OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-src/] [gcc-4.5.1/] [gcc-4.5.1-or32-1.0rc3/] [gcc/] [tree-call-cdce.c] - Diff between revs 280 and 516

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 280 Rev 516
/* Conditional Dead Call Elimination pass for the GNU compiler.
/* Conditional Dead Call Elimination pass for the GNU compiler.
   Copyright (C) 2008
   Copyright (C) 2008
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Contributed by Xinliang David Li <davidxl@google.com>
   Contributed by Xinliang David Li <davidxl@google.com>
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
Free Software Foundation; either version 3, or (at your option) any
later version.
later version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "ggc.h"
#include "ggc.h"
 
 
/* These RTL headers are needed for basic-block.h.  */
/* These RTL headers are needed for basic-block.h.  */
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "obstack.h"
#include "obstack.h"
#include "basic-block.h"
#include "basic-block.h"
 
 
#include "tree.h"
#include "tree.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "gimple.h"
#include "gimple.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "timevar.h"
#include "timevar.h"
#include "flags.h"
#include "flags.h"


 
 
/* Conditional dead call elimination
/* Conditional dead call elimination
 
 
   Some builtin functions can set errno on error conditions, but they
   Some builtin functions can set errno on error conditions, but they
   are otherwise pure.  If the result of a call to such a function is
   are otherwise pure.  If the result of a call to such a function is
   not used, the compiler can still not eliminate the call without
   not used, the compiler can still not eliminate the call without
   powerful interprocedural analysis to prove that the errno is not
   powerful interprocedural analysis to prove that the errno is not
   checked.  However, if the conditions under which the error occurs
   checked.  However, if the conditions under which the error occurs
   are known, the compiler can conditionally dead code eliminate the
   are known, the compiler can conditionally dead code eliminate the
   calls by shrink-wrapping the semi-dead calls into the error condition:
   calls by shrink-wrapping the semi-dead calls into the error condition:
 
 
        built_in_call (args)
        built_in_call (args)
          ==>
          ==>
        if (error_cond (args))
        if (error_cond (args))
             built_in_call (args)
             built_in_call (args)
 
 
    An actual simple example is :
    An actual simple example is :
         log (x);   // Mostly dead call
         log (x);   // Mostly dead call
     ==>
     ==>
         if (x < 0)
         if (x < 0)
             log (x);
             log (x);
     With this change, call to log (x) is effectively eliminated, as
     With this change, call to log (x) is effectively eliminated, as
     in majority of the cases, log won't be called with x out of
     in majority of the cases, log won't be called with x out of
     range.  The branch is totally predictable, so the branch cost
     range.  The branch is totally predictable, so the branch cost
     is low.
     is low.
 
 
   Note that library functions are not supposed to clear errno to zero without
   Note that library functions are not supposed to clear errno to zero without
   error.  See IEEE Std 1003.1, section 2.3 Error Numbers, and section 7.5:3 of
   error.  See IEEE Std 1003.1, section 2.3 Error Numbers, and section 7.5:3 of
   ISO/IEC 9899 (C99).
   ISO/IEC 9899 (C99).
 
 
   The condition wrapping the builtin call is conservatively set to avoid too
   The condition wrapping the builtin call is conservatively set to avoid too
   aggressive (wrong) shrink wrapping.  The optimization is called conditional
   aggressive (wrong) shrink wrapping.  The optimization is called conditional
   dead call elimination because the call is eliminated under the condition
   dead call elimination because the call is eliminated under the condition
   that the input arguments would not lead to domain or range error (for
   that the input arguments would not lead to domain or range error (for
   instance when x <= 0 for a log (x) call), however the chances that the error
   instance when x <= 0 for a log (x) call), however the chances that the error
   condition is hit is very low (those builtin calls which are conditionally
   condition is hit is very low (those builtin calls which are conditionally
   dead are usually part of the C++ abstraction penalty exposed after
   dead are usually part of the C++ abstraction penalty exposed after
   inlining).  */
   inlining).  */
 
 
 
