OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc1/] [gcc/] [caller-save.c] - Diff between revs 280 and 338

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 280 Rev 338
/* Save and restore call-clobbered registers which are live across a call.
/* Save and restore call-clobbered registers which are live across a call.
   Copyright (C) 1989, 1992, 1994, 1995, 1997, 1998, 1999, 2000,
   Copyright (C) 1989, 1992, 1994, 1995, 1997, 1998, 1999, 2000,
   2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "regs.h"
#include "regs.h"
#include "insn-config.h"
#include "insn-config.h"
#include "flags.h"
#include "flags.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "recog.h"
#include "recog.h"
#include "basic-block.h"
#include "basic-block.h"
#include "reload.h"
#include "reload.h"
#include "function.h"
#include "function.h"
#include "expr.h"
#include "expr.h"
#include "toplev.h"
#include "toplev.h"
#include "tm_p.h"
#include "tm_p.h"
#include "addresses.h"
#include "addresses.h"
#include "output.h"
#include "output.h"
#include "df.h"
#include "df.h"
#include "ggc.h"
#include "ggc.h"
 
 
/* True if caller-save has been initialized.  */
/* True if caller-save has been initialized.  */
bool caller_save_initialized_p;
bool caller_save_initialized_p;
 
 
/* Call used hard registers which can not be saved because there is no
/* Call used hard registers which can not be saved because there is no
   insn for this.  */
   insn for this.  */
HARD_REG_SET no_caller_save_reg_set;
HARD_REG_SET no_caller_save_reg_set;
 
 
#ifndef MAX_MOVE_MAX
#ifndef MAX_MOVE_MAX
#define MAX_MOVE_MAX MOVE_MAX
#define MAX_MOVE_MAX MOVE_MAX
#endif
#endif
 
 
#ifndef MIN_UNITS_PER_WORD
#ifndef MIN_UNITS_PER_WORD
#define MIN_UNITS_PER_WORD UNITS_PER_WORD
#define MIN_UNITS_PER_WORD UNITS_PER_WORD
#endif
#endif
 
 
#define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
#define MOVE_MAX_WORDS (MOVE_MAX / UNITS_PER_WORD)
 
 
/* Modes for each hard register that we can save.  The smallest mode is wide
/* Modes for each hard register that we can save.  The smallest mode is wide
   enough to save the entire contents of the register.  When saving the
   enough to save the entire contents of the register.  When saving the
   register because it is live we first try to save in multi-register modes.
   register because it is live we first try to save in multi-register modes.
   If that is not possible the save is done one register at a time.  */
   If that is not possible the save is done one register at a time.  */
 
 
static enum machine_mode
static enum machine_mode
  regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
  regno_save_mode[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
 
 
/* For each hard register, a place on the stack where it can be saved,
/* For each hard register, a place on the stack where it can be saved,
   if needed.  */
   if needed.  */
 
 
static rtx
static rtx
  regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
  regno_save_mem[FIRST_PSEUDO_REGISTER][MAX_MOVE_MAX / MIN_UNITS_PER_WORD + 1];
 
 
/* The number of elements in the subsequent array.  */
/* The number of elements in the subsequent array.  */
static int save_slots_num;
static int save_slots_num;
 
 
/* Allocated slots so far.  */
/* Allocated slots so far.  */
static rtx save_slots[FIRST_PSEUDO_REGISTER];
static rtx save_slots[FIRST_PSEUDO_REGISTER];
 
 
/* We will only make a register eligible for caller-save if it can be
/* We will only make a register eligible for caller-save if it can be
   saved in its widest mode with a simple SET insn as long as the memory
   saved in its widest mode with a simple SET insn as long as the memory
   address is valid.  We record the INSN_CODE is those insns here since
   address is valid.  We record the INSN_CODE is those insns here since
   when we emit them, the addresses might not be valid, so they might not
   when we emit them, the addresses might not be valid, so they might not
   be recognized.  */
   be recognized.  */
 
 
static int
static int
  cached_reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
  cached_reg_save_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
static int
static int
  cached_reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
  cached_reg_restore_code[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
 
 
/* Set of hard regs currently residing in save area (during insn scan).  */
/* Set of hard regs currently residing in save area (during insn scan).  */
 
 
static HARD_REG_SET hard_regs_saved;
static HARD_REG_SET hard_regs_saved;
 
 
/* Number of registers currently in hard_regs_saved.  */
/* Number of registers currently in hard_regs_saved.  */
 
 
static int n_regs_saved;
static int n_regs_saved;
 
 
/* Computed by mark_referenced_regs, all regs referenced in a given
/* Computed by mark_referenced_regs, all regs referenced in a given
   insn.  */
   insn.  */
static HARD_REG_SET referenced_regs;
static HARD_REG_SET referenced_regs;
 
 
 
 
typedef void refmarker_fn (rtx *loc, enum machine_mode mode, int hardregno,
typedef void refmarker_fn (rtx *loc, enum machine_mode mode, int hardregno,
                           void *mark_arg);
                           void *mark_arg);
 
 
static int reg_save_code (int, enum machine_mode);
static int reg_save_code (int, enum machine_mode);
static int reg_restore_code (int, enum machine_mode);
static int reg_restore_code (int, enum machine_mode);
 
 
struct saved_hard_reg;
struct saved_hard_reg;
static void initiate_saved_hard_regs (void);
static void initiate_saved_hard_regs (void);
static struct saved_hard_reg *new_saved_hard_reg (int, int);
static struct saved_hard_reg *new_saved_hard_reg (int, int);
static void finish_saved_hard_regs (void);
static void finish_saved_hard_regs (void);
static int saved_hard_reg_compare_func (const void *, const void *);
static int saved_hard_reg_compare_func (const void *, const void *);
 
 
static void mark_set_regs (rtx, const_rtx, void *);
static void mark_set_regs (rtx, const_rtx, void *);
static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
static void mark_referenced_regs (rtx *, refmarker_fn *mark, void *mark_arg);
static refmarker_fn mark_reg_as_referenced;
static refmarker_fn mark_reg_as_referenced;
static refmarker_fn replace_reg_with_saved_mem;
static refmarker_fn replace_reg_with_saved_mem;
static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
static int insert_save (struct insn_chain *, int, int, HARD_REG_SET *,
                        enum machine_mode *);
                        enum machine_mode *);
static int insert_restore (struct insn_chain *, int, int, int,
static int insert_restore (struct insn_chain *, int, int, int,
                           enum machine_mode *);
                           enum machine_mode *);
static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
static struct insn_chain *insert_one_insn (struct insn_chain *, int, int,
                                           rtx);
                                           rtx);
static void add_stored_regs (rtx, const_rtx, void *);
static void add_stored_regs (rtx, const_rtx, void *);
 
 


 
 
static GTY(()) rtx savepat;
static GTY(()) rtx savepat;
static GTY(()) rtx restpat;
static GTY(()) rtx restpat;
static GTY(()) rtx test_reg;
static GTY(()) rtx test_reg;
static GTY(()) rtx test_mem;
static GTY(()) rtx test_mem;
static GTY(()) rtx saveinsn;
static GTY(()) rtx saveinsn;
static GTY(()) rtx restinsn;
static GTY(()) rtx restinsn;
 
 
/* Return the INSN_CODE used to save register REG in mode MODE.  */
/* Return the INSN_CODE used to save register REG in mode MODE.  */
static int
static int
reg_save_code (int reg, enum machine_mode mode)
reg_save_code (int reg, enum machine_mode mode)
{
{
  bool ok;
  bool ok;
  if (cached_reg_save_code[reg][mode])
  if (cached_reg_save_code[reg][mode])
     return cached_reg_save_code[reg][mode];
     return cached_reg_save_code[reg][mode];
  if (!HARD_REGNO_MODE_OK (reg, mode))
  if (!HARD_REGNO_MODE_OK (reg, mode))
     {
     {
       cached_reg_save_code[reg][mode] = -1;
       cached_reg_save_code[reg][mode] = -1;
       cached_reg_restore_code[reg][mode] = -1;
       cached_reg_restore_code[reg][mode] = -1;
       return -1;
       return -1;
     }
     }
 
 
  /* Update the register number and modes of the register
  /* Update the register number and modes of the register
     and memory operand.  */
     and memory operand.  */
  SET_REGNO (test_reg, reg);
  SET_REGNO (test_reg, reg);
  PUT_MODE (test_reg, mode);
  PUT_MODE (test_reg, mode);
  PUT_MODE (test_mem, mode);
  PUT_MODE (test_mem, mode);
 
 
  /* Force re-recognition of the modified insns.  */
  /* Force re-recognition of the modified insns.  */
  INSN_CODE (saveinsn) = -1;
  INSN_CODE (saveinsn) = -1;
  INSN_CODE (restinsn) = -1;
  INSN_CODE (restinsn) = -1;
 
 
  cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
  cached_reg_save_code[reg][mode] = recog_memoized (saveinsn);
  cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
  cached_reg_restore_code[reg][mode] = recog_memoized (restinsn);
 
 
  /* Now extract both insns and see if we can meet their
  /* Now extract both insns and see if we can meet their
     constraints.  */
     constraints.  */
  ok = (cached_reg_save_code[reg][mode] != -1
  ok = (cached_reg_save_code[reg][mode] != -1
        && cached_reg_restore_code[reg][mode] != -1);
        && cached_reg_restore_code[reg][mode] != -1);
  if (ok)
  if (ok)
    {
    {
      extract_insn (saveinsn);
      extract_insn (saveinsn);
      ok = constrain_operands (1);
      ok = constrain_operands (1);
      extract_insn (restinsn);
      extract_insn (restinsn);
      ok &= constrain_operands (1);
      ok &= constrain_operands (1);
    }
    }
 
 
  if (! ok)
  if (! ok)
    {
    {
      cached_reg_save_code[reg][mode] = -1;
      cached_reg_save_code[reg][mode] = -1;
      cached_reg_restore_code[reg][mode] = -1;
      cached_reg_restore_code[reg][mode] = -1;
    }
    }
  gcc_assert (cached_reg_save_code[reg][mode]);
  gcc_assert (cached_reg_save_code[reg][mode]);
  return cached_reg_save_code[reg][mode];
  return cached_reg_save_code[reg][mode];
}
}
 
 
/* Return the INSN_CODE used to restore register REG in mode MODE.  */
/* Return the INSN_CODE used to restore register REG in mode MODE.  */
static int
static int
reg_restore_code (int reg, enum machine_mode mode)
reg_restore_code (int reg, enum machine_mode mode)
{
{
  if (cached_reg_restore_code[reg][mode])
  if (cached_reg_restore_code[reg][mode])
     return cached_reg_restore_code[reg][mode];
     return cached_reg_restore_code[reg][mode];
  /* Populate our cache.  */
  /* Populate our cache.  */
  reg_save_code (reg, mode);
  reg_save_code (reg, mode);
  return cached_reg_restore_code[reg][mode];
  return cached_reg_restore_code[reg][mode];
}
}


/* Initialize for caller-save.
/* Initialize for caller-save.
 
 
   Look at all the hard registers that are used by a call and for which
   Look at all the hard registers that are used by a call and for which
   reginfo.c has not already excluded from being used across a call.
   reginfo.c has not already excluded from being used across a call.
 
