OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc1/] [libgcc/] [config/] [libbid/] [bid64_sqrt.c] - Diff between revs 272 and 338

Only display areas with differences | Details | Blame | View Log

Rev 272 Rev 338
/* Copyright (C) 2007, 2009  Free Software Foundation, Inc.
/* Copyright (C) 2007, 2009  Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
Under Section 7 of GPL version 3, you are granted additional
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
3.1, as published by the Free Software Foundation.
 
 
You should have received a copy of the GNU General Public License and
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/*****************************************************************************
/*****************************************************************************
 *    BID64 square root
 *    BID64 square root
 *****************************************************************************
 *****************************************************************************
 *
 *
 *  Algorithm description:
 *  Algorithm description:
 *
 *
 *  if(exponent_x is odd)
 *  if(exponent_x is odd)
 *     scale coefficient_x by 10, adjust exponent
 *     scale coefficient_x by 10, adjust exponent
 *  - get lower estimate for number of digits in coefficient_x
 *  - get lower estimate for number of digits in coefficient_x
 *  - scale coefficient x to between 31 and 33 decimal digits
 *  - scale coefficient x to between 31 and 33 decimal digits
 *  - in parallel, check for exact case and return if true
 *  - in parallel, check for exact case and return if true
 *  - get high part of result coefficient using double precision sqrt
 *  - get high part of result coefficient using double precision sqrt
 *  - compute remainder and refine coefficient in one iteration (which
 *  - compute remainder and refine coefficient in one iteration (which
 *                                 modifies it by at most 1)
 *                                 modifies it by at most 1)
 *  - result exponent is easy to compute from the adjusted arg. exponent
 *  - result exponent is easy to compute from the adjusted arg. exponent
 *
 *
 ****************************************************************************/
 ****************************************************************************/
 
 
#include "bid_internal.h"
#include "bid_internal.h"
#include "bid_sqrt_macros.h"
#include "bid_sqrt_macros.h"
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
#include <fenv.h>
#include <fenv.h>
 
 
#define FE_ALL_FLAGS FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT
#define FE_ALL_FLAGS FE_INVALID|FE_DIVBYZERO|FE_OVERFLOW|FE_UNDERFLOW|FE_INEXACT
#endif
#endif
 
 
extern double sqrt (double);
extern double sqrt (double);
 
 
#if DECIMAL_CALL_BY_REFERENCE
#if DECIMAL_CALL_BY_REFERENCE
 
 
void
void
bid64_sqrt (UINT64 * pres,
bid64_sqrt (UINT64 * pres,
            UINT64 *
            UINT64 *
            px _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
            px _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
            _EXC_INFO_PARAM) {
            _EXC_INFO_PARAM) {
  UINT64 x;
  UINT64 x;
#else
#else
 
 
UINT64
UINT64
bid64_sqrt (UINT64 x _RND_MODE_PARAM _EXC_FLAGS_PARAM
bid64_sqrt (UINT64 x _RND_MODE_PARAM _EXC_FLAGS_PARAM
            _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
            _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif
#endif
  UINT128 CA, CT;
  UINT128 CA, CT;
  UINT64 sign_x, coefficient_x;
  UINT64 sign_x, coefficient_x;
  UINT64 Q, Q2, A10, C4, R, R2, QE, res;
  UINT64 Q, Q2, A10, C4, R, R2, QE, res;
  SINT64 D;
  SINT64 D;
  int_double t_scale;
  int_double t_scale;
  int_float tempx;
  int_float tempx;
  double da, dq, da_h, da_l, dqe;
  double da, dq, da_h, da_l, dqe;
  int exponent_x, exponent_q, bin_expon_cx;
  int exponent_x, exponent_q, bin_expon_cx;
  int digits_x;
  int digits_x;
  int scale;
  int scale;
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
  fexcept_t binaryflags = 0;
  fexcept_t binaryflags = 0;
#endif
#endif
 
 
#if DECIMAL_CALL_BY_REFERENCE
#if DECIMAL_CALL_BY_REFERENCE
#if !DECIMAL_GLOBAL_ROUNDING
#if !DECIMAL_GLOBAL_ROUNDING
  _IDEC_round rnd_mode = *prnd_mode;
  _IDEC_round rnd_mode = *prnd_mode;
#endif
#endif
  x = *px;
  x = *px;
#endif
#endif
 
