OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [libgfortran/] [generated/] [maxval_i4.c] - Diff between revs 733 and 783

Only display areas with differences | Details | Blame | View Log

Rev 733 Rev 783
/* Implementation of the MAXVAL intrinsic
/* Implementation of the MAXVAL intrinsic
   Copyright 2002, 2007, 2009, 2010 Free Software Foundation, Inc.
   Copyright 2002, 2007, 2009, 2010 Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>
   Contributed by Paul Brook <paul@nowt.org>
 
 
This file is part of the GNU Fortran runtime library (libgfortran).
This file is part of the GNU Fortran runtime library (libgfortran).
 
 
Libgfortran is free software; you can redistribute it and/or
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
version 3 of the License, or (at your option) any later version.
 
 
Libgfortran is distributed in the hope that it will be useful,
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
Under Section 7 of GPL version 3, you are granted additional
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
3.1, as published by the Free Software Foundation.
 
 
You should have received a copy of the GNU General Public License and
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "libgfortran.h"
#include "libgfortran.h"
#include <stdlib.h>
#include <stdlib.h>
#include <assert.h>
#include <assert.h>
 
 
 
 
#if defined (HAVE_GFC_INTEGER_4) && defined (HAVE_GFC_INTEGER_4)
#if defined (HAVE_GFC_INTEGER_4) && defined (HAVE_GFC_INTEGER_4)
 
 
 
 
extern void maxval_i4 (gfc_array_i4 * const restrict,
extern void maxval_i4 (gfc_array_i4 * const restrict,
        gfc_array_i4 * const restrict, const index_type * const restrict);
        gfc_array_i4 * const restrict, const index_type * const restrict);
export_proto(maxval_i4);
export_proto(maxval_i4);
 
 
void
void
maxval_i4 (gfc_array_i4 * const restrict retarray,
maxval_i4 (gfc_array_i4 * const restrict retarray,
        gfc_array_i4 * const restrict array,
        gfc_array_i4 * const restrict array,
        const index_type * const restrict pdim)
        const index_type * const restrict pdim)
{
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  const GFC_INTEGER_4 * restrict base;
  const GFC_INTEGER_4 * restrict base;
  GFC_INTEGER_4 * restrict dest;
  GFC_INTEGER_4 * restrict dest;
  index_type rank;
  index_type rank;
  index_type n;
  index_type n;
  index_type len;
  index_type len;
  index_type delta;
  index_type delta;
  index_type dim;
  index_type dim;
  int continue_loop;
  int continue_loop;
 
 
  /* Make dim zero based to avoid confusion.  */
  /* Make dim zero based to avoid confusion.  */
  dim = (*pdim) - 1;
  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
 
 
  len = GFC_DESCRIPTOR_EXTENT(array,dim);
  len = GFC_DESCRIPTOR_EXTENT(array,dim);
  if (len < 0)
  if (len < 0)
    len = 0;
    len = 0;
  delta = GFC_DESCRIPTOR_STRIDE(array,dim);
  delta = GFC_DESCRIPTOR_STRIDE(array,dim);
 
 
  for (n = 0; n < dim; n++)
  for (n = 0; n < dim; n++)
    {
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
 
 
      if (extent[n] < 0)
      if (extent[n] < 0)
        extent[n] = 0;
        extent[n] = 0;
    }
    }
  for (n = dim; n < rank; n++)
  for (n = dim; n < rank; n++)
    {
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
 
 
      if (extent[n] < 0)
      if (extent[n] < 0)
        extent[n] = 0;
        extent[n] = 0;
    }
    }
 
 
  if (retarray->data == NULL)
  if (retarray->data == NULL)
    {
    {
      size_t alloc_size, str;
      size_t alloc_size, str;
 
 
      for (n = 0; n < rank; n++)
      for (n = 0; n < rank; n++)
        {
        {
          if (n == 0)
          if (n == 0)
            str = 1;
            str = 1;
          else
          else
            str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
            str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
 
 
          GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
          GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
 
