OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc1/] [gcc/] [tree-ssa-sccvn.c] - Diff between revs 280 and 338

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 280 Rev 338
/* SCC value numbering for trees
/* SCC value numbering for trees
   Copyright (C) 2006, 2007, 2008, 2009, 2010
   Copyright (C) 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Daniel Berlin <dan@dberlin.org>
   Contributed by Daniel Berlin <dan@dberlin.org>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
the Free Software Foundation; either version 3, or (at your option)
any later version.
any later version.
 
 
GCC is distributed in the hope that it will be useful,
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "ggc.h"
#include "ggc.h"
#include "tree.h"
#include "tree.h"
#include "basic-block.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "tree-inline.h"
#include "tree-inline.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "gimple.h"
#include "gimple.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "timevar.h"
#include "timevar.h"
#include "fibheap.h"
#include "fibheap.h"
#include "hashtab.h"
#include "hashtab.h"
#include "tree-iterator.h"
#include "tree-iterator.h"
#include "real.h"
#include "real.h"
#include "alloc-pool.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "flags.h"
#include "flags.h"
#include "bitmap.h"
#include "bitmap.h"
#include "langhooks.h"
#include "langhooks.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "params.h"
#include "params.h"
#include "tree-ssa-propagate.h"
#include "tree-ssa-propagate.h"
#include "tree-ssa-sccvn.h"
#include "tree-ssa-sccvn.h"
 
 
/* This algorithm is based on the SCC algorithm presented by Keith
/* This algorithm is based on the SCC algorithm presented by Keith
   Cooper and L. Taylor Simpson in "SCC-Based Value numbering"
   Cooper and L. Taylor Simpson in "SCC-Based Value numbering"
   (http://citeseer.ist.psu.edu/41805.html).  In
   (http://citeseer.ist.psu.edu/41805.html).  In
   straight line code, it is equivalent to a regular hash based value
   straight line code, it is equivalent to a regular hash based value
   numbering that is performed in reverse postorder.
   numbering that is performed in reverse postorder.
 
 
   For code with cycles, there are two alternatives, both of which
   For code with cycles, there are two alternatives, both of which
   require keeping the hashtables separate from the actual list of
   require keeping the hashtables separate from the actual list of
   value numbers for SSA names.
   value numbers for SSA names.
 
 
   1. Iterate value numbering in an RPO walk of the blocks, removing
   1. Iterate value numbering in an RPO walk of the blocks, removing
   all the entries from the hashtable after each iteration (but
   all the entries from the hashtable after each iteration (but
   keeping the SSA name->value number mapping between iterations).
   keeping the SSA name->value number mapping between iterations).
   Iterate until it does not change.
   Iterate until it does not change.
 
 
   2. Perform value numbering as part of an SCC walk on the SSA graph,
   2. Perform value numbering as part of an SCC walk on the SSA graph,
   iterating only the cycles in the SSA graph until they do not change
   iterating only the cycles in the SSA graph until they do not change
   (using a separate, optimistic hashtable for value numbering the SCC
   (using a separate, optimistic hashtable for value numbering the SCC
   operands).
   operands).
 
 
   The second is not just faster in practice (because most SSA graph
   The second is not just faster in practice (because most SSA graph
   cycles do not involve all the variables in the graph), it also has
   cycles do not involve all the variables in the graph), it also has
   some nice properties.
   some nice properties.
 
 
   One of these nice properties is that when we pop an SCC off the
   One of these nice properties is that when we pop an SCC off the
   stack, we are guaranteed to have processed all the operands coming from
   stack, we are guaranteed to have processed all the operands coming from
   *outside of that SCC*, so we do not need to do anything special to
   *outside of that SCC*, so we do not need to do anything special to
   ensure they have value numbers.
   ensure they have value numbers.
 
 
   Another nice property is that the SCC walk is done as part of a DFS
   Another nice property is that the SCC walk is done as part of a DFS
   of the SSA graph, which makes it easy to perform combining and
   of the SSA graph, which makes it easy to perform combining and
   simplifying operations at the same time.
   simplifying operations at the same time.
 
 
   The code below is deliberately written in a way that makes it easy
   The code below is deliberately written in a way that makes it easy
   to separate the SCC walk from the other work it does.
   to separate the SCC walk from the other work it does.
 
 
   In order to propagate constants through the code, we track which
   In order to propagate constants through the code, we track which
   expressions contain constants, and use those while folding.  In
   expressions contain constants, and use those while folding.  In
   theory, we could also track expressions whose value numbers are
   theory, we could also track expressions whose value numbers are
   replaced, in case we end up folding based on expression
   replaced, in case we end up folding based on expression
   identities.
   identities.
 
 
   In order to value number memory, we assign value numbers to vuses.
   In order to value number memory, we assign value numbers to vuses.
   This enables us to note that, for example, stores to the same
   This enables us to note that, for example, stores to the same
   address of the same value from the same starting memory states are
   address of the same value from the same starting memory states are
   equivalent.
   equivalent.
   TODO:
   TODO:
 
 
   1. We can iterate only the changing portions of the SCC's, but
   1. We can iterate only the changing portions of the SCC's, but
   I have not seen an SCC big enough for this to be a win.
   I have not seen an SCC big enough for this to be a win.
   2. If you differentiate between phi nodes for loops and phi nodes
   2. If you differentiate between phi nodes for loops and phi nodes
   for if-then-else, you can properly consider phi nodes in different
   for if-then-else, you can properly consider phi nodes in different
   blocks for equivalence.
   blocks for equivalence.
   3. We could value number vuses in more cases, particularly, whole
   3. We could value number vuses in more cases, particularly, whole
   structure copies.
   structure copies.
*/
*/
 
 
/* The set of hashtables and alloc_pool's for their items.  */
/* The set of hashtables and alloc_pool's for their items.  */
 
 
typedef struct vn_tables_s
typedef struct vn_tables_s
{
{
  htab_t nary;
  htab_t nary;
  htab_t phis;
  htab_t phis;
  htab_t references;
  htab_t references;
  struct obstack nary_obstack;
  struct obstack nary_obstack;
  alloc_pool phis_pool;
  alloc_pool phis_pool;
  alloc_pool references_pool;
  alloc_pool references_pool;
} *vn_tables_t;
} *vn_tables_t;
 
 
static htab_t constant_to_value_id;
static htab_t constant_to_value_id;
static bitmap constant_value_ids;
static bitmap constant_value_ids;
 
 
 
 
/* Valid hashtables storing information we have proven to be
/* Valid hashtables storing information we have proven to be
   correct.  */
   correct.  */
 
 
static vn_tables_t valid_info;
static vn_tables_t valid_info;
 
 
/* Optimistic hashtables storing information we are making assumptions about
/* Optimistic hashtables storing information we are making assumptions about
   during iterations.  */
   during iterations.  */
 
 
static vn_tables_t optimistic_info;
static vn_tables_t optimistic_info;
 
 
/* Pointer to the set of hashtables that is currently being used.
/* Pointer to the set of hashtables that is currently being used.
   Should always point to either the optimistic_info, or the
   Should always point to either the optimistic_info, or the
   valid_info.  */
   valid_info.  */
 
 
static vn_tables_t current_info;
static vn_tables_t current_info;
 
 
 
 
/* Reverse post order index for each basic block.  */
/* Reverse post order index for each basic block.  */
 
 
static int *rpo_numbers;
static int *rpo_numbers;
 
 
#define SSA_VAL(x) (VN_INFO ((x))->valnum)
#define SSA_VAL(x) (VN_INFO ((x))->valnum)
 
 
/* This represents the top of the VN lattice, which is the universal
/* This represents the top of the VN lattice, which is the universal
   value.  */
   value.  */
 
 
tree VN_TOP;
tree VN_TOP;
 
 
/* Unique counter for our value ids.  */
/* Unique counter for our value ids.  */
 
 
static unsigned int next_value_id;
static unsigned int next_value_id;
 
 
/* Next DFS number and the stack for strongly connected component
/* Next DFS number and the stack for strongly connected component
   detection. */
   detection. */
 
 
static unsigned int next_dfs_num;
static unsigned int next_dfs_num;
static VEC (tree, heap) *sccstack;
static VEC (tree, heap) *sccstack;
 
 
static bool may_insert;
static bool may_insert;
 
 
 
 
DEF_VEC_P(vn_ssa_aux_t);
DEF_VEC_P(vn_ssa_aux_t);
DEF_VEC_ALLOC_P(vn_ssa_aux_t, heap);
DEF_VEC_ALLOC_P(vn_ssa_aux_t, heap);
 
 
/* Table of vn_ssa_aux_t's, one per ssa_name.  The vn_ssa_aux_t objects
/* Table of vn_ssa_aux_t's, one per ssa_name.  The vn_ssa_aux_t objects
   are allocated on an obstack for locality reasons, and to free them
   are allocated on an obstack for locality reasons, and to free them
   without looping over the VEC.  */
   without looping over the VEC.  */
 
 
static VEC (vn_ssa_aux_t, heap) *vn_ssa_aux_table;
static VEC (vn_ssa_aux_t, heap) *vn_ssa_aux_table;
static struct obstack vn_ssa_aux_obstack;
static struct obstack vn_ssa_aux_obstack;
 
 
/* Return the value numbering information for a given SSA name.  */
/* Return the value numbering information for a given SSA name.  */
 
 
vn_ssa_aux_t
vn_ssa_aux_t
VN_INFO (tree name)
VN_INFO (tree name)
{
{
  vn_ssa_aux_t res = VEC_index (vn_ssa_aux_t, vn_ssa_aux_table,
  vn_ssa_aux_t res = VEC_index (vn_ssa_aux_t, vn_ssa_aux_table,
                                SSA_NAME_VERSION (name));
                                SSA_NAME_VERSION (name));
  gcc_assert (res);
  gcc_assert (res);
  return res;
  return res;
}
}
 
 
/* Set the value numbering info for a given SSA name to a given
/* Set the value numbering info for a given SSA name to a given
   value.  */
   value.  */
 
 
static inline void
static inline void
VN_INFO_SET (tree name, vn_ssa_aux_t value)
VN_INFO_SET (tree name, vn_ssa_aux_t value)
{
{
  VEC_replace (vn_ssa_aux_t, vn_ssa_aux_table,
  VEC_replace (vn_ssa_aux_t, vn_ssa_aux_table,
               SSA_NAME_VERSION (name), value);
               SSA_NAME_VERSION (name), value);
}
}
 
 
/* Initialize the value numbering info for a given SSA name.
/* Initialize the value numbering info for a given SSA name.
   This should be called just once for every SSA name.  */
   This should be called just once for every SSA name.  */
 
 
vn_ssa_aux_t
vn_ssa_aux_t
VN_INFO_GET (tree name)
VN_INFO_GET (tree name)
{
{
  vn_ssa_aux_t newinfo;
  vn_ssa_aux_t newinfo;
 
 
  newinfo = XOBNEW (&vn_ssa_aux_obstack, struct vn_ssa_aux);
  newinfo = XOBNEW (&vn_ssa_aux_obstack, struct vn_ssa_aux);
  memset (newinfo, 0, sizeof (struct vn_ssa_aux));
  memset (newinfo, 0, sizeof (struct vn_ssa_aux));
  if (SSA_NAME_VERSION (name) >= VEC_length (vn_ssa_aux_t, vn_ssa_aux_table))
  if (SSA_NAME_VERSION (name) >= VEC_length (vn_ssa_aux_t, vn_ssa_aux_table))
    VEC_safe_grow (vn_ssa_aux_t, heap, vn_ssa_aux_table,
    VEC_safe_grow (vn_ssa_aux_t, heap, vn_ssa_aux_table,
                   SSA_NAME_VERSION (name) + 1);
                   SSA_NAME_VERSION (name) + 1);
  VEC_replace (vn_ssa_aux_t, vn_ssa_aux_table,
  VEC_replace (vn_ssa_aux_t, vn_ssa_aux_table,
               SSA_NAME_VERSION (name), newinfo);
               SSA_NAME_VERSION (name), newinfo);
  return newinfo;
  return newinfo;
}
}
 
 
 
 
/* Get the representative expression for the SSA_NAME NAME.  Returns
/* Get the representative expression for the SSA_NAME NAME.  Returns
   the representative SSA_NAME if there is no expression associated with it.  */
   the representative SSA_NAME if there is no expression associated with it.  */
 
 
tree
tree
vn_get_expr_for (tree name)
vn_get_expr_for (tree name)
{
{
  vn_ssa_aux_t vn = VN_INFO (name);
  vn_ssa_aux_t vn = VN_INFO (name);
  gimple def_stmt;
  gimple def_stmt;
  tree expr = NULL_TREE;
  tree expr = NULL_TREE;
 
 
  if (vn->valnum == VN_TOP)
  if (vn->valnum == VN_TOP)
    return name;
    return name;
 
 
  /* If the value-number is a constant it is the representative
  /* If the value-number is a constant it is the representative
     expression.  */
     expression.  */
  if (TREE_CODE (vn->valnum) != SSA_NAME)
  if (TREE_CODE (vn->valnum) != SSA_NAME)
    return vn->valnum;
    return vn->valnum;
 
 
  /* Get to the information of the value of this SSA_NAME.  */
  /* Get to the information of the value of this SSA_NAME.  */
  vn = VN_INFO (vn->valnum);
  vn = VN_INFO (vn->valnum);
 
 
  /* If the value-number is a constant it is the representative
  /* If the value-number is a constant it is the representative
     expression.  */
     expression.  */
  if (TREE_CODE (vn->valnum) != SSA_NAME)
  if (TREE_CODE (vn->valnum) != SSA_NAME)
    return vn->valnum;
    return vn->valnum;
 
 
  /* Else if we have an expression, return it.  */
  /* Else if we have an expression, return it.  */
  if (vn->expr != NULL_TREE)
  if (vn->expr != NULL_TREE)
    return vn->expr;
    return vn->expr;
 
 
  /* Otherwise use the defining statement to build the expression.  */
  /* Otherwise use the defining statement to build the expression.  */
  def_stmt = SSA_NAME_DEF_STMT (vn->valnum);
  def_stmt = SSA_NAME_DEF_STMT (vn->valnum);
 
 
  /* If the value number is a default-definition or a PHI result
  /* If the value number is a default-definition or a PHI result
     use it directly.  */
     use it directly.  */
  if (gimple_nop_p (def_stmt)
  if (gimple_nop_p (def_stmt)
      || gimple_code (def_stmt) == GIMPLE_PHI)
      || gimple_code (def_stmt) == GIMPLE_PHI)
    return vn->valnum;
    return vn->valnum;
 
 
  if (!is_gimple_assign (def_stmt))
  if (!is_gimple_assign (def_stmt))
    return vn->valnum;
    return vn->valnum;
 
 
  /* FIXME tuples.  This is incomplete and likely will miss some
  /* FIXME tuples.  This is incomplete and likely will miss some
     simplifications.  */
     simplifications.  */
  switch (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)))
  switch (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)))
    {
    {
    case tcc_reference:
    case tcc_reference:
      if ((gimple_assign_rhs_code (def_stmt) == VIEW_CONVERT_EXPR
      if ((gimple_assign_rhs_code (def_stmt) == VIEW_CONVERT_EXPR
           || gimple_assign_rhs_code (def_stmt) == REALPART_EXPR
           || gimple_assign_rhs_code (def_stmt) == REALPART_EXPR
           || gimple_assign_rhs_code (def_stmt) == IMAGPART_EXPR)
           || gimple_assign_rhs_code (def_stmt) == IMAGPART_EXPR)
          && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME)
          && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME)
        expr = fold_build1 (gimple_assign_rhs_code (def_stmt),
        expr = fold_build1 (gimple_assign_rhs_code (def_stmt),
                            gimple_expr_type (def_stmt),
                            gimple_expr_type (def_stmt),
                            TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0));
                            TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0));
      break;
      break;
 
 
    case tcc_unary:
    case tcc_unary:
      expr = fold_build1 (gimple_assign_rhs_code (def_stmt),
      expr = fold_build1 (gimple_assign_rhs_code (def_stmt),
                          gimple_expr_type (def_stmt),
                          gimple_expr_type (def_stmt),
                          gimple_assign_rhs1 (def_stmt));
                          gimple_assign_rhs1 (def_stmt));
      break;
      break;
 
 
    case tcc_binary:
    case tcc_binary:
      expr = fold_build2 (gimple_assign_rhs_code (def_stmt),
      expr = fold_build2 (gimple_assign_rhs_code (def_stmt),
                          gimple_expr_type (def_stmt),
                          gimple_expr_type (def_stmt),
                          gimple_assign_rhs1 (def_stmt),
                          gimple_assign_rhs1 (def_stmt),
                          gimple_assign_rhs2 (def_stmt));
                          gimple_assign_rhs2 (def_stmt));
      break;
      break;
 
 
    default:;
    default:;
    }
    }
  if (expr == NULL_TREE)
  if (expr == NULL_TREE)
    return vn->valnum;
    return vn->valnum;
 
 
  /* Cache the expression.  */
  /* Cache the expression.  */
  vn->expr = expr;
  vn->expr = expr;
 
 
  return expr;
  return expr;
}
}
 
 
 
 
/* Free a phi operation structure VP.  */
/* Free a phi operation structure VP.  */
 
 
static void
static void
free_phi (void *vp)
free_phi (void *vp)
{
{
  vn_phi_t phi = (vn_phi_t) vp;
  vn_phi_t phi = (vn_phi_t) vp;
  VEC_free (tree, heap, phi->phiargs);
  VEC_free (tree, heap, phi->phiargs);
}
}
 
 
/* Free a reference operation structure VP.  */
/* Free a reference operation structure VP.  */
 
 
static void
static void
free_reference (void *vp)
free_reference (void *vp)
{
{
  vn_reference_t vr = (vn_reference_t) vp;
  vn_reference_t vr = (vn_reference_t) vp;
  VEC_free (vn_reference_op_s, heap, vr->operands);
  VEC_free (vn_reference_op_s, heap, vr->operands);
}
}
 
 
/* Hash table equality function for vn_constant_t.  */
/* Hash table equality function for vn_constant_t.  */
 
 
static int
static int
vn_constant_eq (const void *p1, const void *p2)
vn_constant_eq (const void *p1, const void *p2)
{
{
  const struct vn_constant_s *vc1 = (const struct vn_constant_s *) p1;
  const struct vn_constant_s *vc1 = (const struct vn_constant_s *) p1;
  const struct vn_constant_s *vc2 = (const struct vn_constant_s *) p2;
  const struct vn_constant_s *vc2 = (const struct vn_constant_s *) p2;
 
 
  if (vc1->hashcode != vc2->hashcode)
  if (vc1->hashcode != vc2->hashcode)
    return false;
    return false;
 
 
  return vn_constant_eq_with_type (vc1->constant, vc2->constant);
  return vn_constant_eq_with_type (vc1->constant, vc2->constant);
}
}
 
 
/* Hash table hash function for vn_constant_t.  */
/* Hash table hash function for vn_constant_t.  */
 
 
static hashval_t
static hashval_t
vn_constant_hash (const void *p1)
vn_constant_hash (const void *p1)
{
{
  const struct vn_constant_s *vc1 = (const struct vn_constant_s *) p1;
  const struct vn_constant_s *vc1 = (const struct vn_constant_s *) p1;
  return vc1->hashcode;
  return vc1->hashcode;
}
}
 
 
/* Lookup a value id for CONSTANT and return it.  If it does not
/* Lookup a value id for CONSTANT and return it.  If it does not
   exist returns 0.  */
   exist returns 0.  */
 
 
unsigned int
unsigned int
get_constant_value_id (tree constant)
get_constant_value_id (tree constant)
{
{
  void **slot;
  void **slot;
  struct vn_constant_s vc;
  struct vn_constant_s vc;
 
 
  vc.hashcode = vn_hash_constant_with_type (constant);
  vc.hashcode = vn_hash_constant_with_type (constant);
  vc.constant = constant;
  vc.constant = constant;
  slot = htab_find_slot_with_hash (constant_to_value_id, &vc,
  slot = htab_find_slot_with_hash (constant_to_value_id, &vc,
                                   vc.hashcode, NO_INSERT);
                                   vc.hashcode, NO_INSERT);
  if (slot)
  if (slot)
    return ((vn_constant_t)*slot)->value_id;
    return ((vn_constant_t)*slot)->value_id;
  return 0;
  return 0;
}
}
 
 
/* Lookup a value id for CONSTANT, and if it does not exist, create a
/* Lookup a value id for CONSTANT, and if it does not exist, create a
   new one and return it.  If it does exist, return it.  */
   new one and return it.  If it does exist, return it.  */
 
 
unsigned int
unsigned int
get_or_alloc_constant_value_id (tree constant)
get_or_alloc_constant_value_id (tree constant)
{
{
  void **slot;
  void **slot;
  struct vn_constant_s vc;
  struct vn_constant_s vc;
  vn_constant_t vcp;
  vn_constant_t vcp;
 
 
  vc.hashcode = vn_hash_constant_with_type (constant);
  vc.hashcode = vn_hash_constant_with_type (constant);
  vc.constant = constant;
  vc.constant = constant;
  slot = htab_find_slot_with_hash (constant_to_value_id, &vc,
  slot = htab_find_slot_with_hash (constant_to_value_id, &vc,
                                   vc.hashcode, INSERT);
                                   vc.hashcode, INSERT);
  if (*slot)
  if (*slot)
    return ((vn_constant_t)*slot)->value_id;
    return ((vn_constant_t)*slot)->value_id;
 
 
  vcp = XNEW (struct vn_constant_s);
  vcp = XNEW (struct vn_constant_s);
  vcp->hashcode = vc.hashcode;
  vcp->hashcode = vc.hashcode;
  vcp->constant = constant;
  vcp->constant = constant;
  vcp->value_id = get_next_value_id ();
  vcp->value_id = get_next_value_id ();
  *slot = (void *) vcp;
  *slot = (void *) vcp;
  bitmap_set_bit (constant_value_ids, vcp->value_id);
  bitmap_set_bit (constant_value_ids, vcp->value_id);
  return vcp->value_id;
  return vcp->value_id;
}
}
 
 
/* Return true if V is a value id for a constant.  */
/* Return true if V is a value id for a constant.  */
 
 
bool
bool
value_id_constant_p (unsigned int v)
value_id_constant_p (unsigned int v)
{
{
  return bitmap_bit_p (constant_value_ids, v);
  return bitmap_bit_p (constant_value_ids, v);
}
}
 
 
/* Compare two reference operands P1 and P2 for equality.  Return true if
/* Compare two reference operands P1 and P2 for equality.  Return true if
   they are equal, and false otherwise.  */
   they are equal, and false otherwise.  */
 
 
static int
static int
vn_reference_op_eq (const void *p1, const void *p2)
vn_reference_op_eq (const void *p1, const void *p2)
{
{
  const_vn_reference_op_t const vro1 = (const_vn_reference_op_t) p1;
  const_vn_reference_op_t const vro1 = (const_vn_reference_op_t) p1;
  const_vn_reference_op_t const vro2 = (const_vn_reference_op_t) p2;
  const_vn_reference_op_t const vro2 = (const_vn_reference_op_t) p2;
 
 
  return vro1->opcode == vro2->opcode
  return vro1->opcode == vro2->opcode
    && types_compatible_p (vro1->type, vro2->type)
    && types_compatible_p (vro1->type, vro2->type)
    && expressions_equal_p (vro1->op0, vro2->op0)
    && expressions_equal_p (vro1->op0, vro2->op0)
    && expressions_equal_p (vro1->op1, vro2->op1)
    && expressions_equal_p (vro1->op1, vro2->op1)
    && expressions_equal_p (vro1->op2, vro2->op2);
    && expressions_equal_p (vro1->op2, vro2->op2);
}
}
 
 
/* Compute the hash for a reference operand VRO1.  */
/* Compute the hash for a reference operand VRO1.  */
 
 
static hashval_t
static hashval_t
vn_reference_op_compute_hash (const vn_reference_op_t vro1, hashval_t result)
vn_reference_op_compute_hash (const vn_reference_op_t vro1, hashval_t result)
{
{
  result = iterative_hash_hashval_t (vro1->opcode, result);
  result = iterative_hash_hashval_t (vro1->opcode, result);
  if (vro1->op0)
  if (vro1->op0)
    result = iterative_hash_expr (vro1->op0, result);
    result = iterative_hash_expr (vro1->op0, result);
  if (vro1->op1)
  if (vro1->op1)
    result = iterative_hash_expr (vro1->op1, result);
    result = iterative_hash_expr (vro1->op1, result);
  if (vro1->op2)
  if (vro1->op2)
    result = iterative_hash_expr (vro1->op2, result);
    result = iterative_hash_expr (vro1->op2, result);
  return result;
  return result;
}
}
 
 
/* Return the hashcode for a given reference operation P1.  */
/* Return the hashcode for a given reference operation P1.  */
 
 
static hashval_t
static hashval_t
vn_reference_hash (const void *p1)
vn_reference_hash (const void *p1)
{
{
  const_vn_reference_t const vr1 = (const_vn_reference_t) p1;
  const_vn_reference_t const vr1 = (const_vn_reference_t) p1;
  return vr1->hashcode;
  return vr1->hashcode;
}
}
 
 
/* Compute a hash for the reference operation VR1 and return it.  */
/* Compute a hash for the reference operation VR1 and return it.  */
 
 
hashval_t
hashval_t
vn_reference_compute_hash (const vn_reference_t vr1)
vn_reference_compute_hash (const vn_reference_t vr1)
{
{
  hashval_t result = 0;
  hashval_t result = 0;
  int i;
  int i;
  vn_reference_op_t vro;
  vn_reference_op_t vro;
 
 
  for (i = 0; VEC_iterate (vn_reference_op_s, vr1->operands, i, vro); i++)
  for (i = 0; VEC_iterate (vn_reference_op_s, vr1->operands, i, vro); i++)
    result = vn_reference_op_compute_hash (vro, result);
    result = vn_reference_op_compute_hash (vro, result);
  if (vr1->vuse)
  if (vr1->vuse)
    result += SSA_NAME_VERSION (vr1->vuse);
    result += SSA_NAME_VERSION (vr1->vuse);
 
 
  return result;
  return result;
}
}
 
 
/* Return true if reference operations P1 and P2 are equivalent.  This
/* Return true if reference operations P1 and P2 are equivalent.  This
   means they have the same set of operands and vuses.  */
   means they have the same set of operands and vuses.  */
 
 
int
int
vn_reference_eq (const void *p1, const void *p2)
vn_reference_eq (const void *p1, const void *p2)
{
{
  int i;
  int i;
  vn_reference_op_t vro;
  vn_reference_op_t vro;
 
 
  const_vn_reference_t const vr1 = (const_vn_reference_t) p1;
  const_vn_reference_t const vr1 = (const_vn_reference_t) p1;
  const_vn_reference_t const vr2 = (const_vn_reference_t) p2;
  const_vn_reference_t const vr2 = (const_vn_reference_t) p2;
  if (vr1->hashcode != vr2->hashcode)
  if (vr1->hashcode != vr2->hashcode)
    return false;
    return false;
 
 
  /* Early out if this is not a hash collision.  */
  /* Early out if this is not a hash collision.  */
  if (vr1->hashcode != vr2->hashcode)
  if (vr1->hashcode != vr2->hashcode)
    return false;
    return false;
 
