OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc2/] [gcc/] [tree-ssa-dce.c] - Diff between revs 280 and 384

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 280 Rev 384
/* Dead code elimination pass for the GNU compiler.
/* Dead code elimination pass for the GNU compiler.
   Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Ben Elliston <bje@redhat.com>
   Contributed by Ben Elliston <bje@redhat.com>
   and Andrew MacLeod <amacleod@redhat.com>
   and Andrew MacLeod <amacleod@redhat.com>
   Adapted to use control dependence by Steven Bosscher, SUSE Labs.
   Adapted to use control dependence by Steven Bosscher, SUSE Labs.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
Free Software Foundation; either version 3, or (at your option) any
later version.
later version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* Dead code elimination.
/* Dead code elimination.
 
 
   References:
   References:
 
 
     Building an Optimizing Compiler,
     Building an Optimizing Compiler,
     Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
     Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
 
 
     Advanced Compiler Design and Implementation,
     Advanced Compiler Design and Implementation,
     Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
     Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
 
 
   Dead-code elimination is the removal of statements which have no
   Dead-code elimination is the removal of statements which have no
   impact on the program's output.  "Dead statements" have no impact
   impact on the program's output.  "Dead statements" have no impact
   on the program's output, while "necessary statements" may have
   on the program's output, while "necessary statements" may have
   impact on the output.
   impact on the output.
 
 
   The algorithm consists of three phases:
   The algorithm consists of three phases:
   1. Marking as necessary all statements known to be necessary,
   1. Marking as necessary all statements known to be necessary,
      e.g. most function calls, writing a value to memory, etc;
      e.g. most function calls, writing a value to memory, etc;
   2. Propagating necessary statements, e.g., the statements
   2. Propagating necessary statements, e.g., the statements
      giving values to operands in necessary statements; and
      giving values to operands in necessary statements; and
   3. Removing dead statements.  */
   3. Removing dead statements.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "ggc.h"
#include "ggc.h"
 
 
/* These RTL headers are needed for basic-block.h.  */
/* These RTL headers are needed for basic-block.h.  */
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "obstack.h"
#include "obstack.h"
#include "basic-block.h"
#include "basic-block.h"
 
 
#include "tree.h"
#include "tree.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "gimple.h"
#include "gimple.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "timevar.h"
#include "timevar.h"
#include "flags.h"
#include "flags.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-scalar-evolution.h"
 
 
static struct stmt_stats
static struct stmt_stats
{
{
  int total;
  int total;
  int total_phis;
  int total_phis;
  int removed;
  int removed;
  int removed_phis;
  int removed_phis;
} stats;
} stats;
 
 
#define STMT_NECESSARY GF_PLF_1
#define STMT_NECESSARY GF_PLF_1
 
 
static VEC(gimple,heap) *worklist;
static VEC(gimple,heap) *worklist;
 
 
/* Vector indicating an SSA name has already been processed and marked
/* Vector indicating an SSA name has already been processed and marked
   as necessary.  */
   as necessary.  */
static sbitmap processed;
static sbitmap processed;
 
 
/* Vector indicating that last_stmt if a basic block has already been
/* Vector indicating that last_stmt if a basic block has already been
   marked as necessary.  */
   marked as necessary.  */
static sbitmap last_stmt_necessary;
static sbitmap last_stmt_necessary;
 
 
/* Vector indicating that BB contains statements that are live.  */
/* Vector indicating that BB contains statements that are live.  */
static sbitmap bb_contains_live_stmts;
static sbitmap bb_contains_live_stmts;
 
 
/* Before we can determine whether a control branch is dead, we need to
/* Before we can determine whether a control branch is dead, we need to
   compute which blocks are control dependent on which edges.
   compute which blocks are control dependent on which edges.
 
 
   We expect each block to be control dependent on very few edges so we
   We expect each block to be control dependent on very few edges so we
   use a bitmap for each block recording its edges.  An array holds the
   use a bitmap for each block recording its edges.  An array holds the
   bitmap.  The Ith bit in the bitmap is set if that block is dependent
   bitmap.  The Ith bit in the bitmap is set if that block is dependent
   on the Ith edge.  */
   on the Ith edge.  */
static bitmap *control_dependence_map;
static bitmap *control_dependence_map;
 
 
/* Vector indicating that a basic block has already had all the edges
/* Vector indicating that a basic block has already had all the edges
   processed that it is control dependent on.  */
   processed that it is control dependent on.  */
static sbitmap visited_control_parents;
static sbitmap visited_control_parents;
 
 
/* TRUE if this pass alters the CFG (by removing control statements).
/* TRUE if this pass alters the CFG (by removing control statements).
   FALSE otherwise.
   FALSE otherwise.
 
 
   If this pass alters the CFG, then it will arrange for the dominators
   If this pass alters the CFG, then it will arrange for the dominators
   to be recomputed.  */
   to be recomputed.  */
static bool cfg_altered;
static bool cfg_altered;
 
 
/* Execute code that follows the macro for each edge (given number
/* Execute code that follows the macro for each edge (given number
   EDGE_NUMBER within the CODE) for which the block with index N is
   EDGE_NUMBER within the CODE) for which the block with index N is
   control dependent.  */
   control dependent.  */
#define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER)        \
#define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER)        \
  EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0,      \
  EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0,      \
                            (EDGE_NUMBER), (BI))
                            (EDGE_NUMBER), (BI))
 
 
 
 
/* Indicate block BB is control dependent on an edge with index EDGE_INDEX.  */
/* Indicate block BB is control dependent on an edge with index EDGE_INDEX.  */
static inline void
static inline void
set_control_dependence_map_bit (basic_block bb, int edge_index)
set_control_dependence_map_bit (basic_block bb, int edge_index)
{
{
  if (bb == ENTRY_BLOCK_PTR)
  if (bb == ENTRY_BLOCK_PTR)
    return;
    return;
  gcc_assert (bb != EXIT_BLOCK_PTR);
  gcc_assert (bb != EXIT_BLOCK_PTR);
  bitmap_set_bit (control_dependence_map[bb->index], edge_index);
  bitmap_set_bit (control_dependence_map[bb->index], edge_index);
}
}
 
 
/* Clear all control dependences for block BB.  */
/* Clear all control dependences for block BB.  */
static inline void
static inline void
clear_control_dependence_bitmap (basic_block bb)
clear_control_dependence_bitmap (basic_block bb)
{
{
  bitmap_clear (control_dependence_map[bb->index]);
  bitmap_clear (control_dependence_map[bb->index]);
}
}
 
 
 
 
/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
/* Find the immediate postdominator PDOM of the specified basic block BLOCK.
   This function is necessary because some blocks have negative numbers.  */
   This function is necessary because some blocks have negative numbers.  */
 
 
static inline basic_block
static inline basic_block
find_pdom (basic_block block)
find_pdom (basic_block block)
{
{
  gcc_assert (block != ENTRY_BLOCK_PTR);
  gcc_assert (block != ENTRY_BLOCK_PTR);
 
 
  if (block == EXIT_BLOCK_PTR)
  if (block == EXIT_BLOCK_PTR)
    return EXIT_BLOCK_PTR;
    return EXIT_BLOCK_PTR;
  else
  else
    {
    {
      basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
      basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
      if (! bb)
      if (! bb)
        return EXIT_BLOCK_PTR;
        return EXIT_BLOCK_PTR;
      return bb;
      return bb;
    }
    }
}
}
 
 
 
 
/* Determine all blocks' control dependences on the given edge with edge_list
/* Determine all blocks' control dependences on the given edge with edge_list
   EL index EDGE_INDEX, ala Morgan, Section 3.6.  */
   EL index EDGE_INDEX, ala Morgan, Section 3.6.  */
 
 
static void
static void
find_control_dependence (struct edge_list *el, int edge_index)
find_control_dependence (struct edge_list *el, int edge_index)
{
{
  basic_block current_block;
  basic_block current_block;
  basic_block ending_block;
  basic_block ending_block;
 
 
  gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
  gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
 
 
  if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
  if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
    ending_block = single_succ (ENTRY_BLOCK_PTR);
    ending_block = single_succ (ENTRY_BLOCK_PTR);
  else
  else
    ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
    ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
 
 
  for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
  for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
       current_block != ending_block && current_block != EXIT_BLOCK_PTR;
       current_block != ending_block && current_block != EXIT_BLOCK_PTR;
       current_block = find_pdom (current_block))
       current_block = find_pdom (current_block))
    {
    {
      edge e = INDEX_EDGE (el, edge_index);
      edge e = INDEX_EDGE (el, edge_index);
 
 
      /* For abnormal edges, we don't make current_block control
      /* For abnormal edges, we don't make current_block control
         dependent because instructions that throw are always necessary
         dependent because instructions that throw are always necessary
         anyway.  */
         anyway.  */
      if (e->flags & EDGE_ABNORMAL)
      if (e->flags & EDGE_ABNORMAL)
        continue;
        continue;
 
 
      set_control_dependence_map_bit (current_block, edge_index);
      set_control_dependence_map_bit (current_block, edge_index);
    }
    }
}
}
 
 
 
 
/* Record all blocks' control dependences on all edges in the edge
/* Record all blocks' control dependences on all edges in the edge
   list EL, ala Morgan, Section 3.6.  */
   list EL, ala Morgan, Section 3.6.  */
 
 
static void
static void
find_all_control_dependences (struct edge_list *el)
find_all_control_dependences (struct edge_list *el)
{
{
  int i;
  int i;
 
 
  for (i = 0; i < NUM_EDGES (el); ++i)
  for (i = 0; i < NUM_EDGES (el); ++i)
    find_control_dependence (el, i);
    find_control_dependence (el, i);
}
}
 
