OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [libgfortran/] [intrinsics/] [unpack_generic.c] - Diff between revs 733 and 783

Only display areas with differences | Details | Blame | View Log

Rev 733 Rev 783
/* Generic implementation of the UNPACK intrinsic
/* Generic implementation of the UNPACK intrinsic
   Copyright 2002, 2003, 2004, 2005, 2007, 2009, 2010
   Copyright 2002, 2003, 2004, 2005, 2007, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>
   Contributed by Paul Brook <paul@nowt.org>
 
 
This file is part of the GNU Fortran 95 runtime library (libgfortran).
This file is part of the GNU Fortran 95 runtime library (libgfortran).
 
 
Libgfortran is free software; you can redistribute it and/or
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
version 3 of the License, or (at your option) any later version.
 
 
Ligbfortran is distributed in the hope that it will be useful,
Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
Under Section 7 of GPL version 3, you are granted additional
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
3.1, as published by the Free Software Foundation.
 
 
You should have received a copy of the GNU General Public License and
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "libgfortran.h"
#include "libgfortran.h"
#include <stdlib.h>
#include <stdlib.h>
#include <assert.h>
#include <assert.h>
#include <string.h>
#include <string.h>
 
 
/* All the bounds checking for unpack in one function.  If field is NULL,
/* All the bounds checking for unpack in one function.  If field is NULL,
   we don't check it, for the unpack0 functions.  */
   we don't check it, for the unpack0 functions.  */
 
 
static void
static void
unpack_bounds (gfc_array_char *ret, const gfc_array_char *vector,
unpack_bounds (gfc_array_char *ret, const gfc_array_char *vector,
         const gfc_array_l1 *mask, const gfc_array_char *field)
         const gfc_array_l1 *mask, const gfc_array_char *field)
{
{
  index_type vec_size, mask_count;
  index_type vec_size, mask_count;
  vec_size = size0 ((array_t *) vector);
  vec_size = size0 ((array_t *) vector);
  mask_count = count_0 (mask);
  mask_count = count_0 (mask);
  if (vec_size < mask_count)
  if (vec_size < mask_count)
    runtime_error ("Incorrect size of return value in UNPACK"
    runtime_error ("Incorrect size of return value in UNPACK"
                   " intrinsic: should be at least %ld, is"
                   " intrinsic: should be at least %ld, is"
                   " %ld", (long int) mask_count,
                   " %ld", (long int) mask_count,
                   (long int) vec_size);
                   (long int) vec_size);
 
 
  if (field != NULL)
  if (field != NULL)
    bounds_equal_extents ((array_t *) field, (array_t *) mask,
    bounds_equal_extents ((array_t *) field, (array_t *) mask,
                          "FIELD", "UNPACK");
                          "FIELD", "UNPACK");
 
 
  if (ret->data != NULL)
  if (ret->data != NULL)
    bounds_equal_extents ((array_t *) ret, (array_t *) mask,
    bounds_equal_extents ((array_t *) ret, (array_t *) mask,
                          "return value", "UNPACK");
                          "return value", "UNPACK");
 
 
}
}
 
 
static void
static void
unpack_internal (gfc_array_char *ret, const gfc_array_char *vector,
unpack_internal (gfc_array_char *ret, const gfc_array_char *vector,
                 const gfc_array_l1 *mask, const gfc_array_char *field,
                 const gfc_array_l1 *mask, const gfc_array_char *field,
                 index_type size)
                 index_type size)
{
{
  /* r.* indicates the return array.  */
  /* r.* indicates the return array.  */
  index_type rstride[GFC_MAX_DIMENSIONS];
  index_type rstride[GFC_MAX_DIMENSIONS];
  index_type rstride0;
  index_type rstride0;
  index_type rs;
  index_type rs;
  char * restrict rptr;
  char * restrict rptr;
  /* v.* indicates the vector array.  */
  /* v.* indicates the vector array.  */
  index_type vstride0;
  index_type vstride0;
  char *vptr;
  char *vptr;
  /* f.* indicates the field array.  */
  /* f.* indicates the field array.  */
  index_type fstride[GFC_MAX_DIMENSIONS];
  index_type fstride[GFC_MAX_DIMENSIONS];
  index_type fstride0;
  index_type fstride0;
  const char *fptr;
  const char *fptr;
  /* m.* indicates the mask array.  */
  /* m.* indicates the mask array.  */
  index_type mstride[GFC_MAX_DIMENSIONS];
  index_type mstride[GFC_MAX_DIMENSIONS];
  index_type mstride0;
  index_type mstride0;
  const GFC_LOGICAL_1 *mptr;
  const GFC_LOGICAL_1 *mptr;
 
 
  index_type count[GFC_MAX_DIMENSIONS];
  index_type count[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type extent[GFC_MAX_DIMENSIONS];
  index_type n;
  index_type n;
  index_type dim;
  index_type dim;
 
 
  int empty;
  int empty;
  int mask_kind;
  int mask_kind;
 
 
  empty = 0;
  empty = 0;
 
 
  mptr = mask->data;
  mptr = mask->data;
 