 
  /* The VOP needs to be the same.  */
  /* The VOP needs to be the same.  */
  if (vr1->vuse != vr2->vuse)
  if (vr1->vuse != vr2->vuse)
    return false;
    return false;
 
 
  /* If the operands are the same we are done.  */
  /* If the operands are the same we are done.  */
  if (vr1->operands == vr2->operands)
  if (vr1->operands == vr2->operands)
    return true;
    return true;
 
 
  /* We require that address operands be canonicalized in a way that
  /* We require that address operands be canonicalized in a way that
     two memory references will have the same operands if they are
     two memory references will have the same operands if they are
     equivalent.  */
     equivalent.  */
  if (VEC_length (vn_reference_op_s, vr1->operands)
  if (VEC_length (vn_reference_op_s, vr1->operands)
      != VEC_length (vn_reference_op_s, vr2->operands))
      != VEC_length (vn_reference_op_s, vr2->operands))
    return false;
    return false;
 
 
  for (i = 0; VEC_iterate (vn_reference_op_s, vr1->operands, i, vro); i++)
  for (i = 0; VEC_iterate (vn_reference_op_s, vr1->operands, i, vro); i++)
    if (!vn_reference_op_eq (VEC_index (vn_reference_op_s, vr2->operands, i),
    if (!vn_reference_op_eq (VEC_index (vn_reference_op_s, vr2->operands, i),
                             vro))
                             vro))
      return false;
      return false;
 
 
  return true;
  return true;
}
}
 
 
/* Copy the operations present in load/store REF into RESULT, a vector of
/* Copy the operations present in load/store REF into RESULT, a vector of
   vn_reference_op_s's.  */
   vn_reference_op_s's.  */
 
 
void
void
copy_reference_ops_from_ref (tree ref, VEC(vn_reference_op_s, heap) **result)
copy_reference_ops_from_ref (tree ref, VEC(vn_reference_op_s, heap) **result)
{
{
  if (TREE_CODE (ref) == TARGET_MEM_REF)
  if (TREE_CODE (ref) == TARGET_MEM_REF)
    {
    {
      vn_reference_op_s temp;
      vn_reference_op_s temp;
      tree base;
      tree base;
 
 
      base = TMR_SYMBOL (ref) ? TMR_SYMBOL (ref) : TMR_BASE (ref);
      base = TMR_SYMBOL (ref) ? TMR_SYMBOL (ref) : TMR_BASE (ref);
      if (!base)
      if (!base)
        base = build_int_cst (ptr_type_node, 0);
        base = build_int_cst (ptr_type_node, 0);
 
 
      memset (&temp, 0, sizeof (temp));
      memset (&temp, 0, sizeof (temp));
      /* We do not care for spurious type qualifications.  */
      /* We do not care for spurious type qualifications.  */
      temp.type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
      temp.type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
      temp.opcode = TREE_CODE (ref);
      temp.opcode = TREE_CODE (ref);
      temp.op0 = TMR_INDEX (ref);
      temp.op0 = TMR_INDEX (ref);
      temp.op1 = TMR_STEP (ref);
      temp.op1 = TMR_STEP (ref);
      temp.op2 = TMR_OFFSET (ref);
      temp.op2 = TMR_OFFSET (ref);
      VEC_safe_push (vn_reference_op_s, heap, *result, &temp);
      VEC_safe_push (vn_reference_op_s, heap, *result, &temp);
 
 
      memset (&temp, 0, sizeof (temp));
      memset (&temp, 0, sizeof (temp));
      temp.type = NULL_TREE;
      temp.type = NULL_TREE;
      temp.opcode = TREE_CODE (base);
      temp.opcode = TREE_CODE (base);
      temp.op0 = base;
      temp.op0 = base;
      temp.op1 = TMR_ORIGINAL (ref);
      temp.op1 = TMR_ORIGINAL (ref);
      VEC_safe_push (vn_reference_op_s, heap, *result, &temp);
      VEC_safe_push (vn_reference_op_s, heap, *result, &temp);
      return;
      return;
    }
    }
 
 
  /* For non-calls, store the information that makes up the address.  */
  /* For non-calls, store the information that makes up the address.  */
 
 
  while (ref)
  while (ref)
    {
    {
      vn_reference_op_s temp;
      vn_reference_op_s temp;
 
 
      memset (&temp, 0, sizeof (temp));
      memset (&temp, 0, sizeof (temp));
      /* We do not care for spurious type qualifications.  */
      /* We do not care for spurious type qualifications.  */
      temp.type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
      temp.type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
      temp.opcode = TREE_CODE (ref);
      temp.opcode = TREE_CODE (ref);
 
 
      switch (temp.opcode)
      switch (temp.opcode)
        {
        {
        case ALIGN_INDIRECT_REF:
        case ALIGN_INDIRECT_REF:
        case INDIRECT_REF:
        case INDIRECT_REF:
          /* The only operand is the address, which gets its own
          /* The only operand is the address, which gets its own
             vn_reference_op_s structure.  */
             vn_reference_op_s structure.  */
          break;
          break;
        case MISALIGNED_INDIRECT_REF:
        case MISALIGNED_INDIRECT_REF:
          temp.op0 = TREE_OPERAND (ref, 1);
          temp.op0 = TREE_OPERAND (ref, 1);
          break;
          break;
        case BIT_FIELD_REF:
        case BIT_FIELD_REF:
          /* Record bits and position.  */
          /* Record bits and position.  */
          temp.op0 = TREE_OPERAND (ref, 1);
          temp.op0 = TREE_OPERAND (ref, 1);
          temp.op1 = TREE_OPERAND (ref, 2);
          temp.op1 = TREE_OPERAND (ref, 2);
          break;
          break;
        case COMPONENT_REF:
        case COMPONENT_REF:
          /* The field decl is enough to unambiguously specify the field,
          /* The field decl is enough to unambiguously specify the field,
             a matching type is not necessary and a mismatching type
             a matching type is not necessary and a mismatching type
             is always a spurious difference.  */
             is always a spurious difference.  */
          temp.type = NULL_TREE;
          temp.type = NULL_TREE;
          temp.op0 = TREE_OPERAND (ref, 1);
          temp.op0 = TREE_OPERAND (ref, 1);
          temp.op1 = TREE_OPERAND (ref, 2);
          temp.op1 = TREE_OPERAND (ref, 2);
          /* If this is a reference to a union member, record the union
          /* If this is a reference to a union member, record the union
             member size as operand.  Do so only if we are doing
             member size as operand.  Do so only if we are doing
             expression insertion (during FRE), as PRE currently gets
             expression insertion (during FRE), as PRE currently gets
             confused with this.  */
             confused with this.  */
          if (may_insert
          if (may_insert
              && temp.op1 == NULL_TREE
              && temp.op1 == NULL_TREE
              && TREE_CODE (DECL_CONTEXT (temp.op0)) == UNION_TYPE
              && TREE_CODE (DECL_CONTEXT (temp.op0)) == UNION_TYPE
              && integer_zerop (DECL_FIELD_OFFSET (temp.op0))
              && integer_zerop (DECL_FIELD_OFFSET (temp.op0))
              && integer_zerop (DECL_FIELD_BIT_OFFSET (temp.op0))
              && integer_zerop (DECL_FIELD_BIT_OFFSET (temp.op0))
              && host_integerp (DECL_SIZE (temp.op0), 0))
              && host_integerp (DECL_SIZE (temp.op0), 0))
            temp.op0 = DECL_SIZE (temp.op0);
            temp.op0 = DECL_SIZE (temp.op0);
          break;
          break;
        case ARRAY_RANGE_REF:
        case ARRAY_RANGE_REF:
        case ARRAY_REF:
        case ARRAY_REF:
          /* Record index as operand.  */
          /* Record index as operand.  */
          temp.op0 = TREE_OPERAND (ref, 1);
          temp.op0 = TREE_OPERAND (ref, 1);
          /* Always record lower bounds and element size.  */
          /* Always record lower bounds and element size.  */
          temp.op1 = array_ref_low_bound (ref);
          temp.op1 = array_ref_low_bound (ref);
          temp.op2 = array_ref_element_size (ref);
          temp.op2 = array_ref_element_size (ref);
          break;
          break;
        case STRING_CST:
        case STRING_CST:
        case INTEGER_CST:
        case INTEGER_CST:
        case COMPLEX_CST:
        case COMPLEX_CST:
        case VECTOR_CST:
        case VECTOR_CST:
        case REAL_CST:
        case REAL_CST:
        case CONSTRUCTOR:
        case CONSTRUCTOR:
        case VAR_DECL:
        case VAR_DECL:
        case PARM_DECL:
        case PARM_DECL:
        case CONST_DECL:
        case CONST_DECL:
        case RESULT_DECL:
        case RESULT_DECL:
        case SSA_NAME:
        case SSA_NAME:
          temp.op0 = ref;
          temp.op0 = ref;
          break;
          break;
        case ADDR_EXPR:
        case ADDR_EXPR:
          if (is_gimple_min_invariant (ref))
          if (is_gimple_min_invariant (ref))
            {
            {
              temp.op0 = ref;
              temp.op0 = ref;
              break;
              break;
            }
            }
          /* Fallthrough.  */
          /* Fallthrough.  */
          /* These are only interesting for their operands, their
          /* These are only interesting for their operands, their
             existence, and their type.  They will never be the last
             existence, and their type.  They will never be the last
             ref in the chain of references (IE they require an
             ref in the chain of references (IE they require an
             operand), so we don't have to put anything
             operand), so we don't have to put anything
             for op* as it will be handled by the iteration  */
             for op* as it will be handled by the iteration  */
        case IMAGPART_EXPR:
        case IMAGPART_EXPR:
        case REALPART_EXPR:
        case REALPART_EXPR:
        case VIEW_CONVERT_EXPR:
        case VIEW_CONVERT_EXPR:
          break;
          break;
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
      VEC_safe_push (vn_reference_op_s, heap, *result, &temp);
      VEC_safe_push (vn_reference_op_s, heap, *result, &temp);
 
 
      if (REFERENCE_CLASS_P (ref)
      if (REFERENCE_CLASS_P (ref)
          || (TREE_CODE (ref) == ADDR_EXPR
          || (TREE_CODE (ref) == ADDR_EXPR
              && !is_gimple_min_invariant (ref)))
              && !is_gimple_min_invariant (ref)))
        ref = TREE_OPERAND (ref, 0);
        ref = TREE_OPERAND (ref, 0);
      else
      else
        ref = NULL_TREE;
        ref = NULL_TREE;
    }
    }
}
}
 
 
/* Build a alias-oracle reference abstraction in *REF from the vn_reference
/* Build a alias-oracle reference abstraction in *REF from the vn_reference
   operands in *OPS, the reference alias set SET and the reference type TYPE.
   operands in *OPS, the reference alias set SET and the reference type TYPE.
   Return true if something useful was produced.  */
   Return true if something useful was produced.  */
 
 
bool
bool
ao_ref_init_from_vn_reference (ao_ref *ref,
ao_ref_init_from_vn_reference (ao_ref *ref,
                               alias_set_type set, tree type,
                               alias_set_type set, tree type,
                               VEC (vn_reference_op_s, heap) *ops)
                               VEC (vn_reference_op_s, heap) *ops)
{
{
  vn_reference_op_t op;
  vn_reference_op_t op;
  unsigned i;
  unsigned i;
  tree base = NULL_TREE;
  tree base = NULL_TREE;
  tree *op0_p = &base;
  tree *op0_p = &base;
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT offset = 0;
  HOST_WIDE_INT max_size;
  HOST_WIDE_INT max_size;
  HOST_WIDE_INT size = -1;
  HOST_WIDE_INT size = -1;
  tree size_tree = NULL_TREE;
  tree size_tree = NULL_TREE;
 
 
  /* First get the final access size from just the outermost expression.  */
  /* First get the final access size from just the outermost expression.  */
  op = VEC_index (vn_reference_op_s, ops, 0);
  op = VEC_index (vn_reference_op_s, ops, 0);
  if (op->opcode == COMPONENT_REF)
  if (op->opcode == COMPONENT_REF)
    {
    {
      if (TREE_CODE (op->op0) == INTEGER_CST)
      if (TREE_CODE (op->op0) == INTEGER_CST)
        size_tree = op->op0;
        size_tree = op->op0;
      else
      else
        size_tree = DECL_SIZE (op->op0);
        size_tree = DECL_SIZE (op->op0);
    }
    }
  else if (op->opcode == BIT_FIELD_REF)
  else if (op->opcode == BIT_FIELD_REF)
    size_tree = op->op0;
    size_tree = op->op0;
  else
  else
    {
    {
      enum machine_mode mode = TYPE_MODE (type);
      enum machine_mode mode = TYPE_MODE (type);
      if (mode == BLKmode)
      if (mode == BLKmode)
        size_tree = TYPE_SIZE (type);
        size_tree = TYPE_SIZE (type);
      else
      else
        size = GET_MODE_BITSIZE (mode);
        size = GET_MODE_BITSIZE (mode);
    }
    }
  if (size_tree != NULL_TREE)
  if (size_tree != NULL_TREE)
    {
    {
      if (!host_integerp (size_tree, 1))
      if (!host_integerp (size_tree, 1))
        size = -1;
        size = -1;
      else
      else
        size = TREE_INT_CST_LOW (size_tree);
        size = TREE_INT_CST_LOW (size_tree);
    }
    }
 
 
  /* Initially, maxsize is the same as the accessed element size.
  /* Initially, maxsize is the same as the accessed element size.
     In the following it will only grow (or become -1).  */
     In the following it will only grow (or become -1).  */
  max_size = size;
  max_size = size;
 
 
  /* Compute cumulative bit-offset for nested component-refs and array-refs,
  /* Compute cumulative bit-offset for nested component-refs and array-refs,
     and find the ultimate containing object.  */
     and find the ultimate containing object.  */
  for (i = 0; VEC_iterate (vn_reference_op_s, ops, i, op); ++i)
  for (i = 0; VEC_iterate (vn_reference_op_s, ops, i, op); ++i)
    {
    {
      switch (op->opcode)
      switch (op->opcode)
        {
        {
        /* These may be in the reference ops, but we cannot do anything
        /* These may be in the reference ops, but we cannot do anything
           sensible with them here.  */
           sensible with them here.  */
        case CALL_EXPR:
        case CALL_EXPR:
        case ADDR_EXPR:
        case ADDR_EXPR:
          return false;
          return false;
 
 
        /* Record the base objects.  */
        /* Record the base objects.  */
        case ALIGN_INDIRECT_REF:
        case ALIGN_INDIRECT_REF:
        case INDIRECT_REF:
        case INDIRECT_REF:
          *op0_p = build1 (op->opcode, op->type, NULL_TREE);
          *op0_p = build1 (op->opcode, op->type, NULL_TREE);
          op0_p = &TREE_OPERAND (*op0_p, 0);
          op0_p = &TREE_OPERAND (*op0_p, 0);
          break;
          break;
 
 
        case MISALIGNED_INDIRECT_REF:
        case MISALIGNED_INDIRECT_REF:
          *op0_p = build2 (MISALIGNED_INDIRECT_REF, op->type,
          *op0_p = build2 (MISALIGNED_INDIRECT_REF, op->type,
                           NULL_TREE, op->op0);
                           NULL_TREE, op->op0);
          op0_p = &TREE_OPERAND (*op0_p, 0);
          op0_p = &TREE_OPERAND (*op0_p, 0);
          break;
          break;
 
 
        case VAR_DECL:
        case VAR_DECL:
        case PARM_DECL:
        case PARM_DECL:
        case RESULT_DECL:
        case RESULT_DECL:
        case SSA_NAME:
        case SSA_NAME:
          *op0_p = op->op0;
          *op0_p = op->op0;
          break;
          break;
 
 
        /* And now the usual component-reference style ops.  */
        /* And now the usual component-reference style ops.  */
        case BIT_FIELD_REF:
        case BIT_FIELD_REF:
          offset += tree_low_cst (op->op1, 0);
          offset += tree_low_cst (op->op1, 0);
          break;
          break;
 
 
        case COMPONENT_REF:
        case COMPONENT_REF:
          {
          {
            tree field = op->op0;
            tree field = op->op0;
            /* We do not have a complete COMPONENT_REF tree here so we
            /* We do not have a complete COMPONENT_REF tree here so we
               cannot use component_ref_field_offset.  Do the interesting
               cannot use component_ref_field_offset.  Do the interesting
               parts manually.  */
               parts manually.  */
 
 
            /* Our union trick, done for offset zero only.  */
            /* Our union trick, done for offset zero only.  */
            if (TREE_CODE (field) == INTEGER_CST)
            if (TREE_CODE (field) == INTEGER_CST)
              ;
              ;
            else if (op->op1
            else if (op->op1
                     || !host_integerp (DECL_FIELD_OFFSET (field), 1))
                     || !host_integerp (DECL_FIELD_OFFSET (field), 1))
              max_size = -1;
              max_size = -1;
            else
            else
              {
              {
                offset += (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (field))
                offset += (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (field))
                           * BITS_PER_UNIT);
                           * BITS_PER_UNIT);
                offset += TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field));
                offset += TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field));
              }
              }
            break;
            break;
          }
          }
 
 
        case ARRAY_RANGE_REF:
        case ARRAY_RANGE_REF:
        case ARRAY_REF:
        case ARRAY_REF:
          /* We recorded the lower bound and the element size.  */
          /* We recorded the lower bound and the element size.  */
          if (!host_integerp (op->op0, 0)
          if (!host_integerp (op->op0, 0)
              || !host_integerp (op->op1, 0)
              || !host_integerp (op->op1, 0)
              || !host_integerp (op->op2, 0))
              || !host_integerp (op->op2, 0))
            max_size = -1;
            max_size = -1;
          else
          else
            {
            {
              HOST_WIDE_INT hindex = TREE_INT_CST_LOW (op->op0);
              HOST_WIDE_INT hindex = TREE_INT_CST_LOW (op->op0);
              hindex -= TREE_INT_CST_LOW (op->op1);
              hindex -= TREE_INT_CST_LOW (op->op1);
              hindex *= TREE_INT_CST_LOW (op->op2);
              hindex *= TREE_INT_CST_LOW (op->op2);
              hindex *= BITS_PER_UNIT;
              hindex *= BITS_PER_UNIT;
              offset += hindex;
              offset += hindex;
            }
            }
          break;
          break;
 
 
        case REALPART_EXPR:
        case REALPART_EXPR:
          break;
          break;
 
 
        case IMAGPART_EXPR:
        case IMAGPART_EXPR:
          offset += size;
          offset += size;
          break;
          break;
 
 
        case VIEW_CONVERT_EXPR:
        case VIEW_CONVERT_EXPR:
          break;
          break;
 
 
        case STRING_CST:
        case STRING_CST:
        case INTEGER_CST:
        case INTEGER_CST:
        case COMPLEX_CST:
        case COMPLEX_CST:
        case VECTOR_CST:
        case VECTOR_CST:
        case REAL_CST:
        case REAL_CST:
        case CONSTRUCTOR:
        case CONSTRUCTOR:
        case CONST_DECL:
        case CONST_DECL:
          return false;
          return false;
 
 
        default:
        default:
          return false;
          return false;
        }
        }
    }
    }
 
 
  if (base == NULL_TREE)
  if (base == NULL_TREE)
    return false;
    return false;
 
 
  ref->ref = NULL_TREE;
  ref->ref = NULL_TREE;
  ref->base = base;
  ref->base = base;
  ref->offset = offset;
  ref->offset = offset;
  ref->size = size;
  ref->size = size;
  ref->max_size = max_size;
  ref->max_size = max_size;
  ref->ref_alias_set = set;
  ref->ref_alias_set = set;
  ref->base_alias_set = -1;
  ref->base_alias_set = -1;
 
 
  return true;
  return true;
}
}
 
 
/* Copy the operations present in load/store/call REF into RESULT, a vector of
/* Copy the operations present in load/store/call REF into RESULT, a vector of
   vn_reference_op_s's.  */
   vn_reference_op_s's.  */
 
 
void
void
copy_reference_ops_from_call (gimple call,
copy_reference_ops_from_call (gimple call,
                              VEC(vn_reference_op_s, heap) **result)
                              VEC(vn_reference_op_s, heap) **result)
{
{
  vn_reference_op_s temp;
  vn_reference_op_s temp;
  unsigned i;
  unsigned i;
 
 
  /* Copy the type, opcode, function being called and static chain.  */
  /* Copy the type, opcode, function being called and static chain.  */
  memset (&temp, 0, sizeof (temp));
  memset (&temp, 0, sizeof (temp));
  temp.type = gimple_call_return_type (call);
  temp.type = gimple_call_return_type (call);
  temp.opcode = CALL_EXPR;
  temp.opcode = CALL_EXPR;
  temp.op0 = gimple_call_fn (call);
  temp.op0 = gimple_call_fn (call);
  temp.op1 = gimple_call_chain (call);
  temp.op1 = gimple_call_chain (call);
  VEC_safe_push (vn_reference_op_s, heap, *result, &temp);
  VEC_safe_push (vn_reference_op_s, heap, *result, &temp);
 
 
  /* Copy the call arguments.  As they can be references as well,
  /* Copy the call arguments.  As they can be references as well,
     just chain them together.  */
     just chain them together.  */
  for (i = 0; i < gimple_call_num_args (call); ++i)
  for (i = 0; i < gimple_call_num_args (call); ++i)
    {
    {
      tree callarg = gimple_call_arg (call, i);
      tree callarg = gimple_call_arg (call, i);
      copy_reference_ops_from_ref (callarg, result);
      copy_reference_ops_from_ref (callarg, result);
    }
    }
}
}
 
 
/* Create a vector of vn_reference_op_s structures from REF, a
/* Create a vector of vn_reference_op_s structures from REF, a
   REFERENCE_CLASS_P tree.  The vector is not shared. */
   REFERENCE_CLASS_P tree.  The vector is not shared. */
 
 
static VEC(vn_reference_op_s, heap) *
static VEC(vn_reference_op_s, heap) *
create_reference_ops_from_ref (tree ref)
create_reference_ops_from_ref (tree ref)
{
{
  VEC (vn_reference_op_s, heap) *result = NULL;
  VEC (vn_reference_op_s, heap) *result = NULL;
 
 
  copy_reference_ops_from_ref (ref, &result);
  copy_reference_ops_from_ref (ref, &result);
  return result;
  return result;
}
}
 
 
/* Create a vector of vn_reference_op_s structures from CALL, a
/* Create a vector of vn_reference_op_s structures from CALL, a
   call statement.  The vector is not shared.  */
   call statement.  The vector is not shared.  */
 
 
static VEC(vn_reference_op_s, heap) *
static VEC(vn_reference_op_s, heap) *
create_reference_ops_from_call (gimple call)
create_reference_ops_from_call (gimple call)
{
{
  VEC (vn_reference_op_s, heap) *result = NULL;
  VEC (vn_reference_op_s, heap) *result = NULL;
 
 
  copy_reference_ops_from_call (call, &result);
  copy_reference_ops_from_call (call, &result);
  return result;
  return result;
}
}
 
 
/* Fold *& at position *I_P in a vn_reference_op_s vector *OPS.  Updates
/* Fold *& at position *I_P in a vn_reference_op_s vector *OPS.  Updates
   *I_P to point to the last element of the replacement.  */
   *I_P to point to the last element of the replacement.  */
void
void
vn_reference_fold_indirect (VEC (vn_reference_op_s, heap) **ops,
vn_reference_fold_indirect (VEC (vn_reference_op_s, heap) **ops,
                            unsigned int *i_p)
                            unsigned int *i_p)
{
{
  VEC(vn_reference_op_s, heap) *mem = NULL;
  VEC(vn_reference_op_s, heap) *mem = NULL;
  vn_reference_op_t op;
  vn_reference_op_t op;
  unsigned int i = *i_p;
  unsigned int i = *i_p;
  unsigned int j;
  unsigned int j;
 
 
  /* Get ops for the addressed object.  */
  /* Get ops for the addressed object.  */
  op = VEC_index (vn_reference_op_s, *ops, i);
  op = VEC_index (vn_reference_op_s, *ops, i);
  /* ???  If this is our usual typeof &ARRAY vs. &ARRAY[0] problem, work
  /* ???  If this is our usual typeof &ARRAY vs. &ARRAY[0] problem, work
     around it to avoid later ICEs.  */
     around it to avoid later ICEs.  */
  if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op->op0, 0))) == ARRAY_TYPE
  if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op->op0, 0))) == ARRAY_TYPE
      && TREE_CODE (TREE_TYPE (TREE_TYPE (op->op0))) != ARRAY_TYPE)
      && TREE_CODE (TREE_TYPE (TREE_TYPE (op->op0))) != ARRAY_TYPE)
    {
    {
      vn_reference_op_s aref;
      vn_reference_op_s aref;
      tree dom;
      tree dom;
      aref.type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (op->op0)));
      aref.type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (op->op0)));
      aref.opcode = ARRAY_REF;
      aref.opcode = ARRAY_REF;
      aref.op0 = integer_zero_node;
      aref.op0 = integer_zero_node;
      if ((dom = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (op->op0, 0))))
      if ((dom = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (op->op0, 0))))
          && TYPE_MIN_VALUE (dom))
          && TYPE_MIN_VALUE (dom))
        aref.op0 = TYPE_MIN_VALUE (dom);
        aref.op0 = TYPE_MIN_VALUE (dom);
      aref.op1 = aref.op0;
      aref.op1 = aref.op0;
      aref.op2 = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (op->op0)));
      aref.op2 = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (op->op0)));
      VEC_safe_push (vn_reference_op_s, heap, mem, &aref);
      VEC_safe_push (vn_reference_op_s, heap, mem, &aref);
    }
    }
  copy_reference_ops_from_ref (TREE_OPERAND (op->op0, 0), &mem);
  copy_reference_ops_from_ref (TREE_OPERAND (op->op0, 0), &mem);
 
 
  /* Do the replacement - we should have at least one op in mem now.  */
  /* Do the replacement - we should have at least one op in mem now.  */
  if (VEC_length (vn_reference_op_s, mem) == 1)
  if (VEC_length (vn_reference_op_s, mem) == 1)
    {
    {
      VEC_replace (vn_reference_op_s, *ops, i - 1,
      VEC_replace (vn_reference_op_s, *ops, i - 1,
                   VEC_index (vn_reference_op_s, mem, 0));
                   VEC_index (vn_reference_op_s, mem, 0));
      VEC_ordered_remove (vn_reference_op_s, *ops, i);
      VEC_ordered_remove (vn_reference_op_s, *ops, i);
      i--;
      i--;
    }
    }
  else if (VEC_length (vn_reference_op_s, mem) == 2)
  else if (VEC_length (vn_reference_op_s, mem) == 2)
    {
    {
      VEC_replace (vn_reference_op_s, *ops, i - 1,
      VEC_replace (vn_reference_op_s, *ops, i - 1,
                   VEC_index (vn_reference_op_s, mem, 0));
                   VEC_index (vn_reference_op_s, mem, 0));
      VEC_replace (vn_reference_op_s, *ops, i,
      VEC_replace (vn_reference_op_s, *ops, i,
                   VEC_index (vn_reference_op_s, mem, 1));
                   VEC_index (vn_reference_op_s, mem, 1));
    }
    }
  else if (VEC_length (vn_reference_op_s, mem) > 2)
  else if (VEC_length (vn_reference_op_s, mem) > 2)
    {
    {
      VEC_replace (vn_reference_op_s, *ops, i - 1,
      VEC_replace (vn_reference_op_s, *ops, i - 1,
                   VEC_index (vn_reference_op_s, mem, 0));
                   VEC_index (vn_reference_op_s, mem, 0));
      VEC_replace (vn_reference_op_s, *ops, i,
      VEC_replace (vn_reference_op_s, *ops, i,
                   VEC_index (vn_reference_op_s, mem, 1));
                   VEC_index (vn_reference_op_s, mem, 1));
      /* ???  There is no VEC_splice.  */
      /* ???  There is no VEC_splice.  */
      for (j = 2; VEC_iterate (vn_reference_op_s, mem, j, op); j++)
      for (j = 2; VEC_iterate (vn_reference_op_s, mem, j, op); j++)
        VEC_safe_insert (vn_reference_op_s, heap, *ops, ++i, op);
        VEC_safe_insert (vn_reference_op_s, heap, *ops, ++i, op);
    }
    }
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  VEC_free (vn_reference_op_s, heap, mem);
  VEC_free (vn_reference_op_s, heap, mem);
  *i_p = i;
  *i_p = i;
}
}
 
