OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-dev/] [fsf-gcc-snapshot-1-mar-12/] [or1k-gcc/] [zlib/] [inftrees.c] - Diff between revs 745 and 783

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 745 Rev 783
/* inftrees.c -- generate Huffman trees for efficient decoding
/* inftrees.c -- generate Huffman trees for efficient decoding
 * Copyright (C) 1995-2005 Mark Adler
 * Copyright (C) 1995-2005 Mark Adler
 * For conditions of distribution and use, see copyright notice in zlib.h
 * For conditions of distribution and use, see copyright notice in zlib.h
 */
 */
 
 
#include "zutil.h"
#include "zutil.h"
#include "inftrees.h"
#include "inftrees.h"
 
 
#define MAXBITS 15
#define MAXBITS 15
 
 
const char inflate_copyright[] =
const char inflate_copyright[] =
   " inflate 1.2.3 Copyright 1995-2005 Mark Adler ";
   " inflate 1.2.3 Copyright 1995-2005 Mark Adler ";
/*
/*
  If you use the zlib library in a product, an acknowledgment is welcome
  If you use the zlib library in a product, an acknowledgment is welcome
  in the documentation of your product. If for some reason you cannot
  in the documentation of your product. If for some reason you cannot
  include such an acknowledgment, I would appreciate that you keep this
  include such an acknowledgment, I would appreciate that you keep this
  copyright string in the executable of your product.
  copyright string in the executable of your product.
 */
 */
 
 
/*
/*
   Build a set of tables to decode the provided canonical Huffman code.
   Build a set of tables to decode the provided canonical Huffman code.
   The code lengths are lens[0..codes-1].  The result starts at *table,
   The code lengths are lens[0..codes-1].  The result starts at *table,
   whose indices are 0..2^bits-1.  work is a writable array of at least
   whose indices are 0..2^bits-1.  work is a writable array of at least
   lens shorts, which is used as a work area.  type is the type of code
   lens shorts, which is used as a work area.  type is the type of code
   to be generated, CODES, LENS, or DISTS.  On return, zero is success,
   to be generated, CODES, LENS, or DISTS.  On return, zero is success,
   -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
   -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
   on return points to the next available entry's address.  bits is the
   on return points to the next available entry's address.  bits is the
   requested root table index bits, and on return it is the actual root
   requested root table index bits, and on return it is the actual root
   table index bits.  It will differ if the request is greater than the
   table index bits.  It will differ if the request is greater than the
   longest code or if it is less than the shortest code.
   longest code or if it is less than the shortest code.
 */
 */
int inflate_table(type, lens, codes, table, bits, work)
int inflate_table(type, lens, codes, table, bits, work)
codetype type;
codetype type;
unsigned short FAR *lens;
unsigned short FAR *lens;
unsigned codes;
unsigned codes;
code FAR * FAR *table;
code FAR * FAR *table;
unsigned FAR *bits;
unsigned FAR *bits;
unsigned short FAR *work;
unsigned short FAR *work;
{
{
    unsigned len;               /* a code's length in bits */
    unsigned len;               /* a code's length in bits */
    unsigned sym;               /* index of code symbols */
    unsigned sym;               /* index of code symbols */
    unsigned min, max;          /* minimum and maximum code lengths */
    unsigned min, max;          /* minimum and maximum code lengths */
    unsigned root;              /* number of index bits for root table */
    unsigned root;              /* number of index bits for root table */
    unsigned curr;              /* number of index bits for current table */
    unsigned curr;              /* number of index bits for current table */
    unsigned drop;              /* code bits to drop for sub-table */
    unsigned drop;              /* code bits to drop for sub-table */
    int left;                   /* number of prefix codes available */
    int left;                   /* number of prefix codes available */
    unsigned used;              /* code entries in table used */
    unsigned used;              /* code entries in table used */
    unsigned huff;              /* Huffman code */
    unsigned huff;              /* Huffman code */
    unsigned incr;              /* for incrementing code, index */
    unsigned incr;              /* for incrementing code, index */
    unsigned fill;              /* index for replicating entries */
    unsigned fill;              /* index for replicating entries */
    unsigned low;               /* low bits for current root entry */
    unsigned low;               /* low bits for current root entry */
    unsigned mask;              /* mask for low root bits */
    unsigned mask;              /* mask for low root bits */
    code this;                  /* table entry for duplication */
    code this;                  /* table entry for duplication */
    code FAR *next;             /* next available space in table */
    code FAR *next;             /* next available space in table */
    const unsigned short FAR *base;     /* base value table to use */
    const unsigned short FAR *base;     /* base value table to use */
    const unsigned short FAR *extra;    /* extra bits table to use */
    const unsigned short FAR *extra;    /* extra bits table to use */
    int end;                    /* use base and extra for symbol > end */
    int end;                    /* use base and extra for symbol > end */
    unsigned short count[MAXBITS+1];    /* number of codes of each length */
    unsigned short count[MAXBITS+1];    /* number of codes of each length */
    unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
    unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
    static const unsigned short lbase[31] = { /* Length codes 257..285 base */
    static const unsigned short lbase[31] = { /* Length codes 257..285 base */
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
    static const unsigned short lext[31] = { /* Length codes 257..285 extra */
    static const unsigned short lext[31] = { /* Length codes 257..285 extra */
        16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
        16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
        19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 201, 196};
        19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 201, 196};
    static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
    static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
        8193, 12289, 16385, 24577, 0, 0};
        8193, 12289, 16385, 24577, 0, 0};
    static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
    static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
        16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
        16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
        23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
        23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
        28, 28, 29, 29, 64, 64};
        28, 28, 29, 29, 64, 64};
 
