OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [libjava/] [posix-threads.cc] - Diff between revs 753 and 783

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 753 Rev 783
// posix-threads.cc - interface between libjava and POSIX threads.
// posix-threads.cc - interface between libjava and POSIX threads.
 
 
/* Copyright (C) 1998, 1999, 2000, 2001, 2004, 2006  Free Software Foundation
/* Copyright (C) 1998, 1999, 2000, 2001, 2004, 2006  Free Software Foundation
 
 
   This file is part of libgcj.
   This file is part of libgcj.
 
 
This software is copyrighted work licensed under the terms of the
This software is copyrighted work licensed under the terms of the
Libgcj License.  Please consult the file "LIBGCJ_LICENSE" for
Libgcj License.  Please consult the file "LIBGCJ_LICENSE" for
details.  */
details.  */
 
 
// TO DO:
// TO DO:
// * Document signal handling limitations
// * Document signal handling limitations
 
 
#include <config.h>
#include <config.h>
 
 
#include "posix.h"
#include "posix.h"
#include "posix-threads.h"
#include "posix-threads.h"
 
 
// If we're using the Boehm GC, then we need to override some of the
// If we're using the Boehm GC, then we need to override some of the
// thread primitives.  This is fairly gross.
// thread primitives.  This is fairly gross.
#ifdef HAVE_BOEHM_GC
#ifdef HAVE_BOEHM_GC
#include <gc.h>
#include <gc.h>
#endif /* HAVE_BOEHM_GC */
#endif /* HAVE_BOEHM_GC */
 
 
#include <stdlib.h>
#include <stdlib.h>
#include <time.h>
#include <time.h>
#include <signal.h>
#include <signal.h>
#include <errno.h>
#include <errno.h>
#include <limits.h>
#include <limits.h>
#ifdef HAVE_UNISTD_H
#ifdef HAVE_UNISTD_H
#include <unistd.h>     // To test for _POSIX_THREAD_PRIORITY_SCHEDULING
#include <unistd.h>     // To test for _POSIX_THREAD_PRIORITY_SCHEDULING
#endif
#endif
 
 
#include <gcj/cni.h>
#include <gcj/cni.h>
#include <jvm.h>
#include <jvm.h>
#include <java/lang/Thread.h>
#include <java/lang/Thread.h>
#include <java/lang/System.h>
#include <java/lang/System.h>
#include <java/lang/Long.h>
#include <java/lang/Long.h>
#include <java/lang/OutOfMemoryError.h>
#include <java/lang/OutOfMemoryError.h>
#include <java/lang/InternalError.h>
#include <java/lang/InternalError.h>
 
 
// This is used to implement thread startup.
// This is used to implement thread startup.
struct starter
struct starter
{
{
  _Jv_ThreadStartFunc *method;
  _Jv_ThreadStartFunc *method;
  _Jv_Thread_t *data;
  _Jv_Thread_t *data;
};
};
 
 
// This is the key used to map from the POSIX thread value back to the
// This is the key used to map from the POSIX thread value back to the
// Java object representing the thread.  The key is global to all
// Java object representing the thread.  The key is global to all
// threads, so it is ok to make it a global here.
// threads, so it is ok to make it a global here.
pthread_key_t _Jv_ThreadKey;
pthread_key_t _Jv_ThreadKey;
 
 
// This is the key used to map from the POSIX thread value back to the
// This is the key used to map from the POSIX thread value back to the
// _Jv_Thread_t* representing the thread.
// _Jv_Thread_t* representing the thread.
pthread_key_t _Jv_ThreadDataKey;
pthread_key_t _Jv_ThreadDataKey;
 
 
// We keep a count of all non-daemon threads which are running.  When
// We keep a count of all non-daemon threads which are running.  When
// this reaches zero, _Jv_ThreadWait returns.
// this reaches zero, _Jv_ThreadWait returns.
static pthread_mutex_t daemon_mutex;
static pthread_mutex_t daemon_mutex;
static pthread_cond_t daemon_cond;
static pthread_cond_t daemon_cond;
static int non_daemon_count;
static int non_daemon_count;
 
 
// The signal to use when interrupting a thread.
// The signal to use when interrupting a thread.
#if defined(LINUX_THREADS) || defined(FREEBSD_THREADS)
#if defined(LINUX_THREADS) || defined(FREEBSD_THREADS)
  // LinuxThreads (prior to glibc 2.1) usurps both SIGUSR1 and SIGUSR2.
  // LinuxThreads (prior to glibc 2.1) usurps both SIGUSR1 and SIGUSR2.
  // GC on FreeBSD uses both SIGUSR1 and SIGUSR2.
  // GC on FreeBSD uses both SIGUSR1 and SIGUSR2.
#  define INTR SIGHUP
#  define INTR SIGHUP
#else /* LINUX_THREADS */
#else /* LINUX_THREADS */
#  define INTR SIGUSR2
#  define INTR SIGUSR2
#endif /* LINUX_THREADS */
#endif /* LINUX_THREADS */
 
 
//
//
// These are the flags that can appear in _Jv_Thread_t.
// These are the flags that can appear in _Jv_Thread_t.
//
//
 
 
// Thread started.
// Thread started.
#define FLAG_START   0x01
#define FLAG_START   0x01
// Thread is daemon.
// Thread is daemon.
#define FLAG_DAEMON  0x02
#define FLAG_DAEMON  0x02
 
 


