OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc1/] [gcc/] [reginfo.c] - Diff between revs 280 and 338

Only display areas with differences | Details | Blame | View Log

Rev 280 Rev 338
/* Compute different info about registers.
/* Compute different info about registers.
   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996
   1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
   1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
   2009  Free Software Foundation, Inc.
   2009  Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
 
 
/* This file contains regscan pass of the compiler and passes for
/* This file contains regscan pass of the compiler and passes for
   dealing with info about modes of pseudo-registers inside
   dealing with info about modes of pseudo-registers inside
   subregisters.  It also defines some tables of information about the
   subregisters.  It also defines some tables of information about the
   hardware registers, function init_reg_sets to initialize the
   hardware registers, function init_reg_sets to initialize the
   tables, and other auxiliary functions to deal with info about
   tables, and other auxiliary functions to deal with info about
   registers and their classes.  */
   registers and their classes.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "rtl.h"
#include "rtl.h"
#include "expr.h"
#include "expr.h"
#include "tm_p.h"
#include "tm_p.h"
#include "flags.h"
#include "flags.h"
#include "basic-block.h"
#include "basic-block.h"
#include "regs.h"
#include "regs.h"
#include "addresses.h"
#include "addresses.h"
#include "function.h"
#include "function.h"
#include "insn-config.h"
#include "insn-config.h"
#include "recog.h"
#include "recog.h"
#include "reload.h"
#include "reload.h"
#include "real.h"
#include "real.h"
#include "toplev.h"
#include "toplev.h"
#include "output.h"
#include "output.h"
#include "ggc.h"
#include "ggc.h"
#include "timevar.h"
#include "timevar.h"
#include "hashtab.h"
#include "hashtab.h"
#include "target.h"
#include "target.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "df.h"
#include "df.h"
#include "ira.h"
#include "ira.h"
 
 
/* Maximum register number used in this function, plus one.  */
/* Maximum register number used in this function, plus one.  */
 
 
int max_regno;
int max_regno;
 
 


/* Register tables used by many passes.  */
/* Register tables used by many passes.  */
 
 
/* Indexed by hard register number, contains 1 for registers
/* Indexed by hard register number, contains 1 for registers
   that are fixed use (stack pointer, pc, frame pointer, etc.).
   that are fixed use (stack pointer, pc, frame pointer, etc.).
   These are the registers that cannot be used to allocate
   These are the registers that cannot be used to allocate
   a pseudo reg for general use.  */
   a pseudo reg for general use.  */
char fixed_regs[FIRST_PSEUDO_REGISTER];
char fixed_regs[FIRST_PSEUDO_REGISTER];
 
 
/* Same info as a HARD_REG_SET.  */
/* Same info as a HARD_REG_SET.  */
HARD_REG_SET fixed_reg_set;
HARD_REG_SET fixed_reg_set;
 
 
/* Data for initializing the above.  */
/* Data for initializing the above.  */
static const char initial_fixed_regs[] = FIXED_REGISTERS;
static const char initial_fixed_regs[] = FIXED_REGISTERS;
 
 
/* Indexed by hard register number, contains 1 for registers
/* Indexed by hard register number, contains 1 for registers
   that are fixed use or are clobbered by function calls.
   that are fixed use or are clobbered by function calls.
   These are the registers that cannot be used to allocate
   These are the registers that cannot be used to allocate
   a pseudo reg whose life crosses calls unless we are able
   a pseudo reg whose life crosses calls unless we are able
   to save/restore them across the calls.  */
   to save/restore them across the calls.  */
char call_used_regs[FIRST_PSEUDO_REGISTER];
char call_used_regs[FIRST_PSEUDO_REGISTER];
 
 
/* Same info as a HARD_REG_SET.  */
/* Same info as a HARD_REG_SET.  */
HARD_REG_SET call_used_reg_set;
HARD_REG_SET call_used_reg_set;
 
 
/* Data for initializing the above.  */
/* Data for initializing the above.  */
static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
static const char initial_call_used_regs[] = CALL_USED_REGISTERS;
 
 
/* This is much like call_used_regs, except it doesn't have to
/* This is much like call_used_regs, except it doesn't have to
   be a superset of FIXED_REGISTERS. This vector indicates
   be a superset of FIXED_REGISTERS. This vector indicates
   what is really call clobbered, and is used when defining
   what is really call clobbered, and is used when defining
   regs_invalidated_by_call.  */
   regs_invalidated_by_call.  */
#ifdef CALL_REALLY_USED_REGISTERS
#ifdef CALL_REALLY_USED_REGISTERS
char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
char call_really_used_regs[] = CALL_REALLY_USED_REGISTERS;
#endif
#endif
 
 
#ifdef CALL_REALLY_USED_REGISTERS
#ifdef CALL_REALLY_USED_REGISTERS
#define CALL_REALLY_USED_REGNO_P(X)  call_really_used_regs[X]
#define CALL_REALLY_USED_REGNO_P(X)  call_really_used_regs[X]
#else
#else
#define CALL_REALLY_USED_REGNO_P(X)  call_used_regs[X]
#define CALL_REALLY_USED_REGNO_P(X)  call_used_regs[X]
#endif
#endif
 
 
 
 
/* Contains registers that are fixed use -- i.e. in fixed_reg_set -- or
/* Contains registers that are fixed use -- i.e. in fixed_reg_set -- or
   a function value return register or TARGET_STRUCT_VALUE_RTX or
   a function value return register or TARGET_STRUCT_VALUE_RTX or
   STATIC_CHAIN_REGNUM.  These are the registers that cannot hold quantities
   STATIC_CHAIN_REGNUM.  These are the registers that cannot hold quantities
   across calls even if we are willing to save and restore them.  */
   across calls even if we are willing to save and restore them.  */
 
 
HARD_REG_SET call_fixed_reg_set;
HARD_REG_SET call_fixed_reg_set;
 
 
/* Indexed by hard register number, contains 1 for registers
/* Indexed by hard register number, contains 1 for registers
   that are being used for global register decls.
   that are being used for global register decls.
   These must be exempt from ordinary flow analysis
   These must be exempt from ordinary flow analysis
   and are also considered fixed.  */
   and are also considered fixed.  */
char global_regs[FIRST_PSEUDO_REGISTER];
char global_regs[FIRST_PSEUDO_REGISTER];
 
 
/* Contains 1 for registers that are set or clobbered by calls.  */
/* Contains 1 for registers that are set or clobbered by calls.  */
/* ??? Ideally, this would be just call_used_regs plus global_regs, but
/* ??? Ideally, this would be just call_used_regs plus global_regs, but
   for someone's bright idea to have call_used_regs strictly include
   for someone's bright idea to have call_used_regs strictly include
   fixed_regs.  Which leaves us guessing as to the set of fixed_regs
   fixed_regs.  Which leaves us guessing as to the set of fixed_regs
   that are actually preserved.  We know for sure that those associated
   that are actually preserved.  We know for sure that those associated
   with the local stack frame are safe, but scant others.  */
   with the local stack frame are safe, but scant others.  */
HARD_REG_SET regs_invalidated_by_call;
HARD_REG_SET regs_invalidated_by_call;
 
 
/* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
/* Same information as REGS_INVALIDATED_BY_CALL but in regset form to be used
   in dataflow more conveniently.  */
   in dataflow more conveniently.  */
regset regs_invalidated_by_call_regset;
regset regs_invalidated_by_call_regset;
 
 
/* The bitmap_obstack is used to hold some static variables that
/* The bitmap_obstack is used to hold some static variables that
   should not be reset after each function is compiled.  */
   should not be reset after each function is compiled.  */
static bitmap_obstack persistent_obstack;
static bitmap_obstack persistent_obstack;
 
 
/* Table of register numbers in the order in which to try to use them.  */
/* Table of register numbers in the order in which to try to use them.  */
#ifdef REG_ALLOC_ORDER
#ifdef REG_ALLOC_ORDER
int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
 
 
/* The inverse of reg_alloc_order.  */
/* The inverse of reg_alloc_order.  */
int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
int inv_reg_alloc_order[FIRST_PSEUDO_REGISTER];
#endif
#endif
 
 
/* For each reg class, a HARD_REG_SET saying which registers are in it.  */
/* For each reg class, a HARD_REG_SET saying which registers are in it.  */
HARD_REG_SET reg_class_contents[N_REG_CLASSES];
HARD_REG_SET reg_class_contents[N_REG_CLASSES];
 
 
/* The same information, but as an array of unsigned ints.  We copy from
/* The same information, but as an array of unsigned ints.  We copy from
   these unsigned ints to the table above.  We do this so the tm.h files
   these unsigned ints to the table above.  We do this so the tm.h files
   do not have to be aware of the wordsize for machines with <= 64 regs.
   do not have to be aware of the wordsize for machines with <= 64 regs.
   Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
   Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
#define N_REG_INTS  \
#define N_REG_INTS  \
  ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
  ((FIRST_PSEUDO_REGISTER + (32 - 1)) / 32)
 
 
static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
static const unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
  = REG_CLASS_CONTENTS;
  = REG_CLASS_CONTENTS;
 
 
/* For each reg class, number of regs it contains.  */
/* For each reg class, number of regs it contains.  */
unsigned int reg_class_size[N_REG_CLASSES];
unsigned int reg_class_size[N_REG_CLASSES];
 
 
/* For each reg class, table listing all the classes contained in it.  */
/* For each reg class, table listing all the classes contained in it.  */
enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
 
 
/* For each pair of reg classes,
/* For each pair of reg classes,
   a largest reg class contained in their union.  */
   a largest reg class contained in their union.  */
enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
 
 
/* For each pair of reg classes,
/* For each pair of reg classes,
   the smallest reg class containing their union.  */
   the smallest reg class containing their union.  */
enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
 
 
/* Array containing all of the register names.  */
/* Array containing all of the register names.  */
const char * reg_names[] = REGISTER_NAMES;
const char * reg_names[] = REGISTER_NAMES;
 
 
/* Array containing all of the register class names.  */
/* Array containing all of the register class names.  */
const char * reg_class_names[] = REG_CLASS_NAMES;
const char * reg_class_names[] = REG_CLASS_NAMES;
 
 
/* For each hard register, the widest mode object that it can contain.
/* For each hard register, the widest mode object that it can contain.
   This will be a MODE_INT mode if the register can hold integers.  Otherwise
   This will be a MODE_INT mode if the register can hold integers.  Otherwise
   it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
   it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
   register.  */
   register.  */
enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
 