 
    /*
    /*
       Process a set of code lengths to create a canonical Huffman code.  The
       Process a set of code lengths to create a canonical Huffman code.  The
       code lengths are lens[0..codes-1].  Each length corresponds to the
       code lengths are lens[0..codes-1].  Each length corresponds to the
       symbols 0..codes-1.  The Huffman code is generated by first sorting the
       symbols 0..codes-1.  The Huffman code is generated by first sorting the
       symbols by length from short to long, and retaining the symbol order
       symbols by length from short to long, and retaining the symbol order
       for codes with equal lengths.  Then the code starts with all zero bits
       for codes with equal lengths.  Then the code starts with all zero bits
       for the first code of the shortest length, and the codes are integer
       for the first code of the shortest length, and the codes are integer
       increments for the same length, and zeros are appended as the length
       increments for the same length, and zeros are appended as the length
       increases.  For the deflate format, these bits are stored backwards
       increases.  For the deflate format, these bits are stored backwards
       from their more natural integer increment ordering, and so when the
       from their more natural integer increment ordering, and so when the
       decoding tables are built in the large loop below, the integer codes
       decoding tables are built in the large loop below, the integer codes
       are incremented backwards.
       are incremented backwards.
 
 
       This routine assumes, but does not check, that all of the entries in
       This routine assumes, but does not check, that all of the entries in
       lens[] are in the range 0..MAXBITS.  The caller must assure this.
       lens[] are in the range 0..MAXBITS.  The caller must assure this.
       1..MAXBITS is interpreted as that code length.  zero means that that
       1..MAXBITS is interpreted as that code length.  zero means that that
       symbol does not occur in this code.
       symbol does not occur in this code.
 
 
       The codes are sorted by computing a count of codes for each length,
       The codes are sorted by computing a count of codes for each length,
       creating from that a table of starting indices for each length in the
       creating from that a table of starting indices for each length in the
       sorted table, and then entering the symbols in order in the sorted
       sorted table, and then entering the symbols in order in the sorted
       table.  The sorted table is work[], with that space being provided by
       table.  The sorted table is work[], with that space being provided by
       the caller.
       the caller.
 
 
       The length counts are used for other purposes as well, i.e. finding
       The length counts are used for other purposes as well, i.e. finding
       the minimum and maximum length codes, determining if there are any
       the minimum and maximum length codes, determining if there are any
       codes at all, checking for a valid set of lengths, and looking ahead
       codes at all, checking for a valid set of lengths, and looking ahead
       at length counts to determine sub-table sizes when building the
       at length counts to determine sub-table sizes when building the
       decoding tables.
       decoding tables.
     */
     */
 
 
    /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
    /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
    for (len = 0; len <= MAXBITS; len++)
    for (len = 0; len <= MAXBITS; len++)
        count[len] = 0;
        count[len] = 0;
    for (sym = 0; sym < codes; sym++)
    for (sym = 0; sym < codes; sym++)
        count[lens[sym]]++;
        count[lens[sym]]++;
 