 
/* If STMT is not already marked necessary, mark it, and add it to the
/* If STMT is not already marked necessary, mark it, and add it to the
   worklist if ADD_TO_WORKLIST is true.  */
   worklist if ADD_TO_WORKLIST is true.  */
static inline void
static inline void
mark_stmt_necessary (gimple stmt, bool add_to_worklist)
mark_stmt_necessary (gimple stmt, bool add_to_worklist)
{
{
  gcc_assert (stmt);
  gcc_assert (stmt);
 
 
  if (gimple_plf (stmt, STMT_NECESSARY))
  if (gimple_plf (stmt, STMT_NECESSARY))
    return;
    return;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "Marking useful stmt: ");
      fprintf (dump_file, "Marking useful stmt: ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
 
 
  gimple_set_plf (stmt, STMT_NECESSARY, true);
  gimple_set_plf (stmt, STMT_NECESSARY, true);
  if (add_to_worklist)
  if (add_to_worklist)
    VEC_safe_push (gimple, heap, worklist, stmt);
    VEC_safe_push (gimple, heap, worklist, stmt);
  if (bb_contains_live_stmts && !is_gimple_debug (stmt))
  if (bb_contains_live_stmts && !is_gimple_debug (stmt))
    SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
    SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
}
}
 
 
 
 
/* Mark the statement defining operand OP as necessary.  */
/* Mark the statement defining operand OP as necessary.  */
 
 
static inline void
static inline void
mark_operand_necessary (tree op)
mark_operand_necessary (tree op)
{
{
  gimple stmt;
  gimple stmt;
  int ver;
  int ver;
 
 
  gcc_assert (op);
  gcc_assert (op);
 
 
  ver = SSA_NAME_VERSION (op);
  ver = SSA_NAME_VERSION (op);
  if (TEST_BIT (processed, ver))
  if (TEST_BIT (processed, ver))
    {
    {
      stmt = SSA_NAME_DEF_STMT (op);
      stmt = SSA_NAME_DEF_STMT (op);
      gcc_assert (gimple_nop_p (stmt)
      gcc_assert (gimple_nop_p (stmt)
                  || gimple_plf (stmt, STMT_NECESSARY));
                  || gimple_plf (stmt, STMT_NECESSARY));
      return;
      return;
    }
    }
  SET_BIT (processed, ver);
  SET_BIT (processed, ver);
 
 
  stmt = SSA_NAME_DEF_STMT (op);
  stmt = SSA_NAME_DEF_STMT (op);
  gcc_assert (stmt);
  gcc_assert (stmt);
 
 
  if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
  if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
    return;
    return;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "marking necessary through ");
      fprintf (dump_file, "marking necessary through ");
      print_generic_expr (dump_file, op, 0);
      print_generic_expr (dump_file, op, 0);
      fprintf (dump_file, " stmt ");
      fprintf (dump_file, " stmt ");
      print_gimple_stmt (dump_file, stmt, 0, 0);
      print_gimple_stmt (dump_file, stmt, 0, 0);
    }
    }
 
 
  gimple_set_plf (stmt, STMT_NECESSARY, true);
  gimple_set_plf (stmt, STMT_NECESSARY, true);
  if (bb_contains_live_stmts)
  if (bb_contains_live_stmts)
    SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
    SET_BIT (bb_contains_live_stmts, gimple_bb (stmt)->index);
  VEC_safe_push (gimple, heap, worklist, stmt);
  VEC_safe_push (gimple, heap, worklist, stmt);
}
}
 
 
 
 
/* Mark STMT as necessary if it obviously is.  Add it to the worklist if
/* Mark STMT as necessary if it obviously is.  Add it to the worklist if
   it can make other statements necessary.
   it can make other statements necessary.
 
 
   If AGGRESSIVE is false, control statements are conservatively marked as
   If AGGRESSIVE is false, control statements are conservatively marked as
   necessary.  */
   necessary.  */
 
 
static void
static void
mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
{
{
  tree lhs = NULL_TREE;
  tree lhs = NULL_TREE;
  /* With non-call exceptions, we have to assume that all statements could
  /* With non-call exceptions, we have to assume that all statements could
     throw.  If a statement may throw, it is inherently necessary.  */
     throw.  If a statement may throw, it is inherently necessary.  */
  if (flag_non_call_exceptions
  if (flag_non_call_exceptions
      && stmt_could_throw_p (stmt))
      && stmt_could_throw_p (stmt))
    {
    {
      mark_stmt_necessary (stmt, true);
      mark_stmt_necessary (stmt, true);
      return;
      return;
    }
    }
 
 
  /* Statements that are implicitly live.  Most function calls, asm
  /* Statements that are implicitly live.  Most function calls, asm
     and return statements are required.  Labels and GIMPLE_BIND nodes
     and return statements are required.  Labels and GIMPLE_BIND nodes
     are kept because they are control flow, and we have no way of
     are kept because they are control flow, and we have no way of
     knowing whether they can be removed.  DCE can eliminate all the
     knowing whether they can be removed.  DCE can eliminate all the
     other statements in a block, and CFG can then remove the block
     other statements in a block, and CFG can then remove the block
     and labels.  */
     and labels.  */
  switch (gimple_code (stmt))
  switch (gimple_code (stmt))
    {
    {
    case GIMPLE_PREDICT:
    case GIMPLE_PREDICT:
    case GIMPLE_LABEL:
    case GIMPLE_LABEL:
      mark_stmt_necessary (stmt, false);
      mark_stmt_necessary (stmt, false);
      return;
      return;
 
 
    case GIMPLE_ASM:
    case GIMPLE_ASM:
    case GIMPLE_RESX:
    case GIMPLE_RESX:
    case GIMPLE_RETURN:
    case GIMPLE_RETURN:
      mark_stmt_necessary (stmt, true);
      mark_stmt_necessary (stmt, true);
      return;
      return;
 
 
    case GIMPLE_CALL:
    case GIMPLE_CALL:
      /* Most, but not all function calls are required.  Function calls that
      /* Most, but not all function calls are required.  Function calls that
         produce no result and have no side effects (i.e. const pure
         produce no result and have no side effects (i.e. const pure
         functions) are unnecessary.  */
         functions) are unnecessary.  */
      if (gimple_has_side_effects (stmt))
      if (gimple_has_side_effects (stmt))
        {
        {
          mark_stmt_necessary (stmt, true);
          mark_stmt_necessary (stmt, true);
          return;
          return;
        }
        }
      if (!gimple_call_lhs (stmt))
      if (!gimple_call_lhs (stmt))
        return;
        return;
      lhs = gimple_call_lhs (stmt);
      lhs = gimple_call_lhs (stmt);
      /* Fall through */
      /* Fall through */
 
 
    case GIMPLE_ASSIGN:
    case GIMPLE_ASSIGN:
      if (!lhs)
      if (!lhs)
        lhs = gimple_assign_lhs (stmt);
        lhs = gimple_assign_lhs (stmt);
      break;
      break;
 
 
    case GIMPLE_DEBUG:
    case GIMPLE_DEBUG:
      /* Debug temps without a value are not useful.  ??? If we could
      /* Debug temps without a value are not useful.  ??? If we could
         easily locate the debug temp bind stmt for a use thereof,
         easily locate the debug temp bind stmt for a use thereof,
         would could refrain from marking all debug temps here, and
         would could refrain from marking all debug temps here, and
         mark them only if they're used.  */
         mark them only if they're used.  */
      if (gimple_debug_bind_has_value_p (stmt)
      if (gimple_debug_bind_has_value_p (stmt)
          || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
          || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
        mark_stmt_necessary (stmt, false);
        mark_stmt_necessary (stmt, false);
      return;
      return;
 
 
    case GIMPLE_GOTO:
    case GIMPLE_GOTO:
      gcc_assert (!simple_goto_p (stmt));
      gcc_assert (!simple_goto_p (stmt));
      mark_stmt_necessary (stmt, true);
      mark_stmt_necessary (stmt, true);
      return;
      return;
 
 
    case GIMPLE_COND:
    case GIMPLE_COND:
      gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
      gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
      /* Fall through.  */
      /* Fall through.  */
 
 
    case GIMPLE_SWITCH:
    case GIMPLE_SWITCH:
      if (! aggressive)
      if (! aggressive)
        mark_stmt_necessary (stmt, true);
        mark_stmt_necessary (stmt, true);
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* If the statement has volatile operands, it needs to be preserved.
  /* If the statement has volatile operands, it needs to be preserved.
     Same for statements that can alter control flow in unpredictable
     Same for statements that can alter control flow in unpredictable
     ways.  */
     ways.  */
  if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
  if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
    {
    {
      mark_stmt_necessary (stmt, true);
      mark_stmt_necessary (stmt, true);
      return;
      return;
    }
    }
 
 
  if (is_hidden_global_store (stmt))
  if (is_hidden_global_store (stmt))
    {
    {
      mark_stmt_necessary (stmt, true);
      mark_stmt_necessary (stmt, true);
      return;
      return;
    }
    }
 
 
  return;
  return;
}
}
 
 
 
 
/* Make corresponding control dependent edges necessary.  We only
/* Make corresponding control dependent edges necessary.  We only
   have to do this once for each basic block, so we clear the bitmap
   have to do this once for each basic block, so we clear the bitmap
   after we're done.  */
   after we're done.  */
static void
static void
mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
{
{
  bitmap_iterator bi;
  bitmap_iterator bi;
  unsigned edge_number;
  unsigned edge_number;
 
 
  gcc_assert (bb != EXIT_BLOCK_PTR);
  gcc_assert (bb != EXIT_BLOCK_PTR);
 
 
  if (bb == ENTRY_BLOCK_PTR)
  if (bb == ENTRY_BLOCK_PTR)
    return;
    return;
 
 
  EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
  EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
    {
    {
      gimple stmt;
      gimple stmt;
      basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
      basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
 
 
      if (TEST_BIT (last_stmt_necessary, cd_bb->index))
      if (TEST_BIT (last_stmt_necessary, cd_bb->index))
        continue;
        continue;
      SET_BIT (last_stmt_necessary, cd_bb->index);
      SET_BIT (last_stmt_necessary, cd_bb->index);
      SET_BIT (bb_contains_live_stmts, cd_bb->index);
      SET_BIT (bb_contains_live_stmts, cd_bb->index);
 
 
      stmt = last_stmt (cd_bb);
      stmt = last_stmt (cd_bb);
      if (stmt && is_ctrl_stmt (stmt))
      if (stmt && is_ctrl_stmt (stmt))
        mark_stmt_necessary (stmt, true);
        mark_stmt_necessary (stmt, true);
    }
    }
}
}
 
 
 
 
/* Find obviously necessary statements.  These are things like most function
/* Find obviously necessary statements.  These are things like most function
   calls, and stores to file level variables.
   calls, and stores to file level variables.
 
