OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc1/] [gcc/] [tree-outof-ssa.c] - Diff between revs 280 and 338

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 280 Rev 338
/* Convert a program in SSA form into Normal form.
/* Convert a program in SSA form into Normal form.
   Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Andrew Macleod <amacleod@redhat.com>
   Contributed by Andrew Macleod <amacleod@redhat.com>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
the Free Software Foundation; either version 3, or (at your option)
any later version.
any later version.
 
 
GCC is distributed in the hope that it will be useful,
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "tree.h"
#include "tree.h"
#include "ggc.h"
#include "ggc.h"
#include "basic-block.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "bitmap.h"
#include "bitmap.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "toplev.h"
#include "toplev.h"
#include "expr.h"
#include "expr.h"
#include "ssaexpand.h"
#include "ssaexpand.h"
 
 
 
 
DEF_VEC_I(source_location);
DEF_VEC_I(source_location);
DEF_VEC_ALLOC_I(source_location,heap);
DEF_VEC_ALLOC_I(source_location,heap);
 
 
/* Used to hold all the components required to do SSA PHI elimination.
/* Used to hold all the components required to do SSA PHI elimination.
   The node and pred/succ list is a simple linear list of nodes and
   The node and pred/succ list is a simple linear list of nodes and
   edges represented as pairs of nodes.
   edges represented as pairs of nodes.
 
 
   The predecessor and successor list:  Nodes are entered in pairs, where
   The predecessor and successor list:  Nodes are entered in pairs, where
   [0] ->PRED, [1]->SUCC.  All the even indexes in the array represent
   [0] ->PRED, [1]->SUCC.  All the even indexes in the array represent
   predecessors, all the odd elements are successors.
   predecessors, all the odd elements are successors.
 
 
   Rationale:
   Rationale:
   When implemented as bitmaps, very large programs SSA->Normal times were
   When implemented as bitmaps, very large programs SSA->Normal times were
   being dominated by clearing the interference graph.
   being dominated by clearing the interference graph.
 
 
   Typically this list of edges is extremely small since it only includes
   Typically this list of edges is extremely small since it only includes
   PHI results and uses from a single edge which have not coalesced with
   PHI results and uses from a single edge which have not coalesced with
   each other.  This means that no virtual PHI nodes are included, and
   each other.  This means that no virtual PHI nodes are included, and
   empirical evidence suggests that the number of edges rarely exceed
   empirical evidence suggests that the number of edges rarely exceed
   3, and in a bootstrap of GCC, the maximum size encountered was 7.
   3, and in a bootstrap of GCC, the maximum size encountered was 7.
   This also limits the number of possible nodes that are involved to
   This also limits the number of possible nodes that are involved to
   rarely more than 6, and in the bootstrap of gcc, the maximum number
   rarely more than 6, and in the bootstrap of gcc, the maximum number
   of nodes encountered was 12.  */
   of nodes encountered was 12.  */
 
 
typedef struct _elim_graph {
typedef struct _elim_graph {
  /* Size of the elimination vectors.  */
  /* Size of the elimination vectors.  */
  int size;
  int size;
 
 
  /* List of nodes in the elimination graph.  */
  /* List of nodes in the elimination graph.  */
  VEC(int,heap) *nodes;
  VEC(int,heap) *nodes;
 
 
  /*  The predecessor and successor edge list.  */
  /*  The predecessor and successor edge list.  */
  VEC(int,heap) *edge_list;
  VEC(int,heap) *edge_list;
 
 
  /* Source locus on each edge */
  /* Source locus on each edge */
  VEC(source_location,heap) *edge_locus;
  VEC(source_location,heap) *edge_locus;
 
 
  /* Visited vector.  */
  /* Visited vector.  */
  sbitmap visited;
  sbitmap visited;
 
 
  /* Stack for visited nodes.  */
  /* Stack for visited nodes.  */
  VEC(int,heap) *stack;
  VEC(int,heap) *stack;
 
 
  /* The variable partition map.  */
  /* The variable partition map.  */
  var_map map;
  var_map map;
 
 
  /* Edge being eliminated by this graph.  */
  /* Edge being eliminated by this graph.  */
  edge e;
  edge e;
 
 
  /* List of constant copies to emit.  These are pushed on in pairs.  */
  /* List of constant copies to emit.  These are pushed on in pairs.  */
  VEC(int,heap) *const_dests;
  VEC(int,heap) *const_dests;
  VEC(tree,heap) *const_copies;
  VEC(tree,heap) *const_copies;
 
 
  /* Source locations for any constant copies.  */
  /* Source locations for any constant copies.  */
  VEC(source_location,heap) *copy_locus;
  VEC(source_location,heap) *copy_locus;
} *elim_graph;
} *elim_graph;
 
 
 
 
/* For an edge E find out a good source location to associate with
/* For an edge E find out a good source location to associate with
   instructions inserted on edge E.  If E has an implicit goto set,
   instructions inserted on edge E.  If E has an implicit goto set,
   use its location.  Otherwise search instructions in predecessors
   use its location.  Otherwise search instructions in predecessors
   of E for a location, and use that one.  That makes sense because
   of E for a location, and use that one.  That makes sense because
   we insert on edges for PHI nodes, and effects of PHIs happen on
   we insert on edges for PHI nodes, and effects of PHIs happen on
   the end of the predecessor conceptually.  */
   the end of the predecessor conceptually.  */
 
 
static void
static void
set_location_for_edge (edge e)
set_location_for_edge (edge e)
{
{
  if (e->goto_locus)
  if (e->goto_locus)
    {
    {
      set_curr_insn_source_location (e->goto_locus);
      set_curr_insn_source_location (e->goto_locus);
      set_curr_insn_block (e->goto_block);
      set_curr_insn_block (e->goto_block);
    }
    }
  else
  else
    {
    {
      basic_block bb = e->src;
      basic_block bb = e->src;
      gimple_stmt_iterator gsi;
      gimple_stmt_iterator gsi;
 
 
      do
      do
        {
        {
          for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
          for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
            {
            {
              gimple stmt = gsi_stmt (gsi);
              gimple stmt = gsi_stmt (gsi);
              if (is_gimple_debug (stmt))
              if (is_gimple_debug (stmt))
                continue;
                continue;
              if (gimple_has_location (stmt) || gimple_block (stmt))
              if (gimple_has_location (stmt) || gimple_block (stmt))
                {
                {
                  set_curr_insn_source_location (gimple_location (stmt));
                  set_curr_insn_source_location (gimple_location (stmt));
                  set_curr_insn_block (gimple_block (stmt));
                  set_curr_insn_block (gimple_block (stmt));
                  return;
                  return;
                }
                }
            }
            }
          /* Nothing found in this basic block.  Make a half-assed attempt
          /* Nothing found in this basic block.  Make a half-assed attempt
             to continue with another block.  */
             to continue with another block.  */
          if (single_pred_p (bb))
          if (single_pred_p (bb))
            bb = single_pred (bb);
            bb = single_pred (bb);
          else
          else
            bb = e->src;
            bb = e->src;
        }
        }
      while (bb != e->src);
      while (bb != e->src);
    }
    }
}
}
 
 
/* Emit insns to copy SRC into DEST converting SRC if necessary.  As
/* Emit insns to copy SRC into DEST converting SRC if necessary.  As
   SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
   SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
   which we deduce the size to copy in that case.  */
   which we deduce the size to copy in that case.  */
 
 
static inline rtx
static inline rtx
emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
{
{
  rtx seq;
  rtx seq;
 
 
  start_sequence ();
  start_sequence ();
 
 
  if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
  if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
    src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
    src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
  if (GET_MODE (src) == BLKmode)
  if (GET_MODE (src) == BLKmode)
    {
    {
      gcc_assert (GET_MODE (dest) == BLKmode);
      gcc_assert (GET_MODE (dest) == BLKmode);
      emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
      emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
    }
    }
  else
  else
    emit_move_insn (dest, src);
    emit_move_insn (dest, src);
 