 
   Ensure that we can find a mode to save the register and that there is a
   Ensure that we can find a mode to save the register and that there is a
   simple insn to save and restore the register.  This latter check avoids
   simple insn to save and restore the register.  This latter check avoids
   problems that would occur if we tried to save the MQ register of some
   problems that would occur if we tried to save the MQ register of some
   machines directly into memory.  */
   machines directly into memory.  */
 
 
void
void
init_caller_save (void)
init_caller_save (void)
{
{
  rtx addr_reg;
  rtx addr_reg;
  int offset;
  int offset;
  rtx address;
  rtx address;
  int i, j;
  int i, j;
 
 
  if (caller_save_initialized_p)
  if (caller_save_initialized_p)
    return;
    return;
 
 
  caller_save_initialized_p = true;
  caller_save_initialized_p = true;
 
 
  CLEAR_HARD_REG_SET (no_caller_save_reg_set);
  CLEAR_HARD_REG_SET (no_caller_save_reg_set);
  /* First find all the registers that we need to deal with and all
  /* First find all the registers that we need to deal with and all
     the modes that they can have.  If we can't find a mode to use,
     the modes that they can have.  If we can't find a mode to use,
     we can't have the register live over calls.  */
     we can't have the register live over calls.  */
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
    {
      if (call_used_regs[i]
      if (call_used_regs[i]
          && !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
          && !TEST_HARD_REG_BIT (call_fixed_reg_set, i))
        {
        {
          for (j = 1; j <= MOVE_MAX_WORDS; j++)
          for (j = 1; j <= MOVE_MAX_WORDS; j++)
            {
            {
              regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
              regno_save_mode[i][j] = HARD_REGNO_CALLER_SAVE_MODE (i, j,
                                                                   VOIDmode);
                                                                   VOIDmode);
              if (regno_save_mode[i][j] == VOIDmode && j == 1)
              if (regno_save_mode[i][j] == VOIDmode && j == 1)
                {
                {
                  SET_HARD_REG_BIT (call_fixed_reg_set, i);
                  SET_HARD_REG_BIT (call_fixed_reg_set, i);
                }
                }
            }
            }
        }
        }
      else
      else
        regno_save_mode[i][1] = VOIDmode;
        regno_save_mode[i][1] = VOIDmode;
    }
    }
 
 
  /* The following code tries to approximate the conditions under which
  /* The following code tries to approximate the conditions under which
     we can easily save and restore a register without scratch registers or
     we can easily save and restore a register without scratch registers or
     other complexities.  It will usually work, except under conditions where
     other complexities.  It will usually work, except under conditions where
     the validity of an insn operand is dependent on the address offset.
     the validity of an insn operand is dependent on the address offset.
     No such cases are currently known.
     No such cases are currently known.
 
 
     We first find a typical offset from some BASE_REG_CLASS register.
     We first find a typical offset from some BASE_REG_CLASS register.
     This address is chosen by finding the first register in the class
     This address is chosen by finding the first register in the class
     and by finding the smallest power of two that is a valid offset from
     and by finding the smallest power of two that is a valid offset from
     that register in every mode we will use to save registers.  */
     that register in every mode we will use to save registers.  */
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (TEST_HARD_REG_BIT
    if (TEST_HARD_REG_BIT
        (reg_class_contents
        (reg_class_contents
         [(int) base_reg_class (regno_save_mode[i][1], PLUS, CONST_INT)], i))
         [(int) base_reg_class (regno_save_mode[i][1], PLUS, CONST_INT)], i))
      break;
      break;
 
 
  gcc_assert (i < FIRST_PSEUDO_REGISTER);
  gcc_assert (i < FIRST_PSEUDO_REGISTER);
 
 
  addr_reg = gen_rtx_REG (Pmode, i);
  addr_reg = gen_rtx_REG (Pmode, i);
 
 
  for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
  for (offset = 1 << (HOST_BITS_PER_INT / 2); offset; offset >>= 1)
    {
    {
      address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));
      address = gen_rtx_PLUS (Pmode, addr_reg, GEN_INT (offset));
 
 
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
        if (regno_save_mode[i][1] != VOIDmode
        if (regno_save_mode[i][1] != VOIDmode
          && ! strict_memory_address_p (regno_save_mode[i][1], address))
          && ! strict_memory_address_p (regno_save_mode[i][1], address))
          break;
          break;
 
 
      if (i == FIRST_PSEUDO_REGISTER)
      if (i == FIRST_PSEUDO_REGISTER)
        break;
        break;
    }
    }
 
 
  /* If we didn't find a valid address, we must use register indirect.  */
  /* If we didn't find a valid address, we must use register indirect.  */
  if (offset == 0)
  if (offset == 0)
    address = addr_reg;
    address = addr_reg;
 
 
  /* Next we try to form an insn to save and restore the register.  We
  /* Next we try to form an insn to save and restore the register.  We
     see if such an insn is recognized and meets its constraints.
     see if such an insn is recognized and meets its constraints.
 
 
     To avoid lots of unnecessary RTL allocation, we construct all the RTL
     To avoid lots of unnecessary RTL allocation, we construct all the RTL
     once, then modify the memory and register operands in-place.  */
     once, then modify the memory and register operands in-place.  */
 
 
  test_reg = gen_rtx_REG (VOIDmode, 0);
  test_reg = gen_rtx_REG (VOIDmode, 0);
  test_mem = gen_rtx_MEM (VOIDmode, address);
  test_mem = gen_rtx_MEM (VOIDmode, address);
  savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg);
  savepat = gen_rtx_SET (VOIDmode, test_mem, test_reg);
  restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem);
  restpat = gen_rtx_SET (VOIDmode, test_reg, test_mem);
 
 
  saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, savepat, -1, 0);
  saveinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, savepat, -1, 0);
  restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, restpat, -1, 0);
  restinsn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, restpat, -1, 0);
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (j = 1; j <= MOVE_MAX_WORDS; j++)
    for (j = 1; j <= MOVE_MAX_WORDS; j++)
      if (reg_save_code (i,regno_save_mode[i][j]) == -1)
      if (reg_save_code (i,regno_save_mode[i][j]) == -1)
        {
        {
          regno_save_mode[i][j] = VOIDmode;
          regno_save_mode[i][j] = VOIDmode;
          if (j == 1)
          if (j == 1)
            {
            {
              SET_HARD_REG_BIT (call_fixed_reg_set, i);
              SET_HARD_REG_BIT (call_fixed_reg_set, i);
              if (call_used_regs[i])
              if (call_used_regs[i])
                SET_HARD_REG_BIT (no_caller_save_reg_set, i);
                SET_HARD_REG_BIT (no_caller_save_reg_set, i);
            }
            }
        }
        }
}
}
 
 


 
 
/* Initialize save areas by showing that we haven't allocated any yet.  */
/* Initialize save areas by showing that we haven't allocated any yet.  */
 
 
void
void
init_save_areas (void)
init_save_areas (void)
{
{
  int i, j;
  int i, j;
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (j = 1; j <= MOVE_MAX_WORDS; j++)
    for (j = 1; j <= MOVE_MAX_WORDS; j++)
      regno_save_mem[i][j] = 0;
      regno_save_mem[i][j] = 0;
  save_slots_num = 0;
  save_slots_num = 0;
 
 
}
}
 
 
/* The structure represents a hard register which should be saved
/* The structure represents a hard register which should be saved
   through the call.  It is used when the integrated register
   through the call.  It is used when the integrated register
   allocator (IRA) is used and sharing save slots is on.  */
   allocator (IRA) is used and sharing save slots is on.  */
struct saved_hard_reg
struct saved_hard_reg
{
{
  /* Order number starting with 0.  */
  /* Order number starting with 0.  */
  int num;
  int num;
  /* The hard regno.  */
  /* The hard regno.  */
  int hard_regno;
  int hard_regno;
  /* Execution frequency of all calls through which given hard
  /* Execution frequency of all calls through which given hard
     register should be saved.  */
     register should be saved.  */
  int call_freq;
  int call_freq;
  /* Stack slot reserved to save the hard register through calls.  */
  /* Stack slot reserved to save the hard register through calls.  */
  rtx slot;
  rtx slot;
  /* True if it is first hard register in the chain of hard registers
  /* True if it is first hard register in the chain of hard registers
     sharing the same stack slot.  */
     sharing the same stack slot.  */
  int first_p;
  int first_p;
  /* Order number of the next hard register structure with the same
  /* Order number of the next hard register structure with the same
     slot in the chain.  -1 represents end of the chain.  */
     slot in the chain.  -1 represents end of the chain.  */
  int next;
  int next;
};
};
 
 
/* Map: hard register number to the corresponding structure.  */
/* Map: hard register number to the corresponding structure.  */
static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
static struct saved_hard_reg *hard_reg_map[FIRST_PSEUDO_REGISTER];
 
 
/* The number of all structures representing hard registers should be
/* The number of all structures representing hard registers should be
   saved, in order words, the number of used elements in the following
   saved, in order words, the number of used elements in the following
   array.  */
   array.  */
static int saved_regs_num;
static int saved_regs_num;
 
 
/* Pointers to all the structures.  Index is the order number of the
/* Pointers to all the structures.  Index is the order number of the
   corresponding structure.  */
   corresponding structure.  */
static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
static struct saved_hard_reg *all_saved_regs[FIRST_PSEUDO_REGISTER];
 
 
/* First called function for work with saved hard registers.  */
/* First called function for work with saved hard registers.  */
static void
static void
initiate_saved_hard_regs (void)
initiate_saved_hard_regs (void)
{
{
  int i;
  int i;
 
 
  saved_regs_num = 0;
  saved_regs_num = 0;
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    hard_reg_map[i] = NULL;
    hard_reg_map[i] = NULL;
}
}
 
 
/* Allocate and return new saved hard register with given REGNO and
/* Allocate and return new saved hard register with given REGNO and
   CALL_FREQ.  */
   CALL_FREQ.  */
static struct saved_hard_reg *
static struct saved_hard_reg *
new_saved_hard_reg (int regno, int call_freq)
new_saved_hard_reg (int regno, int call_freq)
{
{
  struct saved_hard_reg *saved_reg;
  struct saved_hard_reg *saved_reg;
 
 
  saved_reg
  saved_reg
    = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
    = (struct saved_hard_reg *) xmalloc (sizeof (struct saved_hard_reg));
  hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
  hard_reg_map[regno] = all_saved_regs[saved_regs_num] = saved_reg;
  saved_reg->num = saved_regs_num++;
  saved_reg->num = saved_regs_num++;
  saved_reg->hard_regno = regno;
  saved_reg->hard_regno = regno;
  saved_reg->call_freq = call_freq;
  saved_reg->call_freq = call_freq;
  saved_reg->first_p = FALSE;
  saved_reg->first_p = FALSE;
  saved_reg->next = -1;
  saved_reg->next = -1;
  return saved_reg;
  return saved_reg;
}
}
 
 
/* Free memory allocated for the saved hard registers.  */
/* Free memory allocated for the saved hard registers.  */
static void
static void
finish_saved_hard_regs (void)
finish_saved_hard_regs (void)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < saved_regs_num; i++)
  for (i = 0; i < saved_regs_num; i++)
    free (all_saved_regs[i]);
    free (all_saved_regs[i]);
}
}
 
 
/* The function is used to sort the saved hard register structures
/* The function is used to sort the saved hard register structures
   according their frequency.  */
   according their frequency.  */
static int
static int
saved_hard_reg_compare_func (const void *v1p, const void *v2p)
saved_hard_reg_compare_func (const void *v1p, const void *v2p)
{
{
  const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
  const struct saved_hard_reg *p1 = *(struct saved_hard_reg * const *) v1p;
  const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
  const struct saved_hard_reg *p2 = *(struct saved_hard_reg * const *) v2p;
 
 
  if (flag_omit_frame_pointer)
  if (flag_omit_frame_pointer)
    {
    {
      if (p1->call_freq - p2->call_freq != 0)
      if (p1->call_freq - p2->call_freq != 0)
        return p1->call_freq - p2->call_freq;
        return p1->call_freq - p2->call_freq;
    }
    }
  else if (p2->call_freq - p1->call_freq != 0)
  else if (p2->call_freq - p1->call_freq != 0)
    return p2->call_freq - p1->call_freq;
    return p2->call_freq - p1->call_freq;
 
 
  return p1->num - p2->num;
  return p1->num - p2->num;
}
}
 
 
/* Allocate save areas for any hard registers that might need saving.
/* Allocate save areas for any hard registers that might need saving.
   We take a conservative approach here and look for call-clobbered hard
   We take a conservative approach here and look for call-clobbered hard
   registers that are assigned to pseudos that cross calls.  This may
   registers that are assigned to pseudos that cross calls.  This may
   overestimate slightly (especially if some of these registers are later
   overestimate slightly (especially if some of these registers are later
   used as spill registers), but it should not be significant.
   used as spill registers), but it should not be significant.
 
