is_gimple_min_invariant (VN_INFO (lhs)->valnum))
                {
                {
                  sprime = VN_INFO (lhs)->valnum;
                  sprime = VN_INFO (lhs)->valnum;
                  if (!useless_type_conversion_p (TREE_TYPE (lhs),
                  if (!useless_type_conversion_p (TREE_TYPE (lhs),
                                                  TREE_TYPE (sprime)))
                                                  TREE_TYPE (sprime)))
                    sprime = fold_convert (TREE_TYPE (lhs), sprime);
                    sprime = fold_convert (TREE_TYPE (lhs), sprime);
 
 
                  if (dump_file && (dump_flags & TDF_DETAILS))
                  if (dump_file && (dump_flags & TDF_DETAILS))
                    {
                    {
                      fprintf (dump_file, "Replaced ");
                      fprintf (dump_file, "Replaced ");
                      print_gimple_expr (dump_file, stmt, 0, 0);
                      print_gimple_expr (dump_file, stmt, 0, 0);
                      fprintf (dump_file, " with ");
                      fprintf (dump_file, " with ");
                      print_generic_expr (dump_file, sprime, 0);
                      print_generic_expr (dump_file, sprime, 0);
                      fprintf (dump_file, " in ");
                      fprintf (dump_file, " in ");
                      print_gimple_stmt (dump_file, stmt, 0, 0);
                      print_gimple_stmt (dump_file, stmt, 0, 0);
                    }
                    }
                  pre_stats.eliminations++;
                  pre_stats.eliminations++;
                  propagate_tree_value_into_stmt (&gsi, sprime);
                  propagate_tree_value_into_stmt (&gsi, sprime);
                  stmt = gsi_stmt (gsi);
                  stmt = gsi_stmt (gsi);
                  update_stmt (stmt);
                  update_stmt (stmt);
 
 
                  /* If we removed EH side-effects from the statement, clean
                  /* If we removed EH side-effects from the statement, clean
                     its EH information.  */
                     its EH information.  */
                  if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
                  if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
                    {
                    {
                      bitmap_set_bit (need_eh_cleanup,
                      bitmap_set_bit (need_eh_cleanup,
                                      gimple_bb (stmt)->index);
                                      gimple_bb (stmt)->index);
                      if (dump_file && (dump_flags & TDF_DETAILS))
                      if (dump_file && (dump_flags & TDF_DETAILS))
                        fprintf (dump_file, "  Removed EH side-effects.\n");
                        fprintf (dump_file, "  Removed EH side-effects.\n");
                    }
                    }
                  continue;
                  continue;
                }
                }
 
 
              /* If there is no existing usable leader but SCCVN thinks
              /* If there is no existing usable leader but SCCVN thinks
                 it has an expression it wants to use as replacement,
                 it has an expression it wants to use as replacement,
                 insert that.  */
                 insert that.  */
              if (!sprime || sprime == lhs)
              if (!sprime || sprime == lhs)
                {
                {
                  tree val = VN_INFO (lhs)->valnum;
                  tree val = VN_INFO (lhs)->valnum;
                  if (val != VN_TOP
                  if (val != VN_TOP
                      && TREE_CODE (val) == SSA_NAME
                      && TREE_CODE (val) == SSA_NAME
                      && VN_INFO (val)->needs_insertion
                      && VN_INFO (val)->needs_insertion
                      && can_PRE_operation (vn_get_expr_for (val)))
                      && can_PRE_operation (vn_get_expr_for (val)))
                    sprime = do_SCCVN_insertion (stmt, val);
                    sprime = do_SCCVN_insertion (stmt, val);
                }
                }
              if (sprime
              if (sprime
                  && sprime != lhs
                  && sprime != lhs
                  && (rhs == NULL_TREE
                  && (rhs == NULL_TREE
                      || TREE_CODE (rhs) != SSA_NAME
                      || TREE_CODE (rhs) != SSA_NAME
                      || may_propagate_copy (rhs, sprime)))
                      || may_propagate_copy (rhs, sprime)))
                {
                {
                  bool can_make_abnormal_goto
                  bool can_make_abnormal_goto
                    = is_gimple_call (stmt)
                    = is_gimple_call (stmt)
                      && stmt_can_make_abnormal_goto (stmt);
                      && stmt_can_make_abnormal_goto (stmt);
 
 
                  gcc_assert (sprime != rhs);
                  gcc_assert (sprime != rhs);
 
 
                  if (dump_file && (dump_flags & TDF_DETAILS))
                  if (dump_file && (dump_flags & TDF_DETAILS))
                    {
                    {
                      fprintf (dump_file, "Replaced ");
                      fprintf (dump_file, "Replaced ");
                      print_gimple_expr (dump_file, stmt, 0, 0);
                      print_gimple_expr (dump_file, stmt, 0, 0);
                      fprintf (dump_file, " with ");
                      fprintf (dump_file, " with ");
                      print_generic_expr (dump_file, sprime, 0);
                      print_generic_expr (dump_file, sprime, 0);
                      fprintf (dump_file, " in ");
                      fprintf (dump_file, " in ");
                      print_gimple_stmt (dump_file, stmt, 0, 0);
                      print_gimple_stmt (dump_file, stmt, 0, 0);
                    }
                    }
 
 
                  if (TREE_CODE (sprime) == SSA_NAME)
                  if (TREE_CODE (sprime) == SSA_NAME)
                    gimple_set_plf (SSA_NAME_DEF_STMT (sprime),
                    gimple_set_plf (SSA_NAME_DEF_STMT (sprime),
                                    NECESSARY, true);
                                    NECESSARY, true);
                  /* We need to make sure the new and old types actually match,
                  /* We need to make sure the new and old types actually match,
                     which may require adding a simple cast, which fold_convert
                     which may require adding a simple cast, which fold_convert
                     will do for us.  */
                     will do for us.  */
                  if ((!rhs || TREE_CODE (rhs) != SSA_NAME)
                  if ((!rhs || TREE_CODE (rhs) != SSA_NAME)
                      && !useless_type_conversion_p (gimple_expr_type (stmt),
                      && !useless_type_conversion_p (gimple_expr_type (stmt),
                                                     TREE_TYPE (sprime)))
                                                     TREE_TYPE (sprime)))
                    sprime = fold_convert (gimple_expr_type (stmt), sprime);
                    sprime = fold_convert (gimple_expr_type (stmt), sprime);
 
 
                  pre_stats.eliminations++;
                  pre_stats.eliminations++;
                  propagate_tree_value_into_stmt (&gsi, sprime);
                  propagate_tree_value_into_stmt (&gsi, sprime);
                  stmt = gsi_stmt (gsi);
                  stmt = gsi_stmt (gsi);
                  update_stmt (stmt);
                  update_stmt (stmt);
 
 
                  /* If we removed EH side-effects from the statement, clean
                  /* If we removed EH side-effects from the statement, clean
                     its EH information.  */
                     its EH information.  */
                  if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
                  if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
                    {
                    {
                      bitmap_set_bit (need_eh_cleanup,
                      bitmap_set_bit (need_eh_cleanup,
                                      gimple_bb (stmt)->index);
                                      gimple_bb (stmt)->index);
                      if (dump_file && (dump_flags & TDF_DETAILS))
                      if (dump_file && (dump_flags & TDF_DETAILS))
                        fprintf (dump_file, "  Removed EH side-effects.\n");
                        fprintf (dump_file, "  Removed EH side-effects.\n");
                    }
                    }
 