 
  /* Use the same loop for all logical types, by using GFC_LOGICAL_1
  /* Use the same loop for all logical types, by using GFC_LOGICAL_1
     and using shifting to address size and endian issues.  */
     and using shifting to address size and endian issues.  */
 
 
  mask_kind = GFC_DESCRIPTOR_SIZE (mask);
  mask_kind = GFC_DESCRIPTOR_SIZE (mask);
 
 
  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
  if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
#ifdef HAVE_GFC_LOGICAL_16
      || mask_kind == 16
      || mask_kind == 16
#endif
#endif
      )
      )
    {
    {
      /*  Don't convert a NULL pointer as we use test for NULL below.  */
      /*  Don't convert a NULL pointer as we use test for NULL below.  */
      if (mptr)
      if (mptr)
        mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
        mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind);
    }
    }
  else
  else
    runtime_error ("Funny sized logical array");
    runtime_error ("Funny sized logical array");
 
 
  if (ret->data == NULL)
  if (ret->data == NULL)
    {
    {
      /* The front end has signalled that we need to populate the
      /* The front end has signalled that we need to populate the
         return array descriptor.  */
         return array descriptor.  */
      dim = GFC_DESCRIPTOR_RANK (mask);
      dim = GFC_DESCRIPTOR_RANK (mask);
      rs = 1;
      rs = 1;
      for (n = 0; n < dim; n++)
      for (n = 0; n < dim; n++)
        {
        {
          count[n] = 0;
          count[n] = 0;
          GFC_DIMENSION_SET(ret->dim[n], 0,
          GFC_DIMENSION_SET(ret->dim[n], 0,
                            GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs);
                            GFC_DESCRIPTOR_EXTENT(mask,n) - 1, rs);
          extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
          extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
          empty = empty || extent[n] <= 0;
          empty = empty || extent[n] <= 0;
          rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret, n);
          rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret, n);
          fstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(field, n);
          fstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(field, n);
          mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n);
          mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n);
          rs *= extent[n];
          rs *= extent[n];
        }
        }
      ret->offset = 0;
      ret->offset = 0;
      ret->data = internal_malloc_size (rs * size);
      ret->data = internal_malloc_size (rs * size);
    }
    }
  else
  else
    {
    {
      dim = GFC_DESCRIPTOR_RANK (ret);
      dim = GFC_DESCRIPTOR_RANK (ret);
      for (n = 0; n < dim; n++)
      for (n = 0; n < dim; n++)
        {
        {
          count[n] = 0;
          count[n] = 0;
          extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
          extent[n] = GFC_DESCRIPTOR_EXTENT(ret,n);
          empty = empty || extent[n] <= 0;
          empty = empty || extent[n] <= 0;
          rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret, n);
          rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret, n);
          fstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(field, n);
          fstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(field, n);
          mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n);
          mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n);
        }
        }
    }
    }
 
 
  if (empty)
  if (empty)
    return;
    return;
 
 
  vstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0);
  vstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0);
  rstride0 = rstride[0];
  rstride0 = rstride[0];
  fstride0 = fstride[0];
  fstride0 = fstride[0];
  mstride0 = mstride[0];
  mstride0 = mstride[0];
  rptr = ret->data;
  rptr = ret->data;
  fptr = field->data;
  fptr = field->data;
  vptr = vector->data;
  vptr = vector->data;
 