 
   If EL is NULL, control statements are conservatively marked as
   If EL is NULL, control statements are conservatively marked as
   necessary.  Otherwise it contains the list of edges used by control
   necessary.  Otherwise it contains the list of edges used by control
   dependence analysis.  */
   dependence analysis.  */
 
 
static void
static void
find_obviously_necessary_stmts (struct edge_list *el)
find_obviously_necessary_stmts (struct edge_list *el)
{
{
  basic_block bb;
  basic_block bb;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  edge e;
  edge e;
  gimple phi, stmt;
  gimple phi, stmt;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      /* PHI nodes are never inherently necessary.  */
      /* PHI nodes are never inherently necessary.  */
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
        {
        {
          phi = gsi_stmt (gsi);
          phi = gsi_stmt (gsi);
          gimple_set_plf (phi, STMT_NECESSARY, false);
          gimple_set_plf (phi, STMT_NECESSARY, false);
        }
        }
 
 
      /* Check all statements in the block.  */
      /* Check all statements in the block.  */
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
        {
        {
          stmt = gsi_stmt (gsi);
          stmt = gsi_stmt (gsi);
          gimple_set_plf (stmt, STMT_NECESSARY, false);
          gimple_set_plf (stmt, STMT_NECESSARY, false);
          mark_stmt_if_obviously_necessary (stmt, el != NULL);
          mark_stmt_if_obviously_necessary (stmt, el != NULL);
        }
        }
    }
    }
 
 
  /* Pure and const functions are finite and thus have no infinite loops in
  /* Pure and const functions are finite and thus have no infinite loops in
     them.  */
     them.  */
  if ((TREE_READONLY (current_function_decl)
  if ((TREE_READONLY (current_function_decl)
       || DECL_PURE_P (current_function_decl))
       || DECL_PURE_P (current_function_decl))
      && !DECL_LOOPING_CONST_OR_PURE_P (current_function_decl))
      && !DECL_LOOPING_CONST_OR_PURE_P (current_function_decl))
    return;
    return;
 
 
  /* Prevent the empty possibly infinite loops from being removed.  */
  /* Prevent the empty possibly infinite loops from being removed.  */
  if (el)
  if (el)
    {
    {
      loop_iterator li;
      loop_iterator li;
      struct loop *loop;
      struct loop *loop;
      scev_initialize ();
      scev_initialize ();
      if (mark_irreducible_loops ())
      if (mark_irreducible_loops ())
        FOR_EACH_BB (bb)
        FOR_EACH_BB (bb)
          {
          {
            edge_iterator ei;
            edge_iterator ei;
            FOR_EACH_EDGE (e, ei, bb->succs)
            FOR_EACH_EDGE (e, ei, bb->succs)
              if ((e->flags & EDGE_DFS_BACK)
              if ((e->flags & EDGE_DFS_BACK)
                  && (e->flags & EDGE_IRREDUCIBLE_LOOP))
                  && (e->flags & EDGE_IRREDUCIBLE_LOOP))
                {
                {
                  if (dump_file)
                  if (dump_file)
                    fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
                    fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
                             e->src->index, e->dest->index);
                             e->src->index, e->dest->index);
                  mark_control_dependent_edges_necessary (e->dest, el);
                  mark_control_dependent_edges_necessary (e->dest, el);
                }
                }
          }
          }
 
 
      FOR_EACH_LOOP (li, loop, 0)
      FOR_EACH_LOOP (li, loop, 0)
        if (!finite_loop_p (loop))
        if (!finite_loop_p (loop))
          {
          {
            if (dump_file)
            if (dump_file)
              fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
              fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
            mark_control_dependent_edges_necessary (loop->latch, el);
            mark_control_dependent_edges_necessary (loop->latch, el);
          }
          }
      scev_finalize ();
      scev_finalize ();
    }
    }
}
}
 
 
 
 
/* Return true if REF is based on an aliased base, otherwise false.  */
/* Return true if REF is based on an aliased base, otherwise false.  */
 
 
static bool
static bool
ref_may_be_aliased (tree ref)
ref_may_be_aliased (tree ref)
{
{
  while (handled_component_p (ref))
  while (handled_component_p (ref))
    ref = TREE_OPERAND (ref, 0);
    ref = TREE_OPERAND (ref, 0);
  return !(DECL_P (ref)
  return !(DECL_P (ref)
           && !may_be_aliased (ref));
           && !may_be_aliased (ref));
}
}
 
 
static bitmap visited = NULL;
static bitmap visited = NULL;
static unsigned int longest_chain = 0;
static unsigned int longest_chain = 0;
static unsigned int total_chain = 0;
static unsigned int total_chain = 0;
static unsigned int nr_walks = 0;
static unsigned int nr_walks = 0;
static bool chain_ovfl = false;
static bool chain_ovfl = false;
 
 
/* Worker for the walker that marks reaching definitions of REF,
/* Worker for the walker that marks reaching definitions of REF,
   which is based on a non-aliased decl, necessary.  It returns
   which is based on a non-aliased decl, necessary.  It returns
   true whenever the defining statement of the current VDEF is
   true whenever the defining statement of the current VDEF is
   a kill for REF, as no dominating may-defs are necessary for REF
   a kill for REF, as no dominating may-defs are necessary for REF
   anymore.  DATA points to the basic-block that contains the
   anymore.  DATA points to the basic-block that contains the
   stmt that refers to REF.  */
   stmt that refers to REF.  */
 
 
static bool
static bool
mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
{
{
  gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
  gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
 
 
  /* All stmts we visit are necessary.  */
  /* All stmts we visit are necessary.  */
  mark_operand_necessary (vdef);
  mark_operand_necessary (vdef);
 
 
  /* If the stmt lhs kills ref, then we can stop walking.  */
  /* If the stmt lhs kills ref, then we can stop walking.  */
  if (gimple_has_lhs (def_stmt)
  if (gimple_has_lhs (def_stmt)
      && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
      && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME)
    {
    {
      tree base, lhs = gimple_get_lhs (def_stmt);
      tree base, lhs = gimple_get_lhs (def_stmt);
      HOST_WIDE_INT size, offset, max_size;
      HOST_WIDE_INT size, offset, max_size;
      ao_ref_base (ref);
      ao_ref_base (ref);
      base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
      base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
      /* We can get MEM[symbol: sZ, index: D.8862_1] here,
      /* We can get MEM[symbol: sZ, index: D.8862_1] here,
         so base == refd->base does not always hold.  */
         so base == refd->base does not always hold.  */
      if (base == ref->base)
      if (base == ref->base)
        {
        {
          /* For a must-alias check we need to be able to constrain
          /* For a must-alias check we need to be able to constrain
             the accesses properly.  */
             the accesses properly.  */
          if (size != -1 && size == max_size
          if (size != -1 && size == max_size
              && ref->max_size != -1)
              && ref->max_size != -1)
            {
            {
              if (offset <= ref->offset
              if (offset <= ref->offset
                  && offset + size >= ref->offset + ref->max_size)
                  && offset + size >= ref->offset + ref->max_size)
                return true;
                return true;
            }
            }
          /* Or they need to be exactly the same.  */
          /* Or they need to be exactly the same.  */
          else if (ref->ref
          else if (ref->ref
                   /* Make sure there is no induction variable involved
                   /* Make sure there is no induction variable involved
                      in the references (gcc.c-torture/execute/pr42142.c).
                      in the references (gcc.c-torture/execute/pr42142.c).
                      The simplest way is to check if the kill dominates
                      The simplest way is to check if the kill dominates
                      the use.  */
                      the use.  */
                   && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
                   && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
                                      gimple_bb (def_stmt))
                                      gimple_bb (def_stmt))
                   && operand_equal_p (ref->ref, lhs, 0))
                   && operand_equal_p (ref->ref, lhs, 0))
            return true;
            return true;
        }
        }
    }
    }
 
 
  /* Otherwise keep walking.  */
  /* Otherwise keep walking.  */
  return false;
  return false;
}
}
 
 
static void
static void
mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
{
{
  unsigned int chain;
  unsigned int chain;
  ao_ref refd;
  ao_ref refd;
  gcc_assert (!chain_ovfl);
  gcc_assert (!chain_ovfl);
  ao_ref_init (&refd, ref);
  ao_ref_init (&refd, ref);
  chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
  chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
                              mark_aliased_reaching_defs_necessary_1,
                              mark_aliased_reaching_defs_necessary_1,
                              gimple_bb (stmt), NULL);
                              gimple_bb (stmt), NULL);
  if (chain > longest_chain)
  if (chain > longest_chain)
    longest_chain = chain;
    longest_chain = chain;
  total_chain += chain;
  total_chain += chain;
  nr_walks++;
  nr_walks++;
}
}
 
 
/* Worker for the walker that marks reaching definitions of REF, which
/* Worker for the walker that marks reaching definitions of REF, which
   is not based on a non-aliased decl.  For simplicity we need to end
   is not based on a non-aliased decl.  For simplicity we need to end
   up marking all may-defs necessary that are not based on a non-aliased
   up marking all may-defs necessary that are not based on a non-aliased
   decl.  The only job of this walker is to skip may-defs based on
   decl.  The only job of this walker is to skip may-defs based on
   a non-aliased decl.  */
   a non-aliased decl.  */
 
 
static bool
static bool
mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
                                    tree vdef, void *data ATTRIBUTE_UNUSED)
                                    tree vdef, void *data ATTRIBUTE_UNUSED)
{
{
  gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
  gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
 