 
  // unpack arguments, check for NaN or Infinity
  // unpack arguments, check for NaN or Infinity
  if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
  if (!unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x)) {
    // x is Inf. or NaN or 0
    // x is Inf. or NaN or 0
    if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
    if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
      res = coefficient_x;
      res = coefficient_x;
      if ((coefficient_x & SSNAN_MASK64) == SINFINITY_MASK64)   // -Infinity
      if ((coefficient_x & SSNAN_MASK64) == SINFINITY_MASK64)   // -Infinity
      {
      {
        res = NAN_MASK64;
        res = NAN_MASK64;
#ifdef SET_STATUS_FLAGS
#ifdef SET_STATUS_FLAGS
        __set_status_flags (pfpsf, INVALID_EXCEPTION);
        __set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
#endif
      }
      }
#ifdef SET_STATUS_FLAGS
#ifdef SET_STATUS_FLAGS
      if ((x & SNAN_MASK64) == SNAN_MASK64)     // sNaN
      if ((x & SNAN_MASK64) == SNAN_MASK64)     // sNaN
        __set_status_flags (pfpsf, INVALID_EXCEPTION);
        __set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
#endif
      BID_RETURN (res & QUIET_MASK64);
      BID_RETURN (res & QUIET_MASK64);
    }
    }
    // x is 0
    // x is 0
    exponent_x = (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1;
    exponent_x = (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1;
    res = sign_x | (((UINT64) exponent_x) << 53);
    res = sign_x | (((UINT64) exponent_x) << 53);
    BID_RETURN (res);
    BID_RETURN (res);
  }
  }
  // x<0?
  // x<0?
  if (sign_x && coefficient_x) {
  if (sign_x && coefficient_x) {
    res = NAN_MASK64;
    res = NAN_MASK64;
#ifdef SET_STATUS_FLAGS
#ifdef SET_STATUS_FLAGS
    __set_status_flags (pfpsf, INVALID_EXCEPTION);
    __set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
#endif
    BID_RETURN (res);
    BID_RETURN (res);
  }
  }
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
  (void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
  (void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
#endif
#endif
  //--- get number of bits in the coefficient of x ---
  //--- get number of bits in the coefficient of x ---
  tempx.d = (float) coefficient_x;
  tempx.d = (float) coefficient_x;
  bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
  bin_expon_cx = ((tempx.i >> 23) & 0xff) - 0x7f;
  digits_x = estimate_decimal_digits[bin_expon_cx];
  digits_x = estimate_decimal_digits[bin_expon_cx];
  // add test for range
  // add test for range
  if (coefficient_x >= power10_index_binexp[bin_expon_cx])
  if (coefficient_x >= power10_index_binexp[bin_expon_cx])
    digits_x++;
    digits_x++;
 
 
  A10 = coefficient_x;
  A10 = coefficient_x;
  if (exponent_x & 1) {
  if (exponent_x & 1) {
    A10 = (A10 << 2) + A10;
    A10 = (A10 << 2) + A10;
    A10 += A10;
    A10 += A10;
  }
  }
 
 
  dqe = sqrt ((double) A10);
  dqe = sqrt ((double) A10);
  QE = (UINT32) dqe;
  QE = (UINT32) dqe;
  if (QE * QE == A10) {
  if (QE * QE == A10) {
    res =
    res =
      very_fast_get_BID64 (0, (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1,
      very_fast_get_BID64 (0, (exponent_x + DECIMAL_EXPONENT_BIAS) >> 1,
                           QE);
                           QE);
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
    (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
    (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
#endif
#endif
    BID_RETURN (res);
    BID_RETURN (res);
  }
  }
  // if exponent is odd, scale coefficient by 10
  // if exponent is odd, scale coefficient by 10
  scale = 31 - digits_x;
  scale = 31 - digits_x;
  exponent_q = exponent_x - scale;
  exponent_q = exponent_x - scale;
  scale += (exponent_q & 1);    // exp. bias is even
  scale += (exponent_q & 1);    // exp. bias is even
 
 
  CT = power10_table_128[scale];
  CT = power10_table_128[scale];
  __mul_64x128_short (CA, coefficient_x, CT);
  __mul_64x128_short (CA, coefficient_x, CT);
 
 
  // 2^64
  // 2^64
  t_scale.i = 0x43f0000000000000ull;
  t_scale.i = 0x43f0000000000000ull;
  // convert CA to DP
  // convert CA to DP
  da_h = CA.w[1];
  da_h = CA.w[1];
  da_l = CA.w[0];
  da_l = CA.w[0];
  da = da_h * t_scale.d + da_l;
  da = da_h * t_scale.d + da_l;
 
 
  dq = sqrt (da);
  dq = sqrt (da);
 