 
  while (rptr)
  while (rptr)
    {
    {
      if (*mptr)
      if (*mptr)
        {
        {
          /* From vector.  */
          /* From vector.  */
          memcpy (rptr, vptr, size);
          memcpy (rptr, vptr, size);
          vptr += vstride0;
          vptr += vstride0;
        }
        }
      else
      else
        {
        {
          /* From field.  */
          /* From field.  */
          memcpy (rptr, fptr, size);
          memcpy (rptr, fptr, size);
        }
        }
      /* Advance to the next element.  */
      /* Advance to the next element.  */
      rptr += rstride0;
      rptr += rstride0;
      fptr += fstride0;
      fptr += fstride0;
      mptr += mstride0;
      mptr += mstride0;
      count[0]++;
      count[0]++;
      n = 0;
      n = 0;
      while (count[n] == extent[n])
      while (count[n] == extent[n])
        {
        {
          /* When we get to the end of a dimension, reset it and increment
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
             the next dimension.  */
          count[n] = 0;
          count[n] = 0;
          /* We could precalculate these products, but this is a less
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
             frequently used path so probably not worth it.  */
          rptr -= rstride[n] * extent[n];
          rptr -= rstride[n] * extent[n];
          fptr -= fstride[n] * extent[n];
          fptr -= fstride[n] * extent[n];
          mptr -= mstride[n] * extent[n];
          mptr -= mstride[n] * extent[n];
          n++;
          n++;
          if (n >= dim)
          if (n >= dim)
            {
            {
              /* Break out of the loop.  */
              /* Break out of the loop.  */
              rptr = NULL;
              rptr = NULL;
              break;
              break;
            }
            }
          else
          else
            {
            {
              count[n]++;
              count[n]++;
              rptr += rstride[n];
              rptr += rstride[n];
              fptr += fstride[n];
              fptr += fstride[n];
              mptr += mstride[n];
              mptr += mstride[n];
            }
            }
        }
        }
    }
    }
}
}
 
 
extern void unpack1 (gfc_array_char *, const gfc_array_char *,
extern void unpack1 (gfc_array_char *, const gfc_array_char *,
                     const gfc_array_l1 *, const gfc_array_char *);
                     const gfc_array_l1 *, const gfc_array_char *);
export_proto(unpack1);
export_proto(unpack1);
 
 
void
void
unpack1 (gfc_array_char *ret, const gfc_array_char *vector,
unpack1 (gfc_array_char *ret, const gfc_array_char *vector,
         const gfc_array_l1 *mask, const gfc_array_char *field)
         const gfc_array_l1 *mask, const gfc_array_char *field)
{
{
  index_type type_size;
  index_type type_size;
  index_type size;
  index_type size;
 
 
  if (unlikely(compile_options.bounds_check))
  if (unlikely(compile_options.bounds_check))
    unpack_bounds (ret, vector, mask, field);
    unpack_bounds (ret, vector, mask, field);
 
 
  type_size = GFC_DTYPE_TYPE_SIZE (vector);
  type_size = GFC_DTYPE_TYPE_SIZE (vector);
  size = GFC_DESCRIPTOR_SIZE (vector);
  size = GFC_DESCRIPTOR_SIZE (vector);
 
 
  switch(type_size)
  switch(type_size)
    {
    {
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_INTEGER_1:
    case GFC_DTYPE_INTEGER_1:
    case GFC_DTYPE_DERIVED_1:
    case GFC_DTYPE_DERIVED_1:
      unpack1_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
      unpack1_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
                  mask, (gfc_array_i1 *) field);
                  mask, (gfc_array_i1 *) field);
      return;
      return;
 
 
    case GFC_DTYPE_LOGICAL_2:
    case GFC_DTYPE_LOGICAL_2:
    case GFC_DTYPE_INTEGER_2:
    case GFC_DTYPE_INTEGER_2:
      unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
      unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
                  mask, (gfc_array_i2 *) field);
                  mask, (gfc_array_i2 *) field);
      return;
      return;
 
 
    case GFC_DTYPE_LOGICAL_4:
    case GFC_DTYPE_LOGICAL_4:
    case GFC_DTYPE_INTEGER_4:
    case GFC_DTYPE_INTEGER_4:
      unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
      unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
                  mask, (gfc_array_i4 *) field);
                  mask, (gfc_array_i4 *) field);
      return;
      return;
 
 
    case GFC_DTYPE_LOGICAL_8:
    case GFC_DTYPE_LOGICAL_8:
    case GFC_DTYPE_INTEGER_8:
    case GFC_DTYPE_INTEGER_8:
      unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
      unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
                  mask, (gfc_array_i8 *) field);
                  mask, (gfc_array_i8 *) field);
      return;
      return;
 
