OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [libgcc/] [dfp-bit.c] - Diff between revs 734 and 783

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 734 Rev 783
/* This is a software decimal floating point library.
/* This is a software decimal floating point library.
   Copyright (C) 2005, 2006, 2007, 2008, 2009, 2011
   Copyright (C) 2005, 2006, 2007, 2008, 2009, 2011
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
Under Section 7 of GPL version 3, you are granted additional
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
3.1, as published by the Free Software Foundation.
 
 
You should have received a copy of the GNU General Public License and
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* This implements IEEE 754 decimal floating point arithmetic, but
/* This implements IEEE 754 decimal floating point arithmetic, but
   does not provide a mechanism for setting the rounding mode, or for
   does not provide a mechanism for setting the rounding mode, or for
   generating or handling exceptions.  Conversions between decimal
   generating or handling exceptions.  Conversions between decimal
   floating point types and other types depend on C library functions.
   floating point types and other types depend on C library functions.
 
 
   Contributed by Ben Elliston  <bje@au.ibm.com>.  */
   Contributed by Ben Elliston  <bje@au.ibm.com>.  */
 
 
#include <stdio.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>
/* FIXME: compile with -std=gnu99 to get these from stdlib.h */
/* FIXME: compile with -std=gnu99 to get these from stdlib.h */
extern float strtof (const char *, char **);
extern float strtof (const char *, char **);
extern long double strtold (const char *, char **);
extern long double strtold (const char *, char **);
#include <string.h>
#include <string.h>
#include <limits.h>
#include <limits.h>
 
 
#include "dfp-bit.h"
#include "dfp-bit.h"
 
 
/* Forward declarations.  */
/* Forward declarations.  */
#if WIDTH == 32 || WIDTH_TO == 32
#if WIDTH == 32 || WIDTH_TO == 32
void __host_to_ieee_32 (_Decimal32 in, decimal32 *out);
void __host_to_ieee_32 (_Decimal32 in, decimal32 *out);
void __ieee_to_host_32 (decimal32 in, _Decimal32 *out);
void __ieee_to_host_32 (decimal32 in, _Decimal32 *out);
#endif
#endif
#if WIDTH == 64 || WIDTH_TO == 64
#if WIDTH == 64 || WIDTH_TO == 64
void __host_to_ieee_64 (_Decimal64 in, decimal64 *out);
void __host_to_ieee_64 (_Decimal64 in, decimal64 *out);
void __ieee_to_host_64 (decimal64 in, _Decimal64 *out);
void __ieee_to_host_64 (decimal64 in, _Decimal64 *out);
#endif
#endif
#if WIDTH == 128 || WIDTH_TO == 128
#if WIDTH == 128 || WIDTH_TO == 128
void __host_to_ieee_128 (_Decimal128 in, decimal128 *out);
void __host_to_ieee_128 (_Decimal128 in, decimal128 *out);
void __ieee_to_host_128 (decimal128 in, _Decimal128 *out);
void __ieee_to_host_128 (decimal128 in, _Decimal128 *out);
#endif
#endif
 
 
/* A pointer to a binary decFloat operation.  */
/* A pointer to a binary decFloat operation.  */
typedef decFloat* (*dfp_binary_func)
typedef decFloat* (*dfp_binary_func)
     (decFloat *, const decFloat *, const decFloat *, decContext *);
     (decFloat *, const decFloat *, const decFloat *, decContext *);


/* Binary operations.  */
/* Binary operations.  */
 
 
/* Use a decFloat (decDouble or decQuad) function to perform a DFP
/* Use a decFloat (decDouble or decQuad) function to perform a DFP
   binary operation.  */
   binary operation.  */
static inline decFloat
static inline decFloat
dfp_binary_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
dfp_binary_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
{
{
  decFloat result;
  decFloat result;
  decContext context;
  decContext context;
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  DFP_INIT_ROUNDMODE (context.round);
 
 
  /* Perform the operation.  */
  /* Perform the operation.  */
  op (&result, &arg_a, &arg_b, &context);
  op (&result, &arg_a, &arg_b, &context);
 
 
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    {
    {
      /* decNumber exception flags we care about here.  */
      /* decNumber exception flags we care about here.  */
      int ieee_flags;
      int ieee_flags;
      int dec_flags = DEC_IEEE_854_Division_by_zero | DEC_IEEE_854_Inexact
      int dec_flags = DEC_IEEE_854_Division_by_zero | DEC_IEEE_854_Inexact
                      | DEC_IEEE_854_Invalid_operation | DEC_IEEE_854_Overflow
                      | DEC_IEEE_854_Invalid_operation | DEC_IEEE_854_Overflow
                      | DEC_IEEE_854_Underflow;
                      | DEC_IEEE_854_Underflow;
      dec_flags &= context.status;
      dec_flags &= context.status;
      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
      if (ieee_flags != 0)
      if (ieee_flags != 0)
        DFP_HANDLE_EXCEPTIONS (ieee_flags);
        DFP_HANDLE_EXCEPTIONS (ieee_flags);
    }
    }
 
 
  return result;
  return result;
}
}
 
 
#if WIDTH == 32
#if WIDTH == 32
/* The decNumber package doesn't provide arithmetic for decSingle (32 bits);
/* The decNumber package doesn't provide arithmetic for decSingle (32 bits);
   convert to decDouble, use the operation for that, and convert back.  */
   convert to decDouble, use the operation for that, and convert back.  */
static inline _Decimal32
static inline _Decimal32
d32_binary_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
d32_binary_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
{
{
  union { _Decimal32 c; decSingle f; } a32, b32, res32;
  union { _Decimal32 c; decSingle f; } a32, b32, res32;
  decDouble a, b, res;
  decDouble a, b, res;
  decContext context;
  decContext context;
 