 
  /* We have to skip already visited (and thus necessary) statements
  /* We have to skip already visited (and thus necessary) statements
     to make the chaining work after we dropped back to simple mode.  */
     to make the chaining work after we dropped back to simple mode.  */
  if (chain_ovfl
  if (chain_ovfl
      && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
      && TEST_BIT (processed, SSA_NAME_VERSION (vdef)))
    {
    {
      gcc_assert (gimple_nop_p (def_stmt)
      gcc_assert (gimple_nop_p (def_stmt)
                  || gimple_plf (def_stmt, STMT_NECESSARY));
                  || gimple_plf (def_stmt, STMT_NECESSARY));
      return false;
      return false;
    }
    }
 
 
  /* We want to skip stores to non-aliased variables.  */
  /* We want to skip stores to non-aliased variables.  */
  if (!chain_ovfl
  if (!chain_ovfl
      && gimple_assign_single_p (def_stmt))
      && gimple_assign_single_p (def_stmt))
    {
    {
      tree lhs = gimple_assign_lhs (def_stmt);
      tree lhs = gimple_assign_lhs (def_stmt);
      if (!ref_may_be_aliased (lhs))
      if (!ref_may_be_aliased (lhs))
        return false;
        return false;
    }
    }
 
 
  mark_operand_necessary (vdef);
  mark_operand_necessary (vdef);
 
 
  return false;
  return false;
}
}
 
 
static void
static void
mark_all_reaching_defs_necessary (gimple stmt)
mark_all_reaching_defs_necessary (gimple stmt)
{
{
  walk_aliased_vdefs (NULL, gimple_vuse (stmt),
  walk_aliased_vdefs (NULL, gimple_vuse (stmt),
                      mark_all_reaching_defs_necessary_1, NULL, &visited);
                      mark_all_reaching_defs_necessary_1, NULL, &visited);
}
}
 
 
/* Return true for PHI nodes with one or identical arguments
/* Return true for PHI nodes with one or identical arguments
   can be removed.  */
   can be removed.  */
static bool
static bool
degenerate_phi_p (gimple phi)
degenerate_phi_p (gimple phi)
{
{
  unsigned int i;
  unsigned int i;
  tree op = gimple_phi_arg_def (phi, 0);
  tree op = gimple_phi_arg_def (phi, 0);
  for (i = 1; i < gimple_phi_num_args (phi); i++)
  for (i = 1; i < gimple_phi_num_args (phi); i++)
    if (gimple_phi_arg_def (phi, i) != op)
    if (gimple_phi_arg_def (phi, i) != op)
      return false;
      return false;
  return true;
  return true;
}
}
 
 
/* Propagate necessity using the operands of necessary statements.
/* Propagate necessity using the operands of necessary statements.
   Process the uses on each statement in the worklist, and add all
   Process the uses on each statement in the worklist, and add all
   feeding statements which contribute to the calculation of this
   feeding statements which contribute to the calculation of this
   value to the worklist.
   value to the worklist.
 
 
   In conservative mode, EL is NULL.  */
   In conservative mode, EL is NULL.  */
 
 
static void
static void
propagate_necessity (struct edge_list *el)
propagate_necessity (struct edge_list *el)
{
{
  gimple stmt;
  gimple stmt;
  bool aggressive = (el ? true : false);
  bool aggressive = (el ? true : false);
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\nProcessing worklist:\n");
    fprintf (dump_file, "\nProcessing worklist:\n");
 
 
  while (VEC_length (gimple, worklist) > 0)
  while (VEC_length (gimple, worklist) > 0)
    {
    {
      /* Take STMT from worklist.  */
      /* Take STMT from worklist.  */
      stmt = VEC_pop (gimple, worklist);
      stmt = VEC_pop (gimple, worklist);
 
 
      if (dump_file && (dump_flags & TDF_DETAILS))
      if (dump_file && (dump_flags & TDF_DETAILS))
        {
        {
          fprintf (dump_file, "processing: ");
          fprintf (dump_file, "processing: ");
          print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
          print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
          fprintf (dump_file, "\n");
          fprintf (dump_file, "\n");
        }
        }
 
 
      if (aggressive)
      if (aggressive)
        {
        {
          /* Mark the last statements of the basic blocks that the block
          /* Mark the last statements of the basic blocks that the block
             containing STMT is control dependent on, but only if we haven't
             containing STMT is control dependent on, but only if we haven't
             already done so.  */
             already done so.  */
          basic_block bb = gimple_bb (stmt);
          basic_block bb = gimple_bb (stmt);
          if (bb != ENTRY_BLOCK_PTR
          if (bb != ENTRY_BLOCK_PTR
              && ! TEST_BIT (visited_control_parents, bb->index))
              && ! TEST_BIT (visited_control_parents, bb->index))
            {
            {
              SET_BIT (visited_control_parents, bb->index);
              SET_BIT (visited_control_parents, bb->index);
              mark_control_dependent_edges_necessary (bb, el);
              mark_control_dependent_edges_necessary (bb, el);
            }
            }
        }
        }
 
 
      if (gimple_code (stmt) == GIMPLE_PHI
      if (gimple_code (stmt) == GIMPLE_PHI
          /* We do not process virtual PHI nodes nor do we track their
          /* We do not process virtual PHI nodes nor do we track their
             necessity.  */
             necessity.  */
          && is_gimple_reg (gimple_phi_result (stmt)))
          && is_gimple_reg (gimple_phi_result (stmt)))
        {
        {
          /* PHI nodes are somewhat special in that each PHI alternative has
          /* PHI nodes are somewhat special in that each PHI alternative has
             data and control dependencies.  All the statements feeding the
             data and control dependencies.  All the statements feeding the
             PHI node's arguments are always necessary.  In aggressive mode,
             PHI node's arguments are always necessary.  In aggressive mode,
             we also consider the control dependent edges leading to the
             we also consider the control dependent edges leading to the
             predecessor block associated with each PHI alternative as
             predecessor block associated with each PHI alternative as
             necessary.  */
             necessary.  */
          size_t k;
          size_t k;
 
 
          for (k = 0; k < gimple_phi_num_args (stmt); k++)
          for (k = 0; k < gimple_phi_num_args (stmt); k++)
            {
            {
              tree arg = PHI_ARG_DEF (stmt, k);
              tree arg = PHI_ARG_DEF (stmt, k);
              if (TREE_CODE (arg) == SSA_NAME)
              if (TREE_CODE (arg) == SSA_NAME)
                mark_operand_necessary (arg);
                mark_operand_necessary (arg);
            }
            }
 
 
          if (aggressive && !degenerate_phi_p (stmt))
          if (aggressive && !degenerate_phi_p (stmt))
            {
            {
              for (k = 0; k < gimple_phi_num_args (stmt); k++)
              for (k = 0; k < gimple_phi_num_args (stmt); k++)
                {
                {
                  basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
                  basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
                  if (arg_bb != ENTRY_BLOCK_PTR
                  if (arg_bb != ENTRY_BLOCK_PTR
                      && ! TEST_BIT (visited_control_parents, arg_bb->index))
                      && ! TEST_BIT (visited_control_parents, arg_bb->index))
                    {
                    {
                      SET_BIT (visited_control_parents, arg_bb->index);
                      SET_BIT (visited_control_parents, arg_bb->index);
                      mark_control_dependent_edges_necessary (arg_bb, el);
                      mark_control_dependent_edges_necessary (arg_bb, el);
                    }
                    }
                }
                }
            }
            }
        }
        }
      else
      else
        {
        {
          /* Propagate through the operands.  Examine all the USE, VUSE and
          /* Propagate through the operands.  Examine all the USE, VUSE and
             VDEF operands in this statement.  Mark all the statements
             VDEF operands in this statement.  Mark all the statements
             which feed this statement's uses as necessary.  */
             which feed this statement's uses as necessary.  */
          ssa_op_iter iter;
          ssa_op_iter iter;
          tree use;
          tree use;
 
 
          FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
          FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
            mark_operand_necessary (use);
            mark_operand_necessary (use);
 
 
          use = gimple_vuse (stmt);
          use = gimple_vuse (stmt);
          if (!use)
          if (!use)
            continue;
            continue;
 
 
          /* If we dropped to simple mode make all immediately
          /* If we dropped to simple mode make all immediately
             reachable definitions necessary.  */
             reachable definitions necessary.  */
          if (chain_ovfl)
          if (chain_ovfl)
            {
            {
              mark_all_reaching_defs_necessary (stmt);
              mark_all_reaching_defs_necessary (stmt);
              continue;
              continue;
            }
            }
 
 
          /* For statements that may load from memory (have a VUSE) we
          /* For statements that may load from memory (have a VUSE) we
             have to mark all reaching (may-)definitions as necessary.
             have to mark all reaching (may-)definitions as necessary.
             We partition this task into two cases:
             We partition this task into two cases:
              1) explicit loads based on decls that are not aliased
              1) explicit loads based on decls that are not aliased
              2) implicit loads (like calls) and explicit loads not
              2) implicit loads (like calls) and explicit loads not
                 based on decls that are not aliased (like indirect
                 based on decls that are not aliased (like indirect
                 references or loads from globals)
                 references or loads from globals)
             For 1) we mark all reaching may-defs as necessary, stopping
             For 1) we mark all reaching may-defs as necessary, stopping
             at dominating kills.  For 2) we want to mark all dominating
             at dominating kills.  For 2) we want to mark all dominating
             references necessary, but non-aliased ones which we handle
             references necessary, but non-aliased ones which we handle
             in 1).  By keeping a global visited bitmap for references
             in 1).  By keeping a global visited bitmap for references
             we walk for 2) we avoid quadratic behavior for those.  */
             we walk for 2) we avoid quadratic behavior for those.  */
 
 
          if (is_gimple_call (stmt))
          if (is_gimple_call (stmt))
            {
            {
              tree callee = gimple_call_fndecl (stmt);
              tree callee = gimple_call_fndecl (stmt);
              unsigned i;
              unsigned i;
 
 
              /* Calls to functions that are merely acting as barriers
              /* Calls to functions that are merely acting as barriers
                 or that only store to memory do not make any previous
                 or that only store to memory do not make any previous
                 stores necessary.  */
                 stores necessary.  */
              if (callee != NULL_TREE
              if (callee != NULL_TREE
                  && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
                  && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
                  && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
                  && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
                      || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
                      || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
                      || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
                      || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE))
                continue;
                continue;
 
