OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc3/] [gcc/] [ira-emit.c] - Diff between revs 280 and 516

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 280 Rev 516
/* Integrated Register Allocator.  Changing code and generating moves.
/* Integrated Register Allocator.  Changing code and generating moves.
   Copyright (C) 2006, 2007, 2008, 2009
   Copyright (C) 2006, 2007, 2008, 2009
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Vladimir Makarov <vmakarov@redhat.com>.
   Contributed by Vladimir Makarov <vmakarov@redhat.com>.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "regs.h"
#include "regs.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "target.h"
#include "target.h"
#include "flags.h"
#include "flags.h"
#include "obstack.h"
#include "obstack.h"
#include "bitmap.h"
#include "bitmap.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "basic-block.h"
#include "expr.h"
#include "expr.h"
#include "recog.h"
#include "recog.h"
#include "params.h"
#include "params.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "output.h"
#include "output.h"
#include "reload.h"
#include "reload.h"
#include "errors.h"
#include "errors.h"
#include "df.h"
#include "df.h"
#include "ira-int.h"
#include "ira-int.h"
 
 
 
 
typedef struct move *move_t;
typedef struct move *move_t;
 
 
/* The structure represents an allocno move.  Both allocnos have the
/* The structure represents an allocno move.  Both allocnos have the
   same origional regno but different allocation.  */
   same origional regno but different allocation.  */
struct move
struct move
{
{
  /* The allocnos involved in the move.  */
  /* The allocnos involved in the move.  */
  ira_allocno_t from, to;
  ira_allocno_t from, to;
  /* The next move in the move sequence.  */
  /* The next move in the move sequence.  */
  move_t next;
  move_t next;
  /* Used for finding dependencies.  */
  /* Used for finding dependencies.  */
  bool visited_p;
  bool visited_p;
  /* The size of the following array. */
  /* The size of the following array. */
  int deps_num;
  int deps_num;
  /* Moves on which given move depends on.  Dependency can be cyclic.
  /* Moves on which given move depends on.  Dependency can be cyclic.
     It means we need a temporary to generates the moves.  Sequence
     It means we need a temporary to generates the moves.  Sequence
     A1->A2, B1->B2 where A1 and B2 are assigned to reg R1 and A2 and
     A1->A2, B1->B2 where A1 and B2 are assigned to reg R1 and A2 and
     B1 are assigned to reg R2 is an example of the cyclic
     B1 are assigned to reg R2 is an example of the cyclic
     dependencies.  */
     dependencies.  */
  move_t *deps;
  move_t *deps;
  /* First insn generated for the move.  */
  /* First insn generated for the move.  */
  rtx insn;
  rtx insn;
};
};
 
 
/* Array of moves (indexed by BB index) which should be put at the
/* Array of moves (indexed by BB index) which should be put at the
   start/end of the corresponding basic blocks.  */
   start/end of the corresponding basic blocks.  */
static move_t *at_bb_start, *at_bb_end;
static move_t *at_bb_start, *at_bb_end;
 
 
/* Max regno before renaming some pseudo-registers.  For example, the
/* Max regno before renaming some pseudo-registers.  For example, the
   same pseudo-register can be renamed in a loop if its allocation is
   same pseudo-register can be renamed in a loop if its allocation is
   different outside the loop.  */
   different outside the loop.  */
static int max_regno_before_changing;
static int max_regno_before_changing;
 
 
/* Return new move of allocnos TO and FROM.  */
/* Return new move of allocnos TO and FROM.  */
static move_t
static move_t
create_move (ira_allocno_t to, ira_allocno_t from)
create_move (ira_allocno_t to, ira_allocno_t from)
{
{
  move_t move;
  move_t move;
 
 
  move = (move_t) ira_allocate (sizeof (struct move));
  move = (move_t) ira_allocate (sizeof (struct move));
  move->deps = NULL;
  move->deps = NULL;
  move->deps_num = 0;
  move->deps_num = 0;
  move->to = to;
  move->to = to;
  move->from = from;
  move->from = from;
  move->next = NULL;
  move->next = NULL;
  move->insn = NULL_RTX;
  move->insn = NULL_RTX;
  move->visited_p = false;
  move->visited_p = false;
  return move;
  return move;
}
}
 
 
/* Free memory for MOVE and its dependencies.  */
/* Free memory for MOVE and its dependencies.  */
static void
static void
free_move (move_t move)
free_move (move_t move)
{
{
  if (move->deps != NULL)
  if (move->deps != NULL)
    ira_free (move->deps);
    ira_free (move->deps);
  ira_free (move);
  ira_free (move);
}
}
 
 
/* Free memory for list of the moves given by its HEAD.  */
/* Free memory for list of the moves given by its HEAD.  */
static void
static void
free_move_list (move_t head)
free_move_list (move_t head)
{
{
  move_t next;
  move_t next;
 
 
  for (; head != NULL; head = next)
  for (; head != NULL; head = next)
    {
    {
      next = head->next;
      next = head->next;
      free_move (head);
      free_move (head);
    }
    }
}
}
 
 
/* Return TRUE if the the move list LIST1 and LIST2 are equal (two
/* Return TRUE if the the move list LIST1 and LIST2 are equal (two
   moves are equal if they involve the same allocnos).  */
   moves are equal if they involve the same allocnos).  */
static bool
static bool
eq_move_lists_p (move_t list1, move_t list2)
eq_move_lists_p (move_t list1, move_t list2)
{
{
  for (; list1 != NULL && list2 != NULL;
  for (; list1 != NULL && list2 != NULL;
       list1 = list1->next, list2 = list2->next)
       list1 = list1->next, list2 = list2->next)
    if (list1->from != list2->from || list1->to != list2->to)
    if (list1->from != list2->from || list1->to != list2->to)
      return false;
      return false;
  return list1 == list2;
  return list1 == list2;
}
}
 
 
/* Print move list LIST into file F.  */
/* Print move list LIST into file F.  */
static void
static void
print_move_list (FILE *f, move_t list)
print_move_list (FILE *f, move_t list)
{
{
  for (; list != NULL; list = list->next)
  for (; list != NULL; list = list->next)
    fprintf (f, " a%dr%d->a%dr%d",
    fprintf (f, " a%dr%d->a%dr%d",
             ALLOCNO_NUM (list->from), ALLOCNO_REGNO (list->from),
             ALLOCNO_NUM (list->from), ALLOCNO_REGNO (list->from),
             ALLOCNO_NUM (list->to), ALLOCNO_REGNO (list->to));
             ALLOCNO_NUM (list->to), ALLOCNO_REGNO (list->to));
  fprintf (f, "\n");
  fprintf (f, "\n");
}
}
 
 
extern void ira_debug_move_list (move_t list);
extern void ira_debug_move_list (move_t list);
 
 
/* Print move list LIST into stderr.  */
/* Print move list LIST into stderr.  */
void
void
ira_debug_move_list (move_t list)
ira_debug_move_list (move_t list)
{
{
  print_move_list (stderr, list);
  print_move_list (stderr, list);
}
}
 
 
/* This recursive function changes pseudo-registers in *LOC if it is
/* This recursive function changes pseudo-registers in *LOC if it is
   necessary.  The function returns TRUE if a change was done.  */
   necessary.  The function returns TRUE if a change was done.  */
static bool
static bool
change_regs (rtx *loc)
change_regs (rtx *loc)
{
{
  int i, regno, result = false;
  int i, regno, result = false;
  const char *fmt;
  const char *fmt;
  enum rtx_code code;
  enum rtx_code code;
  rtx reg;
  rtx reg;
 
 
  if (*loc == NULL_RTX)
  if (*loc == NULL_RTX)
    return false;
    return false;
  code = GET_CODE (*loc);
  code = GET_CODE (*loc);
  if (code == REG)
  if (code == REG)
    {
    {
      regno = REGNO (*loc);
      regno = REGNO (*loc);
      if (regno < FIRST_PSEUDO_REGISTER)
      if (regno < FIRST_PSEUDO_REGISTER)
        return false;
        return false;
      if (regno >= max_regno_before_changing)
      if (regno >= max_regno_before_changing)
        /* It is a shared register which was changed already.  */
        /* It is a shared register which was changed already.  */
        return false;
        return false;
      if (ira_curr_regno_allocno_map[regno] == NULL)
      if (ira_curr_regno_allocno_map[regno] == NULL)
        return false;
        return false;
      reg = ALLOCNO_REG (ira_curr_regno_allocno_map[regno]);
      reg = ALLOCNO_REG (ira_curr_regno_allocno_map[regno]);
      if (reg == *loc)
      if (reg == *loc)
        return false;
        return false;
      *loc = reg;
      *loc = reg;
      return true;
      return true;
    }
    }
 
 
  fmt = GET_RTX_FORMAT (code);
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
    {
      if (fmt[i] == 'e')
      if (fmt[i] == 'e')
        result = change_regs (&XEXP (*loc, i)) || result;
        result = change_regs (&XEXP (*loc, i)) || result;
      else if (fmt[i] == 'E')
      else if (fmt[i] == 'E')
        {
        {
          int j;
          int j;
 
 
          for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
          for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
            result = change_regs (&XVECEXP (*loc, i, j)) || result;
            result = change_regs (&XVECEXP (*loc, i, j)) || result;
        }
        }
    }
    }
  return result;
  return result;
}
}
 
