OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc2/] [gcc/] [fortran/] [trans-intrinsic.c] - Diff between revs 285 and 384

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 285 Rev 384
/* Intrinsic translation
/* Intrinsic translation
   Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Paul Brook <paul@nowt.org>
   Contributed by Paul Brook <paul@nowt.org>
   and Steven Bosscher <s.bosscher@student.tudelft.nl>
   and Steven Bosscher <s.bosscher@student.tudelft.nl>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* trans-intrinsic.c-- generate GENERIC trees for calls to intrinsics.  */
/* trans-intrinsic.c-- generate GENERIC trees for calls to intrinsics.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "tree.h"
#include "tree.h"
#include "ggc.h"
#include "ggc.h"
#include "toplev.h"
#include "toplev.h"
#include "real.h"
#include "real.h"
#include "gimple.h"
#include "gimple.h"
#include "flags.h"
#include "flags.h"
#include "gfortran.h"
#include "gfortran.h"
#include "arith.h"
#include "arith.h"
#include "intrinsic.h"
#include "intrinsic.h"
#include "trans.h"
#include "trans.h"
#include "trans-const.h"
#include "trans-const.h"
#include "trans-types.h"
#include "trans-types.h"
#include "trans-array.h"
#include "trans-array.h"
#include "defaults.h"
#include "defaults.h"
/* Only for gfc_trans_assign and gfc_trans_pointer_assign.  */
/* Only for gfc_trans_assign and gfc_trans_pointer_assign.  */
#include "trans-stmt.h"
#include "trans-stmt.h"
 
 
/* This maps fortran intrinsic math functions to external library or GCC
/* This maps fortran intrinsic math functions to external library or GCC
   builtin functions.  */
   builtin functions.  */
typedef struct GTY(()) gfc_intrinsic_map_t {
typedef struct GTY(()) gfc_intrinsic_map_t {
  /* The explicit enum is required to work around inadequacies in the
  /* The explicit enum is required to work around inadequacies in the
     garbage collection/gengtype parsing mechanism.  */
     garbage collection/gengtype parsing mechanism.  */
  enum gfc_isym_id id;
  enum gfc_isym_id id;
 
 
  /* Enum value from the "language-independent", aka C-centric, part
  /* Enum value from the "language-independent", aka C-centric, part
     of gcc, or END_BUILTINS of no such value set.  */
     of gcc, or END_BUILTINS of no such value set.  */
  enum built_in_function code_r4;
  enum built_in_function code_r4;
  enum built_in_function code_r8;
  enum built_in_function code_r8;
  enum built_in_function code_r10;
  enum built_in_function code_r10;
  enum built_in_function code_r16;
  enum built_in_function code_r16;
  enum built_in_function code_c4;
  enum built_in_function code_c4;
  enum built_in_function code_c8;
  enum built_in_function code_c8;
  enum built_in_function code_c10;
  enum built_in_function code_c10;
  enum built_in_function code_c16;
  enum built_in_function code_c16;
 
 
  /* True if the naming pattern is to prepend "c" for complex and
  /* True if the naming pattern is to prepend "c" for complex and
     append "f" for kind=4.  False if the naming pattern is to
     append "f" for kind=4.  False if the naming pattern is to
     prepend "_gfortran_" and append "[rc](4|8|10|16)".  */
     prepend "_gfortran_" and append "[rc](4|8|10|16)".  */
  bool libm_name;
  bool libm_name;
 
 
  /* True if a complex version of the function exists.  */
  /* True if a complex version of the function exists.  */
  bool complex_available;
  bool complex_available;
 
 
  /* True if the function should be marked const.  */
  /* True if the function should be marked const.  */
  bool is_constant;
  bool is_constant;
 
 
  /* The base library name of this function.  */
  /* The base library name of this function.  */
  const char *name;
  const char *name;
 
 
  /* Cache decls created for the various operand types.  */
  /* Cache decls created for the various operand types.  */
  tree real4_decl;
  tree real4_decl;
  tree real8_decl;
  tree real8_decl;
  tree real10_decl;
  tree real10_decl;
  tree real16_decl;
  tree real16_decl;
  tree complex4_decl;
  tree complex4_decl;
  tree complex8_decl;
  tree complex8_decl;
  tree complex10_decl;
  tree complex10_decl;
  tree complex16_decl;
  tree complex16_decl;
}
}
gfc_intrinsic_map_t;
gfc_intrinsic_map_t;
 
 
/* ??? The NARGS==1 hack here is based on the fact that (c99 at least)
/* ??? The NARGS==1 hack here is based on the fact that (c99 at least)
   defines complex variants of all of the entries in mathbuiltins.def
   defines complex variants of all of the entries in mathbuiltins.def
   except for atan2.  */
   except for atan2.  */
#define DEFINE_MATH_BUILTIN(ID, NAME, ARGTYPE) \
#define DEFINE_MATH_BUILTIN(ID, NAME, ARGTYPE) \
  { GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
  { GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
    BUILT_IN_ ## ID ## L, BUILT_IN_ ## ID ## L, (enum built_in_function) 0, \
    BUILT_IN_ ## ID ## L, BUILT_IN_ ## ID ## L, (enum built_in_function) 0, \
    (enum built_in_function) 0, (enum built_in_function) 0, \
    (enum built_in_function) 0, (enum built_in_function) 0, \
    (enum built_in_function) 0, true, false, true, NAME, NULL_TREE, \
    (enum built_in_function) 0, true, false, true, NAME, NULL_TREE, \
    NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, \
    NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, \
    NULL_TREE},
    NULL_TREE},
 
 
#define DEFINE_MATH_BUILTIN_C(ID, NAME, ARGTYPE) \
#define DEFINE_MATH_BUILTIN_C(ID, NAME, ARGTYPE) \
  { GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
  { GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
    BUILT_IN_ ## ID ## L, BUILT_IN_ ## ID ## L, BUILT_IN_C ## ID ## F, \
    BUILT_IN_ ## ID ## L, BUILT_IN_ ## ID ## L, BUILT_IN_C ## ID ## F, \
    BUILT_IN_C ## ID, BUILT_IN_C ## ID ## L, BUILT_IN_C ## ID ## L, true, \
    BUILT_IN_C ## ID, BUILT_IN_C ## ID ## L, BUILT_IN_C ## ID ## L, true, \
    true, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, \
    true, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, \
    NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE},
    NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE},
 
 
#define LIB_FUNCTION(ID, NAME, HAVE_COMPLEX) \
#define LIB_FUNCTION(ID, NAME, HAVE_COMPLEX) \
  { GFC_ISYM_ ## ID, END_BUILTINS, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
  { GFC_ISYM_ ## ID, END_BUILTINS, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
    END_BUILTINS, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
    END_BUILTINS, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
    false, HAVE_COMPLEX, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, \
    false, HAVE_COMPLEX, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, \
    NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE }
    NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE }
 
 
static GTY(()) gfc_intrinsic_map_t gfc_intrinsic_map[] =
static GTY(()) gfc_intrinsic_map_t gfc_intrinsic_map[] =
{
{
  /* Functions built into gcc itself.  */
  /* Functions built into gcc itself.  */
#include "mathbuiltins.def"
#include "mathbuiltins.def"
 
 
  /* Functions in libgfortran.  */
  /* Functions in libgfortran.  */
  LIB_FUNCTION (ERFC_SCALED, "erfc_scaled", false),
  LIB_FUNCTION (ERFC_SCALED, "erfc_scaled", false),
 
 
  /* End the list.  */
  /* End the list.  */
  LIB_FUNCTION (NONE, NULL, false)
  LIB_FUNCTION (NONE, NULL, false)
 
 
};
};
#undef LIB_FUNCTION
#undef LIB_FUNCTION
#undef DEFINE_MATH_BUILTIN
#undef DEFINE_MATH_BUILTIN
#undef DEFINE_MATH_BUILTIN_C
#undef DEFINE_MATH_BUILTIN_C
 
 
/* Structure for storing components of a floating number to be used by
/* Structure for storing components of a floating number to be used by
   elemental functions to manipulate reals.  */
   elemental functions to manipulate reals.  */
typedef struct
typedef struct
{
{
  tree arg;     /* Variable tree to view convert to integer.  */
  tree arg;     /* Variable tree to view convert to integer.  */
  tree expn;    /* Variable tree to save exponent.  */
  tree expn;    /* Variable tree to save exponent.  */
  tree frac;    /* Variable tree to save fraction.  */
  tree frac;    /* Variable tree to save fraction.  */
  tree smask;   /* Constant tree of sign's mask.  */
  tree smask;   /* Constant tree of sign's mask.  */
  tree emask;   /* Constant tree of exponent's mask.  */
  tree emask;   /* Constant tree of exponent's mask.  */
  tree fmask;   /* Constant tree of fraction's mask.  */
  tree fmask;   /* Constant tree of fraction's mask.  */
  tree edigits; /* Constant tree of the number of exponent bits.  */
  tree edigits; /* Constant tree of the number of exponent bits.  */
  tree fdigits; /* Constant tree of the number of fraction bits.  */
  tree fdigits; /* Constant tree of the number of fraction bits.  */
  tree f1;      /* Constant tree of the f1 defined in the real model.  */
  tree f1;      /* Constant tree of the f1 defined in the real model.  */
  tree bias;    /* Constant tree of the bias of exponent in the memory.  */
  tree bias;    /* Constant tree of the bias of exponent in the memory.  */
  tree type;    /* Type tree of arg1.  */
  tree type;    /* Type tree of arg1.  */
  tree mtype;   /* Type tree of integer type. Kind is that of arg1.  */
  tree mtype;   /* Type tree of integer type. Kind is that of arg1.  */
}
}
real_compnt_info;
real_compnt_info;
 
 
enum rounding_mode { RND_ROUND, RND_TRUNC, RND_CEIL, RND_FLOOR };
enum rounding_mode { RND_ROUND, RND_TRUNC, RND_CEIL, RND_FLOOR };
 
 
/* Evaluate the arguments to an intrinsic function.  The value
/* Evaluate the arguments to an intrinsic function.  The value
   of NARGS may be less than the actual number of arguments in EXPR
   of NARGS may be less than the actual number of arguments in EXPR
   to allow optional "KIND" arguments that are not included in the
   to allow optional "KIND" arguments that are not included in the
   generated code to be ignored.  */
   generated code to be ignored.  */
 
 
static void
static void
gfc_conv_intrinsic_function_args (gfc_se *se, gfc_expr *expr,
gfc_conv_intrinsic_function_args (gfc_se *se, gfc_expr *expr,
                                  tree *argarray, int nargs)
                                  tree *argarray, int nargs)
{
{
  gfc_actual_arglist *actual;
  gfc_actual_arglist *actual;
  gfc_expr *e;
  gfc_expr *e;
  gfc_intrinsic_arg  *formal;
  gfc_intrinsic_arg  *formal;
  gfc_se argse;
  gfc_se argse;
  int curr_arg;
  int curr_arg;
 
 
  formal = expr->value.function.isym->formal;
  formal = expr->value.function.isym->formal;
  actual = expr->value.function.actual;
  actual = expr->value.function.actual;
 
 
   for (curr_arg = 0; curr_arg < nargs; curr_arg++,
   for (curr_arg = 0; curr_arg < nargs; curr_arg++,
        actual = actual->next,
        actual = actual->next,
        formal = formal ? formal->next : NULL)
        formal = formal ? formal->next : NULL)
    {
    {
      gcc_assert (actual);
      gcc_assert (actual);
      e = actual->expr;
      e = actual->expr;
      /* Skip omitted optional arguments.  */
      /* Skip omitted optional arguments.  */
      if (!e)
      if (!e)
        {
        {
          --curr_arg;
          --curr_arg;
          continue;
          continue;
        }
        }
 
 
      /* Evaluate the parameter.  This will substitute scalarized
      /* Evaluate the parameter.  This will substitute scalarized
         references automatically.  */
         references automatically.  */
      gfc_init_se (&argse, se);
      gfc_init_se (&argse, se);
 
 
      if (e->ts.type == BT_CHARACTER)
      if (e->ts.type == BT_CHARACTER)
        {
        {
          gfc_conv_expr (&argse, e);
          gfc_conv_expr (&argse, e);
          gfc_conv_string_parameter (&argse);
          gfc_conv_string_parameter (&argse);
          argarray[curr_arg++] = argse.string_length;
          argarray[curr_arg++] = argse.string_length;
          gcc_assert (curr_arg < nargs);
          gcc_assert (curr_arg < nargs);
        }
        }
      else
      else
        gfc_conv_expr_val (&argse, e);
        gfc_conv_expr_val (&argse, e);
 
 
      /* If an optional argument is itself an optional dummy argument,
      /* If an optional argument is itself an optional dummy argument,
         check its presence and substitute a null if absent.  */
         check its presence and substitute a null if absent.  */
      if (e->expr_type == EXPR_VARIABLE
      if (e->expr_type == EXPR_VARIABLE
            && e->symtree->n.sym->attr.optional
            && e->symtree->n.sym->attr.optional
            && formal
            && formal
            && formal->optional)
            && formal->optional)
        gfc_conv_missing_dummy (&argse, e, formal->ts, 0);
        gfc_conv_missing_dummy (&argse, e, formal->ts, 0);
 
 
      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->post, &argse.post);
      gfc_add_block_to_block (&se->post, &argse.post);
      argarray[curr_arg] = argse.expr;
      argarray[curr_arg] = argse.expr;
    }
    }
}
}
 
 
/* Count the number of actual arguments to the intrinsic function EXPR
/* Count the number of actual arguments to the intrinsic function EXPR
   including any "hidden" string length arguments.  */
   including any "hidden" string length arguments.  */
 
 
static unsigned int
static unsigned int
gfc_intrinsic_argument_list_length (gfc_expr *expr)
gfc_intrinsic_argument_list_length (gfc_expr *expr)
{
{
  int n = 0;
  int n = 0;
  gfc_actual_arglist *actual;
  gfc_actual_arglist *actual;
 
 
  for (actual = expr->value.function.actual; actual; actual = actual->next)
  for (actual = expr->value.function.actual; actual; actual = actual->next)
    {
    {
      if (!actual->expr)
      if (!actual->expr)
        continue;
        continue;
 
 
      if (actual->expr->ts.type == BT_CHARACTER)
      if (actual->expr->ts.type == BT_CHARACTER)
        n += 2;
        n += 2;
      else
      else
        n++;
        n++;
    }
    }
 
 
  return n;
  return n;
}
}
 
 
 
 
/* Conversions between different types are output by the frontend as
/* Conversions between different types are output by the frontend as
   intrinsic functions.  We implement these directly with inline code.  */
   intrinsic functions.  We implement these directly with inline code.  */
 
 
static void
static void
gfc_conv_intrinsic_conversion (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_conversion (gfc_se * se, gfc_expr * expr)
{
{
  tree type;
  tree type;
  tree *args;
  tree *args;
  int nargs;
  int nargs;
 
 
  nargs = gfc_intrinsic_argument_list_length (expr);
  nargs = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * nargs);
  args = (tree *) alloca (sizeof (tree) * nargs);
 
 
  /* Evaluate all the arguments passed. Whilst we're only interested in the
  /* Evaluate all the arguments passed. Whilst we're only interested in the
     first one here, there are other parts of the front-end that assume this
     first one here, there are other parts of the front-end that assume this
     and will trigger an ICE if it's not the case.  */
     and will trigger an ICE if it's not the case.  */
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  gcc_assert (expr->value.function.actual->expr);
  gcc_assert (expr->value.function.actual->expr);
  gfc_conv_intrinsic_function_args (se, expr, args, nargs);
  gfc_conv_intrinsic_function_args (se, expr, args, nargs);
 
 
  /* Conversion between character kinds involves a call to a library
  /* Conversion between character kinds involves a call to a library
     function.  */
     function.  */
  if (expr->ts.type == BT_CHARACTER)
  if (expr->ts.type == BT_CHARACTER)
    {
    {
      tree fndecl, var, addr, tmp;
      tree fndecl, var, addr, tmp;
 
 
      if (expr->ts.kind == 1
      if (expr->ts.kind == 1
          && expr->value.function.actual->expr->ts.kind == 4)
          && expr->value.function.actual->expr->ts.kind == 4)
        fndecl = gfor_fndecl_convert_char4_to_char1;
        fndecl = gfor_fndecl_convert_char4_to_char1;
      else if (expr->ts.kind == 4
      else if (expr->ts.kind == 4
               && expr->value.function.actual->expr->ts.kind == 1)
               && expr->value.function.actual->expr->ts.kind == 1)
        fndecl = gfor_fndecl_convert_char1_to_char4;
        fndecl = gfor_fndecl_convert_char1_to_char4;
      else
      else
        gcc_unreachable ();
        gcc_unreachable ();
 
 
      /* Create the variable storing the converted value.  */
      /* Create the variable storing the converted value.  */
      type = gfc_get_pchar_type (expr->ts.kind);
      type = gfc_get_pchar_type (expr->ts.kind);
      var = gfc_create_var (type, "str");
      var = gfc_create_var (type, "str");
      addr = gfc_build_addr_expr (build_pointer_type (type), var);
      addr = gfc_build_addr_expr (build_pointer_type (type), var);
 
 
      /* Call the library function that will perform the conversion.  */
      /* Call the library function that will perform the conversion.  */
      gcc_assert (nargs >= 2);
      gcc_assert (nargs >= 2);
      tmp = build_call_expr_loc (input_location,
      tmp = build_call_expr_loc (input_location,
                             fndecl, 3, addr, args[0], args[1]);
                             fndecl, 3, addr, args[0], args[1]);
      gfc_add_expr_to_block (&se->pre, tmp);
      gfc_add_expr_to_block (&se->pre, tmp);
 
 
      /* Free the temporary afterwards.  */
      /* Free the temporary afterwards.  */
      tmp = gfc_call_free (var);
      tmp = gfc_call_free (var);
      gfc_add_expr_to_block (&se->post, tmp);
      gfc_add_expr_to_block (&se->post, tmp);
 
 
      se->expr = var;
      se->expr = var;
      se->string_length = args[0];
      se->string_length = args[0];
 
 
      return;
      return;
    }
    }
 
 
  /* Conversion from complex to non-complex involves taking the real
  /* Conversion from complex to non-complex involves taking the real
     component of the value.  */
     component of the value.  */
  if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE
  if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE
      && expr->ts.type != BT_COMPLEX)
      && expr->ts.type != BT_COMPLEX)
    {
    {
      tree artype;
      tree artype;
 
 
      artype = TREE_TYPE (TREE_TYPE (args[0]));
      artype = TREE_TYPE (TREE_TYPE (args[0]));
      args[0] = fold_build1 (REALPART_EXPR, artype, args[0]);
      args[0] = fold_build1 (REALPART_EXPR, artype, args[0]);
    }
    }
 
 
  se->expr = convert (type, args[0]);
  se->expr = convert (type, args[0]);
}
}
 
 
/* This is needed because the gcc backend only implements
/* This is needed because the gcc backend only implements
   FIX_TRUNC_EXPR, which is the same as INT() in Fortran.
   FIX_TRUNC_EXPR, which is the same as INT() in Fortran.
   FLOOR(x) = INT(x) <= x ? INT(x) : INT(x) - 1
   FLOOR(x) = INT(x) <= x ? INT(x) : INT(x) - 1
   Similarly for CEILING.  */
   Similarly for CEILING.  */
 
 
static tree
static tree
build_fixbound_expr (stmtblock_t * pblock, tree arg, tree type, int up)
build_fixbound_expr (stmtblock_t * pblock, tree arg, tree type, int up)
{
{
  tree tmp;
  tree tmp;
  tree cond;
  tree cond;
  tree argtype;
  tree argtype;
  tree intval;
  tree intval;
 
 
  argtype = TREE_TYPE (arg);
  argtype = TREE_TYPE (arg);
  arg = gfc_evaluate_now (arg, pblock);
  arg = gfc_evaluate_now (arg, pblock);
 
 
  intval = convert (type, arg);
  intval = convert (type, arg);
  intval = gfc_evaluate_now (intval, pblock);
  intval = gfc_evaluate_now (intval, pblock);
 
 
  tmp = convert (argtype, intval);
  tmp = convert (argtype, intval);
  cond = fold_build2 (up ? GE_EXPR : LE_EXPR, boolean_type_node, tmp, arg);
  cond = fold_build2 (up ? GE_EXPR : LE_EXPR, boolean_type_node, tmp, arg);
 
 
  tmp = fold_build2 (up ? PLUS_EXPR : MINUS_EXPR, type, intval,
  tmp = fold_build2 (up ? PLUS_EXPR : MINUS_EXPR, type, intval,
                     build_int_cst (type, 1));
                     build_int_cst (type, 1));
  tmp = fold_build3 (COND_EXPR, type, cond, intval, tmp);
  tmp = fold_build3 (COND_EXPR, type, cond, intval, tmp);
  return tmp;
  return tmp;
}
}
 
 
 
 
/* Round to nearest integer, away from zero.  */
/* Round to nearest integer, away from zero.  */
 
 
static tree
static tree
build_round_expr (tree arg, tree restype)
build_round_expr (tree arg, tree restype)
{
{
  tree argtype;
  tree argtype;
  tree fn;
  tree fn;
  bool longlong;
  bool longlong;
  int argprec, resprec;
  int argprec, resprec;
 
 
  argtype = TREE_TYPE (arg);
  argtype = TREE_TYPE (arg);
  argprec = TYPE_PRECISION (argtype);
  argprec = TYPE_PRECISION (argtype);
  resprec = TYPE_PRECISION (restype);
  resprec = TYPE_PRECISION (restype);
 
 
  /* Depending on the type of the result, choose the long int intrinsic
  /* Depending on the type of the result, choose the long int intrinsic
     (lround family) or long long intrinsic (llround).  We might also
     (lround family) or long long intrinsic (llround).  We might also
     need to convert the result afterwards.  */
     need to convert the result afterwards.  */
  if (resprec <= LONG_TYPE_SIZE)
  if (resprec <= LONG_TYPE_SIZE)
    longlong = false;
    longlong = false;
  else if (resprec <= LONG_LONG_TYPE_SIZE)
  else if (resprec <= LONG_LONG_TYPE_SIZE)
    longlong = true;
    longlong = true;
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  /* Now, depending on the argument type, we choose between intrinsics.  */
  /* Now, depending on the argument type, we choose between intrinsics.  */
  if (argprec == TYPE_PRECISION (float_type_node))
  if (argprec == TYPE_PRECISION (float_type_node))
    fn = built_in_decls[longlong ? BUILT_IN_LLROUNDF : BUILT_IN_LROUNDF];
    fn = built_in_decls[longlong ? BUILT_IN_LLROUNDF : BUILT_IN_LROUNDF];
  else if (argprec == TYPE_PRECISION (double_type_node))
  else if (argprec == TYPE_PRECISION (double_type_node))
    fn = built_in_decls[longlong ? BUILT_IN_LLROUND : BUILT_IN_LROUND];
    fn = built_in_decls[longlong ? BUILT_IN_LLROUND : BUILT_IN_LROUND];
  else if (argprec == TYPE_PRECISION (long_double_type_node))
  else if (argprec == TYPE_PRECISION (long_double_type_node))
    fn = built_in_decls[longlong ? BUILT_IN_LLROUNDL : BUILT_IN_LROUNDL];
    fn = built_in_decls[longlong ? BUILT_IN_LLROUNDL : BUILT_IN_LROUNDL];
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  return fold_convert (restype, build_call_expr_loc (input_location,
  return fold_convert (restype, build_call_expr_loc (input_location,
                                                 fn, 1, arg));
                                                 fn, 1, arg));
}
}
 
 
 
 
/* Convert a real to an integer using a specific rounding mode.
/* Convert a real to an integer using a specific rounding mode.
   Ideally we would just build the corresponding GENERIC node,
   Ideally we would just build the corresponding GENERIC node,
   however the RTL expander only actually supports FIX_TRUNC_EXPR.  */
   however the RTL expander only actually supports FIX_TRUNC_EXPR.  */
 
 
static tree
static tree
build_fix_expr (stmtblock_t * pblock, tree arg, tree type,
build_fix_expr (stmtblock_t * pblock, tree arg, tree type,
               enum rounding_mode op)
               enum rounding_mode op)
{
{
  switch (op)
  switch (op)
    {
    {
    case RND_FLOOR:
    case RND_FLOOR:
      return build_fixbound_expr (pblock, arg, type, 0);
      return build_fixbound_expr (pblock, arg, type, 0);
      break;
      break;
 
 
    case RND_CEIL:
    case RND_CEIL:
      return build_fixbound_expr (pblock, arg, type, 1);
      return build_fixbound_expr (pblock, arg, type, 1);
      break;
      break;
 
 
    case RND_ROUND:
    case RND_ROUND:
      return build_round_expr (arg, type);
      return build_round_expr (arg, type);
      break;
      break;
 
 
    case RND_TRUNC:
    case RND_TRUNC:
      return fold_build1 (FIX_TRUNC_EXPR, type, arg);
      return fold_build1 (FIX_TRUNC_EXPR, type, arg);
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
 
 
/* Round a real value using the specified rounding mode.
/* Round a real value using the specified rounding mode.
   We use a temporary integer of that same kind size as the result.
   We use a temporary integer of that same kind size as the result.
   Values larger than those that can be represented by this kind are
   Values larger than those that can be represented by this kind are
   unchanged, as they will not be accurate enough to represent the
   unchanged, as they will not be accurate enough to represent the
   rounding.
   rounding.
    huge = HUGE (KIND (a))
    huge = HUGE (KIND (a))
    aint (a) = ((a > huge) || (a < -huge)) ? a : (real)(int)a
    aint (a) = ((a > huge) || (a < -huge)) ? a : (real)(int)a
   */
   */
 
 
static void
static void
gfc_conv_intrinsic_aint (gfc_se * se, gfc_expr * expr, enum rounding_mode op)
gfc_conv_intrinsic_aint (gfc_se * se, gfc_expr * expr, enum rounding_mode op)
{
{
  tree type;
  tree type;
  tree itype;
  tree itype;
  tree arg[2];
  tree arg[2];
  tree tmp;
  tree tmp;
  tree cond;
  tree cond;
  mpfr_t huge;
  mpfr_t huge;
  int n, nargs;
  int n, nargs;
  int kind;
  int kind;
 
 
  kind = expr->ts.kind;
  kind = expr->ts.kind;
  nargs =  gfc_intrinsic_argument_list_length (expr);
  nargs =  gfc_intrinsic_argument_list_length (expr);
 
 
  n = END_BUILTINS;
  n = END_BUILTINS;
  /* We have builtin functions for some cases.  */
  /* We have builtin functions for some cases.  */
  switch (op)
  switch (op)
    {
    {
    case RND_ROUND:
    case RND_ROUND:
      switch (kind)
      switch (kind)
        {
        {
        case 4:
        case 4:
          n = BUILT_IN_ROUNDF;
          n = BUILT_IN_ROUNDF;
          break;
          break;
 
 
        case 8:
        case 8:
          n = BUILT_IN_ROUND;
          n = BUILT_IN_ROUND;
          break;
          break;
 
 
        case 10:
        case 10:
        case 16:
        case 16:
          n = BUILT_IN_ROUNDL;
          n = BUILT_IN_ROUNDL;
          break;
          break;
        }
        }
      break;
      break;
 
 
    case RND_TRUNC:
    case RND_TRUNC:
      switch (kind)
      switch (kind)
        {
        {
        case 4:
        case 4:
          n = BUILT_IN_TRUNCF;
          n = BUILT_IN_TRUNCF;
          break;
          break;
 
 
        case 8:
        case 8:
          n = BUILT_IN_TRUNC;
          n = BUILT_IN_TRUNC;
          break;
          break;
 
 
        case 10:
        case 10:
        case 16:
        case 16:
          n = BUILT_IN_TRUNCL;
          n = BUILT_IN_TRUNCL;
          break;
          break;
        }
        }
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Evaluate the argument.  */
  /* Evaluate the argument.  */
  gcc_assert (expr->value.function.actual->expr);
  gcc_assert (expr->value.function.actual->expr);
  gfc_conv_intrinsic_function_args (se, expr, arg, nargs);
  gfc_conv_intrinsic_function_args (se, expr, arg, nargs);
 
 
  /* Use a builtin function if one exists.  */
  /* Use a builtin function if one exists.  */
  if (n != END_BUILTINS)
  if (n != END_BUILTINS)
    {
    {
      tmp = built_in_decls[n];
      tmp = built_in_decls[n];
      se->expr = build_call_expr_loc (input_location,
      se->expr = build_call_expr_loc (input_location,
                                  tmp, 1, arg[0]);
                                  tmp, 1, arg[0]);
      return;
      return;
    }
    }
 
 
  /* This code is probably redundant, but we'll keep it lying around just
  /* This code is probably redundant, but we'll keep it lying around just
     in case.  */
     in case.  */
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  arg[0] = gfc_evaluate_now (arg[0], &se->pre);
  arg[0] = gfc_evaluate_now (arg[0], &se->pre);
 
 
  /* Test if the value is too large to handle sensibly.  */
  /* Test if the value is too large to handle sensibly.  */
  gfc_set_model_kind (kind);
  gfc_set_model_kind (kind);
  mpfr_init (huge);
  mpfr_init (huge);
  n = gfc_validate_kind (BT_INTEGER, kind, false);
  n = gfc_validate_kind (BT_INTEGER, kind, false);
  mpfr_set_z (huge, gfc_integer_kinds[n].huge, GFC_RND_MODE);
  mpfr_set_z (huge, gfc_integer_kinds[n].huge, GFC_RND_MODE);
  tmp = gfc_conv_mpfr_to_tree (huge, kind, 0);
  tmp = gfc_conv_mpfr_to_tree (huge, kind, 0);
  cond = fold_build2 (LT_EXPR, boolean_type_node, arg[0], tmp);
  cond = fold_build2 (LT_EXPR, boolean_type_node, arg[0], tmp);
 
 
  mpfr_neg (huge, huge, GFC_RND_MODE);
  mpfr_neg (huge, huge, GFC_RND_MODE);
  tmp = gfc_conv_mpfr_to_tree (huge, kind, 0);
  tmp = gfc_conv_mpfr_to_tree (huge, kind, 0);
  tmp = fold_build2 (GT_EXPR, boolean_type_node, arg[0], tmp);
  tmp = fold_build2 (GT_EXPR, boolean_type_node, arg[0], tmp);
  cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, cond, tmp);
  cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, cond, tmp);
  itype = gfc_get_int_type (kind);
  itype = gfc_get_int_type (kind);
 
 
  tmp = build_fix_expr (&se->pre, arg[0], itype, op);
  tmp = build_fix_expr (&se->pre, arg[0], itype, op);
  tmp = convert (type, tmp);
  tmp = convert (type, tmp);
  se->expr = fold_build3 (COND_EXPR, type, cond, tmp, arg[0]);
  se->expr = fold_build3 (COND_EXPR, type, cond, tmp, arg[0]);
  mpfr_clear (huge);
  mpfr_clear (huge);
}
}
 
 
 
 
/* Convert to an integer using the specified rounding mode.  */
/* Convert to an integer using the specified rounding mode.  */
 
 
static void
static void
gfc_conv_intrinsic_int (gfc_se * se, gfc_expr * expr, enum rounding_mode op)
gfc_conv_intrinsic_int (gfc_se * se, gfc_expr * expr, enum rounding_mode op)
{
{
  tree type;
  tree type;
  tree *args;
  tree *args;
  int nargs;
  int nargs;
 
 
  nargs = gfc_intrinsic_argument_list_length (expr);
  nargs = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * nargs);
  args = (tree *) alloca (sizeof (tree) * nargs);
 
 
  /* Evaluate the argument, we process all arguments even though we only
  /* Evaluate the argument, we process all arguments even though we only
     use the first one for code generation purposes.  */
     use the first one for code generation purposes.  */
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  gcc_assert (expr->value.function.actual->expr);
  gcc_assert (expr->value.function.actual->expr);
  gfc_conv_intrinsic_function_args (se, expr, args, nargs);
  gfc_conv_intrinsic_function_args (se, expr, args, nargs);
 
 
  if (TREE_CODE (TREE_TYPE (args[0])) == INTEGER_TYPE)
  if (TREE_CODE (TREE_TYPE (args[0])) == INTEGER_TYPE)
    {
    {
      /* Conversion to a different integer kind.  */
      /* Conversion to a different integer kind.  */
      se->expr = convert (type, args[0]);
      se->expr = convert (type, args[0]);
    }
    }
  else
  else
    {
    {
      /* Conversion from complex to non-complex involves taking the real
      /* Conversion from complex to non-complex involves taking the real
         component of the value.  */
         component of the value.  */
      if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE
      if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE
          && expr->ts.type != BT_COMPLEX)
          && expr->ts.type != BT_COMPLEX)
        {
        {
          tree artype;
          tree artype;
 
 
          artype = TREE_TYPE (TREE_TYPE (args[0]));
          artype = TREE_TYPE (TREE_TYPE (args[0]));
          args[0] = fold_build1 (REALPART_EXPR, artype, args[0]);
          args[0] = fold_build1 (REALPART_EXPR, artype, args[0]);
        }
        }
 
 
      se->expr = build_fix_expr (&se->pre, args[0], type, op);
      se->expr = build_fix_expr (&se->pre, args[0], type, op);
    }
    }
}
}
 
 
 
 
/* Get the imaginary component of a value.  */
/* Get the imaginary component of a value.  */
 
 
static void
static void
gfc_conv_intrinsic_imagpart (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_imagpart (gfc_se * se, gfc_expr * expr)
{
{
  tree arg;
  tree arg;
 
 
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  se->expr = fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
  se->expr = fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
}
}
 
 
 
 
/* Get the complex conjugate of a value.  */
/* Get the complex conjugate of a value.  */
 
 
static void
static void
gfc_conv_intrinsic_conjg (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_conjg (gfc_se * se, gfc_expr * expr)
{
{
  tree arg;
  tree arg;
 
 
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  se->expr = fold_build1 (CONJ_EXPR, TREE_TYPE (arg), arg);
  se->expr = fold_build1 (CONJ_EXPR, TREE_TYPE (arg), arg);
}
}
 
 
 
 
/* Initialize function decls for library functions.  The external functions
/* Initialize function decls for library functions.  The external functions
   are created as required.  Builtin functions are added here.  */
   are created as required.  Builtin functions are added here.  */
 
 
void
void
gfc_build_intrinsic_lib_fndecls (void)
gfc_build_intrinsic_lib_fndecls (void)
{
{
  gfc_intrinsic_map_t *m;
  gfc_intrinsic_map_t *m;
 
 
  /* Add GCC builtin functions.  */
  /* Add GCC builtin functions.  */
  for (m = gfc_intrinsic_map; m->id != GFC_ISYM_NONE; m++)
  for (m = gfc_intrinsic_map; m->id != GFC_ISYM_NONE; m++)
    {
    {
      if (m->code_r4 != END_BUILTINS)
      if (m->code_r4 != END_BUILTINS)
        m->real4_decl = built_in_decls[m->code_r4];
        m->real4_decl = built_in_decls[m->code_r4];
      if (m->code_r8 != END_BUILTINS)
      if (m->code_r8 != END_BUILTINS)
        m->real8_decl = built_in_decls[m->code_r8];
        m->real8_decl = built_in_decls[m->code_r8];
      if (m->code_r10 != END_BUILTINS)
      if (m->code_r10 != END_BUILTINS)
        m->real10_decl = built_in_decls[m->code_r10];
        m->real10_decl = built_in_decls[m->code_r10];
      if (m->code_r16 != END_BUILTINS)
      if (m->code_r16 != END_BUILTINS)
        m->real16_decl = built_in_decls[m->code_r16];
        m->real16_decl = built_in_decls[m->code_r16];
      if (m->code_c4 != END_BUILTINS)
      if (m->code_c4 != END_BUILTINS)
        m->complex4_decl = built_in_decls[m->code_c4];
        m->complex4_decl = built_in_decls[m->code_c4];
      if (m->code_c8 != END_BUILTINS)
      if (m->code_c8 != END_BUILTINS)
        m->complex8_decl = built_in_decls[m->code_c8];
        m->complex8_decl = built_in_decls[m->code_c8];
      if (m->code_c10 != END_BUILTINS)
      if (m->code_c10 != END_BUILTINS)
        m->complex10_decl = built_in_decls[m->code_c10];
        m->complex10_decl = built_in_decls[m->code_c10];
      if (m->code_c16 != END_BUILTINS)
      if (m->code_c16 != END_BUILTINS)
        m->complex16_decl = built_in_decls[m->code_c16];
        m->complex16_decl = built_in_decls[m->code_c16];
    }
    }
}
}
 
 
 
 
/* Create a fndecl for a simple intrinsic library function.  */
/* Create a fndecl for a simple intrinsic library function.  */
 
 
static tree
static tree
gfc_get_intrinsic_lib_fndecl (gfc_intrinsic_map_t * m, gfc_expr * expr)
gfc_get_intrinsic_lib_fndecl (gfc_intrinsic_map_t * m, gfc_expr * expr)
{
{
  tree type;
  tree type;
  tree argtypes;
  tree argtypes;
  tree fndecl;
  tree fndecl;
  gfc_actual_arglist *actual;
  gfc_actual_arglist *actual;
  tree *pdecl;
  tree *pdecl;
  gfc_typespec *ts;
  gfc_typespec *ts;
  char name[GFC_MAX_SYMBOL_LEN + 3];
  char name[GFC_MAX_SYMBOL_LEN + 3];
 
 
  ts = &expr->ts;
  ts = &expr->ts;
  if (ts->type == BT_REAL)
  if (ts->type == BT_REAL)
    {
    {
      switch (ts->kind)
      switch (ts->kind)
        {
        {
        case 4:
        case 4:
          pdecl = &m->real4_decl;
          pdecl = &m->real4_decl;
          break;
          break;
        case 8:
        case 8:
          pdecl = &m->real8_decl;
          pdecl = &m->real8_decl;
          break;
          break;
        case 10:
        case 10:
          pdecl = &m->real10_decl;
          pdecl = &m->real10_decl;
          break;
          break;
        case 16:
        case 16:
          pdecl = &m->real16_decl;
          pdecl = &m->real16_decl;
          break;
          break;
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
  else if (ts->type == BT_COMPLEX)
  else if (ts->type == BT_COMPLEX)
    {
    {
      gcc_assert (m->complex_available);
      gcc_assert (m->complex_available);
 
 
      switch (ts->kind)
      switch (ts->kind)
        {
        {
        case 4:
        case 4:
          pdecl = &m->complex4_decl;
          pdecl = &m->complex4_decl;
          break;
          break;
        case 8:
        case 8:
          pdecl = &m->complex8_decl;
          pdecl = &m->complex8_decl;
          break;
          break;
        case 10:
        case 10:
          pdecl = &m->complex10_decl;
          pdecl = &m->complex10_decl;
          break;
          break;
        case 16:
        case 16:
          pdecl = &m->complex16_decl;
          pdecl = &m->complex16_decl;
          break;
          break;
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  if (*pdecl)
  if (*pdecl)
    return *pdecl;
    return *pdecl;
 
 
  if (m->libm_name)
  if (m->libm_name)
    {
    {
      if (ts->kind == 4)
      if (ts->kind == 4)
        snprintf (name, sizeof (name), "%s%s%s",
        snprintf (name, sizeof (name), "%s%s%s",
                ts->type == BT_COMPLEX ? "c" : "", m->name, "f");
                ts->type == BT_COMPLEX ? "c" : "", m->name, "f");
      else if (ts->kind == 8)
      else if (ts->kind == 8)
        snprintf (name, sizeof (name), "%s%s",
        snprintf (name, sizeof (name), "%s%s",
                ts->type == BT_COMPLEX ? "c" : "", m->name);
                ts->type == BT_COMPLEX ? "c" : "", m->name);
      else
      else
        {
        {
          gcc_assert (ts->kind == 10 || ts->kind == 16);
          gcc_assert (ts->kind == 10 || ts->kind == 16);
          snprintf (name, sizeof (name), "%s%s%s",
          snprintf (name, sizeof (name), "%s%s%s",
                ts->type == BT_COMPLEX ? "c" : "", m->name, "l");
                ts->type == BT_COMPLEX ? "c" : "", m->name, "l");
        }
        }
    }
    }
  else
  else
    {
    {
      snprintf (name, sizeof (name), PREFIX ("%s_%c%d"), m->name,
      snprintf (name, sizeof (name), PREFIX ("%s_%c%d"), m->name,
                ts->type == BT_COMPLEX ? 'c' : 'r',
                ts->type == BT_COMPLEX ? 'c' : 'r',
                ts->kind);
                ts->kind);
    }
    }
 
 
  argtypes = NULL_TREE;
  argtypes = NULL_TREE;
  for (actual = expr->value.function.actual; actual; actual = actual->next)
  for (actual = expr->value.function.actual; actual; actual = actual->next)
    {
    {
      type = gfc_typenode_for_spec (&actual->expr->ts);
      type = gfc_typenode_for_spec (&actual->expr->ts);
      argtypes = gfc_chainon_list (argtypes, type);
      argtypes = gfc_chainon_list (argtypes, type);
    }
    }
  argtypes = gfc_chainon_list (argtypes, void_type_node);
  argtypes = gfc_chainon_list (argtypes, void_type_node);
  type = build_function_type (gfc_typenode_for_spec (ts), argtypes);
  type = build_function_type (gfc_typenode_for_spec (ts), argtypes);
  fndecl = build_decl (input_location,
  fndecl = build_decl (input_location,
                       FUNCTION_DECL, get_identifier (name), type);
                       FUNCTION_DECL, get_identifier (name), type);
 
 
  /* Mark the decl as external.  */
  /* Mark the decl as external.  */
  DECL_EXTERNAL (fndecl) = 1;
  DECL_EXTERNAL (fndecl) = 1;
  TREE_PUBLIC (fndecl) = 1;
  TREE_PUBLIC (fndecl) = 1;
 
 
  /* Mark it __attribute__((const)), if possible.  */
  /* Mark it __attribute__((const)), if possible.  */
  TREE_READONLY (fndecl) = m->is_constant;
  TREE_READONLY (fndecl) = m->is_constant;
 
 
  rest_of_decl_compilation (fndecl, 1, 0);
  rest_of_decl_compilation (fndecl, 1, 0);
 
 
  (*pdecl) = fndecl;
  (*pdecl) = fndecl;
  return fndecl;
  return fndecl;
}
}
 
 
 
 
/* Convert an intrinsic function into an external or builtin call.  */
/* Convert an intrinsic function into an external or builtin call.  */
 
 
static void
static void
gfc_conv_intrinsic_lib_function (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_lib_function (gfc_se * se, gfc_expr * expr)
{
{
  gfc_intrinsic_map_t *m;
  gfc_intrinsic_map_t *m;
  tree fndecl;
  tree fndecl;
  tree rettype;
  tree rettype;
  tree *args;
  tree *args;
  unsigned int num_args;
  unsigned int num_args;
  gfc_isym_id id;
  gfc_isym_id id;
 
 
  id = expr->value.function.isym->id;
  id = expr->value.function.isym->id;
  /* Find the entry for this function.  */
  /* Find the entry for this function.  */
  for (m = gfc_intrinsic_map; m->id != GFC_ISYM_NONE; m++)
  for (m = gfc_intrinsic_map; m->id != GFC_ISYM_NONE; m++)
    {
    {
      if (id == m->id)
      if (id == m->id)
        break;
        break;
    }
    }
 
 
  if (m->id == GFC_ISYM_NONE)
  if (m->id == GFC_ISYM_NONE)
    {
    {
      internal_error ("Intrinsic function %s(%d) not recognized",
      internal_error ("Intrinsic function %s(%d) not recognized",
                      expr->value.function.name, id);
                      expr->value.function.name, id);
    }
    }
 
 
  /* Get the decl and generate the call.  */
  /* Get the decl and generate the call.  */
  num_args = gfc_intrinsic_argument_list_length (expr);
  num_args = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * num_args);
  args = (tree *) alloca (sizeof (tree) * num_args);
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
  fndecl = gfc_get_intrinsic_lib_fndecl (m, expr);
  fndecl = gfc_get_intrinsic_lib_fndecl (m, expr);
  rettype = TREE_TYPE (TREE_TYPE (fndecl));
  rettype = TREE_TYPE (TREE_TYPE (fndecl));
 
 
  fndecl = build_addr (fndecl, current_function_decl);
  fndecl = build_addr (fndecl, current_function_decl);
  se->expr = build_call_array_loc (input_location, rettype, fndecl, num_args, args);
  se->expr = build_call_array_loc (input_location, rettype, fndecl, num_args, args);
}
}
 
 
 
 
/* If bounds-checking is enabled, create code to verify at runtime that the
/* If bounds-checking is enabled, create code to verify at runtime that the
   string lengths for both expressions are the same (needed for e.g. MERGE).
   string lengths for both expressions are the same (needed for e.g. MERGE).
   If bounds-checking is not enabled, does nothing.  */
   If bounds-checking is not enabled, does nothing.  */
 
 
void
void
gfc_trans_same_strlen_check (const char* intr_name, locus* where,
gfc_trans_same_strlen_check (const char* intr_name, locus* where,
                             tree a, tree b, stmtblock_t* target)
                             tree a, tree b, stmtblock_t* target)
{
{
  tree cond;
  tree cond;
  tree name;
  tree name;
 
 
  /* If bounds-checking is disabled, do nothing.  */
  /* If bounds-checking is disabled, do nothing.  */
  if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS))
  if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS))
    return;
    return;
 