 
/* 1 if there is a register of given mode.  */
/* 1 if there is a register of given mode.  */
bool have_regs_of_mode [MAX_MACHINE_MODE];
bool have_regs_of_mode [MAX_MACHINE_MODE];
 
 
/* 1 if class does contain register of given mode.  */
/* 1 if class does contain register of given mode.  */
char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
char contains_reg_of_mode [N_REG_CLASSES] [MAX_MACHINE_MODE];
 
 
/* Maximum cost of moving from a register in one class to a register in
/* Maximum cost of moving from a register in one class to a register in
   another class.  Based on REGISTER_MOVE_COST.  */
   another class.  Based on REGISTER_MOVE_COST.  */
move_table *move_cost[MAX_MACHINE_MODE];
move_table *move_cost[MAX_MACHINE_MODE];
 
 
/* Similar, but here we don't have to move if the first index is a subset
/* Similar, but here we don't have to move if the first index is a subset
   of the second so in that case the cost is zero.  */
   of the second so in that case the cost is zero.  */
move_table *may_move_in_cost[MAX_MACHINE_MODE];
move_table *may_move_in_cost[MAX_MACHINE_MODE];
 
 
/* Similar, but here we don't have to move if the first index is a superset
/* Similar, but here we don't have to move if the first index is a superset
   of the second so in that case the cost is zero.  */
   of the second so in that case the cost is zero.  */
move_table *may_move_out_cost[MAX_MACHINE_MODE];
move_table *may_move_out_cost[MAX_MACHINE_MODE];
 
 
/* Keep track of the last mode we initialized move costs for.  */
/* Keep track of the last mode we initialized move costs for.  */
static int last_mode_for_init_move_cost;
static int last_mode_for_init_move_cost;
 
 
/* Sample MEM values for use by memory_move_secondary_cost.  */
/* Sample MEM values for use by memory_move_secondary_cost.  */
static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
static GTY(()) rtx top_of_stack[MAX_MACHINE_MODE];
 
 
/* No more global register variables may be declared; true once
/* No more global register variables may be declared; true once
   reginfo has been initialized.  */
   reginfo has been initialized.  */
static int no_global_reg_vars = 0;
static int no_global_reg_vars = 0;
 
 
/* Specify number of hard registers given machine mode occupy.  */
/* Specify number of hard registers given machine mode occupy.  */
unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
unsigned char hard_regno_nregs[FIRST_PSEUDO_REGISTER][MAX_MACHINE_MODE];
 
 
/* Given a register bitmap, turn on the bits in a HARD_REG_SET that
/* Given a register bitmap, turn on the bits in a HARD_REG_SET that
   correspond to the hard registers, if any, set in that map.  This
   correspond to the hard registers, if any, set in that map.  This
   could be done far more efficiently by having all sorts of special-cases
   could be done far more efficiently by having all sorts of special-cases
   with moving single words, but probably isn't worth the trouble.  */
   with moving single words, but probably isn't worth the trouble.  */
void
void
reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
reg_set_to_hard_reg_set (HARD_REG_SET *to, const_bitmap from)
{
{
  unsigned i;
  unsigned i;
  bitmap_iterator bi;
  bitmap_iterator bi;
 
 
  EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
  EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
    {
    {
      if (i >= FIRST_PSEUDO_REGISTER)
      if (i >= FIRST_PSEUDO_REGISTER)
        return;
        return;
      SET_HARD_REG_BIT (*to, i);
      SET_HARD_REG_BIT (*to, i);
    }
    }
}
}
 
 
/* Function called only once to initialize the above data on reg usage.
/* Function called only once to initialize the above data on reg usage.
   Once this is done, various switches may override.  */
   Once this is done, various switches may override.  */
void
void
init_reg_sets (void)
init_reg_sets (void)
{
{
  int i, j;
  int i, j;
 
 
  /* First copy the register information from the initial int form into
  /* First copy the register information from the initial int form into
     the regsets.  */
     the regsets.  */
 
 
  for (i = 0; i < N_REG_CLASSES; i++)
  for (i = 0; i < N_REG_CLASSES; i++)
    {
    {
      CLEAR_HARD_REG_SET (reg_class_contents[i]);
      CLEAR_HARD_REG_SET (reg_class_contents[i]);
 
 
      /* Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
      /* Note that we hard-code 32 here, not HOST_BITS_PER_INT.  */
      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
        if (int_reg_class_contents[i][j / 32]
        if (int_reg_class_contents[i][j / 32]
            & ((unsigned) 1 << (j % 32)))
            & ((unsigned) 1 << (j % 32)))
          SET_HARD_REG_BIT (reg_class_contents[i], j);
          SET_HARD_REG_BIT (reg_class_contents[i], j);
    }
    }
 
 
  /* Sanity check: make sure the target macros FIXED_REGISTERS and
  /* Sanity check: make sure the target macros FIXED_REGISTERS and
     CALL_USED_REGISTERS had the right number of initializers.  */
     CALL_USED_REGISTERS had the right number of initializers.  */
  gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
  gcc_assert (sizeof fixed_regs == sizeof initial_fixed_regs);
  gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
  gcc_assert (sizeof call_used_regs == sizeof initial_call_used_regs);
 
 
  memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
  memcpy (fixed_regs, initial_fixed_regs, sizeof fixed_regs);
  memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
  memcpy (call_used_regs, initial_call_used_regs, sizeof call_used_regs);
  memset (global_regs, 0, sizeof global_regs);
  memset (global_regs, 0, sizeof global_regs);
}
}
 
 
/* Initialize may_move_cost and friends for mode M.  */
/* Initialize may_move_cost and friends for mode M.  */
void
void
init_move_cost (enum machine_mode m)
init_move_cost (enum machine_mode m)
{
{
  static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
  static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
  bool all_match = true;
  bool all_match = true;
  unsigned int i, j;
  unsigned int i, j;
 
 
  gcc_assert (have_regs_of_mode[m]);
  gcc_assert (have_regs_of_mode[m]);
  for (i = 0; i < N_REG_CLASSES; i++)
  for (i = 0; i < N_REG_CLASSES; i++)
    if (contains_reg_of_mode[i][m])
    if (contains_reg_of_mode[i][m])
      for (j = 0; j < N_REG_CLASSES; j++)
      for (j = 0; j < N_REG_CLASSES; j++)
        {
        {
          int cost;
          int cost;
          if (!contains_reg_of_mode[j][m])
          if (!contains_reg_of_mode[j][m])
            cost = 65535;
            cost = 65535;
          else
          else
            {
            {
              cost = REGISTER_MOVE_COST (m, (enum reg_class) i,
              cost = REGISTER_MOVE_COST (m, (enum reg_class) i,
                                         (enum reg_class) j);
                                         (enum reg_class) j);
              gcc_assert (cost < 65535);
              gcc_assert (cost < 65535);
            }
            }
          all_match &= (last_move_cost[i][j] == cost);
          all_match &= (last_move_cost[i][j] == cost);
          last_move_cost[i][j] = cost;
          last_move_cost[i][j] = cost;
        }
        }
  if (all_match && last_mode_for_init_move_cost != -1)
  if (all_match && last_mode_for_init_move_cost != -1)
    {
    {
      move_cost[m] = move_cost[last_mode_for_init_move_cost];
      move_cost[m] = move_cost[last_mode_for_init_move_cost];
      may_move_in_cost[m] = may_move_in_cost[last_mode_for_init_move_cost];
      may_move_in_cost[m] = may_move_in_cost[last_mode_for_init_move_cost];
      may_move_out_cost[m] = may_move_out_cost[last_mode_for_init_move_cost];
      may_move_out_cost[m] = may_move_out_cost[last_mode_for_init_move_cost];
      return;
      return;
    }
    }
  last_mode_for_init_move_cost = m;
  last_mode_for_init_move_cost = m;
  move_cost[m] = (move_table *)xmalloc (sizeof (move_table)
  move_cost[m] = (move_table *)xmalloc (sizeof (move_table)
                                        * N_REG_CLASSES);
                                        * N_REG_CLASSES);
  may_move_in_cost[m] = (move_table *)xmalloc (sizeof (move_table)
  may_move_in_cost[m] = (move_table *)xmalloc (sizeof (move_table)
                                               * N_REG_CLASSES);
                                               * N_REG_CLASSES);
  may_move_out_cost[m] = (move_table *)xmalloc (sizeof (move_table)
  may_move_out_cost[m] = (move_table *)xmalloc (sizeof (move_table)
                                                * N_REG_CLASSES);
                                                * N_REG_CLASSES);
  for (i = 0; i < N_REG_CLASSES; i++)
  for (i = 0; i < N_REG_CLASSES; i++)
    if (contains_reg_of_mode[i][m])
    if (contains_reg_of_mode[i][m])
      for (j = 0; j < N_REG_CLASSES; j++)
      for (j = 0; j < N_REG_CLASSES; j++)
        {
        {
          int cost;
          int cost;
          enum reg_class *p1, *p2;
          enum reg_class *p1, *p2;
 
 
          if (last_move_cost[i][j] == 65535)
          if (last_move_cost[i][j] == 65535)
            {
            {
              move_cost[m][i][j] = 65535;
              move_cost[m][i][j] = 65535;
              may_move_in_cost[m][i][j] = 65535;
              may_move_in_cost[m][i][j] = 65535;
              may_move_out_cost[m][i][j] = 65535;
              may_move_out_cost[m][i][j] = 65535;
            }
            }
          else
          else
            {
            {
              cost = last_move_cost[i][j];
              cost = last_move_cost[i][j];
 
 
              for (p2 = &reg_class_subclasses[j][0];
              for (p2 = &reg_class_subclasses[j][0];
                   *p2 != LIM_REG_CLASSES; p2++)
                   *p2 != LIM_REG_CLASSES; p2++)
                if (*p2 != i && contains_reg_of_mode[*p2][m])
                if (*p2 != i && contains_reg_of_mode[*p2][m])
                  cost = MAX (cost, move_cost[m][i][*p2]);
                  cost = MAX (cost, move_cost[m][i][*p2]);
 
 
              for (p1 = &reg_class_subclasses[i][0];
              for (p1 = &reg_class_subclasses[i][0];
                   *p1 != LIM_REG_CLASSES; p1++)
                   *p1 != LIM_REG_CLASSES; p1++)
                if (*p1 != j && contains_reg_of_mode[*p1][m])
                if (*p1 != j && contains_reg_of_mode[*p1][m])
                  cost = MAX (cost, move_cost[m][*p1][j]);
                  cost = MAX (cost, move_cost[m][*p1][j]);
 