 
/* Attach MOVE to the edge E.  The move is attached to the head of the
/* Attach MOVE to the edge E.  The move is attached to the head of the
   list if HEAD_P is TRUE.  */
   list if HEAD_P is TRUE.  */
static void
static void
add_to_edge_list (edge e, move_t move, bool head_p)
add_to_edge_list (edge e, move_t move, bool head_p)
{
{
  move_t last;
  move_t last;
 
 
  if (head_p || e->aux == NULL)
  if (head_p || e->aux == NULL)
    {
    {
      move->next = (move_t) e->aux;
      move->next = (move_t) e->aux;
      e->aux = move;
      e->aux = move;
    }
    }
  else
  else
    {
    {
      for (last = (move_t) e->aux; last->next != NULL; last = last->next)
      for (last = (move_t) e->aux; last->next != NULL; last = last->next)
        ;
        ;
      last->next = move;
      last->next = move;
      move->next = NULL;
      move->next = NULL;
    }
    }
}
}
 
 
/* Create and return new pseudo-register with the same attributes as
/* Create and return new pseudo-register with the same attributes as
   ORIGINAL_REG.  */
   ORIGINAL_REG.  */
static rtx
static rtx
create_new_reg (rtx original_reg)
create_new_reg (rtx original_reg)
{
{
  rtx new_reg;
  rtx new_reg;
 
 
  new_reg = gen_reg_rtx (GET_MODE (original_reg));
  new_reg = gen_reg_rtx (GET_MODE (original_reg));
  ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original_reg);
  ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original_reg);
  REG_USERVAR_P (new_reg) = REG_USERVAR_P (original_reg);
  REG_USERVAR_P (new_reg) = REG_USERVAR_P (original_reg);
  REG_POINTER (new_reg) = REG_POINTER (original_reg);
  REG_POINTER (new_reg) = REG_POINTER (original_reg);
  REG_ATTRS (new_reg) = REG_ATTRS (original_reg);
  REG_ATTRS (new_reg) = REG_ATTRS (original_reg);
  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
    fprintf (ira_dump_file, "      Creating newreg=%i from oldreg=%i\n",
    fprintf (ira_dump_file, "      Creating newreg=%i from oldreg=%i\n",
             REGNO (new_reg), REGNO (original_reg));
             REGNO (new_reg), REGNO (original_reg));
  return new_reg;
  return new_reg;
}
}
 
 
/* Return TRUE if loop given by SUBNODE inside the loop given by
/* Return TRUE if loop given by SUBNODE inside the loop given by
   NODE.  */
   NODE.  */
static bool
static bool
subloop_tree_node_p (ira_loop_tree_node_t subnode, ira_loop_tree_node_t node)
subloop_tree_node_p (ira_loop_tree_node_t subnode, ira_loop_tree_node_t node)
{
{
  for (; subnode != NULL; subnode = subnode->parent)
  for (; subnode != NULL; subnode = subnode->parent)
    if (subnode == node)
    if (subnode == node)
      return true;
      return true;
  return false;
  return false;
}
}
 
 
/* Set up member `reg' to REG for allocnos which has the same regno as
/* Set up member `reg' to REG for allocnos which has the same regno as
   ALLOCNO and which are inside the loop corresponding to ALLOCNO. */
   ALLOCNO and which are inside the loop corresponding to ALLOCNO. */
static void
static void
set_allocno_reg (ira_allocno_t allocno, rtx reg)
set_allocno_reg (ira_allocno_t allocno, rtx reg)
{
{
  int regno;
  int regno;
  ira_allocno_t a;
  ira_allocno_t a;
  ira_loop_tree_node_t node;
  ira_loop_tree_node_t node;
 
 
  node = ALLOCNO_LOOP_TREE_NODE (allocno);
  node = ALLOCNO_LOOP_TREE_NODE (allocno);
  for (a = ira_regno_allocno_map[ALLOCNO_REGNO (allocno)];
  for (a = ira_regno_allocno_map[ALLOCNO_REGNO (allocno)];
       a != NULL;
       a != NULL;
       a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
       a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
    if (subloop_tree_node_p (ALLOCNO_LOOP_TREE_NODE (a), node))
    if (subloop_tree_node_p (ALLOCNO_LOOP_TREE_NODE (a), node))
      ALLOCNO_REG (a) = reg;
      ALLOCNO_REG (a) = reg;
  for (a = ALLOCNO_CAP (allocno); a != NULL; a = ALLOCNO_CAP (a))
  for (a = ALLOCNO_CAP (allocno); a != NULL; a = ALLOCNO_CAP (a))
    ALLOCNO_REG (a) = reg;
    ALLOCNO_REG (a) = reg;
  regno = ALLOCNO_REGNO (allocno);
  regno = ALLOCNO_REGNO (allocno);
  for (a = allocno;;)
  for (a = allocno;;)
    {
    {
      if (a == NULL || (a = ALLOCNO_CAP (a)) == NULL)
      if (a == NULL || (a = ALLOCNO_CAP (a)) == NULL)
        {
        {
          node = node->parent;
          node = node->parent;
          if (node == NULL)
          if (node == NULL)
            break;
            break;
          a = node->regno_allocno_map[regno];
          a = node->regno_allocno_map[regno];
        }
        }
      if (a == NULL)
      if (a == NULL)
        continue;
        continue;
      if (ALLOCNO_CHILD_RENAMED_P (a))
      if (ALLOCNO_CHILD_RENAMED_P (a))
        break;
        break;
      ALLOCNO_CHILD_RENAMED_P (a) = true;
      ALLOCNO_CHILD_RENAMED_P (a) = true;
    }
    }
}
}
 
 
/* Return true if there is an entry to given loop not from its parent
/* Return true if there is an entry to given loop not from its parent
   (or grandparent) block.  For example, it is possible for two
   (or grandparent) block.  For example, it is possible for two
   adjacent loops inside another loop.  */
   adjacent loops inside another loop.  */
static bool
static bool
entered_from_non_parent_p (ira_loop_tree_node_t loop_node)
entered_from_non_parent_p (ira_loop_tree_node_t loop_node)
{
{
  ira_loop_tree_node_t bb_node, src_loop_node, parent;
  ira_loop_tree_node_t bb_node, src_loop_node, parent;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  for (bb_node = loop_node->children; bb_node != NULL; bb_node = bb_node->next)
  for (bb_node = loop_node->children; bb_node != NULL; bb_node = bb_node->next)
    if (bb_node->bb != NULL)
    if (bb_node->bb != NULL)
      {
      {
        FOR_EACH_EDGE (e, ei, bb_node->bb->preds)
        FOR_EACH_EDGE (e, ei, bb_node->bb->preds)
          if (e->src != ENTRY_BLOCK_PTR
          if (e->src != ENTRY_BLOCK_PTR
              && (src_loop_node = IRA_BB_NODE (e->src)->parent) != loop_node)
              && (src_loop_node = IRA_BB_NODE (e->src)->parent) != loop_node)
            {
            {
              for (parent = src_loop_node->parent;
              for (parent = src_loop_node->parent;
                   parent != NULL;
                   parent != NULL;
                   parent = parent->parent)
                   parent = parent->parent)
                if (parent == loop_node)
                if (parent == loop_node)
                  break;
                  break;
              if (parent != NULL)
              if (parent != NULL)
                /* That is an exit from a nested loop -- skip it.  */
                /* That is an exit from a nested loop -- skip it.  */
                continue;
                continue;
              for (parent = loop_node->parent;
              for (parent = loop_node->parent;
                   parent != NULL;
                   parent != NULL;
                   parent = parent->parent)
                   parent = parent->parent)
                if (src_loop_node == parent)
                if (src_loop_node == parent)
                  break;
                  break;
              if (parent == NULL)
              if (parent == NULL)
                return true;
                return true;
            }
            }
      }
      }
  return false;
  return false;
}
}
 
 
/* Set up ENTERED_FROM_NON_PARENT_P for each loop region.  */
/* Set up ENTERED_FROM_NON_PARENT_P for each loop region.  */
static void
static void
setup_entered_from_non_parent_p (void)
setup_entered_from_non_parent_p (void)
{
{
  unsigned int i;
  unsigned int i;
  loop_p loop;
  loop_p loop;
 
 
  for (i = 0; VEC_iterate (loop_p, ira_loops.larray, i, loop); i++)
  for (i = 0; VEC_iterate (loop_p, ira_loops.larray, i, loop); i++)
    if (ira_loop_nodes[i].regno_allocno_map != NULL)
    if (ira_loop_nodes[i].regno_allocno_map != NULL)
      ira_loop_nodes[i].entered_from_non_parent_p
      ira_loop_nodes[i].entered_from_non_parent_p
        = entered_from_non_parent_p (&ira_loop_nodes[i]);
        = entered_from_non_parent_p (&ira_loop_nodes[i]);
}
}
 