 
  /* Compare the two string lengths.  */
  /* Compare the two string lengths.  */
  cond = fold_build2 (NE_EXPR, boolean_type_node, a, b);
  cond = fold_build2 (NE_EXPR, boolean_type_node, a, b);
 
 
  /* Output the runtime-check.  */
  /* Output the runtime-check.  */
  name = gfc_build_cstring_const (intr_name);
  name = gfc_build_cstring_const (intr_name);
  name = gfc_build_addr_expr (pchar_type_node, name);
  name = gfc_build_addr_expr (pchar_type_node, name);
  gfc_trans_runtime_check (true, false, cond, target, where,
  gfc_trans_runtime_check (true, false, cond, target, where,
                           "Unequal character lengths (%ld/%ld) in %s",
                           "Unequal character lengths (%ld/%ld) in %s",
                           fold_convert (long_integer_type_node, a),
                           fold_convert (long_integer_type_node, a),
                           fold_convert (long_integer_type_node, b), name);
                           fold_convert (long_integer_type_node, b), name);
}
}
 
 
 
 
/* The EXPONENT(s) intrinsic function is translated into
/* The EXPONENT(s) intrinsic function is translated into
       int ret;
       int ret;
       frexp (s, &ret);
       frexp (s, &ret);
       return ret;
       return ret;
 */
 */
 
 
static void
static void
gfc_conv_intrinsic_exponent (gfc_se *se, gfc_expr *expr)
gfc_conv_intrinsic_exponent (gfc_se *se, gfc_expr *expr)
{
{
  tree arg, type, res, tmp;
  tree arg, type, res, tmp;
  int frexp;
  int frexp;
 
 
  switch (expr->value.function.actual->expr->ts.kind)
  switch (expr->value.function.actual->expr->ts.kind)
    {
    {
    case 4:
    case 4:
      frexp = BUILT_IN_FREXPF;
      frexp = BUILT_IN_FREXPF;
      break;
      break;
    case 8:
    case 8:
      frexp = BUILT_IN_FREXP;
      frexp = BUILT_IN_FREXP;
      break;
      break;
    case 10:
    case 10:
    case 16:
    case 16:
      frexp = BUILT_IN_FREXPL;
      frexp = BUILT_IN_FREXPL;
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
 
 
  res = gfc_create_var (integer_type_node, NULL);
  res = gfc_create_var (integer_type_node, NULL);
  tmp = build_call_expr_loc (input_location,
  tmp = build_call_expr_loc (input_location,
                         built_in_decls[frexp], 2, arg,
                         built_in_decls[frexp], 2, arg,
                         gfc_build_addr_expr (NULL_TREE, res));
                         gfc_build_addr_expr (NULL_TREE, res));
  gfc_add_expr_to_block (&se->pre, tmp);
  gfc_add_expr_to_block (&se->pre, tmp);
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  se->expr = fold_convert (type, res);
  se->expr = fold_convert (type, res);
}
}
 
 
/* Evaluate a single upper or lower bound.  */
/* Evaluate a single upper or lower bound.  */
/* TODO: bound intrinsic generates way too much unnecessary code.  */
/* TODO: bound intrinsic generates way too much unnecessary code.  */
 
 
static void
static void
gfc_conv_intrinsic_bound (gfc_se * se, gfc_expr * expr, int upper)
gfc_conv_intrinsic_bound (gfc_se * se, gfc_expr * expr, int upper)
{
{
  gfc_actual_arglist *arg;
  gfc_actual_arglist *arg;
  gfc_actual_arglist *arg2;
  gfc_actual_arglist *arg2;
  tree desc;
  tree desc;
  tree type;
  tree type;
  tree bound;
  tree bound;
  tree tmp;
  tree tmp;
  tree cond, cond1, cond3, cond4, size;
  tree cond, cond1, cond3, cond4, size;
  tree ubound;
  tree ubound;
  tree lbound;
  tree lbound;
  gfc_se argse;
  gfc_se argse;
  gfc_ss *ss;
  gfc_ss *ss;
  gfc_array_spec * as;
  gfc_array_spec * as;
 
 
  arg = expr->value.function.actual;
  arg = expr->value.function.actual;
  arg2 = arg->next;
  arg2 = arg->next;
 
 
  if (se->ss)
  if (se->ss)
    {
    {
      /* Create an implicit second parameter from the loop variable.  */
      /* Create an implicit second parameter from the loop variable.  */
      gcc_assert (!arg2->expr);
      gcc_assert (!arg2->expr);
      gcc_assert (se->loop->dimen == 1);
      gcc_assert (se->loop->dimen == 1);
      gcc_assert (se->ss->expr == expr);
      gcc_assert (se->ss->expr == expr);
      gfc_advance_se_ss_chain (se);
      gfc_advance_se_ss_chain (se);
      bound = se->loop->loopvar[0];
      bound = se->loop->loopvar[0];
      bound = fold_build2 (MINUS_EXPR, gfc_array_index_type, bound,
      bound = fold_build2 (MINUS_EXPR, gfc_array_index_type, bound,
                           se->loop->from[0]);
                           se->loop->from[0]);
    }
    }
  else
  else
    {
    {
      /* use the passed argument.  */
      /* use the passed argument.  */
      gcc_assert (arg->next->expr);
      gcc_assert (arg->next->expr);
      gfc_init_se (&argse, NULL);
      gfc_init_se (&argse, NULL);
      gfc_conv_expr_type (&argse, arg->next->expr, gfc_array_index_type);
      gfc_conv_expr_type (&argse, arg->next->expr, gfc_array_index_type);
      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->pre, &argse.pre);
      bound = argse.expr;
      bound = argse.expr;
      /* Convert from one based to zero based.  */
      /* Convert from one based to zero based.  */
      bound = fold_build2 (MINUS_EXPR, gfc_array_index_type, bound,
      bound = fold_build2 (MINUS_EXPR, gfc_array_index_type, bound,
                           gfc_index_one_node);
                           gfc_index_one_node);
    }
    }
 
 
  /* TODO: don't re-evaluate the descriptor on each iteration.  */
  /* TODO: don't re-evaluate the descriptor on each iteration.  */
  /* Get a descriptor for the first parameter.  */
  /* Get a descriptor for the first parameter.  */
  ss = gfc_walk_expr (arg->expr);
  ss = gfc_walk_expr (arg->expr);
  gcc_assert (ss != gfc_ss_terminator);
  gcc_assert (ss != gfc_ss_terminator);
  gfc_init_se (&argse, NULL);
  gfc_init_se (&argse, NULL);
  gfc_conv_expr_descriptor (&argse, arg->expr, ss);
  gfc_conv_expr_descriptor (&argse, arg->expr, ss);
  gfc_add_block_to_block (&se->pre, &argse.pre);
  gfc_add_block_to_block (&se->pre, &argse.pre);
  gfc_add_block_to_block (&se->post, &argse.post);
  gfc_add_block_to_block (&se->post, &argse.post);
 
 
  desc = argse.expr;
  desc = argse.expr;
 
 
  if (INTEGER_CST_P (bound))
  if (INTEGER_CST_P (bound))
    {
    {
      int hi, low;
      int hi, low;
 
 
      hi = TREE_INT_CST_HIGH (bound);
      hi = TREE_INT_CST_HIGH (bound);
      low = TREE_INT_CST_LOW (bound);
      low = TREE_INT_CST_LOW (bound);
      if (hi || low < 0 || low >= GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc)))
      if (hi || low < 0 || low >= GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc)))
        gfc_error ("'dim' argument of %s intrinsic at %L is not a valid "
        gfc_error ("'dim' argument of %s intrinsic at %L is not a valid "
                   "dimension index", upper ? "UBOUND" : "LBOUND",
                   "dimension index", upper ? "UBOUND" : "LBOUND",
                   &expr->where);
                   &expr->where);
    }
    }
  else
  else
    {
    {
      if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
      if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
        {
        {
          bound = gfc_evaluate_now (bound, &se->pre);
          bound = gfc_evaluate_now (bound, &se->pre);
          cond = fold_build2 (LT_EXPR, boolean_type_node,
          cond = fold_build2 (LT_EXPR, boolean_type_node,
                              bound, build_int_cst (TREE_TYPE (bound), 0));
                              bound, build_int_cst (TREE_TYPE (bound), 0));
          tmp = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc))];
          tmp = gfc_rank_cst[GFC_TYPE_ARRAY_RANK (TREE_TYPE (desc))];
          tmp = fold_build2 (GE_EXPR, boolean_type_node, bound, tmp);
          tmp = fold_build2 (GE_EXPR, boolean_type_node, bound, tmp);
          cond = fold_build2 (TRUTH_ORIF_EXPR, boolean_type_node, cond, tmp);
          cond = fold_build2 (TRUTH_ORIF_EXPR, boolean_type_node, cond, tmp);
          gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
          gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
                                   gfc_msg_fault);
                                   gfc_msg_fault);
        }
        }
    }
    }
 
 
  ubound = gfc_conv_descriptor_ubound_get (desc, bound);
  ubound = gfc_conv_descriptor_ubound_get (desc, bound);
  lbound = gfc_conv_descriptor_lbound_get (desc, bound);
  lbound = gfc_conv_descriptor_lbound_get (desc, bound);
 
 
  as = gfc_get_full_arrayspec_from_expr (arg->expr);
  as = gfc_get_full_arrayspec_from_expr (arg->expr);
 
 
  /* 13.14.53: Result value for LBOUND
  /* 13.14.53: Result value for LBOUND
 
 
     Case (i): For an array section or for an array expression other than a
     Case (i): For an array section or for an array expression other than a
               whole array or array structure component, LBOUND(ARRAY, DIM)
               whole array or array structure component, LBOUND(ARRAY, DIM)
               has the value 1.  For a whole array or array structure
               has the value 1.  For a whole array or array structure
               component, LBOUND(ARRAY, DIM) has the value:
               component, LBOUND(ARRAY, DIM) has the value:
                 (a) equal to the lower bound for subscript DIM of ARRAY if
                 (a) equal to the lower bound for subscript DIM of ARRAY if
                     dimension DIM of ARRAY does not have extent zero
                     dimension DIM of ARRAY does not have extent zero
                     or if ARRAY is an assumed-size array of rank DIM,
                     or if ARRAY is an assumed-size array of rank DIM,
              or (b) 1 otherwise.
              or (b) 1 otherwise.
 
 
     13.14.113: Result value for UBOUND
     13.14.113: Result value for UBOUND
 
 
     Case (i): For an array section or for an array expression other than a
     Case (i): For an array section or for an array expression other than a
               whole array or array structure component, UBOUND(ARRAY, DIM)
               whole array or array structure component, UBOUND(ARRAY, DIM)
               has the value equal to the number of elements in the given
               has the value equal to the number of elements in the given
               dimension; otherwise, it has a value equal to the upper bound
               dimension; otherwise, it has a value equal to the upper bound
               for subscript DIM of ARRAY if dimension DIM of ARRAY does
               for subscript DIM of ARRAY if dimension DIM of ARRAY does
               not have size zero and has value zero if dimension DIM has
               not have size zero and has value zero if dimension DIM has
               size zero.  */
               size zero.  */
 
 
  if (as)
  if (as)
    {
    {
      tree stride = gfc_conv_descriptor_stride_get (desc, bound);
      tree stride = gfc_conv_descriptor_stride_get (desc, bound);
 
 
      cond1 = fold_build2 (GE_EXPR, boolean_type_node, ubound, lbound);
      cond1 = fold_build2 (GE_EXPR, boolean_type_node, ubound, lbound);
 
 
      cond3 = fold_build2 (GE_EXPR, boolean_type_node, stride,
      cond3 = fold_build2 (GE_EXPR, boolean_type_node, stride,
                           gfc_index_zero_node);
                           gfc_index_zero_node);
      cond3 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, cond3, cond1);
      cond3 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, cond3, cond1);
 
 
      cond4 = fold_build2 (LT_EXPR, boolean_type_node, stride,
      cond4 = fold_build2 (LT_EXPR, boolean_type_node, stride,
                           gfc_index_zero_node);
                           gfc_index_zero_node);
 
 
      if (upper)
      if (upper)
        {
        {
          tree cond5;
          tree cond5;
          cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond3, cond4);
          cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond3, cond4);
 
 
          cond5 = fold_build2 (EQ_EXPR, boolean_type_node, gfc_index_one_node, lbound);
          cond5 = fold_build2 (EQ_EXPR, boolean_type_node, gfc_index_one_node, lbound);
          cond5 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, cond4, cond5);
          cond5 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, cond4, cond5);
 
 
          cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond, cond5);
          cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond, cond5);
 
 
          se->expr = fold_build3 (COND_EXPR, gfc_array_index_type, cond,
          se->expr = fold_build3 (COND_EXPR, gfc_array_index_type, cond,
                                  ubound, gfc_index_zero_node);
                                  ubound, gfc_index_zero_node);
        }
        }
      else
      else
        {
        {
          if (as->type == AS_ASSUMED_SIZE)
          if (as->type == AS_ASSUMED_SIZE)
            cond = fold_build2 (EQ_EXPR, boolean_type_node, bound,
            cond = fold_build2 (EQ_EXPR, boolean_type_node, bound,
                                build_int_cst (TREE_TYPE (bound),
                                build_int_cst (TREE_TYPE (bound),
                                               arg->expr->rank - 1));
                                               arg->expr->rank - 1));
          else
          else
            cond = boolean_false_node;
            cond = boolean_false_node;
 
 
          cond1 = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond3, cond4);
          cond1 = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond3, cond4);
          cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond, cond1);
          cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond, cond1);
 
 
          se->expr = fold_build3 (COND_EXPR, gfc_array_index_type, cond,
          se->expr = fold_build3 (COND_EXPR, gfc_array_index_type, cond,
                                  lbound, gfc_index_one_node);
                                  lbound, gfc_index_one_node);
        }
        }
    }
    }
  else
  else
    {
    {
      if (upper)
      if (upper)
        {
        {
          size = fold_build2 (MINUS_EXPR, gfc_array_index_type, ubound, lbound);
          size = fold_build2 (MINUS_EXPR, gfc_array_index_type, ubound, lbound);
          se->expr = fold_build2 (PLUS_EXPR, gfc_array_index_type, size,
          se->expr = fold_build2 (PLUS_EXPR, gfc_array_index_type, size,
                                  gfc_index_one_node);
                                  gfc_index_one_node);
          se->expr = fold_build2 (MAX_EXPR, gfc_array_index_type, se->expr,
          se->expr = fold_build2 (MAX_EXPR, gfc_array_index_type, se->expr,
                                  gfc_index_zero_node);
                                  gfc_index_zero_node);
        }
        }
      else
      else
        se->expr = gfc_index_one_node;
        se->expr = gfc_index_one_node;
    }
    }
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  se->expr = convert (type, se->expr);
  se->expr = convert (type, se->expr);
}
}
 
 
 
 
static void
static void
gfc_conv_intrinsic_abs (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_abs (gfc_se * se, gfc_expr * expr)
{
{
  tree arg;
  tree arg;
  int n;
  int n;
 
 
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
 
 
  switch (expr->value.function.actual->expr->ts.type)
  switch (expr->value.function.actual->expr->ts.type)
    {
    {
    case BT_INTEGER:
    case BT_INTEGER:
    case BT_REAL:
    case BT_REAL:
      se->expr = fold_build1 (ABS_EXPR, TREE_TYPE (arg), arg);
      se->expr = fold_build1 (ABS_EXPR, TREE_TYPE (arg), arg);
      break;
      break;
 
 
    case BT_COMPLEX:
    case BT_COMPLEX:
      switch (expr->ts.kind)
      switch (expr->ts.kind)
        {
        {
        case 4:
        case 4:
          n = BUILT_IN_CABSF;
          n = BUILT_IN_CABSF;
          break;
          break;
        case 8:
        case 8:
          n = BUILT_IN_CABS;
          n = BUILT_IN_CABS;
          break;
          break;
        case 10:
        case 10:
        case 16:
        case 16:
          n = BUILT_IN_CABSL;
          n = BUILT_IN_CABSL;
          break;
          break;
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
      se->expr = build_call_expr_loc (input_location,
      se->expr = build_call_expr_loc (input_location,
                                  built_in_decls[n], 1, arg);
                                  built_in_decls[n], 1, arg);
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
 
 
/* Create a complex value from one or two real components.  */
/* Create a complex value from one or two real components.  */
 
 
static void
static void
gfc_conv_intrinsic_cmplx (gfc_se * se, gfc_expr * expr, int both)
gfc_conv_intrinsic_cmplx (gfc_se * se, gfc_expr * expr, int both)
{
{
  tree real;
  tree real;
  tree imag;
  tree imag;
  tree type;
  tree type;
  tree *args;
  tree *args;
  unsigned int num_args;
  unsigned int num_args;
 
 
  num_args = gfc_intrinsic_argument_list_length (expr);
  num_args = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * num_args);
  args = (tree *) alloca (sizeof (tree) * num_args);
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
  real = convert (TREE_TYPE (type), args[0]);
  real = convert (TREE_TYPE (type), args[0]);
  if (both)
  if (both)
    imag = convert (TREE_TYPE (type), args[1]);
    imag = convert (TREE_TYPE (type), args[1]);
  else if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE)
  else if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE)
    {
    {
      imag = fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (args[0])),
      imag = fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (args[0])),
                          args[0]);
                          args[0]);
      imag = convert (TREE_TYPE (type), imag);
      imag = convert (TREE_TYPE (type), imag);
    }
    }
  else
  else
    imag = build_real_from_int_cst (TREE_TYPE (type), integer_zero_node);
    imag = build_real_from_int_cst (TREE_TYPE (type), integer_zero_node);
 
 
  se->expr = fold_build2 (COMPLEX_EXPR, type, real, imag);
  se->expr = fold_build2 (COMPLEX_EXPR, type, real, imag);
}
}
 
 
/* Remainder function MOD(A, P) = A - INT(A / P) * P
/* Remainder function MOD(A, P) = A - INT(A / P) * P
                      MODULO(A, P) = A - FLOOR (A / P) * P  */
                      MODULO(A, P) = A - FLOOR (A / P) * P  */
/* TODO: MOD(x, 0)  */
/* TODO: MOD(x, 0)  */
 
 
static void
static void
gfc_conv_intrinsic_mod (gfc_se * se, gfc_expr * expr, int modulo)
gfc_conv_intrinsic_mod (gfc_se * se, gfc_expr * expr, int modulo)
{
{
  tree type;
  tree type;
  tree itype;
  tree itype;
  tree tmp;
  tree tmp;
  tree test;
  tree test;
  tree test2;
  tree test2;
  mpfr_t huge;
  mpfr_t huge;
  int n, ikind;
  int n, ikind;
  tree args[2];
  tree args[2];
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
 
 
  switch (expr->ts.type)
  switch (expr->ts.type)
    {
    {
    case BT_INTEGER:
    case BT_INTEGER:
      /* Integer case is easy, we've got a builtin op.  */
      /* Integer case is easy, we've got a builtin op.  */
      type = TREE_TYPE (args[0]);
      type = TREE_TYPE (args[0]);
 
 
      if (modulo)
      if (modulo)
       se->expr = fold_build2 (FLOOR_MOD_EXPR, type, args[0], args[1]);
       se->expr = fold_build2 (FLOOR_MOD_EXPR, type, args[0], args[1]);
      else
      else
       se->expr = fold_build2 (TRUNC_MOD_EXPR, type, args[0], args[1]);
       se->expr = fold_build2 (TRUNC_MOD_EXPR, type, args[0], args[1]);
      break;
      break;
 
 
    case BT_REAL:
    case BT_REAL:
      n = END_BUILTINS;
      n = END_BUILTINS;
      /* Check if we have a builtin fmod.  */
      /* Check if we have a builtin fmod.  */
      switch (expr->ts.kind)
      switch (expr->ts.kind)
        {
        {
        case 4:
        case 4:
          n = BUILT_IN_FMODF;
          n = BUILT_IN_FMODF;
          break;
          break;
 
 
        case 8:
        case 8:
          n = BUILT_IN_FMOD;
          n = BUILT_IN_FMOD;
          break;
          break;
 
 
        case 10:
        case 10:
        case 16:
        case 16:
          n = BUILT_IN_FMODL;
          n = BUILT_IN_FMODL;
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
      /* Use it if it exists.  */
      /* Use it if it exists.  */
      if (n != END_BUILTINS)
      if (n != END_BUILTINS)
        {
        {
          tmp = build_addr (built_in_decls[n], current_function_decl);
          tmp = build_addr (built_in_decls[n], current_function_decl);
          se->expr = build_call_array_loc (input_location,
          se->expr = build_call_array_loc (input_location,
                                       TREE_TYPE (TREE_TYPE (built_in_decls[n])),
                                       TREE_TYPE (TREE_TYPE (built_in_decls[n])),
                                       tmp, 2, args);
                                       tmp, 2, args);
          if (modulo == 0)
          if (modulo == 0)
            return;
            return;
        }
        }
 
 
      type = TREE_TYPE (args[0]);
      type = TREE_TYPE (args[0]);
 
 
      args[0] = gfc_evaluate_now (args[0], &se->pre);
      args[0] = gfc_evaluate_now (args[0], &se->pre);
      args[1] = gfc_evaluate_now (args[1], &se->pre);
      args[1] = gfc_evaluate_now (args[1], &se->pre);
 
 
      /* Definition:
      /* Definition:
         modulo = arg - floor (arg/arg2) * arg2, so
         modulo = arg - floor (arg/arg2) * arg2, so
                = test ? fmod (arg, arg2) : fmod (arg, arg2) + arg2,
                = test ? fmod (arg, arg2) : fmod (arg, arg2) + arg2,
         where
         where
          test  = (fmod (arg, arg2) != 0) && ((arg < 0) xor (arg2 < 0))
          test  = (fmod (arg, arg2) != 0) && ((arg < 0) xor (arg2 < 0))
         thereby avoiding another division and retaining the accuracy
         thereby avoiding another division and retaining the accuracy
         of the builtin function.  */
         of the builtin function.  */
      if (n != END_BUILTINS && modulo)
      if (n != END_BUILTINS && modulo)
        {
        {
          tree zero = gfc_build_const (type, integer_zero_node);
          tree zero = gfc_build_const (type, integer_zero_node);
          tmp = gfc_evaluate_now (se->expr, &se->pre);
          tmp = gfc_evaluate_now (se->expr, &se->pre);
          test = fold_build2 (LT_EXPR, boolean_type_node, args[0], zero);
          test = fold_build2 (LT_EXPR, boolean_type_node, args[0], zero);
          test2 = fold_build2 (LT_EXPR, boolean_type_node, args[1], zero);
          test2 = fold_build2 (LT_EXPR, boolean_type_node, args[1], zero);
          test2 = fold_build2 (TRUTH_XOR_EXPR, boolean_type_node, test, test2);
          test2 = fold_build2 (TRUTH_XOR_EXPR, boolean_type_node, test, test2);
          test = fold_build2 (NE_EXPR, boolean_type_node, tmp, zero);
          test = fold_build2 (NE_EXPR, boolean_type_node, tmp, zero);
          test = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, test, test2);
          test = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, test, test2);
          test = gfc_evaluate_now (test, &se->pre);
          test = gfc_evaluate_now (test, &se->pre);
          se->expr = fold_build3 (COND_EXPR, type, test,
          se->expr = fold_build3 (COND_EXPR, type, test,
                                  fold_build2 (PLUS_EXPR, type, tmp, args[1]),
                                  fold_build2 (PLUS_EXPR, type, tmp, args[1]),
                                  tmp);
                                  tmp);
          return;
          return;
        }
        }
 
 
      /* If we do not have a built_in fmod, the calculation is going to
      /* If we do not have a built_in fmod, the calculation is going to
         have to be done longhand.  */
         have to be done longhand.  */
      tmp = fold_build2 (RDIV_EXPR, type, args[0], args[1]);
      tmp = fold_build2 (RDIV_EXPR, type, args[0], args[1]);
 
 
      /* Test if the value is too large to handle sensibly.  */
      /* Test if the value is too large to handle sensibly.  */
      gfc_set_model_kind (expr->ts.kind);
      gfc_set_model_kind (expr->ts.kind);
      mpfr_init (huge);
      mpfr_init (huge);
      n = gfc_validate_kind (BT_INTEGER, expr->ts.kind, true);
      n = gfc_validate_kind (BT_INTEGER, expr->ts.kind, true);
      ikind = expr->ts.kind;
      ikind = expr->ts.kind;
      if (n < 0)
      if (n < 0)
        {
        {
          n = gfc_validate_kind (BT_INTEGER, gfc_max_integer_kind, false);
          n = gfc_validate_kind (BT_INTEGER, gfc_max_integer_kind, false);
          ikind = gfc_max_integer_kind;
          ikind = gfc_max_integer_kind;
        }
        }
      mpfr_set_z (huge, gfc_integer_kinds[n].huge, GFC_RND_MODE);
      mpfr_set_z (huge, gfc_integer_kinds[n].huge, GFC_RND_MODE);
      test = gfc_conv_mpfr_to_tree (huge, expr->ts.kind, 0);
      test = gfc_conv_mpfr_to_tree (huge, expr->ts.kind, 0);
      test2 = fold_build2 (LT_EXPR, boolean_type_node, tmp, test);
      test2 = fold_build2 (LT_EXPR, boolean_type_node, tmp, test);
 
 
      mpfr_neg (huge, huge, GFC_RND_MODE);
      mpfr_neg (huge, huge, GFC_RND_MODE);
      test = gfc_conv_mpfr_to_tree (huge, expr->ts.kind, 0);
      test = gfc_conv_mpfr_to_tree (huge, expr->ts.kind, 0);
      test = fold_build2 (GT_EXPR, boolean_type_node, tmp, test);
      test = fold_build2 (GT_EXPR, boolean_type_node, tmp, test);
      test2 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, test, test2);
      test2 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, test, test2);
 
 
      itype = gfc_get_int_type (ikind);
      itype = gfc_get_int_type (ikind);
      if (modulo)
      if (modulo)
       tmp = build_fix_expr (&se->pre, tmp, itype, RND_FLOOR);
       tmp = build_fix_expr (&se->pre, tmp, itype, RND_FLOOR);
      else
      else
       tmp = build_fix_expr (&se->pre, tmp, itype, RND_TRUNC);
       tmp = build_fix_expr (&se->pre, tmp, itype, RND_TRUNC);
      tmp = convert (type, tmp);
      tmp = convert (type, tmp);
      tmp = fold_build3 (COND_EXPR, type, test2, tmp, args[0]);
      tmp = fold_build3 (COND_EXPR, type, test2, tmp, args[0]);
      tmp = fold_build2 (MULT_EXPR, type, tmp, args[1]);
      tmp = fold_build2 (MULT_EXPR, type, tmp, args[1]);
      se->expr = fold_build2 (MINUS_EXPR, type, args[0], tmp);
      se->expr = fold_build2 (MINUS_EXPR, type, args[0], tmp);
      mpfr_clear (huge);
      mpfr_clear (huge);
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Positive difference DIM (x, y) = ((x - y) < 0) ? 0 : x - y.  */
/* Positive difference DIM (x, y) = ((x - y) < 0) ? 0 : x - y.  */
 
 
static void
static void
gfc_conv_intrinsic_dim (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_dim (gfc_se * se, gfc_expr * expr)
{
{
  tree val;
  tree val;
  tree tmp;
  tree tmp;
  tree type;
  tree type;
  tree zero;
  tree zero;
  tree args[2];
  tree args[2];
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  type = TREE_TYPE (args[0]);
  type = TREE_TYPE (args[0]);
 
 
  val = fold_build2 (MINUS_EXPR, type, args[0], args[1]);
  val = fold_build2 (MINUS_EXPR, type, args[0], args[1]);
  val = gfc_evaluate_now (val, &se->pre);
  val = gfc_evaluate_now (val, &se->pre);
 
 
  zero = gfc_build_const (type, integer_zero_node);
  zero = gfc_build_const (type, integer_zero_node);
  tmp = fold_build2 (LE_EXPR, boolean_type_node, val, zero);
  tmp = fold_build2 (LE_EXPR, boolean_type_node, val, zero);
  se->expr = fold_build3 (COND_EXPR, type, tmp, zero, val);
  se->expr = fold_build3 (COND_EXPR, type, tmp, zero, val);
}
}
 
 
 
 
/* SIGN(A, B) is absolute value of A times sign of B.
/* SIGN(A, B) is absolute value of A times sign of B.
   The real value versions use library functions to ensure the correct
   The real value versions use library functions to ensure the correct
   handling of negative zero.  Integer case implemented as:
   handling of negative zero.  Integer case implemented as:
   SIGN(A, B) = { tmp = (A ^ B) >> C; (A + tmp) ^ tmp }
   SIGN(A, B) = { tmp = (A ^ B) >> C; (A + tmp) ^ tmp }
  */
  */
 
 
static void
static void
gfc_conv_intrinsic_sign (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_sign (gfc_se * se, gfc_expr * expr)
{
{
  tree tmp;
  tree tmp;
  tree type;
  tree type;
  tree args[2];
  tree args[2];
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  if (expr->ts.type == BT_REAL)
  if (expr->ts.type == BT_REAL)
    {
    {
      tree abs;
      tree abs;
 
 
      switch (expr->ts.kind)
      switch (expr->ts.kind)
        {
        {
        case 4:
        case 4:
          tmp = built_in_decls[BUILT_IN_COPYSIGNF];
          tmp = built_in_decls[BUILT_IN_COPYSIGNF];
          abs = built_in_decls[BUILT_IN_FABSF];
          abs = built_in_decls[BUILT_IN_FABSF];
          break;
          break;
        case 8:
        case 8:
          tmp = built_in_decls[BUILT_IN_COPYSIGN];
          tmp = built_in_decls[BUILT_IN_COPYSIGN];
          abs = built_in_decls[BUILT_IN_FABS];
          abs = built_in_decls[BUILT_IN_FABS];
          break;
          break;
        case 10:
        case 10:
        case 16:
        case 16:
          tmp = built_in_decls[BUILT_IN_COPYSIGNL];
          tmp = built_in_decls[BUILT_IN_COPYSIGNL];
          abs = built_in_decls[BUILT_IN_FABSL];
          abs = built_in_decls[BUILT_IN_FABSL];
          break;
          break;
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
 
 
      /* We explicitly have to ignore the minus sign. We do so by using
      /* We explicitly have to ignore the minus sign. We do so by using
         result = (arg1 == 0) ? abs(arg0) : copysign(arg0, arg1).  */
         result = (arg1 == 0) ? abs(arg0) : copysign(arg0, arg1).  */
      if (!gfc_option.flag_sign_zero
      if (!gfc_option.flag_sign_zero
          && MODE_HAS_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (args[1]))))
          && MODE_HAS_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (args[1]))))
        {
        {
          tree cond, zero;
          tree cond, zero;
          zero = build_real_from_int_cst (TREE_TYPE (args[1]), integer_zero_node);
          zero = build_real_from_int_cst (TREE_TYPE (args[1]), integer_zero_node);
          cond = fold_build2 (EQ_EXPR, boolean_type_node, args[1], zero);
          cond = fold_build2 (EQ_EXPR, boolean_type_node, args[1], zero);
          se->expr = fold_build3 (COND_EXPR, TREE_TYPE (args[0]), cond,
          se->expr = fold_build3 (COND_EXPR, TREE_TYPE (args[0]), cond,
                                  build_call_expr (abs, 1, args[0]),
                                  build_call_expr (abs, 1, args[0]),
                                  build_call_expr (tmp, 2, args[0], args[1]));
                                  build_call_expr (tmp, 2, args[0], args[1]));
        }
        }
      else
      else
        se->expr = build_call_expr_loc (input_location,
        se->expr = build_call_expr_loc (input_location,
                                  tmp, 2, args[0], args[1]);
                                  tmp, 2, args[0], args[1]);
      return;
      return;
    }
    }
 
 
  /* Having excluded floating point types, we know we are now dealing
  /* Having excluded floating point types, we know we are now dealing
     with signed integer types.  */
     with signed integer types.  */
  type = TREE_TYPE (args[0]);
  type = TREE_TYPE (args[0]);
 
 
  /* Args[0] is used multiple times below.  */
  /* Args[0] is used multiple times below.  */
  args[0] = gfc_evaluate_now (args[0], &se->pre);
  args[0] = gfc_evaluate_now (args[0], &se->pre);
 
 
  /* Construct (A ^ B) >> 31, which generates a bit mask of all zeros if
  /* Construct (A ^ B) >> 31, which generates a bit mask of all zeros if
     the signs of A and B are the same, and of all ones if they differ.  */
     the signs of A and B are the same, and of all ones if they differ.  */
  tmp = fold_build2 (BIT_XOR_EXPR, type, args[0], args[1]);
  tmp = fold_build2 (BIT_XOR_EXPR, type, args[0], args[1]);
  tmp = fold_build2 (RSHIFT_EXPR, type, tmp,
  tmp = fold_build2 (RSHIFT_EXPR, type, tmp,
                     build_int_cst (type, TYPE_PRECISION (type) - 1));
                     build_int_cst (type, TYPE_PRECISION (type) - 1));
  tmp = gfc_evaluate_now (tmp, &se->pre);
  tmp = gfc_evaluate_now (tmp, &se->pre);
 
 
  /* Construct (A + tmp) ^ tmp, which is A if tmp is zero, and -A if tmp]
  /* Construct (A + tmp) ^ tmp, which is A if tmp is zero, and -A if tmp]
     is all ones (i.e. -1).  */
     is all ones (i.e. -1).  */
  se->expr = fold_build2 (BIT_XOR_EXPR, type,
  se->expr = fold_build2 (BIT_XOR_EXPR, type,
                          fold_build2 (PLUS_EXPR, type, args[0], tmp),
                          fold_build2 (PLUS_EXPR, type, args[0], tmp),
                          tmp);
                          tmp);
}
}
 
 
 
 
/* Test for the presence of an optional argument.  */
/* Test for the presence of an optional argument.  */
 
 
static void
static void
gfc_conv_intrinsic_present (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_present (gfc_se * se, gfc_expr * expr)
{
{
  gfc_expr *arg;
  gfc_expr *arg;
 
 
  arg = expr->value.function.actual->expr;
  arg = expr->value.function.actual->expr;
  gcc_assert (arg->expr_type == EXPR_VARIABLE);
  gcc_assert (arg->expr_type == EXPR_VARIABLE);
  se->expr = gfc_conv_expr_present (arg->symtree->n.sym);
  se->expr = gfc_conv_expr_present (arg->symtree->n.sym);
  se->expr = convert (gfc_typenode_for_spec (&expr->ts), se->expr);
  se->expr = convert (gfc_typenode_for_spec (&expr->ts), se->expr);
}
}
 
 
 
 
/* Calculate the double precision product of two single precision values.  */
/* Calculate the double precision product of two single precision values.  */
 
 
static void
static void
gfc_conv_intrinsic_dprod (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_dprod (gfc_se * se, gfc_expr * expr)
{
{
  tree type;
  tree type;
  tree args[2];
  tree args[2];
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
 
 
  /* Convert the args to double precision before multiplying.  */
  /* Convert the args to double precision before multiplying.  */
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  args[0] = convert (type, args[0]);
  args[0] = convert (type, args[0]);
  args[1] = convert (type, args[1]);
  args[1] = convert (type, args[1]);
  se->expr = fold_build2 (MULT_EXPR, type, args[0], args[1]);
  se->expr = fold_build2 (MULT_EXPR, type, args[0], args[1]);
}
}
 
 
 
 
/* Return a length one character string containing an ascii character.  */
/* Return a length one character string containing an ascii character.  */
 
 
static void
static void
gfc_conv_intrinsic_char (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_char (gfc_se * se, gfc_expr * expr)
{
{
  tree arg[2];
  tree arg[2];
  tree var;
  tree var;
  tree type;
  tree type;
  unsigned int num_args;
  unsigned int num_args;
 
 
  num_args = gfc_intrinsic_argument_list_length (expr);
  num_args = gfc_intrinsic_argument_list_length (expr);
  gfc_conv_intrinsic_function_args (se, expr, arg, num_args);
  gfc_conv_intrinsic_function_args (se, expr, arg, num_args);
 
 
  type = gfc_get_char_type (expr->ts.kind);
  type = gfc_get_char_type (expr->ts.kind);
  var = gfc_create_var (type, "char");
  var = gfc_create_var (type, "char");
 
 
  arg[0] = fold_build1 (NOP_EXPR, type, arg[0]);
  arg[0] = fold_build1 (NOP_EXPR, type, arg[0]);
  gfc_add_modify (&se->pre, var, arg[0]);
  gfc_add_modify (&se->pre, var, arg[0]);
  se->expr = gfc_build_addr_expr (build_pointer_type (type), var);
  se->expr = gfc_build_addr_expr (build_pointer_type (type), var);
  se->string_length = integer_one_node;
  se->string_length = integer_one_node;
}
}
 
 
 
 
static void
static void
gfc_conv_intrinsic_ctime (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_ctime (gfc_se * se, gfc_expr * expr)
{
{
  tree var;
  tree var;
  tree len;
  tree len;
  tree tmp;
  tree tmp;
  tree cond;
  tree cond;
  tree fndecl;
  tree fndecl;
  tree *args;
  tree *args;
  unsigned int num_args;
  unsigned int num_args;
 
 
  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
  args = (tree *) alloca (sizeof (tree) * num_args);
  args = (tree *) alloca (sizeof (tree) * num_args);
 
 
  var = gfc_create_var (pchar_type_node, "pstr");
  var = gfc_create_var (pchar_type_node, "pstr");
  len = gfc_create_var (gfc_get_int_type (8), "len");
  len = gfc_create_var (gfc_get_int_type (8), "len");
 
 
  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
  args[0] = gfc_build_addr_expr (NULL_TREE, var);
  args[0] = gfc_build_addr_expr (NULL_TREE, var);
  args[1] = gfc_build_addr_expr (NULL_TREE, len);
  args[1] = gfc_build_addr_expr (NULL_TREE, len);
 
 
  fndecl = build_addr (gfor_fndecl_ctime, current_function_decl);
  fndecl = build_addr (gfor_fndecl_ctime, current_function_decl);
  tmp = build_call_array_loc (input_location,
  tmp = build_call_array_loc (input_location,
                          TREE_TYPE (TREE_TYPE (gfor_fndecl_ctime)),
                          TREE_TYPE (TREE_TYPE (gfor_fndecl_ctime)),
                          fndecl, num_args, args);
                          fndecl, num_args, args);
  gfc_add_expr_to_block (&se->pre, tmp);
  gfc_add_expr_to_block (&se->pre, tmp);
 
 
  /* Free the temporary afterwards, if necessary.  */
  /* Free the temporary afterwards, if necessary.  */
  cond = fold_build2 (GT_EXPR, boolean_type_node,
  cond = fold_build2 (GT_EXPR, boolean_type_node,
                      len, build_int_cst (TREE_TYPE (len), 0));
                      len, build_int_cst (TREE_TYPE (len), 0));
  tmp = gfc_call_free (var);
  tmp = gfc_call_free (var);
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&se->post, tmp);
  gfc_add_expr_to_block (&se->post, tmp);
 
 
  se->expr = var;
  se->expr = var;
  se->string_length = len;
  se->string_length = len;
}
}
 
 
 
 
static void
static void
gfc_conv_intrinsic_fdate (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_fdate (gfc_se * se, gfc_expr * expr)
{
{
  tree var;
  tree var;
  tree len;
  tree len;
  tree tmp;
  tree tmp;
  tree cond;
  tree cond;
  tree fndecl;
  tree fndecl;
  tree *args;
  tree *args;
  unsigned int num_args;
  unsigned int num_args;
 
 
  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
  args = (tree *) alloca (sizeof (tree) * num_args);
  args = (tree *) alloca (sizeof (tree) * num_args);
 
 
  var = gfc_create_var (pchar_type_node, "pstr");
  var = gfc_create_var (pchar_type_node, "pstr");
  len = gfc_create_var (gfc_get_int_type (4), "len");
  len = gfc_create_var (gfc_get_int_type (4), "len");
 
 
  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
  args[0] = gfc_build_addr_expr (NULL_TREE, var);
  args[0] = gfc_build_addr_expr (NULL_TREE, var);
  args[1] = gfc_build_addr_expr (NULL_TREE, len);
  args[1] = gfc_build_addr_expr (NULL_TREE, len);
 
 
  fndecl = build_addr (gfor_fndecl_fdate, current_function_decl);
  fndecl = build_addr (gfor_fndecl_fdate, current_function_decl);
  tmp = build_call_array_loc (input_location,
  tmp = build_call_array_loc (input_location,
                          TREE_TYPE (TREE_TYPE (gfor_fndecl_fdate)),
                          TREE_TYPE (TREE_TYPE (gfor_fndecl_fdate)),
                          fndecl, num_args, args);
                          fndecl, num_args, args);
  gfc_add_expr_to_block (&se->pre, tmp);
  gfc_add_expr_to_block (&se->pre, tmp);
 
 
  /* Free the temporary afterwards, if necessary.  */
  /* Free the temporary afterwards, if necessary.  */
  cond = fold_build2 (GT_EXPR, boolean_type_node,
  cond = fold_build2 (GT_EXPR, boolean_type_node,
                      len, build_int_cst (TREE_TYPE (len), 0));
                      len, build_int_cst (TREE_TYPE (len), 0));
  tmp = gfc_call_free (var);
  tmp = gfc_call_free (var);
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&se->post, tmp);
  gfc_add_expr_to_block (&se->post, tmp);
 
 
  se->expr = var;
  se->expr = var;
  se->string_length = len;
  se->string_length = len;
}
}
 
 
 
 
/* Return a character string containing the tty name.  */
/* Return a character string containing the tty name.  */
 
 
static void
static void
gfc_conv_intrinsic_ttynam (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_ttynam (gfc_se * se, gfc_expr * expr)
{
{
  tree var;
  tree var;
  tree len;
  tree len;
  tree tmp;
  tree tmp;
  tree cond;
  tree cond;
  tree fndecl;
  tree fndecl;
  tree *args;
  tree *args;
  unsigned int num_args;
  unsigned int num_args;
 
 
  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
  args = (tree *) alloca (sizeof (tree) * num_args);
  args = (tree *) alloca (sizeof (tree) * num_args);
 
 
  var = gfc_create_var (pchar_type_node, "pstr");
  var = gfc_create_var (pchar_type_node, "pstr");
  len = gfc_create_var (gfc_get_int_type (4), "len");
  len = gfc_create_var (gfc_get_int_type (4), "len");
 
 
  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
  args[0] = gfc_build_addr_expr (NULL_TREE, var);
  args[0] = gfc_build_addr_expr (NULL_TREE, var);
  args[1] = gfc_build_addr_expr (NULL_TREE, len);
  args[1] = gfc_build_addr_expr (NULL_TREE, len);
 
 
  fndecl = build_addr (gfor_fndecl_ttynam, current_function_decl);
  fndecl = build_addr (gfor_fndecl_ttynam, current_function_decl);
  tmp = build_call_array_loc (input_location,
  tmp = build_call_array_loc (input_location,
                          TREE_TYPE (TREE_TYPE (gfor_fndecl_ttynam)),
                          TREE_TYPE (TREE_TYPE (gfor_fndecl_ttynam)),
                          fndecl, num_args, args);
                          fndecl, num_args, args);
  gfc_add_expr_to_block (&se->pre, tmp);
  gfc_add_expr_to_block (&se->pre, tmp);
 
 
  /* Free the temporary afterwards, if necessary.  */
  /* Free the temporary afterwards, if necessary.  */
  cond = fold_build2 (GT_EXPR, boolean_type_node,
  cond = fold_build2 (GT_EXPR, boolean_type_node,
                      len, build_int_cst (TREE_TYPE (len), 0));
                      len, build_int_cst (TREE_TYPE (len), 0));
  tmp = gfc_call_free (var);
  tmp = gfc_call_free (var);
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&se->post, tmp);
  gfc_add_expr_to_block (&se->post, tmp);
 
 
  se->expr = var;
  se->expr = var;
  se->string_length = len;
  se->string_length = len;
}
}
 
 
 
 
/* Get the minimum/maximum value of all the parameters.
/* Get the minimum/maximum value of all the parameters.
    minmax (a1, a2, a3, ...)
    minmax (a1, a2, a3, ...)
    {
    {
      mvar = a1;
      mvar = a1;
      if (a2 .op. mvar || isnan(mvar))
      if (a2 .op. mvar || isnan(mvar))
        mvar = a2;
        mvar = a2;
      if (a3 .op. mvar || isnan(mvar))
      if (a3 .op. mvar || isnan(mvar))
        mvar = a3;
        mvar = a3;
      ...
      ...
      return mvar
      return mvar
    }
    }
 */
 */
 