 
   For IRA we use priority coloring to decrease stack slots needed for
   For IRA we use priority coloring to decrease stack slots needed for
   saving hard registers through calls.  We build conflicts for them
   saving hard registers through calls.  We build conflicts for them
   to do coloring.
   to do coloring.
 
 
   Future work:
   Future work:
 
 
     In the fallback case we should iterate backwards across all possible
     In the fallback case we should iterate backwards across all possible
     modes for the save, choosing the largest available one instead of
     modes for the save, choosing the largest available one instead of
     falling back to the smallest mode immediately.  (eg TF -> DF -> SF).
     falling back to the smallest mode immediately.  (eg TF -> DF -> SF).
 
 
     We do not try to use "move multiple" instructions that exist
     We do not try to use "move multiple" instructions that exist
     on some machines (such as the 68k moveml).  It could be a win to try
     on some machines (such as the 68k moveml).  It could be a win to try
     and use them when possible.  The hard part is doing it in a way that is
     and use them when possible.  The hard part is doing it in a way that is
     machine independent since they might be saving non-consecutive
     machine independent since they might be saving non-consecutive
     registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
     registers. (imagine caller-saving d0,d1,a0,a1 on the 68k) */
 
 
void
void
setup_save_areas (void)
setup_save_areas (void)
{
{
  int i, j, k;
  int i, j, k;
  unsigned int r;
  unsigned int r;
  HARD_REG_SET hard_regs_used;
  HARD_REG_SET hard_regs_used;
 
 
  /* Allocate space in the save area for the largest multi-register
  /* Allocate space in the save area for the largest multi-register
     pseudos first, then work backwards to single register
     pseudos first, then work backwards to single register
     pseudos.  */
     pseudos.  */
 
 
  /* Find and record all call-used hard-registers in this function.  */
  /* Find and record all call-used hard-registers in this function.  */
  CLEAR_HARD_REG_SET (hard_regs_used);
  CLEAR_HARD_REG_SET (hard_regs_used);
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
  for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
    if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0)
    if (reg_renumber[i] >= 0 && REG_N_CALLS_CROSSED (i) > 0)
      {
      {
        unsigned int regno = reg_renumber[i];
        unsigned int regno = reg_renumber[i];
        unsigned int endregno
        unsigned int endregno
          = end_hard_regno (GET_MODE (regno_reg_rtx[i]), regno);
          = end_hard_regno (GET_MODE (regno_reg_rtx[i]), regno);
        for (r = regno; r < endregno; r++)
        for (r = regno; r < endregno; r++)
          if (call_used_regs[r])
          if (call_used_regs[r])
            SET_HARD_REG_BIT (hard_regs_used, r);
            SET_HARD_REG_BIT (hard_regs_used, r);
      }
      }
 
 
  if (optimize && flag_ira_share_save_slots)
  if (optimize && flag_ira_share_save_slots)
    {
    {
      rtx insn, slot;
      rtx insn, slot;
      struct insn_chain *chain, *next;
      struct insn_chain *chain, *next;
      char *saved_reg_conflicts;
      char *saved_reg_conflicts;
      unsigned int regno;
      unsigned int regno;
      int next_k, freq;
      int next_k, freq;
      struct saved_hard_reg *saved_reg, *saved_reg2, *saved_reg3;
      struct saved_hard_reg *saved_reg, *saved_reg2, *saved_reg3;
      int call_saved_regs_num;
      int call_saved_regs_num;
      struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
      struct saved_hard_reg *call_saved_regs[FIRST_PSEUDO_REGISTER];
      HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
      HARD_REG_SET hard_regs_to_save, used_regs, this_insn_sets;
      reg_set_iterator rsi;
      reg_set_iterator rsi;
      int best_slot_num;
      int best_slot_num;
      int prev_save_slots_num;
      int prev_save_slots_num;
      rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
      rtx prev_save_slots[FIRST_PSEUDO_REGISTER];
 
 
      initiate_saved_hard_regs ();
      initiate_saved_hard_regs ();
      /* Create hard reg saved regs.  */
      /* Create hard reg saved regs.  */
      for (chain = reload_insn_chain; chain != 0; chain = next)
      for (chain = reload_insn_chain; chain != 0; chain = next)
        {
        {
          insn = chain->insn;
          insn = chain->insn;
          next = chain->next;
          next = chain->next;
          if (!CALL_P (insn)
          if (!CALL_P (insn)
              || find_reg_note (insn, REG_NORETURN, NULL))
              || find_reg_note (insn, REG_NORETURN, NULL))
            continue;
            continue;
          freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
          freq = REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn));
          REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
          REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
                                   &chain->live_throughout);
                                   &chain->live_throughout);
          COPY_HARD_REG_SET (used_regs, call_used_reg_set);
          COPY_HARD_REG_SET (used_regs, call_used_reg_set);
 
 
          /* Record all registers set in this call insn.  These don't
          /* Record all registers set in this call insn.  These don't
             need to be saved.  N.B. the call insn might set a subreg
             need to be saved.  N.B. the call insn might set a subreg
             of a multi-hard-reg pseudo; then the pseudo is considered
             of a multi-hard-reg pseudo; then the pseudo is considered
             live during the call, but the subreg that is set
             live during the call, but the subreg that is set
             isn't.  */
             isn't.  */
          CLEAR_HARD_REG_SET (this_insn_sets);
          CLEAR_HARD_REG_SET (this_insn_sets);
          note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
          note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
          /* Sibcalls are considered to set the return value.  */
          /* Sibcalls are considered to set the return value.  */
          if (SIBLING_CALL_P (insn) && crtl->return_rtx)
          if (SIBLING_CALL_P (insn) && crtl->return_rtx)
            mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
            mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
 
 
          AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
          AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
          AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
          AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
          AND_HARD_REG_SET (hard_regs_to_save, used_regs);
          AND_HARD_REG_SET (hard_regs_to_save, used_regs);
          for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
          for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
            if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
            if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
              {
              {
                if (hard_reg_map[regno] != NULL)
                if (hard_reg_map[regno] != NULL)
                  hard_reg_map[regno]->call_freq += freq;
                  hard_reg_map[regno]->call_freq += freq;
                else
                else
                  saved_reg = new_saved_hard_reg (regno, freq);
                  saved_reg = new_saved_hard_reg (regno, freq);
              }
              }
          /* Look through all live pseudos, mark their hard registers.  */
          /* Look through all live pseudos, mark their hard registers.  */
          EXECUTE_IF_SET_IN_REG_SET
          EXECUTE_IF_SET_IN_REG_SET
            (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
            (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
            {
            {
              int r = reg_renumber[regno];
              int r = reg_renumber[regno];
              int bound;
              int bound;
 
 
              if (r < 0)
              if (r < 0)
                continue;
                continue;
 
 
              bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
              bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
              for (; r < bound; r++)
              for (; r < bound; r++)
                if (TEST_HARD_REG_BIT (used_regs, r))
                if (TEST_HARD_REG_BIT (used_regs, r))
                  {
                  {
                    if (hard_reg_map[r] != NULL)
                    if (hard_reg_map[r] != NULL)
                      hard_reg_map[r]->call_freq += freq;
                      hard_reg_map[r]->call_freq += freq;
                    else
                    else
                      saved_reg = new_saved_hard_reg (r, freq);
                      saved_reg = new_saved_hard_reg (r, freq);
                    SET_HARD_REG_BIT (hard_regs_to_save, r);
                    SET_HARD_REG_BIT (hard_regs_to_save, r);
                  }
                  }
            }
            }
        }
        }
      /* Find saved hard register conflicts.  */
      /* Find saved hard register conflicts.  */
      saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
      saved_reg_conflicts = (char *) xmalloc (saved_regs_num * saved_regs_num);
      memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
      memset (saved_reg_conflicts, 0, saved_regs_num * saved_regs_num);
      for (chain = reload_insn_chain; chain != 0; chain = next)
      for (chain = reload_insn_chain; chain != 0; chain = next)
        {
        {
          call_saved_regs_num = 0;
          call_saved_regs_num = 0;
          insn = chain->insn;
          insn = chain->insn;
          next = chain->next;
          next = chain->next;
          if (!CALL_P (insn)
          if (!CALL_P (insn)
              || find_reg_note (insn, REG_NORETURN, NULL))
              || find_reg_note (insn, REG_NORETURN, NULL))
            continue;
            continue;
          REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
          REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
                                   &chain->live_throughout);
                                   &chain->live_throughout);
          COPY_HARD_REG_SET (used_regs, call_used_reg_set);
          COPY_HARD_REG_SET (used_regs, call_used_reg_set);
 
 
          /* Record all registers set in this call insn.  These don't
          /* Record all registers set in this call insn.  These don't
             need to be saved.  N.B. the call insn might set a subreg
             need to be saved.  N.B. the call insn might set a subreg
             of a multi-hard-reg pseudo; then the pseudo is considered
             of a multi-hard-reg pseudo; then the pseudo is considered
             live during the call, but the subreg that is set
             live during the call, but the subreg that is set
             isn't.  */
             isn't.  */
          CLEAR_HARD_REG_SET (this_insn_sets);
          CLEAR_HARD_REG_SET (this_insn_sets);
          note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
          note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
          /* Sibcalls are considered to set the return value,
          /* Sibcalls are considered to set the return value,
             compare df-scan.c:df_get_call_refs.  */
             compare df-scan.c:df_get_call_refs.  */
          if (SIBLING_CALL_P (insn) && crtl->return_rtx)
          if (SIBLING_CALL_P (insn) && crtl->return_rtx)
            mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
            mark_set_regs (crtl->return_rtx, NULL_RTX, &this_insn_sets);
 