 
                  /* Likewise for AB side-effects.  */
                  /* Likewise for AB side-effects.  */
                  if (can_make_abnormal_goto
                  if (can_make_abnormal_goto
                      && !stmt_can_make_abnormal_goto (stmt))
                      && !stmt_can_make_abnormal_goto (stmt))
                    {
                    {
                      bitmap_set_bit (need_ab_cleanup,
                      bitmap_set_bit (need_ab_cleanup,
                                      gimple_bb (stmt)->index);
                                      gimple_bb (stmt)->index);
                      if (dump_file && (dump_flags & TDF_DETAILS))
                      if (dump_file && (dump_flags & TDF_DETAILS))
                        fprintf (dump_file, "  Removed AB side-effects.\n");
                        fprintf (dump_file, "  Removed AB side-effects.\n");
                    }
                    }
                }
                }
            }
            }
          /* If the statement is a scalar store, see if the expression
          /* If the statement is a scalar store, see if the expression
             has the same value number as its rhs.  If so, the store is
             has the same value number as its rhs.  If so, the store is
             dead.  */
             dead.  */
          else if (gimple_assign_single_p (stmt)
          else if (gimple_assign_single_p (stmt)
                   && !is_gimple_reg (gimple_assign_lhs (stmt))
                   && !is_gimple_reg (gimple_assign_lhs (stmt))
                   && (TREE_CODE (rhs) == SSA_NAME
                   && (TREE_CODE (rhs) == SSA_NAME
                       || is_gimple_min_invariant (rhs)))
                       || is_gimple_min_invariant (rhs)))
            {
            {
              tree val;
              tree val;
              val = vn_reference_lookup (gimple_assign_lhs (stmt),
              val = vn_reference_lookup (gimple_assign_lhs (stmt),
                                         gimple_vuse (stmt), VN_WALK, NULL);
                                         gimple_vuse (stmt), VN_WALK, NULL);
              if (TREE_CODE (rhs) == SSA_NAME)
              if (TREE_CODE (rhs) == SSA_NAME)
                rhs = VN_INFO (rhs)->valnum;
                rhs = VN_INFO (rhs)->valnum;
              if (val
              if (val
                  && operand_equal_p (val, rhs, 0))
                  && operand_equal_p (val, rhs, 0))
                {
                {
                  if (dump_file && (dump_flags & TDF_DETAILS))
                  if (dump_file && (dump_flags & TDF_DETAILS))
                    {
                    {
                      fprintf (dump_file, "Deleted redundant store ");
                      fprintf (dump_file, "Deleted redundant store ");
                      print_gimple_stmt (dump_file, stmt, 0, 0);
                      print_gimple_stmt (dump_file, stmt, 0, 0);
                    }
                    }
 
 
                  /* Queue stmt for removal.  */
                  /* Queue stmt for removal.  */
                  VEC_safe_push (gimple, heap, to_remove, stmt);
                  VEC_safe_push (gimple, heap, to_remove, stmt);
                }
                }
            }
            }
          /* Visit COND_EXPRs and fold the comparison with the
          /* Visit COND_EXPRs and fold the comparison with the
             available value-numbers.  */
             available value-numbers.  */
          else if (gimple_code (stmt) == GIMPLE_COND)
          else if (gimple_code (stmt) == GIMPLE_COND)
            {
            {
              tree op0 = gimple_cond_lhs (stmt);
              tree op0 = gimple_cond_lhs (stmt);
              tree op1 = gimple_cond_rhs (stmt);
              tree op1 = gimple_cond_rhs (stmt);
              tree result;
              tree result;
 
 
              if (TREE_CODE (op0) == SSA_NAME)
              if (TREE_CODE (op0) == SSA_NAME)
                op0 = VN_INFO (op0)->valnum;
                op0 = VN_INFO (op0)->valnum;
              if (TREE_CODE (op1) == SSA_NAME)
              if (TREE_CODE (op1) == SSA_NAME)
                op1 = VN_INFO (op1)->valnum;
                op1 = VN_INFO (op1)->valnum;
              result = fold_binary (gimple_cond_code (stmt), boolean_type_node,
              result = fold_binary (gimple_cond_code (stmt), boolean_type_node,
                                    op0, op1);
                                    op0, op1);
              if (result && TREE_CODE (result) == INTEGER_CST)
              if (result && TREE_CODE (result) == INTEGER_CST)
                {
                {
                  if (integer_zerop (result))
                  if (integer_zerop (result))
                    gimple_cond_make_false (stmt);
                    gimple_cond_make_false (stmt);
                  else
                  else
                    gimple_cond_make_true (stmt);
                    gimple_cond_make_true (stmt);
                  update_stmt (stmt);
                  update_stmt (stmt);
                  todo = TODO_cleanup_cfg;
                  todo = TODO_cleanup_cfg;
                }
                }
            }
            }
          /* Visit indirect calls and turn them into direct calls if
          /* Visit indirect calls and turn them into direct calls if
             possible.  */
             possible.  */
          if (is_gimple_call (stmt))
          if (is_gimple_call (stmt))
            {
            {
              tree orig_fn = gimple_call_fn (stmt);
              tree orig_fn = gimple_call_fn (stmt);
              tree fn;
              tree fn;
              if (!orig_fn)
              if (!orig_fn)
                continue;
                continue;
              if (TREE_CODE (orig_fn) == SSA_NAME)
              if (TREE_CODE (orig_fn) == SSA_NAME)
                fn = VN_INFO (orig_fn)->valnum;
                fn = VN_INFO (orig_fn)->valnum;
              else if (TREE_CODE (orig_fn) == OBJ_TYPE_REF
              else if (TREE_CODE (orig_fn) == OBJ_TYPE_REF
                       && TREE_CODE (OBJ_TYPE_REF_EXPR (orig_fn)) == SSA_NAME)
                       && TREE_CODE (OBJ_TYPE_REF_EXPR (orig_fn)) == SSA_NAME)
                fn = VN_INFO (OBJ_TYPE_REF_EXPR (orig_fn))->valnum;
                fn = VN_INFO (OBJ_TYPE_REF_EXPR (orig_fn))->valnum;
              else
              else
                continue;
                continue;
              if (gimple_call_addr_fndecl (fn) != NULL_TREE
              if (gimple_call_addr_fndecl (fn) != NULL_TREE
                  && useless_type_conversion_p (TREE_TYPE (orig_fn),
                  && useless_type_conversion_p (TREE_TYPE (orig_fn),
                                                TREE_TYPE (fn)))
                                                TREE_TYPE (fn)))
                {
                {
                  bool can_make_abnormal_goto
                  bool can_make_abnormal_goto
                    = stmt_can_make_abnormal_goto (stmt);
                    = stmt_can_make_abnormal_goto (stmt);
                  bool was_noreturn = gimple_call_noreturn_p (stmt);
                  bool was_noreturn = gimple_call_noreturn_p (stmt);
 
 
                  if (dump_file && (dump_flags & TDF_DETAILS))
                  if (dump_file && (dump_flags & TDF_DETAILS))
                    {
                    {
                      fprintf (dump_file, "Replacing call target with ");
                      fprintf (dump_file, "Replacing call target with ");
                      print_generic_expr (dump_file, fn, 0);
                      print_generic_expr (dump_file, fn, 0);
                      fprintf (dump_file, " in ");
                      fprintf (dump_file, " in ");
                      print_gimple_stmt (dump_file, stmt, 0, 0);
                      print_gimple_stmt (dump_file, stmt, 0, 0);
                    }
                    }
 
 
                  gimple_call_set_fn (stmt, fn);
                  gimple_call_set_fn (stmt, fn);
                  VEC_safe_push (gimple, heap, to_update, stmt);
                  VEC_safe_push (gimple, heap, to_update, stmt);
 