 
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  return seq;
  return seq;
}
}
 
 
/* Insert a copy instruction from partition SRC to DEST onto edge E.  */
/* Insert a copy instruction from partition SRC to DEST onto edge E.  */
 
 
static void
static void
insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
{
{
  tree var;
  tree var;
  rtx seq;
  rtx seq;
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file,
      fprintf (dump_file,
               "Inserting a partition copy on edge BB%d->BB%d :"
               "Inserting a partition copy on edge BB%d->BB%d :"
               "PART.%d = PART.%d",
               "PART.%d = PART.%d",
               e->src->index,
               e->src->index,
               e->dest->index, dest, src);
               e->dest->index, dest, src);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
 
 
  gcc_assert (SA.partition_to_pseudo[dest]);
  gcc_assert (SA.partition_to_pseudo[dest]);
  gcc_assert (SA.partition_to_pseudo[src]);
  gcc_assert (SA.partition_to_pseudo[src]);
 
 
  set_location_for_edge (e);
  set_location_for_edge (e);
  /* If a locus is provided, override the default.  */
  /* If a locus is provided, override the default.  */
  if (locus)
  if (locus)
    set_curr_insn_source_location (locus);
    set_curr_insn_source_location (locus);
 
 
  var = partition_to_var (SA.map, src);
  var = partition_to_var (SA.map, src);
  seq = emit_partition_copy (SA.partition_to_pseudo[dest],
  seq = emit_partition_copy (SA.partition_to_pseudo[dest],
                             SA.partition_to_pseudo[src],
                             SA.partition_to_pseudo[src],
                             TYPE_UNSIGNED (TREE_TYPE (var)),
                             TYPE_UNSIGNED (TREE_TYPE (var)),
                             var);
                             var);
 
 
  insert_insn_on_edge (seq, e);
  insert_insn_on_edge (seq, e);
}
}
 
 
/* Insert a copy instruction from expression SRC to partition DEST
/* Insert a copy instruction from expression SRC to partition DEST
   onto edge E.  */
   onto edge E.  */
 
 
static void
static void
insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
{
{
  rtx seq, x;
  rtx seq, x;
  enum machine_mode dest_mode, src_mode;
  enum machine_mode dest_mode, src_mode;
  int unsignedp;
  int unsignedp;
  tree var;
  tree var;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file,
      fprintf (dump_file,
               "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
               "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
               e->src->index,
               e->src->index,
               e->dest->index, dest);
               e->dest->index, dest);
      print_generic_expr (dump_file, src, TDF_SLIM);
      print_generic_expr (dump_file, src, TDF_SLIM);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
 
 
  gcc_assert (SA.partition_to_pseudo[dest]);
  gcc_assert (SA.partition_to_pseudo[dest]);
 
 
  set_location_for_edge (e);
  set_location_for_edge (e);
  /* If a locus is provided, override the default.  */
  /* If a locus is provided, override the default.  */
  if (locus)
  if (locus)
    set_curr_insn_source_location (locus);
    set_curr_insn_source_location (locus);
 
 
  start_sequence ();
  start_sequence ();
 
 
  var = SSA_NAME_VAR (partition_to_var (SA.map, dest));
  var = SSA_NAME_VAR (partition_to_var (SA.map, dest));
  src_mode = TYPE_MODE (TREE_TYPE (src));
  src_mode = TYPE_MODE (TREE_TYPE (src));
  dest_mode = promote_decl_mode (var, &unsignedp);
  dest_mode = promote_decl_mode (var, &unsignedp);
  gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var)));
  gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var)));
  gcc_assert (dest_mode == GET_MODE (SA.partition_to_pseudo[dest]));
  gcc_assert (dest_mode == GET_MODE (SA.partition_to_pseudo[dest]));
 
 
  if (src_mode != dest_mode)
  if (src_mode != dest_mode)
    {
    {
      x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
      x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
      x = convert_modes (dest_mode, src_mode, x, unsignedp);
      x = convert_modes (dest_mode, src_mode, x, unsignedp);
    }
    }
  else if (src_mode == BLKmode)
  else if (src_mode == BLKmode)
    {
    {
      x = SA.partition_to_pseudo[dest];
      x = SA.partition_to_pseudo[dest];
      store_expr (src, x, 0, false);
      store_expr (src, x, 0, false);
    }
    }
  else
  else
    x = expand_expr (src, SA.partition_to_pseudo[dest],
    x = expand_expr (src, SA.partition_to_pseudo[dest],
                     dest_mode, EXPAND_NORMAL);
                     dest_mode, EXPAND_NORMAL);
 
 
  if (x != SA.partition_to_pseudo[dest])
  if (x != SA.partition_to_pseudo[dest])
    emit_move_insn (SA.partition_to_pseudo[dest], x);
    emit_move_insn (SA.partition_to_pseudo[dest], x);
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  insert_insn_on_edge (seq, e);
  insert_insn_on_edge (seq, e);
}
}
 
 
/* Insert a copy instruction from RTL expression SRC to partition DEST
/* Insert a copy instruction from RTL expression SRC to partition DEST
   onto edge E.  */
   onto edge E.  */
 
 
static void
static void
insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
                            source_location locus)
                            source_location locus)
{
{
  rtx seq;
  rtx seq;
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file,
      fprintf (dump_file,
               "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
               "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
               e->src->index,
               e->src->index,
               e->dest->index, dest);
               e->dest->index, dest);
      print_simple_rtl (dump_file, src);
      print_simple_rtl (dump_file, src);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
 
 
  gcc_assert (SA.partition_to_pseudo[dest]);
  gcc_assert (SA.partition_to_pseudo[dest]);
 
 
  set_location_for_edge (e);
  set_location_for_edge (e);
  /* If a locus is provided, override the default.  */
  /* If a locus is provided, override the default.  */
  if (locus)
  if (locus)
    set_curr_insn_source_location (locus);
    set_curr_insn_source_location (locus);
 
 
  /* We give the destination as sizeexp in case src/dest are BLKmode
  /* We give the destination as sizeexp in case src/dest are BLKmode
     mems.  Usually we give the source.  As we result from SSA names
     mems.  Usually we give the source.  As we result from SSA names
     the left and right size should be the same (and no WITH_SIZE_EXPR
     the left and right size should be the same (and no WITH_SIZE_EXPR
     involved), so it doesn't matter.  */
     involved), so it doesn't matter.  */
  seq = emit_partition_copy (SA.partition_to_pseudo[dest],
  seq = emit_partition_copy (SA.partition_to_pseudo[dest],
                             src, unsignedsrcp,
                             src, unsignedsrcp,
                             partition_to_var (SA.map, dest));
                             partition_to_var (SA.map, dest));
 
 
  insert_insn_on_edge (seq, e);
  insert_insn_on_edge (seq, e);
}
}
 
 
/* Insert a copy instruction from partition SRC to RTL lvalue DEST
/* Insert a copy instruction from partition SRC to RTL lvalue DEST
   onto edge E.  */
   onto edge E.  */
 
 
static void
static void
insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
{
{
  tree var;
  tree var;
  rtx seq;
  rtx seq;
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file,
      fprintf (dump_file,
               "Inserting a temp copy on edge BB%d->BB%d : ",
               "Inserting a temp copy on edge BB%d->BB%d : ",
               e->src->index,
               e->src->index,
               e->dest->index);
               e->dest->index);
      print_simple_rtl (dump_file, dest);
      print_simple_rtl (dump_file, dest);
      fprintf (dump_file, "= PART.%d\n", src);
      fprintf (dump_file, "= PART.%d\n", src);
    }
    }
 
 
  gcc_assert (SA.partition_to_pseudo[src]);
  gcc_assert (SA.partition_to_pseudo[src]);
 
 
  set_location_for_edge (e);
  set_location_for_edge (e);
  /* If a locus is provided, override the default.  */
  /* If a locus is provided, override the default.  */
  if (locus)
  if (locus)
    set_curr_insn_source_location (locus);
    set_curr_insn_source_location (locus);
 
 
  var = partition_to_var (SA.map, src);
  var = partition_to_var (SA.map, src);
  seq = emit_partition_copy (dest,
  seq = emit_partition_copy (dest,
                             SA.partition_to_pseudo[src],
                             SA.partition_to_pseudo[src],
                             TYPE_UNSIGNED (TREE_TYPE (var)),
                             TYPE_UNSIGNED (TREE_TYPE (var)),
                             var);
                             var);
 
 
  insert_insn_on_edge (seq, e);
  insert_insn_on_edge (seq, e);
}
}
 
 
 