 
  /* Widen the operands and perform the operation.  */
  /* Widen the operands and perform the operation.  */
  a32.c = arg_a;
  a32.c = arg_a;
  b32.c = arg_b;
  b32.c = arg_b;
  decSingleToWider (&a32.f, &a);
  decSingleToWider (&a32.f, &a);
  decSingleToWider (&b32.f, &b);
  decSingleToWider (&b32.f, &b);
  res = dfp_binary_op (op, a, b);
  res = dfp_binary_op (op, a, b);
 
 
  /* Narrow the result, which might result in an underflow or overflow.  */
  /* Narrow the result, which might result in an underflow or overflow.  */
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  DFP_INIT_ROUNDMODE (context.round);
  decSingleFromWider (&res32.f, &res, &context);
  decSingleFromWider (&res32.f, &res, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    {
    {
      /* decNumber exception flags we care about here.  */
      /* decNumber exception flags we care about here.  */
      int ieee_flags;
      int ieee_flags;
      int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Overflow
      int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Overflow
                      | DEC_IEEE_854_Underflow;
                      | DEC_IEEE_854_Underflow;
      dec_flags &= context.status;
      dec_flags &= context.status;
      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
      if (ieee_flags != 0)
      if (ieee_flags != 0)
        DFP_HANDLE_EXCEPTIONS (ieee_flags);
        DFP_HANDLE_EXCEPTIONS (ieee_flags);
    }
    }
 
 
  return res32.c;
  return res32.c;
}
}
#else
#else
/* decFloat operations are supported for decDouble (64 bits) and
/* decFloat operations are supported for decDouble (64 bits) and
   decQuad (128 bits).  The bit patterns for the types are the same.  */
   decQuad (128 bits).  The bit patterns for the types are the same.  */
static inline DFP_C_TYPE
static inline DFP_C_TYPE
dnn_binary_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
dnn_binary_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  union { DFP_C_TYPE c; decFloat f; } a, b, result;
  union { DFP_C_TYPE c; decFloat f; } a, b, result;
 
 
  a.c = arg_a;
  a.c = arg_a;
  b.c = arg_b;
  b.c = arg_b;
  result.f = dfp_binary_op (op, a.f, b.f);
  result.f = dfp_binary_op (op, a.f, b.f);
  return result.c;
  return result.c;
}
}
#endif
#endif
 
 
/* Comparison operations.  */
/* Comparison operations.  */
 
 
/* Use a decFloat (decDouble or decQuad) function to perform a DFP
/* Use a decFloat (decDouble or decQuad) function to perform a DFP
   comparison.  */
   comparison.  */
static inline CMPtype
static inline CMPtype
dfp_compare_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
dfp_compare_op (dfp_binary_func op, decFloat arg_a, decFloat arg_b)
{
{
  decContext context;
  decContext context;
  decFloat res;
  decFloat res;
  int result;
  int result;
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  DFP_INIT_ROUNDMODE (context.round);
 
 
  /* Perform the comparison.  */
  /* Perform the comparison.  */
  op (&res, &arg_a, &arg_b, &context);
  op (&res, &arg_a, &arg_b, &context);
 
 
  if (DEC_FLOAT_IS_SIGNED (&res))
  if (DEC_FLOAT_IS_SIGNED (&res))
    result = -1;
    result = -1;
  else if (DEC_FLOAT_IS_ZERO (&res))
  else if (DEC_FLOAT_IS_ZERO (&res))
    result = 0;
    result = 0;
  else if (DEC_FLOAT_IS_NAN (&res))
  else if (DEC_FLOAT_IS_NAN (&res))
    result = -2;
    result = -2;
  else
  else
    result = 1;
    result = 1;
 
 
  return (CMPtype) result;
  return (CMPtype) result;
}
}
 
 
#if WIDTH == 32
#if WIDTH == 32
/* The decNumber package doesn't provide comparisons for decSingle (32 bits);
/* The decNumber package doesn't provide comparisons for decSingle (32 bits);
   convert to decDouble, use the operation for that, and convert back.  */
   convert to decDouble, use the operation for that, and convert back.  */
static inline CMPtype
static inline CMPtype
d32_compare_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
d32_compare_op (dfp_binary_func op, _Decimal32 arg_a, _Decimal32 arg_b)
{
{
  union { _Decimal32 c; decSingle f; } a32, b32;
  union { _Decimal32 c; decSingle f; } a32, b32;
  decDouble a, b;
  decDouble a, b;
 