 
                  /* When changing a call into a noreturn call, cfg cleanup
                  /* When changing a call into a noreturn call, cfg cleanup
                     is needed to fix up the noreturn call.  */
                     is needed to fix up the noreturn call.  */
                  if (!was_noreturn && gimple_call_noreturn_p (stmt))
                  if (!was_noreturn && gimple_call_noreturn_p (stmt))
                    todo |= TODO_cleanup_cfg;
                    todo |= TODO_cleanup_cfg;
 
 
                  /* If we removed EH side-effects from the statement, clean
                  /* If we removed EH side-effects from the statement, clean
                     its EH information.  */
                     its EH information.  */
                  if (maybe_clean_or_replace_eh_stmt (stmt, stmt))
                  if (maybe_clean_or_replace_eh_stmt (stmt, stmt))
                    {
                    {
                      bitmap_set_bit (need_eh_cleanup,
                      bitmap_set_bit (need_eh_cleanup,
                                      gimple_bb (stmt)->index);
                                      gimple_bb (stmt)->index);
                      if (dump_file && (dump_flags & TDF_DETAILS))
                      if (dump_file && (dump_flags & TDF_DETAILS))
                        fprintf (dump_file, "  Removed EH side-effects.\n");
                        fprintf (dump_file, "  Removed EH side-effects.\n");
                    }
                    }
 
 
                  /* Likewise for AB side-effects.  */
                  /* Likewise for AB side-effects.  */
                  if (can_make_abnormal_goto
                  if (can_make_abnormal_goto
                      && !stmt_can_make_abnormal_goto (stmt))
                      && !stmt_can_make_abnormal_goto (stmt))
                    {
                    {
                      bitmap_set_bit (need_ab_cleanup,
                      bitmap_set_bit (need_ab_cleanup,
                                      gimple_bb (stmt)->index);
                                      gimple_bb (stmt)->index);
                      if (dump_file && (dump_flags & TDF_DETAILS))
                      if (dump_file && (dump_flags & TDF_DETAILS))
                        fprintf (dump_file, "  Removed AB side-effects.\n");
                        fprintf (dump_file, "  Removed AB side-effects.\n");
                    }
                    }
 
 
                  /* Changing an indirect call to a direct call may
                  /* Changing an indirect call to a direct call may
                     have exposed different semantics.  This may
                     have exposed different semantics.  This may
                     require an SSA update.  */
                     require an SSA update.  */
                  todo |= TODO_update_ssa_only_virtuals;
                  todo |= TODO_update_ssa_only_virtuals;
                }
                }
            }
            }
        }
        }
 
 
      for (gsi = gsi_start_phis (b); !gsi_end_p (gsi);)
      for (gsi = gsi_start_phis (b); !gsi_end_p (gsi);)
        {
        {
          gimple stmt, phi = gsi_stmt (gsi);
          gimple stmt, phi = gsi_stmt (gsi);
          tree sprime = NULL_TREE, res = PHI_RESULT (phi);
          tree sprime = NULL_TREE, res = PHI_RESULT (phi);
          pre_expr sprimeexpr, resexpr;
          pre_expr sprimeexpr, resexpr;
          gimple_stmt_iterator gsi2;
          gimple_stmt_iterator gsi2;
 
 
          /* We want to perform redundant PHI elimination.  Do so by
          /* We want to perform redundant PHI elimination.  Do so by
             replacing the PHI with a single copy if possible.
             replacing the PHI with a single copy if possible.
             Do not touch inserted, single-argument or virtual PHIs.  */
             Do not touch inserted, single-argument or virtual PHIs.  */
          if (gimple_phi_num_args (phi) == 1
          if (gimple_phi_num_args (phi) == 1
              || !is_gimple_reg (res))
              || !is_gimple_reg (res))
            {
            {
              gsi_next (&gsi);
              gsi_next (&gsi);
              continue;
              continue;
            }
            }
 
 
          resexpr = get_or_alloc_expr_for_name (res);
          resexpr = get_or_alloc_expr_for_name (res);
          sprimeexpr = bitmap_find_leader (AVAIL_OUT (b),
          sprimeexpr = bitmap_find_leader (AVAIL_OUT (b),
                                           get_expr_value_id (resexpr), NULL);
                                           get_expr_value_id (resexpr), NULL);
          if (sprimeexpr)
          if (sprimeexpr)
            {
            {
              if (sprimeexpr->kind == CONSTANT)
              if (sprimeexpr->kind == CONSTANT)
                sprime = PRE_EXPR_CONSTANT (sprimeexpr);
                sprime = PRE_EXPR_CONSTANT (sprimeexpr);
              else if (sprimeexpr->kind == NAME)
              else if (sprimeexpr->kind == NAME)
                sprime = PRE_EXPR_NAME (sprimeexpr);
                sprime = PRE_EXPR_NAME (sprimeexpr);
              else
              else
                gcc_unreachable ();
                gcc_unreachable ();
            }
            }
          if (!sprime && is_gimple_min_invariant (VN_INFO (res)->valnum))
          if (!sprime && is_gimple_min_invariant (VN_INFO (res)->valnum))
            {
            {
              sprime = VN_INFO (res)->valnum;
              sprime = VN_INFO (res)->valnum;
              if (!useless_type_conversion_p (TREE_TYPE (res),
              if (!useless_type_conversion_p (TREE_TYPE (res),
                                              TREE_TYPE (sprime)))
                                              TREE_TYPE (sprime)))
                sprime = fold_convert (TREE_TYPE (res), sprime);
                sprime = fold_convert (TREE_TYPE (res), sprime);
            }
            }
          if (!sprime
          if (!sprime
              || sprime == res)
              || sprime == res)
            {
            {
              gsi_next (&gsi);
              gsi_next (&gsi);
              continue;
              continue;
            }
            }
 