 
/* Create an elimination graph with SIZE nodes and associated data
/* Create an elimination graph with SIZE nodes and associated data
   structures.  */
   structures.  */
 
 
static elim_graph
static elim_graph
new_elim_graph (int size)
new_elim_graph (int size)
{
{
  elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
  elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
 
 
  g->nodes = VEC_alloc (int, heap, 30);
  g->nodes = VEC_alloc (int, heap, 30);
  g->const_dests = VEC_alloc (int, heap, 20);
  g->const_dests = VEC_alloc (int, heap, 20);
  g->const_copies = VEC_alloc (tree, heap, 20);
  g->const_copies = VEC_alloc (tree, heap, 20);
  g->copy_locus = VEC_alloc (source_location, heap, 10);
  g->copy_locus = VEC_alloc (source_location, heap, 10);
  g->edge_list = VEC_alloc (int, heap, 20);
  g->edge_list = VEC_alloc (int, heap, 20);
  g->edge_locus = VEC_alloc (source_location, heap, 10);
  g->edge_locus = VEC_alloc (source_location, heap, 10);
  g->stack = VEC_alloc (int, heap, 30);
  g->stack = VEC_alloc (int, heap, 30);
 
 
  g->visited = sbitmap_alloc (size);
  g->visited = sbitmap_alloc (size);
 
 
  return g;
  return g;
}
}
 
 
 
 
/* Empty elimination graph G.  */
/* Empty elimination graph G.  */
 
 
static inline void
static inline void
clear_elim_graph (elim_graph g)
clear_elim_graph (elim_graph g)
{
{
  VEC_truncate (int, g->nodes, 0);
  VEC_truncate (int, g->nodes, 0);
  VEC_truncate (int, g->edge_list, 0);
  VEC_truncate (int, g->edge_list, 0);
  VEC_truncate (source_location, g->edge_locus, 0);
  VEC_truncate (source_location, g->edge_locus, 0);
}
}
 
 
 
 
/* Delete elimination graph G.  */
/* Delete elimination graph G.  */
 
 
static inline void
static inline void
delete_elim_graph (elim_graph g)
delete_elim_graph (elim_graph g)
{
{
  sbitmap_free (g->visited);
  sbitmap_free (g->visited);
  VEC_free (int, heap, g->stack);
  VEC_free (int, heap, g->stack);
  VEC_free (int, heap, g->edge_list);
  VEC_free (int, heap, g->edge_list);
  VEC_free (tree, heap, g->const_copies);
  VEC_free (tree, heap, g->const_copies);
  VEC_free (int, heap, g->const_dests);
  VEC_free (int, heap, g->const_dests);
  VEC_free (int, heap, g->nodes);
  VEC_free (int, heap, g->nodes);
  VEC_free (source_location, heap, g->copy_locus);
  VEC_free (source_location, heap, g->copy_locus);
  VEC_free (source_location, heap, g->edge_locus);
  VEC_free (source_location, heap, g->edge_locus);
 
 
  free (g);
  free (g);
}
}
 
 
 
 
/* Return the number of nodes in graph G.  */
/* Return the number of nodes in graph G.  */
 
 
static inline int
static inline int
elim_graph_size (elim_graph g)
elim_graph_size (elim_graph g)
{
{
  return VEC_length (int, g->nodes);
  return VEC_length (int, g->nodes);
}
}
 
 
 
 
/* Add NODE to graph G, if it doesn't exist already.  */
/* Add NODE to graph G, if it doesn't exist already.  */
 
 
static inline void
static inline void
elim_graph_add_node (elim_graph g, int node)
elim_graph_add_node (elim_graph g, int node)
{
{
  int x;
  int x;
  int t;
  int t;
 
 
  for (x = 0; VEC_iterate (int, g->nodes, x, t); x++)
  for (x = 0; VEC_iterate (int, g->nodes, x, t); x++)
    if (t == node)
    if (t == node)
      return;
      return;
  VEC_safe_push (int, heap, g->nodes, node);
  VEC_safe_push (int, heap, g->nodes, node);
}
}
 
 
 
 
/* Add the edge PRED->SUCC to graph G.  */
/* Add the edge PRED->SUCC to graph G.  */
 
 
static inline void
static inline void
elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus)
{
{
  VEC_safe_push (int, heap, g->edge_list, pred);
  VEC_safe_push (int, heap, g->edge_list, pred);
  VEC_safe_push (int, heap, g->edge_list, succ);
  VEC_safe_push (int, heap, g->edge_list, succ);
  VEC_safe_push (source_location, heap, g->edge_locus, locus);
  VEC_safe_push (source_location, heap, g->edge_locus, locus);
}
}
 
 
 
 
/* Remove an edge from graph G for which NODE is the predecessor, and
/* Remove an edge from graph G for which NODE is the predecessor, and
   return the successor node.  -1 is returned if there is no such edge.  */
   return the successor node.  -1 is returned if there is no such edge.  */
 
 
static inline int
static inline int
elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus)
{
{
  int y;
  int y;
  unsigned x;
  unsigned x;
  for (x = 0; x < VEC_length (int, g->edge_list); x += 2)
  for (x = 0; x < VEC_length (int, g->edge_list); x += 2)
    if (VEC_index (int, g->edge_list, x) == node)
    if (VEC_index (int, g->edge_list, x) == node)
      {
      {
        VEC_replace (int, g->edge_list, x, -1);
        VEC_replace (int, g->edge_list, x, -1);
        y = VEC_index (int, g->edge_list, x + 1);
        y = VEC_index (int, g->edge_list, x + 1);
        VEC_replace (int, g->edge_list, x + 1, -1);
        VEC_replace (int, g->edge_list, x + 1, -1);
        *locus = VEC_index (source_location, g->edge_locus, x / 2);
        *locus = VEC_index (source_location, g->edge_locus, x / 2);
        VEC_replace (source_location, g->edge_locus, x / 2, UNKNOWN_LOCATION);
        VEC_replace (source_location, g->edge_locus, x / 2, UNKNOWN_LOCATION);
        return y;
        return y;
      }
      }
  *locus = UNKNOWN_LOCATION;
  *locus = UNKNOWN_LOCATION;
  return -1;
  return -1;
}
}
 
 
 
 
/* Find all the nodes in GRAPH which are successors to NODE in the
/* Find all the nodes in GRAPH which are successors to NODE in the
   edge list.  VAR will hold the partition number found.  CODE is the
   edge list.  VAR will hold the partition number found.  CODE is the
   code fragment executed for every node found.  */
   code fragment executed for every node found.  */
 