 
/* Return TRUE if move of SRC_ALLOCNO (assigned to hard register) to
/* Return TRUE if move of SRC_ALLOCNO (assigned to hard register) to
   DEST_ALLOCNO (assigned to memory) can be removed beacuse it does
   DEST_ALLOCNO (assigned to memory) can be removed beacuse it does
   not change value of the destination.  One possible reason for this
   not change value of the destination.  One possible reason for this
   is the situation when SRC_ALLOCNO is not modified in the
   is the situation when SRC_ALLOCNO is not modified in the
   corresponding loop.  */
   corresponding loop.  */
static bool
static bool
store_can_be_removed_p (ira_allocno_t src_allocno, ira_allocno_t dest_allocno)
store_can_be_removed_p (ira_allocno_t src_allocno, ira_allocno_t dest_allocno)
{
{
  int regno, orig_regno;
  int regno, orig_regno;
  ira_allocno_t a;
  ira_allocno_t a;
  ira_loop_tree_node_t node;
  ira_loop_tree_node_t node;
 
 
  ira_assert (ALLOCNO_CAP_MEMBER (src_allocno) == NULL
  ira_assert (ALLOCNO_CAP_MEMBER (src_allocno) == NULL
              && ALLOCNO_CAP_MEMBER (dest_allocno) == NULL);
              && ALLOCNO_CAP_MEMBER (dest_allocno) == NULL);
  orig_regno = ALLOCNO_REGNO (src_allocno);
  orig_regno = ALLOCNO_REGNO (src_allocno);
  regno = REGNO (ALLOCNO_REG (dest_allocno));
  regno = REGNO (ALLOCNO_REG (dest_allocno));
  for (node = ALLOCNO_LOOP_TREE_NODE (src_allocno);
  for (node = ALLOCNO_LOOP_TREE_NODE (src_allocno);
       node != NULL;
       node != NULL;
       node = node->parent)
       node = node->parent)
    {
    {
      a = node->regno_allocno_map[orig_regno];
      a = node->regno_allocno_map[orig_regno];
      ira_assert (a != NULL);
      ira_assert (a != NULL);
      if (REGNO (ALLOCNO_REG (a)) == (unsigned) regno)
      if (REGNO (ALLOCNO_REG (a)) == (unsigned) regno)
        /* We achieved the destination and everything is ok.  */
        /* We achieved the destination and everything is ok.  */
        return true;
        return true;
      else if (bitmap_bit_p (node->modified_regnos, orig_regno))
      else if (bitmap_bit_p (node->modified_regnos, orig_regno))
        return false;
        return false;
      else if (node->entered_from_non_parent_p)
      else if (node->entered_from_non_parent_p)
        /* If there is a path from a destination loop block to the
        /* If there is a path from a destination loop block to the
           source loop header containing basic blocks of non-parents
           source loop header containing basic blocks of non-parents
           (grandparents) of the source loop, we should have checked
           (grandparents) of the source loop, we should have checked
           modifications of the pseudo on this path too to decide
           modifications of the pseudo on this path too to decide
           about possibility to remove the store.  It could be done by
           about possibility to remove the store.  It could be done by
           solving a data-flow problem.  Unfortunately such global
           solving a data-flow problem.  Unfortunately such global
           solution would complicate IR flattening.  Therefore we just
           solution would complicate IR flattening.  Therefore we just
           prohibit removal of the store in such complicated case.  */
           prohibit removal of the store in such complicated case.  */
        return false;
        return false;
    }
    }
  gcc_unreachable ();
  gcc_unreachable ();
}
}
 
 
/* Generate and attach moves to the edge E.  This looks at the final
/* Generate and attach moves to the edge E.  This looks at the final
   regnos of allocnos living on the edge with the same original regno
   regnos of allocnos living on the edge with the same original regno
   to figure out when moves should be generated.  */
   to figure out when moves should be generated.  */
static void
static void
generate_edge_moves (edge e)
generate_edge_moves (edge e)
{
{
  ira_loop_tree_node_t src_loop_node, dest_loop_node;
  ira_loop_tree_node_t src_loop_node, dest_loop_node;
  unsigned int regno;
  unsigned int regno;
  bitmap_iterator bi;
  bitmap_iterator bi;
  ira_allocno_t src_allocno, dest_allocno, *src_map, *dest_map;
  ira_allocno_t src_allocno, dest_allocno, *src_map, *dest_map;
  move_t move;
  move_t move;
 
 
  src_loop_node = IRA_BB_NODE (e->src)->parent;
  src_loop_node = IRA_BB_NODE (e->src)->parent;
  dest_loop_node = IRA_BB_NODE (e->dest)->parent;
  dest_loop_node = IRA_BB_NODE (e->dest)->parent;
  e->aux = NULL;
  e->aux = NULL;
  if (src_loop_node == dest_loop_node)
  if (src_loop_node == dest_loop_node)
    return;
    return;
  src_map = src_loop_node->regno_allocno_map;
  src_map = src_loop_node->regno_allocno_map;
  dest_map = dest_loop_node->regno_allocno_map;
  dest_map = dest_loop_node->regno_allocno_map;
  EXECUTE_IF_SET_IN_REG_SET (DF_LR_IN (e->dest),
  EXECUTE_IF_SET_IN_REG_SET (DF_LR_IN (e->dest),
                             FIRST_PSEUDO_REGISTER, regno, bi)
                             FIRST_PSEUDO_REGISTER, regno, bi)
    if (bitmap_bit_p (DF_LR_OUT (e->src), regno))
    if (bitmap_bit_p (DF_LR_OUT (e->src), regno))
      {
      {
        src_allocno = src_map[regno];
        src_allocno = src_map[regno];
        dest_allocno = dest_map[regno];
        dest_allocno = dest_map[regno];
        if (REGNO (ALLOCNO_REG (src_allocno))
        if (REGNO (ALLOCNO_REG (src_allocno))
            == REGNO (ALLOCNO_REG (dest_allocno)))
            == REGNO (ALLOCNO_REG (dest_allocno)))
          continue;
          continue;
        /* Remove unnecessary stores at the region exit.  We should do
        /* Remove unnecessary stores at the region exit.  We should do
           this for readonly memory for sure and this is guaranteed by
           this for readonly memory for sure and this is guaranteed by
           that we never generate moves on region borders (see
           that we never generate moves on region borders (see
           checking ira_reg_equiv_invariant_p in function
           checking ira_reg_equiv_invariant_p in function
           change_loop).  */
           change_loop).  */
        if (ALLOCNO_HARD_REGNO (dest_allocno) < 0
        if (ALLOCNO_HARD_REGNO (dest_allocno) < 0
            && ALLOCNO_HARD_REGNO (src_allocno) >= 0
            && ALLOCNO_HARD_REGNO (src_allocno) >= 0
            && store_can_be_removed_p (src_allocno, dest_allocno))
            && store_can_be_removed_p (src_allocno, dest_allocno))
          {
          {
            ALLOCNO_MEM_OPTIMIZED_DEST (src_allocno) = dest_allocno;
            ALLOCNO_MEM_OPTIMIZED_DEST (src_allocno) = dest_allocno;
            ALLOCNO_MEM_OPTIMIZED_DEST_P (dest_allocno) = true;
            ALLOCNO_MEM_OPTIMIZED_DEST_P (dest_allocno) = true;
            if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
            if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
              fprintf (ira_dump_file, "      Remove r%d:a%d->a%d(mem)\n",
              fprintf (ira_dump_file, "      Remove r%d:a%d->a%d(mem)\n",
                       regno, ALLOCNO_NUM (src_allocno),
                       regno, ALLOCNO_NUM (src_allocno),
                       ALLOCNO_NUM (dest_allocno));
                       ALLOCNO_NUM (dest_allocno));
            continue;
            continue;
          }
          }
        move = create_move (dest_allocno, src_allocno);
        move = create_move (dest_allocno, src_allocno);
        add_to_edge_list (e, move, true);
        add_to_edge_list (e, move, true);
    }
    }
}
}
 
 
/* Bitmap of allocnos local for the current loop.  */
/* Bitmap of allocnos local for the current loop.  */
static bitmap local_allocno_bitmap;
static bitmap local_allocno_bitmap;
 
 
/* This bitmap is used to find that we need to generate and to use a
/* This bitmap is used to find that we need to generate and to use a
   new pseudo-register when processing allocnos with the same original
   new pseudo-register when processing allocnos with the same original
   regno.  */
   regno.  */
static bitmap used_regno_bitmap;
static bitmap used_regno_bitmap;
 
 
/* This bitmap contains regnos of allocnos which were renamed locally
/* This bitmap contains regnos of allocnos which were renamed locally
   because the allocnos correspond to disjoint live ranges in loops
   because the allocnos correspond to disjoint live ranges in loops
   with a common parent.  */
   with a common parent.  */
static bitmap renamed_regno_bitmap;
static bitmap renamed_regno_bitmap;
 
 
/* Change (if necessary) pseudo-registers inside loop given by loop
/* Change (if necessary) pseudo-registers inside loop given by loop
   tree node NODE.  */
   tree node NODE.  */
static void
static void
change_loop (ira_loop_tree_node_t node)
change_loop (ira_loop_tree_node_t node)
{
{
  bitmap_iterator bi;
  bitmap_iterator bi;
  unsigned int i;
  unsigned int i;
  int regno;
  int regno;
  bool used_p;
  bool used_p;
  ira_allocno_t allocno, parent_allocno, *map;
  ira_allocno_t allocno, parent_allocno, *map;
  rtx insn, original_reg;
  rtx insn, original_reg;
  enum reg_class cover_class;
  enum reg_class cover_class;
  ira_loop_tree_node_t parent;
  ira_loop_tree_node_t parent;
 
 
  if (node != ira_loop_tree_root)
  if (node != ira_loop_tree_root)
    {
    {
 
 
      if (node->bb != NULL)
      if (node->bb != NULL)
        {
        {
          FOR_BB_INSNS (node->bb, insn)
          FOR_BB_INSNS (node->bb, insn)
            if (INSN_P (insn) && change_regs (&insn))
            if (INSN_P (insn) && change_regs (&insn))
              {
              {
                df_insn_rescan (insn);
                df_insn_rescan (insn);
                df_notes_rescan (insn);
                df_notes_rescan (insn);
              }
              }
          return;
          return;
        }
        }
 