 
/* A structure for representing input domain of
/* A structure for representing input domain of
   a function argument in integer.  If the lower
   a function argument in integer.  If the lower
   bound is -inf, has_lb is set to false.  If the
   bound is -inf, has_lb is set to false.  If the
   upper bound is +inf, has_ub is false.
   upper bound is +inf, has_ub is false.
   is_lb_inclusive and is_ub_inclusive are flags
   is_lb_inclusive and is_ub_inclusive are flags
   to indicate if lb and ub value are inclusive
   to indicate if lb and ub value are inclusive
   respectively.  */
   respectively.  */
 
 
typedef struct input_domain
typedef struct input_domain
{
{
  int lb;
  int lb;
  int ub;
  int ub;
  bool has_lb;
  bool has_lb;
  bool has_ub;
  bool has_ub;
  bool is_lb_inclusive;
  bool is_lb_inclusive;
  bool is_ub_inclusive;
  bool is_ub_inclusive;
} inp_domain;
} inp_domain;
 
 
/* A helper function to construct and return an input
/* A helper function to construct and return an input
   domain object.  LB is the lower bound, HAS_LB is
   domain object.  LB is the lower bound, HAS_LB is
   a boolean flag indicating if the lower bound exists,
   a boolean flag indicating if the lower bound exists,
   and LB_INCLUSIVE is a boolean flag indicating if the
   and LB_INCLUSIVE is a boolean flag indicating if the
   lower bound is inclusive or not.  UB, HAS_UB, and
   lower bound is inclusive or not.  UB, HAS_UB, and
   UB_INCLUSIVE have the same meaning, but for upper
   UB_INCLUSIVE have the same meaning, but for upper
   bound of the domain.  */
   bound of the domain.  */
 
 
static inp_domain
static inp_domain
get_domain (int lb, bool has_lb, bool lb_inclusive,
get_domain (int lb, bool has_lb, bool lb_inclusive,
            int ub, bool has_ub, bool ub_inclusive)
            int ub, bool has_ub, bool ub_inclusive)
{
{
  inp_domain domain;
  inp_domain domain;
  domain.lb = lb;
  domain.lb = lb;
  domain.has_lb = has_lb;
  domain.has_lb = has_lb;
  domain.is_lb_inclusive = lb_inclusive;
  domain.is_lb_inclusive = lb_inclusive;
  domain.ub = ub;
  domain.ub = ub;
  domain.has_ub = has_ub;
  domain.has_ub = has_ub;
  domain.is_ub_inclusive = ub_inclusive;
  domain.is_ub_inclusive = ub_inclusive;
  return domain;
  return domain;
}
}
 
 
/* A helper function to check the target format for the
/* A helper function to check the target format for the
   argument type. In this implementation, only IEEE formats
   argument type. In this implementation, only IEEE formats
   are supported.  ARG is the call argument to be checked.
   are supported.  ARG is the call argument to be checked.
   Returns true if the format is supported.  To support other
   Returns true if the format is supported.  To support other
   target formats,  function get_no_error_domain needs to be
   target formats,  function get_no_error_domain needs to be
   enhanced to have range bounds properly computed. Since
   enhanced to have range bounds properly computed. Since
   the check is cheap (very small number of candidates
   the check is cheap (very small number of candidates
   to be checked), the result is not cached for each float type.  */
   to be checked), the result is not cached for each float type.  */
 
 
static bool
static bool
check_target_format (tree arg)
check_target_format (tree arg)
{
{
  tree type;
  tree type;
  enum machine_mode mode;
  enum machine_mode mode;
  const struct real_format *rfmt;
  const struct real_format *rfmt;
 