 
#define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE)         \
#define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE)         \
do {                                                                    \
do {                                                                    \
  unsigned x_;                                                          \
  unsigned x_;                                                          \
  int y_;                                                               \
  int y_;                                                               \
  for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2)       \
  for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2)       \
    {                                                                   \
    {                                                                   \
      y_ = VEC_index (int, (GRAPH)->edge_list, x_);                     \
      y_ = VEC_index (int, (GRAPH)->edge_list, x_);                     \
      if (y_ != (NODE))                                                 \
      if (y_ != (NODE))                                                 \
        continue;                                                       \
        continue;                                                       \
      (VAR) = VEC_index (int, (GRAPH)->edge_list, x_ + 1);              \
      (VAR) = VEC_index (int, (GRAPH)->edge_list, x_ + 1);              \
      (LOCUS) = VEC_index (source_location, (GRAPH)->edge_locus, x_ / 2); \
      (LOCUS) = VEC_index (source_location, (GRAPH)->edge_locus, x_ / 2); \
      CODE;                                                             \
      CODE;                                                             \
    }                                                                   \
    }                                                                   \
} while (0)
} while (0)
 
 
 
 
/* Find all the nodes which are predecessors of NODE in the edge list for
/* Find all the nodes which are predecessors of NODE in the edge list for
   GRAPH.  VAR will hold the partition number found.  CODE is the
   GRAPH.  VAR will hold the partition number found.  CODE is the
   code fragment executed for every node found.  */
   code fragment executed for every node found.  */
 
 
#define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE)         \
#define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE)         \
do {                                                                    \
do {                                                                    \
  unsigned x_;                                                          \
  unsigned x_;                                                          \
  int y_;                                                               \
  int y_;                                                               \
  for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2)       \
  for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2)       \
    {                                                                   \
    {                                                                   \
      y_ = VEC_index (int, (GRAPH)->edge_list, x_ + 1);                 \
      y_ = VEC_index (int, (GRAPH)->edge_list, x_ + 1);                 \
      if (y_ != (NODE))                                                 \
      if (y_ != (NODE))                                                 \
        continue;                                                       \
        continue;                                                       \
      (VAR) = VEC_index (int, (GRAPH)->edge_list, x_);                  \
      (VAR) = VEC_index (int, (GRAPH)->edge_list, x_);                  \
      (LOCUS) = VEC_index (source_location, (GRAPH)->edge_locus, x_ / 2); \
      (LOCUS) = VEC_index (source_location, (GRAPH)->edge_locus, x_ / 2); \
      CODE;                                                             \
      CODE;                                                             \
    }                                                                   \
    }                                                                   \
} while (0)
} while (0)
 
 
 
 
/* Add T to elimination graph G.  */
/* Add T to elimination graph G.  */
 
 
static inline void
static inline void
eliminate_name (elim_graph g, int T)
eliminate_name (elim_graph g, int T)
{
{
  elim_graph_add_node (g, T);
  elim_graph_add_node (g, T);
}
}
 
 
 
 
/* Build elimination graph G for basic block BB on incoming PHI edge
/* Build elimination graph G for basic block BB on incoming PHI edge
   G->e.  */
   G->e.  */
 
 
static void
static void
eliminate_build (elim_graph g)
eliminate_build (elim_graph g)
{
{
  tree Ti;
  tree Ti;
  int p0, pi;
  int p0, pi;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
 
 
  clear_elim_graph (g);
  clear_elim_graph (g);
 
 
  for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
  for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
    {
    {
      gimple phi = gsi_stmt (gsi);
      gimple phi = gsi_stmt (gsi);
      source_location locus;
      source_location locus;
 
 
      p0 = var_to_partition (g->map, gimple_phi_result (phi));
      p0 = var_to_partition (g->map, gimple_phi_result (phi));
      /* Ignore results which are not in partitions.  */
      /* Ignore results which are not in partitions.  */
      if (p0 == NO_PARTITION)
      if (p0 == NO_PARTITION)
        continue;
        continue;
 
 
      Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
      Ti = PHI_ARG_DEF (phi, g->e->dest_idx);
      locus = gimple_phi_arg_location_from_edge (phi, g->e);
      locus = gimple_phi_arg_location_from_edge (phi, g->e);
 
 
      /* If this argument is a constant, or a SSA_NAME which is being
      /* If this argument is a constant, or a SSA_NAME which is being
         left in SSA form, just queue a copy to be emitted on this
         left in SSA form, just queue a copy to be emitted on this
         edge.  */
         edge.  */
      if (!phi_ssa_name_p (Ti)
      if (!phi_ssa_name_p (Ti)
          || (TREE_CODE (Ti) == SSA_NAME
          || (TREE_CODE (Ti) == SSA_NAME
              && var_to_partition (g->map, Ti) == NO_PARTITION))
              && var_to_partition (g->map, Ti) == NO_PARTITION))
        {
        {
          /* Save constant copies until all other copies have been emitted
          /* Save constant copies until all other copies have been emitted
             on this edge.  */
             on this edge.  */
          VEC_safe_push (int, heap, g->const_dests, p0);
          VEC_safe_push (int, heap, g->const_dests, p0);
          VEC_safe_push (tree, heap, g->const_copies, Ti);
          VEC_safe_push (tree, heap, g->const_copies, Ti);
          VEC_safe_push (source_location, heap, g->copy_locus, locus);
          VEC_safe_push (source_location, heap, g->copy_locus, locus);
        }
        }
      else
      else
        {
        {
          pi = var_to_partition (g->map, Ti);
          pi = var_to_partition (g->map, Ti);
          if (p0 != pi)
          if (p0 != pi)
            {
            {
              eliminate_name (g, p0);
              eliminate_name (g, p0);
              eliminate_name (g, pi);
              eliminate_name (g, pi);
              elim_graph_add_edge (g, p0, pi, locus);
              elim_graph_add_edge (g, p0, pi, locus);
            }
            }
        }
        }
    }
    }
}
}
 
 
 
 
/* Push successors of T onto the elimination stack for G.  */
/* Push successors of T onto the elimination stack for G.  */
 
 
static void
static void
elim_forward (elim_graph g, int T)
elim_forward (elim_graph g, int T)
{
{
  int S;
  int S;
  source_location locus;
  source_location locus;
 
 
  SET_BIT (g->visited, T);
  SET_BIT (g->visited, T);
  FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
  FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
    {
    {
      if (!TEST_BIT (g->visited, S))
      if (!TEST_BIT (g->visited, S))
        elim_forward (g, S);
        elim_forward (g, S);
    });
    });
  VEC_safe_push (int, heap, g->stack, T);
  VEC_safe_push (int, heap, g->stack, T);
}
}
 
 
 
 
/* Return 1 if there unvisited predecessors of T in graph G.  */
/* Return 1 if there unvisited predecessors of T in graph G.  */
 
 
static int
static int
elim_unvisited_predecessor (elim_graph g, int T)
elim_unvisited_predecessor (elim_graph g, int T)
{
{
  int P;
  int P;
  source_location locus;
  source_location locus;
 
 
  FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
  FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
    {
    {
      if (!TEST_BIT (g->visited, P))
      if (!TEST_BIT (g->visited, P))
        return 1;
        return 1;
    });
    });
  return 0;
  return 0;
}
}
 
 
/* Process predecessors first, and insert a copy.  */
/* Process predecessors first, and insert a copy.  */
 
 
static void
static void
elim_backward (elim_graph g, int T)
elim_backward (elim_graph g, int T)
{
{
  int P;
  int P;
  source_location locus;
  source_location locus;
 
 
  SET_BIT (g->visited, T);
  SET_BIT (g->visited, T);
  FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
  FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
    {
    {
      if (!TEST_BIT (g->visited, P))
      if (!TEST_BIT (g->visited, P))
        {
        {
          elim_backward (g, P);
          elim_backward (g, P);
          insert_partition_copy_on_edge (g->e, P, T, locus);
          insert_partition_copy_on_edge (g->e, P, T, locus);
        }
        }
    });
    });
}
}
 