 
 
int
int
_Jv_MutexLock (_Jv_Mutex_t *mu)
_Jv_MutexLock (_Jv_Mutex_t *mu)
{
{
  pthread_t self = pthread_self ();
  pthread_t self = pthread_self ();
  if (mu->owner == self)
  if (mu->owner == self)
    {
    {
      mu->count++;
      mu->count++;
    }
    }
  else
  else
    {
    {
      JvSetThreadState holder (_Jv_ThreadCurrent(), JV_BLOCKED);
      JvSetThreadState holder (_Jv_ThreadCurrent(), JV_BLOCKED);
 
 
#     ifdef LOCK_DEBUG
#     ifdef LOCK_DEBUG
        int result = pthread_mutex_lock (&mu->mutex);
        int result = pthread_mutex_lock (&mu->mutex);
        if (0 != result)
        if (0 != result)
          {
          {
            fprintf(stderr, "Pthread_mutex_lock returned %d\n", result);
            fprintf(stderr, "Pthread_mutex_lock returned %d\n", result);
            for (;;) {}
            for (;;) {}
          }
          }
#     else
#     else
        pthread_mutex_lock (&mu->mutex);
        pthread_mutex_lock (&mu->mutex);
#     endif
#     endif
      mu->count = 1;
      mu->count = 1;
      mu->owner = self;
      mu->owner = self;
    }
    }
  return 0;
  return 0;
}
}
 
 
// Wait for the condition variable "CV" to be notified. 
// Wait for the condition variable "CV" to be notified. 
// Return values:
// Return values:
// 0: the condition was notified, or the timeout expired.
// 0: the condition was notified, or the timeout expired.
// _JV_NOT_OWNER: the thread does not own the mutex "MU".   
// _JV_NOT_OWNER: the thread does not own the mutex "MU".   
// _JV_INTERRUPTED: the thread was interrupted. Its interrupted flag is set.   
// _JV_INTERRUPTED: the thread was interrupted. Its interrupted flag is set.   
int
int
_Jv_CondWait (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu,
_Jv_CondWait (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu,
              jlong millis, jint nanos)
              jlong millis, jint nanos)
{
{
  pthread_t self = pthread_self();
  pthread_t self = pthread_self();
  if (mu->owner != self)
  if (mu->owner != self)
    return _JV_NOT_OWNER;
    return _JV_NOT_OWNER;
 
 
  struct timespec ts;
  struct timespec ts;
 
 
  JvThreadState new_state = JV_WAITING;
  JvThreadState new_state = JV_WAITING;
  if (millis > 0 || nanos > 0)
  if (millis > 0 || nanos > 0)
    {
    {
      // Calculate the abstime corresponding to the timeout.
      // Calculate the abstime corresponding to the timeout.
      unsigned long long seconds;
      unsigned long long seconds;
      unsigned long usec;
      unsigned long usec;
 
 
      // For better accuracy, should use pthread_condattr_setclock
      // For better accuracy, should use pthread_condattr_setclock
      // and clock_gettime.
      // and clock_gettime.
#ifdef HAVE_GETTIMEOFDAY
#ifdef HAVE_GETTIMEOFDAY
      timeval tv;
      timeval tv;
      gettimeofday (&tv, NULL);
      gettimeofday (&tv, NULL);
      usec = tv.tv_usec;
      usec = tv.tv_usec;
      seconds = tv.tv_sec;
      seconds = tv.tv_sec;
#else
#else
      unsigned long long startTime = java::lang::System::currentTimeMillis();
      unsigned long long startTime = java::lang::System::currentTimeMillis();
      seconds = startTime / 1000;
      seconds = startTime / 1000;
      /* Assume we're about half-way through this millisecond.  */
      /* Assume we're about half-way through this millisecond.  */
      usec = (startTime % 1000) * 1000 + 500;
      usec = (startTime % 1000) * 1000 + 500;
#endif
#endif
      /* These next two statements cannot overflow.  */
      /* These next two statements cannot overflow.  */
      usec += nanos / 1000;
      usec += nanos / 1000;
      usec += (millis % 1000) * 1000;
      usec += (millis % 1000) * 1000;
      /* These two statements could overflow only if tv.tv_sec was
      /* These two statements could overflow only if tv.tv_sec was
         insanely large.  */
         insanely large.  */
      seconds += millis / 1000;
      seconds += millis / 1000;
      seconds += usec / 1000000;
      seconds += usec / 1000000;
 
 
      ts.tv_sec = seconds;
      ts.tv_sec = seconds;
      if (ts.tv_sec < 0 || (unsigned long long)ts.tv_sec != seconds)
      if (ts.tv_sec < 0 || (unsigned long long)ts.tv_sec != seconds)
        {
        {
          // We treat a timeout that won't fit into a struct timespec
          // We treat a timeout that won't fit into a struct timespec
          // as a wait forever.
          // as a wait forever.
          millis = nanos = 0;
          millis = nanos = 0;
        }
        }
      else
      else
        /* This next statement also cannot overflow.  */
        /* This next statement also cannot overflow.  */
        ts.tv_nsec = (usec % 1000000) * 1000 + (nanos % 1000);
        ts.tv_nsec = (usec % 1000000) * 1000 + (nanos % 1000);
    }
    }
 
 
  _Jv_Thread_t *current = _Jv_ThreadCurrentData ();
  _Jv_Thread_t *current = _Jv_ThreadCurrentData ();
  java::lang::Thread *current_obj = _Jv_ThreadCurrent ();
  java::lang::Thread *current_obj = _Jv_ThreadCurrent ();
 
 
  pthread_mutex_lock (&current->wait_mutex);
  pthread_mutex_lock (&current->wait_mutex);
 