 
              /* Calls implicitly load from memory, their arguments
              /* Calls implicitly load from memory, their arguments
                 in addition may explicitly perform memory loads.  */
                 in addition may explicitly perform memory loads.  */
              mark_all_reaching_defs_necessary (stmt);
              mark_all_reaching_defs_necessary (stmt);
              for (i = 0; i < gimple_call_num_args (stmt); ++i)
              for (i = 0; i < gimple_call_num_args (stmt); ++i)
                {
                {
                  tree arg = gimple_call_arg (stmt, i);
                  tree arg = gimple_call_arg (stmt, i);
                  if (TREE_CODE (arg) == SSA_NAME
                  if (TREE_CODE (arg) == SSA_NAME
                      || is_gimple_min_invariant (arg))
                      || is_gimple_min_invariant (arg))
                    continue;
                    continue;
                  if (!ref_may_be_aliased (arg))
                  if (!ref_may_be_aliased (arg))
                    mark_aliased_reaching_defs_necessary (stmt, arg);
                    mark_aliased_reaching_defs_necessary (stmt, arg);
                }
                }
            }
            }
          else if (gimple_assign_single_p (stmt))
          else if (gimple_assign_single_p (stmt))
            {
            {
              tree rhs;
              tree rhs;
              bool rhs_aliased = false;
              bool rhs_aliased = false;
              /* If this is a load mark things necessary.  */
              /* If this is a load mark things necessary.  */
              rhs = gimple_assign_rhs1 (stmt);
              rhs = gimple_assign_rhs1 (stmt);
              if (TREE_CODE (rhs) != SSA_NAME
              if (TREE_CODE (rhs) != SSA_NAME
                  && !is_gimple_min_invariant (rhs))
                  && !is_gimple_min_invariant (rhs))
                {
                {
                  if (!ref_may_be_aliased (rhs))
                  if (!ref_may_be_aliased (rhs))
                    mark_aliased_reaching_defs_necessary (stmt, rhs);
                    mark_aliased_reaching_defs_necessary (stmt, rhs);
                  else
                  else
                    rhs_aliased = true;
                    rhs_aliased = true;
                }
                }
              if (rhs_aliased)
              if (rhs_aliased)
                mark_all_reaching_defs_necessary (stmt);
                mark_all_reaching_defs_necessary (stmt);
            }
            }
          else if (gimple_code (stmt) == GIMPLE_RETURN)
          else if (gimple_code (stmt) == GIMPLE_RETURN)
            {
            {
              tree rhs = gimple_return_retval (stmt);
              tree rhs = gimple_return_retval (stmt);
              /* A return statement may perform a load.  */
              /* A return statement may perform a load.  */
              if (TREE_CODE (rhs) != SSA_NAME
              if (TREE_CODE (rhs) != SSA_NAME
                  && !is_gimple_min_invariant (rhs))
                  && !is_gimple_min_invariant (rhs))
                {
                {
                  if (!ref_may_be_aliased (rhs))
                  if (!ref_may_be_aliased (rhs))
                    mark_aliased_reaching_defs_necessary (stmt, rhs);
                    mark_aliased_reaching_defs_necessary (stmt, rhs);
                  else
                  else
                    mark_all_reaching_defs_necessary (stmt);
                    mark_all_reaching_defs_necessary (stmt);
                }
                }
            }
            }
          else if (gimple_code (stmt) == GIMPLE_ASM)
          else if (gimple_code (stmt) == GIMPLE_ASM)
            {
            {
              unsigned i;
              unsigned i;
              mark_all_reaching_defs_necessary (stmt);
              mark_all_reaching_defs_necessary (stmt);
              /* Inputs may perform loads.  */
              /* Inputs may perform loads.  */
              for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
              for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
                {
                {
                  tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
                  tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
                  if (TREE_CODE (op) != SSA_NAME
                  if (TREE_CODE (op) != SSA_NAME
                      && !is_gimple_min_invariant (op)
                      && !is_gimple_min_invariant (op)
                      && !ref_may_be_aliased (op))
                      && !ref_may_be_aliased (op))
                    mark_aliased_reaching_defs_necessary (stmt, op);
                    mark_aliased_reaching_defs_necessary (stmt, op);
                }
                }
            }
            }
          else
          else
            gcc_unreachable ();
            gcc_unreachable ();
 
 
          /* If we over-used our alias oracle budget drop to simple
          /* If we over-used our alias oracle budget drop to simple
             mode.  The cost metric allows quadratic behavior
             mode.  The cost metric allows quadratic behavior
             (number of uses times number of may-defs queries) up to
             (number of uses times number of may-defs queries) up to
             a constant maximal number of queries and after that falls back to
             a constant maximal number of queries and after that falls back to
             super-linear complexity.  */
             super-linear complexity.  */
          if (/* Constant but quadratic for small functions.  */
          if (/* Constant but quadratic for small functions.  */
              total_chain > 128 * 128
              total_chain > 128 * 128
              /* Linear in the number of may-defs.  */
              /* Linear in the number of may-defs.  */
              && total_chain > 32 * longest_chain
              && total_chain > 32 * longest_chain
              /* Linear in the number of uses.  */
              /* Linear in the number of uses.  */
              && total_chain > nr_walks * 32)
              && total_chain > nr_walks * 32)
            {
            {
              chain_ovfl = true;
              chain_ovfl = true;
              if (visited)
              if (visited)
                bitmap_clear (visited);
                bitmap_clear (visited);
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Replace all uses of result of PHI by underlying variable and mark it
/* Replace all uses of result of PHI by underlying variable and mark it
   for renaming.  */
   for renaming.  */
 
 
void
void
mark_virtual_phi_result_for_renaming (gimple phi)
mark_virtual_phi_result_for_renaming (gimple phi)
{
{
  bool used = false;
  bool used = false;
  imm_use_iterator iter;
  imm_use_iterator iter;
  use_operand_p use_p;
  use_operand_p use_p;
  gimple stmt;
  gimple stmt;
  tree result_ssa, result_var;
  tree result_ssa, result_var;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "Marking result for renaming : ");
      fprintf (dump_file, "Marking result for renaming : ");
      print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
      print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
 
 
  result_ssa = gimple_phi_result (phi);
  result_ssa = gimple_phi_result (phi);
  result_var = SSA_NAME_VAR (result_ssa);
  result_var = SSA_NAME_VAR (result_ssa);
  FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
  FOR_EACH_IMM_USE_STMT (stmt, iter, result_ssa)
    {
    {
      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
      FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
        SET_USE (use_p, result_var);
        SET_USE (use_p, result_var);
      update_stmt (stmt);
      update_stmt (stmt);
      used = true;
      used = true;
    }
    }
  if (used)
  if (used)
    mark_sym_for_renaming (result_var);
    mark_sym_for_renaming (result_var);
}
}
 
 
/* Remove dead PHI nodes from block BB.  */
/* Remove dead PHI nodes from block BB.  */
 
 
static bool
static bool
remove_dead_phis (basic_block bb)
remove_dead_phis (basic_block bb)
{
{
  bool something_changed = false;
  bool something_changed = false;
  gimple_seq phis;
  gimple_seq phis;
  gimple phi;
  gimple phi;
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  phis = phi_nodes (bb);
  phis = phi_nodes (bb);
 
 
  for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
  for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
    {
    {
      stats.total_phis++;
      stats.total_phis++;
      phi = gsi_stmt (gsi);
      phi = gsi_stmt (gsi);
 
 
      /* We do not track necessity of virtual PHI nodes.  Instead do
      /* We do not track necessity of virtual PHI nodes.  Instead do
         very simple dead PHI removal here.  */
         very simple dead PHI removal here.  */
      if (!is_gimple_reg (gimple_phi_result (phi)))
      if (!is_gimple_reg (gimple_phi_result (phi)))
        {
        {
          /* Virtual PHI nodes with one or identical arguments
          /* Virtual PHI nodes with one or identical arguments
             can be removed.  */
             can be removed.  */
          if (degenerate_phi_p (phi))
          if (degenerate_phi_p (phi))
            {
            {
              tree vdef = gimple_phi_result (phi);
              tree vdef = gimple_phi_result (phi);
              tree vuse = gimple_phi_arg_def (phi, 0);
              tree vuse = gimple_phi_arg_def (phi, 0);
 
 
              use_operand_p use_p;
              use_operand_p use_p;
              imm_use_iterator iter;
              imm_use_iterator iter;
              gimple use_stmt;
              gimple use_stmt;
              FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
              FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
                FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
                FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
                  SET_USE (use_p, vuse);
                  SET_USE (use_p, vuse);
              if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
              if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
                  && TREE_CODE (vuse) == SSA_NAME)
                  && TREE_CODE (vuse) == SSA_NAME)
                SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
                SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
            }
            }
          else
          else
            gimple_set_plf (phi, STMT_NECESSARY, true);
            gimple_set_plf (phi, STMT_NECESSARY, true);
        }
        }
 
 
      if (!gimple_plf (phi, STMT_NECESSARY))
      if (!gimple_plf (phi, STMT_NECESSARY))
        {
        {
          something_changed = true;
          something_changed = true;
          if (dump_file && (dump_flags & TDF_DETAILS))
          if (dump_file && (dump_flags & TDF_DETAILS))
            {
            {
              fprintf (dump_file, "Deleting : ");
              fprintf (dump_file, "Deleting : ");
              print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
              print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
              fprintf (dump_file, "\n");
              fprintf (dump_file, "\n");
            }
            }
 
 
          remove_phi_node (&gsi, true);
          remove_phi_node (&gsi, true);
          stats.removed_phis++;
          stats.removed_phis++;
          continue;
          continue;
        }
        }
 
 
      gsi_next (&gsi);
      gsi_next (&gsi);
    }
    }
  return something_changed;
  return something_changed;
}
}
 