 
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
            {
              fprintf (dump_file, "Replaced redundant PHI node defining ");
              fprintf (dump_file, "Replaced redundant PHI node defining ");
              print_generic_expr (dump_file, res, 0);
              print_generic_expr (dump_file, res, 0);
              fprintf (dump_file, " with ");
              fprintf (dump_file, " with ");
              print_generic_expr (dump_file, sprime, 0);
              print_generic_expr (dump_file, sprime, 0);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
 
 
          remove_phi_node (&gsi, false);
          remove_phi_node (&gsi, false);
 
 
          if (!bitmap_bit_p (inserted_exprs, SSA_NAME_VERSION (res))
          if (!bitmap_bit_p (inserted_exprs, SSA_NAME_VERSION (res))
              && TREE_CODE (sprime) == SSA_NAME)
              && TREE_CODE (sprime) == SSA_NAME)
            gimple_set_plf (SSA_NAME_DEF_STMT (sprime), NECESSARY, true);
            gimple_set_plf (SSA_NAME_DEF_STMT (sprime), NECESSARY, true);
 
 
          if (!useless_type_conversion_p (TREE_TYPE (res), TREE_TYPE (sprime)))
          if (!useless_type_conversion_p (TREE_TYPE (res), TREE_TYPE (sprime)))
            sprime = fold_convert (TREE_TYPE (res), sprime);
            sprime = fold_convert (TREE_TYPE (res), sprime);
          stmt = gimple_build_assign (res, sprime);
          stmt = gimple_build_assign (res, sprime);
          SSA_NAME_DEF_STMT (res) = stmt;
          SSA_NAME_DEF_STMT (res) = stmt;
          gimple_set_plf (stmt, NECESSARY, gimple_plf (phi, NECESSARY));
          gimple_set_plf (stmt, NECESSARY, gimple_plf (phi, NECESSARY));
 
 
          gsi2 = gsi_after_labels (b);
          gsi2 = gsi_after_labels (b);
          gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
          gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
          /* Queue the copy for eventual removal.  */
          /* Queue the copy for eventual removal.  */
          VEC_safe_push (gimple, heap, to_remove, stmt);
          VEC_safe_push (gimple, heap, to_remove, stmt);
          /* If we inserted this PHI node ourself, it's not an elimination.  */
          /* If we inserted this PHI node ourself, it's not an elimination.  */
          if (bitmap_bit_p (inserted_exprs, SSA_NAME_VERSION (res)))
          if (bitmap_bit_p (inserted_exprs, SSA_NAME_VERSION (res)))
            pre_stats.phis--;
            pre_stats.phis--;
          else
          else
            pre_stats.eliminations++;
            pre_stats.eliminations++;
        }
        }
    }
    }
 
 
  /* We cannot remove stmts during BB walk, especially not release SSA
  /* We cannot remove stmts during BB walk, especially not release SSA
     names there as this confuses the VN machinery.  The stmts ending
     names there as this confuses the VN machinery.  The stmts ending
     up in to_remove are either stores or simple copies.  */
     up in to_remove are either stores or simple copies.  */
  FOR_EACH_VEC_ELT (gimple, to_remove, i, stmt)
  FOR_EACH_VEC_ELT (gimple, to_remove, i, stmt)
    {
    {
      tree lhs = gimple_assign_lhs (stmt);
      tree lhs = gimple_assign_lhs (stmt);
      tree rhs = gimple_assign_rhs1 (stmt);
      tree rhs = gimple_assign_rhs1 (stmt);
      use_operand_p use_p;
      use_operand_p use_p;
      gimple use_stmt;
      gimple use_stmt;
 
 
      /* If there is a single use only, propagate the equivalency
      /* If there is a single use only, propagate the equivalency
         instead of keeping the copy.  */
         instead of keeping the copy.  */
      if (TREE_CODE (lhs) == SSA_NAME
      if (TREE_CODE (lhs) == SSA_NAME
          && TREE_CODE (rhs) == SSA_NAME
          && TREE_CODE (rhs) == SSA_NAME
          && single_imm_use (lhs, &use_p, &use_stmt)
          && single_imm_use (lhs, &use_p, &use_stmt)
          && may_propagate_copy (USE_FROM_PTR (use_p), rhs))
          && may_propagate_copy (USE_FROM_PTR (use_p), rhs))
        {
        {
          SET_USE (use_p, rhs);
          SET_USE (use_p, rhs);
          update_stmt (use_stmt);
          update_stmt (use_stmt);
          if (bitmap_bit_p (inserted_exprs, SSA_NAME_VERSION (lhs))
          if (bitmap_bit_p (inserted_exprs, SSA_NAME_VERSION (lhs))
              && TREE_CODE (rhs) == SSA_NAME)
              && TREE_CODE (rhs) == SSA_NAME)
            gimple_set_plf (SSA_NAME_DEF_STMT (rhs), NECESSARY, true);
            gimple_set_plf (SSA_NAME_DEF_STMT (rhs), NECESSARY, true);
        }
        }
 
 
      /* If this is a store or a now unused copy, remove it.  */
      /* If this is a store or a now unused copy, remove it.  */
      if (TREE_CODE (lhs) != SSA_NAME
      if (TREE_CODE (lhs) != SSA_NAME
          || has_zero_uses (lhs))
          || has_zero_uses (lhs))
        {
        {
          basic_block bb = gimple_bb (stmt);
          basic_block bb = gimple_bb (stmt);
          gsi = gsi_for_stmt (stmt);
          gsi = gsi_for_stmt (stmt);
          unlink_stmt_vdef (stmt);
          unlink_stmt_vdef (stmt);
          gsi_remove (&gsi, true);
          gsi_remove (&gsi, true);
          /* ???  gsi_remove doesn't tell us whether the stmt was
          /* ???  gsi_remove doesn't tell us whether the stmt was
             in EH tables and thus whether we need to purge EH edges.
             in EH tables and thus whether we need to purge EH edges.
             Simply schedule the block for a cleanup.  */
             Simply schedule the block for a cleanup.  */
          bitmap_set_bit (need_eh_cleanup, bb->index);
          bitmap_set_bit (need_eh_cleanup, bb->index);
          if (TREE_CODE (lhs) == SSA_NAME)
          if (TREE_CODE (lhs) == SSA_NAME)
            bitmap_clear_bit (inserted_exprs, SSA_NAME_VERSION (lhs));
            bitmap_clear_bit (inserted_exprs, SSA_NAME_VERSION (lhs));
          release_defs (stmt);
          release_defs (stmt);
        }
        }
    }
    }
  VEC_free (gimple, heap, to_remove);
  VEC_free (gimple, heap, to_remove);
 
 
  /* We cannot update call statements with virtual operands during
  /* We cannot update call statements with virtual operands during
     SSA walk.  This might remove them which in turn makes our
     SSA walk.  This might remove them which in turn makes our
     VN lattice invalid.  */
     VN lattice invalid.  */
  FOR_EACH_VEC_ELT (gimple, to_update, i, stmt)
  FOR_EACH_VEC_ELT (gimple, to_update, i, stmt)
    update_stmt (stmt);
    update_stmt (stmt);
  VEC_free (gimple, heap, to_update);
  VEC_free (gimple, heap, to_update);
 
 
  return todo;
  return todo;
}
}
 
 
/* Borrow a bit of tree-ssa-dce.c for the moment.
/* Borrow a bit of tree-ssa-dce.c for the moment.
   XXX: In 4.1, we should be able to just run a DCE pass after PRE, though
   XXX: In 4.1, we should be able to just run a DCE pass after PRE, though
   this may be a bit faster, and we may want critical edges kept split.  */
   this may be a bit faster, and we may want critical edges kept split.  */
 