 
  // Now that we hold the wait mutex, check if this thread has been 
  // Now that we hold the wait mutex, check if this thread has been 
  // interrupted already.
  // interrupted already.
  if (current_obj->interrupt_flag)
  if (current_obj->interrupt_flag)
    {
    {
      pthread_mutex_unlock (&current->wait_mutex);
      pthread_mutex_unlock (&current->wait_mutex);
      return _JV_INTERRUPTED;
      return _JV_INTERRUPTED;
    }
    }
 
 
  // Set the thread's state.
  // Set the thread's state.
  JvSetThreadState holder (current_obj, new_state);
  JvSetThreadState holder (current_obj, new_state);
 
 
  // Add this thread to the cv's wait set.
  // Add this thread to the cv's wait set.
  current->next = NULL;
  current->next = NULL;
 
 
  if (cv->first == NULL)
  if (cv->first == NULL)
    cv->first = current;
    cv->first = current;
  else
  else
    for (_Jv_Thread_t *t = cv->first;; t = t->next)
    for (_Jv_Thread_t *t = cv->first;; t = t->next)
      {
      {
        if (t->next == NULL)
        if (t->next == NULL)
          {
          {
            t->next = current;
            t->next = current;
            break;
            break;
          }
          }
      }
      }
 
 
  // Record the current lock depth, so it can be restored when we re-aquire it.
  // Record the current lock depth, so it can be restored when we re-aquire it.
  int count = mu->count;
  int count = mu->count;
 
 
  // Release the monitor mutex.
  // Release the monitor mutex.
  mu->count = 0;
  mu->count = 0;
  mu->owner = 0;
  mu->owner = 0;
  pthread_mutex_unlock (&mu->mutex);
  pthread_mutex_unlock (&mu->mutex);
 
 
  int r = 0;
  int r = 0;
  bool done_sleeping = false;
  bool done_sleeping = false;
 
 
  while (! done_sleeping)
  while (! done_sleeping)
    {
    {
      if (millis == 0 && nanos == 0)
      if (millis == 0 && nanos == 0)
        r = pthread_cond_wait (&current->wait_cond, &current->wait_mutex);
        r = pthread_cond_wait (&current->wait_cond, &current->wait_mutex);
      else
      else
        r = pthread_cond_timedwait (&current->wait_cond, &current->wait_mutex,
        r = pthread_cond_timedwait (&current->wait_cond, &current->wait_mutex,
                                    &ts);
                                    &ts);
 
 
      // In older glibc's (prior to 2.1.3), the cond_wait functions may 
      // In older glibc's (prior to 2.1.3), the cond_wait functions may 
      // spuriously wake up on a signal. Catch that here.
      // spuriously wake up on a signal. Catch that here.
      if (r != EINTR)
      if (r != EINTR)
        done_sleeping = true;
        done_sleeping = true;
    }
    }
 
 
  // Check for an interrupt *before* releasing the wait mutex.
  // Check for an interrupt *before* releasing the wait mutex.
  jboolean interrupted = current_obj->interrupt_flag;
  jboolean interrupted = current_obj->interrupt_flag;
 
 
  pthread_mutex_unlock (&current->wait_mutex);
  pthread_mutex_unlock (&current->wait_mutex);
 
 
  //  Reaquire the monitor mutex, and restore the lock count.
  //  Reaquire the monitor mutex, and restore the lock count.
  pthread_mutex_lock (&mu->mutex);
  pthread_mutex_lock (&mu->mutex);
  mu->owner = self;
  mu->owner = self;
  mu->count = count;
  mu->count = count;
 
 
  // If we were interrupted, or if a timeout occurred, remove ourself from
  // If we were interrupted, or if a timeout occurred, remove ourself from
  // the cv wait list now. (If we were notified normally, notify() will have
  // the cv wait list now. (If we were notified normally, notify() will have
  // already taken care of this)
  // already taken care of this)
  if (r == ETIMEDOUT || interrupted)
  if (r == ETIMEDOUT || interrupted)
    {
    {
      _Jv_Thread_t *prev = NULL;
      _Jv_Thread_t *prev = NULL;
      for (_Jv_Thread_t *t = cv->first; t != NULL; t = t->next)
      for (_Jv_Thread_t *t = cv->first; t != NULL; t = t->next)
        {
        {
          if (t == current)
          if (t == current)
            {
            {
              if (prev != NULL)
              if (prev != NULL)
                prev->next = t->next;
                prev->next = t->next;
              else
              else
                cv->first = t->next;
                cv->first = t->next;
              t->next = NULL;
              t->next = NULL;
              break;
              break;
            }
            }
          prev = t;
          prev = t;
        }
        }
      if (interrupted)
      if (interrupted)
        return _JV_INTERRUPTED;
        return _JV_INTERRUPTED;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
int
int
_Jv_CondNotify (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
_Jv_CondNotify (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
{
{
  if (_Jv_MutexCheckMonitor (mu))
  if (_Jv_MutexCheckMonitor (mu))
    return _JV_NOT_OWNER;
    return _JV_NOT_OWNER;
 
 
  _Jv_Thread_t *target;
  _Jv_Thread_t *target;
  _Jv_Thread_t *prev = NULL;
  _Jv_Thread_t *prev = NULL;
 
 
  for (target = cv->first; target != NULL; target = target->next)
  for (target = cv->first; target != NULL; target = target->next)
    {
    {
      pthread_mutex_lock (&target->wait_mutex);
      pthread_mutex_lock (&target->wait_mutex);
 
 
      if (target->thread_obj->interrupt_flag)
      if (target->thread_obj->interrupt_flag)
        {
        {
          // Don't notify a thread that has already been interrupted.
          // Don't notify a thread that has already been interrupted.
          pthread_mutex_unlock (&target->wait_mutex);
          pthread_mutex_unlock (&target->wait_mutex);
          prev = target;
          prev = target;
          continue;
          continue;
        }
        }
 
 
      pthread_cond_signal (&target->wait_cond);
      pthread_cond_signal (&target->wait_cond);
      pthread_mutex_unlock (&target->wait_mutex);
      pthread_mutex_unlock (&target->wait_mutex);
 