 
  a32.c = arg_a;
  a32.c = arg_a;
  b32.c = arg_b;
  b32.c = arg_b;
  decSingleToWider (&a32.f, &a);
  decSingleToWider (&a32.f, &a);
  decSingleToWider (&b32.f, &b);
  decSingleToWider (&b32.f, &b);
  return dfp_compare_op (op, a, b);
  return dfp_compare_op (op, a, b);
}
}
#else
#else
/* decFloat comparisons are supported for decDouble (64 bits) and
/* decFloat comparisons are supported for decDouble (64 bits) and
   decQuad (128 bits).  The bit patterns for the types are the same.  */
   decQuad (128 bits).  The bit patterns for the types are the same.  */
static inline CMPtype
static inline CMPtype
dnn_compare_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
dnn_compare_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  union { DFP_C_TYPE c; decFloat f; } a, b;
  union { DFP_C_TYPE c; decFloat f; } a, b;
 
 
  a.c = arg_a;
  a.c = arg_a;
  b.c = arg_b;
  b.c = arg_b;
  return dfp_compare_op (op, a.f, b.f);
  return dfp_compare_op (op, a.f, b.f);
}
}
#endif
#endif


#if defined(L_conv_sd)
#if defined(L_conv_sd)
void
void
__host_to_ieee_32 (_Decimal32 in, decimal32 *out)
__host_to_ieee_32 (_Decimal32 in, decimal32 *out)
{
{
  memcpy (out, &in, 4);
  memcpy (out, &in, 4);
}
}
 
 
void
void
__ieee_to_host_32 (decimal32 in, _Decimal32 *out)
__ieee_to_host_32 (decimal32 in, _Decimal32 *out)
{
{
  memcpy (out, &in, 4);
  memcpy (out, &in, 4);
}
}
#endif /* L_conv_sd */
#endif /* L_conv_sd */
 
 
#if defined(L_conv_dd)
#if defined(L_conv_dd)
void
void
__host_to_ieee_64 (_Decimal64 in, decimal64 *out)
__host_to_ieee_64 (_Decimal64 in, decimal64 *out)
{
{
  memcpy (out, &in, 8);
  memcpy (out, &in, 8);
}
}
 
 
void
void
__ieee_to_host_64 (decimal64 in, _Decimal64 *out)
__ieee_to_host_64 (decimal64 in, _Decimal64 *out)
{
{
  memcpy (out, &in, 8);
  memcpy (out, &in, 8);
}
}
#endif /* L_conv_dd */
#endif /* L_conv_dd */
 
 
#if defined(L_conv_td)
#if defined(L_conv_td)
void
void
__host_to_ieee_128 (_Decimal128 in, decimal128 *out)
__host_to_ieee_128 (_Decimal128 in, decimal128 *out)
{
{
  memcpy (out, &in, 16);
  memcpy (out, &in, 16);
}
}
 
 
void
void
__ieee_to_host_128 (decimal128 in, _Decimal128 *out)
__ieee_to_host_128 (decimal128 in, _Decimal128 *out)
{
{
  memcpy (out, &in, 16);
  memcpy (out, &in, 16);
}
}
#endif /* L_conv_td */
#endif /* L_conv_td */
 
 
#if defined(L_addsub_sd) || defined(L_addsub_dd) || defined(L_addsub_td)
#if defined(L_addsub_sd) || defined(L_addsub_dd) || defined(L_addsub_td)
DFP_C_TYPE
DFP_C_TYPE
DFP_ADD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_ADD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  return DFP_BINARY_OP (DEC_FLOAT_ADD, arg_a, arg_b);
  return DFP_BINARY_OP (DEC_FLOAT_ADD, arg_a, arg_b);
}
}
 
 
DFP_C_TYPE
DFP_C_TYPE
DFP_SUB (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_SUB (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  return DFP_BINARY_OP (DEC_FLOAT_SUBTRACT, arg_a, arg_b);
  return DFP_BINARY_OP (DEC_FLOAT_SUBTRACT, arg_a, arg_b);
}
}
#endif /* L_addsub */
#endif /* L_addsub */
 
 
#if defined(L_mul_sd) || defined(L_mul_dd) || defined(L_mul_td)
#if defined(L_mul_sd) || defined(L_mul_dd) || defined(L_mul_td)
DFP_C_TYPE
DFP_C_TYPE
DFP_MULTIPLY (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_MULTIPLY (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  return DFP_BINARY_OP (DEC_FLOAT_MULTIPLY, arg_a, arg_b);
  return DFP_BINARY_OP (DEC_FLOAT_MULTIPLY, arg_a, arg_b);
}
}
#endif /* L_mul */
#endif /* L_mul */
 
 
#if defined(L_div_sd) || defined(L_div_dd) || defined(L_div_td)
#if defined(L_div_sd) || defined(L_div_dd) || defined(L_div_td)
DFP_C_TYPE
DFP_C_TYPE
DFP_DIVIDE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_DIVIDE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  return DFP_BINARY_OP (DEC_FLOAT_DIVIDE, arg_a, arg_b);
  return DFP_BINARY_OP (DEC_FLOAT_DIVIDE, arg_a, arg_b);
}
}
#endif /* L_div */
#endif /* L_div */
 