 
  type = TREE_TYPE (arg);
  type = TREE_TYPE (arg);
  mode = TYPE_MODE (type);
  mode = TYPE_MODE (type);
  rfmt = REAL_MODE_FORMAT (mode);
  rfmt = REAL_MODE_FORMAT (mode);
  if ((mode == SFmode
  if ((mode == SFmode
       && (rfmt == &ieee_single_format || rfmt == &mips_single_format
       && (rfmt == &ieee_single_format || rfmt == &mips_single_format
           || rfmt == &motorola_single_format))
           || rfmt == &motorola_single_format))
      || (mode == DFmode
      || (mode == DFmode
          && (rfmt == &ieee_double_format || rfmt == &mips_double_format
          && (rfmt == &ieee_double_format || rfmt == &mips_double_format
              || rfmt == &motorola_double_format))
              || rfmt == &motorola_double_format))
      /* For long double, we can not really check XFmode
      /* For long double, we can not really check XFmode
         which is only defined on intel platforms.
         which is only defined on intel platforms.
         Candidate pre-selection using builtin function
         Candidate pre-selection using builtin function
         code guarantees that we are checking formats
         code guarantees that we are checking formats
         for long double modes: double, quad, and extended.  */
         for long double modes: double, quad, and extended.  */
      || (mode != SFmode && mode != DFmode
      || (mode != SFmode && mode != DFmode
          && (rfmt == &ieee_quad_format
          && (rfmt == &ieee_quad_format
              || rfmt == &mips_quad_format
              || rfmt == &mips_quad_format
              || rfmt == &ieee_extended_motorola_format
              || rfmt == &ieee_extended_motorola_format
              || rfmt == &ieee_extended_intel_96_format
              || rfmt == &ieee_extended_intel_96_format
              || rfmt == &ieee_extended_intel_128_format
              || rfmt == &ieee_extended_intel_128_format
              || rfmt == &ieee_extended_intel_96_round_53_format)))
              || rfmt == &ieee_extended_intel_96_round_53_format)))
    return true;
    return true;
 
 
  return false;
  return false;
}
}
 
 


/* A helper function to help select calls to pow that are suitable for
/* A helper function to help select calls to pow that are suitable for
   conditional DCE transformation.  It looks for pow calls that can be
   conditional DCE transformation.  It looks for pow calls that can be
   guided with simple conditions.  Such calls either have constant base
   guided with simple conditions.  Such calls either have constant base
   values or base values converted from integers.  Returns true if
   values or base values converted from integers.  Returns true if
   the pow call POW_CALL is a candidate.  */
   the pow call POW_CALL is a candidate.  */
 
 
/* The maximum integer bit size for base argument of a pow call
/* The maximum integer bit size for base argument of a pow call
   that is suitable for shrink-wrapping transformation.  */
   that is suitable for shrink-wrapping transformation.  */
#define MAX_BASE_INT_BIT_SIZE 32
#define MAX_BASE_INT_BIT_SIZE 32
 
 
static bool
static bool
check_pow (gimple pow_call)
check_pow (gimple pow_call)
{
{
  tree base, expn;
  tree base, expn;
  enum tree_code bc, ec;
  enum tree_code bc, ec;
 
 
  if (gimple_call_num_args (pow_call) != 2)
  if (gimple_call_num_args (pow_call) != 2)
    return false;
    return false;
 
 
  base = gimple_call_arg (pow_call, 0);
  base = gimple_call_arg (pow_call, 0);
  expn = gimple_call_arg (pow_call, 1);
  expn = gimple_call_arg (pow_call, 1);
 
 
  if (!check_target_format (expn))
  if (!check_target_format (expn))
    return false;
    return false;
 
 
  bc = TREE_CODE (base);
  bc = TREE_CODE (base);
  ec = TREE_CODE (expn);
  ec = TREE_CODE (expn);
 
 
  /* Folding candidates are not interesting.
  /* Folding candidates are not interesting.
     Can actually assert that it is already folded.  */
     Can actually assert that it is already folded.  */
  if (ec == REAL_CST && bc == REAL_CST)
  if (ec == REAL_CST && bc == REAL_CST)
    return false;
    return false;
 
 
  if (bc == REAL_CST)
  if (bc == REAL_CST)
    {
    {
      /* Only handle a fixed range of constant.  */
      /* Only handle a fixed range of constant.  */
      REAL_VALUE_TYPE mv;
      REAL_VALUE_TYPE mv;
      REAL_VALUE_TYPE bcv = TREE_REAL_CST (base);
      REAL_VALUE_TYPE bcv = TREE_REAL_CST (base);
      if (REAL_VALUES_EQUAL (bcv, dconst1))
      if (REAL_VALUES_EQUAL (bcv, dconst1))
        return false;
        return false;
      if (REAL_VALUES_LESS (bcv, dconst1))
      if (REAL_VALUES_LESS (bcv, dconst1))
        return false;
        return false;
      real_from_integer (&mv, TYPE_MODE (TREE_TYPE (base)), 256, 0, 1);
      real_from_integer (&mv, TYPE_MODE (TREE_TYPE (base)), 256, 0, 1);
      if (REAL_VALUES_LESS (mv, bcv))
      if (REAL_VALUES_LESS (mv, bcv))
        return false;
        return false;
      return true;
      return true;
    }
    }
  else if (bc == SSA_NAME)
  else if (bc == SSA_NAME)
    {
    {
      tree base_val0, base_var, type;
      tree base_val0, base_var, type;
      gimple base_def;
      gimple base_def;
      int bit_sz;
      int bit_sz;
 