 
              gcc_assert (cost <= 65535);
              gcc_assert (cost <= 65535);
              move_cost[m][i][j] = cost;
              move_cost[m][i][j] = cost;
 
 
              if (reg_class_subset_p ((enum reg_class) i, (enum reg_class) j))
              if (reg_class_subset_p ((enum reg_class) i, (enum reg_class) j))
                may_move_in_cost[m][i][j] = 0;
                may_move_in_cost[m][i][j] = 0;
              else
              else
                may_move_in_cost[m][i][j] = cost;
                may_move_in_cost[m][i][j] = cost;
 
 
              if (reg_class_subset_p ((enum reg_class) j, (enum reg_class) i))
              if (reg_class_subset_p ((enum reg_class) j, (enum reg_class) i))
                may_move_out_cost[m][i][j] = 0;
                may_move_out_cost[m][i][j] = 0;
              else
              else
                may_move_out_cost[m][i][j] = cost;
                may_move_out_cost[m][i][j] = cost;
            }
            }
        }
        }
    else
    else
      for (j = 0; j < N_REG_CLASSES; j++)
      for (j = 0; j < N_REG_CLASSES; j++)
        {
        {
          move_cost[m][i][j] = 65535;
          move_cost[m][i][j] = 65535;
          may_move_in_cost[m][i][j] = 65535;
          may_move_in_cost[m][i][j] = 65535;
          may_move_out_cost[m][i][j] = 65535;
          may_move_out_cost[m][i][j] = 65535;
        }
        }
}
}
 
 
/* We need to save copies of some of the register information which
/* We need to save copies of some of the register information which
   can be munged by command-line switches so we can restore it during
   can be munged by command-line switches so we can restore it during
   subsequent back-end reinitialization.  */
   subsequent back-end reinitialization.  */
static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
static char saved_fixed_regs[FIRST_PSEUDO_REGISTER];
static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
static char saved_call_used_regs[FIRST_PSEUDO_REGISTER];
#ifdef CALL_REALLY_USED_REGISTERS
#ifdef CALL_REALLY_USED_REGISTERS
static char saved_call_really_used_regs[FIRST_PSEUDO_REGISTER];
static char saved_call_really_used_regs[FIRST_PSEUDO_REGISTER];
#endif
#endif
static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
static const char *saved_reg_names[FIRST_PSEUDO_REGISTER];
 
 
/* Save the register information.  */
/* Save the register information.  */
void
void
save_register_info (void)
save_register_info (void)
{
{
  /* Sanity check:  make sure the target macros FIXED_REGISTERS and
  /* Sanity check:  make sure the target macros FIXED_REGISTERS and
     CALL_USED_REGISTERS had the right number of initializers.  */
     CALL_USED_REGISTERS had the right number of initializers.  */
  gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
  gcc_assert (sizeof fixed_regs == sizeof saved_fixed_regs);
  gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
  gcc_assert (sizeof call_used_regs == sizeof saved_call_used_regs);
  memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
  memcpy (saved_fixed_regs, fixed_regs, sizeof fixed_regs);
  memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
  memcpy (saved_call_used_regs, call_used_regs, sizeof call_used_regs);
 
 
  /* Likewise for call_really_used_regs.  */
  /* Likewise for call_really_used_regs.  */
#ifdef CALL_REALLY_USED_REGISTERS
#ifdef CALL_REALLY_USED_REGISTERS
  gcc_assert (sizeof call_really_used_regs
  gcc_assert (sizeof call_really_used_regs
              == sizeof saved_call_really_used_regs);
              == sizeof saved_call_really_used_regs);
  memcpy (saved_call_really_used_regs, call_really_used_regs,
  memcpy (saved_call_really_used_regs, call_really_used_regs,
          sizeof call_really_used_regs);
          sizeof call_really_used_regs);
#endif
#endif
 
 
  /* And similarly for reg_names.  */
  /* And similarly for reg_names.  */
  gcc_assert (sizeof reg_names == sizeof saved_reg_names);
  gcc_assert (sizeof reg_names == sizeof saved_reg_names);
  memcpy (saved_reg_names, reg_names, sizeof reg_names);
  memcpy (saved_reg_names, reg_names, sizeof reg_names);
}
}
 
 
/* Restore the register information.  */
/* Restore the register information.  */
static void
static void
restore_register_info (void)
restore_register_info (void)
{
{
  memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
  memcpy (fixed_regs, saved_fixed_regs, sizeof fixed_regs);
  memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
  memcpy (call_used_regs, saved_call_used_regs, sizeof call_used_regs);
 
 
#ifdef CALL_REALLY_USED_REGISTERS
#ifdef CALL_REALLY_USED_REGISTERS
  memcpy (call_really_used_regs, saved_call_really_used_regs,
  memcpy (call_really_used_regs, saved_call_really_used_regs,
          sizeof call_really_used_regs);
          sizeof call_really_used_regs);
#endif
#endif
 
 
  memcpy (reg_names, saved_reg_names, sizeof reg_names);
  memcpy (reg_names, saved_reg_names, sizeof reg_names);
}
}
 
 
/* After switches have been processed, which perhaps alter
/* After switches have been processed, which perhaps alter
   `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs.  */
   `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs.  */
static void
static void
init_reg_sets_1 (void)
init_reg_sets_1 (void)
{
{
  unsigned int i, j;
  unsigned int i, j;
  unsigned int /* enum machine_mode */ m;
  unsigned int /* enum machine_mode */ m;
 
 
  restore_register_info ();
  restore_register_info ();
 
 
#ifdef REG_ALLOC_ORDER
#ifdef REG_ALLOC_ORDER
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    inv_reg_alloc_order[reg_alloc_order[i]] = i;
    inv_reg_alloc_order[reg_alloc_order[i]] = i;
#endif
#endif
 
 
  /* This macro allows the fixed or call-used registers
  /* This macro allows the fixed or call-used registers
     and the register classes to depend on target flags.  */
     and the register classes to depend on target flags.  */
 
 
#ifdef CONDITIONAL_REGISTER_USAGE
#ifdef CONDITIONAL_REGISTER_USAGE
  CONDITIONAL_REGISTER_USAGE;
  CONDITIONAL_REGISTER_USAGE;
#endif
#endif
 
 
  /* Compute number of hard regs in each class.  */
  /* Compute number of hard regs in each class.  */
 
 
  memset (reg_class_size, 0, sizeof reg_class_size);
  memset (reg_class_size, 0, sizeof reg_class_size);
  for (i = 0; i < N_REG_CLASSES; i++)
  for (i = 0; i < N_REG_CLASSES; i++)
    for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
    for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
      if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
      if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
        reg_class_size[i]++;
        reg_class_size[i]++;
 
 
  /* Initialize the table of subunions.
  /* Initialize the table of subunions.
     reg_class_subunion[I][J] gets the largest-numbered reg-class
     reg_class_subunion[I][J] gets the largest-numbered reg-class
     that is contained in the union of classes I and J.  */
     that is contained in the union of classes I and J.  */
 
 
  memset (reg_class_subunion, 0, sizeof reg_class_subunion);
  memset (reg_class_subunion, 0, sizeof reg_class_subunion);
  for (i = 0; i < N_REG_CLASSES; i++)
  for (i = 0; i < N_REG_CLASSES; i++)
    {
    {
      for (j = 0; j < N_REG_CLASSES; j++)
      for (j = 0; j < N_REG_CLASSES; j++)
        {
        {
          HARD_REG_SET c;
          HARD_REG_SET c;
          int k;
          int k;
 
 
          COPY_HARD_REG_SET (c, reg_class_contents[i]);
          COPY_HARD_REG_SET (c, reg_class_contents[i]);
          IOR_HARD_REG_SET (c, reg_class_contents[j]);
          IOR_HARD_REG_SET (c, reg_class_contents[j]);
          for (k = 0; k < N_REG_CLASSES; k++)
          for (k = 0; k < N_REG_CLASSES; k++)
            if (hard_reg_set_subset_p (reg_class_contents[k], c)
            if (hard_reg_set_subset_p (reg_class_contents[k], c)
                && !hard_reg_set_subset_p (reg_class_contents[k],
                && !hard_reg_set_subset_p (reg_class_contents[k],
                                          reg_class_contents
                                          reg_class_contents
                                          [(int) reg_class_subunion[i][j]]))
                                          [(int) reg_class_subunion[i][j]]))
              reg_class_subunion[i][j] = (enum reg_class) k;
              reg_class_subunion[i][j] = (enum reg_class) k;
        }
        }
    }
    }
 
 
  /* Initialize the table of superunions.
  /* Initialize the table of superunions.
     reg_class_superunion[I][J] gets the smallest-numbered reg-class
     reg_class_superunion[I][J] gets the smallest-numbered reg-class
     containing the union of classes I and J.  */
     containing the union of classes I and J.  */
 
 
  memset (reg_class_superunion, 0, sizeof reg_class_superunion);
  memset (reg_class_superunion, 0, sizeof reg_class_superunion);
  for (i = 0; i < N_REG_CLASSES; i++)
  for (i = 0; i < N_REG_CLASSES; i++)
    {
    {
      for (j = 0; j < N_REG_CLASSES; j++)
      for (j = 0; j < N_REG_CLASSES; j++)
        {
        {
          HARD_REG_SET c;
          HARD_REG_SET c;
          int k;
          int k;
 
 
          COPY_HARD_REG_SET (c, reg_class_contents[i]);
          COPY_HARD_REG_SET (c, reg_class_contents[i]);
          IOR_HARD_REG_SET (c, reg_class_contents[j]);
          IOR_HARD_REG_SET (c, reg_class_contents[j]);
          for (k = 0; k < N_REG_CLASSES; k++)
          for (k = 0; k < N_REG_CLASSES; k++)
            if (hard_reg_set_subset_p (c, reg_class_contents[k]))
            if (hard_reg_set_subset_p (c, reg_class_contents[k]))
              break;
              break;
 
 
          reg_class_superunion[i][j] = (enum reg_class) k;
          reg_class_superunion[i][j] = (enum reg_class) k;
        }
        }
    }
    }
 
