OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [libgfortran/] [generated/] [maxloc0_4_r10.c] - Diff between revs 733 and 783

Only display areas with differences | Details | Blame | View Log

Rev 733 Rev 783
/* Implementation of the MAXLOC intrinsic
/* Implementation of the MAXLOC intrinsic
   Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
   Copyright 2002, 2007, 2009 Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>
   Contributed by Paul Brook <paul@nowt.org>
 
 
This file is part of the GNU Fortran 95 runtime library (libgfortran).
This file is part of the GNU Fortran 95 runtime library (libgfortran).
 
 
Libgfortran is free software; you can redistribute it and/or
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
version 3 of the License, or (at your option) any later version.
 
 
Libgfortran is distributed in the hope that it will be useful,
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
Under Section 7 of GPL version 3, you are granted additional
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
3.1, as published by the Free Software Foundation.
 
 
You should have received a copy of the GNU General Public License and
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "libgfortran.h"
#include "libgfortran.h"
#include <stdlib.h>
#include <stdlib.h>
#include <assert.h>
#include <assert.h>
#include <limits.h>
#include <limits.h>
 
 
 
 
#if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_INTEGER_4)
#if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_INTEGER_4)
 
 
 
 
extern void maxloc0_4_r10 (gfc_array_i4 * const restrict retarray,
extern void maxloc0_4_r10 (gfc_array_i4 * const restrict retarray,
        gfc_array_r10 * const restrict array);
        gfc_array_r10 * const restrict array);
export_proto(maxloc0_4_r10);
export_proto(maxloc0_4_r10);
 
 
void
void
maxloc0_4_r10 (gfc_array_i4 * const restrict retarray,
maxloc0_4_r10 (gfc_array_i4 * const restrict retarray,
        gfc_array_r10 * const restrict array)
        gfc_array_r10 * const restrict array)
{
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type dstride;
  index_type dstride;
  const GFC_REAL_10 *base;
  const GFC_REAL_10 *base;
  GFC_INTEGER_4 * restrict dest;
  GFC_INTEGER_4 * restrict dest;
  index_type rank;
  index_type rank;
  index_type n;
  index_type n;
 
 
  rank = GFC_DESCRIPTOR_RANK (array);
  rank = GFC_DESCRIPTOR_RANK (array);
  if (rank <= 0)
  if (rank <= 0)
    runtime_error ("Rank of array needs to be > 0");
    runtime_error ("Rank of array needs to be > 0");
 
 
  if (retarray->data == NULL)
  if (retarray->data == NULL)
    {
    {
      GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
      GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
      retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
      retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
      retarray->offset = 0;
      retarray->offset = 0;
      retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
      retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
    }
    }
  else
  else
    {
    {
      if (unlikely (compile_options.bounds_check))
      if (unlikely (compile_options.bounds_check))
        bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
        bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
                                "MAXLOC");
                                "MAXLOC");
    }
    }
 
 
  dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
  dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
  dest = retarray->data;
  dest = retarray->data;
  for (n = 0; n < rank; n++)
  for (n = 0; n < rank; n++)
    {
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
      count[n] = 0;
      count[n] = 0;
      if (extent[n] <= 0)
      if (extent[n] <= 0)
        {
        {
          /* Set the return value.  */
          /* Set the return value.  */
          for (n = 0; n < rank; n++)
          for (n = 0; n < rank; n++)
            dest[n * dstride] = 0;
            dest[n * dstride] = 0;
          return;
          return;
        }
        }
    }
    }
 
 
  base = array->data;
  base = array->data;
 
 
  /* Initialize the return value.  */
  /* Initialize the return value.  */
  for (n = 0; n < rank; n++)
  for (n = 0; n < rank; n++)
    dest[n * dstride] = 1;
    dest[n * dstride] = 1;
  {
  {
 
 
    GFC_REAL_10 maxval;
    GFC_REAL_10 maxval;
#if defined(GFC_REAL_10_QUIET_NAN)
#if defined(GFC_REAL_10_QUIET_NAN)
    int fast = 0;
    int fast = 0;
#endif
#endif
 