 
#if defined (L_eq_sd) || defined (L_eq_dd) || defined (L_eq_td)
#if defined (L_eq_sd) || defined (L_eq_dd) || defined (L_eq_td)
CMPtype
CMPtype
DFP_EQ (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_EQ (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  CMPtype stat;
  CMPtype stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For EQ return zero for true, nonzero for false.  */
  /* For EQ return zero for true, nonzero for false.  */
  return stat != 0;
  return stat != 0;
}
}
#endif /* L_eq */
#endif /* L_eq */
 
 
#if defined (L_ne_sd) || defined (L_ne_dd) || defined (L_ne_td)
#if defined (L_ne_sd) || defined (L_ne_dd) || defined (L_ne_td)
CMPtype
CMPtype
DFP_NE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_NE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  int stat;
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For NE return zero for true, nonzero for false.  */
  /* For NE return zero for true, nonzero for false.  */
  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
    return 1;
    return 1;
  return stat != 0;
  return stat != 0;
}
}
#endif /* L_ne */
#endif /* L_ne */
 
 
#if defined (L_lt_sd) || defined (L_lt_dd) || defined (L_lt_td)
#if defined (L_lt_sd) || defined (L_lt_dd) || defined (L_lt_td)
CMPtype
CMPtype
DFP_LT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_LT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  int stat;
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For LT return -1 (<0) for true, 1 for false.  */
  /* For LT return -1 (<0) for true, 1 for false.  */
  return (stat == -1) ? -1 : 1;
  return (stat == -1) ? -1 : 1;
}
}
#endif /* L_lt */
#endif /* L_lt */
 
 
#if defined (L_gt_sd) || defined (L_gt_dd) || defined (L_gt_td)
#if defined (L_gt_sd) || defined (L_gt_dd) || defined (L_gt_td)
CMPtype
CMPtype
DFP_GT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_GT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  int stat;
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For GT return 1 (>0) for true, -1 for false.  */
  /* For GT return 1 (>0) for true, -1 for false.  */
  return (stat == 1) ? 1 : -1;
  return (stat == 1) ? 1 : -1;
}
}
#endif
#endif
 
 
#if defined (L_le_sd) || defined (L_le_dd) || defined (L_le_td)
#if defined (L_le_sd) || defined (L_le_dd) || defined (L_le_td)
CMPtype
CMPtype
DFP_LE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_LE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  int stat;
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For LE return 0 (<= 0) for true, 1 for false.  */
  /* For LE return 0 (<= 0) for true, 1 for false.  */
  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
    return 1;
    return 1;
  return stat == 1;
  return stat == 1;
}
}
#endif /* L_le */
#endif /* L_le */
 
 
#if defined (L_ge_sd) || defined (L_ge_dd) || defined (L_ge_td)
#if defined (L_ge_sd) || defined (L_ge_dd) || defined (L_ge_td)
CMPtype
CMPtype
DFP_GE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_GE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  int stat;
  int stat;
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  stat = DFP_COMPARE_OP (DEC_FLOAT_COMPARE, arg_a, arg_b);
  /* For GE return 1 (>=0) for true, -1 for false.  */
  /* For GE return 1 (>=0) for true, -1 for false.  */
  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
  if (__builtin_expect (stat == -2, 0))  /* An operand is NaN.  */
    return -1;
    return -1;
  return (stat != -1) ? 1 : -1;
  return (stat != -1) ? 1 : -1;
}
}
#endif /* L_ge */
#endif /* L_ge */
 
 
#define BUFMAX 128
#define BUFMAX 128
 
 
/* Check for floating point exceptions that are relevant for conversions
/* Check for floating point exceptions that are relevant for conversions
   between decimal float values and handle them.  */
   between decimal float values and handle them.  */
static inline void
static inline void
dfp_conversion_exceptions (const int status)
dfp_conversion_exceptions (const int status)
{
{
  /* decNumber exception flags we care about here.  */
  /* decNumber exception flags we care about here.  */
  int ieee_flags;
  int ieee_flags;
  int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
  int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
                  | DEC_IEEE_854_Overflow;
                  | DEC_IEEE_854_Overflow;
  dec_flags &= status;
  dec_flags &= status;
  ieee_flags = DFP_IEEE_FLAGS (dec_flags);
  ieee_flags = DFP_IEEE_FLAGS (dec_flags);
  if (ieee_flags != 0)
  if (ieee_flags != 0)
    DFP_HANDLE_EXCEPTIONS (ieee_flags);
    DFP_HANDLE_EXCEPTIONS (ieee_flags);
}
}
 
 
#if defined (L_sd_to_dd)
#if defined (L_sd_to_dd)
/* Use decNumber to convert directly from _Decimal32 to _Decimal64.  */
/* Use decNumber to convert directly from _Decimal32 to _Decimal64.  */
_Decimal64
_Decimal64
DFP_TO_DFP (_Decimal32 f_from)
DFP_TO_DFP (_Decimal32 f_from)
{
{
  union { _Decimal32 c; decSingle f; } from;
  union { _Decimal32 c; decSingle f; } from;
  union { _Decimal64 c; decDouble f; } to;
  union { _Decimal64 c; decDouble f; } to;
 
 
  from.c = f_from;
  from.c = f_from;
  to.f = *decSingleToWider (&from.f, &to.f);
  to.f = *decSingleToWider (&from.f, &to.f);
  return to.c;
  return to.c;
}
}
#endif
#endif
 