 
      // Two concurrent notify() calls must not be delivered to the same 
      // Two concurrent notify() calls must not be delivered to the same 
      // thread, so remove the target thread from the cv wait list now.
      // thread, so remove the target thread from the cv wait list now.
      if (prev == NULL)
      if (prev == NULL)
        cv->first = target->next;
        cv->first = target->next;
      else
      else
        prev->next = target->next;
        prev->next = target->next;
 
 
      target->next = NULL;
      target->next = NULL;
 
 
      break;
      break;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
int
int
_Jv_CondNotifyAll (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
_Jv_CondNotifyAll (_Jv_ConditionVariable_t *cv, _Jv_Mutex_t *mu)
{
{
  if (_Jv_MutexCheckMonitor (mu))
  if (_Jv_MutexCheckMonitor (mu))
    return _JV_NOT_OWNER;
    return _JV_NOT_OWNER;
 
 
  _Jv_Thread_t *target;
  _Jv_Thread_t *target;
  _Jv_Thread_t *prev = NULL;
  _Jv_Thread_t *prev = NULL;
 
 
  for (target = cv->first; target != NULL; target = target->next)
  for (target = cv->first; target != NULL; target = target->next)
    {
    {
      pthread_mutex_lock (&target->wait_mutex);
      pthread_mutex_lock (&target->wait_mutex);
      pthread_cond_signal (&target->wait_cond);
      pthread_cond_signal (&target->wait_cond);
      pthread_mutex_unlock (&target->wait_mutex);
      pthread_mutex_unlock (&target->wait_mutex);
 
 
      if (prev != NULL)
      if (prev != NULL)
        prev->next = NULL;
        prev->next = NULL;
      prev = target;
      prev = target;
    }
    }
  if (prev != NULL)
  if (prev != NULL)
    prev->next = NULL;
    prev->next = NULL;
 
 
  cv->first = NULL;
  cv->first = NULL;
 
 
  return 0;
  return 0;
}
}
 
 
void
void
_Jv_ThreadInterrupt (_Jv_Thread_t *data)
_Jv_ThreadInterrupt (_Jv_Thread_t *data)
{
{
  pthread_mutex_lock (&data->wait_mutex);
  pthread_mutex_lock (&data->wait_mutex);
 
 
  // Set the thread's interrupted flag *after* aquiring its wait_mutex. This
  // Set the thread's interrupted flag *after* aquiring its wait_mutex. This
  // ensures that there are no races with the interrupt flag being set after 
  // ensures that there are no races with the interrupt flag being set after 
  // the waiting thread checks it and before pthread_cond_wait is entered.
  // the waiting thread checks it and before pthread_cond_wait is entered.
  data->thread_obj->interrupt_flag = true;
  data->thread_obj->interrupt_flag = true;
 
 
  // Interrupt blocking system calls using a signal.
  // Interrupt blocking system calls using a signal.
  pthread_kill (data->thread, INTR);
  pthread_kill (data->thread, INTR);
 
 
  pthread_cond_signal (&data->wait_cond);
  pthread_cond_signal (&data->wait_cond);
 
 
  pthread_mutex_unlock (&data->wait_mutex);
  pthread_mutex_unlock (&data->wait_mutex);
}
}
 
 
/**
/**
 * Releases the block on a thread created by _Jv_ThreadPark().  This
 * Releases the block on a thread created by _Jv_ThreadPark().  This
 * method can also be used to terminate a blockage caused by a prior
 * method can also be used to terminate a blockage caused by a prior
 * call to park.  This operation is unsafe, as the thread must be
 * call to park.  This operation is unsafe, as the thread must be
 * guaranteed to be live.
 * guaranteed to be live.
 *
 *
 * @param thread the thread to unblock.
 * @param thread the thread to unblock.
 */
 */
void
void
ParkHelper::unpark ()
ParkHelper::unpark ()
{
{
  using namespace ::java::lang;
  using namespace ::java::lang;
  volatile obj_addr_t *ptr = &permit;
  volatile obj_addr_t *ptr = &permit;
 
 
  /* If this thread is in state RUNNING, give it a permit and return
  /* If this thread is in state RUNNING, give it a permit and return
     immediately.  */
     immediately.  */
  if (compare_and_swap
  if (compare_and_swap
      (ptr, Thread::THREAD_PARK_RUNNING, Thread::THREAD_PARK_PERMIT))
      (ptr, Thread::THREAD_PARK_RUNNING, Thread::THREAD_PARK_PERMIT))
    return;
    return;
 
 
  /* If this thread is parked, put it into state RUNNING and send it a
  /* If this thread is parked, put it into state RUNNING and send it a
     signal.  */
     signal.  */
  if (compare_and_swap
  if (compare_and_swap
      (ptr, Thread::THREAD_PARK_PARKED, Thread::THREAD_PARK_RUNNING))
      (ptr, Thread::THREAD_PARK_PARKED, Thread::THREAD_PARK_RUNNING))
    {
    {
      int result;
      int result;
      pthread_mutex_lock (&mutex);
      pthread_mutex_lock (&mutex);
      result = pthread_cond_signal (&cond);
      result = pthread_cond_signal (&cond);
      pthread_mutex_unlock (&mutex);
      pthread_mutex_unlock (&mutex);
      JvAssert (result == 0);
      JvAssert (result == 0);
    }
    }
}
}
 