 
/* Transform any SSA_NAME's in a vector of vn_reference_op_s
/* Transform any SSA_NAME's in a vector of vn_reference_op_s
   structures into their value numbers.  This is done in-place, and
   structures into their value numbers.  This is done in-place, and
   the vector passed in is returned.  */
   the vector passed in is returned.  */
 
 
static VEC (vn_reference_op_s, heap) *
static VEC (vn_reference_op_s, heap) *
valueize_refs (VEC (vn_reference_op_s, heap) *orig)
valueize_refs (VEC (vn_reference_op_s, heap) *orig)
{
{
  vn_reference_op_t vro;
  vn_reference_op_t vro;
  unsigned int i;
  unsigned int i;
 
 
  for (i = 0; VEC_iterate (vn_reference_op_s, orig, i, vro); i++)
  for (i = 0; VEC_iterate (vn_reference_op_s, orig, i, vro); i++)
    {
    {
      if (vro->opcode == SSA_NAME
      if (vro->opcode == SSA_NAME
          || (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME))
          || (vro->op0 && TREE_CODE (vro->op0) == SSA_NAME))
        {
        {
          vro->op0 = SSA_VAL (vro->op0);
          vro->op0 = SSA_VAL (vro->op0);
          /* If it transforms from an SSA_NAME to a constant, update
          /* If it transforms from an SSA_NAME to a constant, update
             the opcode.  */
             the opcode.  */
          if (TREE_CODE (vro->op0) != SSA_NAME && vro->opcode == SSA_NAME)
          if (TREE_CODE (vro->op0) != SSA_NAME && vro->opcode == SSA_NAME)
            vro->opcode = TREE_CODE (vro->op0);
            vro->opcode = TREE_CODE (vro->op0);
          /* If it transforms from an SSA_NAME to an address, fold with
          /* If it transforms from an SSA_NAME to an address, fold with
             a preceding indirect reference.  */
             a preceding indirect reference.  */
          if (i > 0 && TREE_CODE (vro->op0) == ADDR_EXPR
          if (i > 0 && TREE_CODE (vro->op0) == ADDR_EXPR
              && VEC_index (vn_reference_op_s,
              && VEC_index (vn_reference_op_s,
                            orig, i - 1)->opcode == INDIRECT_REF)
                            orig, i - 1)->opcode == INDIRECT_REF)
            {
            {
              vn_reference_fold_indirect (&orig, &i);
              vn_reference_fold_indirect (&orig, &i);
              continue;
              continue;
            }
            }
        }
        }
      if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME)
      if (vro->op1 && TREE_CODE (vro->op1) == SSA_NAME)
        vro->op1 = SSA_VAL (vro->op1);
        vro->op1 = SSA_VAL (vro->op1);
      if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME)
      if (vro->op2 && TREE_CODE (vro->op2) == SSA_NAME)
        vro->op2 = SSA_VAL (vro->op2);
        vro->op2 = SSA_VAL (vro->op2);
    }
    }
 
 
  return orig;
  return orig;
}
}
 
 
static VEC(vn_reference_op_s, heap) *shared_lookup_references;
static VEC(vn_reference_op_s, heap) *shared_lookup_references;
 
 
/* Create a vector of vn_reference_op_s structures from REF, a
/* Create a vector of vn_reference_op_s structures from REF, a
   REFERENCE_CLASS_P tree.  The vector is shared among all callers of
   REFERENCE_CLASS_P tree.  The vector is shared among all callers of
   this function.  */
   this function.  */
 
 
static VEC(vn_reference_op_s, heap) *
static VEC(vn_reference_op_s, heap) *
valueize_shared_reference_ops_from_ref (tree ref)
valueize_shared_reference_ops_from_ref (tree ref)
{
{
  if (!ref)
  if (!ref)
    return NULL;
    return NULL;
  VEC_truncate (vn_reference_op_s, shared_lookup_references, 0);
  VEC_truncate (vn_reference_op_s, shared_lookup_references, 0);
  copy_reference_ops_from_ref (ref, &shared_lookup_references);
  copy_reference_ops_from_ref (ref, &shared_lookup_references);
  shared_lookup_references = valueize_refs (shared_lookup_references);
  shared_lookup_references = valueize_refs (shared_lookup_references);
  return shared_lookup_references;
  return shared_lookup_references;
}
}
 
 
/* Create a vector of vn_reference_op_s structures from CALL, a
/* Create a vector of vn_reference_op_s structures from CALL, a
   call statement.  The vector is shared among all callers of
   call statement.  The vector is shared among all callers of
   this function.  */
   this function.  */
 
 
static VEC(vn_reference_op_s, heap) *
static VEC(vn_reference_op_s, heap) *
valueize_shared_reference_ops_from_call (gimple call)
valueize_shared_reference_ops_from_call (gimple call)
{
{
  if (!call)
  if (!call)
    return NULL;
    return NULL;
  VEC_truncate (vn_reference_op_s, shared_lookup_references, 0);
  VEC_truncate (vn_reference_op_s, shared_lookup_references, 0);
  copy_reference_ops_from_call (call, &shared_lookup_references);
  copy_reference_ops_from_call (call, &shared_lookup_references);
  shared_lookup_references = valueize_refs (shared_lookup_references);
  shared_lookup_references = valueize_refs (shared_lookup_references);
  return shared_lookup_references;
  return shared_lookup_references;
}
}
 
 
/* Lookup a SCCVN reference operation VR in the current hash table.
/* Lookup a SCCVN reference operation VR in the current hash table.
   Returns the resulting value number if it exists in the hash table,
   Returns the resulting value number if it exists in the hash table,
   NULL_TREE otherwise.  VNRESULT will be filled in with the actual
   NULL_TREE otherwise.  VNRESULT will be filled in with the actual
   vn_reference_t stored in the hashtable if something is found.  */
   vn_reference_t stored in the hashtable if something is found.  */
 
 
static tree
static tree
vn_reference_lookup_1 (vn_reference_t vr, vn_reference_t *vnresult)
vn_reference_lookup_1 (vn_reference_t vr, vn_reference_t *vnresult)
{
{
  void **slot;
  void **slot;
  hashval_t hash;
  hashval_t hash;
 
 
  hash = vr->hashcode;
  hash = vr->hashcode;
  slot = htab_find_slot_with_hash (current_info->references, vr,
  slot = htab_find_slot_with_hash (current_info->references, vr,
                                   hash, NO_INSERT);
                                   hash, NO_INSERT);
  if (!slot && current_info == optimistic_info)
  if (!slot && current_info == optimistic_info)
    slot = htab_find_slot_with_hash (valid_info->references, vr,
    slot = htab_find_slot_with_hash (valid_info->references, vr,
                                     hash, NO_INSERT);
                                     hash, NO_INSERT);
  if (slot)
  if (slot)
    {
    {
      if (vnresult)
      if (vnresult)
        *vnresult = (vn_reference_t)*slot;
        *vnresult = (vn_reference_t)*slot;
      return ((vn_reference_t)*slot)->result;
      return ((vn_reference_t)*slot)->result;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
static tree *last_vuse_ptr;
static tree *last_vuse_ptr;
 
 
/* Callback for walk_non_aliased_vuses.  Adjusts the vn_reference_t VR_
/* Callback for walk_non_aliased_vuses.  Adjusts the vn_reference_t VR_
   with the current VUSE and performs the expression lookup.  */
   with the current VUSE and performs the expression lookup.  */
 
 
static void *
static void *
vn_reference_lookup_2 (ao_ref *op ATTRIBUTE_UNUSED, tree vuse, void *vr_)
vn_reference_lookup_2 (ao_ref *op ATTRIBUTE_UNUSED, tree vuse, void *vr_)
{
{
  vn_reference_t vr = (vn_reference_t)vr_;
  vn_reference_t vr = (vn_reference_t)vr_;
  void **slot;
  void **slot;
  hashval_t hash;
  hashval_t hash;
 
 
  if (last_vuse_ptr)
  if (last_vuse_ptr)
    *last_vuse_ptr = vuse;
    *last_vuse_ptr = vuse;
 
 
  /* Fixup vuse and hash.  */
  /* Fixup vuse and hash.  */
  if (vr->vuse)
  if (vr->vuse)
    vr->hashcode = vr->hashcode - SSA_NAME_VERSION (vr->vuse);
    vr->hashcode = vr->hashcode - SSA_NAME_VERSION (vr->vuse);
  vr->vuse = SSA_VAL (vuse);
  vr->vuse = SSA_VAL (vuse);
  if (vr->vuse)
  if (vr->vuse)
    vr->hashcode = vr->hashcode + SSA_NAME_VERSION (vr->vuse);
    vr->hashcode = vr->hashcode + SSA_NAME_VERSION (vr->vuse);
 
 
  hash = vr->hashcode;
  hash = vr->hashcode;
  slot = htab_find_slot_with_hash (current_info->references, vr,
  slot = htab_find_slot_with_hash (current_info->references, vr,
                                   hash, NO_INSERT);
                                   hash, NO_INSERT);
  if (!slot && current_info == optimistic_info)
  if (!slot && current_info == optimistic_info)
    slot = htab_find_slot_with_hash (valid_info->references, vr,
    slot = htab_find_slot_with_hash (valid_info->references, vr,
                                     hash, NO_INSERT);
                                     hash, NO_INSERT);
  if (slot)
  if (slot)
    return *slot;
    return *slot;
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Callback for walk_non_aliased_vuses.  Tries to perform a lookup
/* Callback for walk_non_aliased_vuses.  Tries to perform a lookup
   from the statement defining VUSE and if not successful tries to
   from the statement defining VUSE and if not successful tries to
   translate *REFP and VR_ through an aggregate copy at the defintion
   translate *REFP and VR_ through an aggregate copy at the defintion
   of VUSE.  */
   of VUSE.  */
 
 
static void *
static void *
vn_reference_lookup_3 (ao_ref *ref, tree vuse, void *vr_)
vn_reference_lookup_3 (ao_ref *ref, tree vuse, void *vr_)
{
{
  vn_reference_t vr = (vn_reference_t)vr_;
  vn_reference_t vr = (vn_reference_t)vr_;
  gimple def_stmt = SSA_NAME_DEF_STMT (vuse);
  gimple def_stmt = SSA_NAME_DEF_STMT (vuse);
  tree fndecl;
  tree fndecl;
  tree base;
  tree base;
  HOST_WIDE_INT offset, maxsize;
  HOST_WIDE_INT offset, maxsize;
 
 
  base = ao_ref_base (ref);
  base = ao_ref_base (ref);
  offset = ref->offset;
  offset = ref->offset;
  maxsize = ref->max_size;
  maxsize = ref->max_size;
 
 
  /* If we cannot constrain the size of the reference we cannot
  /* If we cannot constrain the size of the reference we cannot
     test if anything kills it.  */
     test if anything kills it.  */
  if (maxsize == -1)
  if (maxsize == -1)
    return (void *)-1;
    return (void *)-1;
 
 
  /* def_stmt may-defs *ref.  See if we can derive a value for *ref
  /* def_stmt may-defs *ref.  See if we can derive a value for *ref
     from that defintion.
     from that defintion.
     1) Memset.  */
     1) Memset.  */
  if (is_gimple_reg_type (vr->type)
  if (is_gimple_reg_type (vr->type)
      && is_gimple_call (def_stmt)
      && is_gimple_call (def_stmt)
      && (fndecl = gimple_call_fndecl (def_stmt))
      && (fndecl = gimple_call_fndecl (def_stmt))
      && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
      && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
      && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET
      && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_MEMSET
      && integer_zerop (gimple_call_arg (def_stmt, 1))
      && integer_zerop (gimple_call_arg (def_stmt, 1))
      && host_integerp (gimple_call_arg (def_stmt, 2), 1)
      && host_integerp (gimple_call_arg (def_stmt, 2), 1)
      && TREE_CODE (gimple_call_arg (def_stmt, 0)) == ADDR_EXPR)
      && TREE_CODE (gimple_call_arg (def_stmt, 0)) == ADDR_EXPR)
    {
    {
      tree ref2 = TREE_OPERAND (gimple_call_arg (def_stmt, 0), 0);
      tree ref2 = TREE_OPERAND (gimple_call_arg (def_stmt, 0), 0);
      tree base2;
      tree base2;
      HOST_WIDE_INT offset2, size2, maxsize2;
      HOST_WIDE_INT offset2, size2, maxsize2;
      base2 = get_ref_base_and_extent (ref2, &offset2, &size2, &maxsize2);
      base2 = get_ref_base_and_extent (ref2, &offset2, &size2, &maxsize2);
      size2 = TREE_INT_CST_LOW (gimple_call_arg (def_stmt, 2)) * 8;
      size2 = TREE_INT_CST_LOW (gimple_call_arg (def_stmt, 2)) * 8;
      if ((unsigned HOST_WIDE_INT)size2 / 8
      if ((unsigned HOST_WIDE_INT)size2 / 8
          == TREE_INT_CST_LOW (gimple_call_arg (def_stmt, 2))
          == TREE_INT_CST_LOW (gimple_call_arg (def_stmt, 2))
          && operand_equal_p (base, base2, 0)
          && operand_equal_p (base, base2, 0)
          && offset2 <= offset
          && offset2 <= offset
          && offset2 + size2 >= offset + maxsize)
          && offset2 + size2 >= offset + maxsize)
        {
        {
          tree val = fold_convert (vr->type, integer_zero_node);
          tree val = fold_convert (vr->type, integer_zero_node);
          unsigned int value_id = get_or_alloc_constant_value_id (val);
          unsigned int value_id = get_or_alloc_constant_value_id (val);
          return vn_reference_insert_pieces (vuse, vr->set, vr->type,
          return vn_reference_insert_pieces (vuse, vr->set, vr->type,
                                             VEC_copy (vn_reference_op_s,
                                             VEC_copy (vn_reference_op_s,
                                                       heap, vr->operands),
                                                       heap, vr->operands),
                                             val, value_id);
                                             val, value_id);
        }
        }
    }
    }
 
 
  /* 2) Assignment from an empty CONSTRUCTOR.  */
  /* 2) Assignment from an empty CONSTRUCTOR.  */
  else if (is_gimple_reg_type (vr->type)
  else if (is_gimple_reg_type (vr->type)
           && gimple_assign_single_p (def_stmt)
           && gimple_assign_single_p (def_stmt)
           && gimple_assign_rhs_code (def_stmt) == CONSTRUCTOR
           && gimple_assign_rhs_code (def_stmt) == CONSTRUCTOR
           && CONSTRUCTOR_NELTS (gimple_assign_rhs1 (def_stmt)) == 0)
           && CONSTRUCTOR_NELTS (gimple_assign_rhs1 (def_stmt)) == 0)
    {
    {
      tree base2;
      tree base2;
      HOST_WIDE_INT offset2, size2, maxsize2;
      HOST_WIDE_INT offset2, size2, maxsize2;
      base2 = get_ref_base_and_extent (gimple_assign_lhs (def_stmt),
      base2 = get_ref_base_and_extent (gimple_assign_lhs (def_stmt),
                                       &offset2, &size2, &maxsize2);
                                       &offset2, &size2, &maxsize2);
      if (operand_equal_p (base, base2, 0)
      if (operand_equal_p (base, base2, 0)
          && offset2 <= offset
          && offset2 <= offset
          && offset2 + size2 >= offset + maxsize)
          && offset2 + size2 >= offset + maxsize)
        {
        {
          tree val = fold_convert (vr->type, integer_zero_node);
          tree val = fold_convert (vr->type, integer_zero_node);
          unsigned int value_id = get_or_alloc_constant_value_id (val);
          unsigned int value_id = get_or_alloc_constant_value_id (val);
          return vn_reference_insert_pieces (vuse, vr->set, vr->type,
          return vn_reference_insert_pieces (vuse, vr->set, vr->type,
                                             VEC_copy (vn_reference_op_s,
                                             VEC_copy (vn_reference_op_s,
                                                       heap, vr->operands),
                                                       heap, vr->operands),
                                             val, value_id);
                                             val, value_id);
        }
        }
    }
    }
 
 
  /* For aggregate copies translate the reference through them if
  /* For aggregate copies translate the reference through them if
     the copy kills ref.  */
     the copy kills ref.  */
  else if (gimple_assign_single_p (def_stmt)
  else if (gimple_assign_single_p (def_stmt)
           && (DECL_P (gimple_assign_rhs1 (def_stmt))
           && (DECL_P (gimple_assign_rhs1 (def_stmt))
               || INDIRECT_REF_P (gimple_assign_rhs1 (def_stmt))
               || INDIRECT_REF_P (gimple_assign_rhs1 (def_stmt))
               || handled_component_p (gimple_assign_rhs1 (def_stmt))))
               || handled_component_p (gimple_assign_rhs1 (def_stmt))))
    {
    {
      tree base2;
      tree base2;
      HOST_WIDE_INT offset2, size2, maxsize2;
      HOST_WIDE_INT offset2, size2, maxsize2;
      int i, j;
      int i, j;
      VEC (vn_reference_op_s, heap) *lhs = NULL, *rhs = NULL;
      VEC (vn_reference_op_s, heap) *lhs = NULL, *rhs = NULL;
      vn_reference_op_t vro;
      vn_reference_op_t vro;
      ao_ref r;
      ao_ref r;
 
 
      /* See if the assignment kills REF.  */
      /* See if the assignment kills REF.  */
      base2 = get_ref_base_and_extent (gimple_assign_lhs (def_stmt),
      base2 = get_ref_base_and_extent (gimple_assign_lhs (def_stmt),
                                       &offset2, &size2, &maxsize2);
                                       &offset2, &size2, &maxsize2);
      if (!operand_equal_p (base, base2, 0)
      if (!operand_equal_p (base, base2, 0)
          || offset2 > offset
          || offset2 > offset
          || offset2 + size2 < offset + maxsize)
          || offset2 + size2 < offset + maxsize)
        return (void *)-1;
        return (void *)-1;
 
 
      /* Find the common base of ref and the lhs.  */
      /* Find the common base of ref and the lhs.  */
      copy_reference_ops_from_ref (gimple_assign_lhs (def_stmt), &lhs);
      copy_reference_ops_from_ref (gimple_assign_lhs (def_stmt), &lhs);
      i = VEC_length (vn_reference_op_s, vr->operands) - 1;
      i = VEC_length (vn_reference_op_s, vr->operands) - 1;
      j = VEC_length (vn_reference_op_s, lhs) - 1;
      j = VEC_length (vn_reference_op_s, lhs) - 1;
      while (j >= 0 && i >= 0
      while (j >= 0 && i >= 0
             && vn_reference_op_eq (VEC_index (vn_reference_op_s,
             && vn_reference_op_eq (VEC_index (vn_reference_op_s,
                                               vr->operands, i),
                                               vr->operands, i),
                                    VEC_index (vn_reference_op_s, lhs, j)))
                                    VEC_index (vn_reference_op_s, lhs, j)))
        {
        {
          i--;
          i--;
          j--;
          j--;
        }
        }
 
 
      VEC_free (vn_reference_op_s, heap, lhs);
      VEC_free (vn_reference_op_s, heap, lhs);
      /* i now points to the first additional op.
      /* i now points to the first additional op.
         ???  LHS may not be completely contained in VR, one or more
         ???  LHS may not be completely contained in VR, one or more
         VIEW_CONVERT_EXPRs could be in its way.  We could at least
         VIEW_CONVERT_EXPRs could be in its way.  We could at least
         try handling outermost VIEW_CONVERT_EXPRs.  */
         try handling outermost VIEW_CONVERT_EXPRs.  */
      if (j != -1)
      if (j != -1)
        return (void *)-1;
        return (void *)-1;
 
 
      /* Now re-write REF to be based on the rhs of the assignment.  */
      /* Now re-write REF to be based on the rhs of the assignment.  */
      copy_reference_ops_from_ref (gimple_assign_rhs1 (def_stmt), &rhs);
      copy_reference_ops_from_ref (gimple_assign_rhs1 (def_stmt), &rhs);
      /* We need to pre-pend vr->operands[0..i] to rhs.  */
      /* We need to pre-pend vr->operands[0..i] to rhs.  */
      if (i + 1 + VEC_length (vn_reference_op_s, rhs)
      if (i + 1 + VEC_length (vn_reference_op_s, rhs)
          > VEC_length (vn_reference_op_s, vr->operands))
          > VEC_length (vn_reference_op_s, vr->operands))
        {
        {
          VEC (vn_reference_op_s, heap) *old = vr->operands;
          VEC (vn_reference_op_s, heap) *old = vr->operands;
          VEC_safe_grow (vn_reference_op_s, heap, vr->operands,
          VEC_safe_grow (vn_reference_op_s, heap, vr->operands,
                         i + 1 + VEC_length (vn_reference_op_s, rhs));
                         i + 1 + VEC_length (vn_reference_op_s, rhs));
          if (old == shared_lookup_references
          if (old == shared_lookup_references
              && vr->operands != old)
              && vr->operands != old)
            shared_lookup_references = NULL;
            shared_lookup_references = NULL;
        }
        }
      else
      else
        VEC_truncate (vn_reference_op_s, vr->operands,
        VEC_truncate (vn_reference_op_s, vr->operands,
                      i + 1 + VEC_length (vn_reference_op_s, rhs));
                      i + 1 + VEC_length (vn_reference_op_s, rhs));
      for (j = 0; VEC_iterate (vn_reference_op_s, rhs, j, vro); ++j)
      for (j = 0; VEC_iterate (vn_reference_op_s, rhs, j, vro); ++j)
        VEC_replace (vn_reference_op_s, vr->operands, i + 1 + j, vro);
        VEC_replace (vn_reference_op_s, vr->operands, i + 1 + j, vro);
      VEC_free (vn_reference_op_s, heap, rhs);
      VEC_free (vn_reference_op_s, heap, rhs);
      vr->hashcode = vn_reference_compute_hash (vr);
      vr->hashcode = vn_reference_compute_hash (vr);
 
 
      /* Adjust *ref from the new operands.  */
      /* Adjust *ref from the new operands.  */
      if (!ao_ref_init_from_vn_reference (&r, vr->set, vr->type, vr->operands))
      if (!ao_ref_init_from_vn_reference (&r, vr->set, vr->type, vr->operands))
        return (void *)-1;
        return (void *)-1;
      /* This can happen with bitfields.  */
      /* This can happen with bitfields.  */
      if (ref->size != r.size)
      if (ref->size != r.size)
        return (void *)-1;
        return (void *)-1;
      *ref = r;
      *ref = r;
 
 
      /* Do not update last seen VUSE after translating.  */
      /* Do not update last seen VUSE after translating.  */
      last_vuse_ptr = NULL;
      last_vuse_ptr = NULL;
 
 
      /* Keep looking for the adjusted *REF / VR pair.  */
      /* Keep looking for the adjusted *REF / VR pair.  */
      return NULL;
      return NULL;
    }
    }
 
 
  /* Bail out and stop walking.  */
  /* Bail out and stop walking.  */
  return (void *)-1;
  return (void *)-1;
}
}
 
 
/* Lookup a reference operation by it's parts, in the current hash table.
/* Lookup a reference operation by it's parts, in the current hash table.
   Returns the resulting value number if it exists in the hash table,
   Returns the resulting value number if it exists in the hash table,
   NULL_TREE otherwise.  VNRESULT will be filled in with the actual
   NULL_TREE otherwise.  VNRESULT will be filled in with the actual
   vn_reference_t stored in the hashtable if something is found.  */
   vn_reference_t stored in the hashtable if something is found.  */
 
 
tree
tree
vn_reference_lookup_pieces (tree vuse, alias_set_type set, tree type,
vn_reference_lookup_pieces (tree vuse, alias_set_type set, tree type,
                            VEC (vn_reference_op_s, heap) *operands,
                            VEC (vn_reference_op_s, heap) *operands,
                            vn_reference_t *vnresult, bool maywalk)
                            vn_reference_t *vnresult, bool maywalk)
{
{
  struct vn_reference_s vr1;
  struct vn_reference_s vr1;
  vn_reference_t tmp;
  vn_reference_t tmp;
 
 
  if (!vnresult)
  if (!vnresult)
    vnresult = &tmp;
    vnresult = &tmp;
  *vnresult = NULL;
  *vnresult = NULL;
 
 
  vr1.vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  vr1.vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  VEC_truncate (vn_reference_op_s, shared_lookup_references, 0);
  VEC_truncate (vn_reference_op_s, shared_lookup_references, 0);
  VEC_safe_grow (vn_reference_op_s, heap, shared_lookup_references,
  VEC_safe_grow (vn_reference_op_s, heap, shared_lookup_references,
                 VEC_length (vn_reference_op_s, operands));
                 VEC_length (vn_reference_op_s, operands));
  memcpy (VEC_address (vn_reference_op_s, shared_lookup_references),
  memcpy (VEC_address (vn_reference_op_s, shared_lookup_references),
          VEC_address (vn_reference_op_s, operands),
          VEC_address (vn_reference_op_s, operands),
          sizeof (vn_reference_op_s)
          sizeof (vn_reference_op_s)
          * VEC_length (vn_reference_op_s, operands));
          * VEC_length (vn_reference_op_s, operands));
  vr1.operands = operands = shared_lookup_references
  vr1.operands = operands = shared_lookup_references
    = valueize_refs (shared_lookup_references);
    = valueize_refs (shared_lookup_references);
  vr1.type = type;
  vr1.type = type;
  vr1.set = set;
  vr1.set = set;
  vr1.hashcode = vn_reference_compute_hash (&vr1);
  vr1.hashcode = vn_reference_compute_hash (&vr1);
  vn_reference_lookup_1 (&vr1, vnresult);
  vn_reference_lookup_1 (&vr1, vnresult);
 
 
  if (!*vnresult
  if (!*vnresult
      && maywalk
      && maywalk
      && vr1.vuse)
      && vr1.vuse)
    {
    {
      ao_ref r;
      ao_ref r;
      if (ao_ref_init_from_vn_reference (&r, set, type, vr1.operands))
      if (ao_ref_init_from_vn_reference (&r, set, type, vr1.operands))
        *vnresult =
        *vnresult =
          (vn_reference_t)walk_non_aliased_vuses (&r, vr1.vuse,
          (vn_reference_t)walk_non_aliased_vuses (&r, vr1.vuse,
                                                  vn_reference_lookup_2,
                                                  vn_reference_lookup_2,
                                                  vn_reference_lookup_3, &vr1);
                                                  vn_reference_lookup_3, &vr1);
      if (vr1.operands != operands)
      if (vr1.operands != operands)
        VEC_free (vn_reference_op_s, heap, vr1.operands);
        VEC_free (vn_reference_op_s, heap, vr1.operands);
    }
    }
 
 
  if (*vnresult)
  if (*vnresult)
     return (*vnresult)->result;
     return (*vnresult)->result;
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Lookup OP in the current hash table, and return the resulting value
/* Lookup OP in the current hash table, and return the resulting value
   number if it exists in the hash table.  Return NULL_TREE if it does
   number if it exists in the hash table.  Return NULL_TREE if it does
   not exist in the hash table or if the result field of the structure
   not exist in the hash table or if the result field of the structure
   was NULL..  VNRESULT will be filled in with the vn_reference_t
   was NULL..  VNRESULT will be filled in with the vn_reference_t
   stored in the hashtable if one exists.  */
   stored in the hashtable if one exists.  */
 
 
tree
tree
vn_reference_lookup (tree op, tree vuse, bool maywalk,
vn_reference_lookup (tree op, tree vuse, bool maywalk,
                     vn_reference_t *vnresult)
                     vn_reference_t *vnresult)
{
{
  VEC (vn_reference_op_s, heap) *operands;
  VEC (vn_reference_op_s, heap) *operands;
  struct vn_reference_s vr1;
  struct vn_reference_s vr1;
 
 
  if (vnresult)
  if (vnresult)
    *vnresult = NULL;
    *vnresult = NULL;
 
 
  vr1.vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  vr1.vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  vr1.operands = operands = valueize_shared_reference_ops_from_ref (op);
  vr1.operands = operands = valueize_shared_reference_ops_from_ref (op);
  vr1.type = TREE_TYPE (op);
  vr1.type = TREE_TYPE (op);
  vr1.set = get_alias_set (op);
  vr1.set = get_alias_set (op);
  vr1.hashcode = vn_reference_compute_hash (&vr1);
  vr1.hashcode = vn_reference_compute_hash (&vr1);
 
 
  if (maywalk
  if (maywalk
      && vr1.vuse)
      && vr1.vuse)
    {
    {
      vn_reference_t wvnresult;
      vn_reference_t wvnresult;
      ao_ref r;
      ao_ref r;
      ao_ref_init (&r, op);
      ao_ref_init (&r, op);
      wvnresult =
      wvnresult =
        (vn_reference_t)walk_non_aliased_vuses (&r, vr1.vuse,
        (vn_reference_t)walk_non_aliased_vuses (&r, vr1.vuse,
                                                vn_reference_lookup_2,
                                                vn_reference_lookup_2,
                                                vn_reference_lookup_3, &vr1);
                                                vn_reference_lookup_3, &vr1);
      if (vr1.operands != operands)
      if (vr1.operands != operands)
        VEC_free (vn_reference_op_s, heap, vr1.operands);
        VEC_free (vn_reference_op_s, heap, vr1.operands);
      if (wvnresult)
      if (wvnresult)
        {
        {
          if (vnresult)
          if (vnresult)
            *vnresult = wvnresult;
            *vnresult = wvnresult;
          return wvnresult->result;
          return wvnresult->result;
        }
        }
 