 
/* TODO: Mismatching types can occur when specific names are used.
/* TODO: Mismatching types can occur when specific names are used.
   These should be handled during resolution.  */
   These should be handled during resolution.  */
static void
static void
gfc_conv_intrinsic_minmax (gfc_se * se, gfc_expr * expr, enum tree_code op)
gfc_conv_intrinsic_minmax (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
{
  tree tmp;
  tree tmp;
  tree mvar;
  tree mvar;
  tree val;
  tree val;
  tree thencase;
  tree thencase;
  tree *args;
  tree *args;
  tree type;
  tree type;
  gfc_actual_arglist *argexpr;
  gfc_actual_arglist *argexpr;
  unsigned int i, nargs;
  unsigned int i, nargs;
 
 
  nargs = gfc_intrinsic_argument_list_length (expr);
  nargs = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * nargs);
  args = (tree *) alloca (sizeof (tree) * nargs);
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, nargs);
  gfc_conv_intrinsic_function_args (se, expr, args, nargs);
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
 
 
  argexpr = expr->value.function.actual;
  argexpr = expr->value.function.actual;
  if (TREE_TYPE (args[0]) != type)
  if (TREE_TYPE (args[0]) != type)
    args[0] = convert (type, args[0]);
    args[0] = convert (type, args[0]);
  /* Only evaluate the argument once.  */
  /* Only evaluate the argument once.  */
  if (TREE_CODE (args[0]) != VAR_DECL && !TREE_CONSTANT (args[0]))
  if (TREE_CODE (args[0]) != VAR_DECL && !TREE_CONSTANT (args[0]))
    args[0] = gfc_evaluate_now (args[0], &se->pre);
    args[0] = gfc_evaluate_now (args[0], &se->pre);
 
 
  mvar = gfc_create_var (type, "M");
  mvar = gfc_create_var (type, "M");
  gfc_add_modify (&se->pre, mvar, args[0]);
  gfc_add_modify (&se->pre, mvar, args[0]);
  for (i = 1, argexpr = argexpr->next; i < nargs; i++)
  for (i = 1, argexpr = argexpr->next; i < nargs; i++)
    {
    {
      tree cond, isnan;
      tree cond, isnan;
 
 
      val = args[i];
      val = args[i];
 
 
      /* Handle absent optional arguments by ignoring the comparison.  */
      /* Handle absent optional arguments by ignoring the comparison.  */
      if (argexpr->expr->expr_type == EXPR_VARIABLE
      if (argexpr->expr->expr_type == EXPR_VARIABLE
          && argexpr->expr->symtree->n.sym->attr.optional
          && argexpr->expr->symtree->n.sym->attr.optional
          && TREE_CODE (val) == INDIRECT_REF)
          && TREE_CODE (val) == INDIRECT_REF)
        cond = fold_build2_loc (input_location,
        cond = fold_build2_loc (input_location,
                                NE_EXPR, boolean_type_node,
                                NE_EXPR, boolean_type_node,
                                TREE_OPERAND (val, 0),
                                TREE_OPERAND (val, 0),
                        build_int_cst (TREE_TYPE (TREE_OPERAND (val, 0)), 0));
                        build_int_cst (TREE_TYPE (TREE_OPERAND (val, 0)), 0));
      else
      else
      {
      {
        cond = NULL_TREE;
        cond = NULL_TREE;
 
 
        /* Only evaluate the argument once.  */
        /* Only evaluate the argument once.  */
        if (TREE_CODE (val) != VAR_DECL && !TREE_CONSTANT (val))
        if (TREE_CODE (val) != VAR_DECL && !TREE_CONSTANT (val))
          val = gfc_evaluate_now (val, &se->pre);
          val = gfc_evaluate_now (val, &se->pre);
      }
      }
 
 
      thencase = build2_v (MODIFY_EXPR, mvar, convert (type, val));
      thencase = build2_v (MODIFY_EXPR, mvar, convert (type, val));
 
 
      tmp = fold_build2 (op, boolean_type_node, convert (type, val), mvar);
      tmp = fold_build2 (op, boolean_type_node, convert (type, val), mvar);
 
 
      /* FIXME: When the IEEE_ARITHMETIC module is implemented, the call to
      /* FIXME: When the IEEE_ARITHMETIC module is implemented, the call to
         __builtin_isnan might be made dependent on that module being loaded,
         __builtin_isnan might be made dependent on that module being loaded,
         to help performance of programs that don't rely on IEEE semantics.  */
         to help performance of programs that don't rely on IEEE semantics.  */
      if (FLOAT_TYPE_P (TREE_TYPE (mvar)))
      if (FLOAT_TYPE_P (TREE_TYPE (mvar)))
        {
        {
          isnan = build_call_expr_loc (input_location,
          isnan = build_call_expr_loc (input_location,
                                   built_in_decls[BUILT_IN_ISNAN], 1, mvar);
                                   built_in_decls[BUILT_IN_ISNAN], 1, mvar);
          tmp = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, tmp,
          tmp = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, tmp,
                             fold_convert (boolean_type_node, isnan));
                             fold_convert (boolean_type_node, isnan));
        }
        }
      tmp = build3_v (COND_EXPR, tmp, thencase,
      tmp = build3_v (COND_EXPR, tmp, thencase,
                      build_empty_stmt (input_location));
                      build_empty_stmt (input_location));
 
 
      if (cond != NULL_TREE)
      if (cond != NULL_TREE)
        tmp = build3_v (COND_EXPR, cond, tmp,
        tmp = build3_v (COND_EXPR, cond, tmp,
                        build_empty_stmt (input_location));
                        build_empty_stmt (input_location));
 
 
      gfc_add_expr_to_block (&se->pre, tmp);
      gfc_add_expr_to_block (&se->pre, tmp);
      argexpr = argexpr->next;
      argexpr = argexpr->next;
    }
    }
  se->expr = mvar;
  se->expr = mvar;
}
}
 
 
 
 
/* Generate library calls for MIN and MAX intrinsics for character
/* Generate library calls for MIN and MAX intrinsics for character
   variables.  */
   variables.  */
static void
static void
gfc_conv_intrinsic_minmax_char (gfc_se * se, gfc_expr * expr, int op)
gfc_conv_intrinsic_minmax_char (gfc_se * se, gfc_expr * expr, int op)
{
{
  tree *args;
  tree *args;
  tree var, len, fndecl, tmp, cond, function;
  tree var, len, fndecl, tmp, cond, function;
  unsigned int nargs;
  unsigned int nargs;
 
 
  nargs = gfc_intrinsic_argument_list_length (expr);
  nargs = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * (nargs + 4));
  args = (tree *) alloca (sizeof (tree) * (nargs + 4));
  gfc_conv_intrinsic_function_args (se, expr, &args[4], nargs);
  gfc_conv_intrinsic_function_args (se, expr, &args[4], nargs);
 
 
  /* Create the result variables.  */
  /* Create the result variables.  */
  len = gfc_create_var (gfc_charlen_type_node, "len");
  len = gfc_create_var (gfc_charlen_type_node, "len");
  args[0] = gfc_build_addr_expr (NULL_TREE, len);
  args[0] = gfc_build_addr_expr (NULL_TREE, len);
  var = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), "pstr");
  var = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), "pstr");
  args[1] = gfc_build_addr_expr (ppvoid_type_node, var);
  args[1] = gfc_build_addr_expr (ppvoid_type_node, var);
  args[2] = build_int_cst (NULL_TREE, op);
  args[2] = build_int_cst (NULL_TREE, op);
  args[3] = build_int_cst (NULL_TREE, nargs / 2);
  args[3] = build_int_cst (NULL_TREE, nargs / 2);
 
 
  if (expr->ts.kind == 1)
  if (expr->ts.kind == 1)
    function = gfor_fndecl_string_minmax;
    function = gfor_fndecl_string_minmax;
  else if (expr->ts.kind == 4)
  else if (expr->ts.kind == 4)
    function = gfor_fndecl_string_minmax_char4;
    function = gfor_fndecl_string_minmax_char4;
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  /* Make the function call.  */
  /* Make the function call.  */
  fndecl = build_addr (function, current_function_decl);
  fndecl = build_addr (function, current_function_decl);
  tmp = build_call_array_loc (input_location,
  tmp = build_call_array_loc (input_location,
                          TREE_TYPE (TREE_TYPE (function)), fndecl,
                          TREE_TYPE (TREE_TYPE (function)), fndecl,
                          nargs + 4, args);
                          nargs + 4, args);
  gfc_add_expr_to_block (&se->pre, tmp);
  gfc_add_expr_to_block (&se->pre, tmp);
 
 
  /* Free the temporary afterwards, if necessary.  */
  /* Free the temporary afterwards, if necessary.  */
  cond = fold_build2 (GT_EXPR, boolean_type_node,
  cond = fold_build2 (GT_EXPR, boolean_type_node,
                      len, build_int_cst (TREE_TYPE (len), 0));
                      len, build_int_cst (TREE_TYPE (len), 0));
  tmp = gfc_call_free (var);
  tmp = gfc_call_free (var);
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&se->post, tmp);
  gfc_add_expr_to_block (&se->post, tmp);
 
 
  se->expr = var;
  se->expr = var;
  se->string_length = len;
  se->string_length = len;
}
}
 
 
 
 
/* Create a symbol node for this intrinsic.  The symbol from the frontend
/* Create a symbol node for this intrinsic.  The symbol from the frontend
   has the generic name.  */
   has the generic name.  */
 
 
static gfc_symbol *
static gfc_symbol *
gfc_get_symbol_for_expr (gfc_expr * expr)
gfc_get_symbol_for_expr (gfc_expr * expr)
{
{
  gfc_symbol *sym;
  gfc_symbol *sym;
 
 
  /* TODO: Add symbols for intrinsic function to the global namespace.  */
  /* TODO: Add symbols for intrinsic function to the global namespace.  */
  gcc_assert (strlen (expr->value.function.name) <= GFC_MAX_SYMBOL_LEN - 5);
  gcc_assert (strlen (expr->value.function.name) <= GFC_MAX_SYMBOL_LEN - 5);
  sym = gfc_new_symbol (expr->value.function.name, NULL);
  sym = gfc_new_symbol (expr->value.function.name, NULL);
 
 
  sym->ts = expr->ts;
  sym->ts = expr->ts;
  sym->attr.external = 1;
  sym->attr.external = 1;
  sym->attr.function = 1;
  sym->attr.function = 1;
  sym->attr.always_explicit = 1;
  sym->attr.always_explicit = 1;
  sym->attr.proc = PROC_INTRINSIC;
  sym->attr.proc = PROC_INTRINSIC;
  sym->attr.flavor = FL_PROCEDURE;
  sym->attr.flavor = FL_PROCEDURE;
  sym->result = sym;
  sym->result = sym;
  if (expr->rank > 0)
  if (expr->rank > 0)
    {
    {
      sym->attr.dimension = 1;
      sym->attr.dimension = 1;
      sym->as = gfc_get_array_spec ();
      sym->as = gfc_get_array_spec ();
      sym->as->type = AS_ASSUMED_SHAPE;
      sym->as->type = AS_ASSUMED_SHAPE;
      sym->as->rank = expr->rank;
      sym->as->rank = expr->rank;
    }
    }
 
 
  /* TODO: proper argument lists for external intrinsics.  */
  /* TODO: proper argument lists for external intrinsics.  */
  return sym;
  return sym;
}
}
 
 
/* Generate a call to an external intrinsic function.  */
/* Generate a call to an external intrinsic function.  */
static void
static void
gfc_conv_intrinsic_funcall (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_funcall (gfc_se * se, gfc_expr * expr)
{
{
  gfc_symbol *sym;
  gfc_symbol *sym;
  tree append_args;
  tree append_args;
 
 
  gcc_assert (!se->ss || se->ss->expr == expr);
  gcc_assert (!se->ss || se->ss->expr == expr);
 
 
  if (se->ss)
  if (se->ss)
    gcc_assert (expr->rank > 0);
    gcc_assert (expr->rank > 0);
  else
  else
    gcc_assert (expr->rank == 0);
    gcc_assert (expr->rank == 0);
 
 
  sym = gfc_get_symbol_for_expr (expr);
  sym = gfc_get_symbol_for_expr (expr);
 
 
  /* Calls to libgfortran_matmul need to be appended special arguments,
  /* Calls to libgfortran_matmul need to be appended special arguments,
     to be able to call the BLAS ?gemm functions if required and possible.  */
     to be able to call the BLAS ?gemm functions if required and possible.  */
  append_args = NULL_TREE;
  append_args = NULL_TREE;
  if (expr->value.function.isym->id == GFC_ISYM_MATMUL
  if (expr->value.function.isym->id == GFC_ISYM_MATMUL
      && sym->ts.type != BT_LOGICAL)
      && sym->ts.type != BT_LOGICAL)
    {
    {
      tree cint = gfc_get_int_type (gfc_c_int_kind);
      tree cint = gfc_get_int_type (gfc_c_int_kind);
 
 
      if (gfc_option.flag_external_blas
      if (gfc_option.flag_external_blas
          && (sym->ts.type == BT_REAL || sym->ts.type == BT_COMPLEX)
          && (sym->ts.type == BT_REAL || sym->ts.type == BT_COMPLEX)
          && (sym->ts.kind == gfc_default_real_kind
          && (sym->ts.kind == gfc_default_real_kind
              || sym->ts.kind == gfc_default_double_kind))
              || sym->ts.kind == gfc_default_double_kind))
        {
        {
          tree gemm_fndecl;
          tree gemm_fndecl;
 
 
          if (sym->ts.type == BT_REAL)
          if (sym->ts.type == BT_REAL)
            {
            {
              if (sym->ts.kind == gfc_default_real_kind)
              if (sym->ts.kind == gfc_default_real_kind)
                gemm_fndecl = gfor_fndecl_sgemm;
                gemm_fndecl = gfor_fndecl_sgemm;
              else
              else
                gemm_fndecl = gfor_fndecl_dgemm;
                gemm_fndecl = gfor_fndecl_dgemm;
            }
            }
          else
          else
            {
            {
              if (sym->ts.kind == gfc_default_real_kind)
              if (sym->ts.kind == gfc_default_real_kind)
                gemm_fndecl = gfor_fndecl_cgemm;
                gemm_fndecl = gfor_fndecl_cgemm;
              else
              else
                gemm_fndecl = gfor_fndecl_zgemm;
                gemm_fndecl = gfor_fndecl_zgemm;
            }
            }
 
 
          append_args = gfc_chainon_list (NULL_TREE, build_int_cst (cint, 1));
          append_args = gfc_chainon_list (NULL_TREE, build_int_cst (cint, 1));
          append_args = gfc_chainon_list
          append_args = gfc_chainon_list
                          (append_args, build_int_cst
                          (append_args, build_int_cst
                                          (cint, gfc_option.blas_matmul_limit));
                                          (cint, gfc_option.blas_matmul_limit));
          append_args = gfc_chainon_list (append_args,
          append_args = gfc_chainon_list (append_args,
                                          gfc_build_addr_expr (NULL_TREE,
                                          gfc_build_addr_expr (NULL_TREE,
                                                               gemm_fndecl));
                                                               gemm_fndecl));
        }
        }
      else
      else
        {
        {
          append_args = gfc_chainon_list (NULL_TREE, build_int_cst (cint, 0));
          append_args = gfc_chainon_list (NULL_TREE, build_int_cst (cint, 0));
          append_args = gfc_chainon_list (append_args, build_int_cst (cint, 0));
          append_args = gfc_chainon_list (append_args, build_int_cst (cint, 0));
          append_args = gfc_chainon_list (append_args, null_pointer_node);
          append_args = gfc_chainon_list (append_args, null_pointer_node);
        }
        }
    }
    }
 
 
  gfc_conv_procedure_call (se, sym, expr->value.function.actual, expr,
  gfc_conv_procedure_call (se, sym, expr->value.function.actual, expr,
                          append_args);
                          append_args);
  gfc_free (sym);
  gfc_free (sym);
}
}
 
 
/* ANY and ALL intrinsics. ANY->op == NE_EXPR, ALL->op == EQ_EXPR.
/* ANY and ALL intrinsics. ANY->op == NE_EXPR, ALL->op == EQ_EXPR.
   Implemented as
   Implemented as
    any(a)
    any(a)
    {
    {
      forall (i=...)
      forall (i=...)
        if (a[i] != 0)
        if (a[i] != 0)
          return 1
          return 1
      end forall
      end forall
      return 0
      return 0
    }
    }
    all(a)
    all(a)
    {
    {
      forall (i=...)
      forall (i=...)
        if (a[i] == 0)
        if (a[i] == 0)
          return 0
          return 0
      end forall
      end forall
      return 1
      return 1
    }
    }
 */
 */
static void
static void
gfc_conv_intrinsic_anyall (gfc_se * se, gfc_expr * expr, enum tree_code op)
gfc_conv_intrinsic_anyall (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
{
  tree resvar;
  tree resvar;
  stmtblock_t block;
  stmtblock_t block;
  stmtblock_t body;
  stmtblock_t body;
  tree type;
  tree type;
  tree tmp;
  tree tmp;
  tree found;
  tree found;
  gfc_loopinfo loop;
  gfc_loopinfo loop;
  gfc_actual_arglist *actual;
  gfc_actual_arglist *actual;
  gfc_ss *arrayss;
  gfc_ss *arrayss;
  gfc_se arrayse;
  gfc_se arrayse;
  tree exit_label;
  tree exit_label;
 
 
  if (se->ss)
  if (se->ss)
    {
    {
      gfc_conv_intrinsic_funcall (se, expr);
      gfc_conv_intrinsic_funcall (se, expr);
      return;
      return;
    }
    }
 
 
  actual = expr->value.function.actual;
  actual = expr->value.function.actual;
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  /* Initialize the result.  */
  /* Initialize the result.  */
  resvar = gfc_create_var (type, "test");
  resvar = gfc_create_var (type, "test");
  if (op == EQ_EXPR)
  if (op == EQ_EXPR)
    tmp = convert (type, boolean_true_node);
    tmp = convert (type, boolean_true_node);
  else
  else
    tmp = convert (type, boolean_false_node);
    tmp = convert (type, boolean_false_node);
  gfc_add_modify (&se->pre, resvar, tmp);
  gfc_add_modify (&se->pre, resvar, tmp);
 
 
  /* Walk the arguments.  */
  /* Walk the arguments.  */
  arrayss = gfc_walk_expr (actual->expr);
  arrayss = gfc_walk_expr (actual->expr);
  gcc_assert (arrayss != gfc_ss_terminator);
  gcc_assert (arrayss != gfc_ss_terminator);
 
 
  /* Initialize the scalarizer.  */
  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);
  gfc_init_loopinfo (&loop);
  exit_label = gfc_build_label_decl (NULL_TREE);
  exit_label = gfc_build_label_decl (NULL_TREE);
  TREE_USED (exit_label) = 1;
  TREE_USED (exit_label) = 1;
  gfc_add_ss_to_loop (&loop, arrayss);
  gfc_add_ss_to_loop (&loop, arrayss);
 
 
  /* Initialize the loop.  */
  /* Initialize the loop.  */
  gfc_conv_ss_startstride (&loop);
  gfc_conv_ss_startstride (&loop);
  gfc_conv_loop_setup (&loop, &expr->where);
  gfc_conv_loop_setup (&loop, &expr->where);
 
 
  gfc_mark_ss_chain_used (arrayss, 1);
  gfc_mark_ss_chain_used (arrayss, 1);
  /* Generate the loop body.  */
  /* Generate the loop body.  */
  gfc_start_scalarized_body (&loop, &body);
  gfc_start_scalarized_body (&loop, &body);
 
 
  /* If the condition matches then set the return value.  */
  /* If the condition matches then set the return value.  */
  gfc_start_block (&block);
  gfc_start_block (&block);
  if (op == EQ_EXPR)
  if (op == EQ_EXPR)
    tmp = convert (type, boolean_false_node);
    tmp = convert (type, boolean_false_node);
  else
  else
    tmp = convert (type, boolean_true_node);
    tmp = convert (type, boolean_true_node);
  gfc_add_modify (&block, resvar, tmp);
  gfc_add_modify (&block, resvar, tmp);
 
 
  /* And break out of the loop.  */
  /* And break out of the loop.  */
  tmp = build1_v (GOTO_EXPR, exit_label);
  tmp = build1_v (GOTO_EXPR, exit_label);
  gfc_add_expr_to_block (&block, tmp);
  gfc_add_expr_to_block (&block, tmp);
 
 
  found = gfc_finish_block (&block);
  found = gfc_finish_block (&block);
 
 
  /* Check this element.  */
  /* Check this element.  */
  gfc_init_se (&arrayse, NULL);
  gfc_init_se (&arrayse, NULL);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  arrayse.ss = arrayss;
  arrayse.ss = arrayss;
  gfc_conv_expr_val (&arrayse, actual->expr);
  gfc_conv_expr_val (&arrayse, actual->expr);
 
 
  gfc_add_block_to_block (&body, &arrayse.pre);
  gfc_add_block_to_block (&body, &arrayse.pre);
  tmp = fold_build2 (op, boolean_type_node, arrayse.expr,
  tmp = fold_build2 (op, boolean_type_node, arrayse.expr,
                     build_int_cst (TREE_TYPE (arrayse.expr), 0));
                     build_int_cst (TREE_TYPE (arrayse.expr), 0));
  tmp = build3_v (COND_EXPR, tmp, found, build_empty_stmt (input_location));
  tmp = build3_v (COND_EXPR, tmp, found, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&body, tmp);
  gfc_add_expr_to_block (&body, tmp);
  gfc_add_block_to_block (&body, &arrayse.post);
  gfc_add_block_to_block (&body, &arrayse.post);
 
 
  gfc_trans_scalarizing_loops (&loop, &body);
  gfc_trans_scalarizing_loops (&loop, &body);
 
 
  /* Add the exit label.  */
  /* Add the exit label.  */
  tmp = build1_v (LABEL_EXPR, exit_label);
  tmp = build1_v (LABEL_EXPR, exit_label);
  gfc_add_expr_to_block (&loop.pre, tmp);
  gfc_add_expr_to_block (&loop.pre, tmp);
 
 
  gfc_add_block_to_block (&se->pre, &loop.pre);
  gfc_add_block_to_block (&se->pre, &loop.pre);
  gfc_add_block_to_block (&se->pre, &loop.post);
  gfc_add_block_to_block (&se->pre, &loop.post);
  gfc_cleanup_loop (&loop);
  gfc_cleanup_loop (&loop);
 
 
  se->expr = resvar;
  se->expr = resvar;
}
}
 
 
/* COUNT(A) = Number of true elements in A.  */
/* COUNT(A) = Number of true elements in A.  */
static void
static void
gfc_conv_intrinsic_count (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_count (gfc_se * se, gfc_expr * expr)
{
{
  tree resvar;
  tree resvar;
  tree type;
  tree type;
  stmtblock_t body;
  stmtblock_t body;
  tree tmp;
  tree tmp;
  gfc_loopinfo loop;
  gfc_loopinfo loop;
  gfc_actual_arglist *actual;
  gfc_actual_arglist *actual;
  gfc_ss *arrayss;
  gfc_ss *arrayss;
  gfc_se arrayse;
  gfc_se arrayse;
 
 
  if (se->ss)
  if (se->ss)
    {
    {
      gfc_conv_intrinsic_funcall (se, expr);
      gfc_conv_intrinsic_funcall (se, expr);
      return;
      return;
    }
    }
 
 
  actual = expr->value.function.actual;
  actual = expr->value.function.actual;
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  /* Initialize the result.  */
  /* Initialize the result.  */
  resvar = gfc_create_var (type, "count");
  resvar = gfc_create_var (type, "count");
  gfc_add_modify (&se->pre, resvar, build_int_cst (type, 0));
  gfc_add_modify (&se->pre, resvar, build_int_cst (type, 0));
 
 
  /* Walk the arguments.  */
  /* Walk the arguments.  */
  arrayss = gfc_walk_expr (actual->expr);
  arrayss = gfc_walk_expr (actual->expr);
  gcc_assert (arrayss != gfc_ss_terminator);
  gcc_assert (arrayss != gfc_ss_terminator);
 
 
  /* Initialize the scalarizer.  */
  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);
  gfc_init_loopinfo (&loop);
  gfc_add_ss_to_loop (&loop, arrayss);
  gfc_add_ss_to_loop (&loop, arrayss);
 
 
  /* Initialize the loop.  */
  /* Initialize the loop.  */
  gfc_conv_ss_startstride (&loop);
  gfc_conv_ss_startstride (&loop);
  gfc_conv_loop_setup (&loop, &expr->where);
  gfc_conv_loop_setup (&loop, &expr->where);
 
 
  gfc_mark_ss_chain_used (arrayss, 1);
  gfc_mark_ss_chain_used (arrayss, 1);
  /* Generate the loop body.  */
  /* Generate the loop body.  */
  gfc_start_scalarized_body (&loop, &body);
  gfc_start_scalarized_body (&loop, &body);
 
 
  tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (resvar),
  tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (resvar),
                     resvar, build_int_cst (TREE_TYPE (resvar), 1));
                     resvar, build_int_cst (TREE_TYPE (resvar), 1));
  tmp = build2_v (MODIFY_EXPR, resvar, tmp);
  tmp = build2_v (MODIFY_EXPR, resvar, tmp);
 
 
  gfc_init_se (&arrayse, NULL);
  gfc_init_se (&arrayse, NULL);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  arrayse.ss = arrayss;
  arrayse.ss = arrayss;
  gfc_conv_expr_val (&arrayse, actual->expr);
  gfc_conv_expr_val (&arrayse, actual->expr);
  tmp = build3_v (COND_EXPR, arrayse.expr, tmp,
  tmp = build3_v (COND_EXPR, arrayse.expr, tmp,
                  build_empty_stmt (input_location));
                  build_empty_stmt (input_location));
 
 
  gfc_add_block_to_block (&body, &arrayse.pre);
  gfc_add_block_to_block (&body, &arrayse.pre);
  gfc_add_expr_to_block (&body, tmp);
  gfc_add_expr_to_block (&body, tmp);
  gfc_add_block_to_block (&body, &arrayse.post);
  gfc_add_block_to_block (&body, &arrayse.post);
 
 
  gfc_trans_scalarizing_loops (&loop, &body);
  gfc_trans_scalarizing_loops (&loop, &body);
 
 
  gfc_add_block_to_block (&se->pre, &loop.pre);
  gfc_add_block_to_block (&se->pre, &loop.pre);
  gfc_add_block_to_block (&se->pre, &loop.post);
  gfc_add_block_to_block (&se->pre, &loop.post);
  gfc_cleanup_loop (&loop);
  gfc_cleanup_loop (&loop);
 
 
  se->expr = resvar;
  se->expr = resvar;
}
}
 
 
/* Inline implementation of the sum and product intrinsics.  */
/* Inline implementation of the sum and product intrinsics.  */
static void
static void
gfc_conv_intrinsic_arith (gfc_se * se, gfc_expr * expr, enum tree_code op)
gfc_conv_intrinsic_arith (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
{
  tree resvar;
  tree resvar;
  tree type;
  tree type;
  stmtblock_t body;
  stmtblock_t body;
  stmtblock_t block;
  stmtblock_t block;
  tree tmp;
  tree tmp;
  gfc_loopinfo loop;
  gfc_loopinfo loop;
  gfc_actual_arglist *actual;
  gfc_actual_arglist *actual;
  gfc_ss *arrayss;
  gfc_ss *arrayss;
  gfc_ss *maskss;
  gfc_ss *maskss;
  gfc_se arrayse;
  gfc_se arrayse;
  gfc_se maskse;
  gfc_se maskse;
  gfc_expr *arrayexpr;
  gfc_expr *arrayexpr;
  gfc_expr *maskexpr;
  gfc_expr *maskexpr;
 
 
  if (se->ss)
  if (se->ss)
    {
    {
      gfc_conv_intrinsic_funcall (se, expr);
      gfc_conv_intrinsic_funcall (se, expr);
      return;
      return;
    }
    }
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  /* Initialize the result.  */
  /* Initialize the result.  */
  resvar = gfc_create_var (type, "val");
  resvar = gfc_create_var (type, "val");
  if (op == PLUS_EXPR)
  if (op == PLUS_EXPR)
    tmp = gfc_build_const (type, integer_zero_node);
    tmp = gfc_build_const (type, integer_zero_node);
  else
  else
    tmp = gfc_build_const (type, integer_one_node);
    tmp = gfc_build_const (type, integer_one_node);
 
 
  gfc_add_modify (&se->pre, resvar, tmp);
  gfc_add_modify (&se->pre, resvar, tmp);
 
 
  /* Walk the arguments.  */
  /* Walk the arguments.  */
  actual = expr->value.function.actual;
  actual = expr->value.function.actual;
  arrayexpr = actual->expr;
  arrayexpr = actual->expr;
  arrayss = gfc_walk_expr (arrayexpr);
  arrayss = gfc_walk_expr (arrayexpr);
  gcc_assert (arrayss != gfc_ss_terminator);
  gcc_assert (arrayss != gfc_ss_terminator);
 
 
  actual = actual->next->next;
  actual = actual->next->next;
  gcc_assert (actual);
  gcc_assert (actual);
  maskexpr = actual->expr;
  maskexpr = actual->expr;
  if (maskexpr && maskexpr->rank != 0)
  if (maskexpr && maskexpr->rank != 0)
    {
    {
      maskss = gfc_walk_expr (maskexpr);
      maskss = gfc_walk_expr (maskexpr);
      gcc_assert (maskss != gfc_ss_terminator);
      gcc_assert (maskss != gfc_ss_terminator);
    }
    }
  else
  else
    maskss = NULL;
    maskss = NULL;
 
 
  /* Initialize the scalarizer.  */
  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);
  gfc_init_loopinfo (&loop);
  gfc_add_ss_to_loop (&loop, arrayss);
  gfc_add_ss_to_loop (&loop, arrayss);
  if (maskss)
  if (maskss)
    gfc_add_ss_to_loop (&loop, maskss);
    gfc_add_ss_to_loop (&loop, maskss);
 
 
  /* Initialize the loop.  */
  /* Initialize the loop.  */
  gfc_conv_ss_startstride (&loop);
  gfc_conv_ss_startstride (&loop);
  gfc_conv_loop_setup (&loop, &expr->where);
  gfc_conv_loop_setup (&loop, &expr->where);
 
 
  gfc_mark_ss_chain_used (arrayss, 1);
  gfc_mark_ss_chain_used (arrayss, 1);
  if (maskss)
  if (maskss)
    gfc_mark_ss_chain_used (maskss, 1);
    gfc_mark_ss_chain_used (maskss, 1);
  /* Generate the loop body.  */
  /* Generate the loop body.  */
  gfc_start_scalarized_body (&loop, &body);
  gfc_start_scalarized_body (&loop, &body);
 
 
  /* If we have a mask, only add this element if the mask is set.  */
  /* If we have a mask, only add this element if the mask is set.  */
  if (maskss)
  if (maskss)
    {
    {
      gfc_init_se (&maskse, NULL);
      gfc_init_se (&maskse, NULL);
      gfc_copy_loopinfo_to_se (&maskse, &loop);
      gfc_copy_loopinfo_to_se (&maskse, &loop);
      maskse.ss = maskss;
      maskse.ss = maskss;
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_add_block_to_block (&body, &maskse.pre);
      gfc_add_block_to_block (&body, &maskse.pre);
 
 
      gfc_start_block (&block);
      gfc_start_block (&block);
    }
    }
  else
  else
    gfc_init_block (&block);
    gfc_init_block (&block);
 
 
  /* Do the actual summation/product.  */
  /* Do the actual summation/product.  */
  gfc_init_se (&arrayse, NULL);
  gfc_init_se (&arrayse, NULL);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  arrayse.ss = arrayss;
  arrayse.ss = arrayss;
  gfc_conv_expr_val (&arrayse, arrayexpr);
  gfc_conv_expr_val (&arrayse, arrayexpr);
  gfc_add_block_to_block (&block, &arrayse.pre);
  gfc_add_block_to_block (&block, &arrayse.pre);
 
 
  tmp = fold_build2 (op, type, resvar, arrayse.expr);
  tmp = fold_build2 (op, type, resvar, arrayse.expr);
  gfc_add_modify (&block, resvar, tmp);
  gfc_add_modify (&block, resvar, tmp);
  gfc_add_block_to_block (&block, &arrayse.post);
  gfc_add_block_to_block (&block, &arrayse.post);
 
 
  if (maskss)
  if (maskss)
    {
    {
      /* We enclose the above in if (mask) {...} .  */
      /* We enclose the above in if (mask) {...} .  */
      tmp = gfc_finish_block (&block);
      tmp = gfc_finish_block (&block);
 
 
      tmp = build3_v (COND_EXPR, maskse.expr, tmp,
      tmp = build3_v (COND_EXPR, maskse.expr, tmp,
                      build_empty_stmt (input_location));
                      build_empty_stmt (input_location));
    }
    }
  else
  else
    tmp = gfc_finish_block (&block);
    tmp = gfc_finish_block (&block);
  gfc_add_expr_to_block (&body, tmp);
  gfc_add_expr_to_block (&body, tmp);
 
 
  gfc_trans_scalarizing_loops (&loop, &body);
  gfc_trans_scalarizing_loops (&loop, &body);
 
 
  /* For a scalar mask, enclose the loop in an if statement.  */
  /* For a scalar mask, enclose the loop in an if statement.  */
  if (maskexpr && maskss == NULL)
  if (maskexpr && maskss == NULL)
    {
    {
      gfc_init_se (&maskse, NULL);
      gfc_init_se (&maskse, NULL);
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_init_block (&block);
      gfc_init_block (&block);
      gfc_add_block_to_block (&block, &loop.pre);
      gfc_add_block_to_block (&block, &loop.pre);
      gfc_add_block_to_block (&block, &loop.post);
      gfc_add_block_to_block (&block, &loop.post);
      tmp = gfc_finish_block (&block);
      tmp = gfc_finish_block (&block);
 
 
      tmp = build3_v (COND_EXPR, maskse.expr, tmp,
      tmp = build3_v (COND_EXPR, maskse.expr, tmp,
                      build_empty_stmt (input_location));
                      build_empty_stmt (input_location));
      gfc_add_expr_to_block (&block, tmp);
      gfc_add_expr_to_block (&block, tmp);
      gfc_add_block_to_block (&se->pre, &block);
      gfc_add_block_to_block (&se->pre, &block);
    }
    }
  else
  else
    {
    {
      gfc_add_block_to_block (&se->pre, &loop.pre);
      gfc_add_block_to_block (&se->pre, &loop.pre);
      gfc_add_block_to_block (&se->pre, &loop.post);
      gfc_add_block_to_block (&se->pre, &loop.post);
    }
    }
 
 
  gfc_cleanup_loop (&loop);
  gfc_cleanup_loop (&loop);
 
 
  se->expr = resvar;
  se->expr = resvar;
}
}
 
 
 
 
/* Inline implementation of the dot_product intrinsic. This function
/* Inline implementation of the dot_product intrinsic. This function
   is based on gfc_conv_intrinsic_arith (the previous function).  */
   is based on gfc_conv_intrinsic_arith (the previous function).  */
static void
static void
gfc_conv_intrinsic_dot_product (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_dot_product (gfc_se * se, gfc_expr * expr)
{
{
  tree resvar;
  tree resvar;
  tree type;
  tree type;
  stmtblock_t body;
  stmtblock_t body;
  stmtblock_t block;
  stmtblock_t block;
  tree tmp;
  tree tmp;
  gfc_loopinfo loop;
  gfc_loopinfo loop;
  gfc_actual_arglist *actual;
  gfc_actual_arglist *actual;
  gfc_ss *arrayss1, *arrayss2;
  gfc_ss *arrayss1, *arrayss2;
  gfc_se arrayse1, arrayse2;
  gfc_se arrayse1, arrayse2;
  gfc_expr *arrayexpr1, *arrayexpr2;
  gfc_expr *arrayexpr1, *arrayexpr2;
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
 
 
  /* Initialize the result.  */
  /* Initialize the result.  */
  resvar = gfc_create_var (type, "val");
  resvar = gfc_create_var (type, "val");
  if (expr->ts.type == BT_LOGICAL)
  if (expr->ts.type == BT_LOGICAL)
    tmp = build_int_cst (type, 0);
    tmp = build_int_cst (type, 0);
  else
  else
    tmp = gfc_build_const (type, integer_zero_node);
    tmp = gfc_build_const (type, integer_zero_node);
 
 
  gfc_add_modify (&se->pre, resvar, tmp);
  gfc_add_modify (&se->pre, resvar, tmp);
 
 
  /* Walk argument #1.  */
  /* Walk argument #1.  */
  actual = expr->value.function.actual;
  actual = expr->value.function.actual;
  arrayexpr1 = actual->expr;
  arrayexpr1 = actual->expr;
  arrayss1 = gfc_walk_expr (arrayexpr1);
  arrayss1 = gfc_walk_expr (arrayexpr1);
  gcc_assert (arrayss1 != gfc_ss_terminator);
  gcc_assert (arrayss1 != gfc_ss_terminator);
 
 
  /* Walk argument #2.  */
  /* Walk argument #2.  */
  actual = actual->next;
  actual = actual->next;
  arrayexpr2 = actual->expr;
  arrayexpr2 = actual->expr;
  arrayss2 = gfc_walk_expr (arrayexpr2);
  arrayss2 = gfc_walk_expr (arrayexpr2);
  gcc_assert (arrayss2 != gfc_ss_terminator);
  gcc_assert (arrayss2 != gfc_ss_terminator);
 
 
  /* Initialize the scalarizer.  */
  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);
  gfc_init_loopinfo (&loop);
  gfc_add_ss_to_loop (&loop, arrayss1);
  gfc_add_ss_to_loop (&loop, arrayss1);
  gfc_add_ss_to_loop (&loop, arrayss2);
  gfc_add_ss_to_loop (&loop, arrayss2);
 
 
  /* Initialize the loop.  */
  /* Initialize the loop.  */
  gfc_conv_ss_startstride (&loop);
  gfc_conv_ss_startstride (&loop);
  gfc_conv_loop_setup (&loop, &expr->where);
  gfc_conv_loop_setup (&loop, &expr->where);
 
 
  gfc_mark_ss_chain_used (arrayss1, 1);
  gfc_mark_ss_chain_used (arrayss1, 1);
  gfc_mark_ss_chain_used (arrayss2, 1);
  gfc_mark_ss_chain_used (arrayss2, 1);
 
 
  /* Generate the loop body.  */
  /* Generate the loop body.  */
  gfc_start_scalarized_body (&loop, &body);
  gfc_start_scalarized_body (&loop, &body);
  gfc_init_block (&block);
  gfc_init_block (&block);
 
 
  /* Make the tree expression for [conjg(]array1[)].  */
  /* Make the tree expression for [conjg(]array1[)].  */
  gfc_init_se (&arrayse1, NULL);
  gfc_init_se (&arrayse1, NULL);
  gfc_copy_loopinfo_to_se (&arrayse1, &loop);
  gfc_copy_loopinfo_to_se (&arrayse1, &loop);
  arrayse1.ss = arrayss1;
  arrayse1.ss = arrayss1;
  gfc_conv_expr_val (&arrayse1, arrayexpr1);
  gfc_conv_expr_val (&arrayse1, arrayexpr1);
  if (expr->ts.type == BT_COMPLEX)
  if (expr->ts.type == BT_COMPLEX)
    arrayse1.expr = fold_build1 (CONJ_EXPR, type, arrayse1.expr);
    arrayse1.expr = fold_build1 (CONJ_EXPR, type, arrayse1.expr);
  gfc_add_block_to_block (&block, &arrayse1.pre);
  gfc_add_block_to_block (&block, &arrayse1.pre);
 
 
  /* Make the tree expression for array2.  */
  /* Make the tree expression for array2.  */
  gfc_init_se (&arrayse2, NULL);
  gfc_init_se (&arrayse2, NULL);
  gfc_copy_loopinfo_to_se (&arrayse2, &loop);
  gfc_copy_loopinfo_to_se (&arrayse2, &loop);
  arrayse2.ss = arrayss2;
  arrayse2.ss = arrayss2;
  gfc_conv_expr_val (&arrayse2, arrayexpr2);
  gfc_conv_expr_val (&arrayse2, arrayexpr2);
  gfc_add_block_to_block (&block, &arrayse2.pre);
  gfc_add_block_to_block (&block, &arrayse2.pre);
 
 
  /* Do the actual product and sum.  */
  /* Do the actual product and sum.  */
  if (expr->ts.type == BT_LOGICAL)
  if (expr->ts.type == BT_LOGICAL)
    {
    {
      tmp = fold_build2 (TRUTH_AND_EXPR, type, arrayse1.expr, arrayse2.expr);
      tmp = fold_build2 (TRUTH_AND_EXPR, type, arrayse1.expr, arrayse2.expr);
      tmp = fold_build2 (TRUTH_OR_EXPR, type, resvar, tmp);
      tmp = fold_build2 (TRUTH_OR_EXPR, type, resvar, tmp);
    }
    }
  else
  else
    {
    {
      tmp = fold_build2 (MULT_EXPR, type, arrayse1.expr, arrayse2.expr);
      tmp = fold_build2 (MULT_EXPR, type, arrayse1.expr, arrayse2.expr);
      tmp = fold_build2 (PLUS_EXPR, type, resvar, tmp);
      tmp = fold_build2 (PLUS_EXPR, type, resvar, tmp);
    }
    }
  gfc_add_modify (&block, resvar, tmp);
  gfc_add_modify (&block, resvar, tmp);
 
 
  /* Finish up the loop block and the loop.  */
  /* Finish up the loop block and the loop.  */
  tmp = gfc_finish_block (&block);
  tmp = gfc_finish_block (&block);
  gfc_add_expr_to_block (&body, tmp);
  gfc_add_expr_to_block (&body, tmp);
 
 
  gfc_trans_scalarizing_loops (&loop, &body);
  gfc_trans_scalarizing_loops (&loop, &body);
  gfc_add_block_to_block (&se->pre, &loop.pre);
  gfc_add_block_to_block (&se->pre, &loop.pre);
  gfc_add_block_to_block (&se->pre, &loop.post);
  gfc_add_block_to_block (&se->pre, &loop.post);
  gfc_cleanup_loop (&loop);
  gfc_cleanup_loop (&loop);
 
 
  se->expr = resvar;
  se->expr = resvar;
}
}
 
 
 
 
/* Emit code for minloc or maxloc intrinsic.  There are many different cases
/* Emit code for minloc or maxloc intrinsic.  There are many different cases
   we need to handle.  For performance reasons we sometimes create two
   we need to handle.  For performance reasons we sometimes create two
   loops instead of one, where the second one is much simpler.
   loops instead of one, where the second one is much simpler.
   Examples for minloc intrinsic:
   Examples for minloc intrinsic:
   1) Result is an array, a call is generated
   1) Result is an array, a call is generated
   2) Array mask is used and NaNs need to be supported:
   2) Array mask is used and NaNs need to be supported:
      limit = Infinity;
      limit = Infinity;
      pos = 0;
      pos = 0;
      S = from;
      S = from;
      while (S <= to) {
      while (S <= to) {
        if (mask[S]) {
        if (mask[S]) {
          if (pos == 0) pos = S + (1 - from);
          if (pos == 0) pos = S + (1 - from);
          if (a[S] <= limit) { limit = a[S]; pos = S + (1 - from); goto lab1; }
          if (a[S] <= limit) { limit = a[S]; pos = S + (1 - from); goto lab1; }
        }
        }
        S++;
        S++;
      }
      }
      goto lab2;
      goto lab2;
      lab1:;
      lab1:;
      while (S <= to) {
      while (S <= to) {
        if (mask[S]) if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
        if (mask[S]) if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
        S++;
        S++;
      }
      }
      lab2:;
      lab2:;
   3) NaNs need to be supported, but it is known at compile time or cheaply
   3) NaNs need to be supported, but it is known at compile time or cheaply
      at runtime whether array is nonempty or not:
      at runtime whether array is nonempty or not:
      limit = Infinity;
      limit = Infinity;
      pos = 0;
      pos = 0;
      S = from;
      S = from;
      while (S <= to) {
      while (S <= to) {
        if (a[S] <= limit) { limit = a[S]; pos = S + (1 - from); goto lab1; }
        if (a[S] <= limit) { limit = a[S]; pos = S + (1 - from); goto lab1; }
        S++;
        S++;
      }
      }
      if (from <= to) pos = 1;
      if (from <= to) pos = 1;
      goto lab2;
      goto lab2;
      lab1:;
      lab1:;
      while (S <= to) {
      while (S <= to) {
        if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
        if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
        S++;
        S++;
      }
      }
      lab2:;
      lab2:;
   4) NaNs aren't supported, array mask is used:
   4) NaNs aren't supported, array mask is used:
      limit = infinities_supported ? Infinity : huge (limit);
      limit = infinities_supported ? Infinity : huge (limit);
      pos = 0;
      pos = 0;
      S = from;
      S = from;
      while (S <= to) {
      while (S <= to) {
        if (mask[S]) { limit = a[S]; pos = S + (1 - from); goto lab1; }
        if (mask[S]) { limit = a[S]; pos = S + (1 - from); goto lab1; }
        S++;
        S++;
      }
      }
      goto lab2;
      goto lab2;
      lab1:;
      lab1:;
      while (S <= to) {
      while (S <= to) {
        if (mask[S]) if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
        if (mask[S]) if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
        S++;
        S++;
      }
      }
      lab2:;
      lab2:;
   5) Same without array mask:
   5) Same without array mask:
      limit = infinities_supported ? Infinity : huge (limit);
      limit = infinities_supported ? Infinity : huge (limit);
      pos = (from <= to) ? 1 : 0;
      pos = (from <= to) ? 1 : 0;
      S = from;
      S = from;
      while (S <= to) {
      while (S <= to) {
        if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
        if (a[S] < limit) { limit = a[S]; pos = S + (1 - from); }
        S++;
        S++;
      }
      }
   For 3) and 5), if mask is scalar, this all goes into a conditional,
   For 3) and 5), if mask is scalar, this all goes into a conditional,
   setting pos = 0; in the else branch.  */
   setting pos = 0; in the else branch.  */
 
 
static void
static void
gfc_conv_intrinsic_minmaxloc (gfc_se * se, gfc_expr * expr, enum tree_code op)
gfc_conv_intrinsic_minmaxloc (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
{
  stmtblock_t body;
  stmtblock_t body;
  stmtblock_t block;
  stmtblock_t block;
  stmtblock_t ifblock;
  stmtblock_t ifblock;
  stmtblock_t elseblock;
  stmtblock_t elseblock;
  tree limit;
  tree limit;
  tree type;
  tree type;
  tree tmp;
  tree tmp;
  tree cond;
  tree cond;
  tree elsetmp;
  tree elsetmp;
  tree ifbody;
  tree ifbody;
  tree offset;
  tree offset;
  tree nonempty;
  tree nonempty;
  tree lab1, lab2;
  tree lab1, lab2;
  gfc_loopinfo loop;
  gfc_loopinfo loop;
  gfc_actual_arglist *actual;
  gfc_actual_arglist *actual;
  gfc_ss *arrayss;
  gfc_ss *arrayss;
  gfc_ss *maskss;
  gfc_ss *maskss;
  gfc_se arrayse;
  gfc_se arrayse;
  gfc_se maskse;
  gfc_se maskse;
  gfc_expr *arrayexpr;
  gfc_expr *arrayexpr;
  gfc_expr *maskexpr;
  gfc_expr *maskexpr;
  tree pos;
  tree pos;
  int n;
  int n;
 
 
  if (se->ss)
  if (se->ss)
    {
    {
      gfc_conv_intrinsic_funcall (se, expr);
      gfc_conv_intrinsic_funcall (se, expr);
      return;
      return;
    }
    }
 