 
/**
/**
 * Sets our state to dead.
 * Sets our state to dead.
 */
 */
void
void
ParkHelper::deactivate ()
ParkHelper::deactivate ()
{
{
  permit = ::java::lang::Thread::THREAD_PARK_DEAD;
  permit = ::java::lang::Thread::THREAD_PARK_DEAD;
}
}
 
 
void
void
ParkHelper::init ()
ParkHelper::init ()
{
{
  pthread_mutex_init (&mutex, NULL);
  pthread_mutex_init (&mutex, NULL);
  pthread_cond_init (&cond, NULL);
  pthread_cond_init (&cond, NULL);
  permit = ::java::lang::Thread::THREAD_PARK_RUNNING;
  permit = ::java::lang::Thread::THREAD_PARK_RUNNING;
}
}
 
 
/**
/**
 * Blocks the thread until a matching _Jv_ThreadUnpark() occurs, the
 * Blocks the thread until a matching _Jv_ThreadUnpark() occurs, the
 * thread is interrupted or the optional timeout expires.  If an
 * thread is interrupted or the optional timeout expires.  If an
 * unpark call has already occurred, this also counts.  A timeout
 * unpark call has already occurred, this also counts.  A timeout
 * value of zero is defined as no timeout.  When isAbsolute is true,
 * value of zero is defined as no timeout.  When isAbsolute is true,
 * the timeout is in milliseconds relative to the epoch.  Otherwise,
 * the timeout is in milliseconds relative to the epoch.  Otherwise,
 * the value is the number of nanoseconds which must occur before
 * the value is the number of nanoseconds which must occur before
 * timeout.  This call may also return spuriously (i.e.  for no
 * timeout.  This call may also return spuriously (i.e.  for no
 * apparent reason).
 * apparent reason).
 *
 *
 * @param isAbsolute true if the timeout is specified in milliseconds from
 * @param isAbsolute true if the timeout is specified in milliseconds from
 *                   the epoch.
 *                   the epoch.
 * @param time either the number of nanoseconds to wait, or a time in
 * @param time either the number of nanoseconds to wait, or a time in
 *             milliseconds from the epoch to wait for.
 *             milliseconds from the epoch to wait for.
 */
 */
void
void
ParkHelper::park (jboolean isAbsolute, jlong time)
ParkHelper::park (jboolean isAbsolute, jlong time)
{
{
  using namespace ::java::lang;
  using namespace ::java::lang;
  volatile obj_addr_t *ptr = &permit;
  volatile obj_addr_t *ptr = &permit;
 
 
  /* If we have a permit, return immediately.  */
  /* If we have a permit, return immediately.  */
  if (compare_and_swap
  if (compare_and_swap
      (ptr, Thread::THREAD_PARK_PERMIT, Thread::THREAD_PARK_RUNNING))
      (ptr, Thread::THREAD_PARK_PERMIT, Thread::THREAD_PARK_RUNNING))
    return;
    return;
 
 
  struct timespec ts;
  struct timespec ts;
 
 
  if (time)
  if (time)
    {
    {
      unsigned long long seconds;
      unsigned long long seconds;
      unsigned long usec;
      unsigned long usec;
 
 
      if (isAbsolute)
      if (isAbsolute)
        {
        {
          ts.tv_sec = time / 1000;
          ts.tv_sec = time / 1000;
          ts.tv_nsec = (time % 1000) * 1000 * 1000;
          ts.tv_nsec = (time % 1000) * 1000 * 1000;
        }
        }
      else
      else
        {
        {
          // Calculate the abstime corresponding to the timeout.
          // Calculate the abstime corresponding to the timeout.
          jlong nanos = time;
          jlong nanos = time;
          jlong millis = 0;
          jlong millis = 0;
 
 
          // For better accuracy, should use pthread_condattr_setclock
          // For better accuracy, should use pthread_condattr_setclock
          // and clock_gettime.
          // and clock_gettime.
#ifdef HAVE_GETTIMEOFDAY
#ifdef HAVE_GETTIMEOFDAY
          timeval tv;
          timeval tv;
          gettimeofday (&tv, NULL);
          gettimeofday (&tv, NULL);
          usec = tv.tv_usec;
          usec = tv.tv_usec;
          seconds = tv.tv_sec;
          seconds = tv.tv_sec;
#else
#else
          unsigned long long startTime
          unsigned long long startTime
            = java::lang::System::currentTimeMillis();
            = java::lang::System::currentTimeMillis();
          seconds = startTime / 1000;
          seconds = startTime / 1000;
          /* Assume we're about half-way through this millisecond.  */
          /* Assume we're about half-way through this millisecond.  */
          usec = (startTime % 1000) * 1000 + 500;
          usec = (startTime % 1000) * 1000 + 500;
#endif
#endif
          /* These next two statements cannot overflow.  */
          /* These next two statements cannot overflow.  */
          usec += nanos / 1000;
          usec += nanos / 1000;
          usec += (millis % 1000) * 1000;
          usec += (millis % 1000) * 1000;
          /* These two statements could overflow only if tv.tv_sec was
          /* These two statements could overflow only if tv.tv_sec was
             insanely large.  */
             insanely large.  */
          seconds += millis / 1000;
          seconds += millis / 1000;
          seconds += usec / 1000000;
          seconds += usec / 1000000;
 