 
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  return vn_reference_lookup_1 (&vr1, vnresult);
  return vn_reference_lookup_1 (&vr1, vnresult);
}
}
 
 
 
 
/* Insert OP into the current hash table with a value number of
/* Insert OP into the current hash table with a value number of
   RESULT, and return the resulting reference structure we created.  */
   RESULT, and return the resulting reference structure we created.  */
 
 
vn_reference_t
vn_reference_t
vn_reference_insert (tree op, tree result, tree vuse)
vn_reference_insert (tree op, tree result, tree vuse)
{
{
  void **slot;
  void **slot;
  vn_reference_t vr1;
  vn_reference_t vr1;
 
 
  vr1 = (vn_reference_t) pool_alloc (current_info->references_pool);
  vr1 = (vn_reference_t) pool_alloc (current_info->references_pool);
  if (TREE_CODE (result) == SSA_NAME)
  if (TREE_CODE (result) == SSA_NAME)
    vr1->value_id = VN_INFO (result)->value_id;
    vr1->value_id = VN_INFO (result)->value_id;
  else
  else
    vr1->value_id = get_or_alloc_constant_value_id (result);
    vr1->value_id = get_or_alloc_constant_value_id (result);
  vr1->vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  vr1->vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  vr1->operands = valueize_refs (create_reference_ops_from_ref (op));
  vr1->operands = valueize_refs (create_reference_ops_from_ref (op));
  vr1->type = TREE_TYPE (op);
  vr1->type = TREE_TYPE (op);
  vr1->set = get_alias_set (op);
  vr1->set = get_alias_set (op);
  vr1->hashcode = vn_reference_compute_hash (vr1);
  vr1->hashcode = vn_reference_compute_hash (vr1);
  vr1->result = TREE_CODE (result) == SSA_NAME ? SSA_VAL (result) : result;
  vr1->result = TREE_CODE (result) == SSA_NAME ? SSA_VAL (result) : result;
 
 
  slot = htab_find_slot_with_hash (current_info->references, vr1, vr1->hashcode,
  slot = htab_find_slot_with_hash (current_info->references, vr1, vr1->hashcode,
                                   INSERT);
                                   INSERT);
 
 
  /* Because we lookup stores using vuses, and value number failures
  /* Because we lookup stores using vuses, and value number failures
     using the vdefs (see visit_reference_op_store for how and why),
     using the vdefs (see visit_reference_op_store for how and why),
     it's possible that on failure we may try to insert an already
     it's possible that on failure we may try to insert an already
     inserted store.  This is not wrong, there is no ssa name for a
     inserted store.  This is not wrong, there is no ssa name for a
     store that we could use as a differentiator anyway.  Thus, unlike
     store that we could use as a differentiator anyway.  Thus, unlike
     the other lookup functions, you cannot gcc_assert (!*slot)
     the other lookup functions, you cannot gcc_assert (!*slot)
     here.  */
     here.  */
 
 
  /* But free the old slot in case of a collision.  */
  /* But free the old slot in case of a collision.  */
  if (*slot)
  if (*slot)
    free_reference (*slot);
    free_reference (*slot);
 
 
  *slot = vr1;
  *slot = vr1;
  return vr1;
  return vr1;
}
}
 
 
/* Insert a reference by it's pieces into the current hash table with
/* Insert a reference by it's pieces into the current hash table with
   a value number of RESULT.  Return the resulting reference
   a value number of RESULT.  Return the resulting reference
   structure we created.  */
   structure we created.  */
 
 
vn_reference_t
vn_reference_t
vn_reference_insert_pieces (tree vuse, alias_set_type set, tree type,
vn_reference_insert_pieces (tree vuse, alias_set_type set, tree type,
                            VEC (vn_reference_op_s, heap) *operands,
                            VEC (vn_reference_op_s, heap) *operands,
                            tree result, unsigned int value_id)
                            tree result, unsigned int value_id)
 
 
{
{
  void **slot;
  void **slot;
  vn_reference_t vr1;
  vn_reference_t vr1;
 
 
  vr1 = (vn_reference_t) pool_alloc (current_info->references_pool);
  vr1 = (vn_reference_t) pool_alloc (current_info->references_pool);
  vr1->value_id = value_id;
  vr1->value_id = value_id;
  vr1->vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  vr1->vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  vr1->operands = valueize_refs (operands);
  vr1->operands = valueize_refs (operands);
  vr1->type = type;
  vr1->type = type;
  vr1->set = set;
  vr1->set = set;
  vr1->hashcode = vn_reference_compute_hash (vr1);
  vr1->hashcode = vn_reference_compute_hash (vr1);
  if (result && TREE_CODE (result) == SSA_NAME)
  if (result && TREE_CODE (result) == SSA_NAME)
    result = SSA_VAL (result);
    result = SSA_VAL (result);
  vr1->result = result;
  vr1->result = result;
 
 
  slot = htab_find_slot_with_hash (current_info->references, vr1, vr1->hashcode,
  slot = htab_find_slot_with_hash (current_info->references, vr1, vr1->hashcode,
                                   INSERT);
                                   INSERT);
 
 
  /* At this point we should have all the things inserted that we have
  /* At this point we should have all the things inserted that we have
     seen before, and we should never try inserting something that
     seen before, and we should never try inserting something that
     already exists.  */
     already exists.  */
  gcc_assert (!*slot);
  gcc_assert (!*slot);
  if (*slot)
  if (*slot)
    free_reference (*slot);
    free_reference (*slot);
 
 
  *slot = vr1;
  *slot = vr1;
  return vr1;
  return vr1;
}
}
 
 
/* Compute and return the hash value for nary operation VBO1.  */
/* Compute and return the hash value for nary operation VBO1.  */
 
 
hashval_t
hashval_t
vn_nary_op_compute_hash (const vn_nary_op_t vno1)
vn_nary_op_compute_hash (const vn_nary_op_t vno1)
{
{
  hashval_t hash;
  hashval_t hash;
  unsigned i;
  unsigned i;
 
 
  for (i = 0; i < vno1->length; ++i)
  for (i = 0; i < vno1->length; ++i)
    if (TREE_CODE (vno1->op[i]) == SSA_NAME)
    if (TREE_CODE (vno1->op[i]) == SSA_NAME)
      vno1->op[i] = SSA_VAL (vno1->op[i]);
      vno1->op[i] = SSA_VAL (vno1->op[i]);
 
 
  if (vno1->length == 2
  if (vno1->length == 2
      && commutative_tree_code (vno1->opcode)
      && commutative_tree_code (vno1->opcode)
      && tree_swap_operands_p (vno1->op[0], vno1->op[1], false))
      && tree_swap_operands_p (vno1->op[0], vno1->op[1], false))
    {
    {
      tree temp = vno1->op[0];
      tree temp = vno1->op[0];
      vno1->op[0] = vno1->op[1];
      vno1->op[0] = vno1->op[1];
      vno1->op[1] = temp;
      vno1->op[1] = temp;
    }
    }
 
 
  hash = iterative_hash_hashval_t (vno1->opcode, 0);
  hash = iterative_hash_hashval_t (vno1->opcode, 0);
  for (i = 0; i < vno1->length; ++i)
  for (i = 0; i < vno1->length; ++i)
    hash = iterative_hash_expr (vno1->op[i], hash);
    hash = iterative_hash_expr (vno1->op[i], hash);
 
 
  return hash;
  return hash;
}
}
 
 
/* Return the computed hashcode for nary operation P1.  */
/* Return the computed hashcode for nary operation P1.  */
 
 
static hashval_t
static hashval_t
vn_nary_op_hash (const void *p1)
vn_nary_op_hash (const void *p1)
{
{
  const_vn_nary_op_t const vno1 = (const_vn_nary_op_t) p1;
  const_vn_nary_op_t const vno1 = (const_vn_nary_op_t) p1;
  return vno1->hashcode;
  return vno1->hashcode;
}
}
 
 
/* Compare nary operations P1 and P2 and return true if they are
/* Compare nary operations P1 and P2 and return true if they are
   equivalent.  */
   equivalent.  */
 
 
int
int
vn_nary_op_eq (const void *p1, const void *p2)
vn_nary_op_eq (const void *p1, const void *p2)
{
{
  const_vn_nary_op_t const vno1 = (const_vn_nary_op_t) p1;
  const_vn_nary_op_t const vno1 = (const_vn_nary_op_t) p1;
  const_vn_nary_op_t const vno2 = (const_vn_nary_op_t) p2;
  const_vn_nary_op_t const vno2 = (const_vn_nary_op_t) p2;
  unsigned i;
  unsigned i;
 
 
  if (vno1->hashcode != vno2->hashcode)
  if (vno1->hashcode != vno2->hashcode)
    return false;
    return false;
 
 
  if (vno1->opcode != vno2->opcode
  if (vno1->opcode != vno2->opcode
      || !types_compatible_p (vno1->type, vno2->type))
      || !types_compatible_p (vno1->type, vno2->type))
    return false;
    return false;
 
 
  for (i = 0; i < vno1->length; ++i)
  for (i = 0; i < vno1->length; ++i)
    if (!expressions_equal_p (vno1->op[i], vno2->op[i]))
    if (!expressions_equal_p (vno1->op[i], vno2->op[i]))
      return false;
      return false;
 
 
  return true;
  return true;
}
}
 
 
/* Lookup a n-ary operation by its pieces and return the resulting value
/* Lookup a n-ary operation by its pieces and return the resulting value
   number if it exists in the hash table.  Return NULL_TREE if it does
   number if it exists in the hash table.  Return NULL_TREE if it does
   not exist in the hash table or if the result field of the operation
   not exist in the hash table or if the result field of the operation
   is NULL. VNRESULT will contain the vn_nary_op_t from the hashtable
   is NULL. VNRESULT will contain the vn_nary_op_t from the hashtable
   if it exists.  */
   if it exists.  */
 
 
tree
tree
vn_nary_op_lookup_pieces (unsigned int length, enum tree_code code,
vn_nary_op_lookup_pieces (unsigned int length, enum tree_code code,
                          tree type, tree op0, tree op1, tree op2,
                          tree type, tree op0, tree op1, tree op2,
                          tree op3, vn_nary_op_t *vnresult)
                          tree op3, vn_nary_op_t *vnresult)
{
{
  void **slot;
  void **slot;
  struct vn_nary_op_s vno1;
  struct vn_nary_op_s vno1;
  if (vnresult)
  if (vnresult)
    *vnresult = NULL;
    *vnresult = NULL;
  vno1.opcode = code;
  vno1.opcode = code;
  vno1.length = length;
  vno1.length = length;
  vno1.type = type;
  vno1.type = type;
  vno1.op[0] = op0;
  vno1.op[0] = op0;
  vno1.op[1] = op1;
  vno1.op[1] = op1;
  vno1.op[2] = op2;
  vno1.op[2] = op2;
  vno1.op[3] = op3;
  vno1.op[3] = op3;
  vno1.hashcode = vn_nary_op_compute_hash (&vno1);
  vno1.hashcode = vn_nary_op_compute_hash (&vno1);
  slot = htab_find_slot_with_hash (current_info->nary, &vno1, vno1.hashcode,
  slot = htab_find_slot_with_hash (current_info->nary, &vno1, vno1.hashcode,
                                   NO_INSERT);
                                   NO_INSERT);
  if (!slot && current_info == optimistic_info)
  if (!slot && current_info == optimistic_info)
    slot = htab_find_slot_with_hash (valid_info->nary, &vno1, vno1.hashcode,
    slot = htab_find_slot_with_hash (valid_info->nary, &vno1, vno1.hashcode,
                                     NO_INSERT);
                                     NO_INSERT);
  if (!slot)
  if (!slot)
    return NULL_TREE;
    return NULL_TREE;
  if (vnresult)
  if (vnresult)
    *vnresult = (vn_nary_op_t)*slot;
    *vnresult = (vn_nary_op_t)*slot;
  return ((vn_nary_op_t)*slot)->result;
  return ((vn_nary_op_t)*slot)->result;
}
}
 
 
/* Lookup OP in the current hash table, and return the resulting value
/* Lookup OP in the current hash table, and return the resulting value
   number if it exists in the hash table.  Return NULL_TREE if it does
   number if it exists in the hash table.  Return NULL_TREE if it does
   not exist in the hash table or if the result field of the operation
   not exist in the hash table or if the result field of the operation
   is NULL. VNRESULT will contain the vn_nary_op_t from the hashtable
   is NULL. VNRESULT will contain the vn_nary_op_t from the hashtable
   if it exists.  */
   if it exists.  */
 
 
tree
tree
vn_nary_op_lookup (tree op, vn_nary_op_t *vnresult)
vn_nary_op_lookup (tree op, vn_nary_op_t *vnresult)
{
{
  void **slot;
  void **slot;
  struct vn_nary_op_s vno1;
  struct vn_nary_op_s vno1;
  unsigned i;
  unsigned i;
 
 
  if (vnresult)
  if (vnresult)
    *vnresult = NULL;
    *vnresult = NULL;
  vno1.opcode = TREE_CODE (op);
  vno1.opcode = TREE_CODE (op);
  vno1.length = TREE_CODE_LENGTH (TREE_CODE (op));
  vno1.length = TREE_CODE_LENGTH (TREE_CODE (op));
  vno1.type = TREE_TYPE (op);
  vno1.type = TREE_TYPE (op);
  for (i = 0; i < vno1.length; ++i)
  for (i = 0; i < vno1.length; ++i)
    vno1.op[i] = TREE_OPERAND (op, i);
    vno1.op[i] = TREE_OPERAND (op, i);
  vno1.hashcode = vn_nary_op_compute_hash (&vno1);
  vno1.hashcode = vn_nary_op_compute_hash (&vno1);
  slot = htab_find_slot_with_hash (current_info->nary, &vno1, vno1.hashcode,
  slot = htab_find_slot_with_hash (current_info->nary, &vno1, vno1.hashcode,
                                   NO_INSERT);
                                   NO_INSERT);
  if (!slot && current_info == optimistic_info)
  if (!slot && current_info == optimistic_info)
    slot = htab_find_slot_with_hash (valid_info->nary, &vno1, vno1.hashcode,
    slot = htab_find_slot_with_hash (valid_info->nary, &vno1, vno1.hashcode,
                                     NO_INSERT);
                                     NO_INSERT);
  if (!slot)
  if (!slot)
    return NULL_TREE;
    return NULL_TREE;
  if (vnresult)
  if (vnresult)
    *vnresult = (vn_nary_op_t)*slot;
    *vnresult = (vn_nary_op_t)*slot;
  return ((vn_nary_op_t)*slot)->result;
  return ((vn_nary_op_t)*slot)->result;
}
}
 
 
/* Lookup the rhs of STMT in the current hash table, and return the resulting
/* Lookup the rhs of STMT in the current hash table, and return the resulting
   value number if it exists in the hash table.  Return NULL_TREE if
   value number if it exists in the hash table.  Return NULL_TREE if
   it does not exist in the hash table.  VNRESULT will contain the
   it does not exist in the hash table.  VNRESULT will contain the
   vn_nary_op_t from the hashtable if it exists.  */
   vn_nary_op_t from the hashtable if it exists.  */
 
 
tree
tree
vn_nary_op_lookup_stmt (gimple stmt, vn_nary_op_t *vnresult)
vn_nary_op_lookup_stmt (gimple stmt, vn_nary_op_t *vnresult)
{
{
  void **slot;
  void **slot;
  struct vn_nary_op_s vno1;
  struct vn_nary_op_s vno1;
  unsigned i;
  unsigned i;
 
 
  if (vnresult)
  if (vnresult)
    *vnresult = NULL;
    *vnresult = NULL;
  vno1.opcode = gimple_assign_rhs_code (stmt);
  vno1.opcode = gimple_assign_rhs_code (stmt);
  vno1.length = gimple_num_ops (stmt) - 1;
  vno1.length = gimple_num_ops (stmt) - 1;
  vno1.type = gimple_expr_type (stmt);
  vno1.type = gimple_expr_type (stmt);
  for (i = 0; i < vno1.length; ++i)
  for (i = 0; i < vno1.length; ++i)
    vno1.op[i] = gimple_op (stmt, i + 1);
    vno1.op[i] = gimple_op (stmt, i + 1);
  if (vno1.opcode == REALPART_EXPR
  if (vno1.opcode == REALPART_EXPR
      || vno1.opcode == IMAGPART_EXPR
      || vno1.opcode == IMAGPART_EXPR
      || vno1.opcode == VIEW_CONVERT_EXPR)
      || vno1.opcode == VIEW_CONVERT_EXPR)
    vno1.op[0] = TREE_OPERAND (vno1.op[0], 0);
    vno1.op[0] = TREE_OPERAND (vno1.op[0], 0);
  vno1.hashcode = vn_nary_op_compute_hash (&vno1);
  vno1.hashcode = vn_nary_op_compute_hash (&vno1);
  slot = htab_find_slot_with_hash (current_info->nary, &vno1, vno1.hashcode,
  slot = htab_find_slot_with_hash (current_info->nary, &vno1, vno1.hashcode,
                                   NO_INSERT);
                                   NO_INSERT);
  if (!slot && current_info == optimistic_info)
  if (!slot && current_info == optimistic_info)
    slot = htab_find_slot_with_hash (valid_info->nary, &vno1, vno1.hashcode,
    slot = htab_find_slot_with_hash (valid_info->nary, &vno1, vno1.hashcode,
                                     NO_INSERT);
                                     NO_INSERT);
  if (!slot)
  if (!slot)
    return NULL_TREE;
    return NULL_TREE;
  if (vnresult)
  if (vnresult)
    *vnresult = (vn_nary_op_t)*slot;
    *vnresult = (vn_nary_op_t)*slot;
  return ((vn_nary_op_t)*slot)->result;
  return ((vn_nary_op_t)*slot)->result;
}
}
 
 
/* Insert a n-ary operation into the current hash table using it's
/* Insert a n-ary operation into the current hash table using it's
   pieces.  Return the vn_nary_op_t structure we created and put in
   pieces.  Return the vn_nary_op_t structure we created and put in
   the hashtable.  */
   the hashtable.  */
 
 
vn_nary_op_t
vn_nary_op_t
vn_nary_op_insert_pieces (unsigned int length, enum tree_code code,
vn_nary_op_insert_pieces (unsigned int length, enum tree_code code,
                          tree type, tree op0,
                          tree type, tree op0,
                          tree op1, tree op2, tree op3,
                          tree op1, tree op2, tree op3,
                          tree result,
                          tree result,
                          unsigned int value_id)
                          unsigned int value_id)
{
{
  void **slot;
  void **slot;
  vn_nary_op_t vno1;
  vn_nary_op_t vno1;
 
 
  vno1 = (vn_nary_op_t) obstack_alloc (&current_info->nary_obstack,
  vno1 = (vn_nary_op_t) obstack_alloc (&current_info->nary_obstack,
                                       (sizeof (struct vn_nary_op_s)
                                       (sizeof (struct vn_nary_op_s)
                                        - sizeof (tree) * (4 - length)));
                                        - sizeof (tree) * (4 - length)));
  vno1->value_id = value_id;
  vno1->value_id = value_id;
  vno1->opcode = code;
  vno1->opcode = code;
  vno1->length = length;
  vno1->length = length;
  vno1->type = type;
  vno1->type = type;
  if (length >= 1)
  if (length >= 1)
    vno1->op[0] = op0;
    vno1->op[0] = op0;
  if (length >= 2)
  if (length >= 2)
    vno1->op[1] = op1;
    vno1->op[1] = op1;
  if (length >= 3)
  if (length >= 3)
    vno1->op[2] = op2;
    vno1->op[2] = op2;
  if (length >= 4)
  if (length >= 4)
    vno1->op[3] = op3;
    vno1->op[3] = op3;
  vno1->result = result;
  vno1->result = result;
  vno1->hashcode = vn_nary_op_compute_hash (vno1);
  vno1->hashcode = vn_nary_op_compute_hash (vno1);
  slot = htab_find_slot_with_hash (current_info->nary, vno1, vno1->hashcode,
  slot = htab_find_slot_with_hash (current_info->nary, vno1, vno1->hashcode,
                                   INSERT);
                                   INSERT);
  gcc_assert (!*slot);
  gcc_assert (!*slot);
 
 
  *slot = vno1;
  *slot = vno1;
  return vno1;
  return vno1;
 
 
}
}
 
 
/* Insert OP into the current hash table with a value number of
/* Insert OP into the current hash table with a value number of
   RESULT.  Return the vn_nary_op_t structure we created and put in
   RESULT.  Return the vn_nary_op_t structure we created and put in
   the hashtable.  */
   the hashtable.  */
 
 
vn_nary_op_t
vn_nary_op_t
vn_nary_op_insert (tree op, tree result)
vn_nary_op_insert (tree op, tree result)
{
{
  unsigned length = TREE_CODE_LENGTH (TREE_CODE (op));
  unsigned length = TREE_CODE_LENGTH (TREE_CODE (op));
  void **slot;
  void **slot;
  vn_nary_op_t vno1;
  vn_nary_op_t vno1;
  unsigned i;
  unsigned i;
 
 
  vno1 = (vn_nary_op_t) obstack_alloc (&current_info->nary_obstack,
  vno1 = (vn_nary_op_t) obstack_alloc (&current_info->nary_obstack,
                        (sizeof (struct vn_nary_op_s)
                        (sizeof (struct vn_nary_op_s)
                         - sizeof (tree) * (4 - length)));
                         - sizeof (tree) * (4 - length)));
  vno1->value_id = VN_INFO (result)->value_id;
  vno1->value_id = VN_INFO (result)->value_id;
  vno1->opcode = TREE_CODE (op);
  vno1->opcode = TREE_CODE (op);
  vno1->length = length;
  vno1->length = length;
  vno1->type = TREE_TYPE (op);
  vno1->type = TREE_TYPE (op);
  for (i = 0; i < vno1->length; ++i)
  for (i = 0; i < vno1->length; ++i)
    vno1->op[i] = TREE_OPERAND (op, i);
    vno1->op[i] = TREE_OPERAND (op, i);
  vno1->result = result;
  vno1->result = result;
  vno1->hashcode = vn_nary_op_compute_hash (vno1);
  vno1->hashcode = vn_nary_op_compute_hash (vno1);
  slot = htab_find_slot_with_hash (current_info->nary, vno1, vno1->hashcode,
  slot = htab_find_slot_with_hash (current_info->nary, vno1, vno1->hashcode,
                                   INSERT);
                                   INSERT);
  gcc_assert (!*slot);
  gcc_assert (!*slot);
 
 
  *slot = vno1;
  *slot = vno1;
  return vno1;
  return vno1;
}
}
 
 
/* Insert the rhs of STMT into the current hash table with a value number of
/* Insert the rhs of STMT into the current hash table with a value number of
   RESULT.  */
   RESULT.  */
 
 
vn_nary_op_t
vn_nary_op_t
vn_nary_op_insert_stmt (gimple stmt, tree result)
vn_nary_op_insert_stmt (gimple stmt, tree result)
{
{
  unsigned length = gimple_num_ops (stmt) - 1;
  unsigned length = gimple_num_ops (stmt) - 1;
  void **slot;
  void **slot;
  vn_nary_op_t vno1;
  vn_nary_op_t vno1;
  unsigned i;
  unsigned i;
 
 
  vno1 = (vn_nary_op_t) obstack_alloc (&current_info->nary_obstack,
  vno1 = (vn_nary_op_t) obstack_alloc (&current_info->nary_obstack,
                                       (sizeof (struct vn_nary_op_s)
                                       (sizeof (struct vn_nary_op_s)
                                        - sizeof (tree) * (4 - length)));
                                        - sizeof (tree) * (4 - length)));
  vno1->value_id = VN_INFO (result)->value_id;
  vno1->value_id = VN_INFO (result)->value_id;
  vno1->opcode = gimple_assign_rhs_code (stmt);
  vno1->opcode = gimple_assign_rhs_code (stmt);
  vno1->length = length;
  vno1->length = length;
  vno1->type = gimple_expr_type (stmt);
  vno1->type = gimple_expr_type (stmt);
  for (i = 0; i < vno1->length; ++i)
  for (i = 0; i < vno1->length; ++i)
    vno1->op[i] = gimple_op (stmt, i + 1);
    vno1->op[i] = gimple_op (stmt, i + 1);
  if (vno1->opcode == REALPART_EXPR
  if (vno1->opcode == REALPART_EXPR
      || vno1->opcode == IMAGPART_EXPR
      || vno1->opcode == IMAGPART_EXPR
      || vno1->opcode == VIEW_CONVERT_EXPR)
      || vno1->opcode == VIEW_CONVERT_EXPR)
    vno1->op[0] = TREE_OPERAND (vno1->op[0], 0);
    vno1->op[0] = TREE_OPERAND (vno1->op[0], 0);
  vno1->result = result;
  vno1->result = result;
  vno1->hashcode = vn_nary_op_compute_hash (vno1);
  vno1->hashcode = vn_nary_op_compute_hash (vno1);
  slot = htab_find_slot_with_hash (current_info->nary, vno1, vno1->hashcode,
  slot = htab_find_slot_with_hash (current_info->nary, vno1, vno1->hashcode,
                                   INSERT);
                                   INSERT);
  gcc_assert (!*slot);
  gcc_assert (!*slot);
 