 
    /* bound code lengths, force root to be within code lengths */
    /* bound code lengths, force root to be within code lengths */
    root = *bits;
    root = *bits;
    for (max = MAXBITS; max >= 1; max--)
    for (max = MAXBITS; max >= 1; max--)
        if (count[max] != 0) break;
        if (count[max] != 0) break;
    if (root > max) root = max;
    if (root > max) root = max;
    if (max == 0) {                     /* no symbols to code at all */
    if (max == 0) {                     /* no symbols to code at all */
        this.op = (unsigned char)64;    /* invalid code marker */
        this.op = (unsigned char)64;    /* invalid code marker */
        this.bits = (unsigned char)1;
        this.bits = (unsigned char)1;
        this.val = (unsigned short)0;
        this.val = (unsigned short)0;
        *(*table)++ = this;             /* make a table to force an error */
        *(*table)++ = this;             /* make a table to force an error */
        *(*table)++ = this;
        *(*table)++ = this;
        *bits = 1;
        *bits = 1;
        return 0;     /* no symbols, but wait for decoding to report error */
        return 0;     /* no symbols, but wait for decoding to report error */
    }
    }
    for (min = 1; min <= MAXBITS; min++)
    for (min = 1; min <= MAXBITS; min++)
        if (count[min] != 0) break;
        if (count[min] != 0) break;
    if (root < min) root = min;
    if (root < min) root = min;
 
 
    /* check for an over-subscribed or incomplete set of lengths */
    /* check for an over-subscribed or incomplete set of lengths */
    left = 1;
    left = 1;
    for (len = 1; len <= MAXBITS; len++) {
    for (len = 1; len <= MAXBITS; len++) {
        left <<= 1;
        left <<= 1;
        left -= count[len];
        left -= count[len];
        if (left < 0) return -1;        /* over-subscribed */
        if (left < 0) return -1;        /* over-subscribed */
    }
    }
    if (left > 0 && (type == CODES || max != 1))
    if (left > 0 && (type == CODES || max != 1))
        return -1;                      /* incomplete set */
        return -1;                      /* incomplete set */
 
 
    /* generate offsets into symbol table for each length for sorting */
    /* generate offsets into symbol table for each length for sorting */
    offs[1] = 0;
    offs[1] = 0;
    for (len = 1; len < MAXBITS; len++)
    for (len = 1; len < MAXBITS; len++)
        offs[len + 1] = offs[len] + count[len];
        offs[len + 1] = offs[len] + count[len];
 
 
    /* sort symbols by length, by symbol order within each length */
    /* sort symbols by length, by symbol order within each length */
    for (sym = 0; sym < codes; sym++)
    for (sym = 0; sym < codes; sym++)
        if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
        if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
 
 
    /*
    /*
       Create and fill in decoding tables.  In this loop, the table being
       Create and fill in decoding tables.  In this loop, the table being
       filled is at next and has curr index bits.  The code being used is huff
       filled is at next and has curr index bits.  The code being used is huff
       with length len.  That code is converted to an index by dropping drop
       with length len.  That code is converted to an index by dropping drop
       bits off of the bottom.  For codes where len is less than drop + curr,
       bits off of the bottom.  For codes where len is less than drop + curr,
       those top drop + curr - len bits are incremented through all values to
       those top drop + curr - len bits are incremented through all values to
       fill the table with replicated entries.
       fill the table with replicated entries.
 
 
       root is the number of index bits for the root table.  When len exceeds
       root is the number of index bits for the root table.  When len exceeds
       root, sub-tables are created pointed to by the root entry with an index
       root, sub-tables are created pointed to by the root entry with an index
       of the low root bits of huff.  This is saved in low to check for when a
       of the low root bits of huff.  This is saved in low to check for when a
       new sub-table should be started.  drop is zero when the root table is
       new sub-table should be started.  drop is zero when the root table is
       being filled, and drop is root when sub-tables are being filled.
       being filled, and drop is root when sub-tables are being filled.
 
 
       When a new sub-table is needed, it is necessary to look ahead in the
       When a new sub-table is needed, it is necessary to look ahead in the
       code lengths to determine what size sub-table is needed.  The length
       code lengths to determine what size sub-table is needed.  The length
       counts are used for this, and so count[] is decremented as codes are
       counts are used for this, and so count[] is decremented as codes are
       entered in the tables.
       entered in the tables.
 
 
       used keeps track of how many table entries have been allocated from the
       used keeps track of how many table entries have been allocated from the
       provided *table space.  It is checked when a LENS table is being made
       provided *table space.  It is checked when a LENS table is being made
       against the space in *table, ENOUGH, minus the maximum space needed by
       against the space in *table, ENOUGH, minus the maximum space needed by
       the worst case distance code, MAXD.  This should never happen, but the
       the worst case distance code, MAXD.  This should never happen, but the
       sufficiency of ENOUGH has not been proven exhaustively, hence the check.
       sufficiency of ENOUGH has not been proven exhaustively, hence the check.
       This assumes that when type == LENS, bits == 9.
       This assumes that when type == LENS, bits == 9.
 