 
  /* Initialize the result.  */
  /* Initialize the result.  */
  pos = gfc_create_var (gfc_array_index_type, "pos");
  pos = gfc_create_var (gfc_array_index_type, "pos");
  offset = gfc_create_var (gfc_array_index_type, "offset");
  offset = gfc_create_var (gfc_array_index_type, "offset");
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
 
 
  /* Walk the arguments.  */
  /* Walk the arguments.  */
  actual = expr->value.function.actual;
  actual = expr->value.function.actual;
  arrayexpr = actual->expr;
  arrayexpr = actual->expr;
  arrayss = gfc_walk_expr (arrayexpr);
  arrayss = gfc_walk_expr (arrayexpr);
  gcc_assert (arrayss != gfc_ss_terminator);
  gcc_assert (arrayss != gfc_ss_terminator);
 
 
  actual = actual->next->next;
  actual = actual->next->next;
  gcc_assert (actual);
  gcc_assert (actual);
  maskexpr = actual->expr;
  maskexpr = actual->expr;
  nonempty = NULL;
  nonempty = NULL;
  if (maskexpr && maskexpr->rank != 0)
  if (maskexpr && maskexpr->rank != 0)
    {
    {
      maskss = gfc_walk_expr (maskexpr);
      maskss = gfc_walk_expr (maskexpr);
      gcc_assert (maskss != gfc_ss_terminator);
      gcc_assert (maskss != gfc_ss_terminator);
    }
    }
  else
  else
    {
    {
      mpz_t asize;
      mpz_t asize;
      if (gfc_array_size (arrayexpr, &asize) == SUCCESS)
      if (gfc_array_size (arrayexpr, &asize) == SUCCESS)
        {
        {
          nonempty = gfc_conv_mpz_to_tree (asize, gfc_index_integer_kind);
          nonempty = gfc_conv_mpz_to_tree (asize, gfc_index_integer_kind);
          mpz_clear (asize);
          mpz_clear (asize);
          nonempty = fold_build2 (GT_EXPR, boolean_type_node, nonempty,
          nonempty = fold_build2 (GT_EXPR, boolean_type_node, nonempty,
                                  gfc_index_zero_node);
                                  gfc_index_zero_node);
        }
        }
      maskss = NULL;
      maskss = NULL;
    }
    }
 
 
  limit = gfc_create_var (gfc_typenode_for_spec (&arrayexpr->ts), "limit");
  limit = gfc_create_var (gfc_typenode_for_spec (&arrayexpr->ts), "limit");
  n = gfc_validate_kind (arrayexpr->ts.type, arrayexpr->ts.kind, false);
  n = gfc_validate_kind (arrayexpr->ts.type, arrayexpr->ts.kind, false);
  switch (arrayexpr->ts.type)
  switch (arrayexpr->ts.type)
    {
    {
    case BT_REAL:
    case BT_REAL:
      if (HONOR_INFINITIES (DECL_MODE (limit)))
      if (HONOR_INFINITIES (DECL_MODE (limit)))
        {
        {
          REAL_VALUE_TYPE real;
          REAL_VALUE_TYPE real;
          real_inf (&real);
          real_inf (&real);
          tmp = build_real (TREE_TYPE (limit), real);
          tmp = build_real (TREE_TYPE (limit), real);
        }
        }
      else
      else
        tmp = gfc_conv_mpfr_to_tree (gfc_real_kinds[n].huge,
        tmp = gfc_conv_mpfr_to_tree (gfc_real_kinds[n].huge,
                                     arrayexpr->ts.kind, 0);
                                     arrayexpr->ts.kind, 0);
      break;
      break;
 
 
    case BT_INTEGER:
    case BT_INTEGER:
      tmp = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge,
      tmp = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge,
                                  arrayexpr->ts.kind);
                                  arrayexpr->ts.kind);
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* We start with the most negative possible value for MAXLOC, and the most
  /* We start with the most negative possible value for MAXLOC, and the most
     positive possible value for MINLOC. The most negative possible value is
     positive possible value for MINLOC. The most negative possible value is
     -HUGE for BT_REAL and (-HUGE - 1) for BT_INTEGER; the most positive
     -HUGE for BT_REAL and (-HUGE - 1) for BT_INTEGER; the most positive
     possible value is HUGE in both cases.  */
     possible value is HUGE in both cases.  */
  if (op == GT_EXPR)
  if (op == GT_EXPR)
    tmp = fold_build1 (NEGATE_EXPR, TREE_TYPE (tmp), tmp);
    tmp = fold_build1 (NEGATE_EXPR, TREE_TYPE (tmp), tmp);
  if (op == GT_EXPR && expr->ts.type == BT_INTEGER)
  if (op == GT_EXPR && expr->ts.type == BT_INTEGER)
    tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp,
    tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp,
                       build_int_cst (type, 1));
                       build_int_cst (type, 1));
 
 
  gfc_add_modify (&se->pre, limit, tmp);
  gfc_add_modify (&se->pre, limit, tmp);
 
 
  /* Initialize the scalarizer.  */
  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);
  gfc_init_loopinfo (&loop);
  gfc_add_ss_to_loop (&loop, arrayss);
  gfc_add_ss_to_loop (&loop, arrayss);
  if (maskss)
  if (maskss)
    gfc_add_ss_to_loop (&loop, maskss);
    gfc_add_ss_to_loop (&loop, maskss);
 
 
  /* Initialize the loop.  */
  /* Initialize the loop.  */
  gfc_conv_ss_startstride (&loop);
  gfc_conv_ss_startstride (&loop);
  gfc_conv_loop_setup (&loop, &expr->where);
  gfc_conv_loop_setup (&loop, &expr->where);
 
 
  gcc_assert (loop.dimen == 1);
  gcc_assert (loop.dimen == 1);
  if (nonempty == NULL && maskss == NULL && loop.from[0] && loop.to[0])
  if (nonempty == NULL && maskss == NULL && loop.from[0] && loop.to[0])
    nonempty = fold_build2 (LE_EXPR, boolean_type_node, loop.from[0],
    nonempty = fold_build2 (LE_EXPR, boolean_type_node, loop.from[0],
                            loop.to[0]);
                            loop.to[0]);
 
 
  lab1 = NULL;
  lab1 = NULL;
  lab2 = NULL;
  lab2 = NULL;
  /* Initialize the position to zero, following Fortran 2003.  We are free
  /* Initialize the position to zero, following Fortran 2003.  We are free
     to do this because Fortran 95 allows the result of an entirely false
     to do this because Fortran 95 allows the result of an entirely false
     mask to be processor dependent.  If we know at compile time the array
     mask to be processor dependent.  If we know at compile time the array
     is non-empty and no MASK is used, we can initialize to 1 to simplify
     is non-empty and no MASK is used, we can initialize to 1 to simplify
     the inner loop.  */
     the inner loop.  */
  if (nonempty != NULL && !HONOR_NANS (DECL_MODE (limit)))
  if (nonempty != NULL && !HONOR_NANS (DECL_MODE (limit)))
    gfc_add_modify (&loop.pre, pos,
    gfc_add_modify (&loop.pre, pos,
                    fold_build3 (COND_EXPR, gfc_array_index_type,
                    fold_build3 (COND_EXPR, gfc_array_index_type,
                                 nonempty, gfc_index_one_node,
                                 nonempty, gfc_index_one_node,
                                 gfc_index_zero_node));
                                 gfc_index_zero_node));
  else
  else
    {
    {
      gfc_add_modify (&loop.pre, pos, gfc_index_zero_node);
      gfc_add_modify (&loop.pre, pos, gfc_index_zero_node);
      lab1 = gfc_build_label_decl (NULL_TREE);
      lab1 = gfc_build_label_decl (NULL_TREE);
      TREE_USED (lab1) = 1;
      TREE_USED (lab1) = 1;
      lab2 = gfc_build_label_decl (NULL_TREE);
      lab2 = gfc_build_label_decl (NULL_TREE);
      TREE_USED (lab2) = 1;
      TREE_USED (lab2) = 1;
    }
    }
 
 
  gfc_mark_ss_chain_used (arrayss, 1);
  gfc_mark_ss_chain_used (arrayss, 1);
  if (maskss)
  if (maskss)
    gfc_mark_ss_chain_used (maskss, 1);
    gfc_mark_ss_chain_used (maskss, 1);
  /* Generate the loop body.  */
  /* Generate the loop body.  */
  gfc_start_scalarized_body (&loop, &body);
  gfc_start_scalarized_body (&loop, &body);
 
 
  /* If we have a mask, only check this element if the mask is set.  */
  /* If we have a mask, only check this element if the mask is set.  */
  if (maskss)
  if (maskss)
    {
    {
      gfc_init_se (&maskse, NULL);
      gfc_init_se (&maskse, NULL);
      gfc_copy_loopinfo_to_se (&maskse, &loop);
      gfc_copy_loopinfo_to_se (&maskse, &loop);
      maskse.ss = maskss;
      maskse.ss = maskss;
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_add_block_to_block (&body, &maskse.pre);
      gfc_add_block_to_block (&body, &maskse.pre);
 
 
      gfc_start_block (&block);
      gfc_start_block (&block);
    }
    }
  else
  else
    gfc_init_block (&block);
    gfc_init_block (&block);
 
 
  /* Compare with the current limit.  */
  /* Compare with the current limit.  */
  gfc_init_se (&arrayse, NULL);
  gfc_init_se (&arrayse, NULL);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  arrayse.ss = arrayss;
  arrayse.ss = arrayss;
  gfc_conv_expr_val (&arrayse, arrayexpr);
  gfc_conv_expr_val (&arrayse, arrayexpr);
  gfc_add_block_to_block (&block, &arrayse.pre);
  gfc_add_block_to_block (&block, &arrayse.pre);
 
 
  /* We do the following if this is a more extreme value.  */
  /* We do the following if this is a more extreme value.  */
  gfc_start_block (&ifblock);
  gfc_start_block (&ifblock);
 
 
  /* Assign the value to the limit...  */
  /* Assign the value to the limit...  */
  gfc_add_modify (&ifblock, limit, arrayse.expr);
  gfc_add_modify (&ifblock, limit, arrayse.expr);
 
 
  /* Remember where we are.  An offset must be added to the loop
  /* Remember where we are.  An offset must be added to the loop
     counter to obtain the required position.  */
     counter to obtain the required position.  */
  if (loop.from[0])
  if (loop.from[0])
    tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
    tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
                       gfc_index_one_node, loop.from[0]);
                       gfc_index_one_node, loop.from[0]);
  else
  else
    tmp = gfc_index_one_node;
    tmp = gfc_index_one_node;
 
 
  gfc_add_modify (&block, offset, tmp);
  gfc_add_modify (&block, offset, tmp);
 
 
  if (nonempty == NULL && HONOR_NANS (DECL_MODE (limit)))
  if (nonempty == NULL && HONOR_NANS (DECL_MODE (limit)))
    {
    {
      stmtblock_t ifblock2;
      stmtblock_t ifblock2;
      tree ifbody2;
      tree ifbody2;
 
 
      gfc_start_block (&ifblock2);
      gfc_start_block (&ifblock2);
      tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (pos),
      tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (pos),
                         loop.loopvar[0], offset);
                         loop.loopvar[0], offset);
      gfc_add_modify (&ifblock2, pos, tmp);
      gfc_add_modify (&ifblock2, pos, tmp);
      ifbody2 = gfc_finish_block (&ifblock2);
      ifbody2 = gfc_finish_block (&ifblock2);
      cond = fold_build2 (EQ_EXPR, boolean_type_node, pos,
      cond = fold_build2 (EQ_EXPR, boolean_type_node, pos,
                          gfc_index_zero_node);
                          gfc_index_zero_node);
      tmp = build3_v (COND_EXPR, cond, ifbody2,
      tmp = build3_v (COND_EXPR, cond, ifbody2,
                      build_empty_stmt (input_location));
                      build_empty_stmt (input_location));
      gfc_add_expr_to_block (&block, tmp);
      gfc_add_expr_to_block (&block, tmp);
    }
    }
 
 
  tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (pos),
  tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (pos),
                     loop.loopvar[0], offset);
                     loop.loopvar[0], offset);
  gfc_add_modify (&ifblock, pos, tmp);
  gfc_add_modify (&ifblock, pos, tmp);
 
 
  if (lab1)
  if (lab1)
    gfc_add_expr_to_block (&ifblock, build1_v (GOTO_EXPR, lab1));
    gfc_add_expr_to_block (&ifblock, build1_v (GOTO_EXPR, lab1));
 
 
  ifbody = gfc_finish_block (&ifblock);
  ifbody = gfc_finish_block (&ifblock);
 
 
  if (!lab1 || HONOR_NANS (DECL_MODE (limit)))
  if (!lab1 || HONOR_NANS (DECL_MODE (limit)))
    {
    {
      if (lab1)
      if (lab1)
        cond = fold_build2 (op == GT_EXPR ? GE_EXPR : LE_EXPR,
        cond = fold_build2 (op == GT_EXPR ? GE_EXPR : LE_EXPR,
                            boolean_type_node, arrayse.expr, limit);
                            boolean_type_node, arrayse.expr, limit);
      else
      else
        cond = fold_build2 (op, boolean_type_node, arrayse.expr, limit);
        cond = fold_build2 (op, boolean_type_node, arrayse.expr, limit);
 
 
      ifbody = build3_v (COND_EXPR, cond, ifbody,
      ifbody = build3_v (COND_EXPR, cond, ifbody,
                         build_empty_stmt (input_location));
                         build_empty_stmt (input_location));
    }
    }
  gfc_add_expr_to_block (&block, ifbody);
  gfc_add_expr_to_block (&block, ifbody);
 
 
  if (maskss)
  if (maskss)
    {
    {
      /* We enclose the above in if (mask) {...}.  */
      /* We enclose the above in if (mask) {...}.  */
      tmp = gfc_finish_block (&block);
      tmp = gfc_finish_block (&block);
 
 
      tmp = build3_v (COND_EXPR, maskse.expr, tmp,
      tmp = build3_v (COND_EXPR, maskse.expr, tmp,
                      build_empty_stmt (input_location));
                      build_empty_stmt (input_location));
    }
    }
  else
  else
    tmp = gfc_finish_block (&block);
    tmp = gfc_finish_block (&block);
  gfc_add_expr_to_block (&body, tmp);
  gfc_add_expr_to_block (&body, tmp);
 
 
  if (lab1)
  if (lab1)
    {
    {
      gfc_trans_scalarized_loop_end (&loop, 0, &body);
      gfc_trans_scalarized_loop_end (&loop, 0, &body);
 
 
      if (HONOR_NANS (DECL_MODE (limit)))
      if (HONOR_NANS (DECL_MODE (limit)))
        {
        {
          if (nonempty != NULL)
          if (nonempty != NULL)
            {
            {
              ifbody = build2_v (MODIFY_EXPR, pos, gfc_index_one_node);
              ifbody = build2_v (MODIFY_EXPR, pos, gfc_index_one_node);
              tmp = build3_v (COND_EXPR, nonempty, ifbody,
              tmp = build3_v (COND_EXPR, nonempty, ifbody,
                              build_empty_stmt (input_location));
                              build_empty_stmt (input_location));
              gfc_add_expr_to_block (&loop.code[0], tmp);
              gfc_add_expr_to_block (&loop.code[0], tmp);
            }
            }
        }
        }
 
 
      gfc_add_expr_to_block (&loop.code[0], build1_v (GOTO_EXPR, lab2));
      gfc_add_expr_to_block (&loop.code[0], build1_v (GOTO_EXPR, lab2));
      gfc_add_expr_to_block (&loop.code[0], build1_v (LABEL_EXPR, lab1));
      gfc_add_expr_to_block (&loop.code[0], build1_v (LABEL_EXPR, lab1));
      gfc_start_block (&body);
      gfc_start_block (&body);
 
 
      /* If we have a mask, only check this element if the mask is set.  */
      /* If we have a mask, only check this element if the mask is set.  */
      if (maskss)
      if (maskss)
        {
        {
          gfc_init_se (&maskse, NULL);
          gfc_init_se (&maskse, NULL);
          gfc_copy_loopinfo_to_se (&maskse, &loop);
          gfc_copy_loopinfo_to_se (&maskse, &loop);
          maskse.ss = maskss;
          maskse.ss = maskss;
          gfc_conv_expr_val (&maskse, maskexpr);
          gfc_conv_expr_val (&maskse, maskexpr);
          gfc_add_block_to_block (&body, &maskse.pre);
          gfc_add_block_to_block (&body, &maskse.pre);
 
 
          gfc_start_block (&block);
          gfc_start_block (&block);
        }
        }
      else
      else
        gfc_init_block (&block);
        gfc_init_block (&block);
 
 
      /* Compare with the current limit.  */
      /* Compare with the current limit.  */
      gfc_init_se (&arrayse, NULL);
      gfc_init_se (&arrayse, NULL);
      gfc_copy_loopinfo_to_se (&arrayse, &loop);
      gfc_copy_loopinfo_to_se (&arrayse, &loop);
      arrayse.ss = arrayss;
      arrayse.ss = arrayss;
      gfc_conv_expr_val (&arrayse, arrayexpr);
      gfc_conv_expr_val (&arrayse, arrayexpr);
      gfc_add_block_to_block (&block, &arrayse.pre);
      gfc_add_block_to_block (&block, &arrayse.pre);
 
 
      /* We do the following if this is a more extreme value.  */
      /* We do the following if this is a more extreme value.  */
      gfc_start_block (&ifblock);
      gfc_start_block (&ifblock);
 
 
      /* Assign the value to the limit...  */
      /* Assign the value to the limit...  */
      gfc_add_modify (&ifblock, limit, arrayse.expr);
      gfc_add_modify (&ifblock, limit, arrayse.expr);
 
 
      /* Remember where we are.  An offset must be added to the loop
      /* Remember where we are.  An offset must be added to the loop
         counter to obtain the required position.  */
         counter to obtain the required position.  */
      if (loop.from[0])
      if (loop.from[0])
        tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
        tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
                           gfc_index_one_node, loop.from[0]);
                           gfc_index_one_node, loop.from[0]);
      else
      else
        tmp = gfc_index_one_node;
        tmp = gfc_index_one_node;
 
 
      gfc_add_modify (&block, offset, tmp);
      gfc_add_modify (&block, offset, tmp);
 
 
      tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (pos),
      tmp = fold_build2 (PLUS_EXPR, TREE_TYPE (pos),
                         loop.loopvar[0], offset);
                         loop.loopvar[0], offset);
      gfc_add_modify (&ifblock, pos, tmp);
      gfc_add_modify (&ifblock, pos, tmp);
 
 
      ifbody = gfc_finish_block (&ifblock);
      ifbody = gfc_finish_block (&ifblock);
 
 
      cond = fold_build2 (op, boolean_type_node, arrayse.expr, limit);
      cond = fold_build2 (op, boolean_type_node, arrayse.expr, limit);
 
 
      tmp = build3_v (COND_EXPR, cond, ifbody,
      tmp = build3_v (COND_EXPR, cond, ifbody,
                      build_empty_stmt (input_location));
                      build_empty_stmt (input_location));
      gfc_add_expr_to_block (&block, tmp);
      gfc_add_expr_to_block (&block, tmp);
 
 
      if (maskss)
      if (maskss)
        {
        {
          /* We enclose the above in if (mask) {...}.  */
          /* We enclose the above in if (mask) {...}.  */
          tmp = gfc_finish_block (&block);
          tmp = gfc_finish_block (&block);
 
 
          tmp = build3_v (COND_EXPR, maskse.expr, tmp,
          tmp = build3_v (COND_EXPR, maskse.expr, tmp,
                          build_empty_stmt (input_location));
                          build_empty_stmt (input_location));
        }
        }
      else
      else
        tmp = gfc_finish_block (&block);
        tmp = gfc_finish_block (&block);
      gfc_add_expr_to_block (&body, tmp);
      gfc_add_expr_to_block (&body, tmp);
      /* Avoid initializing loopvar[0] again, it should be left where
      /* Avoid initializing loopvar[0] again, it should be left where
         it finished by the first loop.  */
         it finished by the first loop.  */
      loop.from[0] = loop.loopvar[0];
      loop.from[0] = loop.loopvar[0];
    }
    }
 
 
  gfc_trans_scalarizing_loops (&loop, &body);
  gfc_trans_scalarizing_loops (&loop, &body);
 
 
  if (lab2)
  if (lab2)
    gfc_add_expr_to_block (&loop.pre, build1_v (LABEL_EXPR, lab2));
    gfc_add_expr_to_block (&loop.pre, build1_v (LABEL_EXPR, lab2));
 
 
  /* For a scalar mask, enclose the loop in an if statement.  */
  /* For a scalar mask, enclose the loop in an if statement.  */
  if (maskexpr && maskss == NULL)
  if (maskexpr && maskss == NULL)
    {
    {
      gfc_init_se (&maskse, NULL);
      gfc_init_se (&maskse, NULL);
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_init_block (&block);
      gfc_init_block (&block);
      gfc_add_block_to_block (&block, &loop.pre);
      gfc_add_block_to_block (&block, &loop.pre);
      gfc_add_block_to_block (&block, &loop.post);
      gfc_add_block_to_block (&block, &loop.post);
      tmp = gfc_finish_block (&block);
      tmp = gfc_finish_block (&block);
 
 
      /* For the else part of the scalar mask, just initialize
      /* For the else part of the scalar mask, just initialize
         the pos variable the same way as above.  */
         the pos variable the same way as above.  */
 
 
      gfc_init_block (&elseblock);
      gfc_init_block (&elseblock);
      gfc_add_modify (&elseblock, pos, gfc_index_zero_node);
      gfc_add_modify (&elseblock, pos, gfc_index_zero_node);
      elsetmp = gfc_finish_block (&elseblock);
      elsetmp = gfc_finish_block (&elseblock);
 
 
      tmp = build3_v (COND_EXPR, maskse.expr, tmp, elsetmp);
      tmp = build3_v (COND_EXPR, maskse.expr, tmp, elsetmp);
      gfc_add_expr_to_block (&block, tmp);
      gfc_add_expr_to_block (&block, tmp);
      gfc_add_block_to_block (&se->pre, &block);
      gfc_add_block_to_block (&se->pre, &block);
    }
    }
  else
  else
    {
    {
      gfc_add_block_to_block (&se->pre, &loop.pre);
      gfc_add_block_to_block (&se->pre, &loop.pre);
      gfc_add_block_to_block (&se->pre, &loop.post);
      gfc_add_block_to_block (&se->pre, &loop.post);
    }
    }
  gfc_cleanup_loop (&loop);
  gfc_cleanup_loop (&loop);
 
 
  se->expr = convert (type, pos);
  se->expr = convert (type, pos);
}
}
 
 
/* Emit code for minval or maxval intrinsic.  There are many different cases
/* Emit code for minval or maxval intrinsic.  There are many different cases
   we need to handle.  For performance reasons we sometimes create two
   we need to handle.  For performance reasons we sometimes create two
   loops instead of one, where the second one is much simpler.
   loops instead of one, where the second one is much simpler.
   Examples for minval intrinsic:
   Examples for minval intrinsic:
   1) Result is an array, a call is generated
   1) Result is an array, a call is generated
   2) Array mask is used and NaNs need to be supported, rank 1:
   2) Array mask is used and NaNs need to be supported, rank 1:
      limit = Infinity;
      limit = Infinity;
      nonempty = false;
      nonempty = false;
      S = from;
      S = from;
      while (S <= to) {
      while (S <= to) {
        if (mask[S]) { nonempty = true; if (a[S] <= limit) goto lab; }
        if (mask[S]) { nonempty = true; if (a[S] <= limit) goto lab; }
        S++;
        S++;
      }
      }
      limit = nonempty ? NaN : huge (limit);
      limit = nonempty ? NaN : huge (limit);
      lab:
      lab:
      while (S <= to) { if(mask[S]) limit = min (a[S], limit); S++; }
      while (S <= to) { if(mask[S]) limit = min (a[S], limit); S++; }
   3) NaNs need to be supported, but it is known at compile time or cheaply
   3) NaNs need to be supported, but it is known at compile time or cheaply
      at runtime whether array is nonempty or not, rank 1:
      at runtime whether array is nonempty or not, rank 1:
      limit = Infinity;
      limit = Infinity;
      S = from;
      S = from;
      while (S <= to) { if (a[S] <= limit) goto lab; S++; }
      while (S <= to) { if (a[S] <= limit) goto lab; S++; }
      limit = (from <= to) ? NaN : huge (limit);
      limit = (from <= to) ? NaN : huge (limit);
      lab:
      lab:
      while (S <= to) { limit = min (a[S], limit); S++; }
      while (S <= to) { limit = min (a[S], limit); S++; }
   4) Array mask is used and NaNs need to be supported, rank > 1:
   4) Array mask is used and NaNs need to be supported, rank > 1:
      limit = Infinity;
      limit = Infinity;
      nonempty = false;
      nonempty = false;
      fast = false;
      fast = false;
      S1 = from1;
      S1 = from1;
      while (S1 <= to1) {
      while (S1 <= to1) {
        S2 = from2;
        S2 = from2;
        while (S2 <= to2) {
        while (S2 <= to2) {
          if (mask[S1][S2]) {
          if (mask[S1][S2]) {
            if (fast) limit = min (a[S1][S2], limit);
            if (fast) limit = min (a[S1][S2], limit);
            else {
            else {
              nonempty = true;
              nonempty = true;
              if (a[S1][S2] <= limit) {
              if (a[S1][S2] <= limit) {
                limit = a[S1][S2];
                limit = a[S1][S2];
                fast = true;
                fast = true;
              }
              }
            }
            }
          }
          }
          S2++;
          S2++;
        }
        }
        S1++;
        S1++;
      }
      }
      if (!fast)
      if (!fast)
        limit = nonempty ? NaN : huge (limit);
        limit = nonempty ? NaN : huge (limit);
   5) NaNs need to be supported, but it is known at compile time or cheaply
   5) NaNs need to be supported, but it is known at compile time or cheaply
      at runtime whether array is nonempty or not, rank > 1:
      at runtime whether array is nonempty or not, rank > 1:
      limit = Infinity;
      limit = Infinity;
      fast = false;
      fast = false;
      S1 = from1;
      S1 = from1;
      while (S1 <= to1) {
      while (S1 <= to1) {
        S2 = from2;
        S2 = from2;
        while (S2 <= to2) {
        while (S2 <= to2) {
          if (fast) limit = min (a[S1][S2], limit);
          if (fast) limit = min (a[S1][S2], limit);
          else {
          else {
            if (a[S1][S2] <= limit) {
            if (a[S1][S2] <= limit) {
              limit = a[S1][S2];
              limit = a[S1][S2];
              fast = true;
              fast = true;
            }
            }
          }
          }
          S2++;
          S2++;
        }
        }
        S1++;
        S1++;
      }
      }
      if (!fast)
      if (!fast)
        limit = (nonempty_array) ? NaN : huge (limit);
        limit = (nonempty_array) ? NaN : huge (limit);
   6) NaNs aren't supported, but infinities are.  Array mask is used:
   6) NaNs aren't supported, but infinities are.  Array mask is used:
      limit = Infinity;
      limit = Infinity;
      nonempty = false;
      nonempty = false;
      S = from;
      S = from;
      while (S <= to) {
      while (S <= to) {
        if (mask[S]) { nonempty = true; limit = min (a[S], limit); }
        if (mask[S]) { nonempty = true; limit = min (a[S], limit); }
        S++;
        S++;
      }
      }
      limit = nonempty ? limit : huge (limit);
      limit = nonempty ? limit : huge (limit);
   7) Same without array mask:
   7) Same without array mask:
      limit = Infinity;
      limit = Infinity;
      S = from;
      S = from;
      while (S <= to) { limit = min (a[S], limit); S++; }
      while (S <= to) { limit = min (a[S], limit); S++; }
      limit = (from <= to) ? limit : huge (limit);
      limit = (from <= to) ? limit : huge (limit);
   8) Neither NaNs nor infinities are supported (-ffast-math or BT_INTEGER):
   8) Neither NaNs nor infinities are supported (-ffast-math or BT_INTEGER):
      limit = huge (limit);
      limit = huge (limit);
      S = from;
      S = from;
      while (S <= to) { limit = min (a[S], limit); S++); }
      while (S <= to) { limit = min (a[S], limit); S++); }
      (or
      (or
      while (S <= to) { if (mask[S]) limit = min (a[S], limit); S++; }
      while (S <= to) { if (mask[S]) limit = min (a[S], limit); S++; }
      with array mask instead).
      with array mask instead).
   For 3), 5), 7) and 8), if mask is scalar, this all goes into a conditional,
   For 3), 5), 7) and 8), if mask is scalar, this all goes into a conditional,
   setting limit = huge (limit); in the else branch.  */
   setting limit = huge (limit); in the else branch.  */
 
 
static void
static void
gfc_conv_intrinsic_minmaxval (gfc_se * se, gfc_expr * expr, enum tree_code op)
gfc_conv_intrinsic_minmaxval (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
{
  tree limit;
  tree limit;
  tree type;
  tree type;
  tree tmp;
  tree tmp;
  tree ifbody;
  tree ifbody;
  tree nonempty;
  tree nonempty;
  tree nonempty_var;
  tree nonempty_var;
  tree lab;
  tree lab;
  tree fast;
  tree fast;
  tree huge_cst = NULL, nan_cst = NULL;
  tree huge_cst = NULL, nan_cst = NULL;
  stmtblock_t body;
  stmtblock_t body;
  stmtblock_t block, block2;
  stmtblock_t block, block2;
  gfc_loopinfo loop;
  gfc_loopinfo loop;
  gfc_actual_arglist *actual;
  gfc_actual_arglist *actual;
  gfc_ss *arrayss;
  gfc_ss *arrayss;
  gfc_ss *maskss;
  gfc_ss *maskss;
  gfc_se arrayse;
  gfc_se arrayse;
  gfc_se maskse;
  gfc_se maskse;
  gfc_expr *arrayexpr;
  gfc_expr *arrayexpr;
  gfc_expr *maskexpr;
  gfc_expr *maskexpr;
  int n;
  int n;
 
 
  if (se->ss)
  if (se->ss)
    {
    {
      gfc_conv_intrinsic_funcall (se, expr);
      gfc_conv_intrinsic_funcall (se, expr);
      return;
      return;
    }
    }
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  /* Initialize the result.  */
  /* Initialize the result.  */
  limit = gfc_create_var (type, "limit");
  limit = gfc_create_var (type, "limit");
  n = gfc_validate_kind (expr->ts.type, expr->ts.kind, false);
  n = gfc_validate_kind (expr->ts.type, expr->ts.kind, false);
  switch (expr->ts.type)
  switch (expr->ts.type)
    {
    {
    case BT_REAL:
    case BT_REAL:
      huge_cst = gfc_conv_mpfr_to_tree (gfc_real_kinds[n].huge,
      huge_cst = gfc_conv_mpfr_to_tree (gfc_real_kinds[n].huge,
                                        expr->ts.kind, 0);
                                        expr->ts.kind, 0);
      if (HONOR_INFINITIES (DECL_MODE (limit)))
      if (HONOR_INFINITIES (DECL_MODE (limit)))
        {
        {
          REAL_VALUE_TYPE real;
          REAL_VALUE_TYPE real;
          real_inf (&real);
          real_inf (&real);
          tmp = build_real (type, real);
          tmp = build_real (type, real);
        }
        }
      else
      else
        tmp = huge_cst;
        tmp = huge_cst;
      if (HONOR_NANS (DECL_MODE (limit)))
      if (HONOR_NANS (DECL_MODE (limit)))
        {
        {
          REAL_VALUE_TYPE real;
          REAL_VALUE_TYPE real;
          real_nan (&real, "", 1, DECL_MODE (limit));
          real_nan (&real, "", 1, DECL_MODE (limit));
          nan_cst = build_real (type, real);
          nan_cst = build_real (type, real);
        }
        }
      break;
      break;
 
 
    case BT_INTEGER:
    case BT_INTEGER:
      tmp = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge, expr->ts.kind);
      tmp = gfc_conv_mpz_to_tree (gfc_integer_kinds[n].huge, expr->ts.kind);
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* We start with the most negative possible value for MAXVAL, and the most
  /* We start with the most negative possible value for MAXVAL, and the most
     positive possible value for MINVAL. The most negative possible value is
     positive possible value for MINVAL. The most negative possible value is
     -HUGE for BT_REAL and (-HUGE - 1) for BT_INTEGER; the most positive
     -HUGE for BT_REAL and (-HUGE - 1) for BT_INTEGER; the most positive
     possible value is HUGE in both cases.  */
     possible value is HUGE in both cases.  */
  if (op == GT_EXPR)
  if (op == GT_EXPR)
    {
    {
      tmp = fold_build1 (NEGATE_EXPR, TREE_TYPE (tmp), tmp);
      tmp = fold_build1 (NEGATE_EXPR, TREE_TYPE (tmp), tmp);
      if (huge_cst)
      if (huge_cst)
        huge_cst = fold_build1 (NEGATE_EXPR, TREE_TYPE (huge_cst), huge_cst);
        huge_cst = fold_build1 (NEGATE_EXPR, TREE_TYPE (huge_cst), huge_cst);
    }
    }
 
 
  if (op == GT_EXPR && expr->ts.type == BT_INTEGER)
  if (op == GT_EXPR && expr->ts.type == BT_INTEGER)
    tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp),
    tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp),
                       tmp, build_int_cst (type, 1));
                       tmp, build_int_cst (type, 1));
 
 
  gfc_add_modify (&se->pre, limit, tmp);
  gfc_add_modify (&se->pre, limit, tmp);
 
 
  /* Walk the arguments.  */
  /* Walk the arguments.  */
  actual = expr->value.function.actual;
  actual = expr->value.function.actual;
  arrayexpr = actual->expr;
  arrayexpr = actual->expr;
  arrayss = gfc_walk_expr (arrayexpr);
  arrayss = gfc_walk_expr (arrayexpr);
  gcc_assert (arrayss != gfc_ss_terminator);
  gcc_assert (arrayss != gfc_ss_terminator);
 
 
  actual = actual->next->next;
  actual = actual->next->next;
  gcc_assert (actual);
  gcc_assert (actual);
  maskexpr = actual->expr;
  maskexpr = actual->expr;
  nonempty = NULL;
  nonempty = NULL;
  if (maskexpr && maskexpr->rank != 0)
  if (maskexpr && maskexpr->rank != 0)
    {
    {
      maskss = gfc_walk_expr (maskexpr);
      maskss = gfc_walk_expr (maskexpr);
      gcc_assert (maskss != gfc_ss_terminator);
      gcc_assert (maskss != gfc_ss_terminator);
    }
    }
  else
  else
    {
    {
      mpz_t asize;
      mpz_t asize;
      if (gfc_array_size (arrayexpr, &asize) == SUCCESS)
      if (gfc_array_size (arrayexpr, &asize) == SUCCESS)
        {
        {
          nonempty = gfc_conv_mpz_to_tree (asize, gfc_index_integer_kind);
          nonempty = gfc_conv_mpz_to_tree (asize, gfc_index_integer_kind);
          mpz_clear (asize);
          mpz_clear (asize);
          nonempty = fold_build2 (GT_EXPR, boolean_type_node, nonempty,
          nonempty = fold_build2 (GT_EXPR, boolean_type_node, nonempty,
                                  gfc_index_zero_node);
                                  gfc_index_zero_node);
        }
        }
      maskss = NULL;
      maskss = NULL;
    }
    }
 
 
  /* Initialize the scalarizer.  */
  /* Initialize the scalarizer.  */
  gfc_init_loopinfo (&loop);
  gfc_init_loopinfo (&loop);
  gfc_add_ss_to_loop (&loop, arrayss);
  gfc_add_ss_to_loop (&loop, arrayss);
  if (maskss)
  if (maskss)
    gfc_add_ss_to_loop (&loop, maskss);
    gfc_add_ss_to_loop (&loop, maskss);
 
 
  /* Initialize the loop.  */
  /* Initialize the loop.  */
  gfc_conv_ss_startstride (&loop);
  gfc_conv_ss_startstride (&loop);
  gfc_conv_loop_setup (&loop, &expr->where);
  gfc_conv_loop_setup (&loop, &expr->where);
 
 
  if (nonempty == NULL && maskss == NULL
  if (nonempty == NULL && maskss == NULL
      && loop.dimen == 1 && loop.from[0] && loop.to[0])
      && loop.dimen == 1 && loop.from[0] && loop.to[0])
    nonempty = fold_build2 (LE_EXPR, boolean_type_node, loop.from[0],
    nonempty = fold_build2 (LE_EXPR, boolean_type_node, loop.from[0],
                            loop.to[0]);
                            loop.to[0]);
  nonempty_var = NULL;
  nonempty_var = NULL;
  if (nonempty == NULL
  if (nonempty == NULL
      && (HONOR_INFINITIES (DECL_MODE (limit))
      && (HONOR_INFINITIES (DECL_MODE (limit))
          || HONOR_NANS (DECL_MODE (limit))))
          || HONOR_NANS (DECL_MODE (limit))))
    {
    {
      nonempty_var = gfc_create_var (boolean_type_node, "nonempty");
      nonempty_var = gfc_create_var (boolean_type_node, "nonempty");
      gfc_add_modify (&se->pre, nonempty_var, boolean_false_node);
      gfc_add_modify (&se->pre, nonempty_var, boolean_false_node);
      nonempty = nonempty_var;
      nonempty = nonempty_var;
    }
    }
  lab = NULL;
  lab = NULL;
  fast = NULL;
  fast = NULL;
  if (HONOR_NANS (DECL_MODE (limit)))
  if (HONOR_NANS (DECL_MODE (limit)))
    {
    {
      if (loop.dimen == 1)
      if (loop.dimen == 1)
        {
        {
          lab = gfc_build_label_decl (NULL_TREE);
          lab = gfc_build_label_decl (NULL_TREE);
          TREE_USED (lab) = 1;
          TREE_USED (lab) = 1;
        }
        }
      else
      else
        {
        {
          fast = gfc_create_var (boolean_type_node, "fast");
          fast = gfc_create_var (boolean_type_node, "fast");
          gfc_add_modify (&se->pre, fast, boolean_false_node);
          gfc_add_modify (&se->pre, fast, boolean_false_node);
        }
        }
    }
    }
 
 
  gfc_mark_ss_chain_used (arrayss, 1);
  gfc_mark_ss_chain_used (arrayss, 1);
  if (maskss)
  if (maskss)
    gfc_mark_ss_chain_used (maskss, 1);
    gfc_mark_ss_chain_used (maskss, 1);
  /* Generate the loop body.  */
  /* Generate the loop body.  */
  gfc_start_scalarized_body (&loop, &body);
  gfc_start_scalarized_body (&loop, &body);
 
 
  /* If we have a mask, only add this element if the mask is set.  */
  /* If we have a mask, only add this element if the mask is set.  */
  if (maskss)
  if (maskss)
    {
    {
      gfc_init_se (&maskse, NULL);
      gfc_init_se (&maskse, NULL);
      gfc_copy_loopinfo_to_se (&maskse, &loop);
      gfc_copy_loopinfo_to_se (&maskse, &loop);
      maskse.ss = maskss;
      maskse.ss = maskss;
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_add_block_to_block (&body, &maskse.pre);
      gfc_add_block_to_block (&body, &maskse.pre);
 
 
      gfc_start_block (&block);
      gfc_start_block (&block);
    }
    }
  else
  else
    gfc_init_block (&block);
    gfc_init_block (&block);
 
 
  /* Compare with the current limit.  */
  /* Compare with the current limit.  */
  gfc_init_se (&arrayse, NULL);
  gfc_init_se (&arrayse, NULL);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  gfc_copy_loopinfo_to_se (&arrayse, &loop);
  arrayse.ss = arrayss;
  arrayse.ss = arrayss;
  gfc_conv_expr_val (&arrayse, arrayexpr);
  gfc_conv_expr_val (&arrayse, arrayexpr);
  gfc_add_block_to_block (&block, &arrayse.pre);
  gfc_add_block_to_block (&block, &arrayse.pre);
 
 
  gfc_init_block (&block2);
  gfc_init_block (&block2);
 
 
  if (nonempty_var)
  if (nonempty_var)
    gfc_add_modify (&block2, nonempty_var, boolean_true_node);
    gfc_add_modify (&block2, nonempty_var, boolean_true_node);
 
 
  if (HONOR_NANS (DECL_MODE (limit)))
  if (HONOR_NANS (DECL_MODE (limit)))
    {
    {
      tmp = fold_build2 (op == GT_EXPR ? GE_EXPR : LE_EXPR,
      tmp = fold_build2 (op == GT_EXPR ? GE_EXPR : LE_EXPR,
                         boolean_type_node, arrayse.expr, limit);
                         boolean_type_node, arrayse.expr, limit);
      if (lab)
      if (lab)
        ifbody = build1_v (GOTO_EXPR, lab);
        ifbody = build1_v (GOTO_EXPR, lab);
      else
      else
        {
        {
          stmtblock_t ifblock;
          stmtblock_t ifblock;
 
 
          gfc_init_block (&ifblock);
          gfc_init_block (&ifblock);
          gfc_add_modify (&ifblock, limit, arrayse.expr);
          gfc_add_modify (&ifblock, limit, arrayse.expr);
          gfc_add_modify (&ifblock, fast, boolean_true_node);
          gfc_add_modify (&ifblock, fast, boolean_true_node);
          ifbody = gfc_finish_block (&ifblock);
          ifbody = gfc_finish_block (&ifblock);
        }
        }
      tmp = build3_v (COND_EXPR, tmp, ifbody,
      tmp = build3_v (COND_EXPR, tmp, ifbody,
                      build_empty_stmt (input_location));
                      build_empty_stmt (input_location));
      gfc_add_expr_to_block (&block2, tmp);
      gfc_add_expr_to_block (&block2, tmp);
    }
    }
  else
  else
    {
    {
      /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or
      /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or
         signed zeros.  */
         signed zeros.  */
      if (HONOR_SIGNED_ZEROS (DECL_MODE (limit)))
      if (HONOR_SIGNED_ZEROS (DECL_MODE (limit)))
        {
        {
          tmp = fold_build2 (op, boolean_type_node, arrayse.expr, limit);
          tmp = fold_build2 (op, boolean_type_node, arrayse.expr, limit);
          ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr);
          ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr);
          tmp = build3_v (COND_EXPR, tmp, ifbody,
          tmp = build3_v (COND_EXPR, tmp, ifbody,
                          build_empty_stmt (input_location));
                          build_empty_stmt (input_location));
          gfc_add_expr_to_block (&block2, tmp);
          gfc_add_expr_to_block (&block2, tmp);
        }
        }
      else
      else
        {
        {
          tmp = fold_build2 (op == GT_EXPR ? MAX_EXPR : MIN_EXPR,
          tmp = fold_build2 (op == GT_EXPR ? MAX_EXPR : MIN_EXPR,
                             type, arrayse.expr, limit);
                             type, arrayse.expr, limit);
          gfc_add_modify (&block2, limit, tmp);
          gfc_add_modify (&block2, limit, tmp);
        }
        }
    }
    }
 
 
  if (fast)
  if (fast)
    {
    {
      tree elsebody = gfc_finish_block (&block2);
      tree elsebody = gfc_finish_block (&block2);
 