 
      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
      if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
        fprintf (ira_dump_file,
        fprintf (ira_dump_file,
                 "      Changing RTL for loop %d (header bb%d)\n",
                 "      Changing RTL for loop %d (header bb%d)\n",
                 node->loop->num, node->loop->header->index);
                 node->loop->num, node->loop->header->index);
 
 
      parent = ira_curr_loop_tree_node->parent;
      parent = ira_curr_loop_tree_node->parent;
      map = parent->regno_allocno_map;
      map = parent->regno_allocno_map;
      EXECUTE_IF_SET_IN_REG_SET (ira_curr_loop_tree_node->border_allocnos,
      EXECUTE_IF_SET_IN_REG_SET (ira_curr_loop_tree_node->border_allocnos,
                                 0, i, bi)
                                 0, i, bi)
        {
        {
          allocno = ira_allocnos[i];
          allocno = ira_allocnos[i];
          regno = ALLOCNO_REGNO (allocno);
          regno = ALLOCNO_REGNO (allocno);
          cover_class = ALLOCNO_COVER_CLASS (allocno);
          cover_class = ALLOCNO_COVER_CLASS (allocno);
          parent_allocno = map[regno];
          parent_allocno = map[regno];
          ira_assert (regno < ira_reg_equiv_len);
          ira_assert (regno < ira_reg_equiv_len);
          /* We generate the same hard register move because the
          /* We generate the same hard register move because the
             reload pass can put an allocno into memory in this case
             reload pass can put an allocno into memory in this case
             we will have live range splitting.  If it does not happen
             we will have live range splitting.  If it does not happen
             such the same hard register moves will be removed.  The
             such the same hard register moves will be removed.  The
             worst case when the both allocnos are put into memory by
             worst case when the both allocnos are put into memory by
             the reload is very rare.  */
             the reload is very rare.  */
          if (parent_allocno != NULL
          if (parent_allocno != NULL
              && (ALLOCNO_HARD_REGNO (allocno)
              && (ALLOCNO_HARD_REGNO (allocno)
                  == ALLOCNO_HARD_REGNO (parent_allocno))
                  == ALLOCNO_HARD_REGNO (parent_allocno))
              && (ALLOCNO_HARD_REGNO (allocno) < 0
              && (ALLOCNO_HARD_REGNO (allocno) < 0
                  || (parent->reg_pressure[cover_class] + 1
                  || (parent->reg_pressure[cover_class] + 1
                      <= ira_available_class_regs[cover_class])
                      <= ira_available_class_regs[cover_class])
                  || TEST_HARD_REG_BIT (ira_prohibited_mode_move_regs
                  || TEST_HARD_REG_BIT (ira_prohibited_mode_move_regs
                                        [ALLOCNO_MODE (allocno)],
                                        [ALLOCNO_MODE (allocno)],
                                        ALLOCNO_HARD_REGNO (allocno))
                                        ALLOCNO_HARD_REGNO (allocno))
                  /* don't create copies because reload can spill an
                  /* don't create copies because reload can spill an
                     allocno set by copy although the allocno will not
                     allocno set by copy although the allocno will not
                     get memory slot.  */
                     get memory slot.  */
                  || ira_reg_equiv_invariant_p[regno]
                  || ira_reg_equiv_invariant_p[regno]
                  || ira_reg_equiv_const[regno] != NULL_RTX))
                  || ira_reg_equiv_const[regno] != NULL_RTX))
            continue;
            continue;
          original_reg = ALLOCNO_REG (allocno);
          original_reg = ALLOCNO_REG (allocno);
          if (parent_allocno == NULL
          if (parent_allocno == NULL
              || REGNO (ALLOCNO_REG (parent_allocno)) == REGNO (original_reg))
              || REGNO (ALLOCNO_REG (parent_allocno)) == REGNO (original_reg))
            {
            {
              if (internal_flag_ira_verbose > 3 && ira_dump_file)
              if (internal_flag_ira_verbose > 3 && ira_dump_file)
                fprintf (ira_dump_file, "  %i vs parent %i:",
                fprintf (ira_dump_file, "  %i vs parent %i:",
                         ALLOCNO_HARD_REGNO (allocno),
                         ALLOCNO_HARD_REGNO (allocno),
                         ALLOCNO_HARD_REGNO (parent_allocno));
                         ALLOCNO_HARD_REGNO (parent_allocno));
              set_allocno_reg (allocno, create_new_reg (original_reg));
              set_allocno_reg (allocno, create_new_reg (original_reg));
            }
            }
        }
        }
    }
    }
  /* Rename locals: Local allocnos with same regno in different loops
  /* Rename locals: Local allocnos with same regno in different loops
     might get the different hard register.  So we need to change
     might get the different hard register.  So we need to change
     ALLOCNO_REG.  */
     ALLOCNO_REG.  */
  bitmap_and_compl (local_allocno_bitmap,
  bitmap_and_compl (local_allocno_bitmap,
                    ira_curr_loop_tree_node->all_allocnos,
                    ira_curr_loop_tree_node->all_allocnos,
                    ira_curr_loop_tree_node->border_allocnos);
                    ira_curr_loop_tree_node->border_allocnos);
  EXECUTE_IF_SET_IN_REG_SET (local_allocno_bitmap, 0, i, bi)
  EXECUTE_IF_SET_IN_REG_SET (local_allocno_bitmap, 0, i, bi)
    {
    {
      allocno = ira_allocnos[i];
      allocno = ira_allocnos[i];
      regno = ALLOCNO_REGNO (allocno);
      regno = ALLOCNO_REGNO (allocno);
      if (ALLOCNO_CAP_MEMBER (allocno) != NULL)
      if (ALLOCNO_CAP_MEMBER (allocno) != NULL)
        continue;
        continue;
      used_p = bitmap_bit_p (used_regno_bitmap, regno);
      used_p = bitmap_bit_p (used_regno_bitmap, regno);
      bitmap_set_bit (used_regno_bitmap, regno);
      bitmap_set_bit (used_regno_bitmap, regno);
      ALLOCNO_SOMEWHERE_RENAMED_P (allocno) = true;
      ALLOCNO_SOMEWHERE_RENAMED_P (allocno) = true;
      if (! used_p)
      if (! used_p)
        continue;
        continue;
      bitmap_set_bit (renamed_regno_bitmap, regno);
      bitmap_set_bit (renamed_regno_bitmap, regno);
      set_allocno_reg (allocno, create_new_reg (ALLOCNO_REG (allocno)));
      set_allocno_reg (allocno, create_new_reg (ALLOCNO_REG (allocno)));
    }
    }
}
}
 
 
/* Process to set up flag somewhere_renamed_p.  */
/* Process to set up flag somewhere_renamed_p.  */
static void
static void
set_allocno_somewhere_renamed_p (void)
set_allocno_somewhere_renamed_p (void)
{
{
  unsigned int regno;
  unsigned int regno;
  ira_allocno_t allocno;
  ira_allocno_t allocno;
  ira_allocno_iterator ai;
  ira_allocno_iterator ai;
 
 
  FOR_EACH_ALLOCNO (allocno, ai)
  FOR_EACH_ALLOCNO (allocno, ai)
    {
    {
      regno = ALLOCNO_REGNO (allocno);
      regno = ALLOCNO_REGNO (allocno);
      if (bitmap_bit_p (renamed_regno_bitmap, regno)
      if (bitmap_bit_p (renamed_regno_bitmap, regno)
          && REGNO (ALLOCNO_REG (allocno)) == regno)
          && REGNO (ALLOCNO_REG (allocno)) == regno)
        ALLOCNO_SOMEWHERE_RENAMED_P (allocno) = true;
        ALLOCNO_SOMEWHERE_RENAMED_P (allocno) = true;
    }
    }
}
}
 
 
/* Return TRUE if move lists on all edges given in vector VEC are
/* Return TRUE if move lists on all edges given in vector VEC are
   equal.  */
   equal.  */
static bool
static bool
eq_edge_move_lists_p (VEC(edge,gc) *vec)
eq_edge_move_lists_p (VEC(edge,gc) *vec)
{
{
  move_t list;
  move_t list;
  int i;
  int i;
 
 
  list = (move_t) EDGE_I (vec, 0)->aux;
  list = (move_t) EDGE_I (vec, 0)->aux;
  for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
  for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
    if (! eq_move_lists_p (list, (move_t) EDGE_I (vec, i)->aux))
    if (! eq_move_lists_p (list, (move_t) EDGE_I (vec, i)->aux))
      return false;
      return false;
  return true;
  return true;
}
}
 
 
/* Look at all entry edges (if START_P) or exit edges of basic block
/* Look at all entry edges (if START_P) or exit edges of basic block
   BB and put move lists at the BB start or end if it is possible.  In
   BB and put move lists at the BB start or end if it is possible.  In
   other words, this decreases code duplication of allocno moves.  */
   other words, this decreases code duplication of allocno moves.  */
static void
static void
unify_moves (basic_block bb, bool start_p)
unify_moves (basic_block bb, bool start_p)
{
{
  int i;
  int i;
  edge e;
  edge e;
  move_t list;
  move_t list;
  VEC(edge,gc) *vec;
  VEC(edge,gc) *vec;
 
 
  vec = (start_p ? bb->preds : bb->succs);
  vec = (start_p ? bb->preds : bb->succs);
  if (EDGE_COUNT (vec) == 0 || ! eq_edge_move_lists_p (vec))
  if (EDGE_COUNT (vec) == 0 || ! eq_edge_move_lists_p (vec))
    return;
    return;
  e = EDGE_I (vec, 0);
  e = EDGE_I (vec, 0);
  list = (move_t) e->aux;
  list = (move_t) e->aux;
  if (! start_p && control_flow_insn_p (BB_END (bb)))
  if (! start_p && control_flow_insn_p (BB_END (bb)))
    return;
    return;
  e->aux = NULL;
  e->aux = NULL;
  for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
  for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
    {
    {
      e = EDGE_I (vec, i);
      e = EDGE_I (vec, i);
      free_move_list ((move_t) e->aux);
      free_move_list ((move_t) e->aux);
      e->aux = NULL;
      e->aux = NULL;
    }
    }
  if (start_p)
  if (start_p)
    at_bb_start[bb->index] = list;
    at_bb_start[bb->index] = list;
  else
  else
    at_bb_end[bb->index] = list;
    at_bb_end[bb->index] = list;
}
}
 