 
/* Forward edge E to respective POST_DOM_BB and update PHIs.  */
/* Forward edge E to respective POST_DOM_BB and update PHIs.  */
 
 
static edge
static edge
forward_edge_to_pdom (edge e, basic_block post_dom_bb)
forward_edge_to_pdom (edge e, basic_block post_dom_bb)
{
{
  gimple_stmt_iterator gsi;
  gimple_stmt_iterator gsi;
  edge e2 = NULL;
  edge e2 = NULL;
  edge_iterator ei;
  edge_iterator ei;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
    fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
             e->dest->index, post_dom_bb->index);
             e->dest->index, post_dom_bb->index);
 
 
  e2 = redirect_edge_and_branch (e, post_dom_bb);
  e2 = redirect_edge_and_branch (e, post_dom_bb);
  cfg_altered = true;
  cfg_altered = true;
 
 
  /* If edge was already around, no updating is neccesary.  */
  /* If edge was already around, no updating is neccesary.  */
  if (e2 != e)
  if (e2 != e)
    return e2;
    return e2;
 
 
  if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
  if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
    {
    {
      /* We are sure that for every live PHI we are seeing control dependent BB.
      /* We are sure that for every live PHI we are seeing control dependent BB.
         This means that we can pick any edge to duplicate PHI args from.  */
         This means that we can pick any edge to duplicate PHI args from.  */
      FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
      FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
        if (e2 != e)
        if (e2 != e)
          break;
          break;
      for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
      for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
        {
        {
          gimple phi = gsi_stmt (gsi);
          gimple phi = gsi_stmt (gsi);
          tree op;
          tree op;
          source_location locus;
          source_location locus;
 
 
          /* PHIs for virtuals have no control dependency relation on them.
          /* PHIs for virtuals have no control dependency relation on them.
             We are lost here and must force renaming of the symbol.  */
             We are lost here and must force renaming of the symbol.  */
          if (!is_gimple_reg (gimple_phi_result (phi)))
          if (!is_gimple_reg (gimple_phi_result (phi)))
            {
            {
              mark_virtual_phi_result_for_renaming (phi);
              mark_virtual_phi_result_for_renaming (phi);
              remove_phi_node (&gsi, true);
              remove_phi_node (&gsi, true);
              continue;
              continue;
            }
            }
 
 
          /* Dead PHI do not imply control dependency.  */
          /* Dead PHI do not imply control dependency.  */
          if (!gimple_plf (phi, STMT_NECESSARY))
          if (!gimple_plf (phi, STMT_NECESSARY))
            {
            {
              gsi_next (&gsi);
              gsi_next (&gsi);
              continue;
              continue;
            }
            }
 
 
          op = gimple_phi_arg_def (phi, e2->dest_idx);
          op = gimple_phi_arg_def (phi, e2->dest_idx);
          locus = gimple_phi_arg_location (phi, e2->dest_idx);
          locus = gimple_phi_arg_location (phi, e2->dest_idx);
          add_phi_arg (phi, op, e, locus);
          add_phi_arg (phi, op, e, locus);
          /* The resulting PHI if not dead can only be degenerate.  */
          /* The resulting PHI if not dead can only be degenerate.  */
          gcc_assert (degenerate_phi_p (phi));
          gcc_assert (degenerate_phi_p (phi));
          gsi_next (&gsi);
          gsi_next (&gsi);
        }
        }
    }
    }
  return e;
  return e;
}
}
 
 
/* Remove dead statement pointed to by iterator I.  Receives the basic block BB
/* Remove dead statement pointed to by iterator I.  Receives the basic block BB
   containing I so that we don't have to look it up.  */
   containing I so that we don't have to look it up.  */
 
 
static void
static void
remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
{
{
  gimple stmt = gsi_stmt (*i);
  gimple stmt = gsi_stmt (*i);
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "Deleting : ");
      fprintf (dump_file, "Deleting : ");
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
    }
    }
 
 
  stats.removed++;
  stats.removed++;
 
 
  /* If we have determined that a conditional branch statement contributes
  /* If we have determined that a conditional branch statement contributes
     nothing to the program, then we not only remove it, but we also change
     nothing to the program, then we not only remove it, but we also change
     the flow graph so that the current block will simply fall-thru to its
     the flow graph so that the current block will simply fall-thru to its
     immediate post-dominator.  The blocks we are circumventing will be
     immediate post-dominator.  The blocks we are circumventing will be
     removed by cleanup_tree_cfg if this change in the flow graph makes them
     removed by cleanup_tree_cfg if this change in the flow graph makes them
     unreachable.  */
     unreachable.  */
  if (is_ctrl_stmt (stmt))
  if (is_ctrl_stmt (stmt))
    {
    {
      basic_block post_dom_bb;
      basic_block post_dom_bb;
      edge e, e2;
      edge e, e2;
      edge_iterator ei;
      edge_iterator ei;
 
 
      post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
      post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
 
 
      e = find_edge (bb, post_dom_bb);
      e = find_edge (bb, post_dom_bb);
 
 
      /* If edge is already there, try to use it.  This avoids need to update
      /* If edge is already there, try to use it.  This avoids need to update
         PHI nodes.  Also watch for cases where post dominator does not exists
         PHI nodes.  Also watch for cases where post dominator does not exists
         or is exit block.  These can happen for infinite loops as we create
         or is exit block.  These can happen for infinite loops as we create
         fake edges in the dominator tree.  */
         fake edges in the dominator tree.  */
      if (e)
      if (e)
        ;
        ;
      else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
      else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
        e = EDGE_SUCC (bb, 0);
        e = EDGE_SUCC (bb, 0);
      else
      else
        e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
        e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
      gcc_assert (e);
      gcc_assert (e);
      e->probability = REG_BR_PROB_BASE;
      e->probability = REG_BR_PROB_BASE;
      e->count = bb->count;
      e->count = bb->count;
 
 
      /* The edge is no longer associated with a conditional, so it does
      /* The edge is no longer associated with a conditional, so it does
         not have TRUE/FALSE flags.  */
         not have TRUE/FALSE flags.  */
      e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
      e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
 
 
      /* The lone outgoing edge from BB will be a fallthru edge.  */
      /* The lone outgoing edge from BB will be a fallthru edge.  */
      e->flags |= EDGE_FALLTHRU;
      e->flags |= EDGE_FALLTHRU;
 
 
      /* Remove the remaining outgoing edges.  */
      /* Remove the remaining outgoing edges.  */
      for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
      for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
        if (e != e2)
        if (e != e2)
          {
          {
            cfg_altered = true;
            cfg_altered = true;
            remove_edge (e2);
            remove_edge (e2);
          }
          }
        else
        else
          ei_next (&ei);
          ei_next (&ei);
    }
    }
 
 
  unlink_stmt_vdef (stmt);
  unlink_stmt_vdef (stmt);
  gsi_remove (i, true);
  gsi_remove (i, true);
  release_defs (stmt);
  release_defs (stmt);
}
}
 
 
/* Eliminate unnecessary statements. Any instruction not marked as necessary
/* Eliminate unnecessary statements. Any instruction not marked as necessary
   contributes nothing to the program, and can be deleted.  */
   contributes nothing to the program, and can be deleted.  */
 
 
static bool
static bool
eliminate_unnecessary_stmts (void)
eliminate_unnecessary_stmts (void)
{
{
  bool something_changed = false;
  bool something_changed = false;
  basic_block bb;
  basic_block bb;
  gimple_stmt_iterator gsi, psi;
  gimple_stmt_iterator gsi, psi;
  gimple stmt;
  gimple stmt;
  tree call;
  tree call;
  VEC (basic_block, heap) *h;
  VEC (basic_block, heap) *h;
 
 
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\nEliminating unnecessary statements:\n");
    fprintf (dump_file, "\nEliminating unnecessary statements:\n");
 
 
  clear_special_calls ();
  clear_special_calls ();
 
 
  /* Walking basic blocks and statements in reverse order avoids
  /* Walking basic blocks and statements in reverse order avoids
     releasing SSA names before any other DEFs that refer to them are
     releasing SSA names before any other DEFs that refer to them are
     released.  This helps avoid loss of debug information, as we get
     released.  This helps avoid loss of debug information, as we get
     a chance to propagate all RHSs of removed SSAs into debug uses,
     a chance to propagate all RHSs of removed SSAs into debug uses,
     rather than only the latest ones.  E.g., consider:
     rather than only the latest ones.  E.g., consider:
 
 
     x_3 = y_1 + z_2;
     x_3 = y_1 + z_2;
     a_5 = x_3 - b_4;
     a_5 = x_3 - b_4;
     # DEBUG a => a_5
     # DEBUG a => a_5
 
 
     If we were to release x_3 before a_5, when we reached a_5 and
     If we were to release x_3 before a_5, when we reached a_5 and
     tried to substitute it into the debug stmt, we'd see x_3 there,
     tried to substitute it into the debug stmt, we'd see x_3 there,
     but x_3's DEF, type, etc would have already been disconnected.
     but x_3's DEF, type, etc would have already been disconnected.
     By going backwards, the debug stmt first changes to:
     By going backwards, the debug stmt first changes to:
 
 
     # DEBUG a => x_3 - b_4
     # DEBUG a => x_3 - b_4
 
 
     and then to:
     and then to:
 
 
     # DEBUG a => y_1 + z_2 - b_4
     # DEBUG a => y_1 + z_2 - b_4
 
 
     as desired.  */
     as desired.  */
  gcc_assert (dom_info_available_p (CDI_DOMINATORS));
  gcc_assert (dom_info_available_p (CDI_DOMINATORS));
  h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
  h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
 
 
  while (VEC_length (basic_block, h))
  while (VEC_length (basic_block, h))
    {
    {
      bb = VEC_pop (basic_block, h);
      bb = VEC_pop (basic_block, h);
 
 
      /* Remove dead statements.  */
      /* Remove dead statements.  */
      for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
      for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
        {
        {
          stmt = gsi_stmt (gsi);
          stmt = gsi_stmt (gsi);
 
 
          psi = gsi;
          psi = gsi;
          gsi_prev (&psi);
          gsi_prev (&psi);
 
 
          stats.total++;
          stats.total++;
 