 
#ifdef HAVE_GFC_INTEGER_16
#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_LOGICAL_16:
    case GFC_DTYPE_LOGICAL_16:
    case GFC_DTYPE_INTEGER_16:
    case GFC_DTYPE_INTEGER_16:
      unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
      unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
                   mask, (gfc_array_i16 *) field);
                   mask, (gfc_array_i16 *) field);
      return;
      return;
#endif
#endif
 
 
    case GFC_DTYPE_REAL_4:
    case GFC_DTYPE_REAL_4:
      unpack1_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
      unpack1_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
                  mask, (gfc_array_r4 *) field);
                  mask, (gfc_array_r4 *) field);
      return;
      return;
 
 
    case GFC_DTYPE_REAL_8:
    case GFC_DTYPE_REAL_8:
      unpack1_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) vector,
      unpack1_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) vector,
                  mask, (gfc_array_r8 *) field);
                  mask, (gfc_array_r8 *) field);
      return;
      return;
 
 
/* FIXME: This here is a hack, which will have to be removed when
/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_REAL_10
# ifdef HAVE_GFC_REAL_10
    case GFC_DTYPE_REAL_10:
    case GFC_DTYPE_REAL_10:
      unpack1_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
      unpack1_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
                   mask, (gfc_array_r10 *) field);
                   mask, (gfc_array_r10 *) field);
      return;
      return;
# endif
# endif
 
 
# ifdef HAVE_GFC_REAL_16
# ifdef HAVE_GFC_REAL_16
    case GFC_DTYPE_REAL_16:
    case GFC_DTYPE_REAL_16:
      unpack1_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
      unpack1_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
                   mask, (gfc_array_r16 *) field);
                   mask, (gfc_array_r16 *) field);
      return;
      return;
# endif
# endif
#endif
#endif
 
 
    case GFC_DTYPE_COMPLEX_4:
    case GFC_DTYPE_COMPLEX_4:
      unpack1_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
      unpack1_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
                  mask, (gfc_array_c4 *) field);
                  mask, (gfc_array_c4 *) field);
      return;
      return;
 
 
    case GFC_DTYPE_COMPLEX_8:
    case GFC_DTYPE_COMPLEX_8:
      unpack1_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
      unpack1_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
                  mask, (gfc_array_c8 *) field);
                  mask, (gfc_array_c8 *) field);
      return;
      return;
 
 
/* FIXME: This here is a hack, which will have to be removed when
/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_COMPLEX_10
# ifdef HAVE_GFC_COMPLEX_10
    case GFC_DTYPE_COMPLEX_10:
    case GFC_DTYPE_COMPLEX_10:
      unpack1_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
      unpack1_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
                   mask, (gfc_array_c10 *) field);
                   mask, (gfc_array_c10 *) field);
      return;
      return;
# endif
# endif
 
 
# ifdef HAVE_GFC_COMPLEX_16
# ifdef HAVE_GFC_COMPLEX_16
    case GFC_DTYPE_COMPLEX_16:
    case GFC_DTYPE_COMPLEX_16:
      unpack1_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
      unpack1_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
                   mask, (gfc_array_c16 *) field);
                   mask, (gfc_array_c16 *) field);
      return;
      return;
# endif
# endif
#endif
#endif
 
 
    case GFC_DTYPE_DERIVED_2:
    case GFC_DTYPE_DERIVED_2:
      if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(vector->data)
      if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(vector->data)
          || GFC_UNALIGNED_2(field->data))
          || GFC_UNALIGNED_2(field->data))
        break;
        break;
      else
      else
        {
        {
          unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
          unpack1_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
                      mask, (gfc_array_i2 *) field);
                      mask, (gfc_array_i2 *) field);
          return;
          return;
        }
        }
 
 
    case GFC_DTYPE_DERIVED_4:
    case GFC_DTYPE_DERIVED_4:
      if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(vector->data)
      if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(vector->data)
          || GFC_UNALIGNED_4(field->data))
          || GFC_UNALIGNED_4(field->data))
        break;
        break;
      else
      else
        {
        {
          unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
          unpack1_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
                      mask, (gfc_array_i4 *) field);
                      mask, (gfc_array_i4 *) field);
          return;
          return;
        }
        }
 
 
    case GFC_DTYPE_DERIVED_8:
    case GFC_DTYPE_DERIVED_8:
      if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(vector->data)
      if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(vector->data)
          || GFC_UNALIGNED_8(field->data))
          || GFC_UNALIGNED_8(field->data))
        break;
        break;
      else
      else
        {
        {
          unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
          unpack1_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
                      mask, (gfc_array_i8 *) field);
                      mask, (gfc_array_i8 *) field);
          return;
          return;
        }
        }
 