 
  /* Initialize the tables of subclasses and superclasses of each reg class.
  /* Initialize the tables of subclasses and superclasses of each reg class.
     First clear the whole table, then add the elements as they are found.  */
     First clear the whole table, then add the elements as they are found.  */
 
 
  for (i = 0; i < N_REG_CLASSES; i++)
  for (i = 0; i < N_REG_CLASSES; i++)
    {
    {
      for (j = 0; j < N_REG_CLASSES; j++)
      for (j = 0; j < N_REG_CLASSES; j++)
        reg_class_subclasses[i][j] = LIM_REG_CLASSES;
        reg_class_subclasses[i][j] = LIM_REG_CLASSES;
    }
    }
 
 
  for (i = 0; i < N_REG_CLASSES; i++)
  for (i = 0; i < N_REG_CLASSES; i++)
    {
    {
      if (i == (int) NO_REGS)
      if (i == (int) NO_REGS)
        continue;
        continue;
 
 
      for (j = i + 1; j < N_REG_CLASSES; j++)
      for (j = i + 1; j < N_REG_CLASSES; j++)
        if (hard_reg_set_subset_p (reg_class_contents[i],
        if (hard_reg_set_subset_p (reg_class_contents[i],
                                  reg_class_contents[j]))
                                  reg_class_contents[j]))
          {
          {
            /* Reg class I is a subclass of J.
            /* Reg class I is a subclass of J.
               Add J to the table of superclasses of I.  */
               Add J to the table of superclasses of I.  */
            enum reg_class *p;
            enum reg_class *p;
 
 
            /* Add I to the table of superclasses of J.  */
            /* Add I to the table of superclasses of J.  */
            p = &reg_class_subclasses[j][0];
            p = &reg_class_subclasses[j][0];
            while (*p != LIM_REG_CLASSES) p++;
            while (*p != LIM_REG_CLASSES) p++;
            *p = (enum reg_class) i;
            *p = (enum reg_class) i;
          }
          }
    }
    }
 
 
  /* Initialize "constant" tables.  */
  /* Initialize "constant" tables.  */
 
 
  CLEAR_HARD_REG_SET (fixed_reg_set);
  CLEAR_HARD_REG_SET (fixed_reg_set);
  CLEAR_HARD_REG_SET (call_used_reg_set);
  CLEAR_HARD_REG_SET (call_used_reg_set);
  CLEAR_HARD_REG_SET (call_fixed_reg_set);
  CLEAR_HARD_REG_SET (call_fixed_reg_set);
  CLEAR_HARD_REG_SET (regs_invalidated_by_call);
  CLEAR_HARD_REG_SET (regs_invalidated_by_call);
  if (!regs_invalidated_by_call_regset)
  if (!regs_invalidated_by_call_regset)
    {
    {
      bitmap_obstack_initialize (&persistent_obstack);
      bitmap_obstack_initialize (&persistent_obstack);
      regs_invalidated_by_call_regset = ALLOC_REG_SET (&persistent_obstack);
      regs_invalidated_by_call_regset = ALLOC_REG_SET (&persistent_obstack);
    }
    }
  else
  else
    CLEAR_REG_SET (regs_invalidated_by_call_regset);
    CLEAR_REG_SET (regs_invalidated_by_call_regset);
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
    {
      /* call_used_regs must include fixed_regs.  */
      /* call_used_regs must include fixed_regs.  */
      gcc_assert (!fixed_regs[i] || call_used_regs[i]);
      gcc_assert (!fixed_regs[i] || call_used_regs[i]);
#ifdef CALL_REALLY_USED_REGISTERS
#ifdef CALL_REALLY_USED_REGISTERS
      /* call_used_regs must include call_really_used_regs.  */
      /* call_used_regs must include call_really_used_regs.  */
      gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
      gcc_assert (!call_really_used_regs[i] || call_used_regs[i]);
#endif
#endif
 
 
      if (fixed_regs[i])
      if (fixed_regs[i])
        SET_HARD_REG_BIT (fixed_reg_set, i);
        SET_HARD_REG_BIT (fixed_reg_set, i);
 
 
      if (call_used_regs[i])
      if (call_used_regs[i])
        SET_HARD_REG_BIT (call_used_reg_set, i);
        SET_HARD_REG_BIT (call_used_reg_set, i);
 
 
      /* There are a couple of fixed registers that we know are safe to
      /* There are a couple of fixed registers that we know are safe to
         exclude from being clobbered by calls:
         exclude from being clobbered by calls:
 
 
         The frame pointer is always preserved across calls.  The arg pointer
         The frame pointer is always preserved across calls.  The arg pointer
         is if it is fixed.  The stack pointer usually is, unless
         is if it is fixed.  The stack pointer usually is, unless
         RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
         RETURN_POPS_ARGS, in which case an explicit CLOBBER will be present.
         If we are generating PIC code, the PIC offset table register is
         If we are generating PIC code, the PIC offset table register is
         preserved across calls, though the target can override that.  */
         preserved across calls, though the target can override that.  */
 
 
      if (i == STACK_POINTER_REGNUM)
      if (i == STACK_POINTER_REGNUM)
        ;
        ;
      else if (global_regs[i])
      else if (global_regs[i])
        {
        {
          SET_HARD_REG_BIT (regs_invalidated_by_call, i);
          SET_HARD_REG_BIT (regs_invalidated_by_call, i);
          SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
          SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
        }
        }
      else if (i == FRAME_POINTER_REGNUM)
      else if (i == FRAME_POINTER_REGNUM)
        ;
        ;
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
      else if (i == HARD_FRAME_POINTER_REGNUM)
      else if (i == HARD_FRAME_POINTER_REGNUM)
        ;
        ;
#endif
#endif
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
      else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
      else if (i == ARG_POINTER_REGNUM && fixed_regs[i])
        ;
        ;
#endif
#endif
#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
#ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
      else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
      else if (i == (unsigned) PIC_OFFSET_TABLE_REGNUM && fixed_regs[i])
        ;
        ;
#endif
#endif
      else if (CALL_REALLY_USED_REGNO_P (i))
      else if (CALL_REALLY_USED_REGNO_P (i))
        {
        {
          SET_HARD_REG_BIT (regs_invalidated_by_call, i);
          SET_HARD_REG_BIT (regs_invalidated_by_call, i);
          SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
          SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
        }
        }
    }
    }
 
 
  COPY_HARD_REG_SET(call_fixed_reg_set, fixed_reg_set);
  COPY_HARD_REG_SET(call_fixed_reg_set, fixed_reg_set);
 
 
  /* Preserve global registers if called more than once.  */
  /* Preserve global registers if called more than once.  */
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
    {
      if (global_regs[i])
      if (global_regs[i])
        {
        {
          fixed_regs[i] = call_used_regs[i] = 1;
          fixed_regs[i] = call_used_regs[i] = 1;
          SET_HARD_REG_BIT (fixed_reg_set, i);
          SET_HARD_REG_BIT (fixed_reg_set, i);
          SET_HARD_REG_BIT (call_used_reg_set, i);
          SET_HARD_REG_BIT (call_used_reg_set, i);
          SET_HARD_REG_BIT (call_fixed_reg_set, i);
          SET_HARD_REG_BIT (call_fixed_reg_set, i);
        }
        }
    }
    }
 
 
  memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
  memset (have_regs_of_mode, 0, sizeof (have_regs_of_mode));
  memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
  memset (contains_reg_of_mode, 0, sizeof (contains_reg_of_mode));
  for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
  for (m = 0; m < (unsigned int) MAX_MACHINE_MODE; m++)
    {
    {
      HARD_REG_SET ok_regs;
      HARD_REG_SET ok_regs;
      CLEAR_HARD_REG_SET (ok_regs);
      CLEAR_HARD_REG_SET (ok_regs);
      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
      for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
        if (!fixed_regs [j] && HARD_REGNO_MODE_OK (j, (enum machine_mode) m))
        if (!fixed_regs [j] && HARD_REGNO_MODE_OK (j, (enum machine_mode) m))
          SET_HARD_REG_BIT (ok_regs, j);
          SET_HARD_REG_BIT (ok_regs, j);
 
 
      for (i = 0; i < N_REG_CLASSES; i++)
      for (i = 0; i < N_REG_CLASSES; i++)
        if (((unsigned) CLASS_MAX_NREGS ((enum reg_class) i,
        if (((unsigned) CLASS_MAX_NREGS ((enum reg_class) i,
                                         (enum machine_mode) m)
                                         (enum machine_mode) m)
             <= reg_class_size[i])
             <= reg_class_size[i])
            && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
            && hard_reg_set_intersect_p (ok_regs, reg_class_contents[i]))
          {
          {
             contains_reg_of_mode [i][m] = 1;
             contains_reg_of_mode [i][m] = 1;
             have_regs_of_mode [m] = 1;
             have_regs_of_mode [m] = 1;
          }
          }
     }
     }
 
 
  /* Reset move_cost and friends, making sure we only free shared
  /* Reset move_cost and friends, making sure we only free shared
     table entries once.  */
     table entries once.  */
  for (i = 0; i < MAX_MACHINE_MODE; i++)
  for (i = 0; i < MAX_MACHINE_MODE; i++)
    if (move_cost[i])
    if (move_cost[i])
      {
      {
        for (j = 0; j < i && move_cost[i] != move_cost[j]; j++)
        for (j = 0; j < i && move_cost[i] != move_cost[j]; j++)
          ;
          ;
        if (i == j)
        if (i == j)
          {
          {
            free (move_cost[i]);
            free (move_cost[i]);
            free (may_move_in_cost[i]);
            free (may_move_in_cost[i]);
            free (may_move_out_cost[i]);
            free (may_move_out_cost[i]);
          }
          }
      }
      }
  memset (move_cost, 0, sizeof move_cost);
  memset (move_cost, 0, sizeof move_cost);
  memset (may_move_in_cost, 0, sizeof may_move_in_cost);
  memset (may_move_in_cost, 0, sizeof may_move_in_cost);
  memset (may_move_out_cost, 0, sizeof may_move_out_cost);
  memset (may_move_out_cost, 0, sizeof may_move_out_cost);
  last_mode_for_init_move_cost = -1;
  last_mode_for_init_move_cost = -1;
}
}
 