 
#if defined(GFC_REAL_10_INFINITY)
#if defined(GFC_REAL_10_INFINITY)
    maxval = -GFC_REAL_10_INFINITY;
    maxval = -GFC_REAL_10_INFINITY;
#else
#else
    maxval = -GFC_REAL_10_HUGE;
    maxval = -GFC_REAL_10_HUGE;
#endif
#endif
  while (base)
  while (base)
    {
    {
      do
      do
        {
        {
          /* Implementation start.  */
          /* Implementation start.  */
 
 
#if defined(GFC_REAL_10_QUIET_NAN)
#if defined(GFC_REAL_10_QUIET_NAN)
        }
        }
      while (0);
      while (0);
      if (unlikely (!fast))
      if (unlikely (!fast))
        {
        {
          do
          do
            {
            {
              if (*base >= maxval)
              if (*base >= maxval)
                {
                {
                  fast = 1;
                  fast = 1;
                  maxval = *base;
                  maxval = *base;
                  for (n = 0; n < rank; n++)
                  for (n = 0; n < rank; n++)
                    dest[n * dstride] = count[n] + 1;
                    dest[n * dstride] = count[n] + 1;
                  break;
                  break;
                }
                }
              base += sstride[0];
              base += sstride[0];
            }
            }
          while (++count[0] != extent[0]);
          while (++count[0] != extent[0]);
          if (likely (fast))
          if (likely (fast))
            continue;
            continue;
        }
        }
      else do
      else do
        {
        {
#endif
#endif
          if (*base > maxval)
          if (*base > maxval)
            {
            {
              maxval = *base;
              maxval = *base;
              for (n = 0; n < rank; n++)
              for (n = 0; n < rank; n++)
                dest[n * dstride] = count[n] + 1;
                dest[n * dstride] = count[n] + 1;
            }
            }
          /* Implementation end.  */
          /* Implementation end.  */
          /* Advance to the next element.  */
          /* Advance to the next element.  */
          base += sstride[0];
          base += sstride[0];
        }
        }
      while (++count[0] != extent[0]);
      while (++count[0] != extent[0]);
      n = 0;
      n = 0;
      do
      do
        {
        {
          /* When we get to the end of a dimension, reset it and increment
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
             the next dimension.  */
          count[n] = 0;
          count[n] = 0;
          /* We could precalculate these products, but this is a less
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
             frequently used path so probably not worth it.  */
          base -= sstride[n] * extent[n];
          base -= sstride[n] * extent[n];
          n++;
          n++;
          if (n == rank)
          if (n == rank)
            {
            {
              /* Break out of the loop.  */
              /* Break out of the loop.  */
              base = NULL;
              base = NULL;
              break;
              break;
            }
            }
          else
          else
            {
            {
              count[n]++;
              count[n]++;
              base += sstride[n];
              base += sstride[n];
            }
            }
        }
        }
      while (count[n] == extent[n]);
      while (count[n] == extent[n]);
    }
    }
  }
  }
}
}
 
 
 
 
extern void mmaxloc0_4_r10 (gfc_array_i4 * const restrict,
extern void mmaxloc0_4_r10 (gfc_array_i4 * const restrict,
        gfc_array_r10 * const restrict, gfc_array_l1 * const restrict);
        gfc_array_r10 * const restrict, gfc_array_l1 * const restrict);
export_proto(mmaxloc0_4_r10);
export_proto(mmaxloc0_4_r10);
 
 
void
void
mmaxloc0_4_r10 (gfc_array_i4 * const restrict retarray,
mmaxloc0_4_r10 (gfc_array_i4 * const restrict retarray,
        gfc_array_r10 * const restrict array,
        gfc_array_r10 * const restrict array,
        gfc_array_l1 * const restrict mask)
        gfc_array_l1 * const restrict mask)
{
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type mstride[GFC_MAX_DIMENSIONS];
  index_type mstride[GFC_MAX_DIMENSIONS];
  index_type dstride;
  index_type dstride;
  GFC_INTEGER_4 *dest;
  GFC_INTEGER_4 *dest;
  const GFC_REAL_10 *base;
  const GFC_REAL_10 *base;
  GFC_LOGICAL_1 *mbase;
  GFC_LOGICAL_1 *mbase;
  int rank;
  int rank;
  index_type n;
  index_type n;
  int mask_kind;
  int mask_kind;
 