 
      /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or
      /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or
         signed zeros.  */
         signed zeros.  */
      if (HONOR_NANS (DECL_MODE (limit))
      if (HONOR_NANS (DECL_MODE (limit))
          || HONOR_SIGNED_ZEROS (DECL_MODE (limit)))
          || HONOR_SIGNED_ZEROS (DECL_MODE (limit)))
        {
        {
          tmp = fold_build2 (op, boolean_type_node, arrayse.expr, limit);
          tmp = fold_build2 (op, boolean_type_node, arrayse.expr, limit);
          ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr);
          ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr);
          ifbody = build3_v (COND_EXPR, tmp, ifbody,
          ifbody = build3_v (COND_EXPR, tmp, ifbody,
                             build_empty_stmt (input_location));
                             build_empty_stmt (input_location));
        }
        }
      else
      else
        {
        {
          tmp = fold_build2 (op == GT_EXPR ? MAX_EXPR : MIN_EXPR,
          tmp = fold_build2 (op == GT_EXPR ? MAX_EXPR : MIN_EXPR,
                             type, arrayse.expr, limit);
                             type, arrayse.expr, limit);
          ifbody = build2_v (MODIFY_EXPR, limit, tmp);
          ifbody = build2_v (MODIFY_EXPR, limit, tmp);
        }
        }
      tmp = build3_v (COND_EXPR, fast, ifbody, elsebody);
      tmp = build3_v (COND_EXPR, fast, ifbody, elsebody);
      gfc_add_expr_to_block (&block, tmp);
      gfc_add_expr_to_block (&block, tmp);
    }
    }
  else
  else
    gfc_add_block_to_block (&block, &block2);
    gfc_add_block_to_block (&block, &block2);
 
 
  gfc_add_block_to_block (&block, &arrayse.post);
  gfc_add_block_to_block (&block, &arrayse.post);
 
 
  tmp = gfc_finish_block (&block);
  tmp = gfc_finish_block (&block);
  if (maskss)
  if (maskss)
    /* We enclose the above in if (mask) {...}.  */
    /* We enclose the above in if (mask) {...}.  */
    tmp = build3_v (COND_EXPR, maskse.expr, tmp,
    tmp = build3_v (COND_EXPR, maskse.expr, tmp,
                    build_empty_stmt (input_location));
                    build_empty_stmt (input_location));
  gfc_add_expr_to_block (&body, tmp);
  gfc_add_expr_to_block (&body, tmp);
 
 
  if (lab)
  if (lab)
    {
    {
      gfc_trans_scalarized_loop_end (&loop, 0, &body);
      gfc_trans_scalarized_loop_end (&loop, 0, &body);
 
 
      tmp = fold_build3 (COND_EXPR, type, nonempty, nan_cst, huge_cst);
      tmp = fold_build3 (COND_EXPR, type, nonempty, nan_cst, huge_cst);
      gfc_add_modify (&loop.code[0], limit, tmp);
      gfc_add_modify (&loop.code[0], limit, tmp);
      gfc_add_expr_to_block (&loop.code[0], build1_v (LABEL_EXPR, lab));
      gfc_add_expr_to_block (&loop.code[0], build1_v (LABEL_EXPR, lab));
 
 
      gfc_start_block (&body);
      gfc_start_block (&body);
 
 
      /* If we have a mask, only add this element if the mask is set.  */
      /* If we have a mask, only add this element if the mask is set.  */
      if (maskss)
      if (maskss)
        {
        {
          gfc_init_se (&maskse, NULL);
          gfc_init_se (&maskse, NULL);
          gfc_copy_loopinfo_to_se (&maskse, &loop);
          gfc_copy_loopinfo_to_se (&maskse, &loop);
          maskse.ss = maskss;
          maskse.ss = maskss;
          gfc_conv_expr_val (&maskse, maskexpr);
          gfc_conv_expr_val (&maskse, maskexpr);
          gfc_add_block_to_block (&body, &maskse.pre);
          gfc_add_block_to_block (&body, &maskse.pre);
 
 
          gfc_start_block (&block);
          gfc_start_block (&block);
        }
        }
      else
      else
        gfc_init_block (&block);
        gfc_init_block (&block);
 
 
      /* Compare with the current limit.  */
      /* Compare with the current limit.  */
      gfc_init_se (&arrayse, NULL);
      gfc_init_se (&arrayse, NULL);
      gfc_copy_loopinfo_to_se (&arrayse, &loop);
      gfc_copy_loopinfo_to_se (&arrayse, &loop);
      arrayse.ss = arrayss;
      arrayse.ss = arrayss;
      gfc_conv_expr_val (&arrayse, arrayexpr);
      gfc_conv_expr_val (&arrayse, arrayexpr);
      gfc_add_block_to_block (&block, &arrayse.pre);
      gfc_add_block_to_block (&block, &arrayse.pre);
 
 
      /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or
      /* MIN_EXPR/MAX_EXPR has unspecified behavior with NaNs or
         signed zeros.  */
         signed zeros.  */
      if (HONOR_NANS (DECL_MODE (limit))
      if (HONOR_NANS (DECL_MODE (limit))
          || HONOR_SIGNED_ZEROS (DECL_MODE (limit)))
          || HONOR_SIGNED_ZEROS (DECL_MODE (limit)))
        {
        {
          tmp = fold_build2 (op, boolean_type_node, arrayse.expr, limit);
          tmp = fold_build2 (op, boolean_type_node, arrayse.expr, limit);
          ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr);
          ifbody = build2_v (MODIFY_EXPR, limit, arrayse.expr);
          tmp = build3_v (COND_EXPR, tmp, ifbody,
          tmp = build3_v (COND_EXPR, tmp, ifbody,
                          build_empty_stmt (input_location));
                          build_empty_stmt (input_location));
          gfc_add_expr_to_block (&block, tmp);
          gfc_add_expr_to_block (&block, tmp);
        }
        }
      else
      else
        {
        {
          tmp = fold_build2 (op == GT_EXPR ? MAX_EXPR : MIN_EXPR,
          tmp = fold_build2 (op == GT_EXPR ? MAX_EXPR : MIN_EXPR,
                             type, arrayse.expr, limit);
                             type, arrayse.expr, limit);
          gfc_add_modify (&block, limit, tmp);
          gfc_add_modify (&block, limit, tmp);
        }
        }
 
 
      gfc_add_block_to_block (&block, &arrayse.post);
      gfc_add_block_to_block (&block, &arrayse.post);
 
 
      tmp = gfc_finish_block (&block);
      tmp = gfc_finish_block (&block);
      if (maskss)
      if (maskss)
        /* We enclose the above in if (mask) {...}.  */
        /* We enclose the above in if (mask) {...}.  */
        tmp = build3_v (COND_EXPR, maskse.expr, tmp,
        tmp = build3_v (COND_EXPR, maskse.expr, tmp,
                        build_empty_stmt (input_location));
                        build_empty_stmt (input_location));
      gfc_add_expr_to_block (&body, tmp);
      gfc_add_expr_to_block (&body, tmp);
      /* Avoid initializing loopvar[0] again, it should be left where
      /* Avoid initializing loopvar[0] again, it should be left where
         it finished by the first loop.  */
         it finished by the first loop.  */
      loop.from[0] = loop.loopvar[0];
      loop.from[0] = loop.loopvar[0];
    }
    }
  gfc_trans_scalarizing_loops (&loop, &body);
  gfc_trans_scalarizing_loops (&loop, &body);
 
 
  if (fast)
  if (fast)
    {
    {
      tmp = fold_build3 (COND_EXPR, type, nonempty, nan_cst, huge_cst);
      tmp = fold_build3 (COND_EXPR, type, nonempty, nan_cst, huge_cst);
      ifbody = build2_v (MODIFY_EXPR, limit, tmp);
      ifbody = build2_v (MODIFY_EXPR, limit, tmp);
      tmp = build3_v (COND_EXPR, fast, build_empty_stmt (input_location),
      tmp = build3_v (COND_EXPR, fast, build_empty_stmt (input_location),
                      ifbody);
                      ifbody);
      gfc_add_expr_to_block (&loop.pre, tmp);
      gfc_add_expr_to_block (&loop.pre, tmp);
    }
    }
  else if (HONOR_INFINITIES (DECL_MODE (limit)) && !lab)
  else if (HONOR_INFINITIES (DECL_MODE (limit)) && !lab)
    {
    {
      tmp = fold_build3 (COND_EXPR, type, nonempty, limit, huge_cst);
      tmp = fold_build3 (COND_EXPR, type, nonempty, limit, huge_cst);
      gfc_add_modify (&loop.pre, limit, tmp);
      gfc_add_modify (&loop.pre, limit, tmp);
    }
    }
 
 
  /* For a scalar mask, enclose the loop in an if statement.  */
  /* For a scalar mask, enclose the loop in an if statement.  */
  if (maskexpr && maskss == NULL)
  if (maskexpr && maskss == NULL)
    {
    {
      tree else_stmt;
      tree else_stmt;
 
 
      gfc_init_se (&maskse, NULL);
      gfc_init_se (&maskse, NULL);
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_conv_expr_val (&maskse, maskexpr);
      gfc_init_block (&block);
      gfc_init_block (&block);
      gfc_add_block_to_block (&block, &loop.pre);
      gfc_add_block_to_block (&block, &loop.pre);
      gfc_add_block_to_block (&block, &loop.post);
      gfc_add_block_to_block (&block, &loop.post);
      tmp = gfc_finish_block (&block);
      tmp = gfc_finish_block (&block);
 
 
      if (HONOR_INFINITIES (DECL_MODE (limit)))
      if (HONOR_INFINITIES (DECL_MODE (limit)))
        else_stmt = build2_v (MODIFY_EXPR, limit, huge_cst);
        else_stmt = build2_v (MODIFY_EXPR, limit, huge_cst);
      else
      else
        else_stmt = build_empty_stmt (input_location);
        else_stmt = build_empty_stmt (input_location);
      tmp = build3_v (COND_EXPR, maskse.expr, tmp, else_stmt);
      tmp = build3_v (COND_EXPR, maskse.expr, tmp, else_stmt);
      gfc_add_expr_to_block (&block, tmp);
      gfc_add_expr_to_block (&block, tmp);
      gfc_add_block_to_block (&se->pre, &block);
      gfc_add_block_to_block (&se->pre, &block);
    }
    }
  else
  else
    {
    {
      gfc_add_block_to_block (&se->pre, &loop.pre);
      gfc_add_block_to_block (&se->pre, &loop.pre);
      gfc_add_block_to_block (&se->pre, &loop.post);
      gfc_add_block_to_block (&se->pre, &loop.post);
    }
    }
 
 
  gfc_cleanup_loop (&loop);
  gfc_cleanup_loop (&loop);
 
 
  se->expr = limit;
  se->expr = limit;
}
}
 
 
/* BTEST (i, pos) = (i & (1 << pos)) != 0.  */
/* BTEST (i, pos) = (i & (1 << pos)) != 0.  */
static void
static void
gfc_conv_intrinsic_btest (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_btest (gfc_se * se, gfc_expr * expr)
{
{
  tree args[2];
  tree args[2];
  tree type;
  tree type;
  tree tmp;
  tree tmp;
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  type = TREE_TYPE (args[0]);
  type = TREE_TYPE (args[0]);
 
 
  tmp = fold_build2 (LSHIFT_EXPR, type, build_int_cst (type, 1), args[1]);
  tmp = fold_build2 (LSHIFT_EXPR, type, build_int_cst (type, 1), args[1]);
  tmp = fold_build2 (BIT_AND_EXPR, type, args[0], tmp);
  tmp = fold_build2 (BIT_AND_EXPR, type, args[0], tmp);
  tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp,
  tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp,
                     build_int_cst (type, 0));
                     build_int_cst (type, 0));
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  se->expr = convert (type, tmp);
  se->expr = convert (type, tmp);
}
}
 
 
/* Generate code to perform the specified operation.  */
/* Generate code to perform the specified operation.  */
static void
static void
gfc_conv_intrinsic_bitop (gfc_se * se, gfc_expr * expr, enum tree_code op)
gfc_conv_intrinsic_bitop (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
{
  tree args[2];
  tree args[2];
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  se->expr = fold_build2 (op, TREE_TYPE (args[0]), args[0], args[1]);
  se->expr = fold_build2 (op, TREE_TYPE (args[0]), args[0], args[1]);
}
}
 
 
/* Bitwise not.  */
/* Bitwise not.  */
static void
static void
gfc_conv_intrinsic_not (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_not (gfc_se * se, gfc_expr * expr)
{
{
  tree arg;
  tree arg;
 
 
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  se->expr = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg), arg);
  se->expr = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg), arg);
}
}
 
 
/* Set or clear a single bit.  */
/* Set or clear a single bit.  */
static void
static void
gfc_conv_intrinsic_singlebitop (gfc_se * se, gfc_expr * expr, int set)
gfc_conv_intrinsic_singlebitop (gfc_se * se, gfc_expr * expr, int set)
{
{
  tree args[2];
  tree args[2];
  tree type;
  tree type;
  tree tmp;
  tree tmp;
  enum tree_code op;
  enum tree_code op;
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  type = TREE_TYPE (args[0]);
  type = TREE_TYPE (args[0]);
 
 
  tmp = fold_build2 (LSHIFT_EXPR, type, build_int_cst (type, 1), args[1]);
  tmp = fold_build2 (LSHIFT_EXPR, type, build_int_cst (type, 1), args[1]);
  if (set)
  if (set)
    op = BIT_IOR_EXPR;
    op = BIT_IOR_EXPR;
  else
  else
    {
    {
      op = BIT_AND_EXPR;
      op = BIT_AND_EXPR;
      tmp = fold_build1 (BIT_NOT_EXPR, type, tmp);
      tmp = fold_build1 (BIT_NOT_EXPR, type, tmp);
    }
    }
  se->expr = fold_build2 (op, type, args[0], tmp);
  se->expr = fold_build2 (op, type, args[0], tmp);
}
}
 
 
/* Extract a sequence of bits.
/* Extract a sequence of bits.
    IBITS(I, POS, LEN) = (I >> POS) & ~((~0) << LEN).  */
    IBITS(I, POS, LEN) = (I >> POS) & ~((~0) << LEN).  */
static void
static void
gfc_conv_intrinsic_ibits (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_ibits (gfc_se * se, gfc_expr * expr)
{
{
  tree args[3];
  tree args[3];
  tree type;
  tree type;
  tree tmp;
  tree tmp;
  tree mask;
  tree mask;
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 3);
  gfc_conv_intrinsic_function_args (se, expr, args, 3);
  type = TREE_TYPE (args[0]);
  type = TREE_TYPE (args[0]);
 
 
  mask = build_int_cst (type, -1);
  mask = build_int_cst (type, -1);
  mask = fold_build2 (LSHIFT_EXPR, type, mask, args[2]);
  mask = fold_build2 (LSHIFT_EXPR, type, mask, args[2]);
  mask = fold_build1 (BIT_NOT_EXPR, type, mask);
  mask = fold_build1 (BIT_NOT_EXPR, type, mask);
 
 
  tmp = fold_build2 (RSHIFT_EXPR, type, args[0], args[1]);
  tmp = fold_build2 (RSHIFT_EXPR, type, args[0], args[1]);
 
 
  se->expr = fold_build2 (BIT_AND_EXPR, type, tmp, mask);
  se->expr = fold_build2 (BIT_AND_EXPR, type, tmp, mask);
}
}
 
 
/* RSHIFT (I, SHIFT) = I >> SHIFT
/* RSHIFT (I, SHIFT) = I >> SHIFT
   LSHIFT (I, SHIFT) = I << SHIFT  */
   LSHIFT (I, SHIFT) = I << SHIFT  */
static void
static void
gfc_conv_intrinsic_rlshift (gfc_se * se, gfc_expr * expr, int right_shift)
gfc_conv_intrinsic_rlshift (gfc_se * se, gfc_expr * expr, int right_shift)
{
{
  tree args[2];
  tree args[2];
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
 
 
  se->expr = fold_build2 (right_shift ? RSHIFT_EXPR : LSHIFT_EXPR,
  se->expr = fold_build2 (right_shift ? RSHIFT_EXPR : LSHIFT_EXPR,
                          TREE_TYPE (args[0]), args[0], args[1]);
                          TREE_TYPE (args[0]), args[0], args[1]);
}
}
 
 
/* ISHFT (I, SHIFT) = (abs (shift) >= BIT_SIZE (i))
/* ISHFT (I, SHIFT) = (abs (shift) >= BIT_SIZE (i))
                        ? 0
                        ? 0
                        : ((shift >= 0) ? i << shift : i >> -shift)
                        : ((shift >= 0) ? i << shift : i >> -shift)
   where all shifts are logical shifts.  */
   where all shifts are logical shifts.  */
static void
static void
gfc_conv_intrinsic_ishft (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_ishft (gfc_se * se, gfc_expr * expr)
{
{
  tree args[2];
  tree args[2];
  tree type;
  tree type;
  tree utype;
  tree utype;
  tree tmp;
  tree tmp;
  tree width;
  tree width;
  tree num_bits;
  tree num_bits;
  tree cond;
  tree cond;
  tree lshift;
  tree lshift;
  tree rshift;
  tree rshift;
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  type = TREE_TYPE (args[0]);
  type = TREE_TYPE (args[0]);
  utype = unsigned_type_for (type);
  utype = unsigned_type_for (type);
 
 
  width = fold_build1 (ABS_EXPR, TREE_TYPE (args[1]), args[1]);
  width = fold_build1 (ABS_EXPR, TREE_TYPE (args[1]), args[1]);
 
 
  /* Left shift if positive.  */
  /* Left shift if positive.  */
  lshift = fold_build2 (LSHIFT_EXPR, type, args[0], width);
  lshift = fold_build2 (LSHIFT_EXPR, type, args[0], width);
 
 
  /* Right shift if negative.
  /* Right shift if negative.
     We convert to an unsigned type because we want a logical shift.
     We convert to an unsigned type because we want a logical shift.
     The standard doesn't define the case of shifting negative
     The standard doesn't define the case of shifting negative
     numbers, and we try to be compatible with other compilers, most
     numbers, and we try to be compatible with other compilers, most
     notably g77, here.  */
     notably g77, here.  */
  rshift = fold_convert (type, fold_build2 (RSHIFT_EXPR, utype,
  rshift = fold_convert (type, fold_build2 (RSHIFT_EXPR, utype,
                                            convert (utype, args[0]), width));
                                            convert (utype, args[0]), width));
 
 
  tmp = fold_build2 (GE_EXPR, boolean_type_node, args[1],
  tmp = fold_build2 (GE_EXPR, boolean_type_node, args[1],
                     build_int_cst (TREE_TYPE (args[1]), 0));
                     build_int_cst (TREE_TYPE (args[1]), 0));
  tmp = fold_build3 (COND_EXPR, type, tmp, lshift, rshift);
  tmp = fold_build3 (COND_EXPR, type, tmp, lshift, rshift);
 
 
  /* The Fortran standard allows shift widths <= BIT_SIZE(I), whereas
  /* The Fortran standard allows shift widths <= BIT_SIZE(I), whereas
     gcc requires a shift width < BIT_SIZE(I), so we have to catch this
     gcc requires a shift width < BIT_SIZE(I), so we have to catch this
     special case.  */
     special case.  */
  num_bits = build_int_cst (TREE_TYPE (args[1]), TYPE_PRECISION (type));
  num_bits = build_int_cst (TREE_TYPE (args[1]), TYPE_PRECISION (type));
  cond = fold_build2 (GE_EXPR, boolean_type_node, width, num_bits);
  cond = fold_build2 (GE_EXPR, boolean_type_node, width, num_bits);
 
 
  se->expr = fold_build3 (COND_EXPR, type, cond,
  se->expr = fold_build3 (COND_EXPR, type, cond,
                          build_int_cst (type, 0), tmp);
                          build_int_cst (type, 0), tmp);
}
}
 
 
 
 
/* Circular shift.  AKA rotate or barrel shift.  */
/* Circular shift.  AKA rotate or barrel shift.  */
 
 
static void
static void
gfc_conv_intrinsic_ishftc (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_ishftc (gfc_se * se, gfc_expr * expr)
{
{
  tree *args;
  tree *args;
  tree type;
  tree type;
  tree tmp;
  tree tmp;
  tree lrot;
  tree lrot;
  tree rrot;
  tree rrot;
  tree zero;
  tree zero;
  unsigned int num_args;
  unsigned int num_args;
 
 
  num_args = gfc_intrinsic_argument_list_length (expr);
  num_args = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * num_args);
  args = (tree *) alloca (sizeof (tree) * num_args);
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
 
 
  if (num_args == 3)
  if (num_args == 3)
    {
    {
      /* Use a library function for the 3 parameter version.  */
      /* Use a library function for the 3 parameter version.  */
      tree int4type = gfc_get_int_type (4);
      tree int4type = gfc_get_int_type (4);
 
 
      type = TREE_TYPE (args[0]);
      type = TREE_TYPE (args[0]);
      /* We convert the first argument to at least 4 bytes, and
      /* We convert the first argument to at least 4 bytes, and
         convert back afterwards.  This removes the need for library
         convert back afterwards.  This removes the need for library
         functions for all argument sizes, and function will be
         functions for all argument sizes, and function will be
         aligned to at least 32 bits, so there's no loss.  */
         aligned to at least 32 bits, so there's no loss.  */
      if (expr->ts.kind < 4)
      if (expr->ts.kind < 4)
        args[0] = convert (int4type, args[0]);
        args[0] = convert (int4type, args[0]);
 
 
      /* Convert the SHIFT and SIZE args to INTEGER*4 otherwise we would
      /* Convert the SHIFT and SIZE args to INTEGER*4 otherwise we would
         need loads of library  functions.  They cannot have values >
         need loads of library  functions.  They cannot have values >
         BIT_SIZE (I) so the conversion is safe.  */
         BIT_SIZE (I) so the conversion is safe.  */
      args[1] = convert (int4type, args[1]);
      args[1] = convert (int4type, args[1]);
      args[2] = convert (int4type, args[2]);
      args[2] = convert (int4type, args[2]);
 
 
      switch (expr->ts.kind)
      switch (expr->ts.kind)
        {
        {
        case 1:
        case 1:
        case 2:
        case 2:
        case 4:
        case 4:
          tmp = gfor_fndecl_math_ishftc4;
          tmp = gfor_fndecl_math_ishftc4;
          break;
          break;
        case 8:
        case 8:
          tmp = gfor_fndecl_math_ishftc8;
          tmp = gfor_fndecl_math_ishftc8;
          break;
          break;
        case 16:
        case 16:
          tmp = gfor_fndecl_math_ishftc16;
          tmp = gfor_fndecl_math_ishftc16;
          break;
          break;
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
      se->expr = build_call_expr_loc (input_location,
      se->expr = build_call_expr_loc (input_location,
                                  tmp, 3, args[0], args[1], args[2]);
                                  tmp, 3, args[0], args[1], args[2]);
      /* Convert the result back to the original type, if we extended
      /* Convert the result back to the original type, if we extended
         the first argument's width above.  */
         the first argument's width above.  */
      if (expr->ts.kind < 4)
      if (expr->ts.kind < 4)
        se->expr = convert (type, se->expr);
        se->expr = convert (type, se->expr);
 
 
      return;
      return;
    }
    }
  type = TREE_TYPE (args[0]);
  type = TREE_TYPE (args[0]);
 
 
  /* Rotate left if positive.  */
  /* Rotate left if positive.  */
  lrot = fold_build2 (LROTATE_EXPR, type, args[0], args[1]);
  lrot = fold_build2 (LROTATE_EXPR, type, args[0], args[1]);
 
 
  /* Rotate right if negative.  */
  /* Rotate right if negative.  */
  tmp = fold_build1 (NEGATE_EXPR, TREE_TYPE (args[1]), args[1]);
  tmp = fold_build1 (NEGATE_EXPR, TREE_TYPE (args[1]), args[1]);
  rrot = fold_build2 (RROTATE_EXPR, type, args[0], tmp);
  rrot = fold_build2 (RROTATE_EXPR, type, args[0], tmp);
 
 
  zero = build_int_cst (TREE_TYPE (args[1]), 0);
  zero = build_int_cst (TREE_TYPE (args[1]), 0);
  tmp = fold_build2 (GT_EXPR, boolean_type_node, args[1], zero);
  tmp = fold_build2 (GT_EXPR, boolean_type_node, args[1], zero);
  rrot = fold_build3 (COND_EXPR, type, tmp, lrot, rrot);
  rrot = fold_build3 (COND_EXPR, type, tmp, lrot, rrot);
 
 
  /* Do nothing if shift == 0.  */
  /* Do nothing if shift == 0.  */
  tmp = fold_build2 (EQ_EXPR, boolean_type_node, args[1], zero);
  tmp = fold_build2 (EQ_EXPR, boolean_type_node, args[1], zero);
  se->expr = fold_build3 (COND_EXPR, type, tmp, args[0], rrot);
  se->expr = fold_build3 (COND_EXPR, type, tmp, args[0], rrot);
}
}
 
 
/* LEADZ (i) = (i == 0) ? BIT_SIZE (i)
/* LEADZ (i) = (i == 0) ? BIT_SIZE (i)
                        : __builtin_clz(i) - (BIT_SIZE('int') - BIT_SIZE(i))
                        : __builtin_clz(i) - (BIT_SIZE('int') - BIT_SIZE(i))
 
 
   The conditional expression is necessary because the result of LEADZ(0)
   The conditional expression is necessary because the result of LEADZ(0)
   is defined, but the result of __builtin_clz(0) is undefined for most
   is defined, but the result of __builtin_clz(0) is undefined for most
   targets.
   targets.
 
 
   For INTEGER kinds smaller than the C 'int' type, we have to subtract the
   For INTEGER kinds smaller than the C 'int' type, we have to subtract the
   difference in bit size between the argument of LEADZ and the C int.  */
   difference in bit size between the argument of LEADZ and the C int.  */
 
 
static void
static void
gfc_conv_intrinsic_leadz (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_leadz (gfc_se * se, gfc_expr * expr)
{
{
  tree arg;
  tree arg;
  tree arg_type;
  tree arg_type;
  tree cond;
  tree cond;
  tree result_type;
  tree result_type;
  tree leadz;
  tree leadz;
  tree bit_size;
  tree bit_size;
  tree tmp;
  tree tmp;
  tree func;
  tree func;
  int s, argsize;
  int s, argsize;
 
 
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  argsize = TYPE_PRECISION (TREE_TYPE (arg));
  argsize = TYPE_PRECISION (TREE_TYPE (arg));
 
 
  /* Which variant of __builtin_clz* should we call?  */
  /* Which variant of __builtin_clz* should we call?  */
  if (argsize <= INT_TYPE_SIZE)
  if (argsize <= INT_TYPE_SIZE)
    {
    {
      arg_type = unsigned_type_node;
      arg_type = unsigned_type_node;
      func = built_in_decls[BUILT_IN_CLZ];
      func = built_in_decls[BUILT_IN_CLZ];
    }
    }
  else if (argsize <= LONG_TYPE_SIZE)
  else if (argsize <= LONG_TYPE_SIZE)
    {
    {
      arg_type = long_unsigned_type_node;
      arg_type = long_unsigned_type_node;
      func = built_in_decls[BUILT_IN_CLZL];
      func = built_in_decls[BUILT_IN_CLZL];
    }
    }
  else if (argsize <= LONG_LONG_TYPE_SIZE)
  else if (argsize <= LONG_LONG_TYPE_SIZE)
    {
    {
      arg_type = long_long_unsigned_type_node;
      arg_type = long_long_unsigned_type_node;
      func = built_in_decls[BUILT_IN_CLZLL];
      func = built_in_decls[BUILT_IN_CLZLL];
    }
    }
  else
  else
    {
    {
      gcc_assert (argsize == 128);
      gcc_assert (argsize == 128);
      arg_type = gfc_build_uint_type (argsize);
      arg_type = gfc_build_uint_type (argsize);
      func = gfor_fndecl_clz128;
      func = gfor_fndecl_clz128;
    }
    }
 
 
  /* Convert the actual argument twice: first, to the unsigned type of the
  /* Convert the actual argument twice: first, to the unsigned type of the
     same size; then, to the proper argument type for the built-in
     same size; then, to the proper argument type for the built-in
     function.  But the return type is of the default INTEGER kind.  */
     function.  But the return type is of the default INTEGER kind.  */
  arg = fold_convert (gfc_build_uint_type (argsize), arg);
  arg = fold_convert (gfc_build_uint_type (argsize), arg);
  arg = fold_convert (arg_type, arg);
  arg = fold_convert (arg_type, arg);
  result_type = gfc_get_int_type (gfc_default_integer_kind);
  result_type = gfc_get_int_type (gfc_default_integer_kind);
 
 
  /* Compute LEADZ for the case i .ne. 0.  */
  /* Compute LEADZ for the case i .ne. 0.  */
  s = TYPE_PRECISION (arg_type) - argsize;
  s = TYPE_PRECISION (arg_type) - argsize;
  tmp = fold_convert (result_type, build_call_expr (func, 1, arg));
  tmp = fold_convert (result_type, build_call_expr (func, 1, arg));
  leadz = fold_build2 (MINUS_EXPR, result_type,
  leadz = fold_build2 (MINUS_EXPR, result_type,
                       tmp, build_int_cst (result_type, s));
                       tmp, build_int_cst (result_type, s));
 
 
  /* Build BIT_SIZE.  */
  /* Build BIT_SIZE.  */
  bit_size = build_int_cst (result_type, argsize);
  bit_size = build_int_cst (result_type, argsize);
 
 
  cond = fold_build2 (EQ_EXPR, boolean_type_node,
  cond = fold_build2 (EQ_EXPR, boolean_type_node,
                      arg, build_int_cst (arg_type, 0));
                      arg, build_int_cst (arg_type, 0));
  se->expr = fold_build3 (COND_EXPR, result_type, cond, bit_size, leadz);
  se->expr = fold_build3 (COND_EXPR, result_type, cond, bit_size, leadz);
}
}
 
 
/* TRAILZ(i) = (i == 0) ? BIT_SIZE (i) : __builtin_ctz(i)
/* TRAILZ(i) = (i == 0) ? BIT_SIZE (i) : __builtin_ctz(i)
 
 
   The conditional expression is necessary because the result of TRAILZ(0)
   The conditional expression is necessary because the result of TRAILZ(0)
   is defined, but the result of __builtin_ctz(0) is undefined for most
   is defined, but the result of __builtin_ctz(0) is undefined for most
   targets.  */
   targets.  */
 
 
static void
static void
gfc_conv_intrinsic_trailz (gfc_se * se, gfc_expr *expr)
gfc_conv_intrinsic_trailz (gfc_se * se, gfc_expr *expr)
{
{
  tree arg;
  tree arg;
  tree arg_type;
  tree arg_type;
  tree cond;
  tree cond;
  tree result_type;
  tree result_type;
  tree trailz;
  tree trailz;
  tree bit_size;
  tree bit_size;
  tree func;
  tree func;
  int argsize;
  int argsize;
 
 
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  argsize = TYPE_PRECISION (TREE_TYPE (arg));
  argsize = TYPE_PRECISION (TREE_TYPE (arg));
 
 
  /* Which variant of __builtin_ctz* should we call?  */
  /* Which variant of __builtin_ctz* should we call?  */
  if (argsize <= INT_TYPE_SIZE)
  if (argsize <= INT_TYPE_SIZE)
    {
    {
      arg_type = unsigned_type_node;
      arg_type = unsigned_type_node;
      func = built_in_decls[BUILT_IN_CTZ];
      func = built_in_decls[BUILT_IN_CTZ];
    }
    }
  else if (argsize <= LONG_TYPE_SIZE)
  else if (argsize <= LONG_TYPE_SIZE)
    {
    {
      arg_type = long_unsigned_type_node;
      arg_type = long_unsigned_type_node;
      func = built_in_decls[BUILT_IN_CTZL];
      func = built_in_decls[BUILT_IN_CTZL];
    }
    }
  else if (argsize <= LONG_LONG_TYPE_SIZE)
  else if (argsize <= LONG_LONG_TYPE_SIZE)
    {
    {
      arg_type = long_long_unsigned_type_node;
      arg_type = long_long_unsigned_type_node;
      func = built_in_decls[BUILT_IN_CTZLL];
      func = built_in_decls[BUILT_IN_CTZLL];
    }
    }
  else
  else
    {
    {
      gcc_assert (argsize == 128);
      gcc_assert (argsize == 128);
      arg_type = gfc_build_uint_type (argsize);
      arg_type = gfc_build_uint_type (argsize);
      func = gfor_fndecl_ctz128;
      func = gfor_fndecl_ctz128;
    }
    }
 
 
  /* Convert the actual argument twice: first, to the unsigned type of the
  /* Convert the actual argument twice: first, to the unsigned type of the
     same size; then, to the proper argument type for the built-in
     same size; then, to the proper argument type for the built-in
     function.  But the return type is of the default INTEGER kind.  */
     function.  But the return type is of the default INTEGER kind.  */
  arg = fold_convert (gfc_build_uint_type (argsize), arg);
  arg = fold_convert (gfc_build_uint_type (argsize), arg);
  arg = fold_convert (arg_type, arg);
  arg = fold_convert (arg_type, arg);
  result_type = gfc_get_int_type (gfc_default_integer_kind);
  result_type = gfc_get_int_type (gfc_default_integer_kind);
 
 
  /* Compute TRAILZ for the case i .ne. 0.  */
  /* Compute TRAILZ for the case i .ne. 0.  */
  trailz = fold_convert (result_type, build_call_expr_loc (input_location,
  trailz = fold_convert (result_type, build_call_expr_loc (input_location,
                                                       func, 1, arg));
                                                       func, 1, arg));
 
 
  /* Build BIT_SIZE.  */
  /* Build BIT_SIZE.  */
  bit_size = build_int_cst (result_type, argsize);
  bit_size = build_int_cst (result_type, argsize);
 
 
  cond = fold_build2 (EQ_EXPR, boolean_type_node,
  cond = fold_build2 (EQ_EXPR, boolean_type_node,
                      arg, build_int_cst (arg_type, 0));
                      arg, build_int_cst (arg_type, 0));
  se->expr = fold_build3 (COND_EXPR, result_type, cond, bit_size, trailz);
  se->expr = fold_build3 (COND_EXPR, result_type, cond, bit_size, trailz);
}
}
 
 
/* Process an intrinsic with unspecified argument-types that has an optional
/* Process an intrinsic with unspecified argument-types that has an optional
   argument (which could be of type character), e.g. EOSHIFT.  For those, we
   argument (which could be of type character), e.g. EOSHIFT.  For those, we
   need to append the string length of the optional argument if it is not
   need to append the string length of the optional argument if it is not
   present and the type is really character.
   present and the type is really character.
   primary specifies the position (starting at 1) of the non-optional argument
   primary specifies the position (starting at 1) of the non-optional argument
   specifying the type and optional gives the position of the optional
   specifying the type and optional gives the position of the optional
   argument in the arglist.  */
   argument in the arglist.  */
 
 
static void
static void
conv_generic_with_optional_char_arg (gfc_se* se, gfc_expr* expr,
conv_generic_with_optional_char_arg (gfc_se* se, gfc_expr* expr,
                                     unsigned primary, unsigned optional)
                                     unsigned primary, unsigned optional)
{
{
  gfc_actual_arglist* prim_arg;
  gfc_actual_arglist* prim_arg;
  gfc_actual_arglist* opt_arg;
  gfc_actual_arglist* opt_arg;
  unsigned cur_pos;
  unsigned cur_pos;
  gfc_actual_arglist* arg;
  gfc_actual_arglist* arg;
  gfc_symbol* sym;
  gfc_symbol* sym;
  tree append_args;
  tree append_args;
 
 
  /* Find the two arguments given as position.  */
  /* Find the two arguments given as position.  */
  cur_pos = 0;
  cur_pos = 0;
  prim_arg = NULL;
  prim_arg = NULL;
  opt_arg = NULL;
  opt_arg = NULL;
  for (arg = expr->value.function.actual; arg; arg = arg->next)
  for (arg = expr->value.function.actual; arg; arg = arg->next)
    {
    {
      ++cur_pos;
      ++cur_pos;
 
 
      if (cur_pos == primary)
      if (cur_pos == primary)
        prim_arg = arg;
        prim_arg = arg;
      if (cur_pos == optional)
      if (cur_pos == optional)
        opt_arg = arg;
        opt_arg = arg;
 
 
      if (cur_pos >= primary && cur_pos >= optional)
      if (cur_pos >= primary && cur_pos >= optional)
        break;
        break;
    }
    }
  gcc_assert (prim_arg);
  gcc_assert (prim_arg);
  gcc_assert (prim_arg->expr);
  gcc_assert (prim_arg->expr);
  gcc_assert (opt_arg);
  gcc_assert (opt_arg);
 
 
  /* If we do have type CHARACTER and the optional argument is really absent,
  /* If we do have type CHARACTER and the optional argument is really absent,
     append a dummy 0 as string length.  */
     append a dummy 0 as string length.  */
  append_args = NULL_TREE;
  append_args = NULL_TREE;
  if (prim_arg->expr->ts.type == BT_CHARACTER && !opt_arg->expr)
  if (prim_arg->expr->ts.type == BT_CHARACTER && !opt_arg->expr)
    {
    {
      tree dummy;
      tree dummy;
 
 
      dummy = build_int_cst (gfc_charlen_type_node, 0);
      dummy = build_int_cst (gfc_charlen_type_node, 0);
      append_args = gfc_chainon_list (append_args, dummy);
      append_args = gfc_chainon_list (append_args, dummy);
    }
    }
 
 
  /* Build the call itself.  */
  /* Build the call itself.  */
  sym = gfc_get_symbol_for_expr (expr);
  sym = gfc_get_symbol_for_expr (expr);
  gfc_conv_procedure_call (se, sym, expr->value.function.actual, expr,
  gfc_conv_procedure_call (se, sym, expr->value.function.actual, expr,
                          append_args);
                          append_args);
  gfc_free (sym);
  gfc_free (sym);
}
}
 
 
 
 
/* The length of a character string.  */
/* The length of a character string.  */
static void
static void
gfc_conv_intrinsic_len (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_len (gfc_se * se, gfc_expr * expr)
{
{
  tree len;
  tree len;
  tree type;
  tree type;
  tree decl;
  tree decl;
  gfc_symbol *sym;
  gfc_symbol *sym;
  gfc_se argse;
  gfc_se argse;
  gfc_expr *arg;
  gfc_expr *arg;
  gfc_ss *ss;
  gfc_ss *ss;
 
 
  gcc_assert (!se->ss);
  gcc_assert (!se->ss);
 
 
  arg = expr->value.function.actual->expr;
  arg = expr->value.function.actual->expr;
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  switch (arg->expr_type)
  switch (arg->expr_type)
    {
    {
    case EXPR_CONSTANT:
    case EXPR_CONSTANT:
      len = build_int_cst (NULL_TREE, arg->value.character.length);
      len = build_int_cst (NULL_TREE, arg->value.character.length);
      break;
      break;
 
 
    case EXPR_ARRAY:
    case EXPR_ARRAY:
      /* Obtain the string length from the function used by
      /* Obtain the string length from the function used by
         trans-array.c(gfc_trans_array_constructor).  */
         trans-array.c(gfc_trans_array_constructor).  */
      len = NULL_TREE;
      len = NULL_TREE;
      get_array_ctor_strlen (&se->pre, arg->value.constructor, &len);
      get_array_ctor_strlen (&se->pre, arg->value.constructor, &len);
      break;
      break;
 
 
    case EXPR_VARIABLE:
    case EXPR_VARIABLE:
      if (arg->ref == NULL
      if (arg->ref == NULL
            || (arg->ref->next == NULL && arg->ref->type == REF_ARRAY))
            || (arg->ref->next == NULL && arg->ref->type == REF_ARRAY))
        {
        {
          /* This doesn't catch all cases.
          /* This doesn't catch all cases.
             See http://gcc.gnu.org/ml/fortran/2004-06/msg00165.html
             See http://gcc.gnu.org/ml/fortran/2004-06/msg00165.html
             and the surrounding thread.  */
             and the surrounding thread.  */
          sym = arg->symtree->n.sym;
          sym = arg->symtree->n.sym;
          decl = gfc_get_symbol_decl (sym);
          decl = gfc_get_symbol_decl (sym);
          if (decl == current_function_decl && sym->attr.function
          if (decl == current_function_decl && sym->attr.function
                && (sym->result == sym))
                && (sym->result == sym))
            decl = gfc_get_fake_result_decl (sym, 0);
            decl = gfc_get_fake_result_decl (sym, 0);
 
 
          len = sym->ts.u.cl->backend_decl;
          len = sym->ts.u.cl->backend_decl;
          gcc_assert (len);
          gcc_assert (len);
          break;
          break;
        }
        }
 
 
      /* Otherwise fall through.  */
      /* Otherwise fall through.  */
 
 
    default:
    default:
      /* Anybody stupid enough to do this deserves inefficient code.  */
      /* Anybody stupid enough to do this deserves inefficient code.  */
      ss = gfc_walk_expr (arg);
      ss = gfc_walk_expr (arg);
      gfc_init_se (&argse, se);
      gfc_init_se (&argse, se);
      if (ss == gfc_ss_terminator)
      if (ss == gfc_ss_terminator)
        gfc_conv_expr (&argse, arg);
        gfc_conv_expr (&argse, arg);
      else
      else
        gfc_conv_expr_descriptor (&argse, arg, ss);
        gfc_conv_expr_descriptor (&argse, arg, ss);
      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->post, &argse.post);
      gfc_add_block_to_block (&se->post, &argse.post);
      len = argse.string_length;
      len = argse.string_length;
      break;
      break;
    }
    }
  se->expr = convert (type, len);
  se->expr = convert (type, len);
}
}
 
 
/* The length of a character string not including trailing blanks.  */
/* The length of a character string not including trailing blanks.  */
static void
static void
gfc_conv_intrinsic_len_trim (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_len_trim (gfc_se * se, gfc_expr * expr)
{
{
  int kind = expr->value.function.actual->expr->ts.kind;
  int kind = expr->value.function.actual->expr->ts.kind;
  tree args[2], type, fndecl;
  tree args[2], type, fndecl;
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
 
 
  if (kind == 1)
  if (kind == 1)
    fndecl = gfor_fndecl_string_len_trim;
    fndecl = gfor_fndecl_string_len_trim;
  else if (kind == 4)
  else if (kind == 4)
    fndecl = gfor_fndecl_string_len_trim_char4;
    fndecl = gfor_fndecl_string_len_trim_char4;
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  se->expr = build_call_expr_loc (input_location,
  se->expr = build_call_expr_loc (input_location,
                              fndecl, 2, args[0], args[1]);
                              fndecl, 2, args[0], args[1]);
  se->expr = convert (type, se->expr);
  se->expr = convert (type, se->expr);
}
}
 
 
 
 
/* Returns the starting position of a substring within a string.  */
/* Returns the starting position of a substring within a string.  */
 
 
static void
static void
gfc_conv_intrinsic_index_scan_verify (gfc_se * se, gfc_expr * expr,
gfc_conv_intrinsic_index_scan_verify (gfc_se * se, gfc_expr * expr,
                                      tree function)
                                      tree function)
{
{
  tree logical4_type_node = gfc_get_logical_type (4);
  tree logical4_type_node = gfc_get_logical_type (4);
  tree type;
  tree type;
  tree fndecl;
  tree fndecl;
  tree *args;
  tree *args;
  unsigned int num_args;
  unsigned int num_args;
 
 
  args = (tree *) alloca (sizeof (tree) * 5);
  args = (tree *) alloca (sizeof (tree) * 5);
 
 
  /* Get number of arguments; characters count double due to the
  /* Get number of arguments; characters count double due to the
     string length argument. Kind= is not passed to the library
     string length argument. Kind= is not passed to the library
     and thus ignored.  */
     and thus ignored.  */
  if (expr->value.function.actual->next->next->expr == NULL)
  if (expr->value.function.actual->next->next->expr == NULL)
    num_args = 4;
    num_args = 4;
  else
  else
    num_args = 5;
    num_args = 5;
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
 
 
  if (num_args == 4)
  if (num_args == 4)
    args[4] = build_int_cst (logical4_type_node, 0);
    args[4] = build_int_cst (logical4_type_node, 0);
  else
  else
    args[4] = convert (logical4_type_node, args[4]);
    args[4] = convert (logical4_type_node, args[4]);
 
 
  fndecl = build_addr (function, current_function_decl);
  fndecl = build_addr (function, current_function_decl);
  se->expr = build_call_array_loc (input_location,
  se->expr = build_call_array_loc (input_location,
                               TREE_TYPE (TREE_TYPE (function)), fndecl,
                               TREE_TYPE (TREE_TYPE (function)), fndecl,
                               5, args);
                               5, args);
  se->expr = convert (type, se->expr);
  se->expr = convert (type, se->expr);
 
 
}
}
 
 
/* The ascii value for a single character.  */
/* The ascii value for a single character.  */
static void
static void
gfc_conv_intrinsic_ichar (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_ichar (gfc_se * se, gfc_expr * expr)
{
{
  tree args[2], type, pchartype;
  tree args[2], type, pchartype;
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gcc_assert (POINTER_TYPE_P (TREE_TYPE (args[1])));
  gcc_assert (POINTER_TYPE_P (TREE_TYPE (args[1])));
  pchartype = gfc_get_pchar_type (expr->value.function.actual->expr->ts.kind);
  pchartype = gfc_get_pchar_type (expr->value.function.actual->expr->ts.kind);
  args[1] = fold_build1 (NOP_EXPR, pchartype, args[1]);
  args[1] = fold_build1 (NOP_EXPR, pchartype, args[1]);
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
 
 
  se->expr = build_fold_indirect_ref_loc (input_location,
  se->expr = build_fold_indirect_ref_loc (input_location,
                                      args[1]);
                                      args[1]);
  se->expr = convert (type, se->expr);
  se->expr = convert (type, se->expr);
}
}
 
 
 
 
/* Intrinsic ISNAN calls __builtin_isnan.  */
/* Intrinsic ISNAN calls __builtin_isnan.  */
 
 
static void
static void
gfc_conv_intrinsic_isnan (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_isnan (gfc_se * se, gfc_expr * expr)
{
{
  tree arg;
  tree arg;
 