 
          AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
          AND_COMPL_HARD_REG_SET (used_regs, call_fixed_reg_set);
          AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
          AND_COMPL_HARD_REG_SET (used_regs, this_insn_sets);
          AND_HARD_REG_SET (hard_regs_to_save, used_regs);
          AND_HARD_REG_SET (hard_regs_to_save, used_regs);
          for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
          for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
            if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
            if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
              {
              {
                gcc_assert (hard_reg_map[regno] != NULL);
                gcc_assert (hard_reg_map[regno] != NULL);
                call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
                call_saved_regs[call_saved_regs_num++] = hard_reg_map[regno];
              }
              }
          /* Look through all live pseudos, mark their hard registers.  */
          /* Look through all live pseudos, mark their hard registers.  */
          EXECUTE_IF_SET_IN_REG_SET
          EXECUTE_IF_SET_IN_REG_SET
            (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
            (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
            {
            {
              int r = reg_renumber[regno];
              int r = reg_renumber[regno];
              int bound;
              int bound;
 
 
              if (r < 0)
              if (r < 0)
                continue;
                continue;
 
 
              bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
              bound = r + hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
              for (; r < bound; r++)
              for (; r < bound; r++)
                if (TEST_HARD_REG_BIT (used_regs, r))
                if (TEST_HARD_REG_BIT (used_regs, r))
                  call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
                  call_saved_regs[call_saved_regs_num++] = hard_reg_map[r];
            }
            }
          for (i = 0; i < call_saved_regs_num; i++)
          for (i = 0; i < call_saved_regs_num; i++)
            {
            {
              saved_reg = call_saved_regs[i];
              saved_reg = call_saved_regs[i];
              for (j = 0; j < call_saved_regs_num; j++)
              for (j = 0; j < call_saved_regs_num; j++)
                if (i != j)
                if (i != j)
                  {
                  {
                    saved_reg2 = call_saved_regs[j];
                    saved_reg2 = call_saved_regs[j];
                    saved_reg_conflicts[saved_reg->num * saved_regs_num
                    saved_reg_conflicts[saved_reg->num * saved_regs_num
                                        + saved_reg2->num]
                                        + saved_reg2->num]
                      = saved_reg_conflicts[saved_reg2->num * saved_regs_num
                      = saved_reg_conflicts[saved_reg2->num * saved_regs_num
                                            + saved_reg->num]
                                            + saved_reg->num]
                      = TRUE;
                      = TRUE;
                  }
                  }
            }
            }
        }
        }
      /* Sort saved hard regs.  */
      /* Sort saved hard regs.  */
      qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
      qsort (all_saved_regs, saved_regs_num, sizeof (struct saved_hard_reg *),
             saved_hard_reg_compare_func);
             saved_hard_reg_compare_func);
      /* Initiate slots available from the previous reload
      /* Initiate slots available from the previous reload
         iteration.  */
         iteration.  */
      prev_save_slots_num = save_slots_num;
      prev_save_slots_num = save_slots_num;
      memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
      memcpy (prev_save_slots, save_slots, save_slots_num * sizeof (rtx));
      save_slots_num = 0;
      save_slots_num = 0;
      /* Allocate stack slots for the saved hard registers.  */
      /* Allocate stack slots for the saved hard registers.  */
      for (i = 0; i < saved_regs_num; i++)
      for (i = 0; i < saved_regs_num; i++)
        {
        {
          saved_reg = all_saved_regs[i];
          saved_reg = all_saved_regs[i];
          regno = saved_reg->hard_regno;
          regno = saved_reg->hard_regno;
          for (j = 0; j < i; j++)
          for (j = 0; j < i; j++)
            {
            {
              saved_reg2 = all_saved_regs[j];
              saved_reg2 = all_saved_regs[j];
              if (! saved_reg2->first_p)
              if (! saved_reg2->first_p)
                continue;
                continue;
              slot = saved_reg2->slot;
              slot = saved_reg2->slot;
              for (k = j; k >= 0; k = next_k)
              for (k = j; k >= 0; k = next_k)
                {
                {
                  saved_reg3 = all_saved_regs[k];
                  saved_reg3 = all_saved_regs[k];
                  next_k = saved_reg3->next;
                  next_k = saved_reg3->next;
                  if (saved_reg_conflicts[saved_reg->num * saved_regs_num
                  if (saved_reg_conflicts[saved_reg->num * saved_regs_num
                                          + saved_reg3->num])
                                          + saved_reg3->num])
                    break;
                    break;
                }
                }
              if (k < 0
              if (k < 0
                  && (GET_MODE_SIZE (regno_save_mode[regno][1])
                  && (GET_MODE_SIZE (regno_save_mode[regno][1])
                      <= GET_MODE_SIZE (regno_save_mode
                      <= GET_MODE_SIZE (regno_save_mode
                                        [saved_reg2->hard_regno][1])))
                                        [saved_reg2->hard_regno][1])))
                {
                {
                  saved_reg->slot
                  saved_reg->slot
                    = adjust_address_nv
                    = adjust_address_nv
                      (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
                      (slot, regno_save_mode[saved_reg->hard_regno][1], 0);
                  regno_save_mem[regno][1] = saved_reg->slot;
                  regno_save_mem[regno][1] = saved_reg->slot;
                  saved_reg->next = saved_reg2->next;
                  saved_reg->next = saved_reg2->next;
                  saved_reg2->next = i;
                  saved_reg2->next = i;
                  if (dump_file != NULL)
                  if (dump_file != NULL)
                    fprintf (dump_file, "%d uses slot of %d\n",
                    fprintf (dump_file, "%d uses slot of %d\n",
                             regno, saved_reg2->hard_regno);
                             regno, saved_reg2->hard_regno);
                  break;
                  break;
                }
                }
            }
            }
          if (j == i)
          if (j == i)
            {
            {
              saved_reg->first_p = TRUE;
              saved_reg->first_p = TRUE;
              for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
              for (best_slot_num = -1, j = 0; j < prev_save_slots_num; j++)
                {
                {
                  slot = prev_save_slots[j];
                  slot = prev_save_slots[j];
                  if (slot == NULL_RTX)
                  if (slot == NULL_RTX)
                    continue;
                    continue;
                  if (GET_MODE_SIZE (regno_save_mode[regno][1])
                  if (GET_MODE_SIZE (regno_save_mode[regno][1])
                      <= GET_MODE_SIZE (GET_MODE (slot))
                      <= GET_MODE_SIZE (GET_MODE (slot))
                      && best_slot_num < 0)
                      && best_slot_num < 0)
                    best_slot_num = j;
                    best_slot_num = j;
                  if (GET_MODE (slot) == regno_save_mode[regno][1])
                  if (GET_MODE (slot) == regno_save_mode[regno][1])
                    break;
                    break;
                }
                }
              if (best_slot_num >= 0)
              if (best_slot_num >= 0)
                {
                {
                  saved_reg->slot = prev_save_slots[best_slot_num];
                  saved_reg->slot = prev_save_slots[best_slot_num];
                  saved_reg->slot
                  saved_reg->slot
                    = adjust_address_nv
                    = adjust_address_nv
                      (saved_reg->slot,
                      (saved_reg->slot,
                       regno_save_mode[saved_reg->hard_regno][1], 0);
                       regno_save_mode[saved_reg->hard_regno][1], 0);
                  if (dump_file != NULL)
                  if (dump_file != NULL)
                    fprintf (dump_file,
                    fprintf (dump_file,
                             "%d uses a slot from prev iteration\n", regno);
                             "%d uses a slot from prev iteration\n", regno);
                  prev_save_slots[best_slot_num] = NULL_RTX;
                  prev_save_slots[best_slot_num] = NULL_RTX;
                  if (best_slot_num + 1 == prev_save_slots_num)
                  if (best_slot_num + 1 == prev_save_slots_num)
                    prev_save_slots_num--;
                    prev_save_slots_num--;
                }
                }
              else
              else
                {
                {
                  saved_reg->slot
                  saved_reg->slot
                    = assign_stack_local_1
                    = assign_stack_local_1
                      (regno_save_mode[regno][1],
                      (regno_save_mode[regno][1],
                       GET_MODE_SIZE (regno_save_mode[regno][1]), 0, true);
                       GET_MODE_SIZE (regno_save_mode[regno][1]), 0, true);
                  if (dump_file != NULL)
                  if (dump_file != NULL)
                    fprintf (dump_file, "%d uses a new slot\n", regno);
                    fprintf (dump_file, "%d uses a new slot\n", regno);
                }
                }
              regno_save_mem[regno][1] = saved_reg->slot;
              regno_save_mem[regno][1] = saved_reg->slot;
              save_slots[save_slots_num++] = saved_reg->slot;
              save_slots[save_slots_num++] = saved_reg->slot;
            }
            }
        }
        }
      free (saved_reg_conflicts);
      free (saved_reg_conflicts);
      finish_saved_hard_regs ();
      finish_saved_hard_regs ();
    }
    }
  else
  else
    {
    {
      /* Now run through all the call-used hard-registers and allocate
      /* Now run through all the call-used hard-registers and allocate
         space for them in the caller-save area.  Try to allocate space
         space for them in the caller-save area.  Try to allocate space
         in a manner which allows multi-register saves/restores to be done.  */
         in a manner which allows multi-register saves/restores to be done.  */
 
 
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
        for (j = MOVE_MAX_WORDS; j > 0; j--)
        for (j = MOVE_MAX_WORDS; j > 0; j--)
          {
          {
            int do_save = 1;
            int do_save = 1;
 
 
            /* If no mode exists for this size, try another.  Also break out
            /* If no mode exists for this size, try another.  Also break out
               if we have already saved this hard register.  */
               if we have already saved this hard register.  */
            if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
            if (regno_save_mode[i][j] == VOIDmode || regno_save_mem[i][1] != 0)
              continue;
              continue;
 
 
            /* See if any register in this group has been saved.  */
            /* See if any register in this group has been saved.  */
            for (k = 0; k < j; k++)
            for (k = 0; k < j; k++)
              if (regno_save_mem[i + k][1])
              if (regno_save_mem[i + k][1])
                {
                {
                  do_save = 0;
                  do_save = 0;
                  break;
                  break;
                }
                }
            if (! do_save)
            if (! do_save)
              continue;
              continue;
 
 
            for (k = 0; k < j; k++)
            for (k = 0; k < j; k++)
              if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
              if (! TEST_HARD_REG_BIT (hard_regs_used, i + k))
                {
                {
                  do_save = 0;
                  do_save = 0;
                  break;
                  break;
                }
                }
            if (! do_save)
            if (! do_save)
              continue;
              continue;
 
 
            /* We have found an acceptable mode to store in.  Since
            /* We have found an acceptable mode to store in.  Since
               hard register is always saved in the widest mode
               hard register is always saved in the widest mode
               available, the mode may be wider than necessary, it is
               available, the mode may be wider than necessary, it is
               OK to reduce the alignment of spill space.  We will
               OK to reduce the alignment of spill space.  We will
               verify that it is equal to or greater than required
               verify that it is equal to or greater than required
               when we restore and save the hard register in
               when we restore and save the hard register in
               insert_restore and insert_save.  */
               insert_restore and insert_save.  */
            regno_save_mem[i][j]
            regno_save_mem[i][j]
              = assign_stack_local_1 (regno_save_mode[i][j],
              = assign_stack_local_1 (regno_save_mode[i][j],
                                      GET_MODE_SIZE (regno_save_mode[i][j]),
                                      GET_MODE_SIZE (regno_save_mode[i][j]),
                                      0, true);
                                      0, true);
 