 
/* Compute the table of register modes.
/* Compute the table of register modes.
   These values are used to record death information for individual registers
   These values are used to record death information for individual registers
   (as opposed to a multi-register mode).
   (as opposed to a multi-register mode).
   This function might be invoked more than once, if the target has support
   This function might be invoked more than once, if the target has support
   for changing register usage conventions on a per-function basis.
   for changing register usage conventions on a per-function basis.
*/
*/
void
void
init_reg_modes_target (void)
init_reg_modes_target (void)
{
{
  int i, j;
  int i, j;
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    for (j = 0; j < MAX_MACHINE_MODE; j++)
    for (j = 0; j < MAX_MACHINE_MODE; j++)
      hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
      hard_regno_nregs[i][j] = HARD_REGNO_NREGS(i, (enum machine_mode)j);
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
    {
      reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
      reg_raw_mode[i] = choose_hard_reg_mode (i, 1, false);
 
 
      /* If we couldn't find a valid mode, just use the previous mode.
      /* If we couldn't find a valid mode, just use the previous mode.
         ??? One situation in which we need to do this is on the mips where
         ??? One situation in which we need to do this is on the mips where
         HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2.  Ideally we'd like
         HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2.  Ideally we'd like
         to use DF mode for the even registers and VOIDmode for the odd
         to use DF mode for the even registers and VOIDmode for the odd
         (for the cpu models where the odd ones are inaccessible).  */
         (for the cpu models where the odd ones are inaccessible).  */
      if (reg_raw_mode[i] == VOIDmode)
      if (reg_raw_mode[i] == VOIDmode)
        reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
        reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
    }
    }
}
}
 
 
/* Finish initializing the register sets and initialize the register modes.
/* Finish initializing the register sets and initialize the register modes.
   This function might be invoked more than once, if the target has support
   This function might be invoked more than once, if the target has support
   for changing register usage conventions on a per-function basis.
   for changing register usage conventions on a per-function basis.
*/
*/
void
void
init_regs (void)
init_regs (void)
{
{
  /* This finishes what was started by init_reg_sets, but couldn't be done
  /* This finishes what was started by init_reg_sets, but couldn't be done
     until after register usage was specified.  */
     until after register usage was specified.  */
  init_reg_sets_1 ();
  init_reg_sets_1 ();
}
}
 
 
/* The same as previous function plus initializing IRA.  */
/* The same as previous function plus initializing IRA.  */
void
void
reinit_regs (void)
reinit_regs (void)
{
{
  init_regs ();
  init_regs ();
  /* caller_save needs to be re-initialized.  */
  /* caller_save needs to be re-initialized.  */
  caller_save_initialized_p = false;
  caller_save_initialized_p = false;
  ira_init ();
  ira_init ();
}
}
 
 
/* Initialize some fake stack-frame MEM references for use in
/* Initialize some fake stack-frame MEM references for use in
   memory_move_secondary_cost.  */
   memory_move_secondary_cost.  */
void
void
init_fake_stack_mems (void)
init_fake_stack_mems (void)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < MAX_MACHINE_MODE; i++)
  for (i = 0; i < MAX_MACHINE_MODE; i++)
    top_of_stack[i] = gen_rtx_MEM ((enum machine_mode) i, stack_pointer_rtx);
    top_of_stack[i] = gen_rtx_MEM ((enum machine_mode) i, stack_pointer_rtx);
}
}
 
 
 
 
/* Compute extra cost of moving registers to/from memory due to reloads.
/* Compute extra cost of moving registers to/from memory due to reloads.
   Only needed if secondary reloads are required for memory moves.  */
   Only needed if secondary reloads are required for memory moves.  */
int
int
memory_move_secondary_cost (enum machine_mode mode, enum reg_class rclass,
memory_move_secondary_cost (enum machine_mode mode, enum reg_class rclass,
                            int in)
                            int in)
{
{
  enum reg_class altclass;
  enum reg_class altclass;
  int partial_cost = 0;
  int partial_cost = 0;
  /* We need a memory reference to feed to SECONDARY... macros.  */
  /* We need a memory reference to feed to SECONDARY... macros.  */
  /* mem may be unused even if the SECONDARY_ macros are defined.  */
  /* mem may be unused even if the SECONDARY_ macros are defined.  */
  rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
  rtx mem ATTRIBUTE_UNUSED = top_of_stack[(int) mode];
 
 
  altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
  altclass = secondary_reload_class (in ? 1 : 0, rclass, mode, mem);
 
 
  if (altclass == NO_REGS)
  if (altclass == NO_REGS)
    return 0;
    return 0;
 
 
  if (in)
  if (in)
    partial_cost = REGISTER_MOVE_COST (mode, altclass, rclass);
    partial_cost = REGISTER_MOVE_COST (mode, altclass, rclass);
  else
  else
    partial_cost = REGISTER_MOVE_COST (mode, rclass, altclass);
    partial_cost = REGISTER_MOVE_COST (mode, rclass, altclass);
 
 
  if (rclass == altclass)
  if (rclass == altclass)
    /* This isn't simply a copy-to-temporary situation.  Can't guess
    /* This isn't simply a copy-to-temporary situation.  Can't guess
       what it is, so MEMORY_MOVE_COST really ought not to be calling
       what it is, so MEMORY_MOVE_COST really ought not to be calling
       here in that case.
       here in that case.
 
 
       I'm tempted to put in an assert here, but returning this will
       I'm tempted to put in an assert here, but returning this will
       probably only give poor estimates, which is what we would've
       probably only give poor estimates, which is what we would've
       had before this code anyways.  */
       had before this code anyways.  */
    return partial_cost;
    return partial_cost;
 
 
  /* Check if the secondary reload register will also need a
  /* Check if the secondary reload register will also need a
     secondary reload.  */
     secondary reload.  */
  return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
  return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
}
}
 
 
/* Return a machine mode that is legitimate for hard reg REGNO and large
/* Return a machine mode that is legitimate for hard reg REGNO and large
   enough to save nregs.  If we can't find one, return VOIDmode.
   enough to save nregs.  If we can't find one, return VOIDmode.
   If CALL_SAVED is true, only consider modes that are call saved.  */
   If CALL_SAVED is true, only consider modes that are call saved.  */
enum machine_mode
enum machine_mode
choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
choose_hard_reg_mode (unsigned int regno ATTRIBUTE_UNUSED,
                      unsigned int nregs, bool call_saved)
                      unsigned int nregs, bool call_saved)
{
{
  unsigned int /* enum machine_mode */ m;
  unsigned int /* enum machine_mode */ m;
  enum machine_mode found_mode = VOIDmode, mode;
  enum machine_mode found_mode = VOIDmode, mode;
 
 
  /* We first look for the largest integer mode that can be validly
  /* We first look for the largest integer mode that can be validly
     held in REGNO.  If none, we look for the largest floating-point mode.
     held in REGNO.  If none, we look for the largest floating-point mode.
     If we still didn't find a valid mode, try CCmode.  */
     If we still didn't find a valid mode, try CCmode.  */
 
 
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
       mode != VOIDmode;
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
       mode = GET_MODE_WIDER_MODE (mode))
    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
        && HARD_REGNO_MODE_OK (regno, mode)
        && HARD_REGNO_MODE_OK (regno, mode)
        && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
        && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
      found_mode = mode;
      found_mode = mode;
 
 
  if (found_mode != VOIDmode)
  if (found_mode != VOIDmode)
    return found_mode;
    return found_mode;
 
 
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
       mode != VOIDmode;
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
       mode = GET_MODE_WIDER_MODE (mode))
    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
        && HARD_REGNO_MODE_OK (regno, mode)
        && HARD_REGNO_MODE_OK (regno, mode)
        && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
        && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
      found_mode = mode;
      found_mode = mode;
 
 
  if (found_mode != VOIDmode)
  if (found_mode != VOIDmode)
    return found_mode;
    return found_mode;
 
 
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
       mode != VOIDmode;
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
       mode = GET_MODE_WIDER_MODE (mode))
    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
        && HARD_REGNO_MODE_OK (regno, mode)
        && HARD_REGNO_MODE_OK (regno, mode)
        && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
        && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
      found_mode = mode;
      found_mode = mode;
 
 
  if (found_mode != VOIDmode)
  if (found_mode != VOIDmode)
    return found_mode;
    return found_mode;
 
 
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
  for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
       mode != VOIDmode;
       mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
       mode = GET_MODE_WIDER_MODE (mode))
    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
    if ((unsigned) hard_regno_nregs[regno][mode] == nregs
        && HARD_REGNO_MODE_OK (regno, mode)
        && HARD_REGNO_MODE_OK (regno, mode)
        && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
        && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
      found_mode = mode;
      found_mode = mode;
 
 
  if (found_mode != VOIDmode)
  if (found_mode != VOIDmode)
    return found_mode;
    return found_mode;
 
 
  /* Iterate over all of the CCmodes.  */
  /* Iterate over all of the CCmodes.  */
  for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
  for (m = (unsigned int) CCmode; m < (unsigned int) NUM_MACHINE_MODES; ++m)
    {
    {
      mode = (enum machine_mode) m;
      mode = (enum machine_mode) m;
      if ((unsigned) hard_regno_nregs[regno][mode] == nregs
      if ((unsigned) hard_regno_nregs[regno][mode] == nregs
          && HARD_REGNO_MODE_OK (regno, mode)
          && HARD_REGNO_MODE_OK (regno, mode)
          && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
          && (! call_saved || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
        return mode;
        return mode;
    }
    }
 
 
  /* We can't find a mode valid for this register.  */
  /* We can't find a mode valid for this register.  */
  return VOIDmode;
  return VOIDmode;
}
}
 
 
/* Specify the usage characteristics of the register named NAME.
/* Specify the usage characteristics of the register named NAME.
   It should be a fixed register if FIXED and a
   It should be a fixed register if FIXED and a
   call-used register if CALL_USED.  */
   call-used register if CALL_USED.  */
void
void
fix_register (const char *name, int fixed, int call_used)
fix_register (const char *name, int fixed, int call_used)
{
{
  int i;
  int i;
 