 
  *slot = vno1;
  *slot = vno1;
  return vno1;
  return vno1;
}
}
 
 
/* Compute a hashcode for PHI operation VP1 and return it.  */
/* Compute a hashcode for PHI operation VP1 and return it.  */
 
 
static inline hashval_t
static inline hashval_t
vn_phi_compute_hash (vn_phi_t vp1)
vn_phi_compute_hash (vn_phi_t vp1)
{
{
  hashval_t result;
  hashval_t result;
  int i;
  int i;
  tree phi1op;
  tree phi1op;
  tree type;
  tree type;
 
 
  result = vp1->block->index;
  result = vp1->block->index;
 
 
  /* If all PHI arguments are constants we need to distinguish
  /* If all PHI arguments are constants we need to distinguish
     the PHI node via its type.  */
     the PHI node via its type.  */
  type = TREE_TYPE (VEC_index (tree, vp1->phiargs, 0));
  type = TREE_TYPE (VEC_index (tree, vp1->phiargs, 0));
  result += (INTEGRAL_TYPE_P (type)
  result += (INTEGRAL_TYPE_P (type)
             + (INTEGRAL_TYPE_P (type)
             + (INTEGRAL_TYPE_P (type)
                ? TYPE_PRECISION (type) + TYPE_UNSIGNED (type) : 0));
                ? TYPE_PRECISION (type) + TYPE_UNSIGNED (type) : 0));
 
 
  for (i = 0; VEC_iterate (tree, vp1->phiargs, i, phi1op); i++)
  for (i = 0; VEC_iterate (tree, vp1->phiargs, i, phi1op); i++)
    {
    {
      if (phi1op == VN_TOP)
      if (phi1op == VN_TOP)
        continue;
        continue;
      result = iterative_hash_expr (phi1op, result);
      result = iterative_hash_expr (phi1op, result);
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* Return the computed hashcode for phi operation P1.  */
/* Return the computed hashcode for phi operation P1.  */
 
 
static hashval_t
static hashval_t
vn_phi_hash (const void *p1)
vn_phi_hash (const void *p1)
{
{
  const_vn_phi_t const vp1 = (const_vn_phi_t) p1;
  const_vn_phi_t const vp1 = (const_vn_phi_t) p1;
  return vp1->hashcode;
  return vp1->hashcode;
}
}
 
 
/* Compare two phi entries for equality, ignoring VN_TOP arguments.  */
/* Compare two phi entries for equality, ignoring VN_TOP arguments.  */
 
 
static int
static int
vn_phi_eq (const void *p1, const void *p2)
vn_phi_eq (const void *p1, const void *p2)
{
{
  const_vn_phi_t const vp1 = (const_vn_phi_t) p1;
  const_vn_phi_t const vp1 = (const_vn_phi_t) p1;
  const_vn_phi_t const vp2 = (const_vn_phi_t) p2;
  const_vn_phi_t const vp2 = (const_vn_phi_t) p2;
 
 
  if (vp1->hashcode != vp2->hashcode)
  if (vp1->hashcode != vp2->hashcode)
    return false;
    return false;
 
 
  if (vp1->block == vp2->block)
  if (vp1->block == vp2->block)
    {
    {
      int i;
      int i;
      tree phi1op;
      tree phi1op;
 
 
      /* If the PHI nodes do not have compatible types
      /* If the PHI nodes do not have compatible types
         they are not the same.  */
         they are not the same.  */
      if (!types_compatible_p (TREE_TYPE (VEC_index (tree, vp1->phiargs, 0)),
      if (!types_compatible_p (TREE_TYPE (VEC_index (tree, vp1->phiargs, 0)),
                               TREE_TYPE (VEC_index (tree, vp2->phiargs, 0))))
                               TREE_TYPE (VEC_index (tree, vp2->phiargs, 0))))
        return false;
        return false;
 
 
      /* Any phi in the same block will have it's arguments in the
      /* Any phi in the same block will have it's arguments in the
         same edge order, because of how we store phi nodes.  */
         same edge order, because of how we store phi nodes.  */
      for (i = 0; VEC_iterate (tree, vp1->phiargs, i, phi1op); i++)
      for (i = 0; VEC_iterate (tree, vp1->phiargs, i, phi1op); i++)
        {
        {
          tree phi2op = VEC_index (tree, vp2->phiargs, i);
          tree phi2op = VEC_index (tree, vp2->phiargs, i);
          if (phi1op == VN_TOP || phi2op == VN_TOP)
          if (phi1op == VN_TOP || phi2op == VN_TOP)
            continue;
            continue;
          if (!expressions_equal_p (phi1op, phi2op))
          if (!expressions_equal_p (phi1op, phi2op))
            return false;
            return false;
        }
        }
      return true;
      return true;
    }
    }
  return false;
  return false;
}
}
 
 
static VEC(tree, heap) *shared_lookup_phiargs;
static VEC(tree, heap) *shared_lookup_phiargs;
 
 
/* Lookup PHI in the current hash table, and return the resulting
/* Lookup PHI in the current hash table, and return the resulting
   value number if it exists in the hash table.  Return NULL_TREE if
   value number if it exists in the hash table.  Return NULL_TREE if
   it does not exist in the hash table. */
   it does not exist in the hash table. */
 
 
static tree
static tree
vn_phi_lookup (gimple phi)
vn_phi_lookup (gimple phi)
{
{
  void **slot;
  void **slot;
  struct vn_phi_s vp1;
  struct vn_phi_s vp1;
  unsigned i;
  unsigned i;
 
 
  VEC_truncate (tree, shared_lookup_phiargs, 0);
  VEC_truncate (tree, shared_lookup_phiargs, 0);
 
 
  /* Canonicalize the SSA_NAME's to their value number.  */
  /* Canonicalize the SSA_NAME's to their value number.  */
  for (i = 0; i < gimple_phi_num_args (phi); i++)
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
    {
      tree def = PHI_ARG_DEF (phi, i);
      tree def = PHI_ARG_DEF (phi, i);
      def = TREE_CODE (def) == SSA_NAME ? SSA_VAL (def) : def;
      def = TREE_CODE (def) == SSA_NAME ? SSA_VAL (def) : def;
      VEC_safe_push (tree, heap, shared_lookup_phiargs, def);
      VEC_safe_push (tree, heap, shared_lookup_phiargs, def);
    }
    }
  vp1.phiargs = shared_lookup_phiargs;
  vp1.phiargs = shared_lookup_phiargs;
  vp1.block = gimple_bb (phi);
  vp1.block = gimple_bb (phi);
  vp1.hashcode = vn_phi_compute_hash (&vp1);
  vp1.hashcode = vn_phi_compute_hash (&vp1);
  slot = htab_find_slot_with_hash (current_info->phis, &vp1, vp1.hashcode,
  slot = htab_find_slot_with_hash (current_info->phis, &vp1, vp1.hashcode,
                                   NO_INSERT);
                                   NO_INSERT);
  if (!slot && current_info == optimistic_info)
  if (!slot && current_info == optimistic_info)
    slot = htab_find_slot_with_hash (valid_info->phis, &vp1, vp1.hashcode,
    slot = htab_find_slot_with_hash (valid_info->phis, &vp1, vp1.hashcode,
                                     NO_INSERT);
                                     NO_INSERT);
  if (!slot)
  if (!slot)
    return NULL_TREE;
    return NULL_TREE;
  return ((vn_phi_t)*slot)->result;
  return ((vn_phi_t)*slot)->result;
}
}
 
 
/* Insert PHI into the current hash table with a value number of
/* Insert PHI into the current hash table with a value number of
   RESULT.  */
   RESULT.  */
 
 
static vn_phi_t
static vn_phi_t
vn_phi_insert (gimple phi, tree result)
vn_phi_insert (gimple phi, tree result)
{
{
  void **slot;
  void **slot;
  vn_phi_t vp1 = (vn_phi_t) pool_alloc (current_info->phis_pool);
  vn_phi_t vp1 = (vn_phi_t) pool_alloc (current_info->phis_pool);
  unsigned i;
  unsigned i;
  VEC (tree, heap) *args = NULL;
  VEC (tree, heap) *args = NULL;
 
 
  /* Canonicalize the SSA_NAME's to their value number.  */
  /* Canonicalize the SSA_NAME's to their value number.  */
  for (i = 0; i < gimple_phi_num_args (phi); i++)
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
    {
      tree def = PHI_ARG_DEF (phi, i);
      tree def = PHI_ARG_DEF (phi, i);
      def = TREE_CODE (def) == SSA_NAME ? SSA_VAL (def) : def;
      def = TREE_CODE (def) == SSA_NAME ? SSA_VAL (def) : def;
      VEC_safe_push (tree, heap, args, def);
      VEC_safe_push (tree, heap, args, def);
    }
    }
  vp1->value_id = VN_INFO (result)->value_id;
  vp1->value_id = VN_INFO (result)->value_id;
  vp1->phiargs = args;
  vp1->phiargs = args;
  vp1->block = gimple_bb (phi);
  vp1->block = gimple_bb (phi);
  vp1->result = result;
  vp1->result = result;
  vp1->hashcode = vn_phi_compute_hash (vp1);
  vp1->hashcode = vn_phi_compute_hash (vp1);
 
 
  slot = htab_find_slot_with_hash (current_info->phis, vp1, vp1->hashcode,
  slot = htab_find_slot_with_hash (current_info->phis, vp1, vp1->hashcode,
                                   INSERT);
                                   INSERT);
 
 
  /* Because we iterate over phi operations more than once, it's
  /* Because we iterate over phi operations more than once, it's
     possible the slot might already exist here, hence no assert.*/
     possible the slot might already exist here, hence no assert.*/
  *slot = vp1;
  *slot = vp1;
  return vp1;
  return vp1;
}
}
 
 
 
 
/* Print set of components in strongly connected component SCC to OUT. */
/* Print set of components in strongly connected component SCC to OUT. */
 
 
static void
static void
print_scc (FILE *out, VEC (tree, heap) *scc)
print_scc (FILE *out, VEC (tree, heap) *scc)
{
{
  tree var;
  tree var;
  unsigned int i;
  unsigned int i;
 
 
  fprintf (out, "SCC consists of: ");
  fprintf (out, "SCC consists of: ");
  for (i = 0; VEC_iterate (tree, scc, i, var); i++)
  for (i = 0; VEC_iterate (tree, scc, i, var); i++)
    {
    {
      print_generic_expr (out, var, 0);
      print_generic_expr (out, var, 0);
      fprintf (out, " ");
      fprintf (out, " ");
    }
    }
  fprintf (out, "\n");
  fprintf (out, "\n");
}
}
 
 
/* Set the value number of FROM to TO, return true if it has changed
/* Set the value number of FROM to TO, return true if it has changed
   as a result.  */
   as a result.  */
 
 
static inline bool
static inline bool
set_ssa_val_to (tree from, tree to)
set_ssa_val_to (tree from, tree to)
{
{
  tree currval;
  tree currval;
 
 
  if (from != to
  if (from != to
      && TREE_CODE (to) == SSA_NAME
      && TREE_CODE (to) == SSA_NAME
      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (to))
      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (to))
    to = from;
    to = from;
 
 
  /* The only thing we allow as value numbers are VN_TOP, ssa_names
  /* The only thing we allow as value numbers are VN_TOP, ssa_names
     and invariants.  So assert that here.  */
     and invariants.  So assert that here.  */
  gcc_assert (to != NULL_TREE
  gcc_assert (to != NULL_TREE
              && (to == VN_TOP
              && (to == VN_TOP
                  || TREE_CODE (to) == SSA_NAME
                  || TREE_CODE (to) == SSA_NAME
                  || is_gimple_min_invariant (to)));
                  || is_gimple_min_invariant (to)));
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "Setting value number of ");
      fprintf (dump_file, "Setting value number of ");
      print_generic_expr (dump_file, from, 0);
      print_generic_expr (dump_file, from, 0);
      fprintf (dump_file, " to ");
      fprintf (dump_file, " to ");
      print_generic_expr (dump_file, to, 0);
      print_generic_expr (dump_file, to, 0);
    }
    }
 
 
  currval = SSA_VAL (from);
  currval = SSA_VAL (from);
 
 
  if (currval != to  && !operand_equal_p (currval, to, OEP_PURE_SAME))
  if (currval != to  && !operand_equal_p (currval, to, OEP_PURE_SAME))
    {
    {
      VN_INFO (from)->valnum = to;
      VN_INFO (from)->valnum = to;
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, " (changed)\n");
        fprintf (dump_file, " (changed)\n");
      return true;
      return true;
    }
    }
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n");
    fprintf (dump_file, "\n");
  return false;
  return false;
}
}
 
 
/* Set all definitions in STMT to value number to themselves.
/* Set all definitions in STMT to value number to themselves.
   Return true if a value number changed. */
   Return true if a value number changed. */
 
 
static bool
static bool
defs_to_varying (gimple stmt)
defs_to_varying (gimple stmt)
{
{
  bool changed = false;
  bool changed = false;
  ssa_op_iter iter;
  ssa_op_iter iter;
  def_operand_p defp;
  def_operand_p defp;
 
 
  FOR_EACH_SSA_DEF_OPERAND (defp, stmt, iter, SSA_OP_ALL_DEFS)
  FOR_EACH_SSA_DEF_OPERAND (defp, stmt, iter, SSA_OP_ALL_DEFS)
    {
    {
      tree def = DEF_FROM_PTR (defp);
      tree def = DEF_FROM_PTR (defp);
 
 
      VN_INFO (def)->use_processed = true;
      VN_INFO (def)->use_processed = true;
      changed |= set_ssa_val_to (def, def);
      changed |= set_ssa_val_to (def, def);
    }
    }
  return changed;
  return changed;
}
}
 
 
static bool expr_has_constants (tree expr);
static bool expr_has_constants (tree expr);
static tree valueize_expr (tree expr);
static tree valueize_expr (tree expr);
 
 
/* Visit a copy between LHS and RHS, return true if the value number
/* Visit a copy between LHS and RHS, return true if the value number
   changed.  */
   changed.  */
 
 
static bool
static bool
visit_copy (tree lhs, tree rhs)
visit_copy (tree lhs, tree rhs)
{
{
  /* Follow chains of copies to their destination.  */
  /* Follow chains of copies to their destination.  */
  while (TREE_CODE (rhs) == SSA_NAME
  while (TREE_CODE (rhs) == SSA_NAME
         && SSA_VAL (rhs) != rhs)
         && SSA_VAL (rhs) != rhs)
    rhs = SSA_VAL (rhs);
    rhs = SSA_VAL (rhs);
 
 
  /* The copy may have a more interesting constant filled expression
  /* The copy may have a more interesting constant filled expression
     (we don't, since we know our RHS is just an SSA name).  */
     (we don't, since we know our RHS is just an SSA name).  */
  if (TREE_CODE (rhs) == SSA_NAME)
  if (TREE_CODE (rhs) == SSA_NAME)
    {
    {
      VN_INFO (lhs)->has_constants = VN_INFO (rhs)->has_constants;
      VN_INFO (lhs)->has_constants = VN_INFO (rhs)->has_constants;
      VN_INFO (lhs)->expr = VN_INFO (rhs)->expr;
      VN_INFO (lhs)->expr = VN_INFO (rhs)->expr;
    }
    }
 
 
  return set_ssa_val_to (lhs, rhs);
  return set_ssa_val_to (lhs, rhs);
}
}
 
 
/* Visit a unary operator RHS, value number it, and return true if the
/* Visit a unary operator RHS, value number it, and return true if the
   value number of LHS has changed as a result.  */
   value number of LHS has changed as a result.  */
 
 
static bool
static bool
visit_unary_op (tree lhs, gimple stmt)
visit_unary_op (tree lhs, gimple stmt)
{
{
  bool changed = false;
  bool changed = false;
  tree result = vn_nary_op_lookup_stmt (stmt, NULL);
  tree result = vn_nary_op_lookup_stmt (stmt, NULL);
 
 
  if (result)
  if (result)
    {
    {
      changed = set_ssa_val_to (lhs, result);
      changed = set_ssa_val_to (lhs, result);
    }
    }
  else
  else
    {
    {
      changed = set_ssa_val_to (lhs, lhs);
      changed = set_ssa_val_to (lhs, lhs);
      vn_nary_op_insert_stmt (stmt, lhs);
      vn_nary_op_insert_stmt (stmt, lhs);
    }
    }
 
 
  return changed;
  return changed;
}
}
 
 
/* Visit a binary operator RHS, value number it, and return true if the
/* Visit a binary operator RHS, value number it, and return true if the
   value number of LHS has changed as a result.  */
   value number of LHS has changed as a result.  */
 
 
static bool
static bool
visit_binary_op (tree lhs, gimple stmt)
visit_binary_op (tree lhs, gimple stmt)
{
{
  bool changed = false;
  bool changed = false;
  tree result = vn_nary_op_lookup_stmt (stmt, NULL);
  tree result = vn_nary_op_lookup_stmt (stmt, NULL);
 
 
  if (result)
  if (result)
    {
    {
      changed = set_ssa_val_to (lhs, result);
      changed = set_ssa_val_to (lhs, result);
    }
    }
  else
  else
    {
    {
      changed = set_ssa_val_to (lhs, lhs);
      changed = set_ssa_val_to (lhs, lhs);
      vn_nary_op_insert_stmt (stmt, lhs);
      vn_nary_op_insert_stmt (stmt, lhs);
    }
    }
 
 
  return changed;
  return changed;
}
}
 
 
/* Visit a call STMT storing into LHS.  Return true if the value number
/* Visit a call STMT storing into LHS.  Return true if the value number
   of the LHS has changed as a result.  */
   of the LHS has changed as a result.  */
 
 
static bool
static bool
visit_reference_op_call (tree lhs, gimple stmt)
visit_reference_op_call (tree lhs, gimple stmt)
{
{
  bool changed = false;
  bool changed = false;
  struct vn_reference_s vr1;
  struct vn_reference_s vr1;
  tree result;
  tree result;
  tree vuse = gimple_vuse (stmt);
  tree vuse = gimple_vuse (stmt);
 
 
  vr1.vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  vr1.vuse = vuse ? SSA_VAL (vuse) : NULL_TREE;
  vr1.operands = valueize_shared_reference_ops_from_call (stmt);
  vr1.operands = valueize_shared_reference_ops_from_call (stmt);
  vr1.type = gimple_expr_type (stmt);
  vr1.type = gimple_expr_type (stmt);
  vr1.set = 0;
  vr1.set = 0;
  vr1.hashcode = vn_reference_compute_hash (&vr1);
  vr1.hashcode = vn_reference_compute_hash (&vr1);
  result = vn_reference_lookup_1 (&vr1, NULL);
  result = vn_reference_lookup_1 (&vr1, NULL);
  if (result)
  if (result)
    {
    {
      changed = set_ssa_val_to (lhs, result);
      changed = set_ssa_val_to (lhs, result);
      if (TREE_CODE (result) == SSA_NAME
      if (TREE_CODE (result) == SSA_NAME
          && VN_INFO (result)->has_constants)
          && VN_INFO (result)->has_constants)
        VN_INFO (lhs)->has_constants = true;
        VN_INFO (lhs)->has_constants = true;
    }
    }
  else
  else
    {
    {
      void **slot;
      void **slot;
      vn_reference_t vr2;
      vn_reference_t vr2;
      changed = set_ssa_val_to (lhs, lhs);
      changed = set_ssa_val_to (lhs, lhs);
      vr2 = (vn_reference_t) pool_alloc (current_info->references_pool);
      vr2 = (vn_reference_t) pool_alloc (current_info->references_pool);
      vr2->vuse = vr1.vuse;
      vr2->vuse = vr1.vuse;
      vr2->operands = valueize_refs (create_reference_ops_from_call (stmt));
      vr2->operands = valueize_refs (create_reference_ops_from_call (stmt));
      vr2->type = vr1.type;
      vr2->type = vr1.type;
      vr2->set = vr1.set;
      vr2->set = vr1.set;
      vr2->hashcode = vr1.hashcode;
      vr2->hashcode = vr1.hashcode;
      vr2->result = lhs;
      vr2->result = lhs;
      slot = htab_find_slot_with_hash (current_info->references,
      slot = htab_find_slot_with_hash (current_info->references,
                                       vr2, vr2->hashcode, INSERT);
                                       vr2, vr2->hashcode, INSERT);
      if (*slot)
      if (*slot)
        free_reference (*slot);
        free_reference (*slot);
      *slot = vr2;
      *slot = vr2;
    }
    }
 
 
  return changed;
  return changed;
}
}
 
 
/* Visit a load from a reference operator RHS, part of STMT, value number it,
/* Visit a load from a reference operator RHS, part of STMT, value number it,
   and return true if the value number of the LHS has changed as a result.  */
   and return true if the value number of the LHS has changed as a result.  */
 
 
static bool
static bool
visit_reference_op_load (tree lhs, tree op, gimple stmt)
visit_reference_op_load (tree lhs, tree op, gimple stmt)
{
{
  bool changed = false;
  bool changed = false;
  tree last_vuse;
  tree last_vuse;
  tree result;
  tree result;
 
 
  last_vuse = gimple_vuse (stmt);
  last_vuse = gimple_vuse (stmt);
  last_vuse_ptr = &last_vuse;
  last_vuse_ptr = &last_vuse;
  result = vn_reference_lookup (op, gimple_vuse (stmt), true, NULL);
  result = vn_reference_lookup (op, gimple_vuse (stmt), true, NULL);
  last_vuse_ptr = NULL;
  last_vuse_ptr = NULL;
 
 
  /* If we have a VCE, try looking up its operand as it might be stored in
  /* If we have a VCE, try looking up its operand as it might be stored in
     a different type.  */
     a different type.  */
  if (!result && TREE_CODE (op) == VIEW_CONVERT_EXPR)
  if (!result && TREE_CODE (op) == VIEW_CONVERT_EXPR)
    result = vn_reference_lookup (TREE_OPERAND (op, 0), gimple_vuse (stmt),
    result = vn_reference_lookup (TREE_OPERAND (op, 0), gimple_vuse (stmt),
                                  true, NULL);
                                  true, NULL);
 
 
  /* We handle type-punning through unions by value-numbering based
  /* We handle type-punning through unions by value-numbering based
     on offset and size of the access.  Be prepared to handle a
     on offset and size of the access.  Be prepared to handle a
     type-mismatch here via creating a VIEW_CONVERT_EXPR.  */
     type-mismatch here via creating a VIEW_CONVERT_EXPR.  */
  if (result
  if (result
      && !useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (op)))
      && !useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (op)))
    {
    {
      /* We will be setting the value number of lhs to the value number
      /* We will be setting the value number of lhs to the value number
         of VIEW_CONVERT_EXPR <TREE_TYPE (result)> (result).
         of VIEW_CONVERT_EXPR <TREE_TYPE (result)> (result).
         So first simplify and lookup this expression to see if it
         So first simplify and lookup this expression to see if it
         is already available.  */
         is already available.  */
      tree val = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (op), result);
      tree val = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (op), result);
      if ((CONVERT_EXPR_P (val)
      if ((CONVERT_EXPR_P (val)
           || TREE_CODE (val) == VIEW_CONVERT_EXPR)
           || TREE_CODE (val) == VIEW_CONVERT_EXPR)
          && TREE_CODE (TREE_OPERAND (val, 0)) == SSA_NAME)
          && TREE_CODE (TREE_OPERAND (val, 0)) == SSA_NAME)
        {
        {
          tree tem = valueize_expr (vn_get_expr_for (TREE_OPERAND (val, 0)));
          tree tem = valueize_expr (vn_get_expr_for (TREE_OPERAND (val, 0)));
          if ((CONVERT_EXPR_P (tem)
          if ((CONVERT_EXPR_P (tem)
               || TREE_CODE (tem) == VIEW_CONVERT_EXPR)
               || TREE_CODE (tem) == VIEW_CONVERT_EXPR)
              && (tem = fold_unary_ignore_overflow (TREE_CODE (val),
              && (tem = fold_unary_ignore_overflow (TREE_CODE (val),
                                                    TREE_TYPE (val), tem)))
                                                    TREE_TYPE (val), tem)))
            val = tem;
            val = tem;
        }
        }
      result = val;
      result = val;
      if (!is_gimple_min_invariant (val)
      if (!is_gimple_min_invariant (val)
          && TREE_CODE (val) != SSA_NAME)
          && TREE_CODE (val) != SSA_NAME)
        result = vn_nary_op_lookup (val, NULL);
        result = vn_nary_op_lookup (val, NULL);
      /* If the expression is not yet available, value-number lhs to
      /* If the expression is not yet available, value-number lhs to
         a new SSA_NAME we create.  */
         a new SSA_NAME we create.  */
      if (!result && may_insert)
      if (!result && may_insert)
        {
        {
          result = make_ssa_name (SSA_NAME_VAR (lhs), NULL);
          result = make_ssa_name (SSA_NAME_VAR (lhs), NULL);
          /* Initialize value-number information properly.  */
          /* Initialize value-number information properly.  */
          VN_INFO_GET (result)->valnum = result;
          VN_INFO_GET (result)->valnum = result;
          VN_INFO (result)->value_id = get_next_value_id ();
          VN_INFO (result)->value_id = get_next_value_id ();
          VN_INFO (result)->expr = val;
          VN_INFO (result)->expr = val;
          VN_INFO (result)->has_constants = expr_has_constants (val);
          VN_INFO (result)->has_constants = expr_has_constants (val);
          VN_INFO (result)->needs_insertion = true;
          VN_INFO (result)->needs_insertion = true;
          /* As all "inserted" statements are singleton SCCs, insert
          /* As all "inserted" statements are singleton SCCs, insert
             to the valid table.  This is strictly needed to
             to the valid table.  This is strictly needed to
             avoid re-generating new value SSA_NAMEs for the same
             avoid re-generating new value SSA_NAMEs for the same
             expression during SCC iteration over and over (the
             expression during SCC iteration over and over (the
             optimistic table gets cleared after each iteration).
             optimistic table gets cleared after each iteration).
             We do not need to insert into the optimistic table, as
             We do not need to insert into the optimistic table, as
             lookups there will fall back to the valid table.  */
             lookups there will fall back to the valid table.  */
          if (current_info == optimistic_info)
          if (current_info == optimistic_info)
            {
            {
              current_info = valid_info;
              current_info = valid_info;
              vn_nary_op_insert (val, result);
              vn_nary_op_insert (val, result);
              current_info = optimistic_info;
              current_info = optimistic_info;
            }
            }
          else
          else
            vn_nary_op_insert (val, result);
            vn_nary_op_insert (val, result);
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
            {
              fprintf (dump_file, "Inserting name ");
              fprintf (dump_file, "Inserting name ");
              print_generic_expr (dump_file, result, 0);
              print_generic_expr (dump_file, result, 0);
              fprintf (dump_file, " for expression ");
              fprintf (dump_file, " for expression ");
              print_generic_expr (dump_file, val, 0);
              print_generic_expr (dump_file, val, 0);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
        }
        }
    }
    }
 
 
  if (result)
  if (result)
    {
    {
      changed = set_ssa_val_to (lhs, result);
      changed = set_ssa_val_to (lhs, result);
      if (TREE_CODE (result) == SSA_NAME
      if (TREE_CODE (result) == SSA_NAME
          && VN_INFO (result)->has_constants)
          && VN_INFO (result)->has_constants)
        {
        {
          VN_INFO (lhs)->expr = VN_INFO (result)->expr;
          VN_INFO (lhs)->expr = VN_INFO (result)->expr;
          VN_INFO (lhs)->has_constants = true;
          VN_INFO (lhs)->has_constants = true;
        }
        }
    }
    }
  else
  else
    {
    {
      changed = set_ssa_val_to (lhs, lhs);
      changed = set_ssa_val_to (lhs, lhs);
      vn_reference_insert (op, lhs, last_vuse);
      vn_reference_insert (op, lhs, last_vuse);
    }
    }
 
 
  return changed;
  return changed;
}
}
 
 
 
 
/* Visit a store to a reference operator LHS, part of STMT, value number it,
/* Visit a store to a reference operator LHS, part of STMT, value number it,
   and return true if the value number of the LHS has changed as a result.  */
   and return true if the value number of the LHS has changed as a result.  */
 
 
static bool
static bool
visit_reference_op_store (tree lhs, tree op, gimple stmt)
visit_reference_op_store (tree lhs, tree op, gimple stmt)
{
{
  bool changed = false;
  bool changed = false;
  tree result;
  tree result;
  bool resultsame = false;
  bool resultsame = false;
 
 
  /* First we want to lookup using the *vuses* from the store and see
  /* First we want to lookup using the *vuses* from the store and see
     if there the last store to this location with the same address
     if there the last store to this location with the same address
     had the same value.
     had the same value.
 