 
/* Allocate a new pseudo register usable for storing values sitting
/* Allocate a new pseudo register usable for storing values sitting
   in NAME (a decl or SSA name), i.e. with matching mode and attributes.  */
   in NAME (a decl or SSA name), i.e. with matching mode and attributes.  */
 
 
static rtx
static rtx
get_temp_reg (tree name)
get_temp_reg (tree name)
{
{
  tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name;
  tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name;
  tree type = TREE_TYPE (var);
  tree type = TREE_TYPE (var);
  int unsignedp;
  int unsignedp;
  enum machine_mode reg_mode = promote_decl_mode (var, &unsignedp);
  enum machine_mode reg_mode = promote_decl_mode (var, &unsignedp);
  rtx x = gen_reg_rtx (reg_mode);
  rtx x = gen_reg_rtx (reg_mode);
  if (POINTER_TYPE_P (type))
  if (POINTER_TYPE_P (type))
    mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
    mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
  return x;
  return x;
}
}
 
 
/* Insert required copies for T in graph G.  Check for a strongly connected
/* Insert required copies for T in graph G.  Check for a strongly connected
   region, and create a temporary to break the cycle if one is found.  */
   region, and create a temporary to break the cycle if one is found.  */
 
 
static void
static void
elim_create (elim_graph g, int T)
elim_create (elim_graph g, int T)
{
{
  int P, S;
  int P, S;
  source_location locus;
  source_location locus;
 
 
  if (elim_unvisited_predecessor (g, T))
  if (elim_unvisited_predecessor (g, T))
    {
    {
      tree var = partition_to_var (g->map, T);
      tree var = partition_to_var (g->map, T);
      rtx U = get_temp_reg (var);
      rtx U = get_temp_reg (var);
      int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
      int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
 
 
      insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
      insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
      FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
      FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
        {
        {
          if (!TEST_BIT (g->visited, P))
          if (!TEST_BIT (g->visited, P))
            {
            {
              elim_backward (g, P);
              elim_backward (g, P);
              insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
              insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
            }
            }
        });
        });
    }
    }
  else
  else
    {
    {
      S = elim_graph_remove_succ_edge (g, T, &locus);
      S = elim_graph_remove_succ_edge (g, T, &locus);
      if (S != -1)
      if (S != -1)
        {
        {
          SET_BIT (g->visited, T);
          SET_BIT (g->visited, T);
          insert_partition_copy_on_edge (g->e, T, S, locus);
          insert_partition_copy_on_edge (g->e, T, S, locus);
        }
        }
    }
    }
}
}
 
 
 
 
/* Eliminate all the phi nodes on edge E in graph G.  */
/* Eliminate all the phi nodes on edge E in graph G.  */
 
 
static void
static void
eliminate_phi (edge e, elim_graph g)
eliminate_phi (edge e, elim_graph g)
{
{
  int x;
  int x;
 
 
  gcc_assert (VEC_length (tree, g->const_copies) == 0);
  gcc_assert (VEC_length (tree, g->const_copies) == 0);
  gcc_assert (VEC_length (source_location, g->copy_locus) == 0);
  gcc_assert (VEC_length (source_location, g->copy_locus) == 0);
 
 
  /* Abnormal edges already have everything coalesced.  */
  /* Abnormal edges already have everything coalesced.  */
  if (e->flags & EDGE_ABNORMAL)
  if (e->flags & EDGE_ABNORMAL)
    return;
    return;
 
 
  g->e = e;
  g->e = e;
 
 
  eliminate_build (g);
  eliminate_build (g);
 
 
  if (elim_graph_size (g) != 0)
  if (elim_graph_size (g) != 0)
    {
    {
      int part;
      int part;
 
 
      sbitmap_zero (g->visited);
      sbitmap_zero (g->visited);
      VEC_truncate (int, g->stack, 0);
      VEC_truncate (int, g->stack, 0);
 
 
      for (x = 0; VEC_iterate (int, g->nodes, x, part); x++)
      for (x = 0; VEC_iterate (int, g->nodes, x, part); x++)
        {
        {
          if (!TEST_BIT (g->visited, part))
          if (!TEST_BIT (g->visited, part))
            elim_forward (g, part);
            elim_forward (g, part);
        }
        }
 
 
      sbitmap_zero (g->visited);
      sbitmap_zero (g->visited);
      while (VEC_length (int, g->stack) > 0)
      while (VEC_length (int, g->stack) > 0)
        {
        {
          x = VEC_pop (int, g->stack);
          x = VEC_pop (int, g->stack);
          if (!TEST_BIT (g->visited, x))
          if (!TEST_BIT (g->visited, x))
            elim_create (g, x);
            elim_create (g, x);
        }
        }
    }
    }
 
 
  /* If there are any pending constant copies, issue them now.  */
  /* If there are any pending constant copies, issue them now.  */
  while (VEC_length (tree, g->const_copies) > 0)
  while (VEC_length (tree, g->const_copies) > 0)
    {
    {
      int dest;
      int dest;
      tree src;
      tree src;
      source_location locus;
      source_location locus;
 
 
      src = VEC_pop (tree, g->const_copies);
      src = VEC_pop (tree, g->const_copies);
      dest = VEC_pop (int, g->const_dests);
      dest = VEC_pop (int, g->const_dests);
      locus = VEC_pop (source_location, g->copy_locus);
      locus = VEC_pop (source_location, g->copy_locus);
      insert_value_copy_on_edge (e, dest, src, locus);
      insert_value_copy_on_edge (e, dest, src, locus);
    }
    }
}
}
 
 
 
 
/* Remove each argument from PHI.  If an arg was the last use of an SSA_NAME,
/* Remove each argument from PHI.  If an arg was the last use of an SSA_NAME,
   check to see if this allows another PHI node to be removed.  */
   check to see if this allows another PHI node to be removed.  */
 
 
static void
static void
remove_gimple_phi_args (gimple phi)
remove_gimple_phi_args (gimple phi)
{
{
  use_operand_p arg_p;
  use_operand_p arg_p;
  ssa_op_iter iter;
  ssa_op_iter iter;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "Removing Dead PHI definition: ");
      fprintf (dump_file, "Removing Dead PHI definition: ");
      print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
      print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
    }
    }
 
 
  FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
  FOR_EACH_PHI_ARG (arg_p, phi, iter, SSA_OP_USE)
    {
    {
      tree arg = USE_FROM_PTR (arg_p);
      tree arg = USE_FROM_PTR (arg_p);
      if (TREE_CODE (arg) == SSA_NAME)
      if (TREE_CODE (arg) == SSA_NAME)
        {
        {
          /* Remove the reference to the existing argument.  */
          /* Remove the reference to the existing argument.  */
          SET_USE (arg_p, NULL_TREE);
          SET_USE (arg_p, NULL_TREE);
          if (has_zero_uses (arg))
          if (has_zero_uses (arg))
            {
            {
              gimple stmt;
              gimple stmt;
              gimple_stmt_iterator gsi;
              gimple_stmt_iterator gsi;
 
 
              stmt = SSA_NAME_DEF_STMT (arg);
              stmt = SSA_NAME_DEF_STMT (arg);
 
 
              /* Also remove the def if it is a PHI node.  */
              /* Also remove the def if it is a PHI node.  */
              if (gimple_code (stmt) == GIMPLE_PHI)
              if (gimple_code (stmt) == GIMPLE_PHI)
                {
                {
                  remove_gimple_phi_args (stmt);
                  remove_gimple_phi_args (stmt);
                  gsi = gsi_for_stmt (stmt);
                  gsi = gsi_for_stmt (stmt);
                  remove_phi_node (&gsi, true);
                  remove_phi_node (&gsi, true);
                }
                }
 