 
        }
        }
 
 
      retarray->offset = 0;
      retarray->offset = 0;
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
 
 
      alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
      alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
                   * extent[rank-1];
                   * extent[rank-1];
 
 
      retarray->data = internal_malloc_size (alloc_size);
      retarray->data = internal_malloc_size (alloc_size);
      if (alloc_size == 0)
      if (alloc_size == 0)
        {
        {
          /* Make sure we have a zero-sized array.  */
          /* Make sure we have a zero-sized array.  */
          GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
          GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
          return;
          return;
 
 
        }
        }
    }
    }
  else
  else
    {
    {
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
        runtime_error ("rank of return array incorrect in"
        runtime_error ("rank of return array incorrect in"
                       " MAXVAL intrinsic: is %ld, should be %ld",
                       " MAXVAL intrinsic: is %ld, should be %ld",
                       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
                       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
                       (long int) rank);
                       (long int) rank);
 
 
      if (unlikely (compile_options.bounds_check))
      if (unlikely (compile_options.bounds_check))
        bounds_ifunction_return ((array_t *) retarray, extent,
        bounds_ifunction_return ((array_t *) retarray, extent,
                                 "return value", "MAXVAL");
                                 "return value", "MAXVAL");
    }
    }
 
 
  for (n = 0; n < rank; n++)
  for (n = 0; n < rank; n++)
    {
    {
      count[n] = 0;
      count[n] = 0;
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
      if (extent[n] <= 0)
      if (extent[n] <= 0)
        return;
        return;
    }
    }
 
 
  base = array->data;
  base = array->data;
  dest = retarray->data;
  dest = retarray->data;
 
 
  continue_loop = 1;
  continue_loop = 1;
  while (continue_loop)
  while (continue_loop)
    {
    {
      const GFC_INTEGER_4 * restrict src;
      const GFC_INTEGER_4 * restrict src;
      GFC_INTEGER_4 result;
      GFC_INTEGER_4 result;
      src = base;
      src = base;
      {
      {
 
 
#if defined (GFC_INTEGER_4_INFINITY)
#if defined (GFC_INTEGER_4_INFINITY)
        result = -GFC_INTEGER_4_INFINITY;
        result = -GFC_INTEGER_4_INFINITY;
#else
#else
        result = (-GFC_INTEGER_4_HUGE-1);
        result = (-GFC_INTEGER_4_HUGE-1);
#endif
#endif
        if (len <= 0)
        if (len <= 0)
          *dest = (-GFC_INTEGER_4_HUGE-1);
          *dest = (-GFC_INTEGER_4_HUGE-1);
        else
        else
          {
          {
            for (n = 0; n < len; n++, src += delta)
            for (n = 0; n < len; n++, src += delta)
              {
              {
 
 
#if defined (GFC_INTEGER_4_QUIET_NAN)
#if defined (GFC_INTEGER_4_QUIET_NAN)
                if (*src >= result)
                if (*src >= result)
                  break;
                  break;
              }
              }
            if (unlikely (n >= len))
            if (unlikely (n >= len))
              result = GFC_INTEGER_4_QUIET_NAN;
              result = GFC_INTEGER_4_QUIET_NAN;
            else for (; n < len; n++, src += delta)
            else for (; n < len; n++, src += delta)
              {
              {
#endif
#endif
                if (*src > result)
                if (*src > result)
                  result = *src;
                  result = *src;
              }
              }
 
 
            *dest = result;
            *dest = result;
          }
          }
      }
      }
      /* Advance to the next element.  */
      /* Advance to the next element.  */
      count[0]++;
      count[0]++;
      base += sstride[0];
      base += sstride[0];
      dest += dstride[0];
      dest += dstride[0];
      n = 0;
      n = 0;
      while (count[n] == extent[n])
      while (count[n] == extent[n])
        {
        {
          /* When we get to the end of a dimension, reset it and increment
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
             the next dimension.  */
          count[n] = 0;
          count[n] = 0;
          /* We could precalculate these products, but this is a less
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
             frequently used path so probably not worth it.  */
          base -= sstride[n] * extent[n];
          base -= sstride[n] * extent[n];
          dest -= dstride[n] * extent[n];
          dest -= dstride[n] * extent[n];
          n++;
          n++;
          if (n == rank)
          if (n == rank)
            {
            {
              /* Break out of the look.  */
              /* Break out of the look.  */
              continue_loop = 0;
              continue_loop = 0;
              break;
              break;
            }
            }
          else
          else
            {
            {
              count[n]++;
              count[n]++;
              base += sstride[n];
              base += sstride[n];
              dest += dstride[n];
              dest += dstride[n];
            }
            }
        }
        }
    }
    }
}
}
 