 
  Q = (UINT64) dq;
  Q = (UINT64) dq;
 
 
  // get sign(sqrt(CA)-Q)
  // get sign(sqrt(CA)-Q)
  R = CA.w[0] - Q * Q;
  R = CA.w[0] - Q * Q;
  R = ((SINT64) R) >> 63;
  R = ((SINT64) R) >> 63;
  D = R + R + 1;
  D = R + R + 1;
 
 
  exponent_q = (exponent_q + DECIMAL_EXPONENT_BIAS) >> 1;
  exponent_q = (exponent_q + DECIMAL_EXPONENT_BIAS) >> 1;
 
 
#ifdef SET_STATUS_FLAGS
#ifdef SET_STATUS_FLAGS
  __set_status_flags (pfpsf, INEXACT_EXCEPTION);
  __set_status_flags (pfpsf, INEXACT_EXCEPTION);
#endif
#endif
 
 
#ifndef IEEE_ROUND_NEAREST
#ifndef IEEE_ROUND_NEAREST
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
  if (!((rnd_mode) & 3)) {
  if (!((rnd_mode) & 3)) {
#endif
#endif
#endif
#endif
 
 
    // midpoint to check
    // midpoint to check
    Q2 = Q + Q + D;
    Q2 = Q + Q + D;
    C4 = CA.w[0] << 2;
    C4 = CA.w[0] << 2;
 
 
    // get sign(-sqrt(CA)+Midpoint)
    // get sign(-sqrt(CA)+Midpoint)
    R2 = Q2 * Q2 - C4;
    R2 = Q2 * Q2 - C4;
    R2 = ((SINT64) R2) >> 63;
    R2 = ((SINT64) R2) >> 63;
 
 
    // adjust Q if R!=R2
    // adjust Q if R!=R2
    Q += (D & (R ^ R2));
    Q += (D & (R ^ R2));
#ifndef IEEE_ROUND_NEAREST
#ifndef IEEE_ROUND_NEAREST
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
  } else {
  } else {
    C4 = CA.w[0];
    C4 = CA.w[0];
    Q += D;
    Q += D;
    if ((SINT64) (Q * Q - C4) > 0)
    if ((SINT64) (Q * Q - C4) > 0)
      Q--;
      Q--;
    if (rnd_mode == ROUNDING_UP)
    if (rnd_mode == ROUNDING_UP)
      Q++;
      Q++;
  }
  }
#endif
#endif
#endif
#endif
 
 
  res = fast_get_BID64 (0, exponent_q, Q);
  res = fast_get_BID64 (0, exponent_q, Q);
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
  (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
  (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
#endif
#endif
  BID_RETURN (res);
  BID_RETURN (res);
}
}
 
 
 
 
TYPE0_FUNCTION_ARG1 (UINT64, bid64q_sqrt, x)
TYPE0_FUNCTION_ARG1 (UINT64, bid64q_sqrt, x)
 
 
     UINT256 M256, C4, C8;
     UINT256 M256, C4, C8;
     UINT128 CX, CX2, A10, S2, T128, CS, CSM, CS2, C256, CS1,
     UINT128 CX, CX2, A10, S2, T128, CS, CSM, CS2, C256, CS1,
       mul_factor2_long = { {0x0ull, 0x0ull} }, QH, Tmp, TP128, Qh, Ql;
       mul_factor2_long = { {0x0ull, 0x0ull} }, QH, Tmp, TP128, Qh, Ql;
UINT64 sign_x, Carry, B10, res, mul_factor, mul_factor2 = 0x0ull, CS0;
UINT64 sign_x, Carry, B10, res, mul_factor, mul_factor2 = 0x0ull, CS0;
SINT64 D;
SINT64 D;
int_float fx, f64;
int_float fx, f64;
int exponent_x, bin_expon_cx, done = 0;
int exponent_x, bin_expon_cx, done = 0;
int digits, scale, exponent_q = 0, exact = 1, amount, extra_digits;
int digits, scale, exponent_q = 0, exact = 1, amount, extra_digits;
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
fexcept_t binaryflags = 0;
fexcept_t binaryflags = 0;
#endif
#endif
 