 
            /* Setup single word save area just in case...  */
            /* Setup single word save area just in case...  */
            for (k = 0; k < j; k++)
            for (k = 0; k < j; k++)
              /* This should not depend on WORDS_BIG_ENDIAN.
              /* This should not depend on WORDS_BIG_ENDIAN.
                 The order of words in regs is the same as in memory.  */
                 The order of words in regs is the same as in memory.  */
              regno_save_mem[i + k][1]
              regno_save_mem[i + k][1]
                = adjust_address_nv (regno_save_mem[i][j],
                = adjust_address_nv (regno_save_mem[i][j],
                                     regno_save_mode[i + k][1],
                                     regno_save_mode[i + k][1],
                                     k * UNITS_PER_WORD);
                                     k * UNITS_PER_WORD);
          }
          }
    }
    }
 
 
  /* Now loop again and set the alias set of any save areas we made to
  /* Now loop again and set the alias set of any save areas we made to
     the alias set used to represent frame objects.  */
     the alias set used to represent frame objects.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (j = MOVE_MAX_WORDS; j > 0; j--)
    for (j = MOVE_MAX_WORDS; j > 0; j--)
      if (regno_save_mem[i][j] != 0)
      if (regno_save_mem[i][j] != 0)
        set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
        set_mem_alias_set (regno_save_mem[i][j], get_frame_alias_set ());
}
}
 
 


 
 
/* Find the places where hard regs are live across calls and save them.  */
/* Find the places where hard regs are live across calls and save them.  */
 
 
void
void
save_call_clobbered_regs (void)
save_call_clobbered_regs (void)
{
{
  struct insn_chain *chain, *next, *last = NULL;
  struct insn_chain *chain, *next, *last = NULL;
  enum machine_mode save_mode [FIRST_PSEUDO_REGISTER];
  enum machine_mode save_mode [FIRST_PSEUDO_REGISTER];
 
 
  /* Computed in mark_set_regs, holds all registers set by the current
  /* Computed in mark_set_regs, holds all registers set by the current
     instruction.  */
     instruction.  */
  HARD_REG_SET this_insn_sets;
  HARD_REG_SET this_insn_sets;
 
 
  CLEAR_HARD_REG_SET (hard_regs_saved);
  CLEAR_HARD_REG_SET (hard_regs_saved);
  n_regs_saved = 0;
  n_regs_saved = 0;
 
 
  for (chain = reload_insn_chain; chain != 0; chain = next)
  for (chain = reload_insn_chain; chain != 0; chain = next)
    {
    {
      rtx insn = chain->insn;
      rtx insn = chain->insn;
      enum rtx_code code = GET_CODE (insn);
      enum rtx_code code = GET_CODE (insn);
 
 
      next = chain->next;
      next = chain->next;
 
 
      gcc_assert (!chain->is_caller_save_insn);
      gcc_assert (!chain->is_caller_save_insn);
 
 
      if (NONDEBUG_INSN_P (insn))
      if (NONDEBUG_INSN_P (insn))
        {
        {
          /* If some registers have been saved, see if INSN references
          /* If some registers have been saved, see if INSN references
             any of them.  We must restore them before the insn if so.  */
             any of them.  We must restore them before the insn if so.  */
 
 
          if (n_regs_saved)
          if (n_regs_saved)
            {
            {
              int regno;
              int regno;
 
 
              if (code == JUMP_INSN)
              if (code == JUMP_INSN)
                /* Restore all registers if this is a JUMP_INSN.  */
                /* Restore all registers if this is a JUMP_INSN.  */
                COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
                COPY_HARD_REG_SET (referenced_regs, hard_regs_saved);
              else
              else
                {
                {
                  CLEAR_HARD_REG_SET (referenced_regs);
                  CLEAR_HARD_REG_SET (referenced_regs);
                  mark_referenced_regs (&PATTERN (insn),
                  mark_referenced_regs (&PATTERN (insn),
                                        mark_reg_as_referenced, NULL);
                                        mark_reg_as_referenced, NULL);
                  AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
                  AND_HARD_REG_SET (referenced_regs, hard_regs_saved);
                }
                }
 
 
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
                if (TEST_HARD_REG_BIT (referenced_regs, regno))
                if (TEST_HARD_REG_BIT (referenced_regs, regno))
                  regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS, save_mode);
                  regno += insert_restore (chain, 1, regno, MOVE_MAX_WORDS, save_mode);
            }
            }
 
 
          if (code == CALL_INSN
          if (code == CALL_INSN
              && ! SIBLING_CALL_P (insn)
              && ! SIBLING_CALL_P (insn)
              && ! find_reg_note (insn, REG_NORETURN, NULL))
              && ! find_reg_note (insn, REG_NORETURN, NULL))
            {
            {
              unsigned regno;
              unsigned regno;
              HARD_REG_SET hard_regs_to_save;
              HARD_REG_SET hard_regs_to_save;
              reg_set_iterator rsi;
              reg_set_iterator rsi;
 
 
              /* Use the register life information in CHAIN to compute which
              /* Use the register life information in CHAIN to compute which
                 regs are live during the call.  */
                 regs are live during the call.  */
              REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
              REG_SET_TO_HARD_REG_SET (hard_regs_to_save,
                                       &chain->live_throughout);
                                       &chain->live_throughout);
              /* Save hard registers always in the widest mode available.  */
              /* Save hard registers always in the widest mode available.  */
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
                if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
                if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
                  save_mode [regno] = regno_save_mode [regno][1];
                  save_mode [regno] = regno_save_mode [regno][1];
                else
                else
                  save_mode [regno] = VOIDmode;
                  save_mode [regno] = VOIDmode;
 
 
              /* Look through all live pseudos, mark their hard registers
              /* Look through all live pseudos, mark their hard registers
                 and choose proper mode for saving.  */
                 and choose proper mode for saving.  */
              EXECUTE_IF_SET_IN_REG_SET
              EXECUTE_IF_SET_IN_REG_SET
                (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
                (&chain->live_throughout, FIRST_PSEUDO_REGISTER, regno, rsi)
                {
                {
                  int r = reg_renumber[regno];
                  int r = reg_renumber[regno];
                  int nregs;
                  int nregs;
                  enum machine_mode mode;
                  enum machine_mode mode;
 
 
                  if (r < 0)
                  if (r < 0)
                    continue;
                    continue;
                  nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
                  nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
                  mode = HARD_REGNO_CALLER_SAVE_MODE
                  mode = HARD_REGNO_CALLER_SAVE_MODE
                    (r, nregs, PSEUDO_REGNO_MODE (regno));
                    (r, nregs, PSEUDO_REGNO_MODE (regno));
                  if (GET_MODE_BITSIZE (mode)
                  if (GET_MODE_BITSIZE (mode)
                      > GET_MODE_BITSIZE (save_mode[r]))
                      > GET_MODE_BITSIZE (save_mode[r]))
                    save_mode[r] = mode;
                    save_mode[r] = mode;
                  while (nregs-- > 0)
                  while (nregs-- > 0)
                    SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
                    SET_HARD_REG_BIT (hard_regs_to_save, r + nregs);
                }
                }
 
 
              /* Record all registers set in this call insn.  These don't need
              /* Record all registers set in this call insn.  These don't need
                 to be saved.  N.B. the call insn might set a subreg of a
                 to be saved.  N.B. the call insn might set a subreg of a
                 multi-hard-reg pseudo; then the pseudo is considered live
                 multi-hard-reg pseudo; then the pseudo is considered live
                 during the call, but the subreg that is set isn't.  */
                 during the call, but the subreg that is set isn't.  */
              CLEAR_HARD_REG_SET (this_insn_sets);
              CLEAR_HARD_REG_SET (this_insn_sets);
              note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
              note_stores (PATTERN (insn), mark_set_regs, &this_insn_sets);
 
 
              /* Compute which hard regs must be saved before this call.  */
              /* Compute which hard regs must be saved before this call.  */
              AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
              AND_COMPL_HARD_REG_SET (hard_regs_to_save, call_fixed_reg_set);
              AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
              AND_COMPL_HARD_REG_SET (hard_regs_to_save, this_insn_sets);
              AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
              AND_COMPL_HARD_REG_SET (hard_regs_to_save, hard_regs_saved);
              AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
              AND_HARD_REG_SET (hard_regs_to_save, call_used_reg_set);
 
 
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
                if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
                if (TEST_HARD_REG_BIT (hard_regs_to_save, regno))
                  regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
                  regno += insert_save (chain, 1, regno, &hard_regs_to_save, save_mode);
 
 
              /* Must recompute n_regs_saved.  */
              /* Must recompute n_regs_saved.  */
              n_regs_saved = 0;
              n_regs_saved = 0;
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
              for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
                if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
                if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
                  n_regs_saved++;
                  n_regs_saved++;
            }
            }
          last = chain;
          last = chain;
        }
        }
      else if (DEBUG_INSN_P (insn) && n_regs_saved)
      else if (DEBUG_INSN_P (insn) && n_regs_saved)
        mark_referenced_regs (&PATTERN (insn),
        mark_referenced_regs (&PATTERN (insn),
                              replace_reg_with_saved_mem,
                              replace_reg_with_saved_mem,
                              save_mode);
                              save_mode);
 
 
      if (chain->next == 0 || chain->next->block != chain->block)
      if (chain->next == 0 || chain->next->block != chain->block)
        {
        {
          int regno;
          int regno;
          /* At the end of the basic block, we must restore any registers that
          /* At the end of the basic block, we must restore any registers that
             remain saved.  If the last insn in the block is a JUMP_INSN, put
             remain saved.  If the last insn in the block is a JUMP_INSN, put
             the restore before the insn, otherwise, put it after the insn.  */
             the restore before the insn, otherwise, put it after the insn.  */
 
 
          if (DEBUG_INSN_P (insn) && last && last->block == chain->block)
          if (DEBUG_INSN_P (insn) && last && last->block == chain->block)
            {
            {
              rtx ins, prev;
              rtx ins, prev;
              basic_block bb = BLOCK_FOR_INSN (insn);
              basic_block bb = BLOCK_FOR_INSN (insn);
 