 
      /* Only handles cases where base value is converted
      /* Only handles cases where base value is converted
         from integer values.  */
         from integer values.  */
      base_def = SSA_NAME_DEF_STMT (base);
      base_def = SSA_NAME_DEF_STMT (base);
      if (gimple_code (base_def) != GIMPLE_ASSIGN)
      if (gimple_code (base_def) != GIMPLE_ASSIGN)
        return false;
        return false;
 
 
      if (gimple_assign_rhs_code (base_def) != FLOAT_EXPR)
      if (gimple_assign_rhs_code (base_def) != FLOAT_EXPR)
        return false;
        return false;
      base_val0 = gimple_assign_rhs1 (base_def);
      base_val0 = gimple_assign_rhs1 (base_def);
 
 
      base_var = SSA_NAME_VAR (base_val0);
      base_var = SSA_NAME_VAR (base_val0);
      if (!DECL_P  (base_var))
      if (!DECL_P  (base_var))
        return false;
        return false;
 
 
      type = TREE_TYPE (base_var);
      type = TREE_TYPE (base_var);
      if (TREE_CODE (type) != INTEGER_TYPE)
      if (TREE_CODE (type) != INTEGER_TYPE)
        return false;
        return false;
      bit_sz = TYPE_PRECISION (type);
      bit_sz = TYPE_PRECISION (type);
      /* If the type of the base is too wide,
      /* If the type of the base is too wide,
         the resulting shrink wrapping condition
         the resulting shrink wrapping condition
         will be too conservative.  */
         will be too conservative.  */
      if (bit_sz > MAX_BASE_INT_BIT_SIZE)
      if (bit_sz > MAX_BASE_INT_BIT_SIZE)
        return false;
        return false;
 
 
      return true;
      return true;
    }
    }
  else
  else
    return false;
    return false;
}
}
 
 
/* A helper function to help select candidate function calls that are
/* A helper function to help select candidate function calls that are
   suitable for conditional DCE.  Candidate functions must have single
   suitable for conditional DCE.  Candidate functions must have single
   valid input domain in this implementation except for pow (see check_pow).
   valid input domain in this implementation except for pow (see check_pow).
   Returns true if the function call is a candidate.  */
   Returns true if the function call is a candidate.  */
 
 
static bool
static bool
check_builtin_call (gimple bcall)
check_builtin_call (gimple bcall)
{
{
  tree arg;
  tree arg;
 
 
  arg = gimple_call_arg (bcall, 0);
  arg = gimple_call_arg (bcall, 0);
  return check_target_format (arg);
  return check_target_format (arg);
}
}
 
 
/* A helper function to determine if a builtin function call is a
/* A helper function to determine if a builtin function call is a
   candidate for conditional DCE.  Returns true if the builtin call
   candidate for conditional DCE.  Returns true if the builtin call
   is a candidate.  */
   is a candidate.  */
 
 
static bool
static bool
is_call_dce_candidate (gimple call)
is_call_dce_candidate (gimple call)
{
{
  tree fn;
  tree fn;
  enum built_in_function fnc;
  enum built_in_function fnc;
 
 
  /* Only potentially dead calls are considered.  */
  /* Only potentially dead calls are considered.  */
  if (gimple_call_lhs (call))
  if (gimple_call_lhs (call))
    return false;
    return false;
 
 
  fn = gimple_call_fndecl (call);
  fn = gimple_call_fndecl (call);
  if (!fn
  if (!fn
      || !DECL_BUILT_IN (fn)
      || !DECL_BUILT_IN (fn)
      || (DECL_BUILT_IN_CLASS (fn) != BUILT_IN_NORMAL))
      || (DECL_BUILT_IN_CLASS (fn) != BUILT_IN_NORMAL))
    return false;
    return false;
 