 
          ts.tv_sec = seconds;
          ts.tv_sec = seconds;
          if (ts.tv_sec < 0 || (unsigned long long)ts.tv_sec != seconds)
          if (ts.tv_sec < 0 || (unsigned long long)ts.tv_sec != seconds)
            {
            {
              // We treat a timeout that won't fit into a struct timespec
              // We treat a timeout that won't fit into a struct timespec
              // as a wait forever.
              // as a wait forever.
              millis = nanos = 0;
              millis = nanos = 0;
            }
            }
          else
          else
            /* This next statement also cannot overflow.  */
            /* This next statement also cannot overflow.  */
            ts.tv_nsec = (usec % 1000000) * 1000 + (nanos % 1000);
            ts.tv_nsec = (usec % 1000000) * 1000 + (nanos % 1000);
        }
        }
    }
    }
 
 
  pthread_mutex_lock (&mutex);
  pthread_mutex_lock (&mutex);
  if (compare_and_swap
  if (compare_and_swap
      (ptr, Thread::THREAD_PARK_RUNNING, Thread::THREAD_PARK_PARKED))
      (ptr, Thread::THREAD_PARK_RUNNING, Thread::THREAD_PARK_PARKED))
    {
    {
      int result = 0;
      int result = 0;
 
 
      if (! time)
      if (! time)
        result = pthread_cond_wait (&cond, &mutex);
        result = pthread_cond_wait (&cond, &mutex);
      else
      else
        result = pthread_cond_timedwait (&cond, &mutex, &ts);
        result = pthread_cond_timedwait (&cond, &mutex, &ts);
 
 
      JvAssert (result == 0 || result == ETIMEDOUT);
      JvAssert (result == 0 || result == ETIMEDOUT);
 
 
      /* If we were unparked by some other thread, this will already
      /* If we were unparked by some other thread, this will already
         be in state THREAD_PARK_RUNNING.  If we timed out or were
         be in state THREAD_PARK_RUNNING.  If we timed out or were
         interrupted, we have to do it ourself.  */
         interrupted, we have to do it ourself.  */
      permit = Thread::THREAD_PARK_RUNNING;
      permit = Thread::THREAD_PARK_RUNNING;
    }
    }
  pthread_mutex_unlock (&mutex);
  pthread_mutex_unlock (&mutex);
}
}
 
 
static void
static void
handle_intr (int)
handle_intr (int)
{
{
  // Do nothing.
  // Do nothing.
}
}
 
 
void
void
_Jv_BlockSigchld()
_Jv_BlockSigchld()
{
{
  sigset_t mask;
  sigset_t mask;
  sigemptyset (&mask);
  sigemptyset (&mask);
  sigaddset (&mask, SIGCHLD);
  sigaddset (&mask, SIGCHLD);
  int c = pthread_sigmask (SIG_BLOCK, &mask, NULL);
  int c = pthread_sigmask (SIG_BLOCK, &mask, NULL);
  if (c != 0)
  if (c != 0)
    JvFail (strerror (c));
    JvFail (strerror (c));
}
}
 
 
void
void
_Jv_UnBlockSigchld()
_Jv_UnBlockSigchld()
{
{
  sigset_t mask;
  sigset_t mask;
  sigemptyset (&mask);
  sigemptyset (&mask);
  sigaddset (&mask, SIGCHLD);
  sigaddset (&mask, SIGCHLD);
  int c = pthread_sigmask (SIG_UNBLOCK, &mask, NULL);
  int c = pthread_sigmask (SIG_UNBLOCK, &mask, NULL);
  if (c != 0)
  if (c != 0)
    JvFail (strerror (c));
    JvFail (strerror (c));
}
}
 
 
void
void
_Jv_InitThreads (void)
_Jv_InitThreads (void)
{
{
  pthread_key_create (&_Jv_ThreadKey, NULL);
  pthread_key_create (&_Jv_ThreadKey, NULL);
  pthread_key_create (&_Jv_ThreadDataKey, NULL);
  pthread_key_create (&_Jv_ThreadDataKey, NULL);
  pthread_mutex_init (&daemon_mutex, NULL);
  pthread_mutex_init (&daemon_mutex, NULL);
  pthread_cond_init (&daemon_cond, 0);
  pthread_cond_init (&daemon_cond, 0);
  non_daemon_count = 0;
  non_daemon_count = 0;
 
 
  // Arrange for the interrupt signal to interrupt system calls.
  // Arrange for the interrupt signal to interrupt system calls.
  struct sigaction act;
  struct sigaction act;
  act.sa_handler = handle_intr;
  act.sa_handler = handle_intr;
  sigemptyset (&act.sa_mask);
  sigemptyset (&act.sa_mask);
  act.sa_flags = 0;
  act.sa_flags = 0;
  sigaction (INTR, &act, NULL);
  sigaction (INTR, &act, NULL);
 
 
  // Block SIGCHLD here to ensure that any non-Java threads inherit the new 
  // Block SIGCHLD here to ensure that any non-Java threads inherit the new 
  // signal mask.
  // signal mask.
  _Jv_BlockSigchld();
  _Jv_BlockSigchld();
 
 
  // Check/set the thread stack size.
  // Check/set the thread stack size.
  size_t min_ss = 32 * 1024;
  size_t min_ss = 32 * 1024;
 
 
  if (sizeof (void *) == 8)
  if (sizeof (void *) == 8)
    // Bigger default on 64-bit systems.
    // Bigger default on 64-bit systems.
    min_ss *= 2;
    min_ss *= 2;
 
 
#ifdef PTHREAD_STACK_MIN
#ifdef PTHREAD_STACK_MIN
  if (min_ss < PTHREAD_STACK_MIN)
  if (min_ss < PTHREAD_STACK_MIN)
    min_ss = PTHREAD_STACK_MIN;
    min_ss = PTHREAD_STACK_MIN;
#endif
#endif
 
 
  if (gcj::stack_size > 0 && gcj::stack_size < min_ss)
  if (gcj::stack_size > 0 && gcj::stack_size < min_ss)
    gcj::stack_size = min_ss;
    gcj::stack_size = min_ss;
}
}
 