 
/* If OP's defining statement has not already been determined to be necessary,
/* If OP's defining statement has not already been determined to be necessary,
   mark that statement necessary. Return the stmt, if it is newly
   mark that statement necessary. Return the stmt, if it is newly
   necessary.  */
   necessary.  */
 
 
static inline gimple
static inline gimple
mark_operand_necessary (tree op)
mark_operand_necessary (tree op)
{
{
  gimple stmt;
  gimple stmt;
 
 
  gcc_assert (op);
  gcc_assert (op);
 
 
  if (TREE_CODE (op) != SSA_NAME)
  if (TREE_CODE (op) != SSA_NAME)
    return NULL;
    return NULL;
 
 
  stmt = SSA_NAME_DEF_STMT (op);
  stmt = SSA_NAME_DEF_STMT (op);
  gcc_assert (stmt);
  gcc_assert (stmt);
 
 
  if (gimple_plf (stmt, NECESSARY)
  if (gimple_plf (stmt, NECESSARY)
      || gimple_nop_p (stmt))
      || gimple_nop_p (stmt))
    return NULL;
    return NULL;
 
 
  gimple_set_plf (stmt, NECESSARY, true);
  gimple_set_plf (stmt, NECESSARY, true);
  return stmt;
  return stmt;
}
}
 
 
/* Because we don't follow exactly the standard PRE algorithm, and decide not
/* Because we don't follow exactly the standard PRE algorithm, and decide not
   to insert PHI nodes sometimes, and because value numbering of casts isn't
   to insert PHI nodes sometimes, and because value numbering of casts isn't
   perfect, we sometimes end up inserting dead code.   This simple DCE-like
   perfect, we sometimes end up inserting dead code.   This simple DCE-like
   pass removes any insertions we made that weren't actually used.  */
   pass removes any insertions we made that weren't actually used.  */
 
 
static void
static void
remove_dead_inserted_code (void)
remove_dead_inserted_code (void)
{
{
  bitmap worklist;
  bitmap worklist;
  unsigned i;
  unsigned i;
  bitmap_iterator bi;
  bitmap_iterator bi;
  gimple t;
  gimple t;
 
 
  worklist = BITMAP_ALLOC (NULL);
  worklist = BITMAP_ALLOC (NULL);
  EXECUTE_IF_SET_IN_BITMAP (inserted_exprs, 0, i, bi)
  EXECUTE_IF_SET_IN_BITMAP (inserted_exprs, 0, i, bi)
    {
    {
      t = SSA_NAME_DEF_STMT (ssa_name (i));
      t = SSA_NAME_DEF_STMT (ssa_name (i));
      if (gimple_plf (t, NECESSARY))
      if (gimple_plf (t, NECESSARY))
        bitmap_set_bit (worklist, i);
        bitmap_set_bit (worklist, i);
    }
    }
  while (!bitmap_empty_p (worklist))
  while (!bitmap_empty_p (worklist))
    {
    {
      i = bitmap_first_set_bit (worklist);
      i = bitmap_first_set_bit (worklist);
      bitmap_clear_bit (worklist, i);
      bitmap_clear_bit (worklist, i);
      t = SSA_NAME_DEF_STMT (ssa_name (i));
      t = SSA_NAME_DEF_STMT (ssa_name (i));
 
 
      /* PHI nodes are somewhat special in that each PHI alternative has
      /* PHI nodes are somewhat special in that each PHI alternative has
         data and control dependencies.  All the statements feeding the
         data and control dependencies.  All the statements feeding the
         PHI node's arguments are always necessary. */
         PHI node's arguments are always necessary. */
      if (gimple_code (t) == GIMPLE_PHI)
      if (gimple_code (t) == GIMPLE_PHI)
        {
        {
          unsigned k;
          unsigned k;
 
 
          for (k = 0; k < gimple_phi_num_args (t); k++)
          for (k = 0; k < gimple_phi_num_args (t); k++)
            {
            {
              tree arg = PHI_ARG_DEF (t, k);
              tree arg = PHI_ARG_DEF (t, k);
              if (TREE_CODE (arg) == SSA_NAME)
              if (TREE_CODE (arg) == SSA_NAME)
                {
                {
                  gimple n = mark_operand_necessary (arg);
                  gimple n = mark_operand_necessary (arg);
                  if (n)
                  if (n)
                    bitmap_set_bit (worklist, SSA_NAME_VERSION (arg));
                    bitmap_set_bit (worklist, SSA_NAME_VERSION (arg));
                }
                }
            }
            }
        }
        }
      else
      else
        {
        {
          /* Propagate through the operands.  Examine all the USE, VUSE and
          /* Propagate through the operands.  Examine all the USE, VUSE and
             VDEF operands in this statement.  Mark all the statements
             VDEF operands in this statement.  Mark all the statements
             which feed this statement's uses as necessary.  */
             which feed this statement's uses as necessary.  */
          ssa_op_iter iter;
          ssa_op_iter iter;
          tree use;
          tree use;
 
 
          /* The operands of VDEF expressions are also needed as they
          /* The operands of VDEF expressions are also needed as they
             represent potential definitions that may reach this
             represent potential definitions that may reach this
             statement (VDEF operands allow us to follow def-def
             statement (VDEF operands allow us to follow def-def
             links).  */
             links).  */
 
 
          FOR_EACH_SSA_TREE_OPERAND (use, t, iter, SSA_OP_ALL_USES)
          FOR_EACH_SSA_TREE_OPERAND (use, t, iter, SSA_OP_ALL_USES)
            {
            {
              gimple n = mark_operand_necessary (use);
              gimple n = mark_operand_necessary (use);
              if (n)
              if (n)
                bitmap_set_bit (worklist, SSA_NAME_VERSION (use));
                bitmap_set_bit (worklist, SSA_NAME_VERSION (use));
            }
            }
        }
        }
    }
    }
 
 
  EXECUTE_IF_SET_IN_BITMAP (inserted_exprs, 0, i, bi)
  EXECUTE_IF_SET_IN_BITMAP (inserted_exprs, 0, i, bi)
    {
    {
      t = SSA_NAME_DEF_STMT (ssa_name (i));
      t = SSA_NAME_DEF_STMT (ssa_name (i));
      if (!gimple_plf (t, NECESSARY))
      if (!gimple_plf (t, NECESSARY))
        {
        {
          gimple_stmt_iterator gsi;
          gimple_stmt_iterator gsi;
 
 
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
            {
              fprintf (dump_file, "Removing unnecessary insertion:");
              fprintf (dump_file, "Removing unnecessary insertion:");
              print_gimple_stmt (dump_file, t, 0, 0);
              print_gimple_stmt (dump_file, t, 0, 0);
            }
            }
 
 
          gsi = gsi_for_stmt (t);
          gsi = gsi_for_stmt (t);
          if (gimple_code (t) == GIMPLE_PHI)
          if (gimple_code (t) == GIMPLE_PHI)
            remove_phi_node (&gsi, true);
            remove_phi_node (&gsi, true);
          else
          else
            {
            {
              gsi_remove (&gsi, true);
              gsi_remove (&gsi, true);
              release_defs (t);
              release_defs (t);
            }
            }
        }
        }
    }
    }
  BITMAP_FREE (worklist);
  BITMAP_FREE (worklist);
}
}
 