 
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  se->expr = build_call_expr_loc (input_location,
  se->expr = build_call_expr_loc (input_location,
                              built_in_decls[BUILT_IN_ISNAN], 1, arg);
                              built_in_decls[BUILT_IN_ISNAN], 1, arg);
  STRIP_TYPE_NOPS (se->expr);
  STRIP_TYPE_NOPS (se->expr);
  se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr);
  se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr);
}
}
 
 
 
 
/* Intrinsics IS_IOSTAT_END and IS_IOSTAT_EOR just need to compare
/* Intrinsics IS_IOSTAT_END and IS_IOSTAT_EOR just need to compare
   their argument against a constant integer value.  */
   their argument against a constant integer value.  */
 
 
static void
static void
gfc_conv_has_intvalue (gfc_se * se, gfc_expr * expr, const int value)
gfc_conv_has_intvalue (gfc_se * se, gfc_expr * expr, const int value)
{
{
  tree arg;
  tree arg;
 
 
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  se->expr = fold_build2 (EQ_EXPR, gfc_typenode_for_spec (&expr->ts),
  se->expr = fold_build2 (EQ_EXPR, gfc_typenode_for_spec (&expr->ts),
                          arg, build_int_cst (TREE_TYPE (arg), value));
                          arg, build_int_cst (TREE_TYPE (arg), value));
}
}
 
 
 
 
 
 
/* MERGE (tsource, fsource, mask) = mask ? tsource : fsource.  */
/* MERGE (tsource, fsource, mask) = mask ? tsource : fsource.  */
 
 
static void
static void
gfc_conv_intrinsic_merge (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_merge (gfc_se * se, gfc_expr * expr)
{
{
  tree tsource;
  tree tsource;
  tree fsource;
  tree fsource;
  tree mask;
  tree mask;
  tree type;
  tree type;
  tree len, len2;
  tree len, len2;
  tree *args;
  tree *args;
  unsigned int num_args;
  unsigned int num_args;
 
 
  num_args = gfc_intrinsic_argument_list_length (expr);
  num_args = gfc_intrinsic_argument_list_length (expr);
  args = (tree *) alloca (sizeof (tree) * num_args);
  args = (tree *) alloca (sizeof (tree) * num_args);
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
  gfc_conv_intrinsic_function_args (se, expr, args, num_args);
  if (expr->ts.type != BT_CHARACTER)
  if (expr->ts.type != BT_CHARACTER)
    {
    {
      tsource = args[0];
      tsource = args[0];
      fsource = args[1];
      fsource = args[1];
      mask = args[2];
      mask = args[2];
    }
    }
  else
  else
    {
    {
      /* We do the same as in the non-character case, but the argument
      /* We do the same as in the non-character case, but the argument
         list is different because of the string length arguments. We
         list is different because of the string length arguments. We
         also have to set the string length for the result.  */
         also have to set the string length for the result.  */
      len = args[0];
      len = args[0];
      tsource = args[1];
      tsource = args[1];
      len2 = args[2];
      len2 = args[2];
      fsource = args[3];
      fsource = args[3];
      mask = args[4];
      mask = args[4];
 
 
      gfc_trans_same_strlen_check ("MERGE intrinsic", &expr->where, len, len2,
      gfc_trans_same_strlen_check ("MERGE intrinsic", &expr->where, len, len2,
                                   &se->pre);
                                   &se->pre);
      se->string_length = len;
      se->string_length = len;
    }
    }
  type = TREE_TYPE (tsource);
  type = TREE_TYPE (tsource);
  se->expr = fold_build3 (COND_EXPR, type, mask, tsource,
  se->expr = fold_build3 (COND_EXPR, type, mask, tsource,
                          fold_convert (type, fsource));
                          fold_convert (type, fsource));
}
}
 
 
 
 
/* FRACTION (s) is translated into frexp (s, &dummy_int).  */
/* FRACTION (s) is translated into frexp (s, &dummy_int).  */
static void
static void
gfc_conv_intrinsic_fraction (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_fraction (gfc_se * se, gfc_expr * expr)
{
{
  tree arg, type, tmp;
  tree arg, type, tmp;
  int frexp;
  int frexp;
 
 
  switch (expr->ts.kind)
  switch (expr->ts.kind)
    {
    {
      case 4:
      case 4:
        frexp = BUILT_IN_FREXPF;
        frexp = BUILT_IN_FREXPF;
        break;
        break;
      case 8:
      case 8:
        frexp = BUILT_IN_FREXP;
        frexp = BUILT_IN_FREXP;
        break;
        break;
      case 10:
      case 10:
      case 16:
      case 16:
        frexp = BUILT_IN_FREXPL;
        frexp = BUILT_IN_FREXPL;
        break;
        break;
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
    }
    }
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  tmp = gfc_create_var (integer_type_node, NULL);
  tmp = gfc_create_var (integer_type_node, NULL);
  se->expr = build_call_expr_loc (input_location,
  se->expr = build_call_expr_loc (input_location,
                              built_in_decls[frexp], 2,
                              built_in_decls[frexp], 2,
                              fold_convert (type, arg),
                              fold_convert (type, arg),
                              gfc_build_addr_expr (NULL_TREE, tmp));
                              gfc_build_addr_expr (NULL_TREE, tmp));
  se->expr = fold_convert (type, se->expr);
  se->expr = fold_convert (type, se->expr);
}
}
 
 
 
 
/* NEAREST (s, dir) is translated into
/* NEAREST (s, dir) is translated into
     tmp = copysign (HUGE_VAL, dir);
     tmp = copysign (HUGE_VAL, dir);
     return nextafter (s, tmp);
     return nextafter (s, tmp);
 */
 */
static void
static void
gfc_conv_intrinsic_nearest (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_nearest (gfc_se * se, gfc_expr * expr)
{
{
  tree args[2], type, tmp;
  tree args[2], type, tmp;
  int nextafter, copysign, huge_val;
  int nextafter, copysign, huge_val;
 
 
  switch (expr->ts.kind)
  switch (expr->ts.kind)
    {
    {
      case 4:
      case 4:
        nextafter = BUILT_IN_NEXTAFTERF;
        nextafter = BUILT_IN_NEXTAFTERF;
        copysign = BUILT_IN_COPYSIGNF;
        copysign = BUILT_IN_COPYSIGNF;
        huge_val = BUILT_IN_HUGE_VALF;
        huge_val = BUILT_IN_HUGE_VALF;
        break;
        break;
      case 8:
      case 8:
        nextafter = BUILT_IN_NEXTAFTER;
        nextafter = BUILT_IN_NEXTAFTER;
        copysign = BUILT_IN_COPYSIGN;
        copysign = BUILT_IN_COPYSIGN;
        huge_val = BUILT_IN_HUGE_VAL;
        huge_val = BUILT_IN_HUGE_VAL;
        break;
        break;
      case 10:
      case 10:
      case 16:
      case 16:
        nextafter = BUILT_IN_NEXTAFTERL;
        nextafter = BUILT_IN_NEXTAFTERL;
        copysign = BUILT_IN_COPYSIGNL;
        copysign = BUILT_IN_COPYSIGNL;
        huge_val = BUILT_IN_HUGE_VALL;
        huge_val = BUILT_IN_HUGE_VALL;
        break;
        break;
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
    }
    }
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  tmp = build_call_expr_loc (input_location,
  tmp = build_call_expr_loc (input_location,
                         built_in_decls[copysign], 2,
                         built_in_decls[copysign], 2,
                         build_call_expr_loc (input_location,
                         build_call_expr_loc (input_location,
                                          built_in_decls[huge_val], 0),
                                          built_in_decls[huge_val], 0),
                         fold_convert (type, args[1]));
                         fold_convert (type, args[1]));
  se->expr = build_call_expr_loc (input_location,
  se->expr = build_call_expr_loc (input_location,
                              built_in_decls[nextafter], 2,
                              built_in_decls[nextafter], 2,
                              fold_convert (type, args[0]), tmp);
                              fold_convert (type, args[0]), tmp);
  se->expr = fold_convert (type, se->expr);
  se->expr = fold_convert (type, se->expr);
}
}
 
 
 
 
/* SPACING (s) is translated into
/* SPACING (s) is translated into
    int e;
    int e;
    if (s == 0)
    if (s == 0)
      res = tiny;
      res = tiny;
    else
    else
    {
    {
      frexp (s, &e);
      frexp (s, &e);
      e = e - prec;
      e = e - prec;
      e = MAX_EXPR (e, emin);
      e = MAX_EXPR (e, emin);
      res = scalbn (1., e);
      res = scalbn (1., e);
    }
    }
    return res;
    return res;
 
 
 where prec is the precision of s, gfc_real_kinds[k].digits,
 where prec is the precision of s, gfc_real_kinds[k].digits,
       emin is min_exponent - 1, gfc_real_kinds[k].min_exponent - 1,
       emin is min_exponent - 1, gfc_real_kinds[k].min_exponent - 1,
   and tiny is tiny(s), gfc_real_kinds[k].tiny.  */
   and tiny is tiny(s), gfc_real_kinds[k].tiny.  */
 
 
static void
static void
gfc_conv_intrinsic_spacing (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_spacing (gfc_se * se, gfc_expr * expr)
{
{
  tree arg, type, prec, emin, tiny, res, e;
  tree arg, type, prec, emin, tiny, res, e;
  tree cond, tmp;
  tree cond, tmp;
  int frexp, scalbn, k;
  int frexp, scalbn, k;
  stmtblock_t block;
  stmtblock_t block;
 
 
  k = gfc_validate_kind (BT_REAL, expr->ts.kind, false);
  k = gfc_validate_kind (BT_REAL, expr->ts.kind, false);
  prec = build_int_cst (NULL_TREE, gfc_real_kinds[k].digits);
  prec = build_int_cst (NULL_TREE, gfc_real_kinds[k].digits);
  emin = build_int_cst (NULL_TREE, gfc_real_kinds[k].min_exponent - 1);
  emin = build_int_cst (NULL_TREE, gfc_real_kinds[k].min_exponent - 1);
  tiny = gfc_conv_mpfr_to_tree (gfc_real_kinds[k].tiny, expr->ts.kind, 0);
  tiny = gfc_conv_mpfr_to_tree (gfc_real_kinds[k].tiny, expr->ts.kind, 0);
 
 
  switch (expr->ts.kind)
  switch (expr->ts.kind)
    {
    {
      case 4:
      case 4:
        frexp = BUILT_IN_FREXPF;
        frexp = BUILT_IN_FREXPF;
        scalbn = BUILT_IN_SCALBNF;
        scalbn = BUILT_IN_SCALBNF;
        break;
        break;
      case 8:
      case 8:
        frexp = BUILT_IN_FREXP;
        frexp = BUILT_IN_FREXP;
        scalbn = BUILT_IN_SCALBN;
        scalbn = BUILT_IN_SCALBN;
        break;
        break;
      case 10:
      case 10:
      case 16:
      case 16:
        frexp = BUILT_IN_FREXPL;
        frexp = BUILT_IN_FREXPL;
        scalbn = BUILT_IN_SCALBNL;
        scalbn = BUILT_IN_SCALBNL;
        break;
        break;
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
    }
    }
 
 
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  arg = gfc_evaluate_now (arg, &se->pre);
  arg = gfc_evaluate_now (arg, &se->pre);
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  e = gfc_create_var (integer_type_node, NULL);
  e = gfc_create_var (integer_type_node, NULL);
  res = gfc_create_var (type, NULL);
  res = gfc_create_var (type, NULL);
 
 
 
 
  /* Build the block for s /= 0.  */
  /* Build the block for s /= 0.  */
  gfc_start_block (&block);
  gfc_start_block (&block);
  tmp = build_call_expr_loc (input_location,
  tmp = build_call_expr_loc (input_location,
                         built_in_decls[frexp], 2, arg,
                         built_in_decls[frexp], 2, arg,
                         gfc_build_addr_expr (NULL_TREE, e));
                         gfc_build_addr_expr (NULL_TREE, e));
  gfc_add_expr_to_block (&block, tmp);
  gfc_add_expr_to_block (&block, tmp);
 
 
  tmp = fold_build2 (MINUS_EXPR, integer_type_node, e, prec);
  tmp = fold_build2 (MINUS_EXPR, integer_type_node, e, prec);
  gfc_add_modify (&block, e, fold_build2 (MAX_EXPR, integer_type_node,
  gfc_add_modify (&block, e, fold_build2 (MAX_EXPR, integer_type_node,
                                          tmp, emin));
                                          tmp, emin));
 
 
  tmp = build_call_expr_loc (input_location,
  tmp = build_call_expr_loc (input_location,
                         built_in_decls[scalbn], 2,
                         built_in_decls[scalbn], 2,
                         build_real_from_int_cst (type, integer_one_node), e);
                         build_real_from_int_cst (type, integer_one_node), e);
  gfc_add_modify (&block, res, tmp);
  gfc_add_modify (&block, res, tmp);
 
 
  /* Finish by building the IF statement.  */
  /* Finish by building the IF statement.  */
  cond = fold_build2 (EQ_EXPR, boolean_type_node, arg,
  cond = fold_build2 (EQ_EXPR, boolean_type_node, arg,
                      build_real_from_int_cst (type, integer_zero_node));
                      build_real_from_int_cst (type, integer_zero_node));
  tmp = build3_v (COND_EXPR, cond, build2_v (MODIFY_EXPR, res, tiny),
  tmp = build3_v (COND_EXPR, cond, build2_v (MODIFY_EXPR, res, tiny),
                  gfc_finish_block (&block));
                  gfc_finish_block (&block));
 
 
  gfc_add_expr_to_block (&se->pre, tmp);
  gfc_add_expr_to_block (&se->pre, tmp);
  se->expr = res;
  se->expr = res;
}
}
 
 
 
 
/* RRSPACING (s) is translated into
/* RRSPACING (s) is translated into
      int e;
      int e;
      real x;
      real x;
      x = fabs (s);
      x = fabs (s);
      if (x != 0)
      if (x != 0)
      {
      {
        frexp (s, &e);
        frexp (s, &e);
        x = scalbn (x, precision - e);
        x = scalbn (x, precision - e);
      }
      }
      return x;
      return x;
 
 
 where precision is gfc_real_kinds[k].digits.  */
 where precision is gfc_real_kinds[k].digits.  */
 
 
static void
static void
gfc_conv_intrinsic_rrspacing (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_rrspacing (gfc_se * se, gfc_expr * expr)
{
{
  tree arg, type, e, x, cond, stmt, tmp;
  tree arg, type, e, x, cond, stmt, tmp;
  int frexp, scalbn, fabs, prec, k;
  int frexp, scalbn, fabs, prec, k;
  stmtblock_t block;
  stmtblock_t block;
 
 
  k = gfc_validate_kind (BT_REAL, expr->ts.kind, false);
  k = gfc_validate_kind (BT_REAL, expr->ts.kind, false);
  prec = gfc_real_kinds[k].digits;
  prec = gfc_real_kinds[k].digits;
  switch (expr->ts.kind)
  switch (expr->ts.kind)
    {
    {
      case 4:
      case 4:
        frexp = BUILT_IN_FREXPF;
        frexp = BUILT_IN_FREXPF;
        scalbn = BUILT_IN_SCALBNF;
        scalbn = BUILT_IN_SCALBNF;
        fabs = BUILT_IN_FABSF;
        fabs = BUILT_IN_FABSF;
        break;
        break;
      case 8:
      case 8:
        frexp = BUILT_IN_FREXP;
        frexp = BUILT_IN_FREXP;
        scalbn = BUILT_IN_SCALBN;
        scalbn = BUILT_IN_SCALBN;
        fabs = BUILT_IN_FABS;
        fabs = BUILT_IN_FABS;
        break;
        break;
      case 10:
      case 10:
      case 16:
      case 16:
        frexp = BUILT_IN_FREXPL;
        frexp = BUILT_IN_FREXPL;
        scalbn = BUILT_IN_SCALBNL;
        scalbn = BUILT_IN_SCALBNL;
        fabs = BUILT_IN_FABSL;
        fabs = BUILT_IN_FABSL;
        break;
        break;
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
    }
    }
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  arg = gfc_evaluate_now (arg, &se->pre);
  arg = gfc_evaluate_now (arg, &se->pre);
 
 
  e = gfc_create_var (integer_type_node, NULL);
  e = gfc_create_var (integer_type_node, NULL);
  x = gfc_create_var (type, NULL);
  x = gfc_create_var (type, NULL);
  gfc_add_modify (&se->pre, x,
  gfc_add_modify (&se->pre, x,
                  build_call_expr_loc (input_location,
                  build_call_expr_loc (input_location,
                                   built_in_decls[fabs], 1, arg));
                                   built_in_decls[fabs], 1, arg));
 
 
 
 
  gfc_start_block (&block);
  gfc_start_block (&block);
  tmp = build_call_expr_loc (input_location,
  tmp = build_call_expr_loc (input_location,
                         built_in_decls[frexp], 2, arg,
                         built_in_decls[frexp], 2, arg,
                         gfc_build_addr_expr (NULL_TREE, e));
                         gfc_build_addr_expr (NULL_TREE, e));
  gfc_add_expr_to_block (&block, tmp);
  gfc_add_expr_to_block (&block, tmp);
 
 
  tmp = fold_build2 (MINUS_EXPR, integer_type_node,
  tmp = fold_build2 (MINUS_EXPR, integer_type_node,
                     build_int_cst (NULL_TREE, prec), e);
                     build_int_cst (NULL_TREE, prec), e);
  tmp = build_call_expr_loc (input_location,
  tmp = build_call_expr_loc (input_location,
                         built_in_decls[scalbn], 2, x, tmp);
                         built_in_decls[scalbn], 2, x, tmp);
  gfc_add_modify (&block, x, tmp);
  gfc_add_modify (&block, x, tmp);
  stmt = gfc_finish_block (&block);
  stmt = gfc_finish_block (&block);
 
 
  cond = fold_build2 (NE_EXPR, boolean_type_node, x,
  cond = fold_build2 (NE_EXPR, boolean_type_node, x,
                      build_real_from_int_cst (type, integer_zero_node));
                      build_real_from_int_cst (type, integer_zero_node));
  tmp = build3_v (COND_EXPR, cond, stmt, build_empty_stmt (input_location));
  tmp = build3_v (COND_EXPR, cond, stmt, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&se->pre, tmp);
  gfc_add_expr_to_block (&se->pre, tmp);
 
 
  se->expr = fold_convert (type, x);
  se->expr = fold_convert (type, x);
}
}
 
 
 
 
/* SCALE (s, i) is translated into scalbn (s, i).  */
/* SCALE (s, i) is translated into scalbn (s, i).  */
static void
static void
gfc_conv_intrinsic_scale (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_scale (gfc_se * se, gfc_expr * expr)
{
{
  tree args[2], type;
  tree args[2], type;
  int scalbn;
  int scalbn;
 
 
  switch (expr->ts.kind)
  switch (expr->ts.kind)
    {
    {
      case 4:
      case 4:
        scalbn = BUILT_IN_SCALBNF;
        scalbn = BUILT_IN_SCALBNF;
        break;
        break;
      case 8:
      case 8:
        scalbn = BUILT_IN_SCALBN;
        scalbn = BUILT_IN_SCALBN;
        break;
        break;
      case 10:
      case 10:
      case 16:
      case 16:
        scalbn = BUILT_IN_SCALBNL;
        scalbn = BUILT_IN_SCALBNL;
        break;
        break;
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
    }
    }
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  se->expr = build_call_expr_loc (input_location,
  se->expr = build_call_expr_loc (input_location,
                              built_in_decls[scalbn], 2,
                              built_in_decls[scalbn], 2,
                              fold_convert (type, args[0]),
                              fold_convert (type, args[0]),
                              fold_convert (integer_type_node, args[1]));
                              fold_convert (integer_type_node, args[1]));
  se->expr = fold_convert (type, se->expr);
  se->expr = fold_convert (type, se->expr);
}
}
 
 
 
 
/* SET_EXPONENT (s, i) is translated into
/* SET_EXPONENT (s, i) is translated into
   scalbn (frexp (s, &dummy_int), i).  */
   scalbn (frexp (s, &dummy_int), i).  */
static void
static void
gfc_conv_intrinsic_set_exponent (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_set_exponent (gfc_se * se, gfc_expr * expr)
{
{
  tree args[2], type, tmp;
  tree args[2], type, tmp;
  int frexp, scalbn;
  int frexp, scalbn;
 
 
  switch (expr->ts.kind)
  switch (expr->ts.kind)
    {
    {
      case 4:
      case 4:
        frexp = BUILT_IN_FREXPF;
        frexp = BUILT_IN_FREXPF;
        scalbn = BUILT_IN_SCALBNF;
        scalbn = BUILT_IN_SCALBNF;
        break;
        break;
      case 8:
      case 8:
        frexp = BUILT_IN_FREXP;
        frexp = BUILT_IN_FREXP;
        scalbn = BUILT_IN_SCALBN;
        scalbn = BUILT_IN_SCALBN;
        break;
        break;
      case 10:
      case 10:
      case 16:
      case 16:
        frexp = BUILT_IN_FREXPL;
        frexp = BUILT_IN_FREXPL;
        scalbn = BUILT_IN_SCALBNL;
        scalbn = BUILT_IN_SCALBNL;
        break;
        break;
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
    }
    }
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
 
 
  tmp = gfc_create_var (integer_type_node, NULL);
  tmp = gfc_create_var (integer_type_node, NULL);
  tmp = build_call_expr_loc (input_location,
  tmp = build_call_expr_loc (input_location,
                         built_in_decls[frexp], 2,
                         built_in_decls[frexp], 2,
                         fold_convert (type, args[0]),
                         fold_convert (type, args[0]),
                         gfc_build_addr_expr (NULL_TREE, tmp));
                         gfc_build_addr_expr (NULL_TREE, tmp));
  se->expr = build_call_expr_loc (input_location,
  se->expr = build_call_expr_loc (input_location,
                              built_in_decls[scalbn], 2, tmp,
                              built_in_decls[scalbn], 2, tmp,
                              fold_convert (integer_type_node, args[1]));
                              fold_convert (integer_type_node, args[1]));
  se->expr = fold_convert (type, se->expr);
  se->expr = fold_convert (type, se->expr);
}
}
 
 
 
 
static void
static void
gfc_conv_intrinsic_size (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_size (gfc_se * se, gfc_expr * expr)
{
{
  gfc_actual_arglist *actual;
  gfc_actual_arglist *actual;
  tree arg1;
  tree arg1;
  tree type;
  tree type;
  tree fncall0;
  tree fncall0;
  tree fncall1;
  tree fncall1;
  gfc_se argse;
  gfc_se argse;
  gfc_ss *ss;
  gfc_ss *ss;
 
 
  gfc_init_se (&argse, NULL);
  gfc_init_se (&argse, NULL);
  actual = expr->value.function.actual;
  actual = expr->value.function.actual;
 
 
  ss = gfc_walk_expr (actual->expr);
  ss = gfc_walk_expr (actual->expr);
  gcc_assert (ss != gfc_ss_terminator);
  gcc_assert (ss != gfc_ss_terminator);
  argse.want_pointer = 1;
  argse.want_pointer = 1;
  argse.data_not_needed = 1;
  argse.data_not_needed = 1;
  gfc_conv_expr_descriptor (&argse, actual->expr, ss);
  gfc_conv_expr_descriptor (&argse, actual->expr, ss);
  gfc_add_block_to_block (&se->pre, &argse.pre);
  gfc_add_block_to_block (&se->pre, &argse.pre);
  gfc_add_block_to_block (&se->post, &argse.post);
  gfc_add_block_to_block (&se->post, &argse.post);
  arg1 = gfc_evaluate_now (argse.expr, &se->pre);
  arg1 = gfc_evaluate_now (argse.expr, &se->pre);
 
 
  /* Build the call to size0.  */
  /* Build the call to size0.  */
  fncall0 = build_call_expr_loc (input_location,
  fncall0 = build_call_expr_loc (input_location,
                             gfor_fndecl_size0, 1, arg1);
                             gfor_fndecl_size0, 1, arg1);
 
 
  actual = actual->next;
  actual = actual->next;
 
 
  if (actual->expr)
  if (actual->expr)
    {
    {
      gfc_init_se (&argse, NULL);
      gfc_init_se (&argse, NULL);
      gfc_conv_expr_type (&argse, actual->expr,
      gfc_conv_expr_type (&argse, actual->expr,
                          gfc_array_index_type);
                          gfc_array_index_type);
      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->pre, &argse.pre);
 
 
      /* Unusually, for an intrinsic, size does not exclude
      /* Unusually, for an intrinsic, size does not exclude
         an optional arg2, so we must test for it.  */
         an optional arg2, so we must test for it.  */
      if (actual->expr->expr_type == EXPR_VARIABLE
      if (actual->expr->expr_type == EXPR_VARIABLE
            && actual->expr->symtree->n.sym->attr.dummy
            && actual->expr->symtree->n.sym->attr.dummy
            && actual->expr->symtree->n.sym->attr.optional)
            && actual->expr->symtree->n.sym->attr.optional)
        {
        {
          tree tmp;
          tree tmp;
          /* Build the call to size1.  */
          /* Build the call to size1.  */
          fncall1 = build_call_expr_loc (input_location,
          fncall1 = build_call_expr_loc (input_location,
                                     gfor_fndecl_size1, 2,
                                     gfor_fndecl_size1, 2,
                                     arg1, argse.expr);
                                     arg1, argse.expr);
 
 
          gfc_init_se (&argse, NULL);
          gfc_init_se (&argse, NULL);
          argse.want_pointer = 1;
          argse.want_pointer = 1;
          argse.data_not_needed = 1;
          argse.data_not_needed = 1;
          gfc_conv_expr (&argse, actual->expr);
          gfc_conv_expr (&argse, actual->expr);
          gfc_add_block_to_block (&se->pre, &argse.pre);
          gfc_add_block_to_block (&se->pre, &argse.pre);
          tmp = fold_build2 (NE_EXPR, boolean_type_node,
          tmp = fold_build2 (NE_EXPR, boolean_type_node,
                             argse.expr, null_pointer_node);
                             argse.expr, null_pointer_node);
          tmp = gfc_evaluate_now (tmp, &se->pre);
          tmp = gfc_evaluate_now (tmp, &se->pre);
          se->expr = fold_build3 (COND_EXPR, pvoid_type_node,
          se->expr = fold_build3 (COND_EXPR, pvoid_type_node,
                                  tmp, fncall1, fncall0);
                                  tmp, fncall1, fncall0);
        }
        }
      else
      else
        {
        {
          se->expr = NULL_TREE;
          se->expr = NULL_TREE;
          argse.expr = fold_build2 (MINUS_EXPR, gfc_array_index_type,
          argse.expr = fold_build2 (MINUS_EXPR, gfc_array_index_type,
                                    argse.expr, gfc_index_one_node);
                                    argse.expr, gfc_index_one_node);
        }
        }
    }
    }
  else if (expr->value.function.actual->expr->rank == 1)
  else if (expr->value.function.actual->expr->rank == 1)
    {
    {
      argse.expr = gfc_index_zero_node;
      argse.expr = gfc_index_zero_node;
      se->expr = NULL_TREE;
      se->expr = NULL_TREE;
    }
    }
  else
  else
    se->expr = fncall0;
    se->expr = fncall0;
 
 
  if (se->expr == NULL_TREE)
  if (se->expr == NULL_TREE)
    {
    {
      tree ubound, lbound;
      tree ubound, lbound;
 
 
      arg1 = build_fold_indirect_ref_loc (input_location,
      arg1 = build_fold_indirect_ref_loc (input_location,
                                      arg1);
                                      arg1);
      ubound = gfc_conv_descriptor_ubound_get (arg1, argse.expr);
      ubound = gfc_conv_descriptor_ubound_get (arg1, argse.expr);
      lbound = gfc_conv_descriptor_lbound_get (arg1, argse.expr);
      lbound = gfc_conv_descriptor_lbound_get (arg1, argse.expr);
      se->expr = fold_build2 (MINUS_EXPR, gfc_array_index_type,
      se->expr = fold_build2 (MINUS_EXPR, gfc_array_index_type,
                              ubound, lbound);
                              ubound, lbound);
      se->expr = fold_build2 (PLUS_EXPR, gfc_array_index_type, se->expr,
      se->expr = fold_build2 (PLUS_EXPR, gfc_array_index_type, se->expr,
                              gfc_index_one_node);
                              gfc_index_one_node);
      se->expr = fold_build2 (MAX_EXPR, gfc_array_index_type, se->expr,
      se->expr = fold_build2 (MAX_EXPR, gfc_array_index_type, se->expr,
                              gfc_index_zero_node);
                              gfc_index_zero_node);
    }
    }
 
 
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  se->expr = convert (type, se->expr);
  se->expr = convert (type, se->expr);
}
}
 
 
 
 
/* Helper function to compute the size of a character variable,
/* Helper function to compute the size of a character variable,
   excluding the terminating null characters.  The result has
   excluding the terminating null characters.  The result has
   gfc_array_index_type type.  */
   gfc_array_index_type type.  */
 
 
static tree
static tree
size_of_string_in_bytes (int kind, tree string_length)
size_of_string_in_bytes (int kind, tree string_length)
{
{
  tree bytesize;
  tree bytesize;
  int i = gfc_validate_kind (BT_CHARACTER, kind, false);
  int i = gfc_validate_kind (BT_CHARACTER, kind, false);
 
 
  bytesize = build_int_cst (gfc_array_index_type,
  bytesize = build_int_cst (gfc_array_index_type,
                            gfc_character_kinds[i].bit_size / 8);
                            gfc_character_kinds[i].bit_size / 8);
 
 
  return fold_build2 (MULT_EXPR, gfc_array_index_type, bytesize,
  return fold_build2 (MULT_EXPR, gfc_array_index_type, bytesize,
                      fold_convert (gfc_array_index_type, string_length));
                      fold_convert (gfc_array_index_type, string_length));
}
}
 
 
 
 
static void
static void
gfc_conv_intrinsic_sizeof (gfc_se *se, gfc_expr *expr)
gfc_conv_intrinsic_sizeof (gfc_se *se, gfc_expr *expr)
{
{
  gfc_expr *arg;
  gfc_expr *arg;
  gfc_ss *ss;
  gfc_ss *ss;
  gfc_se argse;
  gfc_se argse;
  tree source_bytes;
  tree source_bytes;
  tree type;
  tree type;
  tree tmp;
  tree tmp;
  tree lower;
  tree lower;
  tree upper;
  tree upper;
  int n;
  int n;
 
 
  arg = expr->value.function.actual->expr;
  arg = expr->value.function.actual->expr;
 
 
  gfc_init_se (&argse, NULL);
  gfc_init_se (&argse, NULL);
  ss = gfc_walk_expr (arg);
  ss = gfc_walk_expr (arg);
 
 
  if (ss == gfc_ss_terminator)
  if (ss == gfc_ss_terminator)
    {
    {
      gfc_conv_expr_reference (&argse, arg);
      gfc_conv_expr_reference (&argse, arg);
 
 
      type = TREE_TYPE (build_fold_indirect_ref_loc (input_location,
      type = TREE_TYPE (build_fold_indirect_ref_loc (input_location,
                                                 argse.expr));
                                                 argse.expr));
 
 
      /* Obtain the source word length.  */
      /* Obtain the source word length.  */
      if (arg->ts.type == BT_CHARACTER)
      if (arg->ts.type == BT_CHARACTER)
        se->expr = size_of_string_in_bytes (arg->ts.kind,
        se->expr = size_of_string_in_bytes (arg->ts.kind,
                                            argse.string_length);
                                            argse.string_length);
      else
      else
        se->expr = fold_convert (gfc_array_index_type, size_in_bytes (type));
        se->expr = fold_convert (gfc_array_index_type, size_in_bytes (type));
    }
    }
  else
  else
    {
    {
      source_bytes = gfc_create_var (gfc_array_index_type, "bytes");
      source_bytes = gfc_create_var (gfc_array_index_type, "bytes");
      argse.want_pointer = 0;
      argse.want_pointer = 0;
      gfc_conv_expr_descriptor (&argse, arg, ss);
      gfc_conv_expr_descriptor (&argse, arg, ss);
      type = gfc_get_element_type (TREE_TYPE (argse.expr));
      type = gfc_get_element_type (TREE_TYPE (argse.expr));
 
 
      /* Obtain the argument's word length.  */
      /* Obtain the argument's word length.  */
      if (arg->ts.type == BT_CHARACTER)
      if (arg->ts.type == BT_CHARACTER)
        tmp = size_of_string_in_bytes (arg->ts.kind, argse.string_length);
        tmp = size_of_string_in_bytes (arg->ts.kind, argse.string_length);
      else
      else
        tmp = fold_convert (gfc_array_index_type,
        tmp = fold_convert (gfc_array_index_type,
                            size_in_bytes (type));
                            size_in_bytes (type));
      gfc_add_modify (&argse.pre, source_bytes, tmp);
      gfc_add_modify (&argse.pre, source_bytes, tmp);
 
 
      /* Obtain the size of the array in bytes.  */
      /* Obtain the size of the array in bytes.  */
      for (n = 0; n < arg->rank; n++)
      for (n = 0; n < arg->rank; n++)
        {
        {
          tree idx;
          tree idx;
          idx = gfc_rank_cst[n];
          idx = gfc_rank_cst[n];
          lower = gfc_conv_descriptor_lbound_get (argse.expr, idx);
          lower = gfc_conv_descriptor_lbound_get (argse.expr, idx);
          upper = gfc_conv_descriptor_ubound_get (argse.expr, idx);
          upper = gfc_conv_descriptor_ubound_get (argse.expr, idx);
          tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
          tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
                             upper, lower);
                             upper, lower);
          tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
          tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
                             tmp, gfc_index_one_node);
                             tmp, gfc_index_one_node);
          tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
          tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
                             tmp, source_bytes);
                             tmp, source_bytes);
          gfc_add_modify (&argse.pre, source_bytes, tmp);
          gfc_add_modify (&argse.pre, source_bytes, tmp);
        }
        }
      se->expr = source_bytes;
      se->expr = source_bytes;
    }
    }
 
 
  gfc_add_block_to_block (&se->pre, &argse.pre);
  gfc_add_block_to_block (&se->pre, &argse.pre);
}
}
 
 
 
 
/* Intrinsic string comparison functions.  */
/* Intrinsic string comparison functions.  */
 
 
static void
static void
gfc_conv_intrinsic_strcmp (gfc_se * se, gfc_expr * expr, enum tree_code op)
gfc_conv_intrinsic_strcmp (gfc_se * se, gfc_expr * expr, enum tree_code op)
{
{
  tree args[4];
  tree args[4];
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 4);
  gfc_conv_intrinsic_function_args (se, expr, args, 4);
 
 
  se->expr
  se->expr
    = gfc_build_compare_string (args[0], args[1], args[2], args[3],
    = gfc_build_compare_string (args[0], args[1], args[2], args[3],
                                expr->value.function.actual->expr->ts.kind);
                                expr->value.function.actual->expr->ts.kind);
  se->expr = fold_build2 (op, gfc_typenode_for_spec (&expr->ts), se->expr,
  se->expr = fold_build2 (op, gfc_typenode_for_spec (&expr->ts), se->expr,
                          build_int_cst (TREE_TYPE (se->expr), 0));
                          build_int_cst (TREE_TYPE (se->expr), 0));
}
}
 
 
/* Generate a call to the adjustl/adjustr library function.  */
/* Generate a call to the adjustl/adjustr library function.  */
static void
static void
gfc_conv_intrinsic_adjust (gfc_se * se, gfc_expr * expr, tree fndecl)
gfc_conv_intrinsic_adjust (gfc_se * se, gfc_expr * expr, tree fndecl)
{
{
  tree args[3];
  tree args[3];
  tree len;
  tree len;
  tree type;
  tree type;
  tree var;
  tree var;
  tree tmp;
  tree tmp;
 
 
  gfc_conv_intrinsic_function_args (se, expr, &args[1], 2);
  gfc_conv_intrinsic_function_args (se, expr, &args[1], 2);
  len = args[1];
  len = args[1];
 
 
  type = TREE_TYPE (args[2]);
  type = TREE_TYPE (args[2]);
  var = gfc_conv_string_tmp (se, type, len);
  var = gfc_conv_string_tmp (se, type, len);
  args[0] = var;
  args[0] = var;
 
 
  tmp = build_call_expr_loc (input_location,
  tmp = build_call_expr_loc (input_location,
                         fndecl, 3, args[0], args[1], args[2]);
                         fndecl, 3, args[0], args[1], args[2]);
  gfc_add_expr_to_block (&se->pre, tmp);
  gfc_add_expr_to_block (&se->pre, tmp);
  se->expr = var;
  se->expr = var;
  se->string_length = len;
  se->string_length = len;
}
}
 
 
 
 
/* Generate code for the TRANSFER intrinsic:
/* Generate code for the TRANSFER intrinsic:
        For scalar results:
        For scalar results:
          DEST = TRANSFER (SOURCE, MOLD)
          DEST = TRANSFER (SOURCE, MOLD)
        where:
        where:
          typeof<DEST> = typeof<MOLD>
          typeof<DEST> = typeof<MOLD>
        and:
        and:
          MOLD is scalar.
          MOLD is scalar.
 
 
        For array results:
        For array results:
          DEST(1:N) = TRANSFER (SOURCE, MOLD[, SIZE])
          DEST(1:N) = TRANSFER (SOURCE, MOLD[, SIZE])
        where:
        where:
          typeof<DEST> = typeof<MOLD>
          typeof<DEST> = typeof<MOLD>
        and:
        and:
          N = min (sizeof (SOURCE(:)), sizeof (DEST(:)),
          N = min (sizeof (SOURCE(:)), sizeof (DEST(:)),
              sizeof (DEST(0) * SIZE).  */
              sizeof (DEST(0) * SIZE).  */
static void
static void
gfc_conv_intrinsic_transfer (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_transfer (gfc_se * se, gfc_expr * expr)
{
{
  tree tmp;
  tree tmp;
  tree tmpdecl;
  tree tmpdecl;
  tree ptr;
  tree ptr;
  tree extent;
  tree extent;
  tree source;
  tree source;
  tree source_type;
  tree source_type;
  tree source_bytes;
  tree source_bytes;
  tree mold_type;
  tree mold_type;
  tree dest_word_len;
  tree dest_word_len;
  tree size_words;
  tree size_words;
  tree size_bytes;
  tree size_bytes;
  tree upper;
  tree upper;
  tree lower;
  tree lower;
  tree stmt;
  tree stmt;
  gfc_actual_arglist *arg;
  gfc_actual_arglist *arg;
  gfc_se argse;
  gfc_se argse;
  gfc_ss *ss;
  gfc_ss *ss;
  gfc_ss_info *info;
  gfc_ss_info *info;
  stmtblock_t block;
  stmtblock_t block;
  int n;
  int n;
  bool scalar_mold;
  bool scalar_mold;
 
 
  info = NULL;
  info = NULL;
  if (se->loop)
  if (se->loop)
    info = &se->ss->data.info;
    info = &se->ss->data.info;
 
 
  /* Convert SOURCE.  The output from this stage is:-
  /* Convert SOURCE.  The output from this stage is:-
        source_bytes = length of the source in bytes
        source_bytes = length of the source in bytes
        source = pointer to the source data.  */
        source = pointer to the source data.  */
  arg = expr->value.function.actual;
  arg = expr->value.function.actual;
 
 
  /* Ensure double transfer through LOGICAL preserves all
  /* Ensure double transfer through LOGICAL preserves all
     the needed bits.  */
     the needed bits.  */
  if (arg->expr->expr_type == EXPR_FUNCTION
  if (arg->expr->expr_type == EXPR_FUNCTION
        && arg->expr->value.function.esym == NULL
        && arg->expr->value.function.esym == NULL
        && arg->expr->value.function.isym != NULL
        && arg->expr->value.function.isym != NULL
        && arg->expr->value.function.isym->id == GFC_ISYM_TRANSFER
        && arg->expr->value.function.isym->id == GFC_ISYM_TRANSFER
        && arg->expr->ts.type == BT_LOGICAL
        && arg->expr->ts.type == BT_LOGICAL
        && expr->ts.type != arg->expr->ts.type)
        && expr->ts.type != arg->expr->ts.type)
    arg->expr->value.function.name = "__transfer_in_transfer";
    arg->expr->value.function.name = "__transfer_in_transfer";
 
 
  gfc_init_se (&argse, NULL);
  gfc_init_se (&argse, NULL);
  ss = gfc_walk_expr (arg->expr);
  ss = gfc_walk_expr (arg->expr);
 
 
  source_bytes = gfc_create_var (gfc_array_index_type, NULL);
  source_bytes = gfc_create_var (gfc_array_index_type, NULL);
 
 
  /* Obtain the pointer to source and the length of source in bytes.  */
  /* Obtain the pointer to source and the length of source in bytes.  */
  if (ss == gfc_ss_terminator)
  if (ss == gfc_ss_terminator)
    {
    {
      gfc_conv_expr_reference (&argse, arg->expr);
      gfc_conv_expr_reference (&argse, arg->expr);
      source = argse.expr;
      source = argse.expr;
 
 
      source_type = TREE_TYPE (build_fold_indirect_ref_loc (input_location,
      source_type = TREE_TYPE (build_fold_indirect_ref_loc (input_location,
                                                        argse.expr));
                                                        argse.expr));
 
 
      /* Obtain the source word length.  */
      /* Obtain the source word length.  */
      if (arg->expr->ts.type == BT_CHARACTER)
      if (arg->expr->ts.type == BT_CHARACTER)
        tmp = size_of_string_in_bytes (arg->expr->ts.kind,
        tmp = size_of_string_in_bytes (arg->expr->ts.kind,
                                       argse.string_length);
                                       argse.string_length);
      else
      else
        tmp = fold_convert (gfc_array_index_type,
        tmp = fold_convert (gfc_array_index_type,
                            size_in_bytes (source_type));
                            size_in_bytes (source_type));
    }
    }
  else
  else
    {
    {
      argse.want_pointer = 0;
      argse.want_pointer = 0;
      gfc_conv_expr_descriptor (&argse, arg->expr, ss);
      gfc_conv_expr_descriptor (&argse, arg->expr, ss);
      source = gfc_conv_descriptor_data_get (argse.expr);
      source = gfc_conv_descriptor_data_get (argse.expr);
      source_type = gfc_get_element_type (TREE_TYPE (argse.expr));
      source_type = gfc_get_element_type (TREE_TYPE (argse.expr));
 
 
      /* Repack the source if not a full variable array.  */
      /* Repack the source if not a full variable array.  */
      if (arg->expr->expr_type == EXPR_VARIABLE
      if (arg->expr->expr_type == EXPR_VARIABLE
              && arg->expr->ref->u.ar.type != AR_FULL)
              && arg->expr->ref->u.ar.type != AR_FULL)
        {
        {
          tmp = gfc_build_addr_expr (NULL_TREE, argse.expr);
          tmp = gfc_build_addr_expr (NULL_TREE, argse.expr);
 
 
          if (gfc_option.warn_array_temp)
          if (gfc_option.warn_array_temp)
            gfc_warning ("Creating array temporary at %L", &expr->where);
            gfc_warning ("Creating array temporary at %L", &expr->where);
 
 
          source = build_call_expr_loc (input_location,
          source = build_call_expr_loc (input_location,
                                    gfor_fndecl_in_pack, 1, tmp);
                                    gfor_fndecl_in_pack, 1, tmp);
          source = gfc_evaluate_now (source, &argse.pre);
          source = gfc_evaluate_now (source, &argse.pre);
 
 
          /* Free the temporary.  */
          /* Free the temporary.  */
          gfc_start_block (&block);
          gfc_start_block (&block);
          tmp = gfc_call_free (convert (pvoid_type_node, source));
          tmp = gfc_call_free (convert (pvoid_type_node, source));
          gfc_add_expr_to_block (&block, tmp);
          gfc_add_expr_to_block (&block, tmp);
          stmt = gfc_finish_block (&block);
          stmt = gfc_finish_block (&block);
 
 
          /* Clean up if it was repacked.  */
          /* Clean up if it was repacked.  */
          gfc_init_block (&block);
          gfc_init_block (&block);
          tmp = gfc_conv_array_data (argse.expr);
          tmp = gfc_conv_array_data (argse.expr);
          tmp = fold_build2 (NE_EXPR, boolean_type_node, source, tmp);
          tmp = fold_build2 (NE_EXPR, boolean_type_node, source, tmp);
          tmp = build3_v (COND_EXPR, tmp, stmt,
          tmp = build3_v (COND_EXPR, tmp, stmt,
                          build_empty_stmt (input_location));
                          build_empty_stmt (input_location));
          gfc_add_expr_to_block (&block, tmp);
          gfc_add_expr_to_block (&block, tmp);
          gfc_add_block_to_block (&block, &se->post);
          gfc_add_block_to_block (&block, &se->post);
          gfc_init_block (&se->post);
          gfc_init_block (&se->post);
          gfc_add_block_to_block (&se->post, &block);
          gfc_add_block_to_block (&se->post, &block);
        }
        }
 
 
      /* Obtain the source word length.  */
      /* Obtain the source word length.  */
      if (arg->expr->ts.type == BT_CHARACTER)
      if (arg->expr->ts.type == BT_CHARACTER)
        tmp = size_of_string_in_bytes (arg->expr->ts.kind,
        tmp = size_of_string_in_bytes (arg->expr->ts.kind,
                                       argse.string_length);
                                       argse.string_length);
      else
      else
        tmp = fold_convert (gfc_array_index_type,
        tmp = fold_convert (gfc_array_index_type,
                            size_in_bytes (source_type));
                            size_in_bytes (source_type));
 