 
  fnc = DECL_FUNCTION_CODE (fn);
  fnc = DECL_FUNCTION_CODE (fn);
  switch (fnc)
  switch (fnc)
    {
    {
    /* Trig functions.  */
    /* Trig functions.  */
    CASE_FLT_FN (BUILT_IN_ACOS):
    CASE_FLT_FN (BUILT_IN_ACOS):
    CASE_FLT_FN (BUILT_IN_ASIN):
    CASE_FLT_FN (BUILT_IN_ASIN):
    /* Hyperbolic functions.  */
    /* Hyperbolic functions.  */
    CASE_FLT_FN (BUILT_IN_ACOSH):
    CASE_FLT_FN (BUILT_IN_ACOSH):
    CASE_FLT_FN (BUILT_IN_ATANH):
    CASE_FLT_FN (BUILT_IN_ATANH):
    CASE_FLT_FN (BUILT_IN_COSH):
    CASE_FLT_FN (BUILT_IN_COSH):
    CASE_FLT_FN (BUILT_IN_SINH):
    CASE_FLT_FN (BUILT_IN_SINH):
    /* Log functions.  */
    /* Log functions.  */
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG10):
    CASE_FLT_FN (BUILT_IN_LOG10):
    CASE_FLT_FN (BUILT_IN_LOG1P):
    CASE_FLT_FN (BUILT_IN_LOG1P):
    /* Exp functions.  */
    /* Exp functions.  */
    CASE_FLT_FN (BUILT_IN_EXP):
    CASE_FLT_FN (BUILT_IN_EXP):
    CASE_FLT_FN (BUILT_IN_EXP2):
    CASE_FLT_FN (BUILT_IN_EXP2):
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_EXPM1):
    CASE_FLT_FN (BUILT_IN_EXPM1):
    CASE_FLT_FN (BUILT_IN_POW10):
    CASE_FLT_FN (BUILT_IN_POW10):
    /* Sqrt.  */
    /* Sqrt.  */
    CASE_FLT_FN (BUILT_IN_SQRT):
    CASE_FLT_FN (BUILT_IN_SQRT):
      return check_builtin_call (call);
      return check_builtin_call (call);
    /* Special one: two argument pow.  */
    /* Special one: two argument pow.  */
    case BUILT_IN_POW:
    case BUILT_IN_POW:
      return check_pow (call);
      return check_pow (call);
    default:
    default:
      break;
      break;
    }
    }
 
 
  return false;
  return false;
}
}
 
 


/* A helper function to generate gimple statements for
/* A helper function to generate gimple statements for
   one bound comparison.  ARG is the call argument to
   one bound comparison.  ARG is the call argument to
   be compared with the bound, LBUB is the bound value
   be compared with the bound, LBUB is the bound value
   in integer, TCODE is the tree_code of the comparison,
   in integer, TCODE is the tree_code of the comparison,
   TEMP_NAME1/TEMP_NAME2 are names of the temporaries,
   TEMP_NAME1/TEMP_NAME2 are names of the temporaries,
   CONDS is a vector holding the produced GIMPLE statements,
   CONDS is a vector holding the produced GIMPLE statements,
   and NCONDS points to the variable holding the number
   and NCONDS points to the variable holding the number
   of logical comparisons.  CONDS is either empty or
   of logical comparisons.  CONDS is either empty or
   a list ended with a null tree.  */
   a list ended with a null tree.  */
 
 
static void
static void
gen_one_condition (tree arg, int lbub,
gen_one_condition (tree arg, int lbub,
                   enum tree_code tcode,
                   enum tree_code tcode,
                   const char *temp_name1,
                   const char *temp_name1,
                   const char *temp_name2,
                   const char *temp_name2,
                   VEC (gimple, heap) *conds,
                   VEC (gimple, heap) *conds,
                   unsigned *nconds)
                   unsigned *nconds)
{
{
  tree lbub_real_cst, lbub_cst, float_type;
  tree lbub_real_cst, lbub_cst, float_type;
  tree temp, tempn, tempc, tempcn;
  tree temp, tempn, tempc, tempcn;
  gimple stmt1, stmt2, stmt3;
  gimple stmt1, stmt2, stmt3;
 