 
#ifdef HAVE_GFC_INTEGER_16
#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_DERIVED_16:
    case GFC_DTYPE_DERIVED_16:
      if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(vector->data)
      if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(vector->data)
          || GFC_UNALIGNED_16(field->data))
          || GFC_UNALIGNED_16(field->data))
        break;
        break;
      else
      else
        {
        {
          unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
          unpack1_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
                       mask, (gfc_array_i16 *) field);
                       mask, (gfc_array_i16 *) field);
          return;
          return;
        }
        }
#endif
#endif
    }
    }
 
 
  unpack_internal (ret, vector, mask, field, size);
  unpack_internal (ret, vector, mask, field, size);
}
}
 
 
 
 
extern void unpack1_char (gfc_array_char *, GFC_INTEGER_4,
extern void unpack1_char (gfc_array_char *, GFC_INTEGER_4,
                          const gfc_array_char *, const gfc_array_l1 *,
                          const gfc_array_char *, const gfc_array_l1 *,
                          const gfc_array_char *, GFC_INTEGER_4,
                          const gfc_array_char *, GFC_INTEGER_4,
                          GFC_INTEGER_4);
                          GFC_INTEGER_4);
export_proto(unpack1_char);
export_proto(unpack1_char);
 
 
void
void
unpack1_char (gfc_array_char *ret,
unpack1_char (gfc_array_char *ret,
              GFC_INTEGER_4 ret_length __attribute__((unused)),
              GFC_INTEGER_4 ret_length __attribute__((unused)),
              const gfc_array_char *vector, const gfc_array_l1 *mask,
              const gfc_array_char *vector, const gfc_array_l1 *mask,
              const gfc_array_char *field, GFC_INTEGER_4 vector_length,
              const gfc_array_char *field, GFC_INTEGER_4 vector_length,
              GFC_INTEGER_4 field_length __attribute__((unused)))
              GFC_INTEGER_4 field_length __attribute__((unused)))
{
{
 
 
  if (unlikely(compile_options.bounds_check))
  if (unlikely(compile_options.bounds_check))
    unpack_bounds (ret, vector, mask, field);
    unpack_bounds (ret, vector, mask, field);
 
 
  unpack_internal (ret, vector, mask, field, vector_length);
  unpack_internal (ret, vector, mask, field, vector_length);
}
}
 
 
 
 
extern void unpack1_char4 (gfc_array_char *, GFC_INTEGER_4,
extern void unpack1_char4 (gfc_array_char *, GFC_INTEGER_4,
                           const gfc_array_char *, const gfc_array_l1 *,
                           const gfc_array_char *, const gfc_array_l1 *,
                           const gfc_array_char *, GFC_INTEGER_4,
                           const gfc_array_char *, GFC_INTEGER_4,
                           GFC_INTEGER_4);
                           GFC_INTEGER_4);
export_proto(unpack1_char4);
export_proto(unpack1_char4);
 
 
void
void
unpack1_char4 (gfc_array_char *ret,
unpack1_char4 (gfc_array_char *ret,
               GFC_INTEGER_4 ret_length __attribute__((unused)),
               GFC_INTEGER_4 ret_length __attribute__((unused)),
               const gfc_array_char *vector, const gfc_array_l1 *mask,
               const gfc_array_char *vector, const gfc_array_l1 *mask,
               const gfc_array_char *field, GFC_INTEGER_4 vector_length,
               const gfc_array_char *field, GFC_INTEGER_4 vector_length,
               GFC_INTEGER_4 field_length __attribute__((unused)))
               GFC_INTEGER_4 field_length __attribute__((unused)))
{
{
 
 
  if (unlikely(compile_options.bounds_check))
  if (unlikely(compile_options.bounds_check))
    unpack_bounds (ret, vector, mask, field);
    unpack_bounds (ret, vector, mask, field);
 
 
  unpack_internal (ret, vector, mask, field,
  unpack_internal (ret, vector, mask, field,
                   vector_length * sizeof (gfc_char4_t));
                   vector_length * sizeof (gfc_char4_t));
}
}
 