 
  /* Decode the name and update the primary form of
  /* Decode the name and update the primary form of
     the register info.  */
     the register info.  */
 
 
  if ((i = decode_reg_name (name)) >= 0)
  if ((i = decode_reg_name (name)) >= 0)
    {
    {
      if ((i == STACK_POINTER_REGNUM
      if ((i == STACK_POINTER_REGNUM
#ifdef HARD_FRAME_POINTER_REGNUM
#ifdef HARD_FRAME_POINTER_REGNUM
           || i == HARD_FRAME_POINTER_REGNUM
           || i == HARD_FRAME_POINTER_REGNUM
#else
#else
           || i == FRAME_POINTER_REGNUM
           || i == FRAME_POINTER_REGNUM
#endif
#endif
           )
           )
          && (fixed == 0 || call_used == 0))
          && (fixed == 0 || call_used == 0))
        {
        {
          static const char * const what_option[2][2] = {
          static const char * const what_option[2][2] = {
            { "call-saved", "call-used" },
            { "call-saved", "call-used" },
            { "no-such-option", "fixed" }};
            { "no-such-option", "fixed" }};
 
 
          error ("can't use '%s' as a %s register", name,
          error ("can't use '%s' as a %s register", name,
                 what_option[fixed][call_used]);
                 what_option[fixed][call_used]);
        }
        }
      else
      else
        {
        {
          fixed_regs[i] = fixed;
          fixed_regs[i] = fixed;
          call_used_regs[i] = call_used;
          call_used_regs[i] = call_used;
#ifdef CALL_REALLY_USED_REGISTERS
#ifdef CALL_REALLY_USED_REGISTERS
          if (fixed == 0)
          if (fixed == 0)
            call_really_used_regs[i] = call_used;
            call_really_used_regs[i] = call_used;
#endif
#endif
        }
        }
    }
    }
  else
  else
    {
    {
      warning (0, "unknown register name: %s", name);
      warning (0, "unknown register name: %s", name);
    }
    }
}
}
 
 
/* Mark register number I as global.  */
/* Mark register number I as global.  */
void
void
globalize_reg (int i)
globalize_reg (int i)
{
{
  if (fixed_regs[i] == 0 && no_global_reg_vars)
  if (fixed_regs[i] == 0 && no_global_reg_vars)
    error ("global register variable follows a function definition");
    error ("global register variable follows a function definition");
 
 
  if (global_regs[i])
  if (global_regs[i])
    {
    {
      warning (0, "register used for two global register variables");
      warning (0, "register used for two global register variables");
      return;
      return;
    }
    }
 
 
  if (call_used_regs[i] && ! fixed_regs[i])
  if (call_used_regs[i] && ! fixed_regs[i])
    warning (0, "call-clobbered register used for global register variable");
    warning (0, "call-clobbered register used for global register variable");
 
 
  global_regs[i] = 1;
  global_regs[i] = 1;
 
 
  /* If we're globalizing the frame pointer, we need to set the
  /* If we're globalizing the frame pointer, we need to set the
     appropriate regs_invalidated_by_call bit, even if it's already
     appropriate regs_invalidated_by_call bit, even if it's already
     set in fixed_regs.  */
     set in fixed_regs.  */
  if (i != STACK_POINTER_REGNUM)
  if (i != STACK_POINTER_REGNUM)
    {
    {
      SET_HARD_REG_BIT (regs_invalidated_by_call, i);
      SET_HARD_REG_BIT (regs_invalidated_by_call, i);
      SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
      SET_REGNO_REG_SET (regs_invalidated_by_call_regset, i);
    }
    }
 
 
  /* If already fixed, nothing else to do.  */
  /* If already fixed, nothing else to do.  */
  if (fixed_regs[i])
  if (fixed_regs[i])
    return;
    return;
 
 
  fixed_regs[i] = call_used_regs[i] = 1;
  fixed_regs[i] = call_used_regs[i] = 1;
#ifdef CALL_REALLY_USED_REGISTERS
#ifdef CALL_REALLY_USED_REGISTERS
  call_really_used_regs[i] = 1;
  call_really_used_regs[i] = 1;
#endif
#endif
 
 
  SET_HARD_REG_BIT (fixed_reg_set, i);
  SET_HARD_REG_BIT (fixed_reg_set, i);
  SET_HARD_REG_BIT (call_used_reg_set, i);
  SET_HARD_REG_BIT (call_used_reg_set, i);
  SET_HARD_REG_BIT (call_fixed_reg_set, i);
  SET_HARD_REG_BIT (call_fixed_reg_set, i);
 
 
  reinit_regs ();
  reinit_regs ();
}
}


 
 
/* Structure used to record preferences of given pseudo.  */
/* Structure used to record preferences of given pseudo.  */
struct reg_pref
struct reg_pref
{
{
  /* (enum reg_class) prefclass is the preferred class.  May be
  /* (enum reg_class) prefclass is the preferred class.  May be
     NO_REGS if no class is better than memory.  */
     NO_REGS if no class is better than memory.  */
  char prefclass;
  char prefclass;
 
 
  /* altclass is a register class that we should use for allocating
  /* altclass is a register class that we should use for allocating
     pseudo if no register in the preferred class is available.
     pseudo if no register in the preferred class is available.
     If no register in this class is available, memory is preferred.
     If no register in this class is available, memory is preferred.
 
 
     It might appear to be more general to have a bitmask of classes here,
     It might appear to be more general to have a bitmask of classes here,
     but since it is recommended that there be a class corresponding to the
     but since it is recommended that there be a class corresponding to the
     union of most major pair of classes, that generality is not required.  */
     union of most major pair of classes, that generality is not required.  */
  char altclass;
  char altclass;
 
 
  /* coverclass is a register class that IRA uses for allocating
  /* coverclass is a register class that IRA uses for allocating
     the pseudo.  */
     the pseudo.  */
  char coverclass;
  char coverclass;
};
};
 
 
/* Record preferences of each pseudo.  This is available after RA is
/* Record preferences of each pseudo.  This is available after RA is
   run.  */
   run.  */
static struct reg_pref *reg_pref;
static struct reg_pref *reg_pref;
 
 
/* Current size of reg_info.  */
/* Current size of reg_info.  */
static int reg_info_size;
static int reg_info_size;
 
 
/* Return the reg_class in which pseudo reg number REGNO is best allocated.
/* Return the reg_class in which pseudo reg number REGNO is best allocated.
   This function is sometimes called before the info has been computed.
   This function is sometimes called before the info has been computed.
   When that happens, just return GENERAL_REGS, which is innocuous.  */
   When that happens, just return GENERAL_REGS, which is innocuous.  */
enum reg_class
enum reg_class
reg_preferred_class (int regno)
reg_preferred_class (int regno)
{
{
  if (reg_pref == 0)
  if (reg_pref == 0)
    return GENERAL_REGS;
    return GENERAL_REGS;
 
 
  return (enum reg_class) reg_pref[regno].prefclass;
  return (enum reg_class) reg_pref[regno].prefclass;
}
}
 
 
enum reg_class
enum reg_class
reg_alternate_class (int regno)
reg_alternate_class (int regno)
{
{
  if (reg_pref == 0)
  if (reg_pref == 0)
    return ALL_REGS;
    return ALL_REGS;
 
 
  return (enum reg_class) reg_pref[regno].altclass;
  return (enum reg_class) reg_pref[regno].altclass;
}
}
 
 
/* Return the reg_class which is used by IRA for its allocation.  */
/* Return the reg_class which is used by IRA for its allocation.  */
enum reg_class
enum reg_class
reg_cover_class (int regno)
reg_cover_class (int regno)
{
{
  if (reg_pref == 0)
  if (reg_pref == 0)
    return NO_REGS;
    return NO_REGS;
 
 
  return (enum reg_class) reg_pref[regno].coverclass;
  return (enum reg_class) reg_pref[regno].coverclass;
}
}
 
 


 
 
/* Allocate space for reg info.  */
/* Allocate space for reg info.  */
static void
static void
allocate_reg_info (void)
allocate_reg_info (void)
{
{
  reg_info_size = max_reg_num ();
  reg_info_size = max_reg_num ();
  gcc_assert (! reg_pref && ! reg_renumber);
  gcc_assert (! reg_pref && ! reg_renumber);
  reg_renumber = XNEWVEC (short, reg_info_size);
  reg_renumber = XNEWVEC (short, reg_info_size);
  reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
  reg_pref = XCNEWVEC (struct reg_pref, reg_info_size);
  memset (reg_renumber, -1, reg_info_size * sizeof (short));
  memset (reg_renumber, -1, reg_info_size * sizeof (short));
}
}
 
 
 
 
/* Resize reg info. The new elements will be uninitialized.  Return
/* Resize reg info. The new elements will be uninitialized.  Return
   TRUE if new elements (for new pseudos) were added.  */
   TRUE if new elements (for new pseudos) were added.  */
bool
bool
resize_reg_info (void)
resize_reg_info (void)
{
{
  int old;
  int old;
 
 
  if (reg_pref == NULL)
  if (reg_pref == NULL)
    {
    {
      allocate_reg_info ();
      allocate_reg_info ();
      return true;
      return true;
    }
    }
  if (reg_info_size == max_reg_num ())
  if (reg_info_size == max_reg_num ())
    return false;
    return false;
  old = reg_info_size;
  old = reg_info_size;
  reg_info_size = max_reg_num ();
  reg_info_size = max_reg_num ();
  gcc_assert (reg_pref && reg_renumber);
  gcc_assert (reg_pref && reg_renumber);
  reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
  reg_renumber = XRESIZEVEC (short, reg_renumber, reg_info_size);
  reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
  reg_pref = XRESIZEVEC (struct reg_pref, reg_pref, reg_info_size);
  memset (reg_pref + old, -1,
  memset (reg_pref + old, -1,
          (reg_info_size - old) * sizeof (struct reg_pref));
          (reg_info_size - old) * sizeof (struct reg_pref));
  memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
  memset (reg_renumber + old, -1, (reg_info_size - old) * sizeof (short));
  return true;
  return true;
}
}
 
 
 
 
/* Free up the space allocated by allocate_reg_info.  */
/* Free up the space allocated by allocate_reg_info.  */
void
void
free_reg_info (void)
free_reg_info (void)
{
{
  if (reg_pref)
  if (reg_pref)
    {
    {
      free (reg_pref);
      free (reg_pref);
      reg_pref = NULL;
      reg_pref = NULL;
    }
    }
 
 
  if (reg_renumber)
  if (reg_renumber)
    {
    {
      free (reg_renumber);
      free (reg_renumber);
      reg_renumber = NULL;
      reg_renumber = NULL;
    }
    }
}
}
 
 
/* Initialize some global data for this pass.  */
/* Initialize some global data for this pass.  */
static unsigned int
static unsigned int
reginfo_init (void)
reginfo_init (void)
{
{
  if (df)
  if (df)
    df_compute_regs_ever_live (true);
    df_compute_regs_ever_live (true);
 