 
              /* When adding hard reg restores after a DEBUG_INSN, move
              /* When adding hard reg restores after a DEBUG_INSN, move
                 all notes between last real insn and this DEBUG_INSN after
                 all notes between last real insn and this DEBUG_INSN after
                 the DEBUG_INSN, otherwise we could get code
                 the DEBUG_INSN, otherwise we could get code
                 -g/-g0 differences.  */
                 -g/-g0 differences.  */
              for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
              for (ins = PREV_INSN (insn); ins != last->insn; ins = prev)
                {
                {
                  prev = PREV_INSN (ins);
                  prev = PREV_INSN (ins);
                  if (NOTE_P (ins))
                  if (NOTE_P (ins))
                    {
                    {
                      NEXT_INSN (prev) = NEXT_INSN (ins);
                      NEXT_INSN (prev) = NEXT_INSN (ins);
                      PREV_INSN (NEXT_INSN (ins)) = prev;
                      PREV_INSN (NEXT_INSN (ins)) = prev;
                      PREV_INSN (ins) = insn;
                      PREV_INSN (ins) = insn;
                      NEXT_INSN (ins) = NEXT_INSN (insn);
                      NEXT_INSN (ins) = NEXT_INSN (insn);
                      NEXT_INSN (insn) = ins;
                      NEXT_INSN (insn) = ins;
                      if (NEXT_INSN (ins))
                      if (NEXT_INSN (ins))
                        PREV_INSN (NEXT_INSN (ins)) = ins;
                        PREV_INSN (NEXT_INSN (ins)) = ins;
                      if (BB_END (bb) == insn)
                      if (BB_END (bb) == insn)
                        BB_END (bb) = ins;
                        BB_END (bb) = ins;
                    }
                    }
                  else
                  else
                    gcc_assert (DEBUG_INSN_P (ins));
                    gcc_assert (DEBUG_INSN_P (ins));
                }
                }
            }
            }
          last = NULL;
          last = NULL;
 
 
          if (n_regs_saved)
          if (n_regs_saved)
            for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
            for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
              if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
              if (TEST_HARD_REG_BIT (hard_regs_saved, regno))
                regno += insert_restore (chain, JUMP_P (insn),
                regno += insert_restore (chain, JUMP_P (insn),
                                         regno, MOVE_MAX_WORDS, save_mode);
                                         regno, MOVE_MAX_WORDS, save_mode);
        }
        }
    }
    }
}
}
 
 
/* Here from note_stores, or directly from save_call_clobbered_regs, when
/* Here from note_stores, or directly from save_call_clobbered_regs, when
   an insn stores a value in a register.
   an insn stores a value in a register.
   Set the proper bit or bits in this_insn_sets.  All pseudos that have
   Set the proper bit or bits in this_insn_sets.  All pseudos that have
   been assigned hard regs have had their register number changed already,
   been assigned hard regs have had their register number changed already,
   so we can ignore pseudos.  */
   so we can ignore pseudos.  */
static void
static void
mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
mark_set_regs (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *data)
{
{
  int regno, endregno, i;
  int regno, endregno, i;
  HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
  HARD_REG_SET *this_insn_sets = (HARD_REG_SET *) data;
 
 
  if (GET_CODE (reg) == SUBREG)
  if (GET_CODE (reg) == SUBREG)
    {
    {
      rtx inner = SUBREG_REG (reg);
      rtx inner = SUBREG_REG (reg);
      if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
      if (!REG_P (inner) || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
        return;
        return;
      regno = subreg_regno (reg);
      regno = subreg_regno (reg);
      endregno = regno + subreg_nregs (reg);
      endregno = regno + subreg_nregs (reg);
    }
    }
  else if (REG_P (reg)
  else if (REG_P (reg)
           && REGNO (reg) < FIRST_PSEUDO_REGISTER)
           && REGNO (reg) < FIRST_PSEUDO_REGISTER)
    {
    {
      regno = REGNO (reg);
      regno = REGNO (reg);
      endregno = END_HARD_REGNO (reg);
      endregno = END_HARD_REGNO (reg);
    }
    }
  else
  else
    return;
    return;
 
 
  for (i = regno; i < endregno; i++)
  for (i = regno; i < endregno; i++)
    SET_HARD_REG_BIT (*this_insn_sets, i);
    SET_HARD_REG_BIT (*this_insn_sets, i);
}
}
 
 
/* Here from note_stores when an insn stores a value in a register.
/* Here from note_stores when an insn stores a value in a register.
   Set the proper bit or bits in the passed regset.  All pseudos that have
   Set the proper bit or bits in the passed regset.  All pseudos that have
   been assigned hard regs have had their register number changed already,
   been assigned hard regs have had their register number changed already,
   so we can ignore pseudos.  */
   so we can ignore pseudos.  */
static void
static void
add_stored_regs (rtx reg, const_rtx setter, void *data)
add_stored_regs (rtx reg, const_rtx setter, void *data)
{
{
  int regno, endregno, i;
  int regno, endregno, i;
  enum machine_mode mode = GET_MODE (reg);
  enum machine_mode mode = GET_MODE (reg);
  int offset = 0;
  int offset = 0;
 
 
  if (GET_CODE (setter) == CLOBBER)
  if (GET_CODE (setter) == CLOBBER)
    return;
    return;
 
 
  if (GET_CODE (reg) == SUBREG
  if (GET_CODE (reg) == SUBREG
      && REG_P (SUBREG_REG (reg))
      && REG_P (SUBREG_REG (reg))
      && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
      && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
    {
    {
      offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
      offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
                                    GET_MODE (SUBREG_REG (reg)),
                                    GET_MODE (SUBREG_REG (reg)),
                                    SUBREG_BYTE (reg),
                                    SUBREG_BYTE (reg),
                                    GET_MODE (reg));
                                    GET_MODE (reg));
      regno = REGNO (SUBREG_REG (reg)) + offset;
      regno = REGNO (SUBREG_REG (reg)) + offset;
      endregno = regno + subreg_nregs (reg);
      endregno = regno + subreg_nregs (reg);
    }
    }
  else
  else
    {
    {
      if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
      if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
        return;
        return;
 
 
      regno = REGNO (reg) + offset;
      regno = REGNO (reg) + offset;
      endregno = end_hard_regno (mode, regno);
      endregno = end_hard_regno (mode, regno);
    }
    }
 
 
  for (i = regno; i < endregno; i++)
  for (i = regno; i < endregno; i++)
    SET_REGNO_REG_SET ((regset) data, i);
    SET_REGNO_REG_SET ((regset) data, i);
}
}
 
 
/* Walk X and record all referenced registers in REFERENCED_REGS.  */
/* Walk X and record all referenced registers in REFERENCED_REGS.  */
static void
static void
mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
mark_referenced_regs (rtx *loc, refmarker_fn *mark, void *arg)
{
{
  enum rtx_code code = GET_CODE (*loc);
  enum rtx_code code = GET_CODE (*loc);
  const char *fmt;
  const char *fmt;
  int i, j;
  int i, j;
 
 
  if (code == SET)
  if (code == SET)
    mark_referenced_regs (&SET_SRC (*loc), mark, arg);
    mark_referenced_regs (&SET_SRC (*loc), mark, arg);
  if (code == SET || code == CLOBBER)
  if (code == SET || code == CLOBBER)
    {
    {
      loc = &SET_DEST (*loc);
      loc = &SET_DEST (*loc);
      code = GET_CODE (*loc);
      code = GET_CODE (*loc);
      if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
      if ((code == REG && REGNO (*loc) < FIRST_PSEUDO_REGISTER)
          || code == PC || code == CC0
          || code == PC || code == CC0
          || (code == SUBREG && REG_P (SUBREG_REG (*loc))
          || (code == SUBREG && REG_P (SUBREG_REG (*loc))
              && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
              && REGNO (SUBREG_REG (*loc)) < FIRST_PSEUDO_REGISTER
              /* If we're setting only part of a multi-word register,
              /* If we're setting only part of a multi-word register,
                 we shall mark it as referenced, because the words
                 we shall mark it as referenced, because the words
                 that are not being set should be restored.  */
                 that are not being set should be restored.  */
              && ((GET_MODE_SIZE (GET_MODE (*loc))
              && ((GET_MODE_SIZE (GET_MODE (*loc))
                   >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc))))
                   >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc))))
                  || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc)))
                  || (GET_MODE_SIZE (GET_MODE (SUBREG_REG (*loc)))
                      <= UNITS_PER_WORD))))
                      <= UNITS_PER_WORD))))
        return;
        return;
    }
    }
  if (code == MEM || code == SUBREG)
  if (code == MEM || code == SUBREG)
    {
    {
      loc = &XEXP (*loc, 0);
      loc = &XEXP (*loc, 0);
      code = GET_CODE (*loc);
      code = GET_CODE (*loc);
    }
    }
 
 
  if (code == REG)
  if (code == REG)
    {
    {
      int regno = REGNO (*loc);
      int regno = REGNO (*loc);
      int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
      int hardregno = (regno < FIRST_PSEUDO_REGISTER ? regno
                       : reg_renumber[regno]);
                       : reg_renumber[regno]);
 
 
      if (hardregno >= 0)
      if (hardregno >= 0)
        mark (loc, GET_MODE (*loc), hardregno, arg);
        mark (loc, GET_MODE (*loc), hardregno, arg);
      else if (arg)
      else if (arg)
        /* ??? Will we ever end up with an equiv expression in a debug
        /* ??? Will we ever end up with an equiv expression in a debug
           insn, that would have required restoring a reg, or will
           insn, that would have required restoring a reg, or will
           reload take care of it for us?  */
           reload take care of it for us?  */
        return;
        return;
      /* If this is a pseudo that did not get a hard register, scan its
      /* If this is a pseudo that did not get a hard register, scan its
         memory location, since it might involve the use of another
         memory location, since it might involve the use of another
         register, which might be saved.  */
         register, which might be saved.  */
      else if (reg_equiv_mem[regno] != 0)
      else if (reg_equiv_mem[regno] != 0)
        mark_referenced_regs (&XEXP (reg_equiv_mem[regno], 0), mark, arg);
        mark_referenced_regs (&XEXP (reg_equiv_mem[regno], 0), mark, arg);
      else if (reg_equiv_address[regno] != 0)
      else if (reg_equiv_address[regno] != 0)
        mark_referenced_regs (&reg_equiv_address[regno], mark, arg);
        mark_referenced_regs (&reg_equiv_address[regno], mark, arg);
      return;
      return;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        mark_referenced_regs (&XEXP (*loc, i), mark, arg);
        mark_referenced_regs (&XEXP (*loc, i), mark, arg);
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
        for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
          mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
          mark_referenced_regs (&XVECEXP (*loc, i, j), mark, arg);
    }
    }
}
}
 
 
/* Parameter function for mark_referenced_regs() that adds registers
/* Parameter function for mark_referenced_regs() that adds registers
   present in the insn and in equivalent mems and addresses to
   present in the insn and in equivalent mems and addresses to
   referenced_regs.  */
   referenced_regs.  */
 
 
static void
static void
mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
mark_reg_as_referenced (rtx *loc ATTRIBUTE_UNUSED,
                        enum machine_mode mode,
                        enum machine_mode mode,
                        int hardregno,
                        int hardregno,
                        void *arg ATTRIBUTE_UNUSED)
                        void *arg ATTRIBUTE_UNUSED)
{
{
  add_to_hard_reg_set (&referenced_regs, mode, hardregno);
  add_to_hard_reg_set (&referenced_regs, mode, hardregno);
}
}
 
 
/* Parameter function for mark_referenced_regs() that replaces
/* Parameter function for mark_referenced_regs() that replaces
   registers referenced in a debug_insn that would have been restored,
   registers referenced in a debug_insn that would have been restored,
   should it be a non-debug_insn, with their save locations.  */
   should it be a non-debug_insn, with their save locations.  */
 
 
static void
static void
replace_reg_with_saved_mem (rtx *loc,
replace_reg_with_saved_mem (rtx *loc,
                            enum machine_mode mode,
                            enum machine_mode mode,
                            int regno,
                            int regno,
                            void *arg)
                            void *arg)
{
{
  unsigned int i, nregs = hard_regno_nregs [regno][mode];
  unsigned int i, nregs = hard_regno_nregs [regno][mode];
  rtx mem;
  rtx mem;
  enum machine_mode *save_mode = (enum machine_mode *)arg;
  enum machine_mode *save_mode = (enum machine_mode *)arg;
 
 
  for (i = 0; i < nregs; i++)
  for (i = 0; i < nregs; i++)
    if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
    if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
      break;
      break;
 