 
  float_type = TREE_TYPE (arg);
  float_type = TREE_TYPE (arg);
  lbub_cst = build_int_cst (integer_type_node, lbub);
  lbub_cst = build_int_cst (integer_type_node, lbub);
  lbub_real_cst = build_real_from_int_cst (float_type, lbub_cst);
  lbub_real_cst = build_real_from_int_cst (float_type, lbub_cst);
 
 
  temp = create_tmp_var (float_type, temp_name1);
  temp = create_tmp_var (float_type, temp_name1);
  stmt1 = gimple_build_assign (temp, arg);
  stmt1 = gimple_build_assign (temp, arg);
  tempn = make_ssa_name (temp, stmt1);
  tempn = make_ssa_name (temp, stmt1);
  gimple_assign_set_lhs (stmt1, tempn);
  gimple_assign_set_lhs (stmt1, tempn);
 
 
  tempc = create_tmp_var (boolean_type_node, temp_name2);
  tempc = create_tmp_var (boolean_type_node, temp_name2);
  stmt2 = gimple_build_assign (tempc,
  stmt2 = gimple_build_assign (tempc,
                               fold_build2 (tcode,
                               fold_build2 (tcode,
                                            boolean_type_node,
                                            boolean_type_node,
                                            tempn, lbub_real_cst));
                                            tempn, lbub_real_cst));
  tempcn = make_ssa_name (tempc, stmt2);
  tempcn = make_ssa_name (tempc, stmt2);
  gimple_assign_set_lhs (stmt2, tempcn);
  gimple_assign_set_lhs (stmt2, tempcn);
 
 
  stmt3 = gimple_build_cond_from_tree (tempcn, NULL_TREE, NULL_TREE);
  stmt3 = gimple_build_cond_from_tree (tempcn, NULL_TREE, NULL_TREE);
  VEC_quick_push (gimple, conds, stmt1);
  VEC_quick_push (gimple, conds, stmt1);
  VEC_quick_push (gimple, conds, stmt2);
  VEC_quick_push (gimple, conds, stmt2);
  VEC_quick_push (gimple, conds, stmt3);
  VEC_quick_push (gimple, conds, stmt3);
  (*nconds)++;
  (*nconds)++;
}
}
 
 
/* A helper function to generate GIMPLE statements for
/* A helper function to generate GIMPLE statements for
   out of input domain check.  ARG is the call argument
   out of input domain check.  ARG is the call argument
   to be runtime checked, DOMAIN holds the valid domain
   to be runtime checked, DOMAIN holds the valid domain
   for the given function, CONDS points to the vector
   for the given function, CONDS points to the vector
   holding the result GIMPLE statements.  *NCONDS is
   holding the result GIMPLE statements.  *NCONDS is
   the number of logical comparisons.  This function
   the number of logical comparisons.  This function
   produces no more than two logical comparisons, one
   produces no more than two logical comparisons, one
   for lower bound check, one for upper bound check.  */
   for lower bound check, one for upper bound check.  */
 
 
static void
static void
gen_conditions_for_domain (tree arg, inp_domain domain,
gen_conditions_for_domain (tree arg, inp_domain domain,
                           VEC (gimple, heap) *conds,
                           VEC (gimple, heap) *conds,
                           unsigned *nconds)
                           unsigned *nconds)
{
{
  if (domain.has_lb)
  if (domain.has_lb)
    gen_one_condition (arg, domain.lb,
    gen_one_condition (arg, domain.lb,
                       (domain.is_lb_inclusive
                       (domain.is_lb_inclusive
                        ? LT_EXPR : LE_EXPR),
                        ? LT_EXPR : LE_EXPR),
                       "DCE_COND_LB", "DCE_COND_LB_TEST",
                       "DCE_COND_LB", "DCE_COND_LB_TEST",
                       conds, nconds);
                       conds, nconds);
 
 
  if (domain.has_ub)
  if (domain.has_ub)
    {
    {
      /* Now push a separator.  */
      /* Now push a separator.  */
      if (domain.has_lb)
      if (domain.has_lb)
        VEC_quick_push (gimple, conds, NULL);
        VEC_quick_push (gimple, conds, NULL);
 
 
      gen_one_condition (arg, domain.ub,
      gen_one_condition (arg, domain.ub,
                         (domain.is_ub_inclusive
                         (domain.is_ub_inclusive
                          ? GT_EXPR : GE_EXPR),
                          ? GT_EXPR : GE_EXPR),
                         "DCE_COND_UB", "DCE_COND_UB_TEST",
                         "DCE_COND_UB", "DCE_COND_UB_TEST",
                         conds, nconds);
                         conds, nconds);
    }
    }
}
}
 