 
       sym increments through all symbols, and the loop terminates when
       sym increments through all symbols, and the loop terminates when
       all codes of length max, i.e. all codes, have been processed.  This
       all codes of length max, i.e. all codes, have been processed.  This
       routine permits incomplete codes, so another loop after this one fills
       routine permits incomplete codes, so another loop after this one fills
       in the rest of the decoding tables with invalid code markers.
       in the rest of the decoding tables with invalid code markers.
     */
     */
 
 
    /* set up for code type */
    /* set up for code type */
    switch (type) {
    switch (type) {
    case CODES:
    case CODES:
        base = extra = work;    /* dummy value--not used */
        base = extra = work;    /* dummy value--not used */
        end = 19;
        end = 19;
        break;
        break;
    case LENS:
    case LENS:
        base = lbase;
        base = lbase;
        base -= 257;
        base -= 257;
        extra = lext;
        extra = lext;
        extra -= 257;
        extra -= 257;
        end = 256;
        end = 256;
        break;
        break;
    default:            /* DISTS */
    default:            /* DISTS */
        base = dbase;
        base = dbase;
        extra = dext;
        extra = dext;
        end = -1;
        end = -1;
    }
    }
 
 
    /* initialize state for loop */
    /* initialize state for loop */
    huff = 0;                   /* starting code */
    huff = 0;                   /* starting code */
    sym = 0;                    /* starting code symbol */
    sym = 0;                    /* starting code symbol */
    len = min;                  /* starting code length */
    len = min;                  /* starting code length */
    next = *table;              /* current table to fill in */
    next = *table;              /* current table to fill in */
    curr = root;                /* current table index bits */
    curr = root;                /* current table index bits */
    drop = 0;                   /* current bits to drop from code for index */
    drop = 0;                   /* current bits to drop from code for index */
    low = (unsigned)(-1);       /* trigger new sub-table when len > root */
    low = (unsigned)(-1);       /* trigger new sub-table when len > root */
    used = 1U << root;          /* use root table entries */
    used = 1U << root;          /* use root table entries */
    mask = used - 1;            /* mask for comparing low */
    mask = used - 1;            /* mask for comparing low */
 
 
    /* check available table space */
    /* check available table space */
    if (type == LENS && used >= ENOUGH - MAXD)
    if (type == LENS && used >= ENOUGH - MAXD)
        return 1;
        return 1;
 
 
    /* process all codes and make table entries */
    /* process all codes and make table entries */
    for (;;) {
    for (;;) {
        /* create table entry */
        /* create table entry */
        this.bits = (unsigned char)(len - drop);
        this.bits = (unsigned char)(len - drop);
        if ((int)(work[sym]) < end) {
        if ((int)(work[sym]) < end) {
            this.op = (unsigned char)0;
            this.op = (unsigned char)0;
            this.val = work[sym];
            this.val = work[sym];
        }
        }
        else if ((int)(work[sym]) > end) {
        else if ((int)(work[sym]) > end) {
            this.op = (unsigned char)(extra[work[sym]]);
            this.op = (unsigned char)(extra[work[sym]]);
            this.val = base[work[sym]];
            this.val = base[work[sym]];
        }
        }
        else {
        else {
            this.op = (unsigned char)(32 + 64);         /* end of block */
            this.op = (unsigned char)(32 + 64);         /* end of block */
            this.val = 0;
            this.val = 0;
        }
        }
 
 
        /* replicate for those indices with low len bits equal to huff */
        /* replicate for those indices with low len bits equal to huff */
        incr = 1U << (len - drop);
        incr = 1U << (len - drop);
        fill = 1U << curr;
        fill = 1U << curr;
        min = fill;                 /* save offset to next table */
        min = fill;                 /* save offset to next table */
        do {
        do {
            fill -= incr;
            fill -= incr;
            next[(huff >> drop) + fill] = this;
            next[(huff >> drop) + fill] = this;
        } while (fill != 0);
        } while (fill != 0);
 
 
        /* backwards increment the len-bit code huff */
        /* backwards increment the len-bit code huff */
        incr = 1U << (len - 1);
        incr = 1U << (len - 1);
        while (huff & incr)
        while (huff & incr)
            incr >>= 1;
            incr >>= 1;
        if (incr != 0) {
        if (incr != 0) {
            huff &= incr - 1;
            huff &= incr - 1;
            huff += incr;
            huff += incr;
        }
        }
        else
        else
            huff = 0;
            huff = 0;
 