 
  /* This prevents dump_flow_info from losing if called
  /* This prevents dump_flow_info from losing if called
     before reginfo is run.  */
     before reginfo is run.  */
  reg_pref = NULL;
  reg_pref = NULL;
  /* No more global register variables may be declared.  */
  /* No more global register variables may be declared.  */
  no_global_reg_vars = 1;
  no_global_reg_vars = 1;
  return 1;
  return 1;
}
}
 
 
struct rtl_opt_pass pass_reginfo_init =
struct rtl_opt_pass pass_reginfo_init =
{
{
 {
 {
  RTL_PASS,
  RTL_PASS,
  "reginfo",                            /* name */
  "reginfo",                            /* name */
  NULL,                                 /* gate */
  NULL,                                 /* gate */
  reginfo_init,                         /* execute */
  reginfo_init,                         /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_NONE,                                    /* tv_id */
  TV_NONE,                                    /* tv_id */
  0,                                    /* properties_required */
  0,                                    /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  0                                     /* todo_flags_finish */
  0                                     /* todo_flags_finish */
 }
 }
};
};
 
 


 
 
/* Set up preferred, alternate, and cover classes for REGNO as
/* Set up preferred, alternate, and cover classes for REGNO as
   PREFCLASS, ALTCLASS, and COVERCLASS.  */
   PREFCLASS, ALTCLASS, and COVERCLASS.  */
void
void
setup_reg_classes (int regno,
setup_reg_classes (int regno,
                   enum reg_class prefclass, enum reg_class altclass,
                   enum reg_class prefclass, enum reg_class altclass,
                   enum reg_class coverclass)
                   enum reg_class coverclass)
{
{
  if (reg_pref == NULL)
  if (reg_pref == NULL)
    return;
    return;
  gcc_assert (reg_info_size == max_reg_num ());
  gcc_assert (reg_info_size == max_reg_num ());
  reg_pref[regno].prefclass = prefclass;
  reg_pref[regno].prefclass = prefclass;
  reg_pref[regno].altclass = altclass;
  reg_pref[regno].altclass = altclass;
  reg_pref[regno].coverclass = coverclass;
  reg_pref[regno].coverclass = coverclass;
}
}
 
 


/* This is the `regscan' pass of the compiler, run just before cse and
/* This is the `regscan' pass of the compiler, run just before cse and
   again just before loop.  It finds the first and last use of each
   again just before loop.  It finds the first and last use of each
   pseudo-register.  */
   pseudo-register.  */
 
 
static void reg_scan_mark_refs (rtx, rtx);
static void reg_scan_mark_refs (rtx, rtx);
 
 
void
void
reg_scan (rtx f, unsigned int nregs ATTRIBUTE_UNUSED)
reg_scan (rtx f, unsigned int nregs ATTRIBUTE_UNUSED)
{
{
  rtx insn;
  rtx insn;
 
 
  timevar_push (TV_REG_SCAN);
  timevar_push (TV_REG_SCAN);
 
 
  for (insn = f; insn; insn = NEXT_INSN (insn))
  for (insn = f; insn; insn = NEXT_INSN (insn))
    if (INSN_P (insn))
    if (INSN_P (insn))
      {
      {
        reg_scan_mark_refs (PATTERN (insn), insn);
        reg_scan_mark_refs (PATTERN (insn), insn);
        if (REG_NOTES (insn))
        if (REG_NOTES (insn))
          reg_scan_mark_refs (REG_NOTES (insn), insn);
          reg_scan_mark_refs (REG_NOTES (insn), insn);
      }
      }
 
 
  timevar_pop (TV_REG_SCAN);
  timevar_pop (TV_REG_SCAN);
}
}
 
 
 
 
/* X is the expression to scan.  INSN is the insn it appears in.
/* X is the expression to scan.  INSN is the insn it appears in.
   NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
   NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
   We should only record information for REGs with numbers
   We should only record information for REGs with numbers
   greater than or equal to MIN_REGNO.  */
   greater than or equal to MIN_REGNO.  */
static void
static void
reg_scan_mark_refs (rtx x, rtx insn)
reg_scan_mark_refs (rtx x, rtx insn)
{
{
  enum rtx_code code;
  enum rtx_code code;
  rtx dest;
  rtx dest;
  rtx note;
  rtx note;
 
 
  if (!x)
  if (!x)
    return;
    return;
  code = GET_CODE (x);
  code = GET_CODE (x);
  switch (code)
  switch (code)
    {
    {
    case CONST:
    case CONST:
    case CONST_INT:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST_DOUBLE:
    case CONST_FIXED:
    case CONST_FIXED:
    case CONST_VECTOR:
    case CONST_VECTOR:
    case CC0:
    case CC0:
    case PC:
    case PC:
    case SYMBOL_REF:
    case SYMBOL_REF:
    case LABEL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ADDR_DIFF_VEC:
    case REG:
    case REG:
      return;
      return;
 
 
    case EXPR_LIST:
    case EXPR_LIST:
      if (XEXP (x, 0))
      if (XEXP (x, 0))
        reg_scan_mark_refs (XEXP (x, 0), insn);
        reg_scan_mark_refs (XEXP (x, 0), insn);
      if (XEXP (x, 1))
      if (XEXP (x, 1))
        reg_scan_mark_refs (XEXP (x, 1), insn);
        reg_scan_mark_refs (XEXP (x, 1), insn);
      break;
      break;
 
 
    case INSN_LIST:
    case INSN_LIST:
      if (XEXP (x, 1))
      if (XEXP (x, 1))
        reg_scan_mark_refs (XEXP (x, 1), insn);
        reg_scan_mark_refs (XEXP (x, 1), insn);
      break;
      break;
 
 
    case CLOBBER:
    case CLOBBER:
      if (MEM_P (XEXP (x, 0)))
      if (MEM_P (XEXP (x, 0)))
        reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
        reg_scan_mark_refs (XEXP (XEXP (x, 0), 0), insn);
      break;
      break;
 
 
    case SET:
    case SET:
      /* Count a set of the destination if it is a register.  */
      /* Count a set of the destination if it is a register.  */
      for (dest = SET_DEST (x);
      for (dest = SET_DEST (x);
           GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
           GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
           || GET_CODE (dest) == ZERO_EXTEND;
           || GET_CODE (dest) == ZERO_EXTEND;
           dest = XEXP (dest, 0))
           dest = XEXP (dest, 0))
        ;
        ;
 
 
      /* If this is setting a pseudo from another pseudo or the sum of a
      /* If this is setting a pseudo from another pseudo or the sum of a
         pseudo and a constant integer and the other pseudo is known to be
         pseudo and a constant integer and the other pseudo is known to be
         a pointer, set the destination to be a pointer as well.
         a pointer, set the destination to be a pointer as well.
 
 
         Likewise if it is setting the destination from an address or from a
         Likewise if it is setting the destination from an address or from a
         value equivalent to an address or to the sum of an address and
         value equivalent to an address or to the sum of an address and
         something else.
         something else.
 
 
         But don't do any of this if the pseudo corresponds to a user
         But don't do any of this if the pseudo corresponds to a user
         variable since it should have already been set as a pointer based
         variable since it should have already been set as a pointer based
         on the type.  */
         on the type.  */
 
 
      if (REG_P (SET_DEST (x))
      if (REG_P (SET_DEST (x))
          && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
          && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
          /* If the destination pseudo is set more than once, then other
          /* If the destination pseudo is set more than once, then other
             sets might not be to a pointer value (consider access to a
             sets might not be to a pointer value (consider access to a
             union in two threads of control in the presence of global
             union in two threads of control in the presence of global
             optimizations).  So only set REG_POINTER on the destination
             optimizations).  So only set REG_POINTER on the destination
             pseudo if this is the only set of that pseudo.  */
             pseudo if this is the only set of that pseudo.  */
          && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
          && DF_REG_DEF_COUNT (REGNO (SET_DEST (x))) == 1
          && ! REG_USERVAR_P (SET_DEST (x))
          && ! REG_USERVAR_P (SET_DEST (x))
          && ! REG_POINTER (SET_DEST (x))
          && ! REG_POINTER (SET_DEST (x))
          && ((REG_P (SET_SRC (x))
          && ((REG_P (SET_SRC (x))
               && REG_POINTER (SET_SRC (x)))
               && REG_POINTER (SET_SRC (x)))
              || ((GET_CODE (SET_SRC (x)) == PLUS
              || ((GET_CODE (SET_SRC (x)) == PLUS
                   || GET_CODE (SET_SRC (x)) == LO_SUM)
                   || GET_CODE (SET_SRC (x)) == LO_SUM)
                  && CONST_INT_P (XEXP (SET_SRC (x), 1))
                  && CONST_INT_P (XEXP (SET_SRC (x), 1))
                  && REG_P (XEXP (SET_SRC (x), 0))
                  && REG_P (XEXP (SET_SRC (x), 0))
                  && REG_POINTER (XEXP (SET_SRC (x), 0)))
                  && REG_POINTER (XEXP (SET_SRC (x), 0)))
              || GET_CODE (SET_SRC (x)) == CONST
              || GET_CODE (SET_SRC (x)) == CONST
              || GET_CODE (SET_SRC (x)) == SYMBOL_REF
              || GET_CODE (SET_SRC (x)) == SYMBOL_REF
              || GET_CODE (SET_SRC (x)) == LABEL_REF
              || GET_CODE (SET_SRC (x)) == LABEL_REF
              || (GET_CODE (SET_SRC (x)) == HIGH
              || (GET_CODE (SET_SRC (x)) == HIGH
                  && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
                  && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
                      || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
                      || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
                      || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
                      || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
              || ((GET_CODE (SET_SRC (x)) == PLUS
              || ((GET_CODE (SET_SRC (x)) == PLUS
                   || GET_CODE (SET_SRC (x)) == LO_SUM)
                   || GET_CODE (SET_SRC (x)) == LO_SUM)
                  && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
                  && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
                      || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
                      || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
                      || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
                      || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
              || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
              || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
                  && (GET_CODE (XEXP (note, 0)) == CONST
                  && (GET_CODE (XEXP (note, 0)) == CONST
                      || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
                      || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
                      || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
                      || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
        REG_POINTER (SET_DEST (x)) = 1;
        REG_POINTER (SET_DEST (x)) = 1;
 