 
        // unpack arguments, check for NaN or Infinity
        // unpack arguments, check for NaN or Infinity
if (!unpack_BID128_value (&sign_x, &exponent_x, &CX, x)) {
if (!unpack_BID128_value (&sign_x, &exponent_x, &CX, x)) {
  res = CX.w[1];
  res = CX.w[1];
  // NaN ?
  // NaN ?
  if ((x.w[1] & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
  if ((x.w[1] & 0x7c00000000000000ull) == 0x7c00000000000000ull) {
#ifdef SET_STATUS_FLAGS
#ifdef SET_STATUS_FLAGS
    if ((x.w[1] & 0x7e00000000000000ull) == 0x7e00000000000000ull)      // sNaN
    if ((x.w[1] & 0x7e00000000000000ull) == 0x7e00000000000000ull)      // sNaN
      __set_status_flags (pfpsf, INVALID_EXCEPTION);
      __set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
#endif
    Tmp.w[1] = (CX.w[1] & 0x00003fffffffffffull);
    Tmp.w[1] = (CX.w[1] & 0x00003fffffffffffull);
    Tmp.w[0] = CX.w[0];
    Tmp.w[0] = CX.w[0];
    TP128 = reciprocals10_128[18];
    TP128 = reciprocals10_128[18];
    __mul_128x128_full (Qh, Ql, Tmp, TP128);
    __mul_128x128_full (Qh, Ql, Tmp, TP128);
    amount = recip_scale[18];
    amount = recip_scale[18];
    __shr_128 (Tmp, Qh, amount);
    __shr_128 (Tmp, Qh, amount);
    res = (CX.w[1] & 0xfc00000000000000ull) | Tmp.w[0];
    res = (CX.w[1] & 0xfc00000000000000ull) | Tmp.w[0];
    BID_RETURN (res);
    BID_RETURN (res);
  }
  }
  // x is Infinity?
  // x is Infinity?
  if ((x.w[1] & 0x7800000000000000ull) == 0x7800000000000000ull) {
  if ((x.w[1] & 0x7800000000000000ull) == 0x7800000000000000ull) {
    if (sign_x) {
    if (sign_x) {
      // -Inf, return NaN
      // -Inf, return NaN
      res = 0x7c00000000000000ull;
      res = 0x7c00000000000000ull;
#ifdef SET_STATUS_FLAGS
#ifdef SET_STATUS_FLAGS
      __set_status_flags (pfpsf, INVALID_EXCEPTION);
      __set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
#endif
    }
    }
    BID_RETURN (res);
    BID_RETURN (res);
  }
  }
  // x is 0 otherwise
  // x is 0 otherwise
 
 
  exponent_x =
  exponent_x =
    ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
    ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
    DECIMAL_EXPONENT_BIAS;
    DECIMAL_EXPONENT_BIAS;
  if (exponent_x < 0)
  if (exponent_x < 0)
    exponent_x = 0;
    exponent_x = 0;
  if (exponent_x > DECIMAL_MAX_EXPON_64)
  if (exponent_x > DECIMAL_MAX_EXPON_64)
    exponent_x = DECIMAL_MAX_EXPON_64;
    exponent_x = DECIMAL_MAX_EXPON_64;
  //res= sign_x | (((UINT64)exponent_x)<<53);
  //res= sign_x | (((UINT64)exponent_x)<<53);
  res = get_BID64 (sign_x, exponent_x, 0, rnd_mode, pfpsf);
  res = get_BID64 (sign_x, exponent_x, 0, rnd_mode, pfpsf);
  BID_RETURN (res);
  BID_RETURN (res);
}
}
if (sign_x) {
if (sign_x) {
  res = 0x7c00000000000000ull;
  res = 0x7c00000000000000ull;
#ifdef SET_STATUS_FLAGS
#ifdef SET_STATUS_FLAGS
  __set_status_flags (pfpsf, INVALID_EXCEPTION);
  __set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
#endif
  BID_RETURN (res);
  BID_RETURN (res);
}
}
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
(void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
(void) fegetexceptflag (&binaryflags, FE_ALL_FLAGS);
#endif
#endif
 
 
           // 2^64
           // 2^64
f64.i = 0x5f800000;
f64.i = 0x5f800000;
 
 
           // fx ~ CX
           // fx ~ CX
fx.d = (float) CX.w[1] * f64.d + (float) CX.w[0];
fx.d = (float) CX.w[1] * f64.d + (float) CX.w[0];
bin_expon_cx = ((fx.i >> 23) & 0xff) - 0x7f;
bin_expon_cx = ((fx.i >> 23) & 0xff) - 0x7f;
digits = estimate_decimal_digits[bin_expon_cx];
digits = estimate_decimal_digits[bin_expon_cx];
 