 
/* Last move (in move sequence being processed) setting up the
/* Last move (in move sequence being processed) setting up the
   corresponding hard register.  */
   corresponding hard register.  */
static move_t hard_regno_last_set[FIRST_PSEUDO_REGISTER];
static move_t hard_regno_last_set[FIRST_PSEUDO_REGISTER];
 
 
/* If the element value is equal to CURR_TICK then the corresponding
/* If the element value is equal to CURR_TICK then the corresponding
   element in `hard_regno_last_set' is defined and correct.  */
   element in `hard_regno_last_set' is defined and correct.  */
static int hard_regno_last_set_check[FIRST_PSEUDO_REGISTER];
static int hard_regno_last_set_check[FIRST_PSEUDO_REGISTER];
 
 
/* Last move (in move sequence being processed) setting up the
/* Last move (in move sequence being processed) setting up the
   corresponding allocno.  */
   corresponding allocno.  */
static move_t *allocno_last_set;
static move_t *allocno_last_set;
 
 
/* If the element value is equal to CURR_TICK then the corresponding
/* If the element value is equal to CURR_TICK then the corresponding
   element in . `allocno_last_set' is defined and correct.  */
   element in . `allocno_last_set' is defined and correct.  */
static int *allocno_last_set_check;
static int *allocno_last_set_check;
 
 
/* Definition of vector of moves.  */
/* Definition of vector of moves.  */
DEF_VEC_P(move_t);
DEF_VEC_P(move_t);
DEF_VEC_ALLOC_P(move_t, heap);
DEF_VEC_ALLOC_P(move_t, heap);
 
 
/* This vec contains moves sorted topologically (depth-first) on their
/* This vec contains moves sorted topologically (depth-first) on their
   dependency graph.  */
   dependency graph.  */
static VEC(move_t,heap) *move_vec;
static VEC(move_t,heap) *move_vec;
 
 
/* The variable value is used to check correctness of values of
/* The variable value is used to check correctness of values of
   elements of arrays `hard_regno_last_set' and
   elements of arrays `hard_regno_last_set' and
   `allocno_last_set_check'.  */
   `allocno_last_set_check'.  */
static int curr_tick;
static int curr_tick;
 
 
/* This recursive function traverses dependencies of MOVE and produces
/* This recursive function traverses dependencies of MOVE and produces
   topological sorting (in depth-first order).  */
   topological sorting (in depth-first order).  */
static void
static void
traverse_moves (move_t move)
traverse_moves (move_t move)
{
{
  int i;
  int i;
 
 
  if (move->visited_p)
  if (move->visited_p)
    return;
    return;
  move->visited_p = true;
  move->visited_p = true;
  for (i = move->deps_num - 1; i >= 0; i--)
  for (i = move->deps_num - 1; i >= 0; i--)
    traverse_moves (move->deps[i]);
    traverse_moves (move->deps[i]);
  VEC_safe_push (move_t, heap, move_vec, move);
  VEC_safe_push (move_t, heap, move_vec, move);
}
}
 
 
/* Remove unnecessary moves in the LIST, makes topological sorting,
/* Remove unnecessary moves in the LIST, makes topological sorting,
   and removes cycles on hard reg dependencies by introducing new
   and removes cycles on hard reg dependencies by introducing new
   allocnos assigned to memory and additional moves.  It returns the
   allocnos assigned to memory and additional moves.  It returns the
   result move list.  */
   result move list.  */
static move_t
static move_t
modify_move_list (move_t list)
modify_move_list (move_t list)
{
{
  int i, n, nregs, hard_regno;
  int i, n, nregs, hard_regno;
  ira_allocno_t to, from, new_allocno;
  ira_allocno_t to, from, new_allocno;
  move_t move, new_move, set_move, first, last;
  move_t move, new_move, set_move, first, last;
 
 
  if (list == NULL)
  if (list == NULL)
    return NULL;
    return NULL;
  /* Creat move deps.  */
  /* Creat move deps.  */
  curr_tick++;
  curr_tick++;
  for (move = list; move != NULL; move = move->next)
  for (move = list; move != NULL; move = move->next)
    {
    {
      to = move->to;
      to = move->to;
      if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
      if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
        continue;
        continue;
      nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
      nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
      for (i = 0; i < nregs; i++)
      for (i = 0; i < nregs; i++)
        {
        {
          hard_regno_last_set[hard_regno + i] = move;
          hard_regno_last_set[hard_regno + i] = move;
          hard_regno_last_set_check[hard_regno + i] = curr_tick;
          hard_regno_last_set_check[hard_regno + i] = curr_tick;
        }
        }
    }
    }
  for (move = list; move != NULL; move = move->next)
  for (move = list; move != NULL; move = move->next)
    {
    {
      from = move->from;
      from = move->from;
      to = move->to;
      to = move->to;
      if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
      if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
        {
        {
          nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
          nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
          for (n = i = 0; i < nregs; i++)
          for (n = i = 0; i < nregs; i++)
            if (hard_regno_last_set_check[hard_regno + i] == curr_tick
            if (hard_regno_last_set_check[hard_regno + i] == curr_tick
                && (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
                && (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
                    != ALLOCNO_REGNO (from)))
                    != ALLOCNO_REGNO (from)))
              n++;
              n++;
          move->deps = (move_t *) ira_allocate (n * sizeof (move_t));
          move->deps = (move_t *) ira_allocate (n * sizeof (move_t));
          for (n = i = 0; i < nregs; i++)
          for (n = i = 0; i < nregs; i++)
            if (hard_regno_last_set_check[hard_regno + i] == curr_tick
            if (hard_regno_last_set_check[hard_regno + i] == curr_tick
                && (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
                && (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
                    != ALLOCNO_REGNO (from)))
                    != ALLOCNO_REGNO (from)))
              move->deps[n++] = hard_regno_last_set[hard_regno + i];
              move->deps[n++] = hard_regno_last_set[hard_regno + i];
          move->deps_num = n;
          move->deps_num = n;
        }
        }
    }
    }
  /* Toplogical sorting:  */
  /* Toplogical sorting:  */
  VEC_truncate (move_t, move_vec, 0);
  VEC_truncate (move_t, move_vec, 0);
  for (move = list; move != NULL; move = move->next)
  for (move = list; move != NULL; move = move->next)
    traverse_moves (move);
    traverse_moves (move);
  last = NULL;
  last = NULL;
  for (i = (int) VEC_length (move_t, move_vec) - 1; i >= 0; i--)
  for (i = (int) VEC_length (move_t, move_vec) - 1; i >= 0; i--)
    {
    {
      move = VEC_index (move_t, move_vec, i);
      move = VEC_index (move_t, move_vec, i);
      move->next = NULL;
      move->next = NULL;
      if (last != NULL)
      if (last != NULL)
        last->next = move;
        last->next = move;
      last = move;
      last = move;
    }
    }
  first = VEC_last (move_t, move_vec);
  first = VEC_last (move_t, move_vec);
  /* Removing cycles:  */
  /* Removing cycles:  */
  curr_tick++;
  curr_tick++;
  VEC_truncate (move_t, move_vec, 0);
  VEC_truncate (move_t, move_vec, 0);
  for (move = first; move != NULL; move = move->next)
  for (move = first; move != NULL; move = move->next)
    {
    {
      from = move->from;
      from = move->from;
      to = move->to;
      to = move->to;
      if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
      if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
        {
        {
          nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
          nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
          for (i = 0; i < nregs; i++)
          for (i = 0; i < nregs; i++)
            if (hard_regno_last_set_check[hard_regno + i] == curr_tick
            if (hard_regno_last_set_check[hard_regno + i] == curr_tick
                && ALLOCNO_HARD_REGNO
                && ALLOCNO_HARD_REGNO
                   (hard_regno_last_set[hard_regno + i]->to) >= 0)
                   (hard_regno_last_set[hard_regno + i]->to) >= 0)
              {
              {
                set_move = hard_regno_last_set[hard_regno + i];
                set_move = hard_regno_last_set[hard_regno + i];
                /* It does not matter what loop_tree_node (of TO or
                /* It does not matter what loop_tree_node (of TO or
                   FROM) to use for the new allocno because of
                   FROM) to use for the new allocno because of
                   subsequent IRA internal representation
                   subsequent IRA internal representation
                   flattening.  */
                   flattening.  */
                new_allocno
                new_allocno
                  = ira_create_allocno (ALLOCNO_REGNO (set_move->to), false,
                  = ira_create_allocno (ALLOCNO_REGNO (set_move->to), false,
                                        ALLOCNO_LOOP_TREE_NODE (set_move->to));
                                        ALLOCNO_LOOP_TREE_NODE (set_move->to));
                ALLOCNO_MODE (new_allocno) = ALLOCNO_MODE (set_move->to);
                ALLOCNO_MODE (new_allocno) = ALLOCNO_MODE (set_move->to);
                ira_set_allocno_cover_class
                ira_set_allocno_cover_class
                  (new_allocno, ALLOCNO_COVER_CLASS (set_move->to));
                  (new_allocno, ALLOCNO_COVER_CLASS (set_move->to));
                ALLOCNO_ASSIGNED_P (new_allocno) = true;
                ALLOCNO_ASSIGNED_P (new_allocno) = true;
                ALLOCNO_HARD_REGNO (new_allocno) = -1;
                ALLOCNO_HARD_REGNO (new_allocno) = -1;
                ALLOCNO_REG (new_allocno)
                ALLOCNO_REG (new_allocno)
                  = create_new_reg (ALLOCNO_REG (set_move->to));
                  = create_new_reg (ALLOCNO_REG (set_move->to));
                ALLOCNO_CONFLICT_ID (new_allocno) = ALLOCNO_NUM (new_allocno);
                ALLOCNO_CONFLICT_ID (new_allocno) = ALLOCNO_NUM (new_allocno);
                /* Make it possibly conflicting with all earlier
                /* Make it possibly conflicting with all earlier
                   created allocnos.  Cases where temporary allocnos
                   created allocnos.  Cases where temporary allocnos
                   created to remove the cycles are quite rare.  */
                   created to remove the cycles are quite rare.  */
                ALLOCNO_MIN (new_allocno) = 0;
                ALLOCNO_MIN (new_allocno) = 0;
                ALLOCNO_MAX (new_allocno) = ira_allocnos_num - 1;
                ALLOCNO_MAX (new_allocno) = ira_allocnos_num - 1;
                new_move = create_move (set_move->to, new_allocno);
                new_move = create_move (set_move->to, new_allocno);
                set_move->to = new_allocno;
                set_move->to = new_allocno;
                VEC_safe_push (move_t, heap, move_vec, new_move);
                VEC_safe_push (move_t, heap, move_vec, new_move);
                ira_move_loops_num++;
                ira_move_loops_num++;
                if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
                if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
                  fprintf (ira_dump_file,
                  fprintf (ira_dump_file,
                           "    Creating temporary allocno a%dr%d\n",
                           "    Creating temporary allocno a%dr%d\n",
                           ALLOCNO_NUM (new_allocno),
                           ALLOCNO_NUM (new_allocno),
                           REGNO (ALLOCNO_REG (new_allocno)));
                           REGNO (ALLOCNO_REG (new_allocno)));
              }
              }
        }
        }
      if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
      if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
        continue;
        continue;
      nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
      nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
      for (i = 0; i < nregs; i++)
      for (i = 0; i < nregs; i++)
        {
        {
          hard_regno_last_set[hard_regno + i] = move;
          hard_regno_last_set[hard_regno + i] = move;
          hard_regno_last_set_check[hard_regno + i] = curr_tick;
          hard_regno_last_set_check[hard_regno + i] = curr_tick;
        }
        }
    }
    }
  for (i = (int) VEC_length (move_t, move_vec) - 1; i >= 0; i--)
  for (i = (int) VEC_length (move_t, move_vec) - 1; i >= 0; i--)
    {
    {
      move = VEC_index (move_t, move_vec, i);
      move = VEC_index (move_t, move_vec, i);
      move->next = NULL;
      move->next = NULL;
      last->next = move;
      last->next = move;
      last = move;
      last = move;
    }
    }
  return first;
  return first;
}
}
 