 
      /* Obtain the size of the array in bytes.  */
      /* Obtain the size of the array in bytes.  */
      extent = gfc_create_var (gfc_array_index_type, NULL);
      extent = gfc_create_var (gfc_array_index_type, NULL);
      for (n = 0; n < arg->expr->rank; n++)
      for (n = 0; n < arg->expr->rank; n++)
        {
        {
          tree idx;
          tree idx;
          idx = gfc_rank_cst[n];
          idx = gfc_rank_cst[n];
          gfc_add_modify (&argse.pre, source_bytes, tmp);
          gfc_add_modify (&argse.pre, source_bytes, tmp);
          lower = gfc_conv_descriptor_lbound_get (argse.expr, idx);
          lower = gfc_conv_descriptor_lbound_get (argse.expr, idx);
          upper = gfc_conv_descriptor_ubound_get (argse.expr, idx);
          upper = gfc_conv_descriptor_ubound_get (argse.expr, idx);
          tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
          tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
                             upper, lower);
                             upper, lower);
          gfc_add_modify (&argse.pre, extent, tmp);
          gfc_add_modify (&argse.pre, extent, tmp);
          tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
          tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
                             extent, gfc_index_one_node);
                             extent, gfc_index_one_node);
          tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
          tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
                             tmp, source_bytes);
                             tmp, source_bytes);
        }
        }
    }
    }
 
 
  gfc_add_modify (&argse.pre, source_bytes, tmp);
  gfc_add_modify (&argse.pre, source_bytes, tmp);
  gfc_add_block_to_block (&se->pre, &argse.pre);
  gfc_add_block_to_block (&se->pre, &argse.pre);
  gfc_add_block_to_block (&se->post, &argse.post);
  gfc_add_block_to_block (&se->post, &argse.post);
 
 
  /* Now convert MOLD.  The outputs are:
  /* Now convert MOLD.  The outputs are:
        mold_type = the TREE type of MOLD
        mold_type = the TREE type of MOLD
        dest_word_len = destination word length in bytes.  */
        dest_word_len = destination word length in bytes.  */
  arg = arg->next;
  arg = arg->next;
 
 
  gfc_init_se (&argse, NULL);
  gfc_init_se (&argse, NULL);
  ss = gfc_walk_expr (arg->expr);
  ss = gfc_walk_expr (arg->expr);
 
 
  scalar_mold = arg->expr->rank == 0;
  scalar_mold = arg->expr->rank == 0;
 
 
  if (ss == gfc_ss_terminator)
  if (ss == gfc_ss_terminator)
    {
    {
      gfc_conv_expr_reference (&argse, arg->expr);
      gfc_conv_expr_reference (&argse, arg->expr);
      mold_type = TREE_TYPE (build_fold_indirect_ref_loc (input_location,
      mold_type = TREE_TYPE (build_fold_indirect_ref_loc (input_location,
                                                      argse.expr));
                                                      argse.expr));
    }
    }
  else
  else
    {
    {
      gfc_init_se (&argse, NULL);
      gfc_init_se (&argse, NULL);
      argse.want_pointer = 0;
      argse.want_pointer = 0;
      gfc_conv_expr_descriptor (&argse, arg->expr, ss);
      gfc_conv_expr_descriptor (&argse, arg->expr, ss);
      mold_type = gfc_get_element_type (TREE_TYPE (argse.expr));
      mold_type = gfc_get_element_type (TREE_TYPE (argse.expr));
    }
    }
 
 
  gfc_add_block_to_block (&se->pre, &argse.pre);
  gfc_add_block_to_block (&se->pre, &argse.pre);
  gfc_add_block_to_block (&se->post, &argse.post);
  gfc_add_block_to_block (&se->post, &argse.post);
 
 
  if (strcmp (expr->value.function.name, "__transfer_in_transfer") == 0)
  if (strcmp (expr->value.function.name, "__transfer_in_transfer") == 0)
    {
    {
      /* If this TRANSFER is nested in another TRANSFER, use a type
      /* If this TRANSFER is nested in another TRANSFER, use a type
         that preserves all bits.  */
         that preserves all bits.  */
      if (arg->expr->ts.type == BT_LOGICAL)
      if (arg->expr->ts.type == BT_LOGICAL)
        mold_type = gfc_get_int_type (arg->expr->ts.kind);
        mold_type = gfc_get_int_type (arg->expr->ts.kind);
    }
    }
 
 
  if (arg->expr->ts.type == BT_CHARACTER)
  if (arg->expr->ts.type == BT_CHARACTER)
    {
    {
      tmp = size_of_string_in_bytes (arg->expr->ts.kind, argse.string_length);
      tmp = size_of_string_in_bytes (arg->expr->ts.kind, argse.string_length);
      mold_type = gfc_get_character_type_len (arg->expr->ts.kind, tmp);
      mold_type = gfc_get_character_type_len (arg->expr->ts.kind, tmp);
    }
    }
  else
  else
    tmp = fold_convert (gfc_array_index_type,
    tmp = fold_convert (gfc_array_index_type,
                        size_in_bytes (mold_type));
                        size_in_bytes (mold_type));
 
 
  dest_word_len = gfc_create_var (gfc_array_index_type, NULL);
  dest_word_len = gfc_create_var (gfc_array_index_type, NULL);
  gfc_add_modify (&se->pre, dest_word_len, tmp);
  gfc_add_modify (&se->pre, dest_word_len, tmp);
 
 
  /* Finally convert SIZE, if it is present.  */
  /* Finally convert SIZE, if it is present.  */
  arg = arg->next;
  arg = arg->next;
  size_words = gfc_create_var (gfc_array_index_type, NULL);
  size_words = gfc_create_var (gfc_array_index_type, NULL);
 
 
  if (arg->expr)
  if (arg->expr)
    {
    {
      gfc_init_se (&argse, NULL);
      gfc_init_se (&argse, NULL);
      gfc_conv_expr_reference (&argse, arg->expr);
      gfc_conv_expr_reference (&argse, arg->expr);
      tmp = convert (gfc_array_index_type,
      tmp = convert (gfc_array_index_type,
                     build_fold_indirect_ref_loc (input_location,
                     build_fold_indirect_ref_loc (input_location,
                                              argse.expr));
                                              argse.expr));
      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->post, &argse.post);
      gfc_add_block_to_block (&se->post, &argse.post);
    }
    }
  else
  else
    tmp = NULL_TREE;
    tmp = NULL_TREE;
 
 
  /* Separate array and scalar results.  */
  /* Separate array and scalar results.  */
  if (scalar_mold && tmp == NULL_TREE)
  if (scalar_mold && tmp == NULL_TREE)
    goto scalar_transfer;
    goto scalar_transfer;
 
 
  size_bytes = gfc_create_var (gfc_array_index_type, NULL);
  size_bytes = gfc_create_var (gfc_array_index_type, NULL);
  if (tmp != NULL_TREE)
  if (tmp != NULL_TREE)
    tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
    tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
                       tmp, dest_word_len);
                       tmp, dest_word_len);
  else
  else
    tmp = source_bytes;
    tmp = source_bytes;
 
 
  gfc_add_modify (&se->pre, size_bytes, tmp);
  gfc_add_modify (&se->pre, size_bytes, tmp);
  gfc_add_modify (&se->pre, size_words,
  gfc_add_modify (&se->pre, size_words,
                       fold_build2 (CEIL_DIV_EXPR, gfc_array_index_type,
                       fold_build2 (CEIL_DIV_EXPR, gfc_array_index_type,
                                    size_bytes, dest_word_len));
                                    size_bytes, dest_word_len));
 
 
  /* Evaluate the bounds of the result.  If the loop range exists, we have
  /* Evaluate the bounds of the result.  If the loop range exists, we have
     to check if it is too large.  If so, we modify loop->to be consistent
     to check if it is too large.  If so, we modify loop->to be consistent
     with min(size, size(source)).  Otherwise, size is made consistent with
     with min(size, size(source)).  Otherwise, size is made consistent with
     the loop range, so that the right number of bytes is transferred.*/
     the loop range, so that the right number of bytes is transferred.*/
  n = se->loop->order[0];
  n = se->loop->order[0];
  if (se->loop->to[n] != NULL_TREE)
  if (se->loop->to[n] != NULL_TREE)
    {
    {
      tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
      tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
                         se->loop->to[n], se->loop->from[n]);
                         se->loop->to[n], se->loop->from[n]);
      tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
      tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
                         tmp, gfc_index_one_node);
                         tmp, gfc_index_one_node);
      tmp = fold_build2 (MIN_EXPR, gfc_array_index_type,
      tmp = fold_build2 (MIN_EXPR, gfc_array_index_type,
                         tmp, size_words);
                         tmp, size_words);
      gfc_add_modify (&se->pre, size_words, tmp);
      gfc_add_modify (&se->pre, size_words, tmp);
      gfc_add_modify (&se->pre, size_bytes,
      gfc_add_modify (&se->pre, size_bytes,
                           fold_build2 (MULT_EXPR, gfc_array_index_type,
                           fold_build2 (MULT_EXPR, gfc_array_index_type,
                                        size_words, dest_word_len));
                                        size_words, dest_word_len));
      upper = fold_build2 (PLUS_EXPR, gfc_array_index_type,
      upper = fold_build2 (PLUS_EXPR, gfc_array_index_type,
                           size_words, se->loop->from[n]);
                           size_words, se->loop->from[n]);
      upper = fold_build2 (MINUS_EXPR, gfc_array_index_type,
      upper = fold_build2 (MINUS_EXPR, gfc_array_index_type,
                           upper, gfc_index_one_node);
                           upper, gfc_index_one_node);
    }
    }
  else
  else
    {
    {
      upper = fold_build2 (MINUS_EXPR, gfc_array_index_type,
      upper = fold_build2 (MINUS_EXPR, gfc_array_index_type,
                           size_words, gfc_index_one_node);
                           size_words, gfc_index_one_node);
      se->loop->from[n] = gfc_index_zero_node;
      se->loop->from[n] = gfc_index_zero_node;
    }
    }
 
 
  se->loop->to[n] = upper;
  se->loop->to[n] = upper;
 
 
  /* Build a destination descriptor, using the pointer, source, as the
  /* Build a destination descriptor, using the pointer, source, as the
     data field.  */
     data field.  */
  gfc_trans_create_temp_array (&se->pre, &se->post, se->loop,
  gfc_trans_create_temp_array (&se->pre, &se->post, se->loop,
                               info, mold_type, NULL_TREE, false, true, false,
                               info, mold_type, NULL_TREE, false, true, false,
                               &expr->where);
                               &expr->where);
 
 
  /* Cast the pointer to the result.  */
  /* Cast the pointer to the result.  */
  tmp = gfc_conv_descriptor_data_get (info->descriptor);
  tmp = gfc_conv_descriptor_data_get (info->descriptor);
  tmp = fold_convert (pvoid_type_node, tmp);
  tmp = fold_convert (pvoid_type_node, tmp);
 
 
  /* Use memcpy to do the transfer.  */
  /* Use memcpy to do the transfer.  */
  tmp = build_call_expr_loc (input_location,
  tmp = build_call_expr_loc (input_location,
                         built_in_decls[BUILT_IN_MEMCPY],
                         built_in_decls[BUILT_IN_MEMCPY],
                         3,
                         3,
                         tmp,
                         tmp,
                         fold_convert (pvoid_type_node, source),
                         fold_convert (pvoid_type_node, source),
                         fold_build2 (MIN_EXPR, gfc_array_index_type,
                         fold_build2 (MIN_EXPR, gfc_array_index_type,
                                      size_bytes, source_bytes));
                                      size_bytes, source_bytes));
  gfc_add_expr_to_block (&se->pre, tmp);
  gfc_add_expr_to_block (&se->pre, tmp);
 
 
  se->expr = info->descriptor;
  se->expr = info->descriptor;
  if (expr->ts.type == BT_CHARACTER)
  if (expr->ts.type == BT_CHARACTER)
    se->string_length = dest_word_len;
    se->string_length = dest_word_len;
 
 
  return;
  return;
 
 
/* Deal with scalar results.  */
/* Deal with scalar results.  */
scalar_transfer:
scalar_transfer:
  extent = fold_build2 (MIN_EXPR, gfc_array_index_type,
  extent = fold_build2 (MIN_EXPR, gfc_array_index_type,
                        dest_word_len, source_bytes);
                        dest_word_len, source_bytes);
  extent = fold_build2 (MAX_EXPR, gfc_array_index_type,
  extent = fold_build2 (MAX_EXPR, gfc_array_index_type,
                        extent, gfc_index_zero_node);
                        extent, gfc_index_zero_node);
 
 
  if (expr->ts.type == BT_CHARACTER)
  if (expr->ts.type == BT_CHARACTER)
    {
    {
      tree direct;
      tree direct;
      tree indirect;
      tree indirect;
 
 
      ptr = convert (gfc_get_pchar_type (expr->ts.kind), source);
      ptr = convert (gfc_get_pchar_type (expr->ts.kind), source);
      tmpdecl = gfc_create_var (gfc_get_pchar_type (expr->ts.kind),
      tmpdecl = gfc_create_var (gfc_get_pchar_type (expr->ts.kind),
                                "transfer");
                                "transfer");
 
 
      /* If source is longer than the destination, use a pointer to
      /* If source is longer than the destination, use a pointer to
         the source directly.  */
         the source directly.  */
      gfc_init_block (&block);
      gfc_init_block (&block);
      gfc_add_modify (&block, tmpdecl, ptr);
      gfc_add_modify (&block, tmpdecl, ptr);
      direct = gfc_finish_block (&block);
      direct = gfc_finish_block (&block);
 
 
      /* Otherwise, allocate a string with the length of the destination
      /* Otherwise, allocate a string with the length of the destination
         and copy the source into it.  */
         and copy the source into it.  */
      gfc_init_block (&block);
      gfc_init_block (&block);
      tmp = gfc_get_pchar_type (expr->ts.kind);
      tmp = gfc_get_pchar_type (expr->ts.kind);
      tmp = gfc_call_malloc (&block, tmp, dest_word_len);
      tmp = gfc_call_malloc (&block, tmp, dest_word_len);
      gfc_add_modify (&block, tmpdecl,
      gfc_add_modify (&block, tmpdecl,
                      fold_convert (TREE_TYPE (ptr), tmp));
                      fold_convert (TREE_TYPE (ptr), tmp));
      tmp = build_call_expr_loc (input_location,
      tmp = build_call_expr_loc (input_location,
                             built_in_decls[BUILT_IN_MEMCPY], 3,
                             built_in_decls[BUILT_IN_MEMCPY], 3,
                             fold_convert (pvoid_type_node, tmpdecl),
                             fold_convert (pvoid_type_node, tmpdecl),
                             fold_convert (pvoid_type_node, ptr),
                             fold_convert (pvoid_type_node, ptr),
                             extent);
                             extent);
      gfc_add_expr_to_block (&block, tmp);
      gfc_add_expr_to_block (&block, tmp);
      indirect = gfc_finish_block (&block);
      indirect = gfc_finish_block (&block);
 
 
      /* Wrap it up with the condition.  */
      /* Wrap it up with the condition.  */
      tmp = fold_build2 (LE_EXPR, boolean_type_node,
      tmp = fold_build2 (LE_EXPR, boolean_type_node,
                         dest_word_len, source_bytes);
                         dest_word_len, source_bytes);
      tmp = build3_v (COND_EXPR, tmp, direct, indirect);
      tmp = build3_v (COND_EXPR, tmp, direct, indirect);
      gfc_add_expr_to_block (&se->pre, tmp);
      gfc_add_expr_to_block (&se->pre, tmp);
 
 
      se->expr = tmpdecl;
      se->expr = tmpdecl;
      se->string_length = dest_word_len;
      se->string_length = dest_word_len;
    }
    }
  else
  else
    {
    {
      tmpdecl = gfc_create_var (mold_type, "transfer");
      tmpdecl = gfc_create_var (mold_type, "transfer");
 
 
      ptr = convert (build_pointer_type (mold_type), source);
      ptr = convert (build_pointer_type (mold_type), source);
 
 
      /* Use memcpy to do the transfer.  */
      /* Use memcpy to do the transfer.  */
      tmp = gfc_build_addr_expr (NULL_TREE, tmpdecl);
      tmp = gfc_build_addr_expr (NULL_TREE, tmpdecl);
      tmp = build_call_expr_loc (input_location,
      tmp = build_call_expr_loc (input_location,
                             built_in_decls[BUILT_IN_MEMCPY], 3,
                             built_in_decls[BUILT_IN_MEMCPY], 3,
                             fold_convert (pvoid_type_node, tmp),
                             fold_convert (pvoid_type_node, tmp),
                             fold_convert (pvoid_type_node, ptr),
                             fold_convert (pvoid_type_node, ptr),
                             extent);
                             extent);
      gfc_add_expr_to_block (&se->pre, tmp);
      gfc_add_expr_to_block (&se->pre, tmp);
 
 
      se->expr = tmpdecl;
      se->expr = tmpdecl;
    }
    }
}
}
 
 
 
 
/* Generate code for the ALLOCATED intrinsic.
/* Generate code for the ALLOCATED intrinsic.
   Generate inline code that directly check the address of the argument.  */
   Generate inline code that directly check the address of the argument.  */
 
 
static void
static void
gfc_conv_allocated (gfc_se *se, gfc_expr *expr)
gfc_conv_allocated (gfc_se *se, gfc_expr *expr)
{
{
  gfc_actual_arglist *arg1;
  gfc_actual_arglist *arg1;
  gfc_se arg1se;
  gfc_se arg1se;
  gfc_ss *ss1;
  gfc_ss *ss1;
  tree tmp;
  tree tmp;
 
 
  gfc_init_se (&arg1se, NULL);
  gfc_init_se (&arg1se, NULL);
  arg1 = expr->value.function.actual;
  arg1 = expr->value.function.actual;
  ss1 = gfc_walk_expr (arg1->expr);
  ss1 = gfc_walk_expr (arg1->expr);
 
 
  if (ss1 == gfc_ss_terminator)
  if (ss1 == gfc_ss_terminator)
    {
    {
      /* Allocatable scalar.  */
      /* Allocatable scalar.  */
      arg1se.want_pointer = 1;
      arg1se.want_pointer = 1;
      gfc_conv_expr (&arg1se, arg1->expr);
      gfc_conv_expr (&arg1se, arg1->expr);
      tmp = arg1se.expr;
      tmp = arg1se.expr;
    }
    }
  else
  else
    {
    {
      /* Allocatable array.  */
      /* Allocatable array.  */
      arg1se.descriptor_only = 1;
      arg1se.descriptor_only = 1;
      gfc_conv_expr_descriptor (&arg1se, arg1->expr, ss1);
      gfc_conv_expr_descriptor (&arg1se, arg1->expr, ss1);
      tmp = gfc_conv_descriptor_data_get (arg1se.expr);
      tmp = gfc_conv_descriptor_data_get (arg1se.expr);
    }
    }
 
 
  tmp = fold_build2 (NE_EXPR, boolean_type_node,
  tmp = fold_build2 (NE_EXPR, boolean_type_node,
                     tmp, fold_convert (TREE_TYPE (tmp), null_pointer_node));
                     tmp, fold_convert (TREE_TYPE (tmp), null_pointer_node));
  se->expr = convert (gfc_typenode_for_spec (&expr->ts), tmp);
  se->expr = convert (gfc_typenode_for_spec (&expr->ts), tmp);
}
}
 
 
 
 
/* Generate code for the ASSOCIATED intrinsic.
/* Generate code for the ASSOCIATED intrinsic.
   If both POINTER and TARGET are arrays, generate a call to library function
   If both POINTER and TARGET are arrays, generate a call to library function
   _gfor_associated, and pass descriptors of POINTER and TARGET to it.
   _gfor_associated, and pass descriptors of POINTER and TARGET to it.
   In other cases, generate inline code that directly compare the address of
   In other cases, generate inline code that directly compare the address of
   POINTER with the address of TARGET.  */
   POINTER with the address of TARGET.  */
 
 
static void
static void
gfc_conv_associated (gfc_se *se, gfc_expr *expr)
gfc_conv_associated (gfc_se *se, gfc_expr *expr)
{
{
  gfc_actual_arglist *arg1;
  gfc_actual_arglist *arg1;
  gfc_actual_arglist *arg2;
  gfc_actual_arglist *arg2;
  gfc_se arg1se;
  gfc_se arg1se;
  gfc_se arg2se;
  gfc_se arg2se;
  tree tmp2;
  tree tmp2;
  tree tmp;
  tree tmp;
  tree nonzero_charlen;
  tree nonzero_charlen;
  tree nonzero_arraylen;
  tree nonzero_arraylen;
  gfc_ss *ss1, *ss2;
  gfc_ss *ss1, *ss2;
 
 
  gfc_init_se (&arg1se, NULL);
  gfc_init_se (&arg1se, NULL);
  gfc_init_se (&arg2se, NULL);
  gfc_init_se (&arg2se, NULL);
  arg1 = expr->value.function.actual;
  arg1 = expr->value.function.actual;
  if (arg1->expr->ts.type == BT_CLASS)
  if (arg1->expr->ts.type == BT_CLASS)
    gfc_add_component_ref (arg1->expr, "$data");
    gfc_add_component_ref (arg1->expr, "$data");
  arg2 = arg1->next;
  arg2 = arg1->next;
  ss1 = gfc_walk_expr (arg1->expr);
  ss1 = gfc_walk_expr (arg1->expr);
 
 
  if (!arg2->expr)
  if (!arg2->expr)
    {
    {
      /* No optional target.  */
      /* No optional target.  */
      if (ss1 == gfc_ss_terminator)
      if (ss1 == gfc_ss_terminator)
        {
        {
          /* A pointer to a scalar.  */
          /* A pointer to a scalar.  */
          arg1se.want_pointer = 1;
          arg1se.want_pointer = 1;
          gfc_conv_expr (&arg1se, arg1->expr);
          gfc_conv_expr (&arg1se, arg1->expr);
          tmp2 = arg1se.expr;
          tmp2 = arg1se.expr;
        }
        }
      else
      else
        {
        {
          /* A pointer to an array.  */
          /* A pointer to an array.  */
          gfc_conv_expr_descriptor (&arg1se, arg1->expr, ss1);
          gfc_conv_expr_descriptor (&arg1se, arg1->expr, ss1);
          tmp2 = gfc_conv_descriptor_data_get (arg1se.expr);
          tmp2 = gfc_conv_descriptor_data_get (arg1se.expr);
        }
        }
      gfc_add_block_to_block (&se->pre, &arg1se.pre);
      gfc_add_block_to_block (&se->pre, &arg1se.pre);
      gfc_add_block_to_block (&se->post, &arg1se.post);
      gfc_add_block_to_block (&se->post, &arg1se.post);
      tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp2,
      tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp2,
                         fold_convert (TREE_TYPE (tmp2), null_pointer_node));
                         fold_convert (TREE_TYPE (tmp2), null_pointer_node));
      se->expr = tmp;
      se->expr = tmp;
    }
    }
  else
  else
    {
    {
      /* An optional target.  */
      /* An optional target.  */
      ss2 = gfc_walk_expr (arg2->expr);
      ss2 = gfc_walk_expr (arg2->expr);
 
 
      nonzero_charlen = NULL_TREE;
      nonzero_charlen = NULL_TREE;
      if (arg1->expr->ts.type == BT_CHARACTER)
      if (arg1->expr->ts.type == BT_CHARACTER)
        nonzero_charlen = fold_build2 (NE_EXPR, boolean_type_node,
        nonzero_charlen = fold_build2 (NE_EXPR, boolean_type_node,
                                       arg1->expr->ts.u.cl->backend_decl,
                                       arg1->expr->ts.u.cl->backend_decl,
                                       integer_zero_node);
                                       integer_zero_node);
 
 
      if (ss1 == gfc_ss_terminator)
      if (ss1 == gfc_ss_terminator)
        {
        {
          /* A pointer to a scalar.  */
          /* A pointer to a scalar.  */
          gcc_assert (ss2 == gfc_ss_terminator);
          gcc_assert (ss2 == gfc_ss_terminator);
          arg1se.want_pointer = 1;
          arg1se.want_pointer = 1;
          gfc_conv_expr (&arg1se, arg1->expr);
          gfc_conv_expr (&arg1se, arg1->expr);
          arg2se.want_pointer = 1;
          arg2se.want_pointer = 1;
          gfc_conv_expr (&arg2se, arg2->expr);
          gfc_conv_expr (&arg2se, arg2->expr);
          gfc_add_block_to_block (&se->pre, &arg1se.pre);
          gfc_add_block_to_block (&se->pre, &arg1se.pre);
          gfc_add_block_to_block (&se->post, &arg1se.post);
          gfc_add_block_to_block (&se->post, &arg1se.post);
          tmp = fold_build2 (EQ_EXPR, boolean_type_node,
          tmp = fold_build2 (EQ_EXPR, boolean_type_node,
                             arg1se.expr, arg2se.expr);
                             arg1se.expr, arg2se.expr);
          tmp2 = fold_build2 (NE_EXPR, boolean_type_node,
          tmp2 = fold_build2 (NE_EXPR, boolean_type_node,
                              arg1se.expr, null_pointer_node);
                              arg1se.expr, null_pointer_node);
          se->expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
          se->expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
                                  tmp, tmp2);
                                  tmp, tmp2);
        }
        }
      else
      else
        {
        {
          /* An array pointer of zero length is not associated if target is
          /* An array pointer of zero length is not associated if target is
             present.  */
             present.  */
          arg1se.descriptor_only = 1;
          arg1se.descriptor_only = 1;
          gfc_conv_expr_lhs (&arg1se, arg1->expr);
          gfc_conv_expr_lhs (&arg1se, arg1->expr);
          tmp = gfc_conv_descriptor_stride_get (arg1se.expr,
          tmp = gfc_conv_descriptor_stride_get (arg1se.expr,
                                            gfc_rank_cst[arg1->expr->rank - 1]);
                                            gfc_rank_cst[arg1->expr->rank - 1]);
          nonzero_arraylen = fold_build2 (NE_EXPR, boolean_type_node, tmp,
          nonzero_arraylen = fold_build2 (NE_EXPR, boolean_type_node, tmp,
                                          build_int_cst (TREE_TYPE (tmp), 0));
                                          build_int_cst (TREE_TYPE (tmp), 0));
 
 
          /* A pointer to an array, call library function _gfor_associated.  */
          /* A pointer to an array, call library function _gfor_associated.  */
          gcc_assert (ss2 != gfc_ss_terminator);
          gcc_assert (ss2 != gfc_ss_terminator);
          arg1se.want_pointer = 1;
          arg1se.want_pointer = 1;
          gfc_conv_expr_descriptor (&arg1se, arg1->expr, ss1);
          gfc_conv_expr_descriptor (&arg1se, arg1->expr, ss1);
 
 
          arg2se.want_pointer = 1;
          arg2se.want_pointer = 1;
          gfc_conv_expr_descriptor (&arg2se, arg2->expr, ss2);
          gfc_conv_expr_descriptor (&arg2se, arg2->expr, ss2);
          gfc_add_block_to_block (&se->pre, &arg2se.pre);
          gfc_add_block_to_block (&se->pre, &arg2se.pre);
          gfc_add_block_to_block (&se->post, &arg2se.post);
          gfc_add_block_to_block (&se->post, &arg2se.post);
          se->expr = build_call_expr_loc (input_location,
          se->expr = build_call_expr_loc (input_location,
                                      gfor_fndecl_associated, 2,
                                      gfor_fndecl_associated, 2,
                                      arg1se.expr, arg2se.expr);
                                      arg1se.expr, arg2se.expr);
          se->expr = convert (boolean_type_node, se->expr);
          se->expr = convert (boolean_type_node, se->expr);
          se->expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
          se->expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
                                  se->expr, nonzero_arraylen);
                                  se->expr, nonzero_arraylen);
        }
        }
 
 
      /* If target is present zero character length pointers cannot
      /* If target is present zero character length pointers cannot
         be associated.  */
         be associated.  */
      if (nonzero_charlen != NULL_TREE)
      if (nonzero_charlen != NULL_TREE)
        se->expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
        se->expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
                                se->expr, nonzero_charlen);
                                se->expr, nonzero_charlen);
    }
    }
 
 
  se->expr = convert (gfc_typenode_for_spec (&expr->ts), se->expr);
  se->expr = convert (gfc_typenode_for_spec (&expr->ts), se->expr);
}
}
 
 
 
 
/* Generate code for the SAME_TYPE_AS intrinsic.
/* Generate code for the SAME_TYPE_AS intrinsic.
   Generate inline code that directly checks the vindices.  */
   Generate inline code that directly checks the vindices.  */
 
 
static void
static void
gfc_conv_same_type_as (gfc_se *se, gfc_expr *expr)
gfc_conv_same_type_as (gfc_se *se, gfc_expr *expr)
{
{
  gfc_expr *a, *b;
  gfc_expr *a, *b;
  gfc_se se1, se2;
  gfc_se se1, se2;
  tree tmp;
  tree tmp;
 
 
  gfc_init_se (&se1, NULL);
  gfc_init_se (&se1, NULL);
  gfc_init_se (&se2, NULL);
  gfc_init_se (&se2, NULL);
 
 
  a = expr->value.function.actual->expr;
  a = expr->value.function.actual->expr;
  b = expr->value.function.actual->next->expr;
  b = expr->value.function.actual->next->expr;
 
 
  if (a->ts.type == BT_CLASS)
  if (a->ts.type == BT_CLASS)
    {
    {
      gfc_add_component_ref (a, "$vptr");
      gfc_add_component_ref (a, "$vptr");
      gfc_add_component_ref (a, "$hash");
      gfc_add_component_ref (a, "$hash");
    }
    }
  else if (a->ts.type == BT_DERIVED)
  else if (a->ts.type == BT_DERIVED)
    a = gfc_int_expr (a->ts.u.derived->hash_value);
    a = gfc_int_expr (a->ts.u.derived->hash_value);
 
 
  if (b->ts.type == BT_CLASS)
  if (b->ts.type == BT_CLASS)
    {
    {
      gfc_add_component_ref (b, "$vptr");
      gfc_add_component_ref (b, "$vptr");
      gfc_add_component_ref (b, "$hash");
      gfc_add_component_ref (b, "$hash");
    }
    }
  else if (b->ts.type == BT_DERIVED)
  else if (b->ts.type == BT_DERIVED)
    b = gfc_int_expr (b->ts.u.derived->hash_value);
    b = gfc_int_expr (b->ts.u.derived->hash_value);
 
 
  gfc_conv_expr (&se1, a);
  gfc_conv_expr (&se1, a);
  gfc_conv_expr (&se2, b);
  gfc_conv_expr (&se2, b);
 
 
  tmp = fold_build2 (EQ_EXPR, boolean_type_node,
  tmp = fold_build2 (EQ_EXPR, boolean_type_node,
                     se1.expr, fold_convert (TREE_TYPE (se1.expr), se2.expr));
                     se1.expr, fold_convert (TREE_TYPE (se1.expr), se2.expr));
  se->expr = convert (gfc_typenode_for_spec (&expr->ts), tmp);
  se->expr = convert (gfc_typenode_for_spec (&expr->ts), tmp);
}
}
 
 
 
 
/* Generate code for SELECTED_CHAR_KIND (NAME) intrinsic function.  */
/* Generate code for SELECTED_CHAR_KIND (NAME) intrinsic function.  */
 
 
static void
static void
gfc_conv_intrinsic_sc_kind (gfc_se *se, gfc_expr *expr)
gfc_conv_intrinsic_sc_kind (gfc_se *se, gfc_expr *expr)
{
{
  tree args[2];
  tree args[2];
 
 
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  gfc_conv_intrinsic_function_args (se, expr, args, 2);
  se->expr = build_call_expr_loc (input_location,
  se->expr = build_call_expr_loc (input_location,
                              gfor_fndecl_sc_kind, 2, args[0], args[1]);
                              gfor_fndecl_sc_kind, 2, args[0], args[1]);
  se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr);
  se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr);
}
}
 
 
 
 
/* Generate code for SELECTED_INT_KIND (R) intrinsic function.  */
/* Generate code for SELECTED_INT_KIND (R) intrinsic function.  */
 
 
static void
static void
gfc_conv_intrinsic_si_kind (gfc_se *se, gfc_expr *expr)
gfc_conv_intrinsic_si_kind (gfc_se *se, gfc_expr *expr)
{
{
  tree arg, type;
  tree arg, type;
 
 
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
  gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
 
 
  /* The argument to SELECTED_INT_KIND is INTEGER(4).  */
  /* The argument to SELECTED_INT_KIND is INTEGER(4).  */
  type = gfc_get_int_type (4);
  type = gfc_get_int_type (4);
  arg = gfc_build_addr_expr (NULL_TREE, fold_convert (type, arg));
  arg = gfc_build_addr_expr (NULL_TREE, fold_convert (type, arg));
 
 
  /* Convert it to the required type.  */
  /* Convert it to the required type.  */
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  se->expr = build_call_expr_loc (input_location,
  se->expr = build_call_expr_loc (input_location,
                              gfor_fndecl_si_kind, 1, arg);
                              gfor_fndecl_si_kind, 1, arg);
  se->expr = fold_convert (type, se->expr);
  se->expr = fold_convert (type, se->expr);
}
}
 
 
 
 
/* Generate code for SELECTED_REAL_KIND (P, R) intrinsic function.  */
/* Generate code for SELECTED_REAL_KIND (P, R) intrinsic function.  */
 
 
static void
static void
gfc_conv_intrinsic_sr_kind (gfc_se *se, gfc_expr *expr)
gfc_conv_intrinsic_sr_kind (gfc_se *se, gfc_expr *expr)
{
{
  gfc_actual_arglist *actual;
  gfc_actual_arglist *actual;
  tree args, type;
  tree args, type;
  gfc_se argse;
  gfc_se argse;
 
 
  args = NULL_TREE;
  args = NULL_TREE;
  for (actual = expr->value.function.actual; actual; actual = actual->next)
  for (actual = expr->value.function.actual; actual; actual = actual->next)
    {
    {
      gfc_init_se (&argse, se);
      gfc_init_se (&argse, se);
 
 
      /* Pass a NULL pointer for an absent arg.  */
      /* Pass a NULL pointer for an absent arg.  */
      if (actual->expr == NULL)
      if (actual->expr == NULL)
        argse.expr = null_pointer_node;
        argse.expr = null_pointer_node;
      else
      else
        {
        {
          gfc_typespec ts;
          gfc_typespec ts;
          gfc_clear_ts (&ts);
          gfc_clear_ts (&ts);
 
 
          if (actual->expr->ts.kind != gfc_c_int_kind)
          if (actual->expr->ts.kind != gfc_c_int_kind)
            {
            {
              /* The arguments to SELECTED_REAL_KIND are INTEGER(4).  */
              /* The arguments to SELECTED_REAL_KIND are INTEGER(4).  */
              ts.type = BT_INTEGER;
              ts.type = BT_INTEGER;
              ts.kind = gfc_c_int_kind;
              ts.kind = gfc_c_int_kind;
              gfc_convert_type (actual->expr, &ts, 2);
              gfc_convert_type (actual->expr, &ts, 2);
            }
            }
          gfc_conv_expr_reference (&argse, actual->expr);
          gfc_conv_expr_reference (&argse, actual->expr);
        }
        }
 
 
      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->pre, &argse.pre);
      gfc_add_block_to_block (&se->post, &argse.post);
      gfc_add_block_to_block (&se->post, &argse.post);
      args = gfc_chainon_list (args, argse.expr);
      args = gfc_chainon_list (args, argse.expr);
    }
    }
 
 
  /* Convert it to the required type.  */
  /* Convert it to the required type.  */
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  se->expr = build_function_call_expr (input_location,
  se->expr = build_function_call_expr (input_location,
                                       gfor_fndecl_sr_kind, args);
                                       gfor_fndecl_sr_kind, args);
  se->expr = fold_convert (type, se->expr);
  se->expr = fold_convert (type, se->expr);
}
}
 
 
 
 
/* Generate code for TRIM (A) intrinsic function.  */
/* Generate code for TRIM (A) intrinsic function.  */
 
 
static void
static void
gfc_conv_intrinsic_trim (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_trim (gfc_se * se, gfc_expr * expr)
{
{
  tree var;
  tree var;
  tree len;
  tree len;
  tree addr;
  tree addr;
  tree tmp;
  tree tmp;
  tree cond;
  tree cond;
  tree fndecl;
  tree fndecl;
  tree function;
  tree function;
  tree *args;
  tree *args;
  unsigned int num_args;
  unsigned int num_args;
 
 
  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
  num_args = gfc_intrinsic_argument_list_length (expr) + 2;
  args = (tree *) alloca (sizeof (tree) * num_args);
  args = (tree *) alloca (sizeof (tree) * num_args);
 
 
  var = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), "pstr");
  var = gfc_create_var (gfc_get_pchar_type (expr->ts.kind), "pstr");
  addr = gfc_build_addr_expr (ppvoid_type_node, var);
  addr = gfc_build_addr_expr (ppvoid_type_node, var);
  len = gfc_create_var (gfc_get_int_type (4), "len");
  len = gfc_create_var (gfc_get_int_type (4), "len");
 
 
  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
  gfc_conv_intrinsic_function_args (se, expr, &args[2], num_args - 2);
  args[0] = gfc_build_addr_expr (NULL_TREE, len);
  args[0] = gfc_build_addr_expr (NULL_TREE, len);
  args[1] = addr;
  args[1] = addr;
 
 
  if (expr->ts.kind == 1)
  if (expr->ts.kind == 1)
    function = gfor_fndecl_string_trim;
    function = gfor_fndecl_string_trim;
  else if (expr->ts.kind == 4)
  else if (expr->ts.kind == 4)
    function = gfor_fndecl_string_trim_char4;
    function = gfor_fndecl_string_trim_char4;
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  fndecl = build_addr (function, current_function_decl);
  fndecl = build_addr (function, current_function_decl);
  tmp = build_call_array_loc (input_location,
  tmp = build_call_array_loc (input_location,
                          TREE_TYPE (TREE_TYPE (function)), fndecl,
                          TREE_TYPE (TREE_TYPE (function)), fndecl,
                          num_args, args);
                          num_args, args);
  gfc_add_expr_to_block (&se->pre, tmp);
  gfc_add_expr_to_block (&se->pre, tmp);
 
 
  /* Free the temporary afterwards, if necessary.  */
  /* Free the temporary afterwards, if necessary.  */
  cond = fold_build2 (GT_EXPR, boolean_type_node,
  cond = fold_build2 (GT_EXPR, boolean_type_node,
                      len, build_int_cst (TREE_TYPE (len), 0));
                      len, build_int_cst (TREE_TYPE (len), 0));
  tmp = gfc_call_free (var);
  tmp = gfc_call_free (var);
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
  gfc_add_expr_to_block (&se->post, tmp);
  gfc_add_expr_to_block (&se->post, tmp);
 
 
  se->expr = var;
  se->expr = var;
  se->string_length = len;
  se->string_length = len;
}
}
 
 
 
 
/* Generate code for REPEAT (STRING, NCOPIES) intrinsic function.  */
/* Generate code for REPEAT (STRING, NCOPIES) intrinsic function.  */
 
 
static void
static void
gfc_conv_intrinsic_repeat (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_repeat (gfc_se * se, gfc_expr * expr)
{
{
  tree args[3], ncopies, dest, dlen, src, slen, ncopies_type;
  tree args[3], ncopies, dest, dlen, src, slen, ncopies_type;
  tree type, cond, tmp, count, exit_label, n, max, largest;
  tree type, cond, tmp, count, exit_label, n, max, largest;
  tree size;
  tree size;
  stmtblock_t block, body;
  stmtblock_t block, body;
  int i;
  int i;
 
 
  /* We store in charsize the size of a character.  */
  /* We store in charsize the size of a character.  */
  i = gfc_validate_kind (BT_CHARACTER, expr->ts.kind, false);
  i = gfc_validate_kind (BT_CHARACTER, expr->ts.kind, false);
  size = build_int_cst (size_type_node, gfc_character_kinds[i].bit_size / 8);
  size = build_int_cst (size_type_node, gfc_character_kinds[i].bit_size / 8);
 
 
  /* Get the arguments.  */
  /* Get the arguments.  */
  gfc_conv_intrinsic_function_args (se, expr, args, 3);
  gfc_conv_intrinsic_function_args (se, expr, args, 3);
  slen = fold_convert (size_type_node, gfc_evaluate_now (args[0], &se->pre));
  slen = fold_convert (size_type_node, gfc_evaluate_now (args[0], &se->pre));
  src = args[1];
  src = args[1];
  ncopies = gfc_evaluate_now (args[2], &se->pre);
  ncopies = gfc_evaluate_now (args[2], &se->pre);
  ncopies_type = TREE_TYPE (ncopies);
  ncopies_type = TREE_TYPE (ncopies);
 
 
  /* Check that NCOPIES is not negative.  */
  /* Check that NCOPIES is not negative.  */
  cond = fold_build2 (LT_EXPR, boolean_type_node, ncopies,
  cond = fold_build2 (LT_EXPR, boolean_type_node, ncopies,
                      build_int_cst (ncopies_type, 0));
                      build_int_cst (ncopies_type, 0));
  gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
  gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
                           "Argument NCOPIES of REPEAT intrinsic is negative "
                           "Argument NCOPIES of REPEAT intrinsic is negative "
                           "(its value is %lld)",
                           "(its value is %lld)",
                           fold_convert (long_integer_type_node, ncopies));
                           fold_convert (long_integer_type_node, ncopies));
 
 
  /* If the source length is zero, any non negative value of NCOPIES
  /* If the source length is zero, any non negative value of NCOPIES
     is valid, and nothing happens.  */
     is valid, and nothing happens.  */
  n = gfc_create_var (ncopies_type, "ncopies");
  n = gfc_create_var (ncopies_type, "ncopies");
  cond = fold_build2 (EQ_EXPR, boolean_type_node, slen,
  cond = fold_build2 (EQ_EXPR, boolean_type_node, slen,
                      build_int_cst (size_type_node, 0));
                      build_int_cst (size_type_node, 0));
  tmp = fold_build3 (COND_EXPR, ncopies_type, cond,
  tmp = fold_build3 (COND_EXPR, ncopies_type, cond,
                     build_int_cst (ncopies_type, 0), ncopies);
                     build_int_cst (ncopies_type, 0), ncopies);
  gfc_add_modify (&se->pre, n, tmp);
  gfc_add_modify (&se->pre, n, tmp);
  ncopies = n;
  ncopies = n;
 
 
  /* Check that ncopies is not too large: ncopies should be less than
  /* Check that ncopies is not too large: ncopies should be less than
     (or equal to) MAX / slen, where MAX is the maximal integer of
     (or equal to) MAX / slen, where MAX is the maximal integer of
     the gfc_charlen_type_node type.  If slen == 0, we need a special
     the gfc_charlen_type_node type.  If slen == 0, we need a special
     case to avoid the division by zero.  */
     case to avoid the division by zero.  */
  i = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
  i = gfc_validate_kind (BT_INTEGER, gfc_charlen_int_kind, false);
  max = gfc_conv_mpz_to_tree (gfc_integer_kinds[i].huge, gfc_charlen_int_kind);
  max = gfc_conv_mpz_to_tree (gfc_integer_kinds[i].huge, gfc_charlen_int_kind);
  max = fold_build2 (TRUNC_DIV_EXPR, size_type_node,
  max = fold_build2 (TRUNC_DIV_EXPR, size_type_node,
                     fold_convert (size_type_node, max), slen);
                     fold_convert (size_type_node, max), slen);
  largest = TYPE_PRECISION (size_type_node) > TYPE_PRECISION (ncopies_type)
  largest = TYPE_PRECISION (size_type_node) > TYPE_PRECISION (ncopies_type)
              ? size_type_node : ncopies_type;
              ? size_type_node : ncopies_type;
  cond = fold_build2 (GT_EXPR, boolean_type_node,
  cond = fold_build2 (GT_EXPR, boolean_type_node,
                      fold_convert (largest, ncopies),
                      fold_convert (largest, ncopies),
                      fold_convert (largest, max));
                      fold_convert (largest, max));
  tmp = fold_build2 (EQ_EXPR, boolean_type_node, slen,
  tmp = fold_build2 (EQ_EXPR, boolean_type_node, slen,
                     build_int_cst (size_type_node, 0));
                     build_int_cst (size_type_node, 0));
  cond = fold_build3 (COND_EXPR, boolean_type_node, tmp, boolean_false_node,
  cond = fold_build3 (COND_EXPR, boolean_type_node, tmp, boolean_false_node,
                      cond);
                      cond);
  gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
  gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
                           "Argument NCOPIES of REPEAT intrinsic is too large");
                           "Argument NCOPIES of REPEAT intrinsic is too large");
 
 
  /* Compute the destination length.  */
  /* Compute the destination length.  */
  dlen = fold_build2 (MULT_EXPR, gfc_charlen_type_node,
  dlen = fold_build2 (MULT_EXPR, gfc_charlen_type_node,
                      fold_convert (gfc_charlen_type_node, slen),
                      fold_convert (gfc_charlen_type_node, slen),
                      fold_convert (gfc_charlen_type_node, ncopies));
                      fold_convert (gfc_charlen_type_node, ncopies));
  type = gfc_get_character_type (expr->ts.kind, expr->ts.u.cl);
  type = gfc_get_character_type (expr->ts.kind, expr->ts.u.cl);
  dest = gfc_conv_string_tmp (se, build_pointer_type (type), dlen);
  dest = gfc_conv_string_tmp (se, build_pointer_type (type), dlen);
 