 
 
 
extern void mmaxval_i4 (gfc_array_i4 * const restrict,
extern void mmaxval_i4 (gfc_array_i4 * const restrict,
        gfc_array_i4 * const restrict, const index_type * const restrict,
        gfc_array_i4 * const restrict, const index_type * const restrict,
        gfc_array_l1 * const restrict);
        gfc_array_l1 * const restrict);
export_proto(mmaxval_i4);
export_proto(mmaxval_i4);
 
 
void
void
mmaxval_i4 (gfc_array_i4 * const restrict retarray,
mmaxval_i4 (gfc_array_i4 * const restrict retarray,
        gfc_array_i4 * const restrict array,
        gfc_array_i4 * const restrict array,
        const index_type * const restrict pdim,
        const index_type * const restrict pdim,
        gfc_array_l1 * const restrict mask)
        gfc_array_l1 * const restrict mask)
{
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type sstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  index_type mstride[GFC_MAX_DIMENSIONS];
  index_type mstride[GFC_MAX_DIMENSIONS];
  GFC_INTEGER_4 * restrict dest;
  GFC_INTEGER_4 * restrict dest;
  const GFC_INTEGER_4 * restrict base;
  const GFC_INTEGER_4 * restrict base;
  const GFC_LOGICAL_1 * restrict mbase;
  const GFC_LOGICAL_1 * restrict mbase;
  int rank;
  int rank;
  int dim;
  int dim;
  index_type n;
  index_type n;
  index_type len;
  index_type len;
  index_type delta;
  index_type delta;
  index_type mdelta;
  index_type mdelta;
  int mask_kind;
  int mask_kind;
 
 
  dim = (*pdim) - 1;
  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
 
 
  len = GFC_DESCRIPTOR_EXTENT(array,dim);
  len = GFC_DESCRIPTOR_EXTENT(array,dim);
  if (len <= 0)
  if (len <= 0)
    return;
    return;
 
 
  mbase = mask->data;
  mbase = mask->data;
 
 
  mask_kind = GFC_DESCRIPTOR_SIZE (mask);
  mask_kind = GFC_DESCRIPTOR_SIZE (mask);
 
 
  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
#ifdef HAVE_GFC_LOGICAL_16
      || mask_kind == 16
      || mask_kind == 16
#endif
#endif
      )
      )
    mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
    mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
  else
  else
    runtime_error ("Funny sized logical array");
    runtime_error ("Funny sized logical array");
 
 
  delta = GFC_DESCRIPTOR_STRIDE(array,dim);
  delta = GFC_DESCRIPTOR_STRIDE(array,dim);
  mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
  mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
 
 
  for (n = 0; n < dim; n++)
  for (n = 0; n < dim; n++)
    {
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
 
 
      if (extent[n] < 0)
      if (extent[n] < 0)
        extent[n] = 0;
        extent[n] = 0;
 
 
    }
    }
  for (n = dim; n < rank; n++)
  for (n = dim; n < rank; n++)
    {
    {
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
      sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
      mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
 
 
      if (extent[n] < 0)
      if (extent[n] < 0)
        extent[n] = 0;
        extent[n] = 0;
    }
    }
 
 
  if (retarray->data == NULL)
  if (retarray->data == NULL)
    {
    {
      size_t alloc_size, str;
      size_t alloc_size, str;
 
 
      for (n = 0; n < rank; n++)
      for (n = 0; n < rank; n++)
        {
        {
          if (n == 0)
          if (n == 0)
            str = 1;
            str = 1;
          else
          else
            str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
            str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
 
 
          GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
          GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
 