 
  rank = GFC_DESCRIPTOR_RANK (array);
  rank = GFC_DESCRIPTOR_RANK (array);
  if (rank <= 0)
  if (rank <= 0)
    runtime_error ("Rank of array needs to be > 0");
    runtime_error ("Rank of array needs to be > 0");
 
 
  if (retarray->data == NULL)
  if (retarray->data == NULL)
    {
    {
      GFC_DIMENSION_SET(retarray->dim[0], 0, rank - 1, 1);
      GFC_DIMENSION_SET(retarray->dim[0], 0, rank - 1, 1);
      retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
      retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
      retarray->offset = 0;
      retarray->offset = 0;
      retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
      retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
    }
    }
  else
  else
    {
    {
      if (unlikely (compile_options.bounds_check))
      if (unlikely (compile_options.bounds_check))
        {
        {
 
 
          bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
          bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
                                  "MAXLOC");
                                  "MAXLOC");
          bounds_equal_extents ((array_t *) mask, (array_t *) array,
          bounds_equal_extents ((array_t *) mask, (array_t *) array,
                                  "MASK argument", "MAXLOC");
                                  "MASK argument", "MAXLOC");
        }
        }
    }
    }
 
 
  mask_kind = GFC_DESCRIPTOR_SIZE (mask);
  mask_kind = GFC_DESCRIPTOR_SIZE (mask);
 
 
  mbase = mask->data;
  mbase = mask->data;
 
 
  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
#ifdef HAVE_GFC_LOGICAL_16
      || mask_kind == 16
      || mask_kind == 16
#endif
#endif
      )
      )
    mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
    mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
  else
  else
    runtime_error ("Funny sized logical array");
    runtime_error ("Funny sized logical array");
 
 
  dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
  dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
  dest = retarray->data;
  dest = retarray->data;
  for (n = 0; n < rank; n++)
  for (n = 0; n < rank; n++)
    {
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
      count[n] = 0;
      count[n] = 0;
      if (extent[n] <= 0)
      if (extent[n] <= 0)
        {
        {
          /* Set the return value.  */
          /* Set the return value.  */
          for (n = 0; n < rank; n++)
          for (n = 0; n < rank; n++)
            dest[n * dstride] = 0;
            dest[n * dstride] = 0;
          return;
          return;
        }
        }
    }
    }
 
 
  base = array->data;
  base = array->data;
 
 
  /* Initialize the return value.  */
  /* Initialize the return value.  */
  for (n = 0; n < rank; n++)
  for (n = 0; n < rank; n++)
    dest[n * dstride] = 0;
    dest[n * dstride] = 0;
  {
  {
 
 
  GFC_REAL_10 maxval;
  GFC_REAL_10 maxval;
   int fast = 0;
   int fast = 0;
 
 
#if defined(GFC_REAL_10_INFINITY)
#if defined(GFC_REAL_10_INFINITY)
    maxval = -GFC_REAL_10_INFINITY;
    maxval = -GFC_REAL_10_INFINITY;
#else
#else
    maxval = -GFC_REAL_10_HUGE;
    maxval = -GFC_REAL_10_HUGE;
#endif
#endif
  while (base)
  while (base)
    {
    {
      do
      do
        {
        {
          /* Implementation start.  */
          /* Implementation start.  */
 