 
 
 
/* A helper function to generate condition
/* A helper function to generate condition
   code for the y argument in call pow (some_const, y).
   code for the y argument in call pow (some_const, y).
   See candidate selection in check_pow.  Since the
   See candidate selection in check_pow.  Since the
   candidates' base values have a limited range,
   candidates' base values have a limited range,
   the guarded code generated for y are simple:
   the guarded code generated for y are simple:
   if (y > max_y)
   if (y > max_y)
     pow (const, y);
     pow (const, y);
   Note max_y can be computed separately for each
   Note max_y can be computed separately for each
   const base, but in this implementation, we
   const base, but in this implementation, we
   choose to compute it using the max base
   choose to compute it using the max base
   in the allowed range for the purpose of
   in the allowed range for the purpose of
   simplicity.  BASE is the constant base value,
   simplicity.  BASE is the constant base value,
   EXPN is the expression for the exponent argument,
   EXPN is the expression for the exponent argument,
   *CONDS is the vector to hold resulting statements,
   *CONDS is the vector to hold resulting statements,
   and *NCONDS is the number of logical conditions.  */
   and *NCONDS is the number of logical conditions.  */
 
 
static void
static void
gen_conditions_for_pow_cst_base (tree base, tree expn,
gen_conditions_for_pow_cst_base (tree base, tree expn,
                                 VEC (gimple, heap) *conds,
                                 VEC (gimple, heap) *conds,
                                 unsigned *nconds)
                                 unsigned *nconds)
{
{
  inp_domain exp_domain;
  inp_domain exp_domain;
  /* Validate the range of the base constant to make
  /* Validate the range of the base constant to make
     sure it is consistent with check_pow.  */
     sure it is consistent with check_pow.  */
  REAL_VALUE_TYPE mv;
  REAL_VALUE_TYPE mv;
  REAL_VALUE_TYPE bcv = TREE_REAL_CST (base);
  REAL_VALUE_TYPE bcv = TREE_REAL_CST (base);
  gcc_assert (!REAL_VALUES_EQUAL (bcv, dconst1)
  gcc_assert (!REAL_VALUES_EQUAL (bcv, dconst1)
              && !REAL_VALUES_LESS (bcv, dconst1));
              && !REAL_VALUES_LESS (bcv, dconst1));
  real_from_integer (&mv, TYPE_MODE (TREE_TYPE (base)), 256, 0, 1);
  real_from_integer (&mv, TYPE_MODE (TREE_TYPE (base)), 256, 0, 1);
  gcc_assert (!REAL_VALUES_LESS (mv, bcv));
  gcc_assert (!REAL_VALUES_LESS (mv, bcv));
 
 
  exp_domain = get_domain (0, false, false,
  exp_domain = get_domain (0, false, false,
                           127, true, false);
                           127, true, false);
 
 
  gen_conditions_for_domain (expn, exp_domain,
  gen_conditions_for_domain (expn, exp_domain,
                             conds, nconds);
                             conds, nconds);
}
}
 
 
/* Generate error condition code for pow calls with
/* Generate error condition code for pow calls with
   non constant base values.  The candidates selected
   non constant base values.  The candidates selected
   have their base argument value converted from
   have their base argument value converted from
   integer (see check_pow) value (1, 2, 4 bytes), and
   integer (see check_pow) value (1, 2, 4 bytes), and
   the max exp value is computed based on the size
   the max exp value is computed based on the size
   of the integer type (i.e. max possible base value).
   of the integer type (i.e. max possible base value).
   The resulting input domain for exp argument is thus
   The resulting input domain for exp argument is thus
   conservative (smaller than the max value allowed by
   conservative (smaller than the max value allowed by
   the runtime value of the base).  BASE is the integer
   the runtime value of the base).  BASE is the integer
   base value, EXPN is the expression for the exponent
   base value, EXPN is the expression for the exponent
   argument, *CONDS is the vector to hold resulting
   argument, *CONDS is the vector to hold resulting
   statements, and *NCONDS is the number of logical
   statements, and *NCONDS is the number of logical
   conditions.  */
   conditions.  */
 