 
          /* If GSI is not necessary then remove it.  */
          /* If GSI is not necessary then remove it.  */
          if (!gimple_plf (stmt, STMT_NECESSARY))
          if (!gimple_plf (stmt, STMT_NECESSARY))
            {
            {
              if (!is_gimple_debug (stmt))
              if (!is_gimple_debug (stmt))
                something_changed = true;
                something_changed = true;
              remove_dead_stmt (&gsi, bb);
              remove_dead_stmt (&gsi, bb);
            }
            }
          else if (is_gimple_call (stmt))
          else if (is_gimple_call (stmt))
            {
            {
              call = gimple_call_fndecl (stmt);
              call = gimple_call_fndecl (stmt);
              if (call)
              if (call)
                {
                {
                  tree name;
                  tree name;
 
 
                  /* When LHS of var = call (); is dead, simplify it into
                  /* When LHS of var = call (); is dead, simplify it into
                     call (); saving one operand.  */
                     call (); saving one operand.  */
                  name = gimple_call_lhs (stmt);
                  name = gimple_call_lhs (stmt);
                  if (name && TREE_CODE (name) == SSA_NAME
                  if (name && TREE_CODE (name) == SSA_NAME
                           && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
                           && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
                    {
                    {
                      something_changed = true;
                      something_changed = true;
                      if (dump_file && (dump_flags & TDF_DETAILS))
                      if (dump_file && (dump_flags & TDF_DETAILS))
                        {
                        {
                          fprintf (dump_file, "Deleting LHS of call: ");
                          fprintf (dump_file, "Deleting LHS of call: ");
                          print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
                          print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
                          fprintf (dump_file, "\n");
                          fprintf (dump_file, "\n");
                        }
                        }
 
 
                      gimple_call_set_lhs (stmt, NULL_TREE);
                      gimple_call_set_lhs (stmt, NULL_TREE);
                      maybe_clean_or_replace_eh_stmt (stmt, stmt);
                      maybe_clean_or_replace_eh_stmt (stmt, stmt);
                      update_stmt (stmt);
                      update_stmt (stmt);
                      release_ssa_name (name);
                      release_ssa_name (name);
                    }
                    }
                  notice_special_calls (stmt);
                  notice_special_calls (stmt);
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  VEC_free (basic_block, heap, h);
  VEC_free (basic_block, heap, h);
 
 
  /* Since we don't track liveness of virtual PHI nodes, it is possible that we
  /* Since we don't track liveness of virtual PHI nodes, it is possible that we
     rendered some PHI nodes unreachable while they are still in use.
     rendered some PHI nodes unreachable while they are still in use.
     Mark them for renaming.  */
     Mark them for renaming.  */
  if (cfg_altered)
  if (cfg_altered)
    {
    {
      basic_block prev_bb;
      basic_block prev_bb;
 
 
      find_unreachable_blocks ();
      find_unreachable_blocks ();
 
 
      /* Delete all unreachable basic blocks in reverse dominator order.  */
      /* Delete all unreachable basic blocks in reverse dominator order.  */
      for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
      for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
        {
        {
          prev_bb = bb->prev_bb;
          prev_bb = bb->prev_bb;
 
 
          if (!TEST_BIT (bb_contains_live_stmts, bb->index)
          if (!TEST_BIT (bb_contains_live_stmts, bb->index)
              || !(bb->flags & BB_REACHABLE))
              || !(bb->flags & BB_REACHABLE))
            {
            {
              for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
              for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
                if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
                if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
                  {
                  {
                    bool found = false;
                    bool found = false;
                    imm_use_iterator iter;
                    imm_use_iterator iter;
 
 
                    FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
                    FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
                      {
                      {
                        if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
                        if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
                          continue;
                          continue;
                        if (gimple_code (stmt) == GIMPLE_PHI
                        if (gimple_code (stmt) == GIMPLE_PHI
                            || gimple_plf (stmt, STMT_NECESSARY))
                            || gimple_plf (stmt, STMT_NECESSARY))
                          {
                          {
                            found = true;
                            found = true;
                            BREAK_FROM_IMM_USE_STMT (iter);
                            BREAK_FROM_IMM_USE_STMT (iter);
                          }
                          }
                      }
                      }
                    if (found)
                    if (found)
                      mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
                      mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
                  }
                  }
 
 
              if (!(bb->flags & BB_REACHABLE))
              if (!(bb->flags & BB_REACHABLE))
                {
                {
                  /* Speed up the removal of blocks that don't
                  /* Speed up the removal of blocks that don't
                     dominate others.  Walking backwards, this should
                     dominate others.  Walking backwards, this should
                     be the common case.  ??? Do we need to recompute
                     be the common case.  ??? Do we need to recompute
                     dominators because of cfg_altered?  */
                     dominators because of cfg_altered?  */
                  if (!MAY_HAVE_DEBUG_STMTS
                  if (!MAY_HAVE_DEBUG_STMTS
                      || !first_dom_son (CDI_DOMINATORS, bb))
                      || !first_dom_son (CDI_DOMINATORS, bb))
                    delete_basic_block (bb);
                    delete_basic_block (bb);
                  else
                  else
                    {
                    {
                      h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
                      h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
 
 
                      while (VEC_length (basic_block, h))
                      while (VEC_length (basic_block, h))
                        {
                        {
                          bb = VEC_pop (basic_block, h);
                          bb = VEC_pop (basic_block, h);
                          prev_bb = bb->prev_bb;
                          prev_bb = bb->prev_bb;
                          /* Rearrangements to the CFG may have failed
                          /* Rearrangements to the CFG may have failed
                             to update the dominators tree, so that
                             to update the dominators tree, so that
                             formerly-dominated blocks are now
                             formerly-dominated blocks are now
                             otherwise reachable.  */
                             otherwise reachable.  */
                          if (!!(bb->flags & BB_REACHABLE))
                          if (!!(bb->flags & BB_REACHABLE))
                            continue;
                            continue;
                          delete_basic_block (bb);
                          delete_basic_block (bb);
                        }
                        }
 
 
                      VEC_free (basic_block, heap, h);
                      VEC_free (basic_block, heap, h);
                    }
                    }
                }
                }
            }
            }
        }
        }
    }
    }
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      /* Remove dead PHI nodes.  */
      /* Remove dead PHI nodes.  */
      something_changed |= remove_dead_phis (bb);
      something_changed |= remove_dead_phis (bb);
    }
    }
 
 
  return something_changed;
  return something_changed;
}
}
 
 
 
 
/* Print out removed statement statistics.  */
/* Print out removed statement statistics.  */
 
 
static void
static void
print_stats (void)
print_stats (void)
{
{
  float percg;
  float percg;
 
 
  percg = ((float) stats.removed / (float) stats.total) * 100;
  percg = ((float) stats.removed / (float) stats.total) * 100;
  fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
  fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
           stats.removed, stats.total, (int) percg);
           stats.removed, stats.total, (int) percg);
 
 
  if (stats.total_phis == 0)
  if (stats.total_phis == 0)
    percg = 0;
    percg = 0;
  else
  else
    percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
    percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
 
 
  fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
  fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
           stats.removed_phis, stats.total_phis, (int) percg);
           stats.removed_phis, stats.total_phis, (int) percg);
}
}
 
 
/* Initialization for this pass.  Set up the used data structures.  */
/* Initialization for this pass.  Set up the used data structures.  */
 
 
static void
static void
tree_dce_init (bool aggressive)
tree_dce_init (bool aggressive)
{
{
  memset ((void *) &stats, 0, sizeof (stats));
  memset ((void *) &stats, 0, sizeof (stats));
 
 
  if (aggressive)
  if (aggressive)
    {
    {
      int i;
      int i;
 
 
      control_dependence_map = XNEWVEC (bitmap, last_basic_block);
      control_dependence_map = XNEWVEC (bitmap, last_basic_block);
      for (i = 0; i < last_basic_block; ++i)
      for (i = 0; i < last_basic_block; ++i)
        control_dependence_map[i] = BITMAP_ALLOC (NULL);
        control_dependence_map[i] = BITMAP_ALLOC (NULL);
 
 
      last_stmt_necessary = sbitmap_alloc (last_basic_block);
      last_stmt_necessary = sbitmap_alloc (last_basic_block);
      sbitmap_zero (last_stmt_necessary);
      sbitmap_zero (last_stmt_necessary);
      bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
      bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
      sbitmap_zero (bb_contains_live_stmts);
      sbitmap_zero (bb_contains_live_stmts);
    }
    }
 
 
  processed = sbitmap_alloc (num_ssa_names + 1);
  processed = sbitmap_alloc (num_ssa_names + 1);
  sbitmap_zero (processed);
  sbitmap_zero (processed);
 
 
  worklist = VEC_alloc (gimple, heap, 64);
  worklist = VEC_alloc (gimple, heap, 64);
  cfg_altered = false;
  cfg_altered = false;
}
}
 
 
/* Cleanup after this pass.  */
/* Cleanup after this pass.  */
 
 
static void
static void
tree_dce_done (bool aggressive)
tree_dce_done (bool aggressive)
{
{
  if (aggressive)
  if (aggressive)
    {
    {
      int i;
      int i;
 
 
      for (i = 0; i < last_basic_block; ++i)
      for (i = 0; i < last_basic_block; ++i)
        BITMAP_FREE (control_dependence_map[i]);
        BITMAP_FREE (control_dependence_map[i]);
      free (control_dependence_map);
      free (control_dependence_map);
 
 
      sbitmap_free (visited_control_parents);
      sbitmap_free (visited_control_parents);
      sbitmap_free (last_stmt_necessary);
      sbitmap_free (last_stmt_necessary);
      sbitmap_free (bb_contains_live_stmts);
      sbitmap_free (bb_contains_live_stmts);
      bb_contains_live_stmts = NULL;
      bb_contains_live_stmts = NULL;
    }
    }
 
 
  sbitmap_free (processed);
  sbitmap_free (processed);
 
 
  VEC_free (gimple, heap, worklist);
  VEC_free (gimple, heap, worklist);
}
}
 
 
/* Main routine to eliminate dead code.
/* Main routine to eliminate dead code.
 