 
     The vuses represent the memory state before the store.  If the
     The vuses represent the memory state before the store.  If the
     memory state, address, and value of the store is the same as the
     memory state, address, and value of the store is the same as the
     last store to this location, then this store will produce the
     last store to this location, then this store will produce the
     same memory state as that store.
     same memory state as that store.
 
 
     In this case the vdef versions for this store are value numbered to those
     In this case the vdef versions for this store are value numbered to those
     vuse versions, since they represent the same memory state after
     vuse versions, since they represent the same memory state after
     this store.
     this store.
 
 
     Otherwise, the vdefs for the store are used when inserting into
     Otherwise, the vdefs for the store are used when inserting into
     the table, since the store generates a new memory state.  */
     the table, since the store generates a new memory state.  */
 
 
  result = vn_reference_lookup (lhs, gimple_vuse (stmt), false, NULL);
  result = vn_reference_lookup (lhs, gimple_vuse (stmt), false, NULL);
 
 
  if (result)
  if (result)
    {
    {
      if (TREE_CODE (result) == SSA_NAME)
      if (TREE_CODE (result) == SSA_NAME)
        result = SSA_VAL (result);
        result = SSA_VAL (result);
      if (TREE_CODE (op) == SSA_NAME)
      if (TREE_CODE (op) == SSA_NAME)
        op = SSA_VAL (op);
        op = SSA_VAL (op);
      resultsame = expressions_equal_p (result, op);
      resultsame = expressions_equal_p (result, op);
    }
    }
 
 
  if (!result || !resultsame)
  if (!result || !resultsame)
    {
    {
      tree vdef;
      tree vdef;
 
 
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "No store match\n");
          fprintf (dump_file, "No store match\n");
          fprintf (dump_file, "Value numbering store ");
          fprintf (dump_file, "Value numbering store ");
          print_generic_expr (dump_file, lhs, 0);
          print_generic_expr (dump_file, lhs, 0);
          fprintf (dump_file, " to ");
          fprintf (dump_file, " to ");
          print_generic_expr (dump_file, op, 0);
          print_generic_expr (dump_file, op, 0);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
      /* Have to set value numbers before insert, since insert is
      /* Have to set value numbers before insert, since insert is
         going to valueize the references in-place.  */
         going to valueize the references in-place.  */
      if ((vdef = gimple_vdef (stmt)))
      if ((vdef = gimple_vdef (stmt)))
        {
        {
          VN_INFO (vdef)->use_processed = true;
          VN_INFO (vdef)->use_processed = true;
          changed |= set_ssa_val_to (vdef, vdef);
          changed |= set_ssa_val_to (vdef, vdef);
        }
        }
 
 
      /* Do not insert structure copies into the tables.  */
      /* Do not insert structure copies into the tables.  */
      if (is_gimple_min_invariant (op)
      if (is_gimple_min_invariant (op)
          || is_gimple_reg (op))
          || is_gimple_reg (op))
        vn_reference_insert (lhs, op, vdef);
        vn_reference_insert (lhs, op, vdef);
    }
    }
  else
  else
    {
    {
      /* We had a match, so value number the vdef to have the value
      /* We had a match, so value number the vdef to have the value
         number of the vuse it came from.  */
         number of the vuse it came from.  */
      tree def, use;
      tree def, use;
 
 
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        fprintf (dump_file, "Store matched earlier value,"
        fprintf (dump_file, "Store matched earlier value,"
                 "value numbering store vdefs to matching vuses.\n");
                 "value numbering store vdefs to matching vuses.\n");
 
 
      def = gimple_vdef (stmt);
      def = gimple_vdef (stmt);
      use = gimple_vuse (stmt);
      use = gimple_vuse (stmt);
 
 
      VN_INFO (def)->use_processed = true;
      VN_INFO (def)->use_processed = true;
      changed |= set_ssa_val_to (def, SSA_VAL (use));
      changed |= set_ssa_val_to (def, SSA_VAL (use));
    }
    }
 
 
  return changed;
  return changed;
}
}
 
 
/* Visit and value number PHI, return true if the value number
/* Visit and value number PHI, return true if the value number
   changed.  */
   changed.  */
 
 
static bool
static bool
visit_phi (gimple phi)
visit_phi (gimple phi)
{
{
  bool changed = false;
  bool changed = false;
  tree result;
  tree result;
  tree sameval = VN_TOP;
  tree sameval = VN_TOP;
  bool allsame = true;
  bool allsame = true;
  unsigned i;
  unsigned i;
 
 
  /* TODO: We could check for this in init_sccvn, and replace this
  /* TODO: We could check for this in init_sccvn, and replace this
     with a gcc_assert.  */
     with a gcc_assert.  */
  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)))
    return set_ssa_val_to (PHI_RESULT (phi), PHI_RESULT (phi));
    return set_ssa_val_to (PHI_RESULT (phi), PHI_RESULT (phi));
 
 
  /* See if all non-TOP arguments have the same value.  TOP is
  /* See if all non-TOP arguments have the same value.  TOP is
     equivalent to everything, so we can ignore it.  */
     equivalent to everything, so we can ignore it.  */
  for (i = 0; i < gimple_phi_num_args (phi); i++)
  for (i = 0; i < gimple_phi_num_args (phi); i++)
    {
    {
      tree def = PHI_ARG_DEF (phi, i);
      tree def = PHI_ARG_DEF (phi, i);
 
 
      if (TREE_CODE (def) == SSA_NAME)
      if (TREE_CODE (def) == SSA_NAME)
        def = SSA_VAL (def);
        def = SSA_VAL (def);
      if (def == VN_TOP)
      if (def == VN_TOP)
        continue;
        continue;
      if (sameval == VN_TOP)
      if (sameval == VN_TOP)
        {
        {
          sameval = def;
          sameval = def;
        }
        }
      else
      else
        {
        {
          if (!expressions_equal_p (def, sameval))
          if (!expressions_equal_p (def, sameval))
            {
            {
              allsame = false;
              allsame = false;
              break;
              break;
            }
            }
        }
        }
    }
    }
 
 
  /* If all value numbered to the same value, the phi node has that
  /* If all value numbered to the same value, the phi node has that
     value.  */
     value.  */
  if (allsame)
  if (allsame)
    {
    {
      if (is_gimple_min_invariant (sameval))
      if (is_gimple_min_invariant (sameval))
        {
        {
          VN_INFO (PHI_RESULT (phi))->has_constants = true;
          VN_INFO (PHI_RESULT (phi))->has_constants = true;
          VN_INFO (PHI_RESULT (phi))->expr = sameval;
          VN_INFO (PHI_RESULT (phi))->expr = sameval;
        }
        }
      else
      else
        {
        {
          VN_INFO (PHI_RESULT (phi))->has_constants = false;
          VN_INFO (PHI_RESULT (phi))->has_constants = false;
          VN_INFO (PHI_RESULT (phi))->expr = sameval;
          VN_INFO (PHI_RESULT (phi))->expr = sameval;
        }
        }
 
 
      if (TREE_CODE (sameval) == SSA_NAME)
      if (TREE_CODE (sameval) == SSA_NAME)
        return visit_copy (PHI_RESULT (phi), sameval);
        return visit_copy (PHI_RESULT (phi), sameval);
 
 
      return set_ssa_val_to (PHI_RESULT (phi), sameval);
      return set_ssa_val_to (PHI_RESULT (phi), sameval);
    }
    }
 
 
  /* Otherwise, see if it is equivalent to a phi node in this block.  */
  /* Otherwise, see if it is equivalent to a phi node in this block.  */
  result = vn_phi_lookup (phi);
  result = vn_phi_lookup (phi);
  if (result)
  if (result)
    {
    {
      if (TREE_CODE (result) == SSA_NAME)
      if (TREE_CODE (result) == SSA_NAME)
        changed = visit_copy (PHI_RESULT (phi), result);
        changed = visit_copy (PHI_RESULT (phi), result);
      else
      else
        changed = set_ssa_val_to (PHI_RESULT (phi), result);
        changed = set_ssa_val_to (PHI_RESULT (phi), result);
    }
    }
  else
  else
    {
    {
      vn_phi_insert (phi, PHI_RESULT (phi));
      vn_phi_insert (phi, PHI_RESULT (phi));
      VN_INFO (PHI_RESULT (phi))->has_constants = false;
      VN_INFO (PHI_RESULT (phi))->has_constants = false;
      VN_INFO (PHI_RESULT (phi))->expr = PHI_RESULT (phi);
      VN_INFO (PHI_RESULT (phi))->expr = PHI_RESULT (phi);
      changed = set_ssa_val_to (PHI_RESULT (phi), PHI_RESULT (phi));
      changed = set_ssa_val_to (PHI_RESULT (phi), PHI_RESULT (phi));
    }
    }
 
 
  return changed;
  return changed;
}
}
 
 
/* Return true if EXPR contains constants.  */
/* Return true if EXPR contains constants.  */
 
 
static bool
static bool
expr_has_constants (tree expr)
expr_has_constants (tree expr)
{
{
  switch (TREE_CODE_CLASS (TREE_CODE (expr)))
  switch (TREE_CODE_CLASS (TREE_CODE (expr)))
    {
    {
    case tcc_unary:
    case tcc_unary:
      return is_gimple_min_invariant (TREE_OPERAND (expr, 0));
      return is_gimple_min_invariant (TREE_OPERAND (expr, 0));
 
 
    case tcc_binary:
    case tcc_binary:
      return is_gimple_min_invariant (TREE_OPERAND (expr, 0))
      return is_gimple_min_invariant (TREE_OPERAND (expr, 0))
        || is_gimple_min_invariant (TREE_OPERAND (expr, 1));
        || is_gimple_min_invariant (TREE_OPERAND (expr, 1));
      /* Constants inside reference ops are rarely interesting, but
      /* Constants inside reference ops are rarely interesting, but
         it can take a lot of looking to find them.  */
         it can take a lot of looking to find them.  */
    case tcc_reference:
    case tcc_reference:
    case tcc_declaration:
    case tcc_declaration:
      return false;
      return false;
    default:
    default:
      return is_gimple_min_invariant (expr);
      return is_gimple_min_invariant (expr);
    }
    }
  return false;
  return false;
}
}
 
 
/* Return true if STMT contains constants.  */
/* Return true if STMT contains constants.  */
 
 
static bool
static bool
stmt_has_constants (gimple stmt)
stmt_has_constants (gimple stmt)
{
{
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return false;
    return false;
 
 
  switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
  switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
    {
    {
    case GIMPLE_UNARY_RHS:
    case GIMPLE_UNARY_RHS:
      return is_gimple_min_invariant (gimple_assign_rhs1 (stmt));
      return is_gimple_min_invariant (gimple_assign_rhs1 (stmt));
 
 
    case GIMPLE_BINARY_RHS:
    case GIMPLE_BINARY_RHS:
      return (is_gimple_min_invariant (gimple_assign_rhs1 (stmt))
      return (is_gimple_min_invariant (gimple_assign_rhs1 (stmt))
              || is_gimple_min_invariant (gimple_assign_rhs2 (stmt)));
              || is_gimple_min_invariant (gimple_assign_rhs2 (stmt)));
    case GIMPLE_SINGLE_RHS:
    case GIMPLE_SINGLE_RHS:
      /* Constants inside reference ops are rarely interesting, but
      /* Constants inside reference ops are rarely interesting, but
         it can take a lot of looking to find them.  */
         it can take a lot of looking to find them.  */
      return is_gimple_min_invariant (gimple_assign_rhs1 (stmt));
      return is_gimple_min_invariant (gimple_assign_rhs1 (stmt));
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
  return false;
  return false;
}
}
 
 
/* Replace SSA_NAMES in expr with their value numbers, and return the
/* Replace SSA_NAMES in expr with their value numbers, and return the
   result.
   result.
   This is performed in place. */
   This is performed in place. */
 
 
static tree
static tree
valueize_expr (tree expr)
valueize_expr (tree expr)
{
{
  switch (TREE_CODE_CLASS (TREE_CODE (expr)))
  switch (TREE_CODE_CLASS (TREE_CODE (expr)))
    {
    {
    case tcc_unary:
    case tcc_unary:
      if (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
      if (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
          && SSA_VAL (TREE_OPERAND (expr, 0)) != VN_TOP)
          && SSA_VAL (TREE_OPERAND (expr, 0)) != VN_TOP)
        TREE_OPERAND (expr, 0) = SSA_VAL (TREE_OPERAND (expr, 0));
        TREE_OPERAND (expr, 0) = SSA_VAL (TREE_OPERAND (expr, 0));
      break;
      break;
    case tcc_binary:
    case tcc_binary:
      if (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
      if (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
          && SSA_VAL (TREE_OPERAND (expr, 0)) != VN_TOP)
          && SSA_VAL (TREE_OPERAND (expr, 0)) != VN_TOP)
        TREE_OPERAND (expr, 0) = SSA_VAL (TREE_OPERAND (expr, 0));
        TREE_OPERAND (expr, 0) = SSA_VAL (TREE_OPERAND (expr, 0));
      if (TREE_CODE (TREE_OPERAND (expr, 1)) == SSA_NAME
      if (TREE_CODE (TREE_OPERAND (expr, 1)) == SSA_NAME
          && SSA_VAL (TREE_OPERAND (expr, 1)) != VN_TOP)
          && SSA_VAL (TREE_OPERAND (expr, 1)) != VN_TOP)
        TREE_OPERAND (expr, 1) = SSA_VAL (TREE_OPERAND (expr, 1));
        TREE_OPERAND (expr, 1) = SSA_VAL (TREE_OPERAND (expr, 1));
      break;
      break;
    default:
    default:
      break;
      break;
    }
    }
  return expr;
  return expr;
}
}
 
 
/* Simplify the binary expression RHS, and return the result if
/* Simplify the binary expression RHS, and return the result if
   simplified. */
   simplified. */
 
 
static tree
static tree
simplify_binary_expression (gimple stmt)
simplify_binary_expression (gimple stmt)
{
{
  tree result = NULL_TREE;
  tree result = NULL_TREE;
  tree op0 = gimple_assign_rhs1 (stmt);
  tree op0 = gimple_assign_rhs1 (stmt);
  tree op1 = gimple_assign_rhs2 (stmt);
  tree op1 = gimple_assign_rhs2 (stmt);
 
 
  /* This will not catch every single case we could combine, but will
  /* This will not catch every single case we could combine, but will
     catch those with constants.  The goal here is to simultaneously
     catch those with constants.  The goal here is to simultaneously
     combine constants between expressions, but avoid infinite
     combine constants between expressions, but avoid infinite
     expansion of expressions during simplification.  */
     expansion of expressions during simplification.  */
  if (TREE_CODE (op0) == SSA_NAME)
  if (TREE_CODE (op0) == SSA_NAME)
    {
    {
      if (VN_INFO (op0)->has_constants
      if (VN_INFO (op0)->has_constants
          || TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
          || TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
        op0 = valueize_expr (vn_get_expr_for (op0));
        op0 = valueize_expr (vn_get_expr_for (op0));
      else if (SSA_VAL (op0) != VN_TOP && SSA_VAL (op0) != op0)
      else if (SSA_VAL (op0) != VN_TOP && SSA_VAL (op0) != op0)
        op0 = SSA_VAL (op0);
        op0 = SSA_VAL (op0);
    }
    }
 
 
  if (TREE_CODE (op1) == SSA_NAME)
  if (TREE_CODE (op1) == SSA_NAME)
    {
    {
      if (VN_INFO (op1)->has_constants)
      if (VN_INFO (op1)->has_constants)
        op1 = valueize_expr (vn_get_expr_for (op1));
        op1 = valueize_expr (vn_get_expr_for (op1));
      else if (SSA_VAL (op1) != VN_TOP && SSA_VAL (op1) != op1)
      else if (SSA_VAL (op1) != VN_TOP && SSA_VAL (op1) != op1)
        op1 = SSA_VAL (op1);
        op1 = SSA_VAL (op1);
    }
    }
 
 
  /* Avoid folding if nothing changed.  */
  /* Avoid folding if nothing changed.  */
  if (op0 == gimple_assign_rhs1 (stmt)
  if (op0 == gimple_assign_rhs1 (stmt)
      && op1 == gimple_assign_rhs2 (stmt))
      && op1 == gimple_assign_rhs2 (stmt))
    return NULL_TREE;
    return NULL_TREE;
 
 
  fold_defer_overflow_warnings ();
  fold_defer_overflow_warnings ();
 
 
  result = fold_binary (gimple_assign_rhs_code (stmt),
  result = fold_binary (gimple_assign_rhs_code (stmt),
                        gimple_expr_type (stmt), op0, op1);
                        gimple_expr_type (stmt), op0, op1);
  if (result)
  if (result)
    STRIP_USELESS_TYPE_CONVERSION (result);
    STRIP_USELESS_TYPE_CONVERSION (result);
 
 
  fold_undefer_overflow_warnings (result && valid_gimple_rhs_p (result),
  fold_undefer_overflow_warnings (result && valid_gimple_rhs_p (result),
                                  stmt, 0);
                                  stmt, 0);
 
 
  /* Make sure result is not a complex expression consisting
  /* Make sure result is not a complex expression consisting
     of operators of operators (IE (a + b) + (a + c))
     of operators of operators (IE (a + b) + (a + c))
     Otherwise, we will end up with unbounded expressions if
     Otherwise, we will end up with unbounded expressions if
     fold does anything at all.  */
     fold does anything at all.  */
  if (result && valid_gimple_rhs_p (result))
  if (result && valid_gimple_rhs_p (result))
    return result;
    return result;
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Simplify the unary expression RHS, and return the result if
/* Simplify the unary expression RHS, and return the result if
   simplified. */
   simplified. */
 
 
static tree
static tree
simplify_unary_expression (gimple stmt)
simplify_unary_expression (gimple stmt)
{
{
  tree result = NULL_TREE;
  tree result = NULL_TREE;
  tree orig_op0, op0 = gimple_assign_rhs1 (stmt);
  tree orig_op0, op0 = gimple_assign_rhs1 (stmt);
 
 
  /* We handle some tcc_reference codes here that are all
  /* We handle some tcc_reference codes here that are all
     GIMPLE_ASSIGN_SINGLE codes.  */
     GIMPLE_ASSIGN_SINGLE codes.  */
  if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
  if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
      || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR
      || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR
      || gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR)
      || gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR)
    op0 = TREE_OPERAND (op0, 0);
    op0 = TREE_OPERAND (op0, 0);
 
 
  if (TREE_CODE (op0) != SSA_NAME)
  if (TREE_CODE (op0) != SSA_NAME)
    return NULL_TREE;
    return NULL_TREE;
 
 
  orig_op0 = op0;
  orig_op0 = op0;
  if (VN_INFO (op0)->has_constants)
  if (VN_INFO (op0)->has_constants)
    op0 = valueize_expr (vn_get_expr_for (op0));
    op0 = valueize_expr (vn_get_expr_for (op0));
  else if (gimple_assign_cast_p (stmt)
  else if (gimple_assign_cast_p (stmt)
           || gimple_assign_rhs_code (stmt) == REALPART_EXPR
           || gimple_assign_rhs_code (stmt) == REALPART_EXPR
           || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR
           || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR
           || gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR)
           || gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR)
    {
    {
      /* We want to do tree-combining on conversion-like expressions.
      /* We want to do tree-combining on conversion-like expressions.
         Make sure we feed only SSA_NAMEs or constants to fold though.  */
         Make sure we feed only SSA_NAMEs or constants to fold though.  */
      tree tem = valueize_expr (vn_get_expr_for (op0));
      tree tem = valueize_expr (vn_get_expr_for (op0));
      if (UNARY_CLASS_P (tem)
      if (UNARY_CLASS_P (tem)
          || BINARY_CLASS_P (tem)
          || BINARY_CLASS_P (tem)
          || TREE_CODE (tem) == VIEW_CONVERT_EXPR
          || TREE_CODE (tem) == VIEW_CONVERT_EXPR
          || TREE_CODE (tem) == SSA_NAME
          || TREE_CODE (tem) == SSA_NAME
          || is_gimple_min_invariant (tem))
          || is_gimple_min_invariant (tem))
        op0 = tem;
        op0 = tem;
    }
    }
 
 
  /* Avoid folding if nothing changed, but remember the expression.  */
  /* Avoid folding if nothing changed, but remember the expression.  */
  if (op0 == orig_op0)
  if (op0 == orig_op0)
    return NULL_TREE;
    return NULL_TREE;
 
 
  result = fold_unary_ignore_overflow (gimple_assign_rhs_code (stmt),
  result = fold_unary_ignore_overflow (gimple_assign_rhs_code (stmt),
                                       gimple_expr_type (stmt), op0);
                                       gimple_expr_type (stmt), op0);
  if (result)
  if (result)
    {
    {
      STRIP_USELESS_TYPE_CONVERSION (result);
      STRIP_USELESS_TYPE_CONVERSION (result);
      if (valid_gimple_rhs_p (result))
      if (valid_gimple_rhs_p (result))
        return result;
        return result;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Try to simplify RHS using equivalences and constant folding.  */
/* Try to simplify RHS using equivalences and constant folding.  */
 
 
static tree
static tree
try_to_simplify (gimple stmt)
try_to_simplify (gimple stmt)
{
{
  tree tem;
  tree tem;
 
 
  /* For stores we can end up simplifying a SSA_NAME rhs.  Just return
  /* For stores we can end up simplifying a SSA_NAME rhs.  Just return
     in this case, there is no point in doing extra work.  */
     in this case, there is no point in doing extra work.  */
  if (gimple_assign_copy_p (stmt)
  if (gimple_assign_copy_p (stmt)
      && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
      && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
    return NULL_TREE;
    return NULL_TREE;
 
 
  switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)))
  switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)))
    {
    {
    case tcc_declaration:
    case tcc_declaration:
      tem = get_symbol_constant_value (gimple_assign_rhs1 (stmt));
      tem = get_symbol_constant_value (gimple_assign_rhs1 (stmt));
      if (tem)
      if (tem)
        return tem;
        return tem;
      break;
      break;
 
 
    case tcc_reference:
    case tcc_reference:
      /* Do not do full-blown reference lookup here, but simplify
      /* Do not do full-blown reference lookup here, but simplify
         reads from constant aggregates.  */
         reads from constant aggregates.  */
      tem = fold_const_aggregate_ref (gimple_assign_rhs1 (stmt));
      tem = fold_const_aggregate_ref (gimple_assign_rhs1 (stmt));
      if (tem)
      if (tem)
        return tem;
        return tem;
 
 
      /* Fallthrough for some codes that can operate on registers.  */
      /* Fallthrough for some codes that can operate on registers.  */
      if (!(TREE_CODE (gimple_assign_rhs1 (stmt)) == REALPART_EXPR
      if (!(TREE_CODE (gimple_assign_rhs1 (stmt)) == REALPART_EXPR
            || TREE_CODE (gimple_assign_rhs1 (stmt)) == IMAGPART_EXPR
            || TREE_CODE (gimple_assign_rhs1 (stmt)) == IMAGPART_EXPR
            || TREE_CODE (gimple_assign_rhs1 (stmt)) == VIEW_CONVERT_EXPR))
            || TREE_CODE (gimple_assign_rhs1 (stmt)) == VIEW_CONVERT_EXPR))
        break;
        break;
      /* We could do a little more with unary ops, if they expand
      /* We could do a little more with unary ops, if they expand
         into binary ops, but it's debatable whether it is worth it. */
         into binary ops, but it's debatable whether it is worth it. */
    case tcc_unary:
    case tcc_unary:
      return simplify_unary_expression (stmt);
      return simplify_unary_expression (stmt);
      break;
      break;
    case tcc_comparison:
    case tcc_comparison:
    case tcc_binary:
    case tcc_binary:
      return simplify_binary_expression (stmt);
      return simplify_binary_expression (stmt);
      break;
      break;
    default:
    default:
      break;
      break;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Visit and value number USE, return true if the value number
/* Visit and value number USE, return true if the value number
   changed. */
   changed. */
 
 
static bool
static bool
visit_use (tree use)
visit_use (tree use)
{
{
  bool changed = false;
  bool changed = false;
  gimple stmt = SSA_NAME_DEF_STMT (use);
  gimple stmt = SSA_NAME_DEF_STMT (use);
 
 
  VN_INFO (use)->use_processed = true;
  VN_INFO (use)->use_processed = true;
 
 
  gcc_assert (!SSA_NAME_IN_FREE_LIST (use));
  gcc_assert (!SSA_NAME_IN_FREE_LIST (use));
  if (dump_file && (dump_flags & TDF_DETAILS)
  if (dump_file && (dump_flags & TDF_DETAILS)
      && !SSA_NAME_IS_DEFAULT_DEF (use))
      && !SSA_NAME_IS_DEFAULT_DEF (use))
    {
    {
      fprintf (dump_file, "Value numbering ");
      fprintf (dump_file, "Value numbering ");
      print_generic_expr (dump_file, use, 0);
      print_generic_expr (dump_file, use, 0);
      fprintf (dump_file, " stmt = ");
      fprintf (dump_file, " stmt = ");
      print_gimple_stmt (dump_file, stmt, 0, 0);
      print_gimple_stmt (dump_file, stmt, 0, 0);
    }
    }
 