 
_Jv_Thread_t *
_Jv_Thread_t *
_Jv_ThreadInitData (java::lang::Thread *obj)
_Jv_ThreadInitData (java::lang::Thread *obj)
{
{
  _Jv_Thread_t *data = (_Jv_Thread_t *) _Jv_Malloc (sizeof (_Jv_Thread_t));
  _Jv_Thread_t *data = (_Jv_Thread_t *) _Jv_Malloc (sizeof (_Jv_Thread_t));
  data->flags = 0;
  data->flags = 0;
  data->thread_obj = obj;
  data->thread_obj = obj;
 
 
  pthread_mutex_init (&data->wait_mutex, NULL);
  pthread_mutex_init (&data->wait_mutex, NULL);
  pthread_cond_init (&data->wait_cond, NULL);
  pthread_cond_init (&data->wait_cond, NULL);
 
 
  return data;
  return data;
}
}
 
 
void
void
_Jv_ThreadDestroyData (_Jv_Thread_t *data)
_Jv_ThreadDestroyData (_Jv_Thread_t *data)
{
{
  pthread_mutex_destroy (&data->wait_mutex);
  pthread_mutex_destroy (&data->wait_mutex);
  pthread_cond_destroy (&data->wait_cond);
  pthread_cond_destroy (&data->wait_cond);
  _Jv_Free ((void *)data);
  _Jv_Free ((void *)data);
}
}
 
 
void
void
_Jv_ThreadSetPriority (_Jv_Thread_t *data, jint prio)
_Jv_ThreadSetPriority (_Jv_Thread_t *data, jint prio)
{
{
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING
#ifdef _POSIX_THREAD_PRIORITY_SCHEDULING
  if (data->flags & FLAG_START)
  if (data->flags & FLAG_START)
    {
    {
      struct sched_param param;
      struct sched_param param;
 
 
      param.sched_priority = prio;
      param.sched_priority = prio;
      pthread_setschedparam (data->thread, SCHED_OTHER, &param);
      pthread_setschedparam (data->thread, SCHED_OTHER, &param);
    }
    }
#endif
#endif
}
}
 
 
void
void
_Jv_ThreadRegister (_Jv_Thread_t *data)
_Jv_ThreadRegister (_Jv_Thread_t *data)
{
{
  pthread_setspecific (_Jv_ThreadKey, data->thread_obj);
  pthread_setspecific (_Jv_ThreadKey, data->thread_obj);
  pthread_setspecific (_Jv_ThreadDataKey, data);
  pthread_setspecific (_Jv_ThreadDataKey, data);
 
 
  // glibc 2.1.3 doesn't set the value of `thread' until after start_routine
  // glibc 2.1.3 doesn't set the value of `thread' until after start_routine
  // is called. Since it may need to be accessed from the new thread, work 
  // is called. Since it may need to be accessed from the new thread, work 
  // around the potential race here by explicitly setting it again.
  // around the potential race here by explicitly setting it again.
  data->thread = pthread_self ();
  data->thread = pthread_self ();
 
 
# ifdef SLOW_PTHREAD_SELF
# ifdef SLOW_PTHREAD_SELF
    // Clear all self cache slots that might be needed by this thread.
    // Clear all self cache slots that might be needed by this thread.
    int dummy;
    int dummy;
    int low_index = SC_INDEX(&dummy) + SC_CLEAR_MIN;
    int low_index = SC_INDEX(&dummy) + SC_CLEAR_MIN;
    int high_index = SC_INDEX(&dummy) + SC_CLEAR_MAX;
    int high_index = SC_INDEX(&dummy) + SC_CLEAR_MAX;
    for (int i = low_index; i <= high_index; ++i)
    for (int i = low_index; i <= high_index; ++i)
      {
      {
        int current_index = i;
        int current_index = i;
        if (current_index < 0)
        if (current_index < 0)
          current_index += SELF_CACHE_SIZE;
          current_index += SELF_CACHE_SIZE;
        if (current_index >= SELF_CACHE_SIZE)
        if (current_index >= SELF_CACHE_SIZE)
          current_index -= SELF_CACHE_SIZE;
          current_index -= SELF_CACHE_SIZE;
        _Jv_self_cache[current_index].high_sp_bits = BAD_HIGH_SP_VALUE;
        _Jv_self_cache[current_index].high_sp_bits = BAD_HIGH_SP_VALUE;
      }
      }
# endif
# endif
  // Block SIGCHLD which is used in natPosixProcess.cc.
  // Block SIGCHLD which is used in natPosixProcess.cc.
  _Jv_BlockSigchld();
  _Jv_BlockSigchld();
}
}
 
 
void
void
_Jv_ThreadUnRegister ()
_Jv_ThreadUnRegister ()
{
{
  pthread_setspecific (_Jv_ThreadKey, NULL);
  pthread_setspecific (_Jv_ThreadKey, NULL);
  pthread_setspecific (_Jv_ThreadDataKey, NULL);
  pthread_setspecific (_Jv_ThreadDataKey, NULL);
}
}
 
 
// This function is called when a thread is started.  We don't arrange
// This function is called when a thread is started.  We don't arrange
// to call the `run' method directly, because this function must
// to call the `run' method directly, because this function must
// return a value.
// return a value.
static void *
static void *
really_start (void *x)
really_start (void *x)
{
{
  struct starter *info = (struct starter *) x;
  struct starter *info = (struct starter *) x;
 