 
/* Compute a reverse post-order in *POST_ORDER.  If INCLUDE_ENTRY_EXIT is
/* Compute a reverse post-order in *POST_ORDER.  If INCLUDE_ENTRY_EXIT is
   true, then then ENTRY_BLOCK and EXIT_BLOCK are included.  Returns
   true, then then ENTRY_BLOCK and EXIT_BLOCK are included.  Returns
   the number of visited blocks.  */
   the number of visited blocks.  */
 
 
static int
static int
my_rev_post_order_compute (int *post_order, bool include_entry_exit)
my_rev_post_order_compute (int *post_order, bool include_entry_exit)
{
{
  edge_iterator *stack;
  edge_iterator *stack;
  int sp;
  int sp;
  int post_order_num = 0;
  int post_order_num = 0;
  sbitmap visited;
  sbitmap visited;
 
 
  if (include_entry_exit)
  if (include_entry_exit)
    post_order[post_order_num++] = EXIT_BLOCK;
    post_order[post_order_num++] = EXIT_BLOCK;
 
 
  /* Allocate stack for back-tracking up CFG.  */
  /* Allocate stack for back-tracking up CFG.  */
  stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
  stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
  sp = 0;
  sp = 0;
 
 
  /* Allocate bitmap to track nodes that have been visited.  */
  /* Allocate bitmap to track nodes that have been visited.  */
  visited = sbitmap_alloc (last_basic_block);
  visited = sbitmap_alloc (last_basic_block);
 
 
  /* None of the nodes in the CFG have been visited yet.  */
  /* None of the nodes in the CFG have been visited yet.  */
  sbitmap_zero (visited);
  sbitmap_zero (visited);
 
 
  /* Push the last edge on to the stack.  */
  /* Push the last edge on to the stack.  */
  stack[sp++] = ei_start (EXIT_BLOCK_PTR->preds);
  stack[sp++] = ei_start (EXIT_BLOCK_PTR->preds);
 
 
  while (sp)
  while (sp)
    {
    {
      edge_iterator ei;
      edge_iterator ei;
      basic_block src;
      basic_block src;
      basic_block dest;
      basic_block dest;
 
 
      /* Look at the edge on the top of the stack.  */
      /* Look at the edge on the top of the stack.  */
      ei = stack[sp - 1];
      ei = stack[sp - 1];
      src = ei_edge (ei)->src;
      src = ei_edge (ei)->src;
      dest = ei_edge (ei)->dest;
      dest = ei_edge (ei)->dest;
 
 
      /* Check if the edge destination has been visited yet.  */
      /* Check if the edge destination has been visited yet.  */
      if (src != ENTRY_BLOCK_PTR && ! TEST_BIT (visited, src->index))
      if (src != ENTRY_BLOCK_PTR && ! TEST_BIT (visited, src->index))
        {
        {
          /* Mark that we have visited the destination.  */
          /* Mark that we have visited the destination.  */
          SET_BIT (visited, src->index);
          SET_BIT (visited, src->index);
 
 
          if (EDGE_COUNT (src->preds) > 0)
          if (EDGE_COUNT (src->preds) > 0)
            /* Since the DEST node has been visited for the first
            /* Since the DEST node has been visited for the first
               time, check its successors.  */
               time, check its successors.  */
            stack[sp++] = ei_start (src->preds);
            stack[sp++] = ei_start (src->preds);
          else
          else
            post_order[post_order_num++] = src->index;
            post_order[post_order_num++] = src->index;
        }
        }
      else
      else
        {
        {
          if (ei_one_before_end_p (ei) && dest != EXIT_BLOCK_PTR)
          if (ei_one_before_end_p (ei) && dest != EXIT_BLOCK_PTR)
            post_order[post_order_num++] = dest->index;
            post_order[post_order_num++] = dest->index;
 
 
          if (!ei_one_before_end_p (ei))
          if (!ei_one_before_end_p (ei))
            ei_next (&stack[sp - 1]);
            ei_next (&stack[sp - 1]);
          else
          else
            sp--;
            sp--;
        }
        }
    }
    }
 
 
  if (include_entry_exit)
  if (include_entry_exit)
    post_order[post_order_num++] = ENTRY_BLOCK;
    post_order[post_order_num++] = ENTRY_BLOCK;
 
 
  free (stack);
  free (stack);
  sbitmap_free (visited);
  sbitmap_free (visited);
  return post_order_num;
  return post_order_num;
}
}
 
 
 
 
/* Initialize data structures used by PRE.  */
/* Initialize data structures used by PRE.  */
 
 
static void
static void
init_pre (bool do_fre)
init_pre (bool do_fre)
{
{
  basic_block bb;
  basic_block bb;
 
 
  next_expression_id = 1;
  next_expression_id = 1;
  expressions = NULL;
  expressions = NULL;
  VEC_safe_push (pre_expr, heap, expressions, NULL);
  VEC_safe_push (pre_expr, heap, expressions, NULL);
  value_expressions = VEC_alloc (bitmap_set_t, heap, get_max_value_id () + 1);
  value_expressions = VEC_alloc (bitmap_set_t, heap, get_max_value_id () + 1);
  VEC_safe_grow_cleared (bitmap_set_t, heap, value_expressions,
  VEC_safe_grow_cleared (bitmap_set_t, heap, value_expressions,
                         get_max_value_id() + 1);
                         get_max_value_id() + 1);
  name_to_id = NULL;
  name_to_id = NULL;
 
 
  in_fre = do_fre;
  in_fre = do_fre;
 
 
  inserted_exprs = BITMAP_ALLOC (NULL);
  inserted_exprs = BITMAP_ALLOC (NULL);
  need_creation = NULL;
  need_creation = NULL;
  pretemp = NULL_TREE;
  pretemp = NULL_TREE;
  storetemp = NULL_TREE;
  storetemp = NULL_TREE;
  prephitemp = NULL_TREE;
  prephitemp = NULL_TREE;
 
 
  connect_infinite_loops_to_exit ();
  connect_infinite_loops_to_exit ();
  memset (&pre_stats, 0, sizeof (pre_stats));
  memset (&pre_stats, 0, sizeof (pre_stats));
 