 
 
 
extern void unpack0 (gfc_array_char *, const gfc_array_char *,
extern void unpack0 (gfc_array_char *, const gfc_array_char *,
                     const gfc_array_l1 *, char *);
                     const gfc_array_l1 *, char *);
export_proto(unpack0);
export_proto(unpack0);
 
 
void
void
unpack0 (gfc_array_char *ret, const gfc_array_char *vector,
unpack0 (gfc_array_char *ret, const gfc_array_char *vector,
         const gfc_array_l1 *mask, char *field)
         const gfc_array_l1 *mask, char *field)
{
{
  gfc_array_char tmp;
  gfc_array_char tmp;
 
 
  index_type type_size;
  index_type type_size;
 
 
  if (unlikely(compile_options.bounds_check))
  if (unlikely(compile_options.bounds_check))
    unpack_bounds (ret, vector, mask, NULL);
    unpack_bounds (ret, vector, mask, NULL);
 
 
  type_size = GFC_DTYPE_TYPE_SIZE (vector);
  type_size = GFC_DTYPE_TYPE_SIZE (vector);
 
 
  switch (type_size)
  switch (type_size)
    {
    {
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_LOGICAL_1:
    case GFC_DTYPE_INTEGER_1:
    case GFC_DTYPE_INTEGER_1:
    case GFC_DTYPE_DERIVED_1:
    case GFC_DTYPE_DERIVED_1:
      unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
      unpack0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) vector,
                  mask, (GFC_INTEGER_1 *) field);
                  mask, (GFC_INTEGER_1 *) field);
      return;
      return;
 
 
    case GFC_DTYPE_LOGICAL_2:
    case GFC_DTYPE_LOGICAL_2:
    case GFC_DTYPE_INTEGER_2:
    case GFC_DTYPE_INTEGER_2:
      unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
      unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
                  mask, (GFC_INTEGER_2 *) field);
                  mask, (GFC_INTEGER_2 *) field);
      return;
      return;
 
 
    case GFC_DTYPE_LOGICAL_4:
    case GFC_DTYPE_LOGICAL_4:
    case GFC_DTYPE_INTEGER_4:
    case GFC_DTYPE_INTEGER_4:
      unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
      unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
                  mask, (GFC_INTEGER_4 *) field);
                  mask, (GFC_INTEGER_4 *) field);
      return;
      return;
 
 
    case GFC_DTYPE_LOGICAL_8:
    case GFC_DTYPE_LOGICAL_8:
    case GFC_DTYPE_INTEGER_8:
    case GFC_DTYPE_INTEGER_8:
      unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
      unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
                  mask, (GFC_INTEGER_8 *) field);
                  mask, (GFC_INTEGER_8 *) field);
      return;
      return;
 
 
#ifdef HAVE_GFC_INTEGER_16
#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_LOGICAL_16:
    case GFC_DTYPE_LOGICAL_16:
    case GFC_DTYPE_INTEGER_16:
    case GFC_DTYPE_INTEGER_16:
      unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
      unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
                   mask, (GFC_INTEGER_16 *) field);
                   mask, (GFC_INTEGER_16 *) field);
      return;
      return;
#endif
#endif
 
 
    case GFC_DTYPE_REAL_4:
    case GFC_DTYPE_REAL_4:
      unpack0_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
      unpack0_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) vector,
                  mask, (GFC_REAL_4 *) field);
                  mask, (GFC_REAL_4 *) field);
      return;
      return;
 
 
    case GFC_DTYPE_REAL_8:
    case GFC_DTYPE_REAL_8:
      unpack0_r8 ((gfc_array_r8 *) ret, (gfc_array_r8*) vector,
      unpack0_r8 ((gfc_array_r8 *) ret, (gfc_array_r8*) vector,
                  mask, (GFC_REAL_8  *) field);
                  mask, (GFC_REAL_8  *) field);
      return;
      return;
 
 
/* FIXME: This here is a hack, which will have to be removed when
/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_REAL_10
# ifdef HAVE_GFC_REAL_10
    case GFC_DTYPE_REAL_10:
    case GFC_DTYPE_REAL_10:
      unpack0_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
      unpack0_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) vector,
                   mask, (GFC_REAL_10 *) field);
                   mask, (GFC_REAL_10 *) field);
      return;
      return;
# endif
# endif
 