 
  /* Handle uninitialized uses.  */
  /* Handle uninitialized uses.  */
  if (SSA_NAME_IS_DEFAULT_DEF (use))
  if (SSA_NAME_IS_DEFAULT_DEF (use))
    changed = set_ssa_val_to (use, use);
    changed = set_ssa_val_to (use, use);
  else
  else
    {
    {
      if (gimple_code (stmt) == GIMPLE_PHI)
      if (gimple_code (stmt) == GIMPLE_PHI)
        changed = visit_phi (stmt);
        changed = visit_phi (stmt);
      else if (!gimple_has_lhs (stmt)
      else if (!gimple_has_lhs (stmt)
               || gimple_has_volatile_ops (stmt)
               || gimple_has_volatile_ops (stmt)
               || stmt_could_throw_p (stmt))
               || stmt_could_throw_p (stmt))
        changed = defs_to_varying (stmt);
        changed = defs_to_varying (stmt);
      else if (is_gimple_assign (stmt))
      else if (is_gimple_assign (stmt))
        {
        {
          tree lhs = gimple_assign_lhs (stmt);
          tree lhs = gimple_assign_lhs (stmt);
          tree simplified;
          tree simplified;
 
 
          /* Shortcut for copies. Simplifying copies is pointless,
          /* Shortcut for copies. Simplifying copies is pointless,
             since we copy the expression and value they represent.  */
             since we copy the expression and value they represent.  */
          if (gimple_assign_copy_p (stmt)
          if (gimple_assign_copy_p (stmt)
              && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
              && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
              && TREE_CODE (lhs) == SSA_NAME)
              && TREE_CODE (lhs) == SSA_NAME)
            {
            {
              changed = visit_copy (lhs, gimple_assign_rhs1 (stmt));
              changed = visit_copy (lhs, gimple_assign_rhs1 (stmt));
              goto done;
              goto done;
            }
            }
          simplified = try_to_simplify (stmt);
          simplified = try_to_simplify (stmt);
          if (simplified)
          if (simplified)
            {
            {
              if (dump_file && (dump_flags & TDF_DETAILS))
              if (dump_file && (dump_flags & TDF_DETAILS))
                {
                {
                  fprintf (dump_file, "RHS ");
                  fprintf (dump_file, "RHS ");
                  print_gimple_expr (dump_file, stmt, 0, 0);
                  print_gimple_expr (dump_file, stmt, 0, 0);
                  fprintf (dump_file, " simplified to ");
                  fprintf (dump_file, " simplified to ");
                  print_generic_expr (dump_file, simplified, 0);
                  print_generic_expr (dump_file, simplified, 0);
                  if (TREE_CODE (lhs) == SSA_NAME)
                  if (TREE_CODE (lhs) == SSA_NAME)
                    fprintf (dump_file, " has constants %d\n",
                    fprintf (dump_file, " has constants %d\n",
                             expr_has_constants (simplified));
                             expr_has_constants (simplified));
                  else
                  else
                    fprintf (dump_file, "\n");
                    fprintf (dump_file, "\n");
                }
                }
            }
            }
          /* Setting value numbers to constants will occasionally
          /* Setting value numbers to constants will occasionally
             screw up phi congruence because constants are not
             screw up phi congruence because constants are not
             uniquely associated with a single ssa name that can be
             uniquely associated with a single ssa name that can be
             looked up.  */
             looked up.  */
          if (simplified
          if (simplified
              && is_gimple_min_invariant (simplified)
              && is_gimple_min_invariant (simplified)
              && TREE_CODE (lhs) == SSA_NAME)
              && TREE_CODE (lhs) == SSA_NAME)
            {
            {
              VN_INFO (lhs)->expr = simplified;
              VN_INFO (lhs)->expr = simplified;
              VN_INFO (lhs)->has_constants = true;
              VN_INFO (lhs)->has_constants = true;
              changed = set_ssa_val_to (lhs, simplified);
              changed = set_ssa_val_to (lhs, simplified);
              goto done;
              goto done;
            }
            }
          else if (simplified
          else if (simplified
                   && TREE_CODE (simplified) == SSA_NAME
                   && TREE_CODE (simplified) == SSA_NAME
                   && TREE_CODE (lhs) == SSA_NAME)
                   && TREE_CODE (lhs) == SSA_NAME)
            {
            {
              changed = visit_copy (lhs, simplified);
              changed = visit_copy (lhs, simplified);
              goto done;
              goto done;
            }
            }
          else if (simplified)
          else if (simplified)
            {
            {
              if (TREE_CODE (lhs) == SSA_NAME)
              if (TREE_CODE (lhs) == SSA_NAME)
                {
                {
                  VN_INFO (lhs)->has_constants = expr_has_constants (simplified);
                  VN_INFO (lhs)->has_constants = expr_has_constants (simplified);
                  /* We have to unshare the expression or else
                  /* We have to unshare the expression or else
                     valuizing may change the IL stream.  */
                     valuizing may change the IL stream.  */
                  VN_INFO (lhs)->expr = unshare_expr (simplified);
                  VN_INFO (lhs)->expr = unshare_expr (simplified);
                }
                }
            }
            }
          else if (stmt_has_constants (stmt)
          else if (stmt_has_constants (stmt)
                   && TREE_CODE (lhs) == SSA_NAME)
                   && TREE_CODE (lhs) == SSA_NAME)
            VN_INFO (lhs)->has_constants = true;
            VN_INFO (lhs)->has_constants = true;
          else if (TREE_CODE (lhs) == SSA_NAME)
          else if (TREE_CODE (lhs) == SSA_NAME)
            {
            {
              /* We reset expr and constantness here because we may
              /* We reset expr and constantness here because we may
                 have been value numbering optimistically, and
                 have been value numbering optimistically, and
                 iterating. They may become non-constant in this case,
                 iterating. They may become non-constant in this case,
                 even if they were optimistically constant. */
                 even if they were optimistically constant. */
 
 
              VN_INFO (lhs)->has_constants = false;
              VN_INFO (lhs)->has_constants = false;
              VN_INFO (lhs)->expr = NULL_TREE;
              VN_INFO (lhs)->expr = NULL_TREE;
            }
            }
 
 
          if ((TREE_CODE (lhs) == SSA_NAME
          if ((TREE_CODE (lhs) == SSA_NAME
               /* We can substitute SSA_NAMEs that are live over
               /* We can substitute SSA_NAMEs that are live over
                  abnormal edges with their constant value.  */
                  abnormal edges with their constant value.  */
               && !(gimple_assign_copy_p (stmt)
               && !(gimple_assign_copy_p (stmt)
                    && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
                    && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
               && !(simplified
               && !(simplified
                    && is_gimple_min_invariant (simplified))
                    && is_gimple_min_invariant (simplified))
               && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
               && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
              /* Stores or copies from SSA_NAMEs that are live over
              /* Stores or copies from SSA_NAMEs that are live over
                 abnormal edges are a problem.  */
                 abnormal edges are a problem.  */
              || (gimple_assign_single_p (stmt)
              || (gimple_assign_single_p (stmt)
                  && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
                  && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
                  && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt))))
                  && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (stmt))))
            changed = defs_to_varying (stmt);
            changed = defs_to_varying (stmt);
          else if (REFERENCE_CLASS_P (lhs) || DECL_P (lhs))
          else if (REFERENCE_CLASS_P (lhs) || DECL_P (lhs))
            {
            {
              changed = visit_reference_op_store (lhs, gimple_assign_rhs1 (stmt), stmt);
              changed = visit_reference_op_store (lhs, gimple_assign_rhs1 (stmt), stmt);
            }
            }
          else if (TREE_CODE (lhs) == SSA_NAME)
          else if (TREE_CODE (lhs) == SSA_NAME)
            {
            {
              if ((gimple_assign_copy_p (stmt)
              if ((gimple_assign_copy_p (stmt)
                   && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
                   && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
                  || (simplified
                  || (simplified
                      && is_gimple_min_invariant (simplified)))
                      && is_gimple_min_invariant (simplified)))
                {
                {
                  VN_INFO (lhs)->has_constants = true;
                  VN_INFO (lhs)->has_constants = true;
                  if (simplified)
                  if (simplified)
                    changed = set_ssa_val_to (lhs, simplified);
                    changed = set_ssa_val_to (lhs, simplified);
                  else
                  else
                    changed = set_ssa_val_to (lhs, gimple_assign_rhs1 (stmt));
                    changed = set_ssa_val_to (lhs, gimple_assign_rhs1 (stmt));
                }
                }
              else
              else
                {
                {
                  switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
                  switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
                    {
                    {
                    case GIMPLE_UNARY_RHS:
                    case GIMPLE_UNARY_RHS:
                      changed = visit_unary_op (lhs, stmt);
                      changed = visit_unary_op (lhs, stmt);
                      break;
                      break;
                    case GIMPLE_BINARY_RHS:
                    case GIMPLE_BINARY_RHS:
                      changed = visit_binary_op (lhs, stmt);
                      changed = visit_binary_op (lhs, stmt);
                      break;
                      break;
                    case GIMPLE_SINGLE_RHS:
                    case GIMPLE_SINGLE_RHS:
                      switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)))
                      switch (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)))
                        {
                        {
                        case tcc_reference:
                        case tcc_reference:
                          /* VOP-less references can go through unary case.  */
                          /* VOP-less references can go through unary case.  */
                          if ((gimple_assign_rhs_code (stmt) == REALPART_EXPR
                          if ((gimple_assign_rhs_code (stmt) == REALPART_EXPR
                               || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR
                               || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR
                               || gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR )
                               || gimple_assign_rhs_code (stmt) == VIEW_CONVERT_EXPR )
                              && TREE_CODE (TREE_OPERAND (gimple_assign_rhs1 (stmt), 0)) == SSA_NAME)
                              && TREE_CODE (TREE_OPERAND (gimple_assign_rhs1 (stmt), 0)) == SSA_NAME)
                            {
                            {
                              changed = visit_unary_op (lhs, stmt);
                              changed = visit_unary_op (lhs, stmt);
                              break;
                              break;
                            }
                            }
                          /* Fallthrough.  */
                          /* Fallthrough.  */
                        case tcc_declaration:
                        case tcc_declaration:
                          changed = visit_reference_op_load
                          changed = visit_reference_op_load
                              (lhs, gimple_assign_rhs1 (stmt), stmt);
                              (lhs, gimple_assign_rhs1 (stmt), stmt);
                          break;
                          break;
                        case tcc_expression:
                        case tcc_expression:
                          if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
                          if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
                            {
                            {
                              changed = visit_unary_op (lhs, stmt);
                              changed = visit_unary_op (lhs, stmt);
                              break;
                              break;
                            }
                            }
                          /* Fallthrough.  */
                          /* Fallthrough.  */
                        default:
                        default:
                          changed = defs_to_varying (stmt);
                          changed = defs_to_varying (stmt);
                        }
                        }
                      break;
                      break;
                    default:
                    default:
                      changed = defs_to_varying (stmt);
                      changed = defs_to_varying (stmt);
                      break;
                      break;
                    }
                    }
                }
                }
            }
            }
          else
          else
            changed = defs_to_varying (stmt);
            changed = defs_to_varying (stmt);
        }
        }
      else if (is_gimple_call (stmt))
      else if (is_gimple_call (stmt))
        {
        {
          tree lhs = gimple_call_lhs (stmt);
          tree lhs = gimple_call_lhs (stmt);
 
 
          /* ???  We could try to simplify calls.  */
          /* ???  We could try to simplify calls.  */
 
 
          if (stmt_has_constants (stmt)
          if (stmt_has_constants (stmt)
              && TREE_CODE (lhs) == SSA_NAME)
              && TREE_CODE (lhs) == SSA_NAME)
            VN_INFO (lhs)->has_constants = true;
            VN_INFO (lhs)->has_constants = true;
          else if (TREE_CODE (lhs) == SSA_NAME)
          else if (TREE_CODE (lhs) == SSA_NAME)
            {
            {
              /* We reset expr and constantness here because we may
              /* We reset expr and constantness here because we may
                 have been value numbering optimistically, and
                 have been value numbering optimistically, and
                 iterating. They may become non-constant in this case,
                 iterating. They may become non-constant in this case,
                 even if they were optimistically constant. */
                 even if they were optimistically constant. */
              VN_INFO (lhs)->has_constants = false;
              VN_INFO (lhs)->has_constants = false;
              VN_INFO (lhs)->expr = NULL_TREE;
              VN_INFO (lhs)->expr = NULL_TREE;
            }
            }
 
 
          if (TREE_CODE (lhs) == SSA_NAME
          if (TREE_CODE (lhs) == SSA_NAME
              && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
              && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
            changed = defs_to_varying (stmt);
            changed = defs_to_varying (stmt);
          /* ???  We should handle stores from calls.  */
          /* ???  We should handle stores from calls.  */
          else if (TREE_CODE (lhs) == SSA_NAME)
          else if (TREE_CODE (lhs) == SSA_NAME)
            {
            {
              if (gimple_call_flags (stmt) & (ECF_PURE | ECF_CONST))
              if (gimple_call_flags (stmt) & (ECF_PURE | ECF_CONST))
                changed = visit_reference_op_call (lhs, stmt);
                changed = visit_reference_op_call (lhs, stmt);
              else
              else
                changed = defs_to_varying (stmt);
                changed = defs_to_varying (stmt);
            }
            }
          else
          else
            changed = defs_to_varying (stmt);
            changed = defs_to_varying (stmt);
        }
        }
    }
    }
 done:
 done:
  return changed;
  return changed;
}
}
 
 
/* Compare two operands by reverse postorder index */
/* Compare two operands by reverse postorder index */
 
 
static int
static int
compare_ops (const void *pa, const void *pb)
compare_ops (const void *pa, const void *pb)
{
{
  const tree opa = *((const tree *)pa);
  const tree opa = *((const tree *)pa);
  const tree opb = *((const tree *)pb);
  const tree opb = *((const tree *)pb);
  gimple opstmta = SSA_NAME_DEF_STMT (opa);
  gimple opstmta = SSA_NAME_DEF_STMT (opa);
  gimple opstmtb = SSA_NAME_DEF_STMT (opb);
  gimple opstmtb = SSA_NAME_DEF_STMT (opb);
  basic_block bba;
  basic_block bba;
  basic_block bbb;
  basic_block bbb;
 
 
  if (gimple_nop_p (opstmta) && gimple_nop_p (opstmtb))
  if (gimple_nop_p (opstmta) && gimple_nop_p (opstmtb))
    return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
    return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
  else if (gimple_nop_p (opstmta))
  else if (gimple_nop_p (opstmta))
    return -1;
    return -1;
  else if (gimple_nop_p (opstmtb))
  else if (gimple_nop_p (opstmtb))
    return 1;
    return 1;
 
 
  bba = gimple_bb (opstmta);
  bba = gimple_bb (opstmta);
  bbb = gimple_bb (opstmtb);
  bbb = gimple_bb (opstmtb);
 
 
  if (!bba && !bbb)
  if (!bba && !bbb)
    return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
    return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
  else if (!bba)
  else if (!bba)
    return -1;
    return -1;
  else if (!bbb)
  else if (!bbb)
    return 1;
    return 1;
 
 
  if (bba == bbb)
  if (bba == bbb)
    {
    {
      if (gimple_code (opstmta) == GIMPLE_PHI
      if (gimple_code (opstmta) == GIMPLE_PHI
          && gimple_code (opstmtb) == GIMPLE_PHI)
          && gimple_code (opstmtb) == GIMPLE_PHI)
        return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
        return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
      else if (gimple_code (opstmta) == GIMPLE_PHI)
      else if (gimple_code (opstmta) == GIMPLE_PHI)
        return -1;
        return -1;
      else if (gimple_code (opstmtb) == GIMPLE_PHI)
      else if (gimple_code (opstmtb) == GIMPLE_PHI)
        return 1;
        return 1;
      else if (gimple_uid (opstmta) != gimple_uid (opstmtb))
      else if (gimple_uid (opstmta) != gimple_uid (opstmtb))
        return gimple_uid (opstmta) - gimple_uid (opstmtb);
        return gimple_uid (opstmta) - gimple_uid (opstmtb);
      else
      else
        return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
        return SSA_NAME_VERSION (opa) - SSA_NAME_VERSION (opb);
    }
    }
  return rpo_numbers[bba->index] - rpo_numbers[bbb->index];
  return rpo_numbers[bba->index] - rpo_numbers[bbb->index];
}
}
 
 
/* Sort an array containing members of a strongly connected component
/* Sort an array containing members of a strongly connected component
   SCC so that the members are ordered by RPO number.
   SCC so that the members are ordered by RPO number.
   This means that when the sort is complete, iterating through the
   This means that when the sort is complete, iterating through the
   array will give you the members in RPO order.  */
   array will give you the members in RPO order.  */
 
 
static void
static void
sort_scc (VEC (tree, heap) *scc)
sort_scc (VEC (tree, heap) *scc)
{
{
  qsort (VEC_address (tree, scc),
  qsort (VEC_address (tree, scc),
         VEC_length (tree, scc),
         VEC_length (tree, scc),
         sizeof (tree),
         sizeof (tree),
         compare_ops);
         compare_ops);
}
}
 
 
/* Insert the no longer used nary *ENTRY to the current hash.  */
/* Insert the no longer used nary *ENTRY to the current hash.  */
 
 
static int
static int
copy_nary (void **entry, void *data ATTRIBUTE_UNUSED)
copy_nary (void **entry, void *data ATTRIBUTE_UNUSED)
{
{
  vn_nary_op_t onary = (vn_nary_op_t) *entry;
  vn_nary_op_t onary = (vn_nary_op_t) *entry;
  size_t size = (sizeof (struct vn_nary_op_s)
  size_t size = (sizeof (struct vn_nary_op_s)
                 - sizeof (tree) * (4 - onary->length));
                 - sizeof (tree) * (4 - onary->length));
  vn_nary_op_t nary = (vn_nary_op_t) obstack_alloc (&current_info->nary_obstack,
  vn_nary_op_t nary = (vn_nary_op_t) obstack_alloc (&current_info->nary_obstack,
                                                    size);
                                                    size);
  void **slot;
  void **slot;
  memcpy (nary, onary, size);
  memcpy (nary, onary, size);
  slot = htab_find_slot_with_hash (current_info->nary, nary, nary->hashcode,
  slot = htab_find_slot_with_hash (current_info->nary, nary, nary->hashcode,
                                   INSERT);
                                   INSERT);
  gcc_assert (!*slot);
  gcc_assert (!*slot);
  *slot = nary;
  *slot = nary;
  return 1;
  return 1;
}
}
 
 
/* Insert the no longer used phi *ENTRY to the current hash.  */
/* Insert the no longer used phi *ENTRY to the current hash.  */
 
 
static int
static int
copy_phis (void **entry, void *data ATTRIBUTE_UNUSED)
copy_phis (void **entry, void *data ATTRIBUTE_UNUSED)
{
{
  vn_phi_t ophi = (vn_phi_t) *entry;
  vn_phi_t ophi = (vn_phi_t) *entry;
  vn_phi_t phi = (vn_phi_t) pool_alloc (current_info->phis_pool);
  vn_phi_t phi = (vn_phi_t) pool_alloc (current_info->phis_pool);
  void **slot;
  void **slot;
  memcpy (phi, ophi, sizeof (*phi));
  memcpy (phi, ophi, sizeof (*phi));
  ophi->phiargs = NULL;
  ophi->phiargs = NULL;
  slot = htab_find_slot_with_hash (current_info->phis, phi, phi->hashcode,
  slot = htab_find_slot_with_hash (current_info->phis, phi, phi->hashcode,
                                   INSERT);
                                   INSERT);
  *slot = phi;
  *slot = phi;
  return 1;
  return 1;
}
}
 
 
/* Insert the no longer used reference *ENTRY to the current hash.  */
/* Insert the no longer used reference *ENTRY to the current hash.  */
 
 
static int
static int
copy_references (void **entry, void *data ATTRIBUTE_UNUSED)
copy_references (void **entry, void *data ATTRIBUTE_UNUSED)
{
{
  vn_reference_t oref = (vn_reference_t) *entry;
  vn_reference_t oref = (vn_reference_t) *entry;
  vn_reference_t ref;
  vn_reference_t ref;
  void **slot;
  void **slot;
  ref = (vn_reference_t) pool_alloc (current_info->references_pool);
  ref = (vn_reference_t) pool_alloc (current_info->references_pool);
  memcpy (ref, oref, sizeof (*ref));
  memcpy (ref, oref, sizeof (*ref));
  oref->operands = NULL;
  oref->operands = NULL;
  slot = htab_find_slot_with_hash (current_info->references, ref, ref->hashcode,
  slot = htab_find_slot_with_hash (current_info->references, ref, ref->hashcode,
                                   INSERT);
                                   INSERT);
  if (*slot)
  if (*slot)
    free_reference (*slot);
    free_reference (*slot);
  *slot = ref;
  *slot = ref;
  return 1;
  return 1;
}
}
 
 
/* Process a strongly connected component in the SSA graph.  */
/* Process a strongly connected component in the SSA graph.  */
 
 
static void
static void
process_scc (VEC (tree, heap) *scc)
process_scc (VEC (tree, heap) *scc)
{
{
  /* If the SCC has a single member, just visit it.  */
  /* If the SCC has a single member, just visit it.  */
 
 
  if (VEC_length (tree, scc) == 1)
  if (VEC_length (tree, scc) == 1)
    {
    {
      tree use = VEC_index (tree, scc, 0);
      tree use = VEC_index (tree, scc, 0);
      if (!VN_INFO (use)->use_processed)
      if (!VN_INFO (use)->use_processed)
        visit_use (use);
        visit_use (use);
    }
    }
  else
  else
    {
    {
      tree var;
      tree var;
      unsigned int i;
      unsigned int i;
      unsigned int iterations = 0;
      unsigned int iterations = 0;
      bool changed = true;
      bool changed = true;
 
 
      /* Iterate over the SCC with the optimistic table until it stops
      /* Iterate over the SCC with the optimistic table until it stops
         changing.  */
         changing.  */
      current_info = optimistic_info;
      current_info = optimistic_info;
      while (changed)
      while (changed)
        {
        {
          changed = false;
          changed = false;
          iterations++;
          iterations++;
          /* As we are value-numbering optimistically we have to
          /* As we are value-numbering optimistically we have to
             clear the expression tables and the simplified expressions
             clear the expression tables and the simplified expressions
             in each iteration until we converge.  */
             in each iteration until we converge.  */
          htab_empty (optimistic_info->nary);
          htab_empty (optimistic_info->nary);
          htab_empty (optimistic_info->phis);
          htab_empty (optimistic_info->phis);
          htab_empty (optimistic_info->references);
          htab_empty (optimistic_info->references);
          obstack_free (&optimistic_info->nary_obstack, NULL);
          obstack_free (&optimistic_info->nary_obstack, NULL);
          gcc_obstack_init (&optimistic_info->nary_obstack);
          gcc_obstack_init (&optimistic_info->nary_obstack);
          empty_alloc_pool (optimistic_info->phis_pool);
          empty_alloc_pool (optimistic_info->phis_pool);
          empty_alloc_pool (optimistic_info->references_pool);
          empty_alloc_pool (optimistic_info->references_pool);
          for (i = 0; VEC_iterate (tree, scc, i, var); i++)
          for (i = 0; VEC_iterate (tree, scc, i, var); i++)
            VN_INFO (var)->expr = NULL_TREE;
            VN_INFO (var)->expr = NULL_TREE;
          for (i = 0; VEC_iterate (tree, scc, i, var); i++)
          for (i = 0; VEC_iterate (tree, scc, i, var); i++)
            changed |= visit_use (var);
            changed |= visit_use (var);
        }
        }
 
 
      statistics_histogram_event (cfun, "SCC iterations", iterations);
      statistics_histogram_event (cfun, "SCC iterations", iterations);
 
 
      /* Finally, copy the contents of the no longer used optimistic
      /* Finally, copy the contents of the no longer used optimistic
         table to the valid table.  */
         table to the valid table.  */
      current_info = valid_info;
      current_info = valid_info;
      htab_traverse (optimistic_info->nary, copy_nary, NULL);
      htab_traverse (optimistic_info->nary, copy_nary, NULL);
      htab_traverse (optimistic_info->phis, copy_phis, NULL);
      htab_traverse (optimistic_info->phis, copy_phis, NULL);
      htab_traverse (optimistic_info->references, copy_references, NULL);
      htab_traverse (optimistic_info->references, copy_references, NULL);
    }
    }
}
}
 
 
DEF_VEC_O(ssa_op_iter);
DEF_VEC_O(ssa_op_iter);
DEF_VEC_ALLOC_O(ssa_op_iter,heap);
DEF_VEC_ALLOC_O(ssa_op_iter,heap);
 
 
/* Pop the components of the found SCC for NAME off the SCC stack
/* Pop the components of the found SCC for NAME off the SCC stack
   and process them.  Returns true if all went well, false if
   and process them.  Returns true if all went well, false if
   we run into resource limits.  */
   we run into resource limits.  */
 
 
static bool
static bool
extract_and_process_scc_for_name (tree name)
extract_and_process_scc_for_name (tree name)
{
{
  VEC (tree, heap) *scc = NULL;
  VEC (tree, heap) *scc = NULL;
  tree x;
  tree x;
 
 
  /* Found an SCC, pop the components off the SCC stack and
  /* Found an SCC, pop the components off the SCC stack and
     process them.  */
     process them.  */
  do
  do
    {
    {
      x = VEC_pop (tree, sccstack);
      x = VEC_pop (tree, sccstack);
 
 
      VN_INFO (x)->on_sccstack = false;
      VN_INFO (x)->on_sccstack = false;
      VEC_safe_push (tree, heap, scc, x);
      VEC_safe_push (tree, heap, scc, x);
    } while (x != name);
    } while (x != name);
 
 
  /* Bail out of SCCVN in case a SCC turns out to be incredibly large.  */
  /* Bail out of SCCVN in case a SCC turns out to be incredibly large.  */
  if (VEC_length (tree, scc)
  if (VEC_length (tree, scc)
      > (unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE))
      > (unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE))
    {
    {
      if (dump_file)
      if (dump_file)
        fprintf (dump_file, "WARNING: Giving up with SCCVN due to "
        fprintf (dump_file, "WARNING: Giving up with SCCVN due to "
                 "SCC size %u exceeding %u\n", VEC_length (tree, scc),
                 "SCC size %u exceeding %u\n", VEC_length (tree, scc),
                 (unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE));
                 (unsigned)PARAM_VALUE (PARAM_SCCVN_MAX_SCC_SIZE));
      return false;
      return false;
    }
    }
 
 
  if (VEC_length (tree, scc) > 1)
  if (VEC_length (tree, scc) > 1)
    sort_scc (scc);
    sort_scc (scc);
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    print_scc (dump_file, scc);
    print_scc (dump_file, scc);
 
 
  process_scc (scc);
  process_scc (scc);
 