 
        }
        }
      while (0);
      while (0);
      if (unlikely (!fast))
      if (unlikely (!fast))
        {
        {
          do
          do
            {
            {
              if (*mbase)
              if (*mbase)
                {
                {
#if defined(GFC_REAL_10_QUIET_NAN)
#if defined(GFC_REAL_10_QUIET_NAN)
                  if (unlikely (dest[0] == 0))
                  if (unlikely (dest[0] == 0))
                    for (n = 0; n < rank; n++)
                    for (n = 0; n < rank; n++)
                      dest[n * dstride] = count[n] + 1;
                      dest[n * dstride] = count[n] + 1;
                  if (*base >= maxval)
                  if (*base >= maxval)
#endif
#endif
                    {
                    {
                      fast = 1;
                      fast = 1;
                      maxval = *base;
                      maxval = *base;
                      for (n = 0; n < rank; n++)
                      for (n = 0; n < rank; n++)
                        dest[n * dstride] = count[n] + 1;
                        dest[n * dstride] = count[n] + 1;
                      break;
                      break;
                    }
                    }
                }
                }
              base += sstride[0];
              base += sstride[0];
              mbase += mstride[0];
              mbase += mstride[0];
            }
            }
          while (++count[0] != extent[0]);
          while (++count[0] != extent[0]);
          if (likely (fast))
          if (likely (fast))
            continue;
            continue;
        }
        }
      else do
      else do
        {
        {
          if (*mbase && *base > maxval)
          if (*mbase && *base > maxval)
            {
            {
              maxval = *base;
              maxval = *base;
              for (n = 0; n < rank; n++)
              for (n = 0; n < rank; n++)
                dest[n * dstride] = count[n] + 1;
                dest[n * dstride] = count[n] + 1;
            }
            }
          /* Implementation end.  */
          /* Implementation end.  */
          /* Advance to the next element.  */
          /* Advance to the next element.  */
          base += sstride[0];
          base += sstride[0];
          mbase += mstride[0];
          mbase += mstride[0];
        }
        }
      while (++count[0] != extent[0]);
      while (++count[0] != extent[0]);
      n = 0;
      n = 0;
      do
      do
        {
        {
          /* When we get to the end of a dimension, reset it and increment
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
             the next dimension.  */
          count[n] = 0;
          count[n] = 0;
          /* We could precalculate these products, but this is a less
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
             frequently used path so probably not worth it.  */
          base -= sstride[n] * extent[n];
          base -= sstride[n] * extent[n];
          mbase -= mstride[n] * extent[n];
          mbase -= mstride[n] * extent[n];
          n++;
          n++;
          if (n == rank)
          if (n == rank)
            {
            {
              /* Break out of the loop.  */
              /* Break out of the loop.  */
              base = NULL;
              base = NULL;
              break;
              break;
            }
            }
          else
          else
            {
            {
              count[n]++;
              count[n]++;
              base += sstride[n];
              base += sstride[n];
              mbase += mstride[n];
              mbase += mstride[n];
            }
            }
        }
        }
      while (count[n] == extent[n]);
      while (count[n] == extent[n]);
    }
    }
  }
  }
}
}
 
 
 
 
extern void smaxloc0_4_r10 (gfc_array_i4 * const restrict,
extern void smaxloc0_4_r10 (gfc_array_i4 * const restrict,
        gfc_array_r10 * const restrict, GFC_LOGICAL_4 *);
        gfc_array_r10 * const restrict, GFC_LOGICAL_4 *);
export_proto(smaxloc0_4_r10);
export_proto(smaxloc0_4_r10);
 
 
void
void
smaxloc0_4_r10 (gfc_array_i4 * const restrict retarray,
smaxloc0_4_r10 (gfc_array_i4 * const restrict retarray,
        gfc_array_r10 * const restrict array,
        gfc_array_r10 * const restrict array,
        GFC_LOGICAL_4 * mask)
        GFC_LOGICAL_4 * mask)
{
{
  index_type rank;
  index_type rank;
  index_type dstride;
  index_type dstride;
  index_type n;
  index_type n;
  GFC_INTEGER_4 *dest;
  GFC_INTEGER_4 *dest;
 
 
  if (*mask)
  if (*mask)
    {
    {
      maxloc0_4_r10 (retarray, array);
      maxloc0_4_r10 (retarray, array);
      return;
      return;
    }
    }
 
 
  rank = GFC_DESCRIPTOR_RANK (array);
  rank = GFC_DESCRIPTOR_RANK (array);
 
 
  if (rank <= 0)
  if (rank <= 0)
    runtime_error ("Rank of array needs to be > 0");
    runtime_error ("Rank of array needs to be > 0");
 
 
  if (retarray->data == NULL)
  if (retarray->data == NULL)
    {
    {
      GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
      GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
      retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
      retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
      retarray->offset = 0;
      retarray->offset = 0;
      retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
      retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
    }
    }
  else if (unlikely (compile_options.bounds_check))
  else if (unlikely (compile_options.bounds_check))
    {
    {
       bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
       bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
                               "MAXLOC");
                               "MAXLOC");
    }
    }
 
 
  dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
  dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
  dest = retarray->data;
  dest = retarray->data;
  for (n = 0; n<rank; n++)
  for (n = 0; n<rank; n++)
    dest[n * dstride] = 0 ;
    dest[n * dstride] = 0 ;
}
}
#endif
#endif
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.