 
        }
        }
 
 
      alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
      alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
                   * extent[rank-1];
                   * extent[rank-1];
 
 
      retarray->offset = 0;
      retarray->offset = 0;
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
 
 
      if (alloc_size == 0)
      if (alloc_size == 0)
        {
        {
          /* Make sure we have a zero-sized array.  */
          /* Make sure we have a zero-sized array.  */
          GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
          GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
          return;
          return;
        }
        }
      else
      else
        retarray->data = internal_malloc_size (alloc_size);
        retarray->data = internal_malloc_size (alloc_size);
 
 
    }
    }
  else
  else
    {
    {
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
        runtime_error ("rank of return array incorrect in MAXVAL intrinsic");
        runtime_error ("rank of return array incorrect in MAXVAL intrinsic");
 
 
      if (unlikely (compile_options.bounds_check))
      if (unlikely (compile_options.bounds_check))
        {
        {
          bounds_ifunction_return ((array_t *) retarray, extent,
          bounds_ifunction_return ((array_t *) retarray, extent,
                                   "return value", "MAXVAL");
                                   "return value", "MAXVAL");
          bounds_equal_extents ((array_t *) mask, (array_t *) array,
          bounds_equal_extents ((array_t *) mask, (array_t *) array,
                                "MASK argument", "MAXVAL");
                                "MASK argument", "MAXVAL");
        }
        }
    }
    }
 
 
  for (n = 0; n < rank; n++)
  for (n = 0; n < rank; n++)
    {
    {
      count[n] = 0;
      count[n] = 0;
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
      if (extent[n] <= 0)
      if (extent[n] <= 0)
        return;
        return;
    }
    }
 
 
  dest = retarray->data;
  dest = retarray->data;
  base = array->data;
  base = array->data;
 
 
  while (base)
  while (base)
    {
    {
      const GFC_INTEGER_4 * restrict src;
      const GFC_INTEGER_4 * restrict src;
      const GFC_LOGICAL_1 * restrict msrc;
      const GFC_LOGICAL_1 * restrict msrc;
      GFC_INTEGER_4 result;
      GFC_INTEGER_4 result;
      src = base;
      src = base;
      msrc = mbase;
      msrc = mbase;
      {
      {
 
 
#if defined (GFC_INTEGER_4_INFINITY)
#if defined (GFC_INTEGER_4_INFINITY)
        result = -GFC_INTEGER_4_INFINITY;
        result = -GFC_INTEGER_4_INFINITY;
#else
#else
        result = (-GFC_INTEGER_4_HUGE-1);
        result = (-GFC_INTEGER_4_HUGE-1);
#endif
#endif
#if defined (GFC_INTEGER_4_QUIET_NAN)
#if defined (GFC_INTEGER_4_QUIET_NAN)
        int non_empty_p = 0;
        int non_empty_p = 0;
#endif
#endif
        if (len <= 0)
        if (len <= 0)
          *dest = (-GFC_INTEGER_4_HUGE-1);
          *dest = (-GFC_INTEGER_4_HUGE-1);
        else
        else
          {
          {
            for (n = 0; n < len; n++, src += delta, msrc += mdelta)
            for (n = 0; n < len; n++, src += delta, msrc += mdelta)
              {
              {
 