 
        /* go to next symbol, update count, len */
        /* go to next symbol, update count, len */
        sym++;
        sym++;
        if (--(count[len]) == 0) {
        if (--(count[len]) == 0) {
            if (len == max) break;
            if (len == max) break;
            len = lens[work[sym]];
            len = lens[work[sym]];
        }
        }
 
 
        /* create new sub-table if needed */
        /* create new sub-table if needed */
        if (len > root && (huff & mask) != low) {
        if (len > root && (huff & mask) != low) {
            /* if first time, transition to sub-tables */
            /* if first time, transition to sub-tables */
            if (drop == 0)
            if (drop == 0)
                drop = root;
                drop = root;
 
 
            /* increment past last table */
            /* increment past last table */
            next += min;            /* here min is 1 << curr */
            next += min;            /* here min is 1 << curr */
 
 
            /* determine length of next table */
            /* determine length of next table */
            curr = len - drop;
            curr = len - drop;
            left = (int)(1 << curr);
            left = (int)(1 << curr);
            while (curr + drop < max) {
            while (curr + drop < max) {
                left -= count[curr + drop];
                left -= count[curr + drop];
                if (left <= 0) break;
                if (left <= 0) break;
                curr++;
                curr++;
                left <<= 1;
                left <<= 1;
            }
            }
 
 
            /* check for enough space */
            /* check for enough space */
            used += 1U << curr;
            used += 1U << curr;
            if (type == LENS && used >= ENOUGH - MAXD)
            if (type == LENS && used >= ENOUGH - MAXD)
                return 1;
                return 1;
 
 
            /* point entry in root table to sub-table */
            /* point entry in root table to sub-table */
            low = huff & mask;
            low = huff & mask;
            (*table)[low].op = (unsigned char)curr;
            (*table)[low].op = (unsigned char)curr;
            (*table)[low].bits = (unsigned char)root;
            (*table)[low].bits = (unsigned char)root;
            (*table)[low].val = (unsigned short)(next - *table);
            (*table)[low].val = (unsigned short)(next - *table);
        }
        }
    }
    }
 
 
    /*
    /*
       Fill in rest of table for incomplete codes.  This loop is similar to the
       Fill in rest of table for incomplete codes.  This loop is similar to the
       loop above in incrementing huff for table indices.  It is assumed that
       loop above in incrementing huff for table indices.  It is assumed that
       len is equal to curr + drop, so there is no loop needed to increment
       len is equal to curr + drop, so there is no loop needed to increment
       through high index bits.  When the current sub-table is filled, the loop
       through high index bits.  When the current sub-table is filled, the loop
       drops back to the root table to fill in any remaining entries there.
       drops back to the root table to fill in any remaining entries there.
     */
     */
    this.op = (unsigned char)64;                /* invalid code marker */
    this.op = (unsigned char)64;                /* invalid code marker */
    this.bits = (unsigned char)(len - drop);
    this.bits = (unsigned char)(len - drop);
    this.val = (unsigned short)0;
    this.val = (unsigned short)0;
    while (huff != 0) {
    while (huff != 0) {
        /* when done with sub-table, drop back to root table */
        /* when done with sub-table, drop back to root table */
        if (drop != 0 && (huff & mask) != low) {
        if (drop != 0 && (huff & mask) != low) {
            drop = 0;
            drop = 0;
            len = root;
            len = root;
            next = *table;
            next = *table;
            this.bits = (unsigned char)len;
            this.bits = (unsigned char)len;
        }
        }
 
 
        /* put invalid code marker in table */
        /* put invalid code marker in table */
        next[huff >> drop] = this;
        next[huff >> drop] = this;
 
 
        /* backwards increment the len-bit code huff */
        /* backwards increment the len-bit code huff */
        incr = 1U << (len - 1);
        incr = 1U << (len - 1);
        while (huff & incr)
        while (huff & incr)
            incr >>= 1;
            incr >>= 1;
        if (incr != 0) {
        if (incr != 0) {
            huff &= incr - 1;
            huff &= incr - 1;
            huff += incr;
            huff += incr;
        }
        }
        else
        else
            huff = 0;
            huff = 0;
    }
    }
 
 
    /* set return parameters */
    /* set return parameters */
    *table += used;
    *table += used;
    *bits = root;
    *bits = root;
    return 0;
    return 0;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.