 
#if defined (L_sd_to_td)
#if defined (L_sd_to_td)
/* Use decNumber to convert directly from _Decimal32 to _Decimal128.  */
/* Use decNumber to convert directly from _Decimal32 to _Decimal128.  */
_Decimal128
_Decimal128
DFP_TO_DFP (_Decimal32 f_from)
DFP_TO_DFP (_Decimal32 f_from)
{
{
  union { _Decimal32 c; decSingle f; } from;
  union { _Decimal32 c; decSingle f; } from;
  union { _Decimal128 c; decQuad f; } to;
  union { _Decimal128 c; decQuad f; } to;
  decDouble temp;
  decDouble temp;
 
 
  from.c = f_from;
  from.c = f_from;
  temp = *decSingleToWider (&from.f, &temp);
  temp = *decSingleToWider (&from.f, &temp);
  to.f = *decDoubleToWider (&temp, &to.f);
  to.f = *decDoubleToWider (&temp, &to.f);
  return to.c;
  return to.c;
}
}
#endif
#endif
 
 
#if defined (L_dd_to_td)
#if defined (L_dd_to_td)
/* Use decNumber to convert directly from _Decimal64 to _Decimal128.  */
/* Use decNumber to convert directly from _Decimal64 to _Decimal128.  */
_Decimal128
_Decimal128
DFP_TO_DFP (_Decimal64 f_from)
DFP_TO_DFP (_Decimal64 f_from)
{
{
  union { _Decimal64 c; decDouble f; } from;
  union { _Decimal64 c; decDouble f; } from;
  union { _Decimal128 c; decQuad f; } to;
  union { _Decimal128 c; decQuad f; } to;
 
 
  from.c = f_from;
  from.c = f_from;
  to.f = *decDoubleToWider (&from.f, &to.f);
  to.f = *decDoubleToWider (&from.f, &to.f);
  return to.c;
  return to.c;
}
}
#endif
#endif
 
 
#if defined (L_dd_to_sd)
#if defined (L_dd_to_sd)
/* Use decNumber to convert directly from _Decimal64 to _Decimal32.  */
/* Use decNumber to convert directly from _Decimal64 to _Decimal32.  */
_Decimal32
_Decimal32
DFP_TO_DFP (_Decimal64 f_from)
DFP_TO_DFP (_Decimal64 f_from)
{
{
  union { _Decimal32 c; decSingle f; } to;
  union { _Decimal32 c; decSingle f; } to;
  union { _Decimal64 c; decDouble f; } from;
  union { _Decimal64 c; decDouble f; } from;
  decContext context;
  decContext context;
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  DFP_INIT_ROUNDMODE (context.round);
  from.c = f_from;
  from.c = f_from;
  to.f = *decSingleFromWider (&to.f, &from.f, &context);
  to.f = *decSingleFromWider (&to.f, &from.f, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
    dfp_conversion_exceptions (context.status);
  return to.c;
  return to.c;
}
}
#endif
#endif
 
 
#if defined (L_td_to_sd)
#if defined (L_td_to_sd)
/* Use decNumber to convert directly from _Decimal128 to _Decimal32.  */
/* Use decNumber to convert directly from _Decimal128 to _Decimal32.  */
_Decimal32
_Decimal32
DFP_TO_DFP (_Decimal128 f_from)
DFP_TO_DFP (_Decimal128 f_from)
{
{
  union { _Decimal32 c; decSingle f; } to;
  union { _Decimal32 c; decSingle f; } to;
  union { _Decimal128 c; decQuad f; } from;
  union { _Decimal128 c; decQuad f; } from;
  decDouble temp;
  decDouble temp;
  decContext context;
  decContext context;
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  DFP_INIT_ROUNDMODE (context.round);
  from.c = f_from;
  from.c = f_from;
  temp = *decDoubleFromWider (&temp, &from.f, &context);
  temp = *decDoubleFromWider (&temp, &from.f, &context);
  to.f = *decSingleFromWider (&to.f, &temp, &context);
  to.f = *decSingleFromWider (&to.f, &temp, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
    dfp_conversion_exceptions (context.status);
  return to.c;
  return to.c;
}
}
#endif
#endif
 
 
#if defined (L_td_to_dd)
#if defined (L_td_to_dd)
/* Use decNumber to convert directly from _Decimal128 to _Decimal64.  */
/* Use decNumber to convert directly from _Decimal128 to _Decimal64.  */
_Decimal64
_Decimal64
DFP_TO_DFP (_Decimal128 f_from)
DFP_TO_DFP (_Decimal128 f_from)
{
{
  union { _Decimal64 c; decDouble f; } to;
  union { _Decimal64 c; decDouble f; } to;
  union { _Decimal128 c; decQuad f; } from;
  union { _Decimal128 c; decQuad f; } from;
  decContext context;
  decContext context;
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  DFP_INIT_ROUNDMODE (context.round);
  from.c = f_from;
  from.c = f_from;
  to.f = *decDoubleFromWider (&to.f, &from.f, &context);
  to.f = *decDoubleFromWider (&to.f, &from.f, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
    dfp_conversion_exceptions (context.status);
  return to.c;
  return to.c;
}
}
#endif
#endif
 