 
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Remove any PHI node which is a virtual PHI, or a PHI with no uses.  */
/* Remove any PHI node which is a virtual PHI, or a PHI with no uses.  */
 
 
static void
static void
eliminate_useless_phis (void)
eliminate_useless_phis (void)
{
{
  basic_block bb;
  basic_block bb;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  tree result;
  tree result;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
        {
        {
          gimple phi = gsi_stmt (gsi);
          gimple phi = gsi_stmt (gsi);
          result = gimple_phi_result (phi);
          result = gimple_phi_result (phi);
          if (!is_gimple_reg (SSA_NAME_VAR (result)))
          if (!is_gimple_reg (SSA_NAME_VAR (result)))
            {
            {
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
              size_t i;
              size_t i;
              /* There should be no arguments which are not virtual, or the
              /* There should be no arguments which are not virtual, or the
                 results will be incorrect.  */
                 results will be incorrect.  */
              for (i = 0; i < gimple_phi_num_args (phi); i++)
              for (i = 0; i < gimple_phi_num_args (phi); i++)
                {
                {
                  tree arg = PHI_ARG_DEF (phi, i);
                  tree arg = PHI_ARG_DEF (phi, i);
                  if (TREE_CODE (arg) == SSA_NAME
                  if (TREE_CODE (arg) == SSA_NAME
                      && is_gimple_reg (SSA_NAME_VAR (arg)))
                      && is_gimple_reg (SSA_NAME_VAR (arg)))
                    {
                    {
                      fprintf (stderr, "Argument of PHI is not virtual (");
                      fprintf (stderr, "Argument of PHI is not virtual (");
                      print_generic_expr (stderr, arg, TDF_SLIM);
                      print_generic_expr (stderr, arg, TDF_SLIM);
                      fprintf (stderr, "), but the result is :");
                      fprintf (stderr, "), but the result is :");
                      print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
                      print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
                      internal_error ("SSA corruption");
                      internal_error ("SSA corruption");
                    }
                    }
                }
                }
#endif
#endif
              remove_phi_node (&gsi, true);
              remove_phi_node (&gsi, true);
            }
            }
          else
          else
            {
            {
              /* Also remove real PHIs with no uses.  */
              /* Also remove real PHIs with no uses.  */
              if (has_zero_uses (result))
              if (has_zero_uses (result))
                {
                {
                  remove_gimple_phi_args (phi);
                  remove_gimple_phi_args (phi);
                  remove_phi_node (&gsi, true);
                  remove_phi_node (&gsi, true);
                }
                }
              else
              else
                gsi_next (&gsi);
                gsi_next (&gsi);
            }
            }
        }
        }
    }
    }
}
}
 
 
 
 
/* This function will rewrite the current program using the variable mapping
/* This function will rewrite the current program using the variable mapping
   found in MAP.  If the replacement vector VALUES is provided, any
   found in MAP.  If the replacement vector VALUES is provided, any
   occurrences of partitions with non-null entries in the vector will be
   occurrences of partitions with non-null entries in the vector will be
   replaced with the expression in the vector instead of its mapped
   replaced with the expression in the vector instead of its mapped
   variable.  */
   variable.  */
 
 
static void
static void
rewrite_trees (var_map map ATTRIBUTE_UNUSED)
rewrite_trees (var_map map ATTRIBUTE_UNUSED)
{
{
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  basic_block bb;
  basic_block bb;
  /* Search for PHIs where the destination has no partition, but one
  /* Search for PHIs where the destination has no partition, but one
     or more arguments has a partition.  This should not happen and can
     or more arguments has a partition.  This should not happen and can
     create incorrect code.  */
     create incorrect code.  */
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      gimple_stmt_iterator gsi;
      gimple_stmt_iterator gsi;
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
        {
        {
          gimple phi = gsi_stmt (gsi);
          gimple phi = gsi_stmt (gsi);
          tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
          tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
          if (T0 == NULL_TREE)
          if (T0 == NULL_TREE)
            {
            {
              size_t i;
              size_t i;
              for (i = 0; i < gimple_phi_num_args (phi); i++)
              for (i = 0; i < gimple_phi_num_args (phi); i++)
                {
                {
                  tree arg = PHI_ARG_DEF (phi, i);
                  tree arg = PHI_ARG_DEF (phi, i);
 
 
                  if (TREE_CODE (arg) == SSA_NAME
                  if (TREE_CODE (arg) == SSA_NAME
                      && var_to_partition (map, arg) != NO_PARTITION)
                      && var_to_partition (map, arg) != NO_PARTITION)
                    {
                    {
                      fprintf (stderr, "Argument of PHI is in a partition :(");
                      fprintf (stderr, "Argument of PHI is in a partition :(");
                      print_generic_expr (stderr, arg, TDF_SLIM);
                      print_generic_expr (stderr, arg, TDF_SLIM);
                      fprintf (stderr, "), but the result is not :");
                      fprintf (stderr, "), but the result is not :");
                      print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
                      print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
                      internal_error ("SSA corruption");
                      internal_error ("SSA corruption");
                    }
                    }
                }
                }
            }
            }
        }
        }
    }
    }
#endif
#endif
}
}
 
 
/* Given the out-of-ssa info object SA (with prepared partitions)
/* Given the out-of-ssa info object SA (with prepared partitions)
   eliminate all phi nodes in all basic blocks.  Afterwards no
   eliminate all phi nodes in all basic blocks.  Afterwards no
   basic block will have phi nodes anymore and there are possibly
   basic block will have phi nodes anymore and there are possibly
   some RTL instructions inserted on edges.  */
   some RTL instructions inserted on edges.  */
 
 
void
void
expand_phi_nodes (struct ssaexpand *sa)
expand_phi_nodes (struct ssaexpand *sa)
{
{
  basic_block bb;
  basic_block bb;
  elim_graph g = new_elim_graph (sa->map->num_partitions);
  elim_graph g = new_elim_graph (sa->map->num_partitions);
  g->map = sa->map;
  g->map = sa->map;
 
 
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
  FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb)
    if (!gimple_seq_empty_p (phi_nodes (bb)))
    if (!gimple_seq_empty_p (phi_nodes (bb)))
      {
      {
        edge e;
        edge e;
        edge_iterator ei;
        edge_iterator ei;
        FOR_EACH_EDGE (e, ei, bb->preds)
        FOR_EACH_EDGE (e, ei, bb->preds)
          eliminate_phi (e, g);
          eliminate_phi (e, g);
        set_phi_nodes (bb, NULL);
        set_phi_nodes (bb, NULL);
        /* We can't redirect EH edges in RTL land, so we need to do this
        /* We can't redirect EH edges in RTL land, so we need to do this
           here.  Redirection happens only when splitting is necessary,
           here.  Redirection happens only when splitting is necessary,
           which it is only for critical edges, normally.  For EH edges
           which it is only for critical edges, normally.  For EH edges
           it might also be necessary when the successor has more than
           it might also be necessary when the successor has more than
           one predecessor.  In that case the edge is either required to
           one predecessor.  In that case the edge is either required to
           be fallthru (which EH edges aren't), or the predecessor needs
           be fallthru (which EH edges aren't), or the predecessor needs
           to end with a jump (which again, isn't the case with EH edges).
           to end with a jump (which again, isn't the case with EH edges).
           Hence, split all EH edges on which we inserted instructions
           Hence, split all EH edges on which we inserted instructions
           and whose successor has multiple predecessors.  */
           and whose successor has multiple predecessors.  */
        for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
        for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
          {
          {
            if (e->insns.r && (e->flags & EDGE_EH)
            if (e->insns.r && (e->flags & EDGE_EH)
                && !single_pred_p (e->dest))
                && !single_pred_p (e->dest))
              {
              {
                rtx insns = e->insns.r;
                rtx insns = e->insns.r;
                basic_block bb;
                basic_block bb;
                e->insns.r = NULL_RTX;
                e->insns.r = NULL_RTX;
                bb = split_edge (e);
                bb = split_edge (e);
                single_pred_edge (bb)->insns.r = insns;
                single_pred_edge (bb)->insns.r = insns;
              }
              }
            else
            else
              ei_next (&ei);
              ei_next (&ei);
          }
          }
      }
      }
 
 
  delete_elim_graph (g);
  delete_elim_graph (g);
}
}
 
 
 