 
      /* If this is setting a register from a register or from a simple
      /* If this is setting a register from a register or from a simple
         conversion of a register, propagate REG_EXPR.  */
         conversion of a register, propagate REG_EXPR.  */
      if (REG_P (dest) && !REG_ATTRS (dest))
      if (REG_P (dest) && !REG_ATTRS (dest))
        {
        {
          rtx src = SET_SRC (x);
          rtx src = SET_SRC (x);
 
 
          while (GET_CODE (src) == SIGN_EXTEND
          while (GET_CODE (src) == SIGN_EXTEND
                 || GET_CODE (src) == ZERO_EXTEND
                 || GET_CODE (src) == ZERO_EXTEND
                 || GET_CODE (src) == TRUNCATE
                 || GET_CODE (src) == TRUNCATE
                 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
                 || (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)))
            src = XEXP (src, 0);
            src = XEXP (src, 0);
 
 
          set_reg_attrs_from_value (dest, src);
          set_reg_attrs_from_value (dest, src);
        }
        }
 
 
      /* ... fall through ...  */
      /* ... fall through ...  */
 
 
    default:
    default:
      {
      {
        const char *fmt = GET_RTX_FORMAT (code);
        const char *fmt = GET_RTX_FORMAT (code);
        int i;
        int i;
        for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
        for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
          {
          {
            if (fmt[i] == 'e')
            if (fmt[i] == 'e')
              reg_scan_mark_refs (XEXP (x, i), insn);
              reg_scan_mark_refs (XEXP (x, i), insn);
            else if (fmt[i] == 'E' && XVEC (x, i) != 0)
            else if (fmt[i] == 'E' && XVEC (x, i) != 0)
              {
              {
                int j;
                int j;
                for (j = XVECLEN (x, i) - 1; j >= 0; j--)
                for (j = XVECLEN (x, i) - 1; j >= 0; j--)
                  reg_scan_mark_refs (XVECEXP (x, i, j), insn);
                  reg_scan_mark_refs (XVECEXP (x, i, j), insn);
              }
              }
          }
          }
      }
      }
    }
    }
}
}


 
 
/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
/* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
   is also in C2.  */
   is also in C2.  */
int
int
reg_class_subset_p (enum reg_class c1, enum reg_class c2)
reg_class_subset_p (enum reg_class c1, enum reg_class c2)
{
{
  return (c1 == c2
  return (c1 == c2
          || c2 == ALL_REGS
          || c2 == ALL_REGS
          || hard_reg_set_subset_p (reg_class_contents[(int) c1],
          || hard_reg_set_subset_p (reg_class_contents[(int) c1],
                                   reg_class_contents[(int) c2]));
                                   reg_class_contents[(int) c2]));
}
}
 
 
/* Return nonzero if there is a register that is in both C1 and C2.  */
/* Return nonzero if there is a register that is in both C1 and C2.  */
int
int
reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
reg_classes_intersect_p (enum reg_class c1, enum reg_class c2)
{
{
  return (c1 == c2
  return (c1 == c2
          || c1 == ALL_REGS
          || c1 == ALL_REGS
          || c2 == ALL_REGS
          || c2 == ALL_REGS
          || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
          || hard_reg_set_intersect_p (reg_class_contents[(int) c1],
                                      reg_class_contents[(int) c2]));
                                      reg_class_contents[(int) c2]));
}
}
 
 


 
 
/* Passes for keeping and updating info about modes of registers
/* Passes for keeping and updating info about modes of registers
   inside subregisters.  */
   inside subregisters.  */
 
 
#ifdef CANNOT_CHANGE_MODE_CLASS
#ifdef CANNOT_CHANGE_MODE_CLASS
 
 
struct subregs_of_mode_node
struct subregs_of_mode_node
{
{
  unsigned int block;
  unsigned int block;
  unsigned char modes[MAX_MACHINE_MODE];
  unsigned char modes[MAX_MACHINE_MODE];
};
};
 
 
static htab_t subregs_of_mode;
static htab_t subregs_of_mode;
 
 
static hashval_t
static hashval_t
som_hash (const void *x)
som_hash (const void *x)
{
{
  const struct subregs_of_mode_node *const a =
  const struct subregs_of_mode_node *const a =
    (const struct subregs_of_mode_node *) x;
    (const struct subregs_of_mode_node *) x;
  return a->block;
  return a->block;
}
}
 
 
static int
static int
som_eq (const void *x, const void *y)
som_eq (const void *x, const void *y)
{
{
  const struct subregs_of_mode_node *const a =
  const struct subregs_of_mode_node *const a =
    (const struct subregs_of_mode_node *) x;
    (const struct subregs_of_mode_node *) x;
  const struct subregs_of_mode_node *const b =
  const struct subregs_of_mode_node *const b =
    (const struct subregs_of_mode_node *) y;
    (const struct subregs_of_mode_node *) y;
  return a->block == b->block;
  return a->block == b->block;
}
}
 
 
static void
static void
record_subregs_of_mode (rtx subreg)
record_subregs_of_mode (rtx subreg)
{
{
  struct subregs_of_mode_node dummy, *node;
  struct subregs_of_mode_node dummy, *node;
  enum machine_mode mode;
  enum machine_mode mode;
  unsigned int regno;
  unsigned int regno;
  void **slot;
  void **slot;
 
 
  if (!REG_P (SUBREG_REG (subreg)))
  if (!REG_P (SUBREG_REG (subreg)))
    return;
    return;
 
 
  regno = REGNO (SUBREG_REG (subreg));
  regno = REGNO (SUBREG_REG (subreg));
  mode = GET_MODE (subreg);
  mode = GET_MODE (subreg);
 
 
  if (regno < FIRST_PSEUDO_REGISTER)
  if (regno < FIRST_PSEUDO_REGISTER)
    return;
    return;
 
 
  dummy.block = regno & -8;
  dummy.block = regno & -8;
  slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
  slot = htab_find_slot_with_hash (subregs_of_mode, &dummy,
                                   dummy.block, INSERT);
                                   dummy.block, INSERT);
  node = (struct subregs_of_mode_node *) *slot;
  node = (struct subregs_of_mode_node *) *slot;
  if (node == NULL)
  if (node == NULL)
    {
    {
      node = XCNEW (struct subregs_of_mode_node);
      node = XCNEW (struct subregs_of_mode_node);
      node->block = regno & -8;
      node->block = regno & -8;
      *slot = node;
      *slot = node;
    }
    }
 
 
  node->modes[mode] |= 1 << (regno & 7);
  node->modes[mode] |= 1 << (regno & 7);
}
}
 
 
/* Call record_subregs_of_mode for all the subregs in X.  */
/* Call record_subregs_of_mode for all the subregs in X.  */
static void
static void
find_subregs_of_mode (rtx x)
find_subregs_of_mode (rtx x)
{
{
  enum rtx_code code = GET_CODE (x);
  enum rtx_code code = GET_CODE (x);
  const char * const fmt = GET_RTX_FORMAT (code);
  const char * const fmt = GET_RTX_FORMAT (code);
  int i;
  int i;
 
 
  if (code == SUBREG)
  if (code == SUBREG)
    record_subregs_of_mode (x);
    record_subregs_of_mode (x);
 
 
  /* Time for some deep diving.  */
  /* Time for some deep diving.  */
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        find_subregs_of_mode (XEXP (x, i));
        find_subregs_of_mode (XEXP (x, i));
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          int j;
          int j;
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
          for (j = XVECLEN (x, i) - 1; j >= 0; j--)
            find_subregs_of_mode (XVECEXP (x, i, j));
            find_subregs_of_mode (XVECEXP (x, i, j));
        }
        }
    }
    }
}
}
 
 
void
void
init_subregs_of_mode (void)
init_subregs_of_mode (void)
{
{
  basic_block bb;
  basic_block bb;
  rtx insn;
  rtx insn;
 
 
  if (subregs_of_mode)
  if (subregs_of_mode)
    htab_empty (subregs_of_mode);
    htab_empty (subregs_of_mode);
  else
  else
    subregs_of_mode = htab_create (100, som_hash, som_eq, free);
    subregs_of_mode = htab_create (100, som_hash, som_eq, free);
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    FOR_BB_INSNS (bb, insn)
    FOR_BB_INSNS (bb, insn)
    if (INSN_P (insn))
    if (INSN_P (insn))
      find_subregs_of_mode (PATTERN (insn));
      find_subregs_of_mode (PATTERN (insn));
}
}
 
 
/* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
/* Return 1 if REGNO has had an invalid mode change in CLASS from FROM
   mode.  */
   mode.  */
bool
bool
invalid_mode_change_p (unsigned int regno,
invalid_mode_change_p (unsigned int regno,
                       enum reg_class rclass ATTRIBUTE_UNUSED,
                       enum reg_class rclass ATTRIBUTE_UNUSED,
                       enum machine_mode from)
                       enum machine_mode from)
{
{
  struct subregs_of_mode_node dummy, *node;
  struct subregs_of_mode_node dummy, *node;
  unsigned int to;
  unsigned int to;
  unsigned char mask;
  unsigned char mask;
 
 
  gcc_assert (subregs_of_mode);
  gcc_assert (subregs_of_mode);
  dummy.block = regno & -8;
  dummy.block = regno & -8;
  node = (struct subregs_of_mode_node *)
  node = (struct subregs_of_mode_node *)
    htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
    htab_find_with_hash (subregs_of_mode, &dummy, dummy.block);
  if (node == NULL)
  if (node == NULL)
    return false;
    return false;
 
 
  mask = 1 << (regno & 7);
  mask = 1 << (regno & 7);
  for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
  for (to = VOIDmode; to < NUM_MACHINE_MODES; to++)
    if (node->modes[to] & mask)
    if (node->modes[to] & mask)
      if (CANNOT_CHANGE_MODE_CLASS (from, (enum machine_mode) to, rclass))
      if (CANNOT_CHANGE_MODE_CLASS (from, (enum machine_mode) to, rclass))
        return true;
        return true;
 
 
  return false;
  return false;
}
}
 
 
void
void
finish_subregs_of_mode (void)
finish_subregs_of_mode (void)
{
{
  htab_delete (subregs_of_mode);
  htab_delete (subregs_of_mode);
  subregs_of_mode = 0;
  subregs_of_mode = 0;
}
}
#else
#else
void
void
init_subregs_of_mode (void)
init_subregs_of_mode (void)
{
{
}
}
void
void
finish_subregs_of_mode (void)
finish_subregs_of_mode (void)
{
{
}
}
 
 
#endif /* CANNOT_CHANGE_MODE_CLASS */
#endif /* CANNOT_CHANGE_MODE_CLASS */
 
 
#include "gt-reginfo.h"
#include "gt-reginfo.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.