 
 
 
  postorder = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
  postorder = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
  my_rev_post_order_compute (postorder, false);
  my_rev_post_order_compute (postorder, false);
 
 
  alloc_aux_for_blocks (sizeof (struct bb_bitmap_sets));
  alloc_aux_for_blocks (sizeof (struct bb_bitmap_sets));
 
 
  calculate_dominance_info (CDI_POST_DOMINATORS);
  calculate_dominance_info (CDI_POST_DOMINATORS);
  calculate_dominance_info (CDI_DOMINATORS);
  calculate_dominance_info (CDI_DOMINATORS);
 
 
  bitmap_obstack_initialize (&grand_bitmap_obstack);
  bitmap_obstack_initialize (&grand_bitmap_obstack);
  phi_translate_table = htab_create (5110, expr_pred_trans_hash,
  phi_translate_table = htab_create (5110, expr_pred_trans_hash,
                                     expr_pred_trans_eq, free);
                                     expr_pred_trans_eq, free);
  expression_to_id = htab_create (num_ssa_names * 3,
  expression_to_id = htab_create (num_ssa_names * 3,
                                  pre_expr_hash,
                                  pre_expr_hash,
                                  pre_expr_eq, NULL);
                                  pre_expr_eq, NULL);
  bitmap_set_pool = create_alloc_pool ("Bitmap sets",
  bitmap_set_pool = create_alloc_pool ("Bitmap sets",
                                       sizeof (struct bitmap_set), 30);
                                       sizeof (struct bitmap_set), 30);
  pre_expr_pool = create_alloc_pool ("pre_expr nodes",
  pre_expr_pool = create_alloc_pool ("pre_expr nodes",
                                     sizeof (struct pre_expr_d), 30);
                                     sizeof (struct pre_expr_d), 30);
  FOR_ALL_BB (bb)
  FOR_ALL_BB (bb)
    {
    {
      EXP_GEN (bb) = bitmap_set_new ();
      EXP_GEN (bb) = bitmap_set_new ();
      PHI_GEN (bb) = bitmap_set_new ();
      PHI_GEN (bb) = bitmap_set_new ();
      TMP_GEN (bb) = bitmap_set_new ();
      TMP_GEN (bb) = bitmap_set_new ();
      AVAIL_OUT (bb) = bitmap_set_new ();
      AVAIL_OUT (bb) = bitmap_set_new ();
    }
    }
 
 
  need_eh_cleanup = BITMAP_ALLOC (NULL);
  need_eh_cleanup = BITMAP_ALLOC (NULL);
  need_ab_cleanup = BITMAP_ALLOC (NULL);
  need_ab_cleanup = BITMAP_ALLOC (NULL);
}
}
 
 
 
 
/* Deallocate data structures used by PRE.  */
/* Deallocate data structures used by PRE.  */
 
 
static void
static void
fini_pre (bool do_fre)
fini_pre (bool do_fre)
{
{
  bool do_eh_cleanup = !bitmap_empty_p (need_eh_cleanup);
  bool do_eh_cleanup = !bitmap_empty_p (need_eh_cleanup);
  bool do_ab_cleanup = !bitmap_empty_p (need_ab_cleanup);
  bool do_ab_cleanup = !bitmap_empty_p (need_ab_cleanup);
 
 
  free (postorder);
  free (postorder);
  VEC_free (bitmap_set_t, heap, value_expressions);
  VEC_free (bitmap_set_t, heap, value_expressions);
  BITMAP_FREE (inserted_exprs);
  BITMAP_FREE (inserted_exprs);
  VEC_free (gimple, heap, need_creation);
  VEC_free (gimple, heap, need_creation);
  bitmap_obstack_release (&grand_bitmap_obstack);
  bitmap_obstack_release (&grand_bitmap_obstack);
  free_alloc_pool (bitmap_set_pool);
  free_alloc_pool (bitmap_set_pool);
  free_alloc_pool (pre_expr_pool);
  free_alloc_pool (pre_expr_pool);
  htab_delete (phi_translate_table);
  htab_delete (phi_translate_table);
  htab_delete (expression_to_id);
  htab_delete (expression_to_id);
  VEC_free (unsigned, heap, name_to_id);
  VEC_free (unsigned, heap, name_to_id);
 
 
  free_aux_for_blocks ();
  free_aux_for_blocks ();
 
 
  free_dominance_info (CDI_POST_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);
 
 
  if (do_eh_cleanup)
  if (do_eh_cleanup)
    gimple_purge_all_dead_eh_edges (need_eh_cleanup);
    gimple_purge_all_dead_eh_edges (need_eh_cleanup);
 
 
  if (do_ab_cleanup)
  if (do_ab_cleanup)
    gimple_purge_all_dead_abnormal_call_edges (need_ab_cleanup);
    gimple_purge_all_dead_abnormal_call_edges (need_ab_cleanup);
 
 
  BITMAP_FREE (need_eh_cleanup);
  BITMAP_FREE (need_eh_cleanup);
  BITMAP_FREE (need_ab_cleanup);
  BITMAP_FREE (need_ab_cleanup);
 
 
  if (do_eh_cleanup || do_ab_cleanup)
  if (do_eh_cleanup || do_ab_cleanup)
    cleanup_tree_cfg ();
    cleanup_tree_cfg ();
 
 
  if (!do_fre)
  if (!do_fre)
    loop_optimizer_finalize ();
    loop_optimizer_finalize ();
}
}
 
 
/* Main entry point to the SSA-PRE pass.  DO_FRE is true if the caller
/* Main entry point to the SSA-PRE pass.  DO_FRE is true if the caller
   only wants to do full redundancy elimination.  */
   only wants to do full redundancy elimination.  */
 
 
static unsigned int
static unsigned int
execute_pre (bool do_fre)
execute_pre (bool do_fre)
{
{
  unsigned int todo = 0;
  unsigned int todo = 0;
 
 
  do_partial_partial = optimize > 2 && optimize_function_for_speed_p (cfun);
  do_partial_partial = optimize > 2 && optimize_function_for_speed_p (cfun);
 
 
  /* This has to happen before SCCVN runs because
  /* This has to happen before SCCVN runs because
     loop_optimizer_init may create new phis, etc.  */
     loop_optimizer_init may create new phis, etc.  */
  if (!do_fre)
  if (!do_fre)
    loop_optimizer_init (LOOPS_NORMAL);
    loop_optimizer_init (LOOPS_NORMAL);
 
 
  if (!run_scc_vn (do_fre ? VN_WALKREWRITE : VN_WALK))
  if (!run_scc_vn (do_fre ? VN_WALKREWRITE : VN_WALK))
    {
    {
      if (!do_fre)
      if (!do_fre)
        loop_optimizer_finalize ();
        loop_optimizer_finalize ();
 
 
      return 0;
      return 0;
    }
    }
 
 
  init_pre (do_fre);
  init_pre (do_fre);
  scev_initialize ();
  scev_initialize ();
 
 
  /* Collect and value number expressions computed in each basic block.  */
  /* Collect and value number expressions computed in each basic block.  */
  compute_avail ();
  compute_avail ();
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      basic_block bb;
      basic_block bb;
 
 
      FOR_ALL_BB (bb)
      FOR_ALL_BB (bb)
        {
        {
          print_bitmap_set (dump_file, EXP_GEN (bb), "exp_gen", bb->index);
          print_bitmap_set (dump_file, EXP_GEN (bb), "exp_gen", bb->index);
          print_bitmap_set (dump_file, PHI_GEN (bb), "phi_gen", bb->index);
          print_bitmap_set (dump_file, PHI_GEN (bb), "phi_gen", bb->index);
          print_bitmap_set (dump_file, TMP_GEN (bb), "tmp_gen", bb->index);
          print_bitmap_set (dump_file, TMP_GEN (bb), "tmp_gen", bb->index);
          print_bitmap_set (dump_file, AVAIL_OUT (bb), "avail_out", bb->index);
          print_bitmap_set (dump_file, AVAIL_OUT (bb), "avail_out", bb->index);
        }
        }
    }
    }
 