 
/* Generate RTX move insns from the move list LIST.  This updates
/* Generate RTX move insns from the move list LIST.  This updates
   allocation cost using move execution frequency FREQ.  */
   allocation cost using move execution frequency FREQ.  */
static rtx
static rtx
emit_move_list (move_t list, int freq)
emit_move_list (move_t list, int freq)
{
{
  int cost;
  int cost;
  rtx result, insn;
  rtx result, insn;
  enum machine_mode mode;
  enum machine_mode mode;
  enum reg_class cover_class;
  enum reg_class cover_class;
 
 
  start_sequence ();
  start_sequence ();
  for (; list != NULL; list = list->next)
  for (; list != NULL; list = list->next)
    {
    {
      start_sequence ();
      start_sequence ();
      emit_move_insn (ALLOCNO_REG (list->to), ALLOCNO_REG (list->from));
      emit_move_insn (ALLOCNO_REG (list->to), ALLOCNO_REG (list->from));
      list->insn = get_insns ();
      list->insn = get_insns ();
      end_sequence ();
      end_sequence ();
      /* The reload needs to have set up insn codes.  If the reload
      /* The reload needs to have set up insn codes.  If the reload
         sets up insn codes by itself, it may fail because insns will
         sets up insn codes by itself, it may fail because insns will
         have hard registers instead of pseudos and there may be no
         have hard registers instead of pseudos and there may be no
         machine insn with given hard registers.  */
         machine insn with given hard registers.  */
      for (insn = list->insn; insn != NULL_RTX; insn = NEXT_INSN (insn))
      for (insn = list->insn; insn != NULL_RTX; insn = NEXT_INSN (insn))
        recog_memoized (insn);
        recog_memoized (insn);
      emit_insn (list->insn);
      emit_insn (list->insn);
      mode = ALLOCNO_MODE (list->to);
      mode = ALLOCNO_MODE (list->to);
      cover_class = ALLOCNO_COVER_CLASS (list->to);
      cover_class = ALLOCNO_COVER_CLASS (list->to);
      cost = 0;
      cost = 0;
      if (ALLOCNO_HARD_REGNO (list->to) < 0)
      if (ALLOCNO_HARD_REGNO (list->to) < 0)
        {
        {
          if (ALLOCNO_HARD_REGNO (list->from) >= 0)
          if (ALLOCNO_HARD_REGNO (list->from) >= 0)
            {
            {
              cost = ira_memory_move_cost[mode][cover_class][0] * freq;
              cost = ira_memory_move_cost[mode][cover_class][0] * freq;
              ira_store_cost += cost;
              ira_store_cost += cost;
            }
            }
        }
        }
      else if (ALLOCNO_HARD_REGNO (list->from) < 0)
      else if (ALLOCNO_HARD_REGNO (list->from) < 0)
        {
        {
          if (ALLOCNO_HARD_REGNO (list->to) >= 0)
          if (ALLOCNO_HARD_REGNO (list->to) >= 0)
            {
            {
              cost = ira_memory_move_cost[mode][cover_class][0] * freq;
              cost = ira_memory_move_cost[mode][cover_class][0] * freq;
              ira_load_cost += cost;
              ira_load_cost += cost;
            }
            }
        }
        }
      else
      else
        {
        {
          cost = (ira_get_register_move_cost (mode, cover_class, cover_class)
          cost = (ira_get_register_move_cost (mode, cover_class, cover_class)
                  * freq);
                  * freq);
          ira_shuffle_cost += cost;
          ira_shuffle_cost += cost;
        }
        }
      ira_overall_cost += cost;
      ira_overall_cost += cost;
    }
    }
  result = get_insns ();
  result = get_insns ();
  end_sequence ();
  end_sequence ();
  return result;
  return result;
}
}
 
 
/* Generate RTX move insns from move lists attached to basic blocks
/* Generate RTX move insns from move lists attached to basic blocks
   and edges.  */
   and edges.  */
static void
static void
emit_moves (void)
emit_moves (void)
{
{
  basic_block bb;
  basic_block bb;
  edge_iterator ei;
  edge_iterator ei;
  edge e;
  edge e;
  rtx insns, tmp;
  rtx insns, tmp;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      if (at_bb_start[bb->index] != NULL)
      if (at_bb_start[bb->index] != NULL)
        {
        {
          at_bb_start[bb->index] = modify_move_list (at_bb_start[bb->index]);
          at_bb_start[bb->index] = modify_move_list (at_bb_start[bb->index]);
          insns = emit_move_list (at_bb_start[bb->index],
          insns = emit_move_list (at_bb_start[bb->index],
                                  REG_FREQ_FROM_BB (bb));
                                  REG_FREQ_FROM_BB (bb));
          tmp = BB_HEAD (bb);
          tmp = BB_HEAD (bb);
          if (LABEL_P (tmp))
          if (LABEL_P (tmp))
            tmp = NEXT_INSN (tmp);
            tmp = NEXT_INSN (tmp);
          if (NOTE_INSN_BASIC_BLOCK_P (tmp))
          if (NOTE_INSN_BASIC_BLOCK_P (tmp))
            tmp = NEXT_INSN (tmp);
            tmp = NEXT_INSN (tmp);
          if (tmp == BB_HEAD (bb))
          if (tmp == BB_HEAD (bb))
            emit_insn_before (insns, tmp);
            emit_insn_before (insns, tmp);
          else if (tmp != NULL_RTX)
          else if (tmp != NULL_RTX)
            emit_insn_after (insns, PREV_INSN (tmp));
            emit_insn_after (insns, PREV_INSN (tmp));
          else
          else
            emit_insn_after (insns, get_last_insn ());
            emit_insn_after (insns, get_last_insn ());
        }
        }
 
 
      if (at_bb_end[bb->index] != NULL)
      if (at_bb_end[bb->index] != NULL)
        {
        {
          at_bb_end[bb->index] = modify_move_list (at_bb_end[bb->index]);
          at_bb_end[bb->index] = modify_move_list (at_bb_end[bb->index]);
          insns = emit_move_list (at_bb_end[bb->index], REG_FREQ_FROM_BB (bb));
          insns = emit_move_list (at_bb_end[bb->index], REG_FREQ_FROM_BB (bb));
          ira_assert (! control_flow_insn_p (BB_END (bb)));
          ira_assert (! control_flow_insn_p (BB_END (bb)));
          emit_insn_after (insns, BB_END (bb));
          emit_insn_after (insns, BB_END (bb));
        }
        }
 