 
A10 = CX;
A10 = CX;
if (exponent_x & 1) {
if (exponent_x & 1) {
  A10.w[1] = (CX.w[1] << 3) | (CX.w[0] >> 61);
  A10.w[1] = (CX.w[1] << 3) | (CX.w[0] >> 61);
  A10.w[0] = CX.w[0] << 3;
  A10.w[0] = CX.w[0] << 3;
  CX2.w[1] = (CX.w[1] << 1) | (CX.w[0] >> 63);
  CX2.w[1] = (CX.w[1] << 1) | (CX.w[0] >> 63);
  CX2.w[0] = CX.w[0] << 1;
  CX2.w[0] = CX.w[0] << 1;
  __add_128_128 (A10, A10, CX2);
  __add_128_128 (A10, A10, CX2);
}
}
 
 
C256.w[1] = A10.w[1];
C256.w[1] = A10.w[1];
C256.w[0] = A10.w[0];
C256.w[0] = A10.w[0];
CS.w[0] = short_sqrt128 (A10);
CS.w[0] = short_sqrt128 (A10);
CS.w[1] = 0;
CS.w[1] = 0;
mul_factor = 0;
mul_factor = 0;
           // check for exact result  
           // check for exact result  
if (CS.w[0] < 10000000000000000ull) {
if (CS.w[0] < 10000000000000000ull) {
  if (CS.w[0] * CS.w[0] == A10.w[0]) {
  if (CS.w[0] * CS.w[0] == A10.w[0]) {
    __sqr64_fast (S2, CS.w[0]);
    __sqr64_fast (S2, CS.w[0]);
    if (S2.w[1] == A10.w[1])    // && S2.w[0]==A10.w[0])
    if (S2.w[1] == A10.w[1])    // && S2.w[0]==A10.w[0])
    {
    {
      res =
      res =
        get_BID64 (0,
        get_BID64 (0,
                   ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
                   ((exponent_x - DECIMAL_EXPONENT_BIAS_128) >> 1) +
                   DECIMAL_EXPONENT_BIAS, CS.w[0], rnd_mode, pfpsf);
                   DECIMAL_EXPONENT_BIAS, CS.w[0], rnd_mode, pfpsf);
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
      (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
      (void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
#endif
#endif
      BID_RETURN (res);
      BID_RETURN (res);
    }
    }
  }
  }
  if (CS.w[0] >= 1000000000000000ull) {
  if (CS.w[0] >= 1000000000000000ull) {
    done = 1;
    done = 1;
    exponent_q = exponent_x;
    exponent_q = exponent_x;
    C256.w[1] = A10.w[1];
    C256.w[1] = A10.w[1];
    C256.w[0] = A10.w[0];
    C256.w[0] = A10.w[0];
  }
  }
#ifdef SET_STATUS_FLAGS
#ifdef SET_STATUS_FLAGS
  __set_status_flags (pfpsf, INEXACT_EXCEPTION);
  __set_status_flags (pfpsf, INEXACT_EXCEPTION);
#endif
#endif
  exact = 0;
  exact = 0;
} else {
} else {
  B10 = 0x3333333333333334ull;
  B10 = 0x3333333333333334ull;
  __mul_64x64_to_128_full (CS2, CS.w[0], B10);
  __mul_64x64_to_128_full (CS2, CS.w[0], B10);
  CS0 = CS2.w[1] >> 1;
  CS0 = CS2.w[1] >> 1;
  if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
  if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
#ifdef SET_STATUS_FLAGS
#ifdef SET_STATUS_FLAGS
    __set_status_flags (pfpsf, INEXACT_EXCEPTION);
    __set_status_flags (pfpsf, INEXACT_EXCEPTION);
#endif
#endif
    exact = 0;
    exact = 0;
  }
  }
  done = 1;
  done = 1;
  CS.w[0] = CS0;
  CS.w[0] = CS0;
  exponent_q = exponent_x + 2;
  exponent_q = exponent_x + 2;
  mul_factor = 10;
  mul_factor = 10;
  mul_factor2 = 100;
  mul_factor2 = 100;
  if (CS.w[0] >= 10000000000000000ull) {
  if (CS.w[0] >= 10000000000000000ull) {
    __mul_64x64_to_128_full (CS2, CS.w[0], B10);
    __mul_64x64_to_128_full (CS2, CS.w[0], B10);
    CS0 = CS2.w[1] >> 1;
    CS0 = CS2.w[1] >> 1;
    if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
    if (CS.w[0] != ((CS0 << 3) + (CS0 << 1))) {
#ifdef SET_STATUS_FLAGS
#ifdef SET_STATUS_FLAGS
      __set_status_flags (pfpsf, INEXACT_EXCEPTION);
      __set_status_flags (pfpsf, INEXACT_EXCEPTION);
#endif
#endif
      exact = 0;
      exact = 0;
    }
    }
    exponent_q += 2;
    exponent_q += 2;
    CS.w[0] = CS0;
    CS.w[0] = CS0;
    mul_factor = 100;
    mul_factor = 100;
    mul_factor2 = 10000;
    mul_factor2 = 10000;
  }
  }
  if (exact) {
  if (exact) {
    CS0 = CS.w[0] * mul_factor;
    CS0 = CS.w[0] * mul_factor;
    __sqr64_fast (CS1, CS0)
    __sqr64_fast (CS1, CS0)
      if ((CS1.w[0] != A10.w[0]) || (CS1.w[1] != A10.w[1])) {
      if ((CS1.w[0] != A10.w[0]) || (CS1.w[1] != A10.w[1])) {
#ifdef SET_STATUS_FLAGS
#ifdef SET_STATUS_FLAGS
      __set_status_flags (pfpsf, INEXACT_EXCEPTION);
      __set_status_flags (pfpsf, INEXACT_EXCEPTION);
#endif
#endif
      exact = 0;
      exact = 0;
    }
    }
  }
  }
}
}
 