 
  /* Insert can get quite slow on an incredibly large number of basic
  /* Insert can get quite slow on an incredibly large number of basic
     blocks due to some quadratic behavior.  Until this behavior is
     blocks due to some quadratic behavior.  Until this behavior is
     fixed, don't run it when he have an incredibly large number of
     fixed, don't run it when he have an incredibly large number of
     bb's.  If we aren't going to run insert, there is no point in
     bb's.  If we aren't going to run insert, there is no point in
     computing ANTIC, either, even though it's plenty fast.  */
     computing ANTIC, either, even though it's plenty fast.  */
  if (!do_fre && n_basic_blocks < 4000)
  if (!do_fre && n_basic_blocks < 4000)
    {
    {
      compute_antic ();
      compute_antic ();
      insert ();
      insert ();
    }
    }
 
 
  /* Make sure to remove fake edges before committing our inserts.
  /* Make sure to remove fake edges before committing our inserts.
     This makes sure we don't end up with extra critical edges that
     This makes sure we don't end up with extra critical edges that
     we would need to split.  */
     we would need to split.  */
  remove_fake_exit_edges ();
  remove_fake_exit_edges ();
  gsi_commit_edge_inserts ();
  gsi_commit_edge_inserts ();
 
 
  /* Remove all the redundant expressions.  */
  /* Remove all the redundant expressions.  */
  todo |= eliminate ();
  todo |= eliminate ();
 
 
  statistics_counter_event (cfun, "Insertions", pre_stats.insertions);
  statistics_counter_event (cfun, "Insertions", pre_stats.insertions);
  statistics_counter_event (cfun, "PA inserted", pre_stats.pa_insert);
  statistics_counter_event (cfun, "PA inserted", pre_stats.pa_insert);
  statistics_counter_event (cfun, "New PHIs", pre_stats.phis);
  statistics_counter_event (cfun, "New PHIs", pre_stats.phis);
  statistics_counter_event (cfun, "Eliminated", pre_stats.eliminations);
  statistics_counter_event (cfun, "Eliminated", pre_stats.eliminations);
  statistics_counter_event (cfun, "Constified", pre_stats.constified);
  statistics_counter_event (cfun, "Constified", pre_stats.constified);
 
 
  clear_expression_ids ();
  clear_expression_ids ();
  if (!do_fre)
  if (!do_fre)
    {
    {
      remove_dead_inserted_code ();
      remove_dead_inserted_code ();
      todo |= TODO_verify_flow;
      todo |= TODO_verify_flow;
    }
    }
 
 
  scev_finalize ();
  scev_finalize ();
  fini_pre (do_fre);
  fini_pre (do_fre);
 
 
  if (!do_fre)
  if (!do_fre)
    /* TODO: tail_merge_optimize may merge all predecessors of a block, in which
    /* TODO: tail_merge_optimize may merge all predecessors of a block, in which
       case we can merge the block with the remaining predecessor of the block.
       case we can merge the block with the remaining predecessor of the block.
       It should either:
       It should either:
       - call merge_blocks after each tail merge iteration
       - call merge_blocks after each tail merge iteration
       - call merge_blocks after all tail merge iterations
       - call merge_blocks after all tail merge iterations
       - mark TODO_cleanup_cfg when necessary
       - mark TODO_cleanup_cfg when necessary
       - share the cfg cleanup with fini_pre.  */
       - share the cfg cleanup with fini_pre.  */
    todo |= tail_merge_optimize (todo);
    todo |= tail_merge_optimize (todo);
  free_scc_vn ();
  free_scc_vn ();
 
 
  return todo;
  return todo;
}
}
 
 
/* Gate and execute functions for PRE.  */
/* Gate and execute functions for PRE.  */
 
 
static unsigned int
static unsigned int
do_pre (void)
do_pre (void)
{
{
  return execute_pre (false);
  return execute_pre (false);
}
}
 
 
static bool
static bool
gate_pre (void)
gate_pre (void)
{
{
  return flag_tree_pre != 0;
  return flag_tree_pre != 0;
}
}
 
 
struct gimple_opt_pass pass_pre =
struct gimple_opt_pass pass_pre =
{
{
 {
 {
  GIMPLE_PASS,
  GIMPLE_PASS,
  "pre",                                /* name */
  "pre",                                /* name */
  gate_pre,                             /* gate */
  gate_pre,                             /* gate */
  do_pre,                               /* execute */
  do_pre,                               /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                     /* static_pass_number */
  0,                                     /* static_pass_number */
  TV_TREE_PRE,                          /* tv_id */
  TV_TREE_PRE,                          /* tv_id */
  PROP_no_crit_edges | PROP_cfg
  PROP_no_crit_edges | PROP_cfg
    | PROP_ssa,                         /* properties_required */
    | PROP_ssa,                         /* properties_required */
  0,                                     /* properties_provided */
  0,                                     /* properties_provided */
  0,                                     /* properties_destroyed */
  0,                                     /* properties_destroyed */
  TODO_rebuild_alias,                   /* todo_flags_start */
  TODO_rebuild_alias,                   /* todo_flags_start */
  TODO_update_ssa_only_virtuals  | TODO_ggc_collect
  TODO_update_ssa_only_virtuals  | TODO_ggc_collect
  | TODO_verify_ssa /* todo_flags_finish */
  | TODO_verify_ssa /* todo_flags_finish */
 }
 }
};
};
 
 
 
 
/* Gate and execute functions for FRE.  */
/* Gate and execute functions for FRE.  */
 
 
static unsigned int
static unsigned int
execute_fre (void)
execute_fre (void)
{
{
  return execute_pre (true);
  return execute_pre (true);
}
}
 
 
static bool
static bool
gate_fre (void)
gate_fre (void)
{
{
  return flag_tree_fre != 0;
  return flag_tree_fre != 0;
}
}
 
 
struct gimple_opt_pass pass_fre =
struct gimple_opt_pass pass_fre =
{
{
 {
 {
  GIMPLE_PASS,
  GIMPLE_PASS,
  "fre",                                /* name */
  "fre",                                /* name */
  gate_fre,                             /* gate */
  gate_fre,                             /* gate */
  execute_fre,                          /* execute */
  execute_fre,                          /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                     /* static_pass_number */
  0,                                     /* static_pass_number */
  TV_TREE_FRE,                          /* tv_id */
  TV_TREE_FRE,                          /* tv_id */
  PROP_cfg | PROP_ssa,                  /* properties_required */
  PROP_cfg | PROP_ssa,                  /* properties_required */
  0,                                     /* properties_provided */
  0,                                     /* properties_provided */
  0,                                     /* properties_destroyed */
  0,                                     /* properties_destroyed */
  0,                                     /* todo_flags_start */
  0,                                     /* todo_flags_start */
  TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
  TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
 }
 }
};
};
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.