 
/* Remove the ssa-names in the current function and translate them into normal
/* Remove the ssa-names in the current function and translate them into normal
   compiler variables.  PERFORM_TER is true if Temporary Expression Replacement
   compiler variables.  PERFORM_TER is true if Temporary Expression Replacement
   should also be used.  */
   should also be used.  */
 
 
static void
static void
remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
{
{
  bitmap values = NULL;
  bitmap values = NULL;
  var_map map;
  var_map map;
  unsigned i;
  unsigned i;
 
 
  map = coalesce_ssa_name ();
  map = coalesce_ssa_name ();
 
 
  /* Return to viewing the variable list as just all reference variables after
  /* Return to viewing the variable list as just all reference variables after
     coalescing has been performed.  */
     coalescing has been performed.  */
  partition_view_normal (map, false);
  partition_view_normal (map, false);
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "After Coalescing:\n");
      fprintf (dump_file, "After Coalescing:\n");
      dump_var_map (dump_file, map);
      dump_var_map (dump_file, map);
    }
    }
 
 
  if (perform_ter)
  if (perform_ter)
    {
    {
      values = find_replaceable_exprs (map);
      values = find_replaceable_exprs (map);
      if (values && dump_file && (dump_flags & TDF_DETAILS))
      if (values && dump_file && (dump_flags & TDF_DETAILS))
        dump_replaceable_exprs (dump_file, values);
        dump_replaceable_exprs (dump_file, values);
    }
    }
 
 
  rewrite_trees (map);
  rewrite_trees (map);
 
 
  sa->map = map;
  sa->map = map;
  sa->values = values;
  sa->values = values;
  sa->partition_has_default_def = BITMAP_ALLOC (NULL);
  sa->partition_has_default_def = BITMAP_ALLOC (NULL);
  for (i = 1; i < num_ssa_names; i++)
  for (i = 1; i < num_ssa_names; i++)
    {
    {
      tree t = ssa_name (i);
      tree t = ssa_name (i);
      if (t && SSA_NAME_IS_DEFAULT_DEF (t))
      if (t && SSA_NAME_IS_DEFAULT_DEF (t))
        {
        {
          int p = var_to_partition (map, t);
          int p = var_to_partition (map, t);
          if (p != NO_PARTITION)
          if (p != NO_PARTITION)
            bitmap_set_bit (sa->partition_has_default_def, p);
            bitmap_set_bit (sa->partition_has_default_def, p);
        }
        }
    }
    }
}
}
 
 
 
 
/* If not already done so for basic block BB, assign increasing uids
/* If not already done so for basic block BB, assign increasing uids
   to each of its instructions.  */
   to each of its instructions.  */
 
 
static void
static void
maybe_renumber_stmts_bb (basic_block bb)
maybe_renumber_stmts_bb (basic_block bb)
{
{
  unsigned i = 0;
  unsigned i = 0;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
 
 
  if (!bb->aux)
  if (!bb->aux)
    return;
    return;
  bb->aux = NULL;
  bb->aux = NULL;
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
    {
      gimple stmt = gsi_stmt (gsi);
      gimple stmt = gsi_stmt (gsi);
      gimple_set_uid (stmt, i);
      gimple_set_uid (stmt, i);
      i++;
      i++;
    }
    }
}
}
 
 
 
 
/* Return true if we can determine that the SSA_NAMEs RESULT (a result
/* Return true if we can determine that the SSA_NAMEs RESULT (a result
   of a PHI node) and ARG (one of its arguments) conflict.  Return false
   of a PHI node) and ARG (one of its arguments) conflict.  Return false
   otherwise, also when we simply aren't sure.  */
   otherwise, also when we simply aren't sure.  */
 
 
static bool
static bool
trivially_conflicts_p (basic_block bb, tree result, tree arg)
trivially_conflicts_p (basic_block bb, tree result, tree arg)
{
{
  use_operand_p use;
  use_operand_p use;
  imm_use_iterator imm_iter;
  imm_use_iterator imm_iter;
  gimple defa = SSA_NAME_DEF_STMT (arg);
  gimple defa = SSA_NAME_DEF_STMT (arg);
 
 
  /* If ARG isn't defined in the same block it's too complicated for
  /* If ARG isn't defined in the same block it's too complicated for
     our little mind.  */
     our little mind.  */
  if (gimple_bb (defa) != bb)
  if (gimple_bb (defa) != bb)
    return false;
    return false;
 
 
  FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
  FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
    {
    {
      gimple use_stmt = USE_STMT (use);
      gimple use_stmt = USE_STMT (use);
      if (is_gimple_debug (use_stmt))
      if (is_gimple_debug (use_stmt))
        continue;
        continue;
      /* Now, if there's a use of RESULT that lies outside this basic block,
      /* Now, if there's a use of RESULT that lies outside this basic block,
         then there surely is a conflict with ARG.  */
         then there surely is a conflict with ARG.  */
      if (gimple_bb (use_stmt) != bb)
      if (gimple_bb (use_stmt) != bb)
        return true;
        return true;
      if (gimple_code (use_stmt) == GIMPLE_PHI)
      if (gimple_code (use_stmt) == GIMPLE_PHI)
        continue;
        continue;
      /* The use now is in a real stmt of BB, so if ARG was defined
      /* The use now is in a real stmt of BB, so if ARG was defined
         in a PHI node (like RESULT) both conflict.  */
         in a PHI node (like RESULT) both conflict.  */
      if (gimple_code (defa) == GIMPLE_PHI)
      if (gimple_code (defa) == GIMPLE_PHI)
        return true;
        return true;
      maybe_renumber_stmts_bb (bb);
      maybe_renumber_stmts_bb (bb);
      /* If the use of RESULT occurs after the definition of ARG,
      /* If the use of RESULT occurs after the definition of ARG,
         the two conflict too.  */
         the two conflict too.  */
      if (gimple_uid (defa) < gimple_uid (use_stmt))
      if (gimple_uid (defa) < gimple_uid (use_stmt))
        return true;
        return true;
    }
    }
 
 
  return false;
  return false;
}
}
 
 
 
 
/* Search every PHI node for arguments associated with backedges which
/* Search every PHI node for arguments associated with backedges which
   we can trivially determine will need a copy (the argument is either
   we can trivially determine will need a copy (the argument is either
   not an SSA_NAME or the argument has a different underlying variable
   not an SSA_NAME or the argument has a different underlying variable
   than the PHI result).
   than the PHI result).
 