 
if (!done) {
if (!done) {
  // get number of digits in CX
  // get number of digits in CX
  D = CX.w[1] - power10_index_binexp_128[bin_expon_cx].w[1];
  D = CX.w[1] - power10_index_binexp_128[bin_expon_cx].w[1];
  if (D > 0
  if (D > 0
      || (!D && CX.w[0] >= power10_index_binexp_128[bin_expon_cx].w[0]))
      || (!D && CX.w[0] >= power10_index_binexp_128[bin_expon_cx].w[0]))
    digits++;
    digits++;
 
 
  // if exponent is odd, scale coefficient by 10
  // if exponent is odd, scale coefficient by 10
  scale = 31 - digits;
  scale = 31 - digits;
  exponent_q = exponent_x - scale;
  exponent_q = exponent_x - scale;
  scale += (exponent_q & 1);    // exp. bias is even
  scale += (exponent_q & 1);    // exp. bias is even
 
 
  T128 = power10_table_128[scale];
  T128 = power10_table_128[scale];
  __mul_128x128_low (C256, CX, T128);
  __mul_128x128_low (C256, CX, T128);
 
 
 
 
  CS.w[0] = short_sqrt128 (C256);
  CS.w[0] = short_sqrt128 (C256);
}
}
   //printf("CS=%016I64x\n",CS.w[0]);
   //printf("CS=%016I64x\n",CS.w[0]);
 
 
exponent_q =
exponent_q =
  ((exponent_q - DECIMAL_EXPONENT_BIAS_128) >> 1) +
  ((exponent_q - DECIMAL_EXPONENT_BIAS_128) >> 1) +
  DECIMAL_EXPONENT_BIAS;
  DECIMAL_EXPONENT_BIAS;
if ((exponent_q < 0) && (exponent_q + MAX_FORMAT_DIGITS >= 0)) {
if ((exponent_q < 0) && (exponent_q + MAX_FORMAT_DIGITS >= 0)) {
  extra_digits = -exponent_q;
  extra_digits = -exponent_q;
  exponent_q = 0;
  exponent_q = 0;
 
 
  // get coeff*(2^M[extra_digits])/10^extra_digits
  // get coeff*(2^M[extra_digits])/10^extra_digits
  __mul_64x64_to_128 (QH, CS.w[0], reciprocals10_64[extra_digits]);
  __mul_64x64_to_128 (QH, CS.w[0], reciprocals10_64[extra_digits]);
 
 
  // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
  // now get P/10^extra_digits: shift Q_high right by M[extra_digits]-128
  amount = short_recip_scale[extra_digits];
  amount = short_recip_scale[extra_digits];
 
 
  CS0 = QH.w[1] >> amount;
  CS0 = QH.w[1] >> amount;
 
 
#ifdef SET_STATUS_FLAGS
#ifdef SET_STATUS_FLAGS
  if (exact) {
  if (exact) {
    if (CS.w[0] != CS0 * power10_table_128[extra_digits].w[0])
    if (CS.w[0] != CS0 * power10_table_128[extra_digits].w[0])
      exact = 0;
      exact = 0;
  }
  }
  if (!exact)
  if (!exact)
    __set_status_flags (pfpsf, UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
    __set_status_flags (pfpsf, UNDERFLOW_EXCEPTION | INEXACT_EXCEPTION);
#endif
#endif
 