 
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        {
        {
          if (e->aux == NULL)
          if (e->aux == NULL)
            continue;
            continue;
          ira_assert ((e->flags & EDGE_ABNORMAL) == 0
          ira_assert ((e->flags & EDGE_ABNORMAL) == 0
                      || ! EDGE_CRITICAL_P (e));
                      || ! EDGE_CRITICAL_P (e));
          e->aux = modify_move_list ((move_t) e->aux);
          e->aux = modify_move_list ((move_t) e->aux);
          insert_insn_on_edge
          insert_insn_on_edge
            (emit_move_list ((move_t) e->aux,
            (emit_move_list ((move_t) e->aux,
                             REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e))),
                             REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e))),
             e);
             e);
          if (e->src->next_bb != e->dest)
          if (e->src->next_bb != e->dest)
            ira_additional_jumps_num++;
            ira_additional_jumps_num++;
        }
        }
    }
    }
}
}
 
 
/* Update costs of A and corresponding allocnos on upper levels on the
/* Update costs of A and corresponding allocnos on upper levels on the
   loop tree from reading (if READ_P) or writing A on an execution
   loop tree from reading (if READ_P) or writing A on an execution
   path with FREQ.  */
   path with FREQ.  */
static void
static void
update_costs (ira_allocno_t a, bool read_p, int freq)
update_costs (ira_allocno_t a, bool read_p, int freq)
{
{
  ira_loop_tree_node_t parent;
  ira_loop_tree_node_t parent;
 
 
  for (;;)
  for (;;)
    {
    {
      ALLOCNO_NREFS (a)++;
      ALLOCNO_NREFS (a)++;
      ALLOCNO_FREQ (a) += freq;
      ALLOCNO_FREQ (a) += freq;
      ALLOCNO_MEMORY_COST (a)
      ALLOCNO_MEMORY_COST (a)
        += (ira_memory_move_cost[ALLOCNO_MODE (a)][ALLOCNO_COVER_CLASS (a)]
        += (ira_memory_move_cost[ALLOCNO_MODE (a)][ALLOCNO_COVER_CLASS (a)]
            [read_p ? 1 : 0] * freq);
            [read_p ? 1 : 0] * freq);
      if (ALLOCNO_CAP (a) != NULL)
      if (ALLOCNO_CAP (a) != NULL)
        a = ALLOCNO_CAP (a);
        a = ALLOCNO_CAP (a);
      else if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL
      else if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL
               || (a = parent->regno_allocno_map[ALLOCNO_REGNO (a)]) == NULL)
               || (a = parent->regno_allocno_map[ALLOCNO_REGNO (a)]) == NULL)
        break;
        break;
    }
    }
}
}
 
 
/* Process moves from LIST with execution FREQ to add ranges, copies,
/* Process moves from LIST with execution FREQ to add ranges, copies,
   and modify costs for allocnos involved in the moves.  All regnos
   and modify costs for allocnos involved in the moves.  All regnos
   living through the list is in LIVE_THROUGH, and the loop tree node
   living through the list is in LIVE_THROUGH, and the loop tree node
   used to find corresponding allocnos is NODE.  */
   used to find corresponding allocnos is NODE.  */
static void
static void
add_range_and_copies_from_move_list (move_t list, ira_loop_tree_node_t node,
add_range_and_copies_from_move_list (move_t list, ira_loop_tree_node_t node,
                                     bitmap live_through, int freq)
                                     bitmap live_through, int freq)
{
{
  int start, n;
  int start, n;
  unsigned int regno;
  unsigned int regno;
  move_t move;
  move_t move;
  ira_allocno_t to, from, a;
  ira_allocno_t to, from, a;
  ira_copy_t cp;
  ira_copy_t cp;
  allocno_live_range_t r;
  allocno_live_range_t r;
  bitmap_iterator bi;
  bitmap_iterator bi;
  HARD_REG_SET hard_regs_live;
  HARD_REG_SET hard_regs_live;
 
 
  if (list == NULL)
  if (list == NULL)
    return;
    return;
  n = 0;
  n = 0;
  EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
  EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
    n++;
    n++;
  REG_SET_TO_HARD_REG_SET (hard_regs_live, live_through);
  REG_SET_TO_HARD_REG_SET (hard_regs_live, live_through);
  /* This is a trick to guarantee that new ranges is not merged with
  /* This is a trick to guarantee that new ranges is not merged with
     the old ones.  */
     the old ones.  */
  ira_max_point++;
  ira_max_point++;
  start = ira_max_point;
  start = ira_max_point;
  for (move = list; move != NULL; move = move->next)
  for (move = list; move != NULL; move = move->next)
    {
    {
      from = move->from;
      from = move->from;
      to = move->to;
      to = move->to;
      if (ALLOCNO_CONFLICT_ALLOCNO_ARRAY (to) == NULL)
      if (ALLOCNO_CONFLICT_ALLOCNO_ARRAY (to) == NULL)
        {
        {
          if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
          if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
            fprintf (ira_dump_file, "    Allocate conflicts for a%dr%d\n",
            fprintf (ira_dump_file, "    Allocate conflicts for a%dr%d\n",
                     ALLOCNO_NUM (to), REGNO (ALLOCNO_REG (to)));
                     ALLOCNO_NUM (to), REGNO (ALLOCNO_REG (to)));
          ira_allocate_allocno_conflicts (to, n);
          ira_allocate_allocno_conflicts (to, n);
        }
        }
      bitmap_clear_bit (live_through, ALLOCNO_REGNO (from));
      bitmap_clear_bit (live_through, ALLOCNO_REGNO (from));
      bitmap_clear_bit (live_through, ALLOCNO_REGNO (to));
      bitmap_clear_bit (live_through, ALLOCNO_REGNO (to));
      IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (from), hard_regs_live);
      IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (from), hard_regs_live);
      IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (to), hard_regs_live);
      IOR_HARD_REG_SET (ALLOCNO_CONFLICT_HARD_REGS (to), hard_regs_live);
      IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (from),
      IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (from),
                        hard_regs_live);
                        hard_regs_live);
      IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (to), hard_regs_live);
      IOR_HARD_REG_SET (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (to), hard_regs_live);
      update_costs (from, true, freq);
      update_costs (from, true, freq);
      update_costs (to, false, freq);
      update_costs (to, false, freq);
      cp = ira_add_allocno_copy (from, to, freq, false, move->insn, NULL);
      cp = ira_add_allocno_copy (from, to, freq, false, move->insn, NULL);
      if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
      if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
        fprintf (ira_dump_file, "    Adding cp%d:a%dr%d-a%dr%d\n",
        fprintf (ira_dump_file, "    Adding cp%d:a%dr%d-a%dr%d\n",
                 cp->num, ALLOCNO_NUM (cp->first),
                 cp->num, ALLOCNO_NUM (cp->first),
                 REGNO (ALLOCNO_REG (cp->first)), ALLOCNO_NUM (cp->second),
                 REGNO (ALLOCNO_REG (cp->first)), ALLOCNO_NUM (cp->second),
                 REGNO (ALLOCNO_REG (cp->second)));
                 REGNO (ALLOCNO_REG (cp->second)));
      r = ALLOCNO_LIVE_RANGES (from);
      r = ALLOCNO_LIVE_RANGES (from);
      if (r == NULL || r->finish >= 0)
      if (r == NULL || r->finish >= 0)
        {
        {
          ALLOCNO_LIVE_RANGES (from)
          ALLOCNO_LIVE_RANGES (from)
            = ira_create_allocno_live_range (from, start, ira_max_point, r);
            = ira_create_allocno_live_range (from, start, ira_max_point, r);
          if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
          if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
            fprintf (ira_dump_file,
            fprintf (ira_dump_file,
                     "    Adding range [%d..%d] to allocno a%dr%d\n",
                     "    Adding range [%d..%d] to allocno a%dr%d\n",
                     start, ira_max_point, ALLOCNO_NUM (from),
                     start, ira_max_point, ALLOCNO_NUM (from),
                     REGNO (ALLOCNO_REG (from)));
                     REGNO (ALLOCNO_REG (from)));
        }
        }
      else
      else
        {
        {
          r->finish = ira_max_point;
          r->finish = ira_max_point;
          if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
          if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
            fprintf (ira_dump_file,
            fprintf (ira_dump_file,
                     "    Adding range [%d..%d] to allocno a%dr%d\n",
                     "    Adding range [%d..%d] to allocno a%dr%d\n",
                     r->start, ira_max_point, ALLOCNO_NUM (from),
                     r->start, ira_max_point, ALLOCNO_NUM (from),
                     REGNO (ALLOCNO_REG (from)));
                     REGNO (ALLOCNO_REG (from)));
        }
        }
      ira_max_point++;
      ira_max_point++;
      ALLOCNO_LIVE_RANGES (to)
      ALLOCNO_LIVE_RANGES (to)
        = ira_create_allocno_live_range (to, ira_max_point, -1,
        = ira_create_allocno_live_range (to, ira_max_point, -1,
                                         ALLOCNO_LIVE_RANGES (to));
                                         ALLOCNO_LIVE_RANGES (to));
      ira_max_point++;
      ira_max_point++;
    }
    }
  for (move = list; move != NULL; move = move->next)
  for (move = list; move != NULL; move = move->next)
    {
    {
      r = ALLOCNO_LIVE_RANGES (move->to);
      r = ALLOCNO_LIVE_RANGES (move->to);
      if (r->finish < 0)
      if (r->finish < 0)
        {
        {
          r->finish = ira_max_point - 1;
          r->finish = ira_max_point - 1;
          if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
          if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
            fprintf (ira_dump_file,
            fprintf (ira_dump_file,
                     "    Adding range [%d..%d] to allocno a%dr%d\n",
                     "    Adding range [%d..%d] to allocno a%dr%d\n",
                     r->start, r->finish, ALLOCNO_NUM (move->to),
                     r->start, r->finish, ALLOCNO_NUM (move->to),
                     REGNO (ALLOCNO_REG (move->to)));
                     REGNO (ALLOCNO_REG (move->to)));
        }
        }
    }
    }
  EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
  EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
    {
    {
      a = node->regno_allocno_map[regno];
      a = node->regno_allocno_map[regno];
      if ((to = ALLOCNO_MEM_OPTIMIZED_DEST (a)) != NULL)
      if ((to = ALLOCNO_MEM_OPTIMIZED_DEST (a)) != NULL)
        a = to;
        a = to;
      ALLOCNO_LIVE_RANGES (a)
      ALLOCNO_LIVE_RANGES (a)
        = ira_create_allocno_live_range (a, start, ira_max_point - 1,
        = ira_create_allocno_live_range (a, start, ira_max_point - 1,
                                         ALLOCNO_LIVE_RANGES (a));
                                         ALLOCNO_LIVE_RANGES (a));
      if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
      if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
        fprintf
        fprintf
          (ira_dump_file,
          (ira_dump_file,
           "    Adding range [%d..%d] to live through %s allocno a%dr%d\n",
           "    Adding range [%d..%d] to live through %s allocno a%dr%d\n",
           start, ira_max_point - 1,
           start, ira_max_point - 1,
           to != NULL ? "upper level" : "",
           to != NULL ? "upper level" : "",
           ALLOCNO_NUM (a), REGNO (ALLOCNO_REG (a)));
           ALLOCNO_NUM (a), REGNO (ALLOCNO_REG (a)));
    }
    }
}
}
 