 
   AGGRESSIVE controls the aggressiveness of the algorithm.
   AGGRESSIVE controls the aggressiveness of the algorithm.
   In conservative mode, we ignore control dependence and simply declare
   In conservative mode, we ignore control dependence and simply declare
   all but the most trivially dead branches necessary.  This mode is fast.
   all but the most trivially dead branches necessary.  This mode is fast.
   In aggressive mode, control dependences are taken into account, which
   In aggressive mode, control dependences are taken into account, which
   results in more dead code elimination, but at the cost of some time.
   results in more dead code elimination, but at the cost of some time.
 
 
   FIXME: Aggressive mode before PRE doesn't work currently because
   FIXME: Aggressive mode before PRE doesn't work currently because
          the dominance info is not invalidated after DCE1.  This is
          the dominance info is not invalidated after DCE1.  This is
          not an issue right now because we only run aggressive DCE
          not an issue right now because we only run aggressive DCE
          as the last tree SSA pass, but keep this in mind when you
          as the last tree SSA pass, but keep this in mind when you
          start experimenting with pass ordering.  */
          start experimenting with pass ordering.  */
 
 
static unsigned int
static unsigned int
perform_tree_ssa_dce (bool aggressive)
perform_tree_ssa_dce (bool aggressive)
{
{
  struct edge_list *el = NULL;
  struct edge_list *el = NULL;
  bool something_changed = 0;
  bool something_changed = 0;
 
 
  /* Preheaders are needed for SCEV to work.
  /* Preheaders are needed for SCEV to work.
     Simple lateches and recorded exits improve chances that loop will
     Simple lateches and recorded exits improve chances that loop will
     proved to be finite in testcases such as in loop-15.c and loop-24.c  */
     proved to be finite in testcases such as in loop-15.c and loop-24.c  */
  if (aggressive)
  if (aggressive)
    loop_optimizer_init (LOOPS_NORMAL
    loop_optimizer_init (LOOPS_NORMAL
                         | LOOPS_HAVE_RECORDED_EXITS);
                         | LOOPS_HAVE_RECORDED_EXITS);
 
 
  tree_dce_init (aggressive);
  tree_dce_init (aggressive);
 
 
  if (aggressive)
  if (aggressive)
    {
    {
      /* Compute control dependence.  */
      /* Compute control dependence.  */
      timevar_push (TV_CONTROL_DEPENDENCES);
      timevar_push (TV_CONTROL_DEPENDENCES);
      calculate_dominance_info (CDI_POST_DOMINATORS);
      calculate_dominance_info (CDI_POST_DOMINATORS);
      el = create_edge_list ();
      el = create_edge_list ();
      find_all_control_dependences (el);
      find_all_control_dependences (el);
      timevar_pop (TV_CONTROL_DEPENDENCES);
      timevar_pop (TV_CONTROL_DEPENDENCES);
 
 
      visited_control_parents = sbitmap_alloc (last_basic_block);
      visited_control_parents = sbitmap_alloc (last_basic_block);
      sbitmap_zero (visited_control_parents);
      sbitmap_zero (visited_control_parents);
 
 
      mark_dfs_back_edges ();
      mark_dfs_back_edges ();
    }
    }
 
 
  find_obviously_necessary_stmts (el);
  find_obviously_necessary_stmts (el);
 
 
  if (aggressive)
  if (aggressive)
    loop_optimizer_finalize ();
    loop_optimizer_finalize ();
 
 
  longest_chain = 0;
  longest_chain = 0;
  total_chain = 0;
  total_chain = 0;
  nr_walks = 0;
  nr_walks = 0;
  chain_ovfl = false;
  chain_ovfl = false;
  visited = BITMAP_ALLOC (NULL);
  visited = BITMAP_ALLOC (NULL);
  propagate_necessity (el);
  propagate_necessity (el);
  BITMAP_FREE (visited);
  BITMAP_FREE (visited);
 
 
  something_changed |= eliminate_unnecessary_stmts ();
  something_changed |= eliminate_unnecessary_stmts ();
  something_changed |= cfg_altered;
  something_changed |= cfg_altered;
 
 
  /* We do not update postdominators, so free them unconditionally.  */
  /* We do not update postdominators, so free them unconditionally.  */
  free_dominance_info (CDI_POST_DOMINATORS);
  free_dominance_info (CDI_POST_DOMINATORS);
 
 
  /* If we removed paths in the CFG, then we need to update
  /* If we removed paths in the CFG, then we need to update
     dominators as well.  I haven't investigated the possibility
     dominators as well.  I haven't investigated the possibility
     of incrementally updating dominators.  */
     of incrementally updating dominators.  */
  if (cfg_altered)
  if (cfg_altered)
    free_dominance_info (CDI_DOMINATORS);
    free_dominance_info (CDI_DOMINATORS);
 
 
  statistics_counter_event (cfun, "Statements deleted", stats.removed);
  statistics_counter_event (cfun, "Statements deleted", stats.removed);
  statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
  statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
 
 
  /* Debugging dumps.  */
  /* Debugging dumps.  */
  if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
  if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
    print_stats ();
    print_stats ();
 
 
  tree_dce_done (aggressive);
  tree_dce_done (aggressive);
 
 
  free_edge_list (el);
  free_edge_list (el);
 
 
  if (something_changed)
  if (something_changed)
    return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
    return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
            | TODO_remove_unused_locals);
            | TODO_remove_unused_locals);
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Pass entry points.  */
/* Pass entry points.  */
static unsigned int
static unsigned int
tree_ssa_dce (void)
tree_ssa_dce (void)
{
{
  return perform_tree_ssa_dce (/*aggressive=*/false);
  return perform_tree_ssa_dce (/*aggressive=*/false);
}
}
 
 
static unsigned int
static unsigned int
tree_ssa_dce_loop (void)
tree_ssa_dce_loop (void)
{
{
  unsigned int todo;
  unsigned int todo;
  todo = perform_tree_ssa_dce (/*aggressive=*/false);
  todo = perform_tree_ssa_dce (/*aggressive=*/false);
  if (todo)
  if (todo)
    {
    {
      free_numbers_of_iterations_estimates ();
      free_numbers_of_iterations_estimates ();
      scev_reset ();
      scev_reset ();
    }
    }
  return todo;
  return todo;
}
}
 
 
static unsigned int
static unsigned int
tree_ssa_cd_dce (void)
tree_ssa_cd_dce (void)
{
{
  return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
  return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
}
}
 
 
static bool
static bool
gate_dce (void)
gate_dce (void)
{
{
  return flag_tree_dce != 0;
  return flag_tree_dce != 0;
}
}
 
 
struct gimple_opt_pass pass_dce =
struct gimple_opt_pass pass_dce =
{
{
 {
 {
  GIMPLE_PASS,
  GIMPLE_PASS,
  "dce",                                /* name */
  "dce",                                /* name */
  gate_dce,                             /* gate */
  gate_dce,                             /* gate */
  tree_ssa_dce,                         /* execute */
  tree_ssa_dce,                         /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                     /* static_pass_number */
  0,                                     /* static_pass_number */
  TV_TREE_DCE,                          /* tv_id */
  TV_TREE_DCE,                          /* tv_id */
  PROP_cfg | PROP_ssa,                  /* properties_required */
  PROP_cfg | PROP_ssa,                  /* properties_required */
  0,                                     /* properties_provided */
  0,                                     /* properties_provided */
  0,                                     /* properties_destroyed */
  0,                                     /* properties_destroyed */
  0,                                     /* todo_flags_start */
  0,                                     /* todo_flags_start */
  TODO_dump_func | TODO_verify_ssa      /* todo_flags_finish */
  TODO_dump_func | TODO_verify_ssa      /* todo_flags_finish */
 }
 }
};
};
 
 
struct gimple_opt_pass pass_dce_loop =
struct gimple_opt_pass pass_dce_loop =
{
{
 {
 {
  GIMPLE_PASS,
  GIMPLE_PASS,
  "dceloop",                            /* name */
  "dceloop",                            /* name */
  gate_dce,                             /* gate */
  gate_dce,                             /* gate */
  tree_ssa_dce_loop,                    /* execute */
  tree_ssa_dce_loop,                    /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                     /* static_pass_number */
  0,                                     /* static_pass_number */
  TV_TREE_DCE,                          /* tv_id */
  TV_TREE_DCE,                          /* tv_id */
  PROP_cfg | PROP_ssa,                  /* properties_required */
  PROP_cfg | PROP_ssa,                  /* properties_required */
  0,                                     /* properties_provided */
  0,                                     /* properties_provided */
  0,                                     /* properties_destroyed */
  0,                                     /* properties_destroyed */
  0,                                     /* todo_flags_start */
  0,                                     /* todo_flags_start */
  TODO_dump_func | TODO_verify_ssa      /* todo_flags_finish */
  TODO_dump_func | TODO_verify_ssa      /* todo_flags_finish */
 }
 }
};
};
 
 
struct gimple_opt_pass pass_cd_dce =
struct gimple_opt_pass pass_cd_dce =
{
{
 {
 {
  GIMPLE_PASS,
  GIMPLE_PASS,
  "cddce",                              /* name */
  "cddce",                              /* name */
  gate_dce,                             /* gate */
  gate_dce,                             /* gate */
  tree_ssa_cd_dce,                      /* execute */
  tree_ssa_cd_dce,                      /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                     /* static_pass_number */
  0,                                     /* static_pass_number */
  TV_TREE_CD_DCE,                       /* tv_id */
  TV_TREE_CD_DCE,                       /* tv_id */
  PROP_cfg | PROP_ssa,                  /* properties_required */
  PROP_cfg | PROP_ssa,                  /* properties_required */
  0,                                     /* properties_provided */
  0,                                     /* properties_provided */
  0,                                     /* properties_destroyed */
  0,                                     /* properties_destroyed */
  0,                                     /* todo_flags_start */
  0,                                     /* todo_flags_start */
  TODO_dump_func | TODO_verify_ssa
  TODO_dump_func | TODO_verify_ssa
  | TODO_verify_flow                    /* todo_flags_finish */
  | TODO_verify_flow                    /* todo_flags_finish */
 }
 }
};
};
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.