 
  CS.w[0] = CS0;
  CS.w[0] = CS0;
  if (!mul_factor)
  if (!mul_factor)
    mul_factor = 1;
    mul_factor = 1;
  mul_factor *= power10_table_128[extra_digits].w[0];
  mul_factor *= power10_table_128[extra_digits].w[0];
  __mul_64x64_to_128 (mul_factor2_long, mul_factor, mul_factor);
  __mul_64x64_to_128 (mul_factor2_long, mul_factor, mul_factor);
  if (mul_factor2_long.w[1])
  if (mul_factor2_long.w[1])
    mul_factor2 = 0;
    mul_factor2 = 0;
  else
  else
    mul_factor2 = mul_factor2_long.w[1];
    mul_factor2 = mul_factor2_long.w[1];
}
}
           // 4*C256
           // 4*C256
C4.w[1] = (C256.w[1] << 2) | (C256.w[0] >> 62);
C4.w[1] = (C256.w[1] << 2) | (C256.w[0] >> 62);
C4.w[0] = C256.w[0] << 2;
C4.w[0] = C256.w[0] << 2;
 
 
#ifndef IEEE_ROUND_NEAREST
#ifndef IEEE_ROUND_NEAREST
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
if (!((rnd_mode) & 3)) {
if (!((rnd_mode) & 3)) {
#endif
#endif
#endif
#endif
  // compare to midpoints
  // compare to midpoints
  CSM.w[0] = (CS.w[0] + CS.w[0]) | 1;
  CSM.w[0] = (CS.w[0] + CS.w[0]) | 1;
  //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C4.w[1],C4.w[0],CSM.w[1],CSM.w[0], CS.w[0]);
  //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C4.w[1],C4.w[0],CSM.w[1],CSM.w[0], CS.w[0]);
  if (mul_factor)
  if (mul_factor)
    CSM.w[0] *= mul_factor;
    CSM.w[0] *= mul_factor;
  // CSM^2
  // CSM^2
  __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
  __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
  //__mul_128x128_to_256(M256, CSM, CSM);
  //__mul_128x128_to_256(M256, CSM, CSM);
 
 
  if (C4.w[1] > M256.w[1] ||
  if (C4.w[1] > M256.w[1] ||
      (C4.w[1] == M256.w[1] && C4.w[0] > M256.w[0])) {
      (C4.w[1] == M256.w[1] && C4.w[0] > M256.w[0])) {
    // round up
    // round up
    CS.w[0]++;
    CS.w[0]++;
  } else {
  } else {
    C8.w[0] = CS.w[0] << 3;
    C8.w[0] = CS.w[0] << 3;
    C8.w[1] = 0;
    C8.w[1] = 0;
    if (mul_factor) {
    if (mul_factor) {
      if (mul_factor2) {
      if (mul_factor2) {
        __mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
        __mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
      } else {
      } else {
        __mul_64x128_low (C8, C8.w[0], mul_factor2_long);
        __mul_64x128_low (C8, C8.w[0], mul_factor2_long);
      }
      }
    }
    }
    // M256 - 8*CSM
    // M256 - 8*CSM
    __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
    __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
    M256.w[1] = M256.w[1] - C8.w[1] - Carry;
    M256.w[1] = M256.w[1] - C8.w[1] - Carry;
 
 
    // if CSM' > C256, round up
    // if CSM' > C256, round up
    if (M256.w[1] > C4.w[1] ||
    if (M256.w[1] > C4.w[1] ||
        (M256.w[1] == C4.w[1] && M256.w[0] > C4.w[0])) {
        (M256.w[1] == C4.w[1] && M256.w[0] > C4.w[0])) {
      // round down
      // round down
      if (CS.w[0])
      if (CS.w[0])
        CS.w[0]--;
        CS.w[0]--;
    }
    }
  }
  }
#ifndef IEEE_ROUND_NEAREST
#ifndef IEEE_ROUND_NEAREST
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
} else {
} else {
  CS.w[0]++;
  CS.w[0]++;
  CSM.w[0] = CS.w[0];
  CSM.w[0] = CS.w[0];
  C8.w[0] = CSM.w[0] << 1;
  C8.w[0] = CSM.w[0] << 1;
  if (mul_factor)
  if (mul_factor)
    CSM.w[0] *= mul_factor;
    CSM.w[0] *= mul_factor;
  __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
  __mul_64x64_to_128 (M256, CSM.w[0], CSM.w[0]);
  C8.w[1] = 0;
  C8.w[1] = 0;
  if (mul_factor) {
  if (mul_factor) {
    if (mul_factor2) {
    if (mul_factor2) {
      __mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
      __mul_64x64_to_128 (C8, C8.w[0], mul_factor2);
    } else {
    } else {
      __mul_64x128_low (C8, C8.w[0], mul_factor2_long);
      __mul_64x128_low (C8, C8.w[0], mul_factor2_long);
    }
    }
  }
  }
  //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C256.w[1],C256.w[0],M256.w[1],M256.w[0], CS.w[0]);
  //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x\n",C256.w[1],C256.w[0],M256.w[1],M256.w[0], CS.w[0]);
 