 
#if defined (L_dd_to_si) || defined (L_td_to_si) \
#if defined (L_dd_to_si) || defined (L_td_to_si) \
  || defined (L_dd_to_usi) || defined (L_td_to_usi)
  || defined (L_dd_to_usi) || defined (L_td_to_usi)
/* Use decNumber to convert directly from decimal float to integer types.  */
/* Use decNumber to convert directly from decimal float to integer types.  */
INT_TYPE
INT_TYPE
DFP_TO_INT (DFP_C_TYPE x)
DFP_TO_INT (DFP_C_TYPE x)
{
{
  union { DFP_C_TYPE c; decFloat f; } u;
  union { DFP_C_TYPE c; decFloat f; } u;
  decContext context;
  decContext context;
  INT_TYPE i;
  INT_TYPE i;
 
 
  decContextDefault (&context, DEC_INIT_DECIMAL128);
  decContextDefault (&context, DEC_INIT_DECIMAL128);
  context.round = DEC_ROUND_DOWN;
  context.round = DEC_ROUND_DOWN;
  u.c = x;
  u.c = x;
  i = DEC_FLOAT_TO_INT (&u.f, &context, context.round);
  i = DEC_FLOAT_TO_INT (&u.f, &context, context.round);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
    dfp_conversion_exceptions (context.status);
  return i;
  return i;
}
}
#endif
#endif
 
 
#if defined (L_sd_to_si) || (L_sd_to_usi)
#if defined (L_sd_to_si) || (L_sd_to_usi)
/* Use decNumber to convert directly from decimal float to integer types.  */
/* Use decNumber to convert directly from decimal float to integer types.  */
INT_TYPE
INT_TYPE
DFP_TO_INT (_Decimal32 x)
DFP_TO_INT (_Decimal32 x)
{
{
  union { _Decimal32 c; decSingle f; } u32;
  union { _Decimal32 c; decSingle f; } u32;
  decDouble f64;
  decDouble f64;
  decContext context;
  decContext context;
  INT_TYPE i;
  INT_TYPE i;
 
 
  decContextDefault (&context, DEC_INIT_DECIMAL128);
  decContextDefault (&context, DEC_INIT_DECIMAL128);
  context.round = DEC_ROUND_DOWN;
  context.round = DEC_ROUND_DOWN;
  u32.c = x;
  u32.c = x;
  f64 = *decSingleToWider (&u32.f, &f64);
  f64 = *decSingleToWider (&u32.f, &f64);
  i = DEC_FLOAT_TO_INT (&f64, &context, context.round);
  i = DEC_FLOAT_TO_INT (&f64, &context, context.round);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
    dfp_conversion_exceptions (context.status);
  return i;
  return i;
}
}
#endif
#endif
 
 
#if defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \
#if defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \
  || defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
  || defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
/* decNumber doesn't provide support for conversions to 64-bit integer
/* decNumber doesn't provide support for conversions to 64-bit integer
   types, so do it the hard way.  */
   types, so do it the hard way.  */
INT_TYPE
INT_TYPE
DFP_TO_INT (DFP_C_TYPE x)
DFP_TO_INT (DFP_C_TYPE x)
{
{
  /* decNumber's decimal* types have the same format as C's _Decimal*
  /* decNumber's decimal* types have the same format as C's _Decimal*
     types, but they have different calling conventions.  */
     types, but they have different calling conventions.  */
 
 
  /* TODO: Decimal float to integer conversions should raise FE_INVALID
  /* TODO: Decimal float to integer conversions should raise FE_INVALID
     if the result value does not fit into the result type.  */
     if the result value does not fit into the result type.  */
 
 
  IEEE_TYPE s;
  IEEE_TYPE s;
  char buf[BUFMAX];
  char buf[BUFMAX];
  char *pos;
  char *pos;
  decNumber qval, n1, n2;
  decNumber qval, n1, n2;
  decContext context;
  decContext context;
 
 
  /* Use a large context to avoid losing precision.  */
  /* Use a large context to avoid losing precision.  */
  decContextDefault (&context, DEC_INIT_DECIMAL128);
  decContextDefault (&context, DEC_INIT_DECIMAL128);
  /* Need non-default rounding mode here.  */
  /* Need non-default rounding mode here.  */
  context.round = DEC_ROUND_DOWN;
  context.round = DEC_ROUND_DOWN;
 