 
  VEC_free (tree, heap, scc);
  VEC_free (tree, heap, scc);
 
 
  return true;
  return true;
}
}
 
 
/* Depth first search on NAME to discover and process SCC's in the SSA
/* Depth first search on NAME to discover and process SCC's in the SSA
   graph.
   graph.
   Execution of this algorithm relies on the fact that the SCC's are
   Execution of this algorithm relies on the fact that the SCC's are
   popped off the stack in topological order.
   popped off the stack in topological order.
   Returns true if successful, false if we stopped processing SCC's due
   Returns true if successful, false if we stopped processing SCC's due
   to resource constraints.  */
   to resource constraints.  */
 
 
static bool
static bool
DFS (tree name)
DFS (tree name)
{
{
  VEC(ssa_op_iter, heap) *itervec = NULL;
  VEC(ssa_op_iter, heap) *itervec = NULL;
  VEC(tree, heap) *namevec = NULL;
  VEC(tree, heap) *namevec = NULL;
  use_operand_p usep = NULL;
  use_operand_p usep = NULL;
  gimple defstmt;
  gimple defstmt;
  tree use;
  tree use;
  ssa_op_iter iter;
  ssa_op_iter iter;
 
 
start_over:
start_over:
  /* SCC info */
  /* SCC info */
  VN_INFO (name)->dfsnum = next_dfs_num++;
  VN_INFO (name)->dfsnum = next_dfs_num++;
  VN_INFO (name)->visited = true;
  VN_INFO (name)->visited = true;
  VN_INFO (name)->low = VN_INFO (name)->dfsnum;
  VN_INFO (name)->low = VN_INFO (name)->dfsnum;
 
 
  VEC_safe_push (tree, heap, sccstack, name);
  VEC_safe_push (tree, heap, sccstack, name);
  VN_INFO (name)->on_sccstack = true;
  VN_INFO (name)->on_sccstack = true;
  defstmt = SSA_NAME_DEF_STMT (name);
  defstmt = SSA_NAME_DEF_STMT (name);
 
 
  /* Recursively DFS on our operands, looking for SCC's.  */
  /* Recursively DFS on our operands, looking for SCC's.  */
  if (!gimple_nop_p (defstmt))
  if (!gimple_nop_p (defstmt))
    {
    {
      /* Push a new iterator.  */
      /* Push a new iterator.  */
      if (gimple_code (defstmt) == GIMPLE_PHI)
      if (gimple_code (defstmt) == GIMPLE_PHI)
        usep = op_iter_init_phiuse (&iter, defstmt, SSA_OP_ALL_USES);
        usep = op_iter_init_phiuse (&iter, defstmt, SSA_OP_ALL_USES);
      else
      else
        usep = op_iter_init_use (&iter, defstmt, SSA_OP_ALL_USES);
        usep = op_iter_init_use (&iter, defstmt, SSA_OP_ALL_USES);
    }
    }
  else
  else
    clear_and_done_ssa_iter (&iter);
    clear_and_done_ssa_iter (&iter);
 
 
  while (1)
  while (1)
    {
    {
      /* If we are done processing uses of a name, go up the stack
      /* If we are done processing uses of a name, go up the stack
         of iterators and process SCCs as we found them.  */
         of iterators and process SCCs as we found them.  */
      if (op_iter_done (&iter))
      if (op_iter_done (&iter))
        {
        {
          /* See if we found an SCC.  */
          /* See if we found an SCC.  */
          if (VN_INFO (name)->low == VN_INFO (name)->dfsnum)
          if (VN_INFO (name)->low == VN_INFO (name)->dfsnum)
            if (!extract_and_process_scc_for_name (name))
            if (!extract_and_process_scc_for_name (name))
              {
              {
                VEC_free (tree, heap, namevec);
                VEC_free (tree, heap, namevec);
                VEC_free (ssa_op_iter, heap, itervec);
                VEC_free (ssa_op_iter, heap, itervec);
                return false;
                return false;
              }
              }
 
 
          /* Check if we are done.  */
          /* Check if we are done.  */
          if (VEC_empty (tree, namevec))
          if (VEC_empty (tree, namevec))
            {
            {
              VEC_free (tree, heap, namevec);
              VEC_free (tree, heap, namevec);
              VEC_free (ssa_op_iter, heap, itervec);
              VEC_free (ssa_op_iter, heap, itervec);
              return true;
              return true;
            }
            }
 
 
          /* Restore the last use walker and continue walking there.  */
          /* Restore the last use walker and continue walking there.  */
          use = name;
          use = name;
          name = VEC_pop (tree, namevec);
          name = VEC_pop (tree, namevec);
          memcpy (&iter, VEC_last (ssa_op_iter, itervec),
          memcpy (&iter, VEC_last (ssa_op_iter, itervec),
                  sizeof (ssa_op_iter));
                  sizeof (ssa_op_iter));
          VEC_pop (ssa_op_iter, itervec);
          VEC_pop (ssa_op_iter, itervec);
          goto continue_walking;
          goto continue_walking;
        }
        }
 
 
      use = USE_FROM_PTR (usep);
      use = USE_FROM_PTR (usep);
 
 
      /* Since we handle phi nodes, we will sometimes get
      /* Since we handle phi nodes, we will sometimes get
         invariants in the use expression.  */
         invariants in the use expression.  */
      if (TREE_CODE (use) == SSA_NAME)
      if (TREE_CODE (use) == SSA_NAME)
        {
        {
          if (! (VN_INFO (use)->visited))
          if (! (VN_INFO (use)->visited))
            {
            {
              /* Recurse by pushing the current use walking state on
              /* Recurse by pushing the current use walking state on
                 the stack and starting over.  */
                 the stack and starting over.  */
              VEC_safe_push(ssa_op_iter, heap, itervec, &iter);
              VEC_safe_push(ssa_op_iter, heap, itervec, &iter);
              VEC_safe_push(tree, heap, namevec, name);
              VEC_safe_push(tree, heap, namevec, name);
              name = use;
              name = use;
              goto start_over;
              goto start_over;
 
 
continue_walking:
continue_walking:
              VN_INFO (name)->low = MIN (VN_INFO (name)->low,
              VN_INFO (name)->low = MIN (VN_INFO (name)->low,
                                         VN_INFO (use)->low);
                                         VN_INFO (use)->low);
            }
            }
          if (VN_INFO (use)->dfsnum < VN_INFO (name)->dfsnum
          if (VN_INFO (use)->dfsnum < VN_INFO (name)->dfsnum
              && VN_INFO (use)->on_sccstack)
              && VN_INFO (use)->on_sccstack)
            {
            {
              VN_INFO (name)->low = MIN (VN_INFO (use)->dfsnum,
              VN_INFO (name)->low = MIN (VN_INFO (use)->dfsnum,
                                         VN_INFO (name)->low);
                                         VN_INFO (name)->low);
            }
            }
        }
        }
 
 
      usep = op_iter_next_use (&iter);
      usep = op_iter_next_use (&iter);
    }
    }
}
}
 
 
/* Allocate a value number table.  */
/* Allocate a value number table.  */
 
 
static void
static void
allocate_vn_table (vn_tables_t table)
allocate_vn_table (vn_tables_t table)
{
{
  table->phis = htab_create (23, vn_phi_hash, vn_phi_eq, free_phi);
  table->phis = htab_create (23, vn_phi_hash, vn_phi_eq, free_phi);
  table->nary = htab_create (23, vn_nary_op_hash, vn_nary_op_eq, NULL);
  table->nary = htab_create (23, vn_nary_op_hash, vn_nary_op_eq, NULL);
  table->references = htab_create (23, vn_reference_hash, vn_reference_eq,
  table->references = htab_create (23, vn_reference_hash, vn_reference_eq,
                                   free_reference);
                                   free_reference);
 
 
  gcc_obstack_init (&table->nary_obstack);
  gcc_obstack_init (&table->nary_obstack);
  table->phis_pool = create_alloc_pool ("VN phis",
  table->phis_pool = create_alloc_pool ("VN phis",
                                        sizeof (struct vn_phi_s),
                                        sizeof (struct vn_phi_s),
                                        30);
                                        30);
  table->references_pool = create_alloc_pool ("VN references",
  table->references_pool = create_alloc_pool ("VN references",
                                              sizeof (struct vn_reference_s),
                                              sizeof (struct vn_reference_s),
                                              30);
                                              30);
}
}
 
 
/* Free a value number table.  */
/* Free a value number table.  */
 
 
static void
static void
free_vn_table (vn_tables_t table)
free_vn_table (vn_tables_t table)
{
{
  htab_delete (table->phis);
  htab_delete (table->phis);
  htab_delete (table->nary);
  htab_delete (table->nary);
  htab_delete (table->references);
  htab_delete (table->references);
  obstack_free (&table->nary_obstack, NULL);
  obstack_free (&table->nary_obstack, NULL);
  free_alloc_pool (table->phis_pool);
  free_alloc_pool (table->phis_pool);
  free_alloc_pool (table->references_pool);
  free_alloc_pool (table->references_pool);
}
}
 
 
static void
static void
init_scc_vn (void)
init_scc_vn (void)
{
{
  size_t i;
  size_t i;
  int j;
  int j;
  int *rpo_numbers_temp;
  int *rpo_numbers_temp;
 
 
  calculate_dominance_info (CDI_DOMINATORS);
  calculate_dominance_info (CDI_DOMINATORS);
  sccstack = NULL;
  sccstack = NULL;
  constant_to_value_id = htab_create (23, vn_constant_hash, vn_constant_eq,
  constant_to_value_id = htab_create (23, vn_constant_hash, vn_constant_eq,
                                  free);
                                  free);
 
 
  constant_value_ids = BITMAP_ALLOC (NULL);
  constant_value_ids = BITMAP_ALLOC (NULL);
 
 
  next_dfs_num = 1;
  next_dfs_num = 1;
  next_value_id = 1;
  next_value_id = 1;
 
 
  vn_ssa_aux_table = VEC_alloc (vn_ssa_aux_t, heap, num_ssa_names + 1);
  vn_ssa_aux_table = VEC_alloc (vn_ssa_aux_t, heap, num_ssa_names + 1);
  /* VEC_alloc doesn't actually grow it to the right size, it just
  /* VEC_alloc doesn't actually grow it to the right size, it just
     preallocates the space to do so.  */
     preallocates the space to do so.  */
  VEC_safe_grow_cleared (vn_ssa_aux_t, heap, vn_ssa_aux_table, num_ssa_names + 1);
  VEC_safe_grow_cleared (vn_ssa_aux_t, heap, vn_ssa_aux_table, num_ssa_names + 1);
  gcc_obstack_init (&vn_ssa_aux_obstack);
  gcc_obstack_init (&vn_ssa_aux_obstack);
 
 
  shared_lookup_phiargs = NULL;
  shared_lookup_phiargs = NULL;
  shared_lookup_references = NULL;
  shared_lookup_references = NULL;
  rpo_numbers = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
  rpo_numbers = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
  rpo_numbers_temp = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
  rpo_numbers_temp = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
  pre_and_rev_post_order_compute (NULL, rpo_numbers_temp, false);
  pre_and_rev_post_order_compute (NULL, rpo_numbers_temp, false);
 
 
  /* RPO numbers is an array of rpo ordering, rpo[i] = bb means that
  /* RPO numbers is an array of rpo ordering, rpo[i] = bb means that
     the i'th block in RPO order is bb.  We want to map bb's to RPO
     the i'th block in RPO order is bb.  We want to map bb's to RPO
     numbers, so we need to rearrange this array.  */
     numbers, so we need to rearrange this array.  */
  for (j = 0; j < n_basic_blocks - NUM_FIXED_BLOCKS; j++)
  for (j = 0; j < n_basic_blocks - NUM_FIXED_BLOCKS; j++)
    rpo_numbers[rpo_numbers_temp[j]] = j;
    rpo_numbers[rpo_numbers_temp[j]] = j;
 
 
  XDELETE (rpo_numbers_temp);
  XDELETE (rpo_numbers_temp);
 
 
  VN_TOP = create_tmp_var_raw (void_type_node, "vn_top");
  VN_TOP = create_tmp_var_raw (void_type_node, "vn_top");
 
 
  /* Create the VN_INFO structures, and initialize value numbers to
  /* Create the VN_INFO structures, and initialize value numbers to
     TOP.  */
     TOP.  */
  for (i = 0; i < num_ssa_names; i++)
  for (i = 0; i < num_ssa_names; i++)
    {
    {
      tree name = ssa_name (i);
      tree name = ssa_name (i);
      if (name)
      if (name)
        {
        {
          VN_INFO_GET (name)->valnum = VN_TOP;
          VN_INFO_GET (name)->valnum = VN_TOP;
          VN_INFO (name)->expr = NULL_TREE;
          VN_INFO (name)->expr = NULL_TREE;
          VN_INFO (name)->value_id = 0;
          VN_INFO (name)->value_id = 0;
        }
        }
    }
    }
 
 
  renumber_gimple_stmt_uids ();
  renumber_gimple_stmt_uids ();
 
 
  /* Create the valid and optimistic value numbering tables.  */
  /* Create the valid and optimistic value numbering tables.  */
  valid_info = XCNEW (struct vn_tables_s);
  valid_info = XCNEW (struct vn_tables_s);
  allocate_vn_table (valid_info);
  allocate_vn_table (valid_info);
  optimistic_info = XCNEW (struct vn_tables_s);
  optimistic_info = XCNEW (struct vn_tables_s);
  allocate_vn_table (optimistic_info);
  allocate_vn_table (optimistic_info);
}
}
 
 
void
void
free_scc_vn (void)
free_scc_vn (void)
{
{
  size_t i;
  size_t i;
 
 
  htab_delete (constant_to_value_id);
  htab_delete (constant_to_value_id);
  BITMAP_FREE (constant_value_ids);
  BITMAP_FREE (constant_value_ids);
  VEC_free (tree, heap, shared_lookup_phiargs);
  VEC_free (tree, heap, shared_lookup_phiargs);
  VEC_free (vn_reference_op_s, heap, shared_lookup_references);
  VEC_free (vn_reference_op_s, heap, shared_lookup_references);
  XDELETEVEC (rpo_numbers);
  XDELETEVEC (rpo_numbers);
 
 
  for (i = 0; i < num_ssa_names; i++)
  for (i = 0; i < num_ssa_names; i++)
    {
    {
      tree name = ssa_name (i);
      tree name = ssa_name (i);
      if (name
      if (name
          && VN_INFO (name)->needs_insertion)
          && VN_INFO (name)->needs_insertion)
        release_ssa_name (name);
        release_ssa_name (name);
    }
    }
  obstack_free (&vn_ssa_aux_obstack, NULL);
  obstack_free (&vn_ssa_aux_obstack, NULL);
  VEC_free (vn_ssa_aux_t, heap, vn_ssa_aux_table);
  VEC_free (vn_ssa_aux_t, heap, vn_ssa_aux_table);
 
 
  VEC_free (tree, heap, sccstack);
  VEC_free (tree, heap, sccstack);
  free_vn_table (valid_info);
  free_vn_table (valid_info);
  XDELETE (valid_info);
  XDELETE (valid_info);
  free_vn_table (optimistic_info);
  free_vn_table (optimistic_info);
  XDELETE (optimistic_info);
  XDELETE (optimistic_info);
}
}
 
 
/* Set the value ids in the valid hash tables.  */
/* Set the value ids in the valid hash tables.  */
 
 
static void
static void
set_hashtable_value_ids (void)
set_hashtable_value_ids (void)
{
{
  htab_iterator hi;
  htab_iterator hi;
  vn_nary_op_t vno;
  vn_nary_op_t vno;
  vn_reference_t vr;
  vn_reference_t vr;
  vn_phi_t vp;
  vn_phi_t vp;
 
 
  /* Now set the value ids of the things we had put in the hash
  /* Now set the value ids of the things we had put in the hash
     table.  */
     table.  */
 
 
  FOR_EACH_HTAB_ELEMENT (valid_info->nary,
  FOR_EACH_HTAB_ELEMENT (valid_info->nary,
                         vno, vn_nary_op_t, hi)
                         vno, vn_nary_op_t, hi)
    {
    {
      if (vno->result)
      if (vno->result)
        {
        {
          if (TREE_CODE (vno->result) == SSA_NAME)
          if (TREE_CODE (vno->result) == SSA_NAME)
            vno->value_id = VN_INFO (vno->result)->value_id;
            vno->value_id = VN_INFO (vno->result)->value_id;
          else if (is_gimple_min_invariant (vno->result))
          else if (is_gimple_min_invariant (vno->result))
            vno->value_id = get_or_alloc_constant_value_id (vno->result);
            vno->value_id = get_or_alloc_constant_value_id (vno->result);
        }
        }
    }
    }
 
 
  FOR_EACH_HTAB_ELEMENT (valid_info->phis,
  FOR_EACH_HTAB_ELEMENT (valid_info->phis,
                         vp, vn_phi_t, hi)
                         vp, vn_phi_t, hi)
    {
    {
      if (vp->result)
      if (vp->result)
        {
        {
          if (TREE_CODE (vp->result) == SSA_NAME)
          if (TREE_CODE (vp->result) == SSA_NAME)
            vp->value_id = VN_INFO (vp->result)->value_id;
            vp->value_id = VN_INFO (vp->result)->value_id;
          else if (is_gimple_min_invariant (vp->result))
          else if (is_gimple_min_invariant (vp->result))
            vp->value_id = get_or_alloc_constant_value_id (vp->result);
            vp->value_id = get_or_alloc_constant_value_id (vp->result);
        }
        }
    }
    }
 
 
  FOR_EACH_HTAB_ELEMENT (valid_info->references,
  FOR_EACH_HTAB_ELEMENT (valid_info->references,
                         vr, vn_reference_t, hi)
                         vr, vn_reference_t, hi)
    {
    {
      if (vr->result)
      if (vr->result)
        {
        {
          if (TREE_CODE (vr->result) == SSA_NAME)
          if (TREE_CODE (vr->result) == SSA_NAME)
            vr->value_id = VN_INFO (vr->result)->value_id;
            vr->value_id = VN_INFO (vr->result)->value_id;
          else if (is_gimple_min_invariant (vr->result))
          else if (is_gimple_min_invariant (vr->result))
            vr->value_id = get_or_alloc_constant_value_id (vr->result);
            vr->value_id = get_or_alloc_constant_value_id (vr->result);
        }
        }
    }
    }
}
}
 
 
/* Do SCCVN.  Returns true if it finished, false if we bailed out
/* Do SCCVN.  Returns true if it finished, false if we bailed out
   due to resource constraints.  */
   due to resource constraints.  */
 
 
bool
bool
run_scc_vn (bool may_insert_arg)
run_scc_vn (bool may_insert_arg)
{
{
  size_t i;
  size_t i;
  tree param;
  tree param;
  bool changed = true;
  bool changed = true;
 
 
  may_insert = may_insert_arg;
  may_insert = may_insert_arg;
 
 
  init_scc_vn ();
  init_scc_vn ();
  current_info = valid_info;
  current_info = valid_info;
 
 
  for (param = DECL_ARGUMENTS (current_function_decl);
  for (param = DECL_ARGUMENTS (current_function_decl);
       param;
       param;
       param = TREE_CHAIN (param))
       param = TREE_CHAIN (param))
    {
    {
      if (gimple_default_def (cfun, param) != NULL)
      if (gimple_default_def (cfun, param) != NULL)
        {
        {
          tree def = gimple_default_def (cfun, param);
          tree def = gimple_default_def (cfun, param);
          VN_INFO (def)->valnum = def;
          VN_INFO (def)->valnum = def;
        }
        }
    }
    }
 
 
  for (i = 1; i < num_ssa_names; ++i)
  for (i = 1; i < num_ssa_names; ++i)
    {
    {
      tree name = ssa_name (i);
      tree name = ssa_name (i);
      if (name
      if (name
          && VN_INFO (name)->visited == false
          && VN_INFO (name)->visited == false
          && !has_zero_uses (name))
          && !has_zero_uses (name))
        if (!DFS (name))
        if (!DFS (name))
          {
          {
            free_scc_vn ();
            free_scc_vn ();
            may_insert = false;
            may_insert = false;
            return false;
            return false;
          }
          }
    }
    }
 
 
  /* Initialize the value ids.  */
  /* Initialize the value ids.  */
 
 
  for (i = 1; i < num_ssa_names; ++i)
  for (i = 1; i < num_ssa_names; ++i)
    {
    {
      tree name = ssa_name (i);
      tree name = ssa_name (i);
      vn_ssa_aux_t info;
      vn_ssa_aux_t info;
      if (!name)
      if (!name)
        continue;
        continue;
      info = VN_INFO (name);
      info = VN_INFO (name);
      if (info->valnum == name
      if (info->valnum == name
          || info->valnum == VN_TOP)
          || info->valnum == VN_TOP)
        info->value_id = get_next_value_id ();
        info->value_id = get_next_value_id ();
      else if (is_gimple_min_invariant (info->valnum))
      else if (is_gimple_min_invariant (info->valnum))
        info->value_id = get_or_alloc_constant_value_id (info->valnum);
        info->value_id = get_or_alloc_constant_value_id (info->valnum);
    }
    }
 
 
  /* Propagate until they stop changing.  */
  /* Propagate until they stop changing.  */
  while (changed)
  while (changed)
    {
    {
      changed = false;
      changed = false;
      for (i = 1; i < num_ssa_names; ++i)
      for (i = 1; i < num_ssa_names; ++i)
        {
        {
          tree name = ssa_name (i);
          tree name = ssa_name (i);
          vn_ssa_aux_t info;
          vn_ssa_aux_t info;
          if (!name)
          if (!name)
            continue;
            continue;
          info = VN_INFO (name);
          info = VN_INFO (name);
          if (TREE_CODE (info->valnum) == SSA_NAME
          if (TREE_CODE (info->valnum) == SSA_NAME
              && info->valnum != name
              && info->valnum != name
              && info->value_id != VN_INFO (info->valnum)->value_id)
              && info->value_id != VN_INFO (info->valnum)->value_id)
            {
            {
              changed = true;
              changed = true;
              info->value_id = VN_INFO (info->valnum)->value_id;
              info->value_id = VN_INFO (info->valnum)->value_id;
            }
            }
        }
        }
    }
    }
 
 
  set_hashtable_value_ids ();
  set_hashtable_value_ids ();
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "Value numbers:\n");
      fprintf (dump_file, "Value numbers:\n");
      for (i = 0; i < num_ssa_names; i++)
      for (i = 0; i < num_ssa_names; i++)
        {
        {
          tree name = ssa_name (i);
          tree name = ssa_name (i);
          if (name
          if (name
              && VN_INFO (name)->visited
              && VN_INFO (name)->visited
              && SSA_VAL (name) != name)
              && SSA_VAL (name) != name)
            {
            {
              print_generic_expr (dump_file, name, 0);
              print_generic_expr (dump_file, name, 0);
              fprintf (dump_file, " = ");
              fprintf (dump_file, " = ");
              print_generic_expr (dump_file, SSA_VAL (name), 0);
              print_generic_expr (dump_file, SSA_VAL (name), 0);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
        }
        }
    }
    }
 
 
  may_insert = false;
  may_insert = false;
  return true;
  return true;
}
}
 
 
/* Return the maximum value id we have ever seen.  */
/* Return the maximum value id we have ever seen.  */
 
 
unsigned int
unsigned int
get_max_value_id (void)
get_max_value_id (void)
{
{
  return next_value_id;
  return next_value_id;
}
}
 
 
/* Return the next unique value id.  */
/* Return the next unique value id.  */
 
 
unsigned int
unsigned int
get_next_value_id (void)
get_next_value_id (void)
{
{
  return next_value_id++;
  return next_value_id++;
}
}
 
 
 
 
/* Compare two expressions E1 and E2 and return true if they are equal.  */
/* Compare two expressions E1 and E2 and return true if they are equal.  */
 
 
bool
bool
expressions_equal_p (tree e1, tree e2)
expressions_equal_p (tree e1, tree e2)
{
{
  /* The obvious case.  */
  /* The obvious case.  */
  if (e1 == e2)
  if (e1 == e2)
    return true;
    return true;
 
 
  /* If only one of them is null, they cannot be equal.  */
  /* If only one of them is null, they cannot be equal.  */
  if (!e1 || !e2)
  if (!e1 || !e2)
    return false;
    return false;
 
 
  /* Now perform the actual comparison.  */
  /* Now perform the actual comparison.  */
  if (TREE_CODE (e1) == TREE_CODE (e2)
  if (TREE_CODE (e1) == TREE_CODE (e2)
      && operand_equal_p (e1, e2, OEP_PURE_SAME))
      && operand_equal_p (e1, e2, OEP_PURE_SAME))
    return true;
    return true;
 
 
  return false;
  return false;
}
}
 
 
 
 
/* Return true if the nary operation NARY may trap.  This is a copy
/* Return true if the nary operation NARY may trap.  This is a copy
   of stmt_could_throw_1_p adjusted to the SCCVN IL.  */
   of stmt_could_throw_1_p adjusted to the SCCVN IL.  */
 
 
bool
bool
vn_nary_may_trap (vn_nary_op_t nary)
vn_nary_may_trap (vn_nary_op_t nary)
{
{
  tree type;
  tree type;
  tree rhs2 = NULL_TREE;
  tree rhs2 = NULL_TREE;
  bool honor_nans = false;
  bool honor_nans = false;
  bool honor_snans = false;
  bool honor_snans = false;
  bool fp_operation = false;
  bool fp_operation = false;
  bool honor_trapv = false;
  bool honor_trapv = false;
  bool handled, ret;
  bool handled, ret;
  unsigned i;
  unsigned i;
 
 
  if (TREE_CODE_CLASS (nary->opcode) == tcc_comparison
  if (TREE_CODE_CLASS (nary->opcode) == tcc_comparison
      || TREE_CODE_CLASS (nary->opcode) == tcc_unary
      || TREE_CODE_CLASS (nary->opcode) == tcc_unary
      || TREE_CODE_CLASS (nary->opcode) == tcc_binary)
      || TREE_CODE_CLASS (nary->opcode) == tcc_binary)
    {
    {
      type = nary->type;
      type = nary->type;
      fp_operation = FLOAT_TYPE_P (type);
      fp_operation = FLOAT_TYPE_P (type);
      if (fp_operation)
      if (fp_operation)
        {
        {
          honor_nans = flag_trapping_math && !flag_finite_math_only;
          honor_nans = flag_trapping_math && !flag_finite_math_only;
          honor_snans = flag_signaling_nans != 0;
          honor_snans = flag_signaling_nans != 0;
        }
        }
      else if (INTEGRAL_TYPE_P (type)
      else if (INTEGRAL_TYPE_P (type)
               && TYPE_OVERFLOW_TRAPS (type))
               && TYPE_OVERFLOW_TRAPS (type))
        honor_trapv = true;
        honor_trapv = true;
    }
    }
  if (nary->length >= 2)
  if (nary->length >= 2)
    rhs2 = nary->op[1];
    rhs2 = nary->op[1];
  ret = operation_could_trap_helper_p (nary->opcode, fp_operation,
  ret = operation_could_trap_helper_p (nary->opcode, fp_operation,
                                       honor_trapv,
                                       honor_trapv,
                                       honor_nans, honor_snans, rhs2,
                                       honor_nans, honor_snans, rhs2,
                                       &handled);
                                       &handled);
  if (handled
  if (handled
      && ret)
      && ret)
    return true;
    return true;
 
 
  for (i = 0; i < nary->length; ++i)
  for (i = 0; i < nary->length; ++i)
    if (tree_could_trap_p (nary->op[i]))
    if (tree_could_trap_p (nary->op[i]))
      return true;
      return true;
 
 
  return false;
  return false;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.