 
# ifdef HAVE_GFC_REAL_16
# ifdef HAVE_GFC_REAL_16
    case GFC_DTYPE_REAL_16:
    case GFC_DTYPE_REAL_16:
      unpack0_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
      unpack0_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) vector,
                   mask, (GFC_REAL_16 *) field);
                   mask, (GFC_REAL_16 *) field);
      return;
      return;
# endif
# endif
#endif
#endif
 
 
    case GFC_DTYPE_COMPLEX_4:
    case GFC_DTYPE_COMPLEX_4:
      unpack0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
      unpack0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) vector,
                  mask, (GFC_COMPLEX_4 *) field);
                  mask, (GFC_COMPLEX_4 *) field);
      return;
      return;
 
 
    case GFC_DTYPE_COMPLEX_8:
    case GFC_DTYPE_COMPLEX_8:
      unpack0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
      unpack0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) vector,
                  mask, (GFC_COMPLEX_8 *) field);
                  mask, (GFC_COMPLEX_8 *) field);
      return;
      return;
 
 
/* FIXME: This here is a hack, which will have to be removed when
/* FIXME: This here is a hack, which will have to be removed when
   the array descriptor is reworked.  Currently, we don't store the
   the array descriptor is reworked.  Currently, we don't store the
   kind value for the type, but only the size.  Because on targets with
   kind value for the type, but only the size.  Because on targets with
   __float128, we have sizeof(logn double) == sizeof(__float128),
   __float128, we have sizeof(logn double) == sizeof(__float128),
   we cannot discriminate here and have to fall back to the generic
   we cannot discriminate here and have to fall back to the generic
   handling (which is suboptimal).  */
   handling (which is suboptimal).  */
#if !defined(GFC_REAL_16_IS_FLOAT128)
#if !defined(GFC_REAL_16_IS_FLOAT128)
# ifdef HAVE_GFC_COMPLEX_10
# ifdef HAVE_GFC_COMPLEX_10
    case GFC_DTYPE_COMPLEX_10:
    case GFC_DTYPE_COMPLEX_10:
      unpack0_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
      unpack0_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) vector,
                   mask, (GFC_COMPLEX_10 *) field);
                   mask, (GFC_COMPLEX_10 *) field);
      return;
      return;
# endif
# endif
 
 
# ifdef HAVE_GFC_COMPLEX_16
# ifdef HAVE_GFC_COMPLEX_16
    case GFC_DTYPE_COMPLEX_16:
    case GFC_DTYPE_COMPLEX_16:
      unpack0_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
      unpack0_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) vector,
                   mask, (GFC_COMPLEX_16 *) field);
                   mask, (GFC_COMPLEX_16 *) field);
      return;
      return;
# endif
# endif
#endif
#endif
 
 
    case GFC_DTYPE_DERIVED_2:
    case GFC_DTYPE_DERIVED_2:
      if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(vector->data)
      if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(vector->data)
          || GFC_UNALIGNED_2(field))
          || GFC_UNALIGNED_2(field))
        break;
        break;
      else
      else
        {
        {
          unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
          unpack0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) vector,
                      mask, (GFC_INTEGER_2 *) field);
                      mask, (GFC_INTEGER_2 *) field);
          return;
          return;
        }
        }
 
 
    case GFC_DTYPE_DERIVED_4:
    case GFC_DTYPE_DERIVED_4:
      if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(vector->data)
      if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(vector->data)
          || GFC_UNALIGNED_4(field))
          || GFC_UNALIGNED_4(field))
        break;
        break;
      else
      else
        {
        {
          unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
          unpack0_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) vector,
                      mask, (GFC_INTEGER_4 *) field);
                      mask, (GFC_INTEGER_4 *) field);
          return;
          return;
        }
        }
 
 
    case GFC_DTYPE_DERIVED_8:
    case GFC_DTYPE_DERIVED_8:
      if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(vector->data)
      if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(vector->data)
          || GFC_UNALIGNED_8(field))
          || GFC_UNALIGNED_8(field))
        break;
        break;
      else
      else
        {
        {
          unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
          unpack0_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) vector,
                      mask, (GFC_INTEGER_8 *) field);
                      mask, (GFC_INTEGER_8 *) field);
          return;
          return;
        }
        }
 
 
#ifdef HAVE_GFC_INTEGER_16
#ifdef HAVE_GFC_INTEGER_16
    case GFC_DTYPE_DERIVED_16:
    case GFC_DTYPE_DERIVED_16:
      if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(vector->data)
      if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(vector->data)
          || GFC_UNALIGNED_16(field))
          || GFC_UNALIGNED_16(field))
        break;
        break;
      else
      else
        {
        {
          unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
          unpack0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) vector,
                       mask, (GFC_INTEGER_16 *) field);
                       mask, (GFC_INTEGER_16 *) field);
          return;
          return;
        }
        }
#endif
#endif
 