 
  HOST_TO_IEEE (x, &s);
  HOST_TO_IEEE (x, &s);
  TO_INTERNAL (&s, &n1);
  TO_INTERNAL (&s, &n1);
  /* Rescale if the exponent is less than zero.  */
  /* Rescale if the exponent is less than zero.  */
  decNumberToIntegralValue (&n2, &n1, &context);
  decNumberToIntegralValue (&n2, &n1, &context);
  /* Get a value to use for the quantize call.  */
  /* Get a value to use for the quantize call.  */
  decNumberFromString (&qval, "1.", &context);
  decNumberFromString (&qval, "1.", &context);
  /* Force the exponent to zero.  */
  /* Force the exponent to zero.  */
  decNumberQuantize (&n1, &n2, &qval, &context);
  decNumberQuantize (&n1, &n2, &qval, &context);
  /* Get a string, which at this point will not include an exponent.  */
  /* Get a string, which at this point will not include an exponent.  */
  decNumberToString (&n1, buf);
  decNumberToString (&n1, buf);
  /* Ignore the fractional part.  */
  /* Ignore the fractional part.  */
  pos = strchr (buf, '.');
  pos = strchr (buf, '.');
  if (pos)
  if (pos)
    *pos = 0;
    *pos = 0;
  /* Use a C library function to convert to the integral type.  */
  /* Use a C library function to convert to the integral type.  */
  return STR_TO_INT (buf, NULL, 10);
  return STR_TO_INT (buf, NULL, 10);
}
}
#endif
#endif
 
 
#if defined (L_si_to_dd) || defined (L_si_to_td) \
#if defined (L_si_to_dd) || defined (L_si_to_td) \
  || defined (L_usi_to_dd) || defined (L_usi_to_td)
  || defined (L_usi_to_dd) || defined (L_usi_to_td)
/* Use decNumber to convert directly from integer to decimal float types.  */
/* Use decNumber to convert directly from integer to decimal float types.  */
DFP_C_TYPE
DFP_C_TYPE
INT_TO_DFP (INT_TYPE i)
INT_TO_DFP (INT_TYPE i)
{
{
  union { DFP_C_TYPE c; decFloat f; } u;
  union { DFP_C_TYPE c; decFloat f; } u;
 
 
  u.f = *DEC_FLOAT_FROM_INT (&u.f, i);
  u.f = *DEC_FLOAT_FROM_INT (&u.f, i);
  return u.c;
  return u.c;
}
}
#endif
#endif
 
 
#if defined (L_si_to_sd) || defined (L_usi_to_sd)
#if defined (L_si_to_sd) || defined (L_usi_to_sd)
_Decimal32
_Decimal32
/* Use decNumber to convert directly from integer to decimal float types.  */
/* Use decNumber to convert directly from integer to decimal float types.  */
INT_TO_DFP (INT_TYPE i)
INT_TO_DFP (INT_TYPE i)
{
{
  union { _Decimal32 c; decSingle f; } u32;
  union { _Decimal32 c; decSingle f; } u32;
  decDouble f64;
  decDouble f64;
  decContext context;
  decContext context;
 
 
  decContextDefault (&context, DEC_INIT_DECIMAL128);
  decContextDefault (&context, DEC_INIT_DECIMAL128);
  f64 = *DEC_FLOAT_FROM_INT (&f64, i);
  f64 = *DEC_FLOAT_FROM_INT (&f64, i);
  u32.f = *decSingleFromWider (&u32.f, &f64, &context);
  u32.f = *decSingleFromWider (&u32.f, &f64, &context);
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
    dfp_conversion_exceptions (context.status);
  return u32.c;
  return u32.c;
}
}
#endif
#endif
 
 
#if defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td) \
#if defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td) \
  || defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td)
  || defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td)
/* decNumber doesn't provide support for conversions from 64-bit integer
/* decNumber doesn't provide support for conversions from 64-bit integer
   types, so do it the hard way.  */
   types, so do it the hard way.  */
DFP_C_TYPE
DFP_C_TYPE
INT_TO_DFP (INT_TYPE i)
INT_TO_DFP (INT_TYPE i)
{
{
  DFP_C_TYPE f;
  DFP_C_TYPE f;
  IEEE_TYPE s;
  IEEE_TYPE s;
  char buf[BUFMAX];
  char buf[BUFMAX];
  decContext context;
  decContext context;
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  DFP_INIT_ROUNDMODE (context.round);
 
 
  /* Use a C library function to get a floating point string.  */
  /* Use a C library function to get a floating point string.  */
  sprintf (buf, INT_FMT ".", CAST_FOR_FMT(i));
  sprintf (buf, INT_FMT ".", CAST_FOR_FMT(i));
  /* Convert from the floating point string to a decimal* type.  */
  /* Convert from the floating point string to a decimal* type.  */
  FROM_STRING (&s, buf, &context);
  FROM_STRING (&s, buf, &context);
  IEEE_TO_HOST (s, &f);
  IEEE_TO_HOST (s, &f);
 