 
/* Process all move list to add ranges, conflicts, copies, and modify
/* Process all move list to add ranges, conflicts, copies, and modify
   costs for allocnos involved in the moves.  */
   costs for allocnos involved in the moves.  */
static void
static void
add_ranges_and_copies (void)
add_ranges_and_copies (void)
{
{
  basic_block bb;
  basic_block bb;
  edge_iterator ei;
  edge_iterator ei;
  edge e;
  edge e;
  ira_loop_tree_node_t node;
  ira_loop_tree_node_t node;
  bitmap live_through;
  bitmap live_through;
 
 
  live_through = ira_allocate_bitmap ();
  live_through = ira_allocate_bitmap ();
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      /* It does not matter what loop_tree_node (of source or
      /* It does not matter what loop_tree_node (of source or
         destination block) to use for searching allocnos by their
         destination block) to use for searching allocnos by their
         regnos because of subsequent IR flattening.  */
         regnos because of subsequent IR flattening.  */
      node = IRA_BB_NODE (bb)->parent;
      node = IRA_BB_NODE (bb)->parent;
      bitmap_copy (live_through, DF_LR_IN (bb));
      bitmap_copy (live_through, DF_LR_IN (bb));
      add_range_and_copies_from_move_list
      add_range_and_copies_from_move_list
        (at_bb_start[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
        (at_bb_start[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
      bitmap_copy (live_through, DF_LR_OUT (bb));
      bitmap_copy (live_through, DF_LR_OUT (bb));
      add_range_and_copies_from_move_list
      add_range_and_copies_from_move_list
        (at_bb_end[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
        (at_bb_end[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        {
        {
          bitmap_and (live_through, DF_LR_IN (e->dest), DF_LR_OUT (bb));
          bitmap_and (live_through, DF_LR_IN (e->dest), DF_LR_OUT (bb));
          add_range_and_copies_from_move_list
          add_range_and_copies_from_move_list
            ((move_t) e->aux, node, live_through,
            ((move_t) e->aux, node, live_through,
             REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e)));
             REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e)));
        }
        }
    }
    }
  ira_free_bitmap (live_through);
  ira_free_bitmap (live_through);
}
}
 
 
/* The entry function changes code and generates shuffling allocnos on
/* The entry function changes code and generates shuffling allocnos on
   region borders for the regional (LOOPS_P is TRUE in this case)
   region borders for the regional (LOOPS_P is TRUE in this case)
   register allocation.  */
   register allocation.  */
void
void
ira_emit (bool loops_p)
ira_emit (bool loops_p)
{
{
  basic_block bb;
  basic_block bb;
  rtx insn;
  rtx insn;
  edge_iterator ei;
  edge_iterator ei;
  edge e;
  edge e;
  ira_allocno_t a;
  ira_allocno_t a;
  ira_allocno_iterator ai;
  ira_allocno_iterator ai;
 
 
  FOR_EACH_ALLOCNO (a, ai)
  FOR_EACH_ALLOCNO (a, ai)
    ALLOCNO_REG (a) = regno_reg_rtx[ALLOCNO_REGNO (a)];
    ALLOCNO_REG (a) = regno_reg_rtx[ALLOCNO_REGNO (a)];
  if (! loops_p)
  if (! loops_p)
    return;
    return;
  at_bb_start = (move_t *) ira_allocate (sizeof (move_t) * last_basic_block);
  at_bb_start = (move_t *) ira_allocate (sizeof (move_t) * last_basic_block);
  memset (at_bb_start, 0, sizeof (move_t) * last_basic_block);
  memset (at_bb_start, 0, sizeof (move_t) * last_basic_block);
  at_bb_end = (move_t *) ira_allocate (sizeof (move_t) * last_basic_block);
  at_bb_end = (move_t *) ira_allocate (sizeof (move_t) * last_basic_block);
  memset (at_bb_end, 0, sizeof (move_t) * last_basic_block);
  memset (at_bb_end, 0, sizeof (move_t) * last_basic_block);
  local_allocno_bitmap = ira_allocate_bitmap ();
  local_allocno_bitmap = ira_allocate_bitmap ();
  used_regno_bitmap = ira_allocate_bitmap ();
  used_regno_bitmap = ira_allocate_bitmap ();
  renamed_regno_bitmap = ira_allocate_bitmap ();
  renamed_regno_bitmap = ira_allocate_bitmap ();
  max_regno_before_changing = max_reg_num ();
  max_regno_before_changing = max_reg_num ();
  ira_traverse_loop_tree (true, ira_loop_tree_root, change_loop, NULL);
  ira_traverse_loop_tree (true, ira_loop_tree_root, change_loop, NULL);
  set_allocno_somewhere_renamed_p ();
  set_allocno_somewhere_renamed_p ();
  ira_free_bitmap (used_regno_bitmap);
  ira_free_bitmap (used_regno_bitmap);
  ira_free_bitmap (renamed_regno_bitmap);
  ira_free_bitmap (renamed_regno_bitmap);
  ira_free_bitmap (local_allocno_bitmap);
  ira_free_bitmap (local_allocno_bitmap);
  setup_entered_from_non_parent_p ();
  setup_entered_from_non_parent_p ();
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      at_bb_start[bb->index] = NULL;
      at_bb_start[bb->index] = NULL;
      at_bb_end[bb->index] = NULL;
      at_bb_end[bb->index] = NULL;
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        if (e->dest != EXIT_BLOCK_PTR)
        if (e->dest != EXIT_BLOCK_PTR)
          generate_edge_moves (e);
          generate_edge_moves (e);
    }
    }
  allocno_last_set
  allocno_last_set
    = (move_t *) ira_allocate (sizeof (move_t) * max_reg_num ());
    = (move_t *) ira_allocate (sizeof (move_t) * max_reg_num ());
  allocno_last_set_check
  allocno_last_set_check
    = (int *) ira_allocate (sizeof (int) * max_reg_num ());
    = (int *) ira_allocate (sizeof (int) * max_reg_num ());
  memset (allocno_last_set_check, 0, sizeof (int) * max_reg_num ());
  memset (allocno_last_set_check, 0, sizeof (int) * max_reg_num ());
  memset (hard_regno_last_set_check, 0, sizeof (hard_regno_last_set_check));
  memset (hard_regno_last_set_check, 0, sizeof (hard_regno_last_set_check));
  curr_tick = 0;
  curr_tick = 0;
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    unify_moves (bb, true);
    unify_moves (bb, true);
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    unify_moves (bb, false);
    unify_moves (bb, false);
  move_vec = VEC_alloc (move_t, heap, ira_allocnos_num);
  move_vec = VEC_alloc (move_t, heap, ira_allocnos_num);
  emit_moves ();
  emit_moves ();
  add_ranges_and_copies ();
  add_ranges_and_copies ();
  /* Clean up: */
  /* Clean up: */
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      free_move_list (at_bb_start[bb->index]);
      free_move_list (at_bb_start[bb->index]);
      free_move_list (at_bb_end[bb->index]);
      free_move_list (at_bb_end[bb->index]);
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        {
        {
          free_move_list ((move_t) e->aux);
          free_move_list ((move_t) e->aux);
          e->aux = NULL;
          e->aux = NULL;
        }
        }
    }
    }
  VEC_free (move_t, heap, move_vec);
  VEC_free (move_t, heap, move_vec);
  ira_free (allocno_last_set_check);
  ira_free (allocno_last_set_check);
  ira_free (allocno_last_set);
  ira_free (allocno_last_set);
  commit_edge_insertions ();
  commit_edge_insertions ();
  /* Fix insn codes.  It is necessary to do it before reload because
  /* Fix insn codes.  It is necessary to do it before reload because
     reload assumes initial insn codes defined.  The insn codes can be
     reload assumes initial insn codes defined.  The insn codes can be
     invalidated by CFG infrastructure for example in jump
     invalidated by CFG infrastructure for example in jump
     redirection.  */
     redirection.  */
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    FOR_BB_INSNS_REVERSE (bb, insn)
    FOR_BB_INSNS_REVERSE (bb, insn)
      if (INSN_P (insn))
      if (INSN_P (insn))
        recog_memoized (insn);
        recog_memoized (insn);
  ira_free (at_bb_end);
  ira_free (at_bb_end);
  ira_free (at_bb_start);
  ira_free (at_bb_start);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.