 
#if defined (GFC_INTEGER_4_INFINITY) || defined (GFC_INTEGER_4_QUIET_NAN)
#if defined (GFC_INTEGER_4_INFINITY) || defined (GFC_INTEGER_4_QUIET_NAN)
                if (*msrc)
                if (*msrc)
                  {
                  {
#if defined (GFC_INTEGER_4_QUIET_NAN)
#if defined (GFC_INTEGER_4_QUIET_NAN)
                    non_empty_p = 1;
                    non_empty_p = 1;
                    if (*src >= result)
                    if (*src >= result)
#endif
#endif
                      break;
                      break;
                  }
                  }
              }
              }
            if (unlikely (n >= len))
            if (unlikely (n >= len))
              {
              {
#if defined (GFC_INTEGER_4_QUIET_NAN)
#if defined (GFC_INTEGER_4_QUIET_NAN)
                result = non_empty_p ? GFC_INTEGER_4_QUIET_NAN : (-GFC_INTEGER_4_HUGE-1);
                result = non_empty_p ? GFC_INTEGER_4_QUIET_NAN : (-GFC_INTEGER_4_HUGE-1);
#else
#else
                result = (-GFC_INTEGER_4_HUGE-1);
                result = (-GFC_INTEGER_4_HUGE-1);
#endif
#endif
              }
              }
            else for (; n < len; n++, src += delta, msrc += mdelta)
            else for (; n < len; n++, src += delta, msrc += mdelta)
              {
              {
#endif
#endif
                if (*msrc && *src > result)
                if (*msrc && *src > result)
                  result = *src;
                  result = *src;
              }
              }
            *dest = result;
            *dest = result;
          }
          }
      }
      }
      /* Advance to the next element.  */
      /* Advance to the next element.  */
      count[0]++;
      count[0]++;
      base += sstride[0];
      base += sstride[0];
      mbase += mstride[0];
      mbase += mstride[0];
      dest += dstride[0];
      dest += dstride[0];
      n = 0;
      n = 0;
      while (count[n] == extent[n])
      while (count[n] == extent[n])
        {
        {
          /* When we get to the end of a dimension, reset it and increment
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
             the next dimension.  */
          count[n] = 0;
          count[n] = 0;
          /* We could precalculate these products, but this is a less
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
             frequently used path so probably not worth it.  */
          base -= sstride[n] * extent[n];
          base -= sstride[n] * extent[n];
          mbase -= mstride[n] * extent[n];
          mbase -= mstride[n] * extent[n];
          dest -= dstride[n] * extent[n];
          dest -= dstride[n] * extent[n];
          n++;
          n++;
          if (n == rank)
          if (n == rank)
            {
            {
              /* Break out of the look.  */
              /* Break out of the look.  */
              base = NULL;
              base = NULL;
              break;
              break;
            }
            }
          else
          else
            {
            {
              count[n]++;
              count[n]++;
              base += sstride[n];
              base += sstride[n];
              mbase += mstride[n];
              mbase += mstride[n];
              dest += dstride[n];
              dest += dstride[n];
            }
            }
        }
        }
    }
    }
}
}
 
 
 
 
extern void smaxval_i4 (gfc_array_i4 * const restrict,
extern void smaxval_i4 (gfc_array_i4 * const restrict,
        gfc_array_i4 * const restrict, const index_type * const restrict,
        gfc_array_i4 * const restrict, const index_type * const restrict,
        GFC_LOGICAL_4 *);
        GFC_LOGICAL_4 *);
export_proto(smaxval_i4);
export_proto(smaxval_i4);
 
 
void
void
smaxval_i4 (gfc_array_i4 * const restrict retarray,
smaxval_i4 (gfc_array_i4 * const restrict retarray,
        gfc_array_i4 * const restrict array,
        gfc_array_i4 * const restrict array,
        const index_type * const restrict pdim,
        const index_type * const restrict pdim,
        GFC_LOGICAL_4 * mask)
        GFC_LOGICAL_4 * mask)
{
{
  index_type count[GFC_MAX_DIMENSIONS];
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  index_type dstride[GFC_MAX_DIMENSIONS];
  GFC_INTEGER_4 * restrict dest;
  GFC_INTEGER_4 * restrict dest;
  index_type rank;
  index_type rank;
  index_type n;
  index_type n;
  index_type dim;
  index_type dim;
 
 
 
 
  if (*mask)
  if (*mask)
    {
    {
      maxval_i4 (retarray, array, pdim);
      maxval_i4 (retarray, array, pdim);
      return;
      return;
    }
    }
  /* Make dim zero based to avoid confusion.  */
  /* Make dim zero based to avoid confusion.  */
  dim = (*pdim) - 1;
  dim = (*pdim) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
  rank = GFC_DESCRIPTOR_RANK (array) - 1;
 
 
  for (n = 0; n < dim; n++)
  for (n = 0; n < dim; n++)
    {
    {
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
      extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
 
 
      if (extent[n] <= 0)
      if (extent[n] <= 0)
        extent[n] = 0;
        extent[n] = 0;
    }
    }
 