 
    }
    }
 
 
  memset (&tmp, 0, sizeof (tmp));
  memset (&tmp, 0, sizeof (tmp));
  tmp.dtype = 0;
  tmp.dtype = 0;
  tmp.data = field;
  tmp.data = field;
  unpack_internal (ret, vector, mask, &tmp, GFC_DESCRIPTOR_SIZE (vector));
  unpack_internal (ret, vector, mask, &tmp, GFC_DESCRIPTOR_SIZE (vector));
}
}
 
 
 
 
extern void unpack0_char (gfc_array_char *, GFC_INTEGER_4,
extern void unpack0_char (gfc_array_char *, GFC_INTEGER_4,
                          const gfc_array_char *, const gfc_array_l1 *,
                          const gfc_array_char *, const gfc_array_l1 *,
                          char *, GFC_INTEGER_4, GFC_INTEGER_4);
                          char *, GFC_INTEGER_4, GFC_INTEGER_4);
export_proto(unpack0_char);
export_proto(unpack0_char);
 
 
void
void
unpack0_char (gfc_array_char *ret,
unpack0_char (gfc_array_char *ret,
              GFC_INTEGER_4 ret_length __attribute__((unused)),
              GFC_INTEGER_4 ret_length __attribute__((unused)),
              const gfc_array_char *vector, const gfc_array_l1 *mask,
              const gfc_array_char *vector, const gfc_array_l1 *mask,
              char *field, GFC_INTEGER_4 vector_length,
              char *field, GFC_INTEGER_4 vector_length,
              GFC_INTEGER_4 field_length __attribute__((unused)))
              GFC_INTEGER_4 field_length __attribute__((unused)))
{
{
  gfc_array_char tmp;
  gfc_array_char tmp;
 
 
  if (unlikely(compile_options.bounds_check))
  if (unlikely(compile_options.bounds_check))
    unpack_bounds (ret, vector, mask, NULL);
    unpack_bounds (ret, vector, mask, NULL);
 
 
  memset (&tmp, 0, sizeof (tmp));
  memset (&tmp, 0, sizeof (tmp));
  tmp.dtype = 0;
  tmp.dtype = 0;
  tmp.data = field;
  tmp.data = field;
  unpack_internal (ret, vector, mask, &tmp, vector_length);
  unpack_internal (ret, vector, mask, &tmp, vector_length);
}
}
 
 
 
 
extern void unpack0_char4 (gfc_array_char *, GFC_INTEGER_4,
extern void unpack0_char4 (gfc_array_char *, GFC_INTEGER_4,
                           const gfc_array_char *, const gfc_array_l1 *,
                           const gfc_array_char *, const gfc_array_l1 *,
                           char *, GFC_INTEGER_4, GFC_INTEGER_4);
                           char *, GFC_INTEGER_4, GFC_INTEGER_4);
export_proto(unpack0_char4);
export_proto(unpack0_char4);
 
 
void
void
unpack0_char4 (gfc_array_char *ret,
unpack0_char4 (gfc_array_char *ret,
               GFC_INTEGER_4 ret_length __attribute__((unused)),
               GFC_INTEGER_4 ret_length __attribute__((unused)),
               const gfc_array_char *vector, const gfc_array_l1 *mask,
               const gfc_array_char *vector, const gfc_array_l1 *mask,
               char *field, GFC_INTEGER_4 vector_length,
               char *field, GFC_INTEGER_4 vector_length,
               GFC_INTEGER_4 field_length __attribute__((unused)))
               GFC_INTEGER_4 field_length __attribute__((unused)))
{
{
  gfc_array_char tmp;
  gfc_array_char tmp;
 
 
  if (unlikely(compile_options.bounds_check))
  if (unlikely(compile_options.bounds_check))
    unpack_bounds (ret, vector, mask, NULL);
    unpack_bounds (ret, vector, mask, NULL);
 
 
  memset (&tmp, 0, sizeof (tmp));
  memset (&tmp, 0, sizeof (tmp));
  tmp.dtype = 0;
  tmp.dtype = 0;
  tmp.data = field;
  tmp.data = field;
  unpack_internal (ret, vector, mask, &tmp,
  unpack_internal (ret, vector, mask, &tmp,
                   vector_length * sizeof (gfc_char4_t));
                   vector_length * sizeof (gfc_char4_t));
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.