 
  /* Generate the code to do the repeat operation:
  /* Generate the code to do the repeat operation:
       for (i = 0; i < ncopies; i++)
       for (i = 0; i < ncopies; i++)
         memmove (dest + (i * slen * size), src, slen*size);  */
         memmove (dest + (i * slen * size), src, slen*size);  */
  gfc_start_block (&block);
  gfc_start_block (&block);
  count = gfc_create_var (ncopies_type, "count");
  count = gfc_create_var (ncopies_type, "count");
  gfc_add_modify (&block, count, build_int_cst (ncopies_type, 0));
  gfc_add_modify (&block, count, build_int_cst (ncopies_type, 0));
  exit_label = gfc_build_label_decl (NULL_TREE);
  exit_label = gfc_build_label_decl (NULL_TREE);
 
 
  /* Start the loop body.  */
  /* Start the loop body.  */
  gfc_start_block (&body);
  gfc_start_block (&body);
 
 
  /* Exit the loop if count >= ncopies.  */
  /* Exit the loop if count >= ncopies.  */
  cond = fold_build2 (GE_EXPR, boolean_type_node, count, ncopies);
  cond = fold_build2 (GE_EXPR, boolean_type_node, count, ncopies);
  tmp = build1_v (GOTO_EXPR, exit_label);
  tmp = build1_v (GOTO_EXPR, exit_label);
  TREE_USED (exit_label) = 1;
  TREE_USED (exit_label) = 1;
  tmp = fold_build3 (COND_EXPR, void_type_node, cond, tmp,
  tmp = fold_build3 (COND_EXPR, void_type_node, cond, tmp,
                     build_empty_stmt (input_location));
                     build_empty_stmt (input_location));
  gfc_add_expr_to_block (&body, tmp);
  gfc_add_expr_to_block (&body, tmp);
 
 
  /* Call memmove (dest + (i*slen*size), src, slen*size).  */
  /* Call memmove (dest + (i*slen*size), src, slen*size).  */
  tmp = fold_build2 (MULT_EXPR, gfc_charlen_type_node,
  tmp = fold_build2 (MULT_EXPR, gfc_charlen_type_node,
                     fold_convert (gfc_charlen_type_node, slen),
                     fold_convert (gfc_charlen_type_node, slen),
                     fold_convert (gfc_charlen_type_node, count));
                     fold_convert (gfc_charlen_type_node, count));
  tmp = fold_build2 (MULT_EXPR, gfc_charlen_type_node,
  tmp = fold_build2 (MULT_EXPR, gfc_charlen_type_node,
                     tmp, fold_convert (gfc_charlen_type_node, size));
                     tmp, fold_convert (gfc_charlen_type_node, size));
  tmp = fold_build2 (POINTER_PLUS_EXPR, pvoid_type_node,
  tmp = fold_build2 (POINTER_PLUS_EXPR, pvoid_type_node,
                     fold_convert (pvoid_type_node, dest),
                     fold_convert (pvoid_type_node, dest),
                     fold_convert (sizetype, tmp));
                     fold_convert (sizetype, tmp));
  tmp = build_call_expr_loc (input_location,
  tmp = build_call_expr_loc (input_location,
                         built_in_decls[BUILT_IN_MEMMOVE], 3, tmp, src,
                         built_in_decls[BUILT_IN_MEMMOVE], 3, tmp, src,
                         fold_build2 (MULT_EXPR, size_type_node, slen,
                         fold_build2 (MULT_EXPR, size_type_node, slen,
                                      fold_convert (size_type_node, size)));
                                      fold_convert (size_type_node, size)));
  gfc_add_expr_to_block (&body, tmp);
  gfc_add_expr_to_block (&body, tmp);
 
 
  /* Increment count.  */
  /* Increment count.  */
  tmp = fold_build2 (PLUS_EXPR, ncopies_type,
  tmp = fold_build2 (PLUS_EXPR, ncopies_type,
                     count, build_int_cst (TREE_TYPE (count), 1));
                     count, build_int_cst (TREE_TYPE (count), 1));
  gfc_add_modify (&body, count, tmp);
  gfc_add_modify (&body, count, tmp);
 
 
  /* Build the loop.  */
  /* Build the loop.  */
  tmp = build1_v (LOOP_EXPR, gfc_finish_block (&body));
  tmp = build1_v (LOOP_EXPR, gfc_finish_block (&body));
  gfc_add_expr_to_block (&block, tmp);
  gfc_add_expr_to_block (&block, tmp);
 
 
  /* Add the exit label.  */
  /* Add the exit label.  */
  tmp = build1_v (LABEL_EXPR, exit_label);
  tmp = build1_v (LABEL_EXPR, exit_label);
  gfc_add_expr_to_block (&block, tmp);
  gfc_add_expr_to_block (&block, tmp);
 
 
  /* Finish the block.  */
  /* Finish the block.  */
  tmp = gfc_finish_block (&block);
  tmp = gfc_finish_block (&block);
  gfc_add_expr_to_block (&se->pre, tmp);
  gfc_add_expr_to_block (&se->pre, tmp);
 
 
  /* Set the result value.  */
  /* Set the result value.  */
  se->expr = dest;
  se->expr = dest;
  se->string_length = dlen;
  se->string_length = dlen;
}
}
 
 
 
 
/* Generate code for the IARGC intrinsic.  */
/* Generate code for the IARGC intrinsic.  */
 
 
static void
static void
gfc_conv_intrinsic_iargc (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_iargc (gfc_se * se, gfc_expr * expr)
{
{
  tree tmp;
  tree tmp;
  tree fndecl;
  tree fndecl;
  tree type;
  tree type;
 
 
  /* Call the library function.  This always returns an INTEGER(4).  */
  /* Call the library function.  This always returns an INTEGER(4).  */
  fndecl = gfor_fndecl_iargc;
  fndecl = gfor_fndecl_iargc;
  tmp = build_call_expr_loc (input_location,
  tmp = build_call_expr_loc (input_location,
                         fndecl, 0);
                         fndecl, 0);
 
 
  /* Convert it to the required type.  */
  /* Convert it to the required type.  */
  type = gfc_typenode_for_spec (&expr->ts);
  type = gfc_typenode_for_spec (&expr->ts);
  tmp = fold_convert (type, tmp);
  tmp = fold_convert (type, tmp);
 
 
  se->expr = tmp;
  se->expr = tmp;
}
}
 
 
 
 
/* The loc intrinsic returns the address of its argument as
/* The loc intrinsic returns the address of its argument as
   gfc_index_integer_kind integer.  */
   gfc_index_integer_kind integer.  */
 
 
static void
static void
gfc_conv_intrinsic_loc (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_loc (gfc_se * se, gfc_expr * expr)
{
{
  tree temp_var;
  tree temp_var;
  gfc_expr *arg_expr;
  gfc_expr *arg_expr;
  gfc_ss *ss;
  gfc_ss *ss;
 
 
  gcc_assert (!se->ss);
  gcc_assert (!se->ss);
 
 
  arg_expr = expr->value.function.actual->expr;
  arg_expr = expr->value.function.actual->expr;
  ss = gfc_walk_expr (arg_expr);
  ss = gfc_walk_expr (arg_expr);
  if (ss == gfc_ss_terminator)
  if (ss == gfc_ss_terminator)
    gfc_conv_expr_reference (se, arg_expr);
    gfc_conv_expr_reference (se, arg_expr);
  else
  else
    gfc_conv_array_parameter (se, arg_expr, ss, true, NULL, NULL, NULL);
    gfc_conv_array_parameter (se, arg_expr, ss, true, NULL, NULL, NULL);
  se->expr= convert (gfc_get_int_type (gfc_index_integer_kind), se->expr);
  se->expr= convert (gfc_get_int_type (gfc_index_integer_kind), se->expr);
 
 
  /* Create a temporary variable for loc return value.  Without this,
  /* Create a temporary variable for loc return value.  Without this,
     we get an error an ICE in gcc/expr.c(expand_expr_addr_expr_1).  */
     we get an error an ICE in gcc/expr.c(expand_expr_addr_expr_1).  */
  temp_var = gfc_create_var (gfc_get_int_type (gfc_index_integer_kind), NULL);
  temp_var = gfc_create_var (gfc_get_int_type (gfc_index_integer_kind), NULL);
  gfc_add_modify (&se->pre, temp_var, se->expr);
  gfc_add_modify (&se->pre, temp_var, se->expr);
  se->expr = temp_var;
  se->expr = temp_var;
}
}
 
 
/* Generate code for an intrinsic function.  Some map directly to library
/* Generate code for an intrinsic function.  Some map directly to library
   calls, others get special handling.  In some cases the name of the function
   calls, others get special handling.  In some cases the name of the function
   used depends on the type specifiers.  */
   used depends on the type specifiers.  */
 
 
void
void
gfc_conv_intrinsic_function (gfc_se * se, gfc_expr * expr)
gfc_conv_intrinsic_function (gfc_se * se, gfc_expr * expr)
{
{
  const char *name;
  const char *name;
  int lib, kind;
  int lib, kind;
  tree fndecl;
  tree fndecl;
 
 
  name = &expr->value.function.name[2];
  name = &expr->value.function.name[2];
 
 
  if (expr->rank > 0 && !expr->inline_noncopying_intrinsic)
  if (expr->rank > 0 && !expr->inline_noncopying_intrinsic)
    {
    {
      lib = gfc_is_intrinsic_libcall (expr);
      lib = gfc_is_intrinsic_libcall (expr);
      if (lib != 0)
      if (lib != 0)
        {
        {
          if (lib == 1)
          if (lib == 1)
            se->ignore_optional = 1;
            se->ignore_optional = 1;
 
 
          switch (expr->value.function.isym->id)
          switch (expr->value.function.isym->id)
            {
            {
            case GFC_ISYM_EOSHIFT:
            case GFC_ISYM_EOSHIFT:
            case GFC_ISYM_PACK:
            case GFC_ISYM_PACK:
            case GFC_ISYM_RESHAPE:
            case GFC_ISYM_RESHAPE:
              /* For all of those the first argument specifies the type and the
              /* For all of those the first argument specifies the type and the
                 third is optional.  */
                 third is optional.  */
              conv_generic_with_optional_char_arg (se, expr, 1, 3);
              conv_generic_with_optional_char_arg (se, expr, 1, 3);
              break;
              break;
 
 
            default:
            default:
              gfc_conv_intrinsic_funcall (se, expr);
              gfc_conv_intrinsic_funcall (se, expr);
              break;
              break;
            }
            }
 
 
          return;
          return;
        }
        }
    }
    }
 
 
  switch (expr->value.function.isym->id)
  switch (expr->value.function.isym->id)
    {
    {
    case GFC_ISYM_NONE:
    case GFC_ISYM_NONE:
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    case GFC_ISYM_REPEAT:
    case GFC_ISYM_REPEAT:
      gfc_conv_intrinsic_repeat (se, expr);
      gfc_conv_intrinsic_repeat (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_TRIM:
    case GFC_ISYM_TRIM:
      gfc_conv_intrinsic_trim (se, expr);
      gfc_conv_intrinsic_trim (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_SC_KIND:
    case GFC_ISYM_SC_KIND:
      gfc_conv_intrinsic_sc_kind (se, expr);
      gfc_conv_intrinsic_sc_kind (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_SI_KIND:
    case GFC_ISYM_SI_KIND:
      gfc_conv_intrinsic_si_kind (se, expr);
      gfc_conv_intrinsic_si_kind (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_SR_KIND:
    case GFC_ISYM_SR_KIND:
      gfc_conv_intrinsic_sr_kind (se, expr);
      gfc_conv_intrinsic_sr_kind (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_EXPONENT:
    case GFC_ISYM_EXPONENT:
      gfc_conv_intrinsic_exponent (se, expr);
      gfc_conv_intrinsic_exponent (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_SCAN:
    case GFC_ISYM_SCAN:
      kind = expr->value.function.actual->expr->ts.kind;
      kind = expr->value.function.actual->expr->ts.kind;
      if (kind == 1)
      if (kind == 1)
       fndecl = gfor_fndecl_string_scan;
       fndecl = gfor_fndecl_string_scan;
      else if (kind == 4)
      else if (kind == 4)
       fndecl = gfor_fndecl_string_scan_char4;
       fndecl = gfor_fndecl_string_scan_char4;
      else
      else
       gcc_unreachable ();
       gcc_unreachable ();
 
 
      gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl);
      gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl);
      break;
      break;
 
 
    case GFC_ISYM_VERIFY:
    case GFC_ISYM_VERIFY:
      kind = expr->value.function.actual->expr->ts.kind;
      kind = expr->value.function.actual->expr->ts.kind;
      if (kind == 1)
      if (kind == 1)
       fndecl = gfor_fndecl_string_verify;
       fndecl = gfor_fndecl_string_verify;
      else if (kind == 4)
      else if (kind == 4)
       fndecl = gfor_fndecl_string_verify_char4;
       fndecl = gfor_fndecl_string_verify_char4;
      else
      else
       gcc_unreachable ();
       gcc_unreachable ();
 
 
      gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl);
      gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl);
      break;
      break;
 
 
    case GFC_ISYM_ALLOCATED:
    case GFC_ISYM_ALLOCATED:
      gfc_conv_allocated (se, expr);
      gfc_conv_allocated (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_ASSOCIATED:
    case GFC_ISYM_ASSOCIATED:
      gfc_conv_associated(se, expr);
      gfc_conv_associated(se, expr);
      break;
      break;
 
 
    case GFC_ISYM_SAME_TYPE_AS:
    case GFC_ISYM_SAME_TYPE_AS:
      gfc_conv_same_type_as (se, expr);
      gfc_conv_same_type_as (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_ABS:
    case GFC_ISYM_ABS:
      gfc_conv_intrinsic_abs (se, expr);
      gfc_conv_intrinsic_abs (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_ADJUSTL:
    case GFC_ISYM_ADJUSTL:
      if (expr->ts.kind == 1)
      if (expr->ts.kind == 1)
       fndecl = gfor_fndecl_adjustl;
       fndecl = gfor_fndecl_adjustl;
      else if (expr->ts.kind == 4)
      else if (expr->ts.kind == 4)
       fndecl = gfor_fndecl_adjustl_char4;
       fndecl = gfor_fndecl_adjustl_char4;
      else
      else
       gcc_unreachable ();
       gcc_unreachable ();
 
 
      gfc_conv_intrinsic_adjust (se, expr, fndecl);
      gfc_conv_intrinsic_adjust (se, expr, fndecl);
      break;
      break;
 
 
    case GFC_ISYM_ADJUSTR:
    case GFC_ISYM_ADJUSTR:
      if (expr->ts.kind == 1)
      if (expr->ts.kind == 1)
       fndecl = gfor_fndecl_adjustr;
       fndecl = gfor_fndecl_adjustr;
      else if (expr->ts.kind == 4)
      else if (expr->ts.kind == 4)
       fndecl = gfor_fndecl_adjustr_char4;
       fndecl = gfor_fndecl_adjustr_char4;
      else
      else
       gcc_unreachable ();
       gcc_unreachable ();
 
 
      gfc_conv_intrinsic_adjust (se, expr, fndecl);
      gfc_conv_intrinsic_adjust (se, expr, fndecl);
      break;
      break;
 
 
    case GFC_ISYM_AIMAG:
    case GFC_ISYM_AIMAG:
      gfc_conv_intrinsic_imagpart (se, expr);
      gfc_conv_intrinsic_imagpart (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_AINT:
    case GFC_ISYM_AINT:
      gfc_conv_intrinsic_aint (se, expr, RND_TRUNC);
      gfc_conv_intrinsic_aint (se, expr, RND_TRUNC);
      break;
      break;
 
 
    case GFC_ISYM_ALL:
    case GFC_ISYM_ALL:
      gfc_conv_intrinsic_anyall (se, expr, EQ_EXPR);
      gfc_conv_intrinsic_anyall (se, expr, EQ_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_ANINT:
    case GFC_ISYM_ANINT:
      gfc_conv_intrinsic_aint (se, expr, RND_ROUND);
      gfc_conv_intrinsic_aint (se, expr, RND_ROUND);
      break;
      break;
 
 
    case GFC_ISYM_AND:
    case GFC_ISYM_AND:
      gfc_conv_intrinsic_bitop (se, expr, BIT_AND_EXPR);
      gfc_conv_intrinsic_bitop (se, expr, BIT_AND_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_ANY:
    case GFC_ISYM_ANY:
      gfc_conv_intrinsic_anyall (se, expr, NE_EXPR);
      gfc_conv_intrinsic_anyall (se, expr, NE_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_BTEST:
    case GFC_ISYM_BTEST:
      gfc_conv_intrinsic_btest (se, expr);
      gfc_conv_intrinsic_btest (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_ACHAR:
    case GFC_ISYM_ACHAR:
    case GFC_ISYM_CHAR:
    case GFC_ISYM_CHAR:
      gfc_conv_intrinsic_char (se, expr);
      gfc_conv_intrinsic_char (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_CONVERSION:
    case GFC_ISYM_CONVERSION:
    case GFC_ISYM_REAL:
    case GFC_ISYM_REAL:
    case GFC_ISYM_LOGICAL:
    case GFC_ISYM_LOGICAL:
    case GFC_ISYM_DBLE:
    case GFC_ISYM_DBLE:
      gfc_conv_intrinsic_conversion (se, expr);
      gfc_conv_intrinsic_conversion (se, expr);
      break;
      break;
 
 
      /* Integer conversions are handled separately to make sure we get the
      /* Integer conversions are handled separately to make sure we get the
         correct rounding mode.  */
         correct rounding mode.  */
    case GFC_ISYM_INT:
    case GFC_ISYM_INT:
    case GFC_ISYM_INT2:
    case GFC_ISYM_INT2:
    case GFC_ISYM_INT8:
    case GFC_ISYM_INT8:
    case GFC_ISYM_LONG:
    case GFC_ISYM_LONG:
      gfc_conv_intrinsic_int (se, expr, RND_TRUNC);
      gfc_conv_intrinsic_int (se, expr, RND_TRUNC);
      break;
      break;
 
 
    case GFC_ISYM_NINT:
    case GFC_ISYM_NINT:
      gfc_conv_intrinsic_int (se, expr, RND_ROUND);
      gfc_conv_intrinsic_int (se, expr, RND_ROUND);
      break;
      break;
 
 
    case GFC_ISYM_CEILING:
    case GFC_ISYM_CEILING:
      gfc_conv_intrinsic_int (se, expr, RND_CEIL);
      gfc_conv_intrinsic_int (se, expr, RND_CEIL);
      break;
      break;
 
 
    case GFC_ISYM_FLOOR:
    case GFC_ISYM_FLOOR:
      gfc_conv_intrinsic_int (se, expr, RND_FLOOR);
      gfc_conv_intrinsic_int (se, expr, RND_FLOOR);
      break;
      break;
 
 
    case GFC_ISYM_MOD:
    case GFC_ISYM_MOD:
      gfc_conv_intrinsic_mod (se, expr, 0);
      gfc_conv_intrinsic_mod (se, expr, 0);
      break;
      break;
 
 
    case GFC_ISYM_MODULO:
    case GFC_ISYM_MODULO:
      gfc_conv_intrinsic_mod (se, expr, 1);
      gfc_conv_intrinsic_mod (se, expr, 1);
      break;
      break;
 
 
    case GFC_ISYM_CMPLX:
    case GFC_ISYM_CMPLX:
      gfc_conv_intrinsic_cmplx (se, expr, name[5] == '1');
      gfc_conv_intrinsic_cmplx (se, expr, name[5] == '1');
      break;
      break;
 
 
    case GFC_ISYM_COMMAND_ARGUMENT_COUNT:
    case GFC_ISYM_COMMAND_ARGUMENT_COUNT:
      gfc_conv_intrinsic_iargc (se, expr);
      gfc_conv_intrinsic_iargc (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_COMPLEX:
    case GFC_ISYM_COMPLEX:
      gfc_conv_intrinsic_cmplx (se, expr, 1);
      gfc_conv_intrinsic_cmplx (se, expr, 1);
      break;
      break;
 
 
    case GFC_ISYM_CONJG:
    case GFC_ISYM_CONJG:
      gfc_conv_intrinsic_conjg (se, expr);
      gfc_conv_intrinsic_conjg (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_COUNT:
    case GFC_ISYM_COUNT:
      gfc_conv_intrinsic_count (se, expr);
      gfc_conv_intrinsic_count (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_CTIME:
    case GFC_ISYM_CTIME:
      gfc_conv_intrinsic_ctime (se, expr);
      gfc_conv_intrinsic_ctime (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_DIM:
    case GFC_ISYM_DIM:
      gfc_conv_intrinsic_dim (se, expr);
      gfc_conv_intrinsic_dim (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_DOT_PRODUCT:
    case GFC_ISYM_DOT_PRODUCT:
      gfc_conv_intrinsic_dot_product (se, expr);
      gfc_conv_intrinsic_dot_product (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_DPROD:
    case GFC_ISYM_DPROD:
      gfc_conv_intrinsic_dprod (se, expr);
      gfc_conv_intrinsic_dprod (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_FDATE:
    case GFC_ISYM_FDATE:
      gfc_conv_intrinsic_fdate (se, expr);
      gfc_conv_intrinsic_fdate (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_FRACTION:
    case GFC_ISYM_FRACTION:
      gfc_conv_intrinsic_fraction (se, expr);
      gfc_conv_intrinsic_fraction (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_IAND:
    case GFC_ISYM_IAND:
      gfc_conv_intrinsic_bitop (se, expr, BIT_AND_EXPR);
      gfc_conv_intrinsic_bitop (se, expr, BIT_AND_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_IBCLR:
    case GFC_ISYM_IBCLR:
      gfc_conv_intrinsic_singlebitop (se, expr, 0);
      gfc_conv_intrinsic_singlebitop (se, expr, 0);
      break;
      break;
 
 
    case GFC_ISYM_IBITS:
    case GFC_ISYM_IBITS:
      gfc_conv_intrinsic_ibits (se, expr);
      gfc_conv_intrinsic_ibits (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_IBSET:
    case GFC_ISYM_IBSET:
      gfc_conv_intrinsic_singlebitop (se, expr, 1);
      gfc_conv_intrinsic_singlebitop (se, expr, 1);
      break;
      break;
 
 
    case GFC_ISYM_IACHAR:
    case GFC_ISYM_IACHAR:
    case GFC_ISYM_ICHAR:
    case GFC_ISYM_ICHAR:
      /* We assume ASCII character sequence.  */
      /* We assume ASCII character sequence.  */
      gfc_conv_intrinsic_ichar (se, expr);
      gfc_conv_intrinsic_ichar (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_IARGC:
    case GFC_ISYM_IARGC:
      gfc_conv_intrinsic_iargc (se, expr);
      gfc_conv_intrinsic_iargc (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_IEOR:
    case GFC_ISYM_IEOR:
      gfc_conv_intrinsic_bitop (se, expr, BIT_XOR_EXPR);
      gfc_conv_intrinsic_bitop (se, expr, BIT_XOR_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_INDEX:
    case GFC_ISYM_INDEX:
      kind = expr->value.function.actual->expr->ts.kind;
      kind = expr->value.function.actual->expr->ts.kind;
      if (kind == 1)
      if (kind == 1)
       fndecl = gfor_fndecl_string_index;
       fndecl = gfor_fndecl_string_index;
      else if (kind == 4)
      else if (kind == 4)
       fndecl = gfor_fndecl_string_index_char4;
       fndecl = gfor_fndecl_string_index_char4;
      else
      else
       gcc_unreachable ();
       gcc_unreachable ();
 
 
      gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl);
      gfc_conv_intrinsic_index_scan_verify (se, expr, fndecl);
      break;
      break;
 
 
    case GFC_ISYM_IOR:
    case GFC_ISYM_IOR:
      gfc_conv_intrinsic_bitop (se, expr, BIT_IOR_EXPR);
      gfc_conv_intrinsic_bitop (se, expr, BIT_IOR_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_IS_IOSTAT_END:
    case GFC_ISYM_IS_IOSTAT_END:
      gfc_conv_has_intvalue (se, expr, LIBERROR_END);
      gfc_conv_has_intvalue (se, expr, LIBERROR_END);
      break;
      break;
 
 
    case GFC_ISYM_IS_IOSTAT_EOR:
    case GFC_ISYM_IS_IOSTAT_EOR:
      gfc_conv_has_intvalue (se, expr, LIBERROR_EOR);
      gfc_conv_has_intvalue (se, expr, LIBERROR_EOR);
      break;
      break;
 
 
    case GFC_ISYM_ISNAN:
    case GFC_ISYM_ISNAN:
      gfc_conv_intrinsic_isnan (se, expr);
      gfc_conv_intrinsic_isnan (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_LSHIFT:
    case GFC_ISYM_LSHIFT:
      gfc_conv_intrinsic_rlshift (se, expr, 0);
      gfc_conv_intrinsic_rlshift (se, expr, 0);
      break;
      break;
 
 
    case GFC_ISYM_RSHIFT:
    case GFC_ISYM_RSHIFT:
      gfc_conv_intrinsic_rlshift (se, expr, 1);
      gfc_conv_intrinsic_rlshift (se, expr, 1);
      break;
      break;
 
 
    case GFC_ISYM_ISHFT:
    case GFC_ISYM_ISHFT:
      gfc_conv_intrinsic_ishft (se, expr);
      gfc_conv_intrinsic_ishft (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_ISHFTC:
    case GFC_ISYM_ISHFTC:
      gfc_conv_intrinsic_ishftc (se, expr);
      gfc_conv_intrinsic_ishftc (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_LEADZ:
    case GFC_ISYM_LEADZ:
      gfc_conv_intrinsic_leadz (se, expr);
      gfc_conv_intrinsic_leadz (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_TRAILZ:
    case GFC_ISYM_TRAILZ:
      gfc_conv_intrinsic_trailz (se, expr);
      gfc_conv_intrinsic_trailz (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_LBOUND:
    case GFC_ISYM_LBOUND:
      gfc_conv_intrinsic_bound (se, expr, 0);
      gfc_conv_intrinsic_bound (se, expr, 0);
      break;
      break;
 
 
    case GFC_ISYM_TRANSPOSE:
    case GFC_ISYM_TRANSPOSE:
      if (se->ss && se->ss->useflags)
      if (se->ss && se->ss->useflags)
        {
        {
          gfc_conv_tmp_array_ref (se);
          gfc_conv_tmp_array_ref (se);
          gfc_advance_se_ss_chain (se);
          gfc_advance_se_ss_chain (se);
        }
        }
      else
      else
        gfc_conv_array_transpose (se, expr->value.function.actual->expr);
        gfc_conv_array_transpose (se, expr->value.function.actual->expr);
      break;
      break;
 
 
    case GFC_ISYM_LEN:
    case GFC_ISYM_LEN:
      gfc_conv_intrinsic_len (se, expr);
      gfc_conv_intrinsic_len (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_LEN_TRIM:
    case GFC_ISYM_LEN_TRIM:
      gfc_conv_intrinsic_len_trim (se, expr);
      gfc_conv_intrinsic_len_trim (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_LGE:
    case GFC_ISYM_LGE:
      gfc_conv_intrinsic_strcmp (se, expr, GE_EXPR);
      gfc_conv_intrinsic_strcmp (se, expr, GE_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_LGT:
    case GFC_ISYM_LGT:
      gfc_conv_intrinsic_strcmp (se, expr, GT_EXPR);
      gfc_conv_intrinsic_strcmp (se, expr, GT_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_LLE:
    case GFC_ISYM_LLE:
      gfc_conv_intrinsic_strcmp (se, expr, LE_EXPR);
      gfc_conv_intrinsic_strcmp (se, expr, LE_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_LLT:
    case GFC_ISYM_LLT:
      gfc_conv_intrinsic_strcmp (se, expr, LT_EXPR);
      gfc_conv_intrinsic_strcmp (se, expr, LT_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_MAX:
    case GFC_ISYM_MAX:
      if (expr->ts.type == BT_CHARACTER)
      if (expr->ts.type == BT_CHARACTER)
        gfc_conv_intrinsic_minmax_char (se, expr, 1);
        gfc_conv_intrinsic_minmax_char (se, expr, 1);
      else
      else
        gfc_conv_intrinsic_minmax (se, expr, GT_EXPR);
        gfc_conv_intrinsic_minmax (se, expr, GT_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_MAXLOC:
    case GFC_ISYM_MAXLOC:
      gfc_conv_intrinsic_minmaxloc (se, expr, GT_EXPR);
      gfc_conv_intrinsic_minmaxloc (se, expr, GT_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_MAXVAL:
    case GFC_ISYM_MAXVAL:
      gfc_conv_intrinsic_minmaxval (se, expr, GT_EXPR);
      gfc_conv_intrinsic_minmaxval (se, expr, GT_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_MERGE:
    case GFC_ISYM_MERGE:
      gfc_conv_intrinsic_merge (se, expr);
      gfc_conv_intrinsic_merge (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_MIN:
    case GFC_ISYM_MIN:
      if (expr->ts.type == BT_CHARACTER)
      if (expr->ts.type == BT_CHARACTER)
        gfc_conv_intrinsic_minmax_char (se, expr, -1);
        gfc_conv_intrinsic_minmax_char (se, expr, -1);
      else
      else
        gfc_conv_intrinsic_minmax (se, expr, LT_EXPR);
        gfc_conv_intrinsic_minmax (se, expr, LT_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_MINLOC:
    case GFC_ISYM_MINLOC:
      gfc_conv_intrinsic_minmaxloc (se, expr, LT_EXPR);
      gfc_conv_intrinsic_minmaxloc (se, expr, LT_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_MINVAL:
    case GFC_ISYM_MINVAL:
      gfc_conv_intrinsic_minmaxval (se, expr, LT_EXPR);
      gfc_conv_intrinsic_minmaxval (se, expr, LT_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_NEAREST:
    case GFC_ISYM_NEAREST:
      gfc_conv_intrinsic_nearest (se, expr);
      gfc_conv_intrinsic_nearest (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_NOT:
    case GFC_ISYM_NOT:
      gfc_conv_intrinsic_not (se, expr);
      gfc_conv_intrinsic_not (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_OR:
    case GFC_ISYM_OR:
      gfc_conv_intrinsic_bitop (se, expr, BIT_IOR_EXPR);
      gfc_conv_intrinsic_bitop (se, expr, BIT_IOR_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_PRESENT:
    case GFC_ISYM_PRESENT:
      gfc_conv_intrinsic_present (se, expr);
      gfc_conv_intrinsic_present (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_PRODUCT:
    case GFC_ISYM_PRODUCT:
      gfc_conv_intrinsic_arith (se, expr, MULT_EXPR);
      gfc_conv_intrinsic_arith (se, expr, MULT_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_RRSPACING:
    case GFC_ISYM_RRSPACING:
      gfc_conv_intrinsic_rrspacing (se, expr);
      gfc_conv_intrinsic_rrspacing (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_SET_EXPONENT:
    case GFC_ISYM_SET_EXPONENT:
      gfc_conv_intrinsic_set_exponent (se, expr);
      gfc_conv_intrinsic_set_exponent (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_SCALE:
    case GFC_ISYM_SCALE:
      gfc_conv_intrinsic_scale (se, expr);
      gfc_conv_intrinsic_scale (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_SIGN:
    case GFC_ISYM_SIGN:
      gfc_conv_intrinsic_sign (se, expr);
      gfc_conv_intrinsic_sign (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_SIZE:
    case GFC_ISYM_SIZE:
      gfc_conv_intrinsic_size (se, expr);
      gfc_conv_intrinsic_size (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_SIZEOF:
    case GFC_ISYM_SIZEOF:
      gfc_conv_intrinsic_sizeof (se, expr);
      gfc_conv_intrinsic_sizeof (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_SPACING:
    case GFC_ISYM_SPACING:
      gfc_conv_intrinsic_spacing (se, expr);
      gfc_conv_intrinsic_spacing (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_SUM:
    case GFC_ISYM_SUM:
      gfc_conv_intrinsic_arith (se, expr, PLUS_EXPR);
      gfc_conv_intrinsic_arith (se, expr, PLUS_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_TRANSFER:
    case GFC_ISYM_TRANSFER:
      if (se->ss && se->ss->useflags)
      if (se->ss && se->ss->useflags)
        {
        {
          /* Access the previously obtained result.  */
          /* Access the previously obtained result.  */
          gfc_conv_tmp_array_ref (se);
          gfc_conv_tmp_array_ref (se);
          gfc_advance_se_ss_chain (se);
          gfc_advance_se_ss_chain (se);
        }
        }
      else
      else
        gfc_conv_intrinsic_transfer (se, expr);
        gfc_conv_intrinsic_transfer (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_TTYNAM:
    case GFC_ISYM_TTYNAM:
      gfc_conv_intrinsic_ttynam (se, expr);
      gfc_conv_intrinsic_ttynam (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_UBOUND:
    case GFC_ISYM_UBOUND:
      gfc_conv_intrinsic_bound (se, expr, 1);
      gfc_conv_intrinsic_bound (se, expr, 1);
      break;
      break;
 
 
    case GFC_ISYM_XOR:
    case GFC_ISYM_XOR:
      gfc_conv_intrinsic_bitop (se, expr, BIT_XOR_EXPR);
      gfc_conv_intrinsic_bitop (se, expr, BIT_XOR_EXPR);
      break;
      break;
 
 
    case GFC_ISYM_LOC:
    case GFC_ISYM_LOC:
      gfc_conv_intrinsic_loc (se, expr);
      gfc_conv_intrinsic_loc (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_ACCESS:
    case GFC_ISYM_ACCESS:
    case GFC_ISYM_CHDIR:
    case GFC_ISYM_CHDIR:
    case GFC_ISYM_CHMOD:
    case GFC_ISYM_CHMOD:
    case GFC_ISYM_DTIME:
    case GFC_ISYM_DTIME:
    case GFC_ISYM_ETIME:
    case GFC_ISYM_ETIME:
    case GFC_ISYM_EXTENDS_TYPE_OF:
    case GFC_ISYM_EXTENDS_TYPE_OF:
    case GFC_ISYM_FGET:
    case GFC_ISYM_FGET:
    case GFC_ISYM_FGETC:
    case GFC_ISYM_FGETC:
    case GFC_ISYM_FNUM:
    case GFC_ISYM_FNUM:
    case GFC_ISYM_FPUT:
    case GFC_ISYM_FPUT:
    case GFC_ISYM_FPUTC:
    case GFC_ISYM_FPUTC:
    case GFC_ISYM_FSTAT:
    case GFC_ISYM_FSTAT:
    case GFC_ISYM_FTELL:
    case GFC_ISYM_FTELL:
    case GFC_ISYM_GETCWD:
    case GFC_ISYM_GETCWD:
    case GFC_ISYM_GETGID:
    case GFC_ISYM_GETGID:
    case GFC_ISYM_GETPID:
    case GFC_ISYM_GETPID:
    case GFC_ISYM_GETUID:
    case GFC_ISYM_GETUID:
    case GFC_ISYM_HOSTNM:
    case GFC_ISYM_HOSTNM:
    case GFC_ISYM_KILL:
    case GFC_ISYM_KILL:
    case GFC_ISYM_IERRNO:
    case GFC_ISYM_IERRNO:
    case GFC_ISYM_IRAND:
    case GFC_ISYM_IRAND:
    case GFC_ISYM_ISATTY:
    case GFC_ISYM_ISATTY:
    case GFC_ISYM_LINK:
    case GFC_ISYM_LINK:
    case GFC_ISYM_LSTAT:
    case GFC_ISYM_LSTAT:
    case GFC_ISYM_MALLOC:
    case GFC_ISYM_MALLOC:
    case GFC_ISYM_MATMUL:
    case GFC_ISYM_MATMUL:
    case GFC_ISYM_MCLOCK:
    case GFC_ISYM_MCLOCK:
    case GFC_ISYM_MCLOCK8:
    case GFC_ISYM_MCLOCK8:
    case GFC_ISYM_RAND:
    case GFC_ISYM_RAND:
    case GFC_ISYM_RENAME:
    case GFC_ISYM_RENAME:
    case GFC_ISYM_SECOND:
    case GFC_ISYM_SECOND:
    case GFC_ISYM_SECNDS:
    case GFC_ISYM_SECNDS:
    case GFC_ISYM_SIGNAL:
    case GFC_ISYM_SIGNAL:
    case GFC_ISYM_STAT:
    case GFC_ISYM_STAT:
    case GFC_ISYM_SYMLNK:
    case GFC_ISYM_SYMLNK:
    case GFC_ISYM_SYSTEM:
    case GFC_ISYM_SYSTEM:
    case GFC_ISYM_TIME:
    case GFC_ISYM_TIME:
    case GFC_ISYM_TIME8:
    case GFC_ISYM_TIME8:
    case GFC_ISYM_UMASK:
    case GFC_ISYM_UMASK:
    case GFC_ISYM_UNLINK:
    case GFC_ISYM_UNLINK:
      gfc_conv_intrinsic_funcall (se, expr);
      gfc_conv_intrinsic_funcall (se, expr);
      break;
      break;
 
 
    case GFC_ISYM_EOSHIFT:
    case GFC_ISYM_EOSHIFT:
    case GFC_ISYM_PACK:
    case GFC_ISYM_PACK:
    case GFC_ISYM_RESHAPE:
    case GFC_ISYM_RESHAPE:
      /* For those, expr->rank should always be >0 and thus the if above the
      /* For those, expr->rank should always be >0 and thus the if above the
         switch should have matched.  */
         switch should have matched.  */
      gcc_unreachable ();
      gcc_unreachable ();
      break;
      break;
 
 
    default:
    default:
      gfc_conv_intrinsic_lib_function (se, expr);
      gfc_conv_intrinsic_lib_function (se, expr);
      break;
      break;
    }
    }
}
}
 
 
 
 
/* This generates code to execute before entering the scalarization loop.
/* This generates code to execute before entering the scalarization loop.
   Currently does nothing.  */
   Currently does nothing.  */
 
 
void
void
gfc_add_intrinsic_ss_code (gfc_loopinfo * loop ATTRIBUTE_UNUSED, gfc_ss * ss)
gfc_add_intrinsic_ss_code (gfc_loopinfo * loop ATTRIBUTE_UNUSED, gfc_ss * ss)
{
{
  switch (ss->expr->value.function.isym->id)
  switch (ss->expr->value.function.isym->id)
    {
    {
    case GFC_ISYM_UBOUND:
    case GFC_ISYM_UBOUND:
    case GFC_ISYM_LBOUND:
    case GFC_ISYM_LBOUND:
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
 
 
/* UBOUND and LBOUND intrinsics with one parameter are expanded into code
/* UBOUND and LBOUND intrinsics with one parameter are expanded into code
   inside the scalarization loop.  */
   inside the scalarization loop.  */
 
 
static gfc_ss *
static gfc_ss *
gfc_walk_intrinsic_bound (gfc_ss * ss, gfc_expr * expr)
gfc_walk_intrinsic_bound (gfc_ss * ss, gfc_expr * expr)
{
{
  gfc_ss *newss;
  gfc_ss *newss;
 
 
  /* The two argument version returns a scalar.  */
  /* The two argument version returns a scalar.  */
  if (expr->value.function.actual->next->expr)
  if (expr->value.function.actual->next->expr)
    return ss;
    return ss;
 
 
  newss = gfc_get_ss ();
  newss = gfc_get_ss ();
  newss->type = GFC_SS_INTRINSIC;
  newss->type = GFC_SS_INTRINSIC;
  newss->expr = expr;
  newss->expr = expr;
  newss->next = ss;
  newss->next = ss;
  newss->data.info.dimen = 1;
  newss->data.info.dimen = 1;
 
 
  return newss;
  return newss;
}
}
 
 
 
 
/* Walk an intrinsic array libcall.  */
/* Walk an intrinsic array libcall.  */
 
 
static gfc_ss *
static gfc_ss *
gfc_walk_intrinsic_libfunc (gfc_ss * ss, gfc_expr * expr)
gfc_walk_intrinsic_libfunc (gfc_ss * ss, gfc_expr * expr)
{
{
  gfc_ss *newss;
  gfc_ss *newss;
 
 
  gcc_assert (expr->rank > 0);
  gcc_assert (expr->rank > 0);
 
 
  newss = gfc_get_ss ();
  newss = gfc_get_ss ();
  newss->type = GFC_SS_FUNCTION;
  newss->type = GFC_SS_FUNCTION;
  newss->expr = expr;
  newss->expr = expr;
  newss->next = ss;
  newss->next = ss;
  newss->data.info.dimen = expr->rank;
  newss->data.info.dimen = expr->rank;
 
 
  return newss;
  return newss;
}
}
 
 
 
 
/* Returns nonzero if the specified intrinsic function call maps directly to
/* Returns nonzero if the specified intrinsic function call maps directly to
   an external library call.  Should only be used for functions that return
   an external library call.  Should only be used for functions that return
   arrays.  */
   arrays.  */
 
 
int
int
gfc_is_intrinsic_libcall (gfc_expr * expr)
gfc_is_intrinsic_libcall (gfc_expr * expr)
{
{
  gcc_assert (expr->expr_type == EXPR_FUNCTION && expr->value.function.isym);
  gcc_assert (expr->expr_type == EXPR_FUNCTION && expr->value.function.isym);
  gcc_assert (expr->rank > 0);
  gcc_assert (expr->rank > 0);
 
 
  switch (expr->value.function.isym->id)
  switch (expr->value.function.isym->id)
    {
    {
    case GFC_ISYM_ALL:
    case GFC_ISYM_ALL:
    case GFC_ISYM_ANY:
    case GFC_ISYM_ANY:
    case GFC_ISYM_COUNT:
    case GFC_ISYM_COUNT:
    case GFC_ISYM_MATMUL:
    case GFC_ISYM_MATMUL:
    case GFC_ISYM_MAXLOC:
    case GFC_ISYM_MAXLOC:
    case GFC_ISYM_MAXVAL:
    case GFC_ISYM_MAXVAL:
    case GFC_ISYM_MINLOC:
    case GFC_ISYM_MINLOC:
    case GFC_ISYM_MINVAL:
    case GFC_ISYM_MINVAL:
    case GFC_ISYM_PRODUCT:
    case GFC_ISYM_PRODUCT:
    case GFC_ISYM_SUM:
    case GFC_ISYM_SUM:
    case GFC_ISYM_SHAPE:
    case GFC_ISYM_SHAPE:
    case GFC_ISYM_SPREAD:
    case GFC_ISYM_SPREAD:
    case GFC_ISYM_TRANSPOSE:
    case GFC_ISYM_TRANSPOSE:
      /* Ignore absent optional parameters.  */
      /* Ignore absent optional parameters.  */
      return 1;
      return 1;
 
 
    case GFC_ISYM_RESHAPE:
    case GFC_ISYM_RESHAPE:
    case GFC_ISYM_CSHIFT:
    case GFC_ISYM_CSHIFT:
    case GFC_ISYM_EOSHIFT:
    case GFC_ISYM_EOSHIFT:
    case GFC_ISYM_PACK:
    case GFC_ISYM_PACK:
    case GFC_ISYM_UNPACK:
    case GFC_ISYM_UNPACK:
      /* Pass absent optional parameters.  */
      /* Pass absent optional parameters.  */
      return 2;
      return 2;
 
 
    default:
    default:
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Walk an intrinsic function.  */
/* Walk an intrinsic function.  */
gfc_ss *
gfc_ss *
gfc_walk_intrinsic_function (gfc_ss * ss, gfc_expr * expr,
gfc_walk_intrinsic_function (gfc_ss * ss, gfc_expr * expr,
                             gfc_intrinsic_sym * isym)
                             gfc_intrinsic_sym * isym)
{
{
  gcc_assert (isym);
  gcc_assert (isym);
 
 
  if (isym->elemental)
  if (isym->elemental)
    return gfc_walk_elemental_function_args (ss, expr->value.function.actual, GFC_SS_SCALAR);
    return gfc_walk_elemental_function_args (ss, expr->value.function.actual, GFC_SS_SCALAR);
 
 
  if (expr->rank == 0)
  if (expr->rank == 0)
    return ss;
    return ss;
 
 
  if (gfc_is_intrinsic_libcall (expr))
  if (gfc_is_intrinsic_libcall (expr))
    return gfc_walk_intrinsic_libfunc (ss, expr);
    return gfc_walk_intrinsic_libfunc (ss, expr);
 
 
  /* Special cases.  */
  /* Special cases.  */
  switch (isym->id)
  switch (isym->id)
    {
    {
    case GFC_ISYM_LBOUND:
    case GFC_ISYM_LBOUND:
    case GFC_ISYM_UBOUND:
    case GFC_ISYM_UBOUND:
      return gfc_walk_intrinsic_bound (ss, expr);
      return gfc_walk_intrinsic_bound (ss, expr);
 
 
    case GFC_ISYM_TRANSFER:
    case GFC_ISYM_TRANSFER:
      return gfc_walk_intrinsic_libfunc (ss, expr);
      return gfc_walk_intrinsic_libfunc (ss, expr);
 
 
    default:
    default:
      /* This probably meant someone forgot to add an intrinsic to the above
      /* This probably meant someone forgot to add an intrinsic to the above
         list(s) when they implemented it, or something's gone horribly
         list(s) when they implemented it, or something's gone horribly
         wrong.  */
         wrong.  */
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
#include "gt-fortran-trans-intrinsic.h"
#include "gt-fortran-trans-intrinsic.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.