 
  /* If none of the registers in the range would need restoring, we're
  /* If none of the registers in the range would need restoring, we're
     all set.  */
     all set.  */
  if (i == nregs)
  if (i == nregs)
    return;
    return;
 
 
  while (++i < nregs)
  while (++i < nregs)
    if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
    if (!TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
      break;
      break;
 
 
  if (i == nregs
  if (i == nregs
      && regno_save_mem[regno][nregs])
      && regno_save_mem[regno][nregs])
    {
    {
      mem = copy_rtx (regno_save_mem[regno][nregs]);
      mem = copy_rtx (regno_save_mem[regno][nregs]);
 
 
      if (nregs == (unsigned int) hard_regno_nregs[regno][save_mode[regno]])
      if (nregs == (unsigned int) hard_regno_nregs[regno][save_mode[regno]])
        mem = adjust_address_nv (mem, save_mode[regno], 0);
        mem = adjust_address_nv (mem, save_mode[regno], 0);
 
 
      if (GET_MODE (mem) != mode)
      if (GET_MODE (mem) != mode)
        {
        {
          /* This is gen_lowpart_if_possible(), but without validating
          /* This is gen_lowpart_if_possible(), but without validating
             the newly-formed address.  */
             the newly-formed address.  */
          int offset = 0;
          int offset = 0;
 
 
          if (WORDS_BIG_ENDIAN)
          if (WORDS_BIG_ENDIAN)
            offset = (MAX (GET_MODE_SIZE (GET_MODE (mem)), UNITS_PER_WORD)
            offset = (MAX (GET_MODE_SIZE (GET_MODE (mem)), UNITS_PER_WORD)
                      - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
                      - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
          if (BYTES_BIG_ENDIAN)
          if (BYTES_BIG_ENDIAN)
            /* Adjust the address so that the address-after-the-data is
            /* Adjust the address so that the address-after-the-data is
               unchanged.  */
               unchanged.  */
            offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
            offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
                       - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (mem))));
                       - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (mem))));
 
 
          mem = adjust_address_nv (mem, mode, offset);
          mem = adjust_address_nv (mem, mode, offset);
        }
        }
    }
    }
  else
  else
    {
    {
      mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
      mem = gen_rtx_CONCATN (mode, rtvec_alloc (nregs));
      for (i = 0; i < nregs; i++)
      for (i = 0; i < nregs; i++)
        if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
        if (TEST_HARD_REG_BIT (hard_regs_saved, regno + i))
          {
          {
            gcc_assert (regno_save_mem[regno + i][1]);
            gcc_assert (regno_save_mem[regno + i][1]);
            XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
            XVECEXP (mem, 0, i) = copy_rtx (regno_save_mem[regno + i][1]);
          }
          }
        else
        else
          {
          {
            gcc_assert (save_mode[regno] != VOIDmode);
            gcc_assert (save_mode[regno] != VOIDmode);
            XVECEXP (mem, 0, i) = gen_rtx_REG (save_mode [regno],
            XVECEXP (mem, 0, i) = gen_rtx_REG (save_mode [regno],
                                               regno + i);
                                               regno + i);
          }
          }
    }
    }
 
 
  gcc_assert (GET_MODE (mem) == mode);
  gcc_assert (GET_MODE (mem) == mode);
  *loc = mem;
  *loc = mem;
}
}
 
 


/* Insert a sequence of insns to restore.  Place these insns in front of
/* Insert a sequence of insns to restore.  Place these insns in front of
   CHAIN if BEFORE_P is nonzero, behind the insn otherwise.  MAXRESTORE is
   CHAIN if BEFORE_P is nonzero, behind the insn otherwise.  MAXRESTORE is
   the maximum number of registers which should be restored during this call.
   the maximum number of registers which should be restored during this call.
   It should never be less than 1 since we only work with entire registers.
   It should never be less than 1 since we only work with entire registers.
 
 
   Note that we have verified in init_caller_save that we can do this
   Note that we have verified in init_caller_save that we can do this
   with a simple SET, so use it.  Set INSN_CODE to what we save there
   with a simple SET, so use it.  Set INSN_CODE to what we save there
   since the address might not be valid so the insn might not be recognized.
   since the address might not be valid so the insn might not be recognized.
   These insns will be reloaded and have register elimination done by
   These insns will be reloaded and have register elimination done by
   find_reload, so we need not worry about that here.
   find_reload, so we need not worry about that here.
 
 
   Return the extra number of registers saved.  */
   Return the extra number of registers saved.  */
 
 
static int
static int
insert_restore (struct insn_chain *chain, int before_p, int regno,
insert_restore (struct insn_chain *chain, int before_p, int regno,
                int maxrestore, enum machine_mode *save_mode)
                int maxrestore, enum machine_mode *save_mode)
{
{
  int i, k;
  int i, k;
  rtx pat = NULL_RTX;
  rtx pat = NULL_RTX;
  int code;
  int code;
  unsigned int numregs = 0;
  unsigned int numregs = 0;
  struct insn_chain *new_chain;
  struct insn_chain *new_chain;
  rtx mem;
  rtx mem;
 
 
  /* A common failure mode if register status is not correct in the
  /* A common failure mode if register status is not correct in the
     RTL is for this routine to be called with a REGNO we didn't
     RTL is for this routine to be called with a REGNO we didn't
     expect to save.  That will cause us to write an insn with a (nil)
     expect to save.  That will cause us to write an insn with a (nil)
     SET_DEST or SET_SRC.  Instead of doing so and causing a crash
     SET_DEST or SET_SRC.  Instead of doing so and causing a crash
     later, check for this common case here instead.  This will remove
     later, check for this common case here instead.  This will remove
     one step in debugging such problems.  */
     one step in debugging such problems.  */
  gcc_assert (regno_save_mem[regno][1]);
  gcc_assert (regno_save_mem[regno][1]);
 
 
  /* Get the pattern to emit and update our status.
  /* Get the pattern to emit and update our status.
 
 
     See if we can restore `maxrestore' registers at once.  Work
     See if we can restore `maxrestore' registers at once.  Work
     backwards to the single register case.  */
     backwards to the single register case.  */
  for (i = maxrestore; i > 0; i--)
  for (i = maxrestore; i > 0; i--)
    {
    {
      int j;
      int j;
      int ok = 1;
      int ok = 1;
 
 
      if (regno_save_mem[regno][i] == 0)
      if (regno_save_mem[regno][i] == 0)
        continue;
        continue;
 
 
      for (j = 0; j < i; j++)
      for (j = 0; j < i; j++)
        if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
        if (! TEST_HARD_REG_BIT (hard_regs_saved, regno + j))
          {
          {
            ok = 0;
            ok = 0;
            break;
            break;
          }
          }
      /* Must do this one restore at a time.  */
      /* Must do this one restore at a time.  */
      if (! ok)
      if (! ok)
        continue;
        continue;
 
 
      numregs = i;
      numregs = i;
      break;
      break;
    }
    }
 
 
  mem = regno_save_mem [regno][numregs];
  mem = regno_save_mem [regno][numregs];
  if (save_mode [regno] != VOIDmode
  if (save_mode [regno] != VOIDmode
      && save_mode [regno] != GET_MODE (mem)
      && save_mode [regno] != GET_MODE (mem)
      && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
      && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
      /* Check that insn to restore REGNO in save_mode[regno] is
      /* Check that insn to restore REGNO in save_mode[regno] is
         correct.  */
         correct.  */
      && reg_save_code (regno, save_mode[regno]) >= 0)
      && reg_save_code (regno, save_mode[regno]) >= 0)
    mem = adjust_address (mem, save_mode[regno], 0);
    mem = adjust_address (mem, save_mode[regno], 0);
  else
  else
    mem = copy_rtx (mem);
    mem = copy_rtx (mem);
 
 
  /* Verify that the alignment of spill space is equal to or greater
  /* Verify that the alignment of spill space is equal to or greater
     than required.  */
     than required.  */
  gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
  gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
                   GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
                   GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
 
 
  pat = gen_rtx_SET (VOIDmode,
  pat = gen_rtx_SET (VOIDmode,
                     gen_rtx_REG (GET_MODE (mem),
                     gen_rtx_REG (GET_MODE (mem),
                                  regno), mem);
                                  regno), mem);
  code = reg_restore_code (regno, GET_MODE (mem));
  code = reg_restore_code (regno, GET_MODE (mem));
  new_chain = insert_one_insn (chain, before_p, code, pat);
  new_chain = insert_one_insn (chain, before_p, code, pat);
 
 
  /* Clear status for all registers we restored.  */
  /* Clear status for all registers we restored.  */
  for (k = 0; k < i; k++)
  for (k = 0; k < i; k++)
    {
    {
      CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
      CLEAR_HARD_REG_BIT (hard_regs_saved, regno + k);
      SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
      SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
      n_regs_saved--;
      n_regs_saved--;
    }
    }
 
 
  /* Tell our callers how many extra registers we saved/restored.  */
  /* Tell our callers how many extra registers we saved/restored.  */
  return numregs - 1;
  return numregs - 1;
}
}
 
 
/* Like insert_restore above, but save registers instead.  */
/* Like insert_restore above, but save registers instead.  */
 
 
static int
static int
insert_save (struct insn_chain *chain, int before_p, int regno,
insert_save (struct insn_chain *chain, int before_p, int regno,
             HARD_REG_SET (*to_save), enum machine_mode *save_mode)
             HARD_REG_SET (*to_save), enum machine_mode *save_mode)
{
{
  int i;
  int i;
  unsigned int k;
  unsigned int k;
  rtx pat = NULL_RTX;
  rtx pat = NULL_RTX;
  int code;
  int code;
  unsigned int numregs = 0;
  unsigned int numregs = 0;
  struct insn_chain *new_chain;
  struct insn_chain *new_chain;
  rtx mem;
  rtx mem;
 
 
  /* A common failure mode if register status is not correct in the
  /* A common failure mode if register status is not correct in the
     RTL is for this routine to be called with a REGNO we didn't
     RTL is for this routine to be called with a REGNO we didn't
     expect to save.  That will cause us to write an insn with a (nil)
     expect to save.  That will cause us to write an insn with a (nil)
     SET_DEST or SET_SRC.  Instead of doing so and causing a crash
     SET_DEST or SET_SRC.  Instead of doing so and causing a crash
     later, check for this common case here.  This will remove one
     later, check for this common case here.  This will remove one
     step in debugging such problems.  */
     step in debugging such problems.  */
  gcc_assert (regno_save_mem[regno][1]);
  gcc_assert (regno_save_mem[regno][1]);
 
 
  /* Get the pattern to emit and update our status.
  /* Get the pattern to emit and update our status.
 