 
  for (n = dim; n < rank; n++)
  for (n = dim; n < rank; n++)
    {
    {
      extent[n] =
      extent[n] =
        GFC_DESCRIPTOR_EXTENT(array,n + 1);
        GFC_DESCRIPTOR_EXTENT(array,n + 1);
 
 
      if (extent[n] <= 0)
      if (extent[n] <= 0)
        extent[n] = 0;
        extent[n] = 0;
    }
    }
 
 
  if (retarray->data == NULL)
  if (retarray->data == NULL)
    {
    {
      size_t alloc_size, str;
      size_t alloc_size, str;
 
 
      for (n = 0; n < rank; n++)
      for (n = 0; n < rank; n++)
        {
        {
          if (n == 0)
          if (n == 0)
            str = 1;
            str = 1;
          else
          else
            str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
            str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
 
 
          GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
          GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
 
 
        }
        }
 
 
      retarray->offset = 0;
      retarray->offset = 0;
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
      retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
 
 
      alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
      alloc_size = sizeof (GFC_INTEGER_4) * GFC_DESCRIPTOR_STRIDE(retarray,rank-1)
                   * extent[rank-1];
                   * extent[rank-1];
 
 
      if (alloc_size == 0)
      if (alloc_size == 0)
        {
        {
          /* Make sure we have a zero-sized array.  */
          /* Make sure we have a zero-sized array.  */
          GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
          GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
          return;
          return;
        }
        }
      else
      else
        retarray->data = internal_malloc_size (alloc_size);
        retarray->data = internal_malloc_size (alloc_size);
    }
    }
  else
  else
    {
    {
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
      if (rank != GFC_DESCRIPTOR_RANK (retarray))
        runtime_error ("rank of return array incorrect in"
        runtime_error ("rank of return array incorrect in"
                       " MAXVAL intrinsic: is %ld, should be %ld",
                       " MAXVAL intrinsic: is %ld, should be %ld",
                       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
                       (long int) (GFC_DESCRIPTOR_RANK (retarray)),
                       (long int) rank);
                       (long int) rank);
 
 
      if (unlikely (compile_options.bounds_check))
      if (unlikely (compile_options.bounds_check))
        {
        {
          for (n=0; n < rank; n++)
          for (n=0; n < rank; n++)
            {
            {
              index_type ret_extent;
              index_type ret_extent;
 
 
              ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
              ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
              if (extent[n] != ret_extent)
              if (extent[n] != ret_extent)
                runtime_error ("Incorrect extent in return value of"
                runtime_error ("Incorrect extent in return value of"
                               " MAXVAL intrinsic in dimension %ld:"
                               " MAXVAL intrinsic in dimension %ld:"
                               " is %ld, should be %ld", (long int) n + 1,
                               " is %ld, should be %ld", (long int) n + 1,
                               (long int) ret_extent, (long int) extent[n]);
                               (long int) ret_extent, (long int) extent[n]);
            }
            }
        }
        }
    }
    }
 
 
  for (n = 0; n < rank; n++)
  for (n = 0; n < rank; n++)
    {
    {
      count[n] = 0;
      count[n] = 0;
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
      dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
    }
    }
 
 
  dest = retarray->data;
  dest = retarray->data;
 
 
  while(1)
  while(1)
    {
    {
      *dest = (-GFC_INTEGER_4_HUGE-1);
      *dest = (-GFC_INTEGER_4_HUGE-1);
      count[0]++;
      count[0]++;
      dest += dstride[0];
      dest += dstride[0];
      n = 0;
      n = 0;
      while (count[n] == extent[n])
      while (count[n] == extent[n])
        {
        {
          /* When we get to the end of a dimension, reset it and increment
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
             the next dimension.  */
          count[n] = 0;
          count[n] = 0;
          /* We could precalculate these products, but this is a less
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
             frequently used path so probably not worth it.  */
          dest -= dstride[n] * extent[n];
          dest -= dstride[n] * extent[n];
          n++;
          n++;
          if (n == rank)
          if (n == rank)
            return;
            return;
          else
          else
            {
            {
              count[n]++;
              count[n]++;
              dest += dstride[n];
              dest += dstride[n];
            }
            }
        }
        }
    }
    }
}
}
 
 
#endif
#endif
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.