 
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    dfp_conversion_exceptions (context.status);
    dfp_conversion_exceptions (context.status);
 
 
  return f;
  return f;
}
}
#endif
#endif
 
 
#if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \
#if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \
 || defined (L_sd_to_df) || defined (L_dd_to_df) || defined (L_td_to_df) \
 || defined (L_sd_to_df) || defined (L_dd_to_df) || defined (L_td_to_df) \
 || ((defined (L_sd_to_xf) || defined (L_dd_to_xf) || defined (L_td_to_xf)) \
 || ((defined (L_sd_to_xf) || defined (L_dd_to_xf) || defined (L_td_to_xf)) \
     && LONG_DOUBLE_HAS_XF_MODE) \
     && LONG_DOUBLE_HAS_XF_MODE) \
 || ((defined (L_sd_to_tf) || defined (L_dd_to_tf) || defined (L_td_to_tf)) \
 || ((defined (L_sd_to_tf) || defined (L_dd_to_tf) || defined (L_td_to_tf)) \
     && LONG_DOUBLE_HAS_TF_MODE)
     && LONG_DOUBLE_HAS_TF_MODE)
BFP_TYPE
BFP_TYPE
DFP_TO_BFP (DFP_C_TYPE f)
DFP_TO_BFP (DFP_C_TYPE f)
{
{
  IEEE_TYPE s;
  IEEE_TYPE s;
  char buf[BUFMAX];
  char buf[BUFMAX];
 
 
  HOST_TO_IEEE (f, &s);
  HOST_TO_IEEE (f, &s);
  /* Write the value to a string.  */
  /* Write the value to a string.  */
  TO_STRING (&s, buf);
  TO_STRING (&s, buf);
  /* Read it as the binary floating point type and return that.  */
  /* Read it as the binary floating point type and return that.  */
  return STR_TO_BFP (buf, NULL);
  return STR_TO_BFP (buf, NULL);
}
}
#endif
#endif
 
 
#if defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td) \
#if defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td) \
 || defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td) \
 || defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td) \
 || ((defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)) \
 || ((defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)) \
     && LONG_DOUBLE_HAS_XF_MODE) \
     && LONG_DOUBLE_HAS_XF_MODE) \
 || ((defined (L_tf_to_sd) || defined (L_tf_to_dd) || defined (L_tf_to_td)) \
 || ((defined (L_tf_to_sd) || defined (L_tf_to_dd) || defined (L_tf_to_td)) \
     && LONG_DOUBLE_HAS_TF_MODE)
     && LONG_DOUBLE_HAS_TF_MODE)
DFP_C_TYPE
DFP_C_TYPE
BFP_TO_DFP (BFP_TYPE x)
BFP_TO_DFP (BFP_TYPE x)
{
{
  DFP_C_TYPE f;
  DFP_C_TYPE f;
  IEEE_TYPE s;
  IEEE_TYPE s;
  char buf[BUFMAX];
  char buf[BUFMAX];
  decContext context;
  decContext context;
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  DFP_INIT_ROUNDMODE (context.round);
  DFP_INIT_ROUNDMODE (context.round);
 
 
  /* Use a C library function to write the floating point value to a string.  */
  /* Use a C library function to write the floating point value to a string.  */
  sprintf (buf, BFP_FMT, (BFP_VIA_TYPE) x);
  sprintf (buf, BFP_FMT, (BFP_VIA_TYPE) x);
 
 
  /* Convert from the floating point string to a decimal* type.  */
  /* Convert from the floating point string to a decimal* type.  */
  FROM_STRING (&s, buf, &context);
  FROM_STRING (&s, buf, &context);
  IEEE_TO_HOST (s, &f);
  IEEE_TO_HOST (s, &f);
 
 
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
  if (DFP_EXCEPTIONS_ENABLED && context.status != 0)
    {
    {
      /* decNumber exception flags we care about here.  */
      /* decNumber exception flags we care about here.  */
      int ieee_flags;
      int ieee_flags;
      int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
      int dec_flags = DEC_IEEE_854_Inexact | DEC_IEEE_854_Invalid_operation
                      | DEC_IEEE_854_Overflow | DEC_IEEE_854_Underflow;
                      | DEC_IEEE_854_Overflow | DEC_IEEE_854_Underflow;
      dec_flags &= context.status;
      dec_flags &= context.status;
      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
      ieee_flags = DFP_IEEE_FLAGS (dec_flags);
      if (ieee_flags != 0)
      if (ieee_flags != 0)
        DFP_HANDLE_EXCEPTIONS (ieee_flags);
        DFP_HANDLE_EXCEPTIONS (ieee_flags);
    }
    }
 
 
  return f;
  return f;
}
}
#endif
#endif
 
 
#if defined (L_unord_sd) || defined (L_unord_dd) || defined (L_unord_td)
#if defined (L_unord_sd) || defined (L_unord_dd) || defined (L_unord_td)
CMPtype
CMPtype
DFP_UNORD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_UNORD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  decNumber arg1, arg2;
  decNumber arg1, arg2;
  IEEE_TYPE a, b;
  IEEE_TYPE a, b;
 
 
  HOST_TO_IEEE (arg_a, &a);
  HOST_TO_IEEE (arg_a, &a);
  HOST_TO_IEEE (arg_b, &b);
  HOST_TO_IEEE (arg_b, &b);
  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&b, &arg2);
  TO_INTERNAL (&b, &arg2);
  return (decNumberIsNaN (&arg1) || decNumberIsNaN (&arg2));
  return (decNumberIsNaN (&arg1) || decNumberIsNaN (&arg2));
}
}
#endif /* L_unord_sd || L_unord_dd || L_unord_td */
#endif /* L_unord_sd || L_unord_dd || L_unord_td */
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.