 
   Insert a copy from the PHI argument to a new destination at the
   Insert a copy from the PHI argument to a new destination at the
   end of the block with the backedge to the top of the loop.  Update
   end of the block with the backedge to the top of the loop.  Update
   the PHI argument to reference this new destination.  */
   the PHI argument to reference this new destination.  */
 
 
static void
static void
insert_backedge_copies (void)
insert_backedge_copies (void)
{
{
  basic_block bb;
  basic_block bb;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      /* Mark block as possibly needing calculation of UIDs.  */
      /* Mark block as possibly needing calculation of UIDs.  */
      bb->aux = &bb->aux;
      bb->aux = &bb->aux;
 
 
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
        {
        {
          gimple phi = gsi_stmt (gsi);
          gimple phi = gsi_stmt (gsi);
          tree result = gimple_phi_result (phi);
          tree result = gimple_phi_result (phi);
          tree result_var;
          tree result_var;
          size_t i;
          size_t i;
 
 
          if (!is_gimple_reg (result))
          if (!is_gimple_reg (result))
            continue;
            continue;
 
 
          result_var = SSA_NAME_VAR (result);
          result_var = SSA_NAME_VAR (result);
          for (i = 0; i < gimple_phi_num_args (phi); i++)
          for (i = 0; i < gimple_phi_num_args (phi); i++)
            {
            {
              tree arg = gimple_phi_arg_def (phi, i);
              tree arg = gimple_phi_arg_def (phi, i);
              edge e = gimple_phi_arg_edge (phi, i);
              edge e = gimple_phi_arg_edge (phi, i);
 
 
              /* If the argument is not an SSA_NAME, then we will need a
              /* If the argument is not an SSA_NAME, then we will need a
                 constant initialization.  If the argument is an SSA_NAME with
                 constant initialization.  If the argument is an SSA_NAME with
                 a different underlying variable then a copy statement will be
                 a different underlying variable then a copy statement will be
                 needed.  */
                 needed.  */
              if ((e->flags & EDGE_DFS_BACK)
              if ((e->flags & EDGE_DFS_BACK)
                  && (TREE_CODE (arg) != SSA_NAME
                  && (TREE_CODE (arg) != SSA_NAME
                      || SSA_NAME_VAR (arg) != result_var
                      || SSA_NAME_VAR (arg) != result_var
                      || trivially_conflicts_p (bb, result, arg)))
                      || trivially_conflicts_p (bb, result, arg)))
                {
                {
                  tree name;
                  tree name;
                  gimple stmt, last = NULL;
                  gimple stmt, last = NULL;
                  gimple_stmt_iterator gsi2;
                  gimple_stmt_iterator gsi2;
 
 
                  gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
                  gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
                  if (!gsi_end_p (gsi2))
                  if (!gsi_end_p (gsi2))
                    last = gsi_stmt (gsi2);
                    last = gsi_stmt (gsi2);
 
 
                  /* In theory the only way we ought to get back to the
                  /* In theory the only way we ought to get back to the
                     start of a loop should be with a COND_EXPR or GOTO_EXPR.
                     start of a loop should be with a COND_EXPR or GOTO_EXPR.
                     However, better safe than sorry.
                     However, better safe than sorry.
                     If the block ends with a control statement or
                     If the block ends with a control statement or
                     something that might throw, then we have to
                     something that might throw, then we have to
                     insert this assignment before the last
                     insert this assignment before the last
                     statement.  Else insert it after the last statement.  */
                     statement.  Else insert it after the last statement.  */
                  if (last && stmt_ends_bb_p (last))
                  if (last && stmt_ends_bb_p (last))
                    {
                    {
                      /* If the last statement in the block is the definition
                      /* If the last statement in the block is the definition
                         site of the PHI argument, then we can't insert
                         site of the PHI argument, then we can't insert
                         anything after it.  */
                         anything after it.  */
                      if (TREE_CODE (arg) == SSA_NAME
                      if (TREE_CODE (arg) == SSA_NAME
                          && SSA_NAME_DEF_STMT (arg) == last)
                          && SSA_NAME_DEF_STMT (arg) == last)
                        continue;
                        continue;
                    }
                    }
 
 
                  /* Create a new instance of the underlying variable of the
                  /* Create a new instance of the underlying variable of the
                     PHI result.  */
                     PHI result.  */
                  stmt = gimple_build_assign (result_var,
                  stmt = gimple_build_assign (result_var,
                                              gimple_phi_arg_def (phi, i));
                                              gimple_phi_arg_def (phi, i));
                  name = make_ssa_name (result_var, stmt);
                  name = make_ssa_name (result_var, stmt);
                  gimple_assign_set_lhs (stmt, name);
                  gimple_assign_set_lhs (stmt, name);
 
 
                  /* copy location if present.  */
                  /* copy location if present.  */
                  if (gimple_phi_arg_has_location (phi, i))
                  if (gimple_phi_arg_has_location (phi, i))
                    gimple_set_location (stmt,
                    gimple_set_location (stmt,
                                         gimple_phi_arg_location (phi, i));
                                         gimple_phi_arg_location (phi, i));
 
 
                  /* Insert the new statement into the block and update
                  /* Insert the new statement into the block and update
                     the PHI node.  */
                     the PHI node.  */
                  if (last && stmt_ends_bb_p (last))
                  if (last && stmt_ends_bb_p (last))
                    gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
                    gsi_insert_before (&gsi2, stmt, GSI_NEW_STMT);
                  else
                  else
                    gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
                    gsi_insert_after (&gsi2, stmt, GSI_NEW_STMT);
                  SET_PHI_ARG_DEF (phi, i, name);
                  SET_PHI_ARG_DEF (phi, i, name);
                }
                }
            }
            }
        }
        }
 
 
      /* Unmark this block again.  */
      /* Unmark this block again.  */
      bb->aux = NULL;
      bb->aux = NULL;
    }
    }
}
}
 
 
/* Free all memory associated with going out of SSA form.  SA is
/* Free all memory associated with going out of SSA form.  SA is
   the outof-SSA info object.  */
   the outof-SSA info object.  */
 
 
void
void
finish_out_of_ssa (struct ssaexpand *sa)
finish_out_of_ssa (struct ssaexpand *sa)
{
{
  free (sa->partition_to_pseudo);
  free (sa->partition_to_pseudo);
  if (sa->values)
  if (sa->values)
    BITMAP_FREE (sa->values);
    BITMAP_FREE (sa->values);
  delete_var_map (sa->map);
  delete_var_map (sa->map);
  BITMAP_FREE (sa->partition_has_default_def);
  BITMAP_FREE (sa->partition_has_default_def);
  memset (sa, 0, sizeof *sa);
  memset (sa, 0, sizeof *sa);
}
}
 
 
/* Take the current function out of SSA form, translating PHIs as described in
/* Take the current function out of SSA form, translating PHIs as described in
   R. Morgan, ``Building an Optimizing Compiler'',
   R. Morgan, ``Building an Optimizing Compiler'',
   Butterworth-Heinemann, Boston, MA, 1998. pp 176-186.  */
   Butterworth-Heinemann, Boston, MA, 1998. pp 176-186.  */
 
 
unsigned int
unsigned int
rewrite_out_of_ssa (struct ssaexpand *sa)
rewrite_out_of_ssa (struct ssaexpand *sa)
{
{
  /* If elimination of a PHI requires inserting a copy on a backedge,
  /* If elimination of a PHI requires inserting a copy on a backedge,
     then we will have to split the backedge which has numerous
     then we will have to split the backedge which has numerous
     undesirable performance effects.
     undesirable performance effects.
 
 
     A significant number of such cases can be handled here by inserting
     A significant number of such cases can be handled here by inserting
     copies into the loop itself.  */
     copies into the loop itself.  */
  insert_backedge_copies ();
  insert_backedge_copies ();
 
 
 
 
  /* Eliminate PHIs which are of no use, such as virtual or dead phis.  */
  /* Eliminate PHIs which are of no use, such as virtual or dead phis.  */
  eliminate_useless_phis ();
  eliminate_useless_phis ();
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
    gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
 
 
  remove_ssa_form (flag_tree_ter, sa);
  remove_ssa_form (flag_tree_ter, sa);
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
    gimple_dump_cfg (dump_file, dump_flags & ~TDF_DETAILS);
 
 
  return 0;
  return 0;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.