 
  if (M256.w[1] > C256.w[1] ||
  if (M256.w[1] > C256.w[1] ||
      (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0])) {
      (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0])) {
    __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
    __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
    M256.w[1] = M256.w[1] - Carry - C8.w[1];
    M256.w[1] = M256.w[1] - Carry - C8.w[1];
    M256.w[0]++;
    M256.w[0]++;
    if (!M256.w[0]) {
    if (!M256.w[0]) {
      M256.w[1]++;
      M256.w[1]++;
 
 
    }
    }
 
 
    if ((M256.w[1] > C256.w[1] ||
    if ((M256.w[1] > C256.w[1] ||
         (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
         (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
        && (CS.w[0] > 1)) {
        && (CS.w[0] > 1)) {
 
 
      CS.w[0]--;
      CS.w[0]--;
 
 
      if (CS.w[0] > 1) {
      if (CS.w[0] > 1) {
        __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
        __sub_borrow_out (M256.w[0], Carry, M256.w[0], C8.w[0]);
        M256.w[1] = M256.w[1] - Carry - C8.w[1];
        M256.w[1] = M256.w[1] - Carry - C8.w[1];
        M256.w[0]++;
        M256.w[0]++;
        if (!M256.w[0]) {
        if (!M256.w[0]) {
          M256.w[1]++;
          M256.w[1]++;
        }
        }
 
 
        if (M256.w[1] > C256.w[1] ||
        if (M256.w[1] > C256.w[1] ||
            (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
            (M256.w[1] == C256.w[1] && M256.w[0] > C256.w[0]))
          CS.w[0]--;
          CS.w[0]--;
      }
      }
    }
    }
  }
  }
 
 
  else {
  else {
                                /*__add_carry_out(M256.w[0], Carry, M256.w[0], C8.w[0]);
                                /*__add_carry_out(M256.w[0], Carry, M256.w[0], C8.w[0]);
                                M256.w[1] = M256.w[1] + Carry + C8.w[1];
                                M256.w[1] = M256.w[1] + Carry + C8.w[1];
                                M256.w[0]++;
                                M256.w[0]++;
                                if(!M256.w[0])
                                if(!M256.w[0])
                                {
                                {
                                        M256.w[1]++;
                                        M256.w[1]++;
                                }
                                }
                                CS.w[0]++;
                                CS.w[0]++;
                        if(M256.w[1]<C256.w[1] ||
                        if(M256.w[1]<C256.w[1] ||
                                (M256.w[1]==C256.w[1] && M256.w[0]<=C256.w[0]))
                                (M256.w[1]==C256.w[1] && M256.w[0]<=C256.w[0]))
                        {
                        {
                                CS.w[0]++;
                                CS.w[0]++;
                        }*/
                        }*/
    CS.w[0]++;
    CS.w[0]++;
  }
  }
  //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
  //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
  // RU?
  // RU?
  if (((rnd_mode) != ROUNDING_UP) || exact) {
  if (((rnd_mode) != ROUNDING_UP) || exact) {
    if (CS.w[0])
    if (CS.w[0])
      CS.w[0]--;
      CS.w[0]--;
  }
  }
 
 
}
}
#endif
#endif
#endif
#endif
 //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
 //printf("C256=%016I64x %016I64x, CSM=%016I64x %016I64x %016I64x %d\n",C4.w[1],C4.w[0],M256.w[1],M256.w[0], CS.w[0], exact);
 
 
res = get_BID64 (0, exponent_q, CS.w[0], rnd_mode, pfpsf);
res = get_BID64 (0, exponent_q, CS.w[0], rnd_mode, pfpsf);
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
#ifdef UNCHANGED_BINARY_STATUS_FLAGS
(void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
(void) fesetexceptflag (&binaryflags, FE_ALL_FLAGS);
#endif
#endif
BID_RETURN (res);
BID_RETURN (res);
 
 
 
 
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.