 
     See if we can save several registers with a single instruction.
     See if we can save several registers with a single instruction.
     Work backwards to the single register case.  */
     Work backwards to the single register case.  */
  for (i = MOVE_MAX_WORDS; i > 0; i--)
  for (i = MOVE_MAX_WORDS; i > 0; i--)
    {
    {
      int j;
      int j;
      int ok = 1;
      int ok = 1;
      if (regno_save_mem[regno][i] == 0)
      if (regno_save_mem[regno][i] == 0)
        continue;
        continue;
 
 
      for (j = 0; j < i; j++)
      for (j = 0; j < i; j++)
        if (! TEST_HARD_REG_BIT (*to_save, regno + j))
        if (! TEST_HARD_REG_BIT (*to_save, regno + j))
          {
          {
            ok = 0;
            ok = 0;
            break;
            break;
          }
          }
      /* Must do this one save at a time.  */
      /* Must do this one save at a time.  */
      if (! ok)
      if (! ok)
        continue;
        continue;
 
 
      numregs = i;
      numregs = i;
      break;
      break;
    }
    }
 
 
  mem = regno_save_mem [regno][numregs];
  mem = regno_save_mem [regno][numregs];
  if (save_mode [regno] != VOIDmode
  if (save_mode [regno] != VOIDmode
      && save_mode [regno] != GET_MODE (mem)
      && save_mode [regno] != GET_MODE (mem)
      && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
      && numregs == (unsigned int) hard_regno_nregs[regno][save_mode [regno]]
      /* Check that insn to save REGNO in save_mode[regno] is
      /* Check that insn to save REGNO in save_mode[regno] is
         correct.  */
         correct.  */
      && reg_save_code (regno, save_mode[regno]) >= 0)
      && reg_save_code (regno, save_mode[regno]) >= 0)
    mem = adjust_address (mem, save_mode[regno], 0);
    mem = adjust_address (mem, save_mode[regno], 0);
  else
  else
    mem = copy_rtx (mem);
    mem = copy_rtx (mem);
 
 
  /* Verify that the alignment of spill space is equal to or greater
  /* Verify that the alignment of spill space is equal to or greater
     than required.  */
     than required.  */
  gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
  gcc_assert (MIN (MAX_SUPPORTED_STACK_ALIGNMENT,
                   GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
                   GET_MODE_ALIGNMENT (GET_MODE (mem))) <= MEM_ALIGN (mem));
 
 
  pat = gen_rtx_SET (VOIDmode, mem,
  pat = gen_rtx_SET (VOIDmode, mem,
                     gen_rtx_REG (GET_MODE (mem),
                     gen_rtx_REG (GET_MODE (mem),
                                  regno));
                                  regno));
  code = reg_save_code (regno, GET_MODE (mem));
  code = reg_save_code (regno, GET_MODE (mem));
  new_chain = insert_one_insn (chain, before_p, code, pat);
  new_chain = insert_one_insn (chain, before_p, code, pat);
 
 
  /* Set hard_regs_saved and dead_or_set for all the registers we saved.  */
  /* Set hard_regs_saved and dead_or_set for all the registers we saved.  */
  for (k = 0; k < numregs; k++)
  for (k = 0; k < numregs; k++)
    {
    {
      SET_HARD_REG_BIT (hard_regs_saved, regno + k);
      SET_HARD_REG_BIT (hard_regs_saved, regno + k);
      SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
      SET_REGNO_REG_SET (&new_chain->dead_or_set, regno + k);
      n_regs_saved++;
      n_regs_saved++;
    }
    }
 
 
  /* Tell our callers how many extra registers we saved/restored.  */
  /* Tell our callers how many extra registers we saved/restored.  */
  return numregs - 1;
  return numregs - 1;
}
}
 
 
/* A for_each_rtx callback used by add_used_regs.  Add the hard-register
/* A for_each_rtx callback used by add_used_regs.  Add the hard-register
   equivalent of each REG to regset DATA.  */
   equivalent of each REG to regset DATA.  */
 
 
static int
static int
add_used_regs_1 (rtx *loc, void *data)
add_used_regs_1 (rtx *loc, void *data)
{
{
  int regno, i;
  int regno, i;
  regset live;
  regset live;
  rtx x;
  rtx x;
 
 
  x = *loc;
  x = *loc;
  live = (regset) data;
  live = (regset) data;
  if (REG_P (x))
  if (REG_P (x))
    {
    {
      regno = REGNO (x);
      regno = REGNO (x);
      if (!HARD_REGISTER_NUM_P (regno))
      if (!HARD_REGISTER_NUM_P (regno))
        regno = reg_renumber[regno];
        regno = reg_renumber[regno];
      if (regno >= 0)
      if (regno >= 0)
        for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
        for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
          SET_REGNO_REG_SET (live, regno + i);
          SET_REGNO_REG_SET (live, regno + i);
    }
    }
  return 0;
  return 0;
}
}
 
 
/* A note_uses callback used by insert_one_insn.  Add the hard-register
/* A note_uses callback used by insert_one_insn.  Add the hard-register
   equivalent of each REG to regset DATA.  */
   equivalent of each REG to regset DATA.  */
 
 
static void
static void
add_used_regs (rtx *loc, void *data)
add_used_regs (rtx *loc, void *data)
{
{
  for_each_rtx (loc, add_used_regs_1, data);
  for_each_rtx (loc, add_used_regs_1, data);
}
}
 
 
/* Emit a new caller-save insn and set the code.  */
/* Emit a new caller-save insn and set the code.  */
static struct insn_chain *
static struct insn_chain *
insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
insert_one_insn (struct insn_chain *chain, int before_p, int code, rtx pat)
{
{
  rtx insn = chain->insn;
  rtx insn = chain->insn;
  struct insn_chain *new_chain;
  struct insn_chain *new_chain;
 
 
#ifdef HAVE_cc0
#ifdef HAVE_cc0
  /* If INSN references CC0, put our insns in front of the insn that sets
  /* If INSN references CC0, put our insns in front of the insn that sets
     CC0.  This is always safe, since the only way we could be passed an
     CC0.  This is always safe, since the only way we could be passed an
     insn that references CC0 is for a restore, and doing a restore earlier
     insn that references CC0 is for a restore, and doing a restore earlier
     isn't a problem.  We do, however, assume here that CALL_INSNs don't
     isn't a problem.  We do, however, assume here that CALL_INSNs don't
     reference CC0.  Guard against non-INSN's like CODE_LABEL.  */
     reference CC0.  Guard against non-INSN's like CODE_LABEL.  */
 
 
  if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
  if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
      && before_p
      && before_p
      && reg_referenced_p (cc0_rtx, PATTERN (insn)))
      && reg_referenced_p (cc0_rtx, PATTERN (insn)))
    chain = chain->prev, insn = chain->insn;
    chain = chain->prev, insn = chain->insn;
#endif
#endif
 
 
  new_chain = new_insn_chain ();
  new_chain = new_insn_chain ();
  if (before_p)
  if (before_p)
    {
    {
      rtx link;
      rtx link;
 
 
      new_chain->prev = chain->prev;
      new_chain->prev = chain->prev;
      if (new_chain->prev != 0)
      if (new_chain->prev != 0)
        new_chain->prev->next = new_chain;
        new_chain->prev->next = new_chain;
      else
      else
        reload_insn_chain = new_chain;
        reload_insn_chain = new_chain;
 
 
      chain->prev = new_chain;
      chain->prev = new_chain;
      new_chain->next = chain;
      new_chain->next = chain;
      new_chain->insn = emit_insn_before (pat, insn);
      new_chain->insn = emit_insn_before (pat, insn);
      /* ??? It would be nice if we could exclude the already / still saved
      /* ??? It would be nice if we could exclude the already / still saved
         registers from the live sets.  */
         registers from the live sets.  */
      COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
      COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
      note_uses (&PATTERN (chain->insn), add_used_regs,
      note_uses (&PATTERN (chain->insn), add_used_regs,
                 &new_chain->live_throughout);
                 &new_chain->live_throughout);
      /* If CHAIN->INSN is a call, then the registers which contain
      /* If CHAIN->INSN is a call, then the registers which contain
         the arguments to the function are live in the new insn.  */
         the arguments to the function are live in the new insn.  */
      if (CALL_P (chain->insn))
      if (CALL_P (chain->insn))
        for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
        for (link = CALL_INSN_FUNCTION_USAGE (chain->insn);
             link != NULL_RTX;
             link != NULL_RTX;
             link = XEXP (link, 1))
             link = XEXP (link, 1))
          note_uses (&XEXP (link, 0), add_used_regs,
          note_uses (&XEXP (link, 0), add_used_regs,
                     &new_chain->live_throughout);
                     &new_chain->live_throughout);
 
 
      CLEAR_REG_SET (&new_chain->dead_or_set);
      CLEAR_REG_SET (&new_chain->dead_or_set);
      if (chain->insn == BB_HEAD (BASIC_BLOCK (chain->block)))
      if (chain->insn == BB_HEAD (BASIC_BLOCK (chain->block)))
        BB_HEAD (BASIC_BLOCK (chain->block)) = new_chain->insn;
        BB_HEAD (BASIC_BLOCK (chain->block)) = new_chain->insn;
    }
    }
  else
  else
    {
    {
      new_chain->next = chain->next;
      new_chain->next = chain->next;
      if (new_chain->next != 0)
      if (new_chain->next != 0)
        new_chain->next->prev = new_chain;
        new_chain->next->prev = new_chain;
      chain->next = new_chain;
      chain->next = new_chain;
      new_chain->prev = chain;
      new_chain->prev = chain;
      new_chain->insn = emit_insn_after (pat, insn);
      new_chain->insn = emit_insn_after (pat, insn);
      /* ??? It would be nice if we could exclude the already / still saved
      /* ??? It would be nice if we could exclude the already / still saved
         registers from the live sets, and observe REG_UNUSED notes.  */
         registers from the live sets, and observe REG_UNUSED notes.  */
      COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
      COPY_REG_SET (&new_chain->live_throughout, &chain->live_throughout);
      /* Registers that are set in CHAIN->INSN live in the new insn.
      /* Registers that are set in CHAIN->INSN live in the new insn.
         (Unless there is a REG_UNUSED note for them, but we don't
         (Unless there is a REG_UNUSED note for them, but we don't
          look for them here.) */
          look for them here.) */
      note_stores (PATTERN (chain->insn), add_stored_regs,
      note_stores (PATTERN (chain->insn), add_stored_regs,
                   &new_chain->live_throughout);
                   &new_chain->live_throughout);
      CLEAR_REG_SET (&new_chain->dead_or_set);
      CLEAR_REG_SET (&new_chain->dead_or_set);
      if (chain->insn == BB_END (BASIC_BLOCK (chain->block)))
      if (chain->insn == BB_END (BASIC_BLOCK (chain->block)))
        BB_END (BASIC_BLOCK (chain->block)) = new_chain->insn;
        BB_END (BASIC_BLOCK (chain->block)) = new_chain->insn;
    }
    }
  new_chain->block = chain->block;
  new_chain->block = chain->block;
  new_chain->is_caller_save_insn = 1;
  new_chain->is_caller_save_insn = 1;
 
 
  INSN_CODE (new_chain->insn) = code;
  INSN_CODE (new_chain->insn) = code;
  return new_chain;
  return new_chain;
}
}
#include "gt-caller-save.h"
#include "gt-caller-save.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.