 
  _Jv_ThreadRegister (info->data);
  _Jv_ThreadRegister (info->data);
 
 
  info->method (info->data->thread_obj);
  info->method (info->data->thread_obj);
 
 
  if (! (info->data->flags & FLAG_DAEMON))
  if (! (info->data->flags & FLAG_DAEMON))
    {
    {
      pthread_mutex_lock (&daemon_mutex);
      pthread_mutex_lock (&daemon_mutex);
      --non_daemon_count;
      --non_daemon_count;
      if (! non_daemon_count)
      if (! non_daemon_count)
        pthread_cond_signal (&daemon_cond);
        pthread_cond_signal (&daemon_cond);
      pthread_mutex_unlock (&daemon_mutex);
      pthread_mutex_unlock (&daemon_mutex);
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
void
void
_Jv_ThreadStart (java::lang::Thread *thread, _Jv_Thread_t *data,
_Jv_ThreadStart (java::lang::Thread *thread, _Jv_Thread_t *data,
                 _Jv_ThreadStartFunc *meth)
                 _Jv_ThreadStartFunc *meth)
{
{
  struct sched_param param;
  struct sched_param param;
  pthread_attr_t attr;
  pthread_attr_t attr;
  struct starter *info;
  struct starter *info;
 
 
  if (data->flags & FLAG_START)
  if (data->flags & FLAG_START)
    return;
    return;
  data->flags |= FLAG_START;
  data->flags |= FLAG_START;
 
 
  // Block SIGCHLD which is used in natPosixProcess.cc.
  // Block SIGCHLD which is used in natPosixProcess.cc.
  // The current mask is inherited by the child thread.
  // The current mask is inherited by the child thread.
  _Jv_BlockSigchld();
  _Jv_BlockSigchld();
 
 
  param.sched_priority = thread->getPriority();
  param.sched_priority = thread->getPriority();
 
 
  pthread_attr_init (&attr);
  pthread_attr_init (&attr);
  pthread_attr_setschedparam (&attr, &param);
  pthread_attr_setschedparam (&attr, &param);
  pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
  pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
 
 
  // Set stack size if -Xss option was given.
  // Set stack size if -Xss option was given.
  if (gcj::stack_size > 0)
  if (gcj::stack_size > 0)
    {
    {
      int e = pthread_attr_setstacksize (&attr, gcj::stack_size);
      int e = pthread_attr_setstacksize (&attr, gcj::stack_size);
      if (e != 0)
      if (e != 0)
        JvFail (strerror (e));
        JvFail (strerror (e));
    }
    }
 
 
  info = (struct starter *) _Jv_AllocBytes (sizeof (struct starter));
  info = (struct starter *) _Jv_AllocBytes (sizeof (struct starter));
  info->method = meth;
  info->method = meth;
  info->data = data;
  info->data = data;
 
 
  if (! thread->isDaemon())
  if (! thread->isDaemon())
    {
    {
      pthread_mutex_lock (&daemon_mutex);
      pthread_mutex_lock (&daemon_mutex);
      ++non_daemon_count;
      ++non_daemon_count;
      pthread_mutex_unlock (&daemon_mutex);
      pthread_mutex_unlock (&daemon_mutex);
    }
    }
  else
  else
    data->flags |= FLAG_DAEMON;
    data->flags |= FLAG_DAEMON;
  int r = pthread_create (&data->thread, &attr, really_start, (void *) info);
  int r = pthread_create (&data->thread, &attr, really_start, (void *) info);
 
 
  pthread_attr_destroy (&attr);
  pthread_attr_destroy (&attr);
 
 
  if (r)
  if (r)
    {
    {
      const char* msg = "Cannot create additional threads";
      const char* msg = "Cannot create additional threads";
      throw new java::lang::OutOfMemoryError (JvNewStringUTF (msg));
      throw new java::lang::OutOfMemoryError (JvNewStringUTF (msg));
    }
    }
}
}
 
 
void
void
_Jv_ThreadWait (void)
_Jv_ThreadWait (void)
{
{
  pthread_mutex_lock (&daemon_mutex);
  pthread_mutex_lock (&daemon_mutex);
  if (non_daemon_count)
  if (non_daemon_count)
    pthread_cond_wait (&daemon_cond, &daemon_mutex);
    pthread_cond_wait (&daemon_cond, &daemon_mutex);
  pthread_mutex_unlock (&daemon_mutex);
  pthread_mutex_unlock (&daemon_mutex);
}
}
 
 
#if defined(SLOW_PTHREAD_SELF)
#if defined(SLOW_PTHREAD_SELF)
 
 
#include "sysdep/locks.h"
#include "sysdep/locks.h"
 
 
// Support for pthread_self() lookup cache.
// Support for pthread_self() lookup cache.
volatile self_cache_entry _Jv_self_cache[SELF_CACHE_SIZE];
volatile self_cache_entry _Jv_self_cache[SELF_CACHE_SIZE];
 
 
_Jv_ThreadId_t
_Jv_ThreadId_t
_Jv_ThreadSelf_out_of_line(volatile self_cache_entry *sce, size_t high_sp_bits)
_Jv_ThreadSelf_out_of_line(volatile self_cache_entry *sce, size_t high_sp_bits)
{
{
  pthread_t self = pthread_self();
  pthread_t self = pthread_self();
  sce -> high_sp_bits = high_sp_bits;
  sce -> high_sp_bits = high_sp_bits;
  write_barrier();
  write_barrier();
  sce -> self = self;
  sce -> self = self;
  return self;
  return self;
}
}
 
 
#endif /* SLOW_PTHREAD_SELF */
#endif /* SLOW_PTHREAD_SELF */
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.