 
static void
static void
gen_conditions_for_pow_int_base (tree base, tree expn,
gen_conditions_for_pow_int_base (tree base, tree expn,
                                 VEC (gimple, heap) *conds,
                                 VEC (gimple, heap) *conds,
                                 unsigned *nconds)
                                 unsigned *nconds)
{
{
  gimple base_def;
  gimple base_def;
  tree base_val0;
  tree base_val0;
  tree base_var, int_type;
  tree base_var, int_type;
  tree temp, tempn;
  tree temp, tempn;
  tree cst0;
  tree cst0;
  gimple stmt1, stmt2;
  gimple stmt1, stmt2;
  int bit_sz, max_exp;
  int bit_sz, max_exp;
  inp_domain exp_domain;
  inp_domain exp_domain;
 
 
  base_def = SSA_NAME_DEF_STMT (base);
  base_def = SSA_NAME_DEF_STMT (base);
  base_val0 = gimple_assign_rhs1 (base_def);
  base_val0 = gimple_assign_rhs1 (base_def);
  base_var = SSA_NAME_VAR (base_val0);
  base_var = SSA_NAME_VAR (base_val0);
  int_type = TREE_TYPE (base_var);
  int_type = TREE_TYPE (base_var);
  bit_sz = TYPE_PRECISION (int_type);
  bit_sz = TYPE_PRECISION (int_type);
  gcc_assert (bit_sz > 0
  gcc_assert (bit_sz > 0
              && bit_sz <= MAX_BASE_INT_BIT_SIZE);
              && bit_sz <= MAX_BASE_INT_BIT_SIZE);
 
 
  /* Determine the max exp argument value according to
  /* Determine the max exp argument value according to
     the size of the base integer.  The max exp value
     the size of the base integer.  The max exp value
     is conservatively estimated assuming IEEE754 double
     is conservatively estimated assuming IEEE754 double
     precision format.  */
     precision format.  */
  if (bit_sz == 8)
  if (bit_sz == 8)
    max_exp = 128;
    max_exp = 128;
  else if (bit_sz == 16)
  else if (bit_sz == 16)
    max_exp = 64;
    max_exp = 64;
  else
  else
    {
    {
      gcc_assert (bit_sz == MAX_BASE_INT_BIT_SIZE);
      gcc_assert (bit_sz == MAX_BASE_INT_BIT_SIZE);
      max_exp = 32;
      max_exp = 32;
    }
    }
 
 
  /* For pow ((double)x, y), generate the following conditions:
  /* For pow ((double)x, y), generate the following conditions:
     cond 1:
     cond 1:
     temp1 = x;
     temp1 = x;
     if (temp1 <= 0)
     if (temp1 <= 0)
 
 
     cond 2:
     cond 2:
     temp2 = y;
     temp2 = y;
     if (temp2 > max_exp_real_cst)  */
     if (temp2 > max_exp_real_cst)  */
 
 
  /* Generate condition in reverse order -- first
  /* Generate condition in reverse order -- first
     the condition for the exp argument.  */
     the condition for the exp argument.  */
 
 
  exp_domain = get_domain (0, false, false,
  exp_domain = get_domain (0, false, false,
                           max_exp, true, true);
                           max_exp, true, true);
 
 
  gen_conditions_for_domain (expn, exp_domain,
  gen_conditions_for_domain (expn, exp_domain,
                             conds, nconds);
                             conds, nconds);
 
 
  /* Now generate condition for the base argument.
  /* Now generate condition for the base argument.
     Note it does not use the helper function
     Note it does not use the helper function
     gen_conditions_for_domain because the base
     gen_conditions_for_domain because the base
     type is integer.  */
     type is integer.  */
 
 
  /* Push a separator.  */
  /* Push a separator.  */
  VEC_quick_push (gimple, conds, NULL);
  VEC_quick_push (gimple, conds, NULL);
 
 
  temp = create_tmp_var (int_type, "DCE_COND1");
  temp = create_tmp_var (int_type, "DCE_COND1");
  cst0 = build_int_cst (int_type, 0);
  cst0 = build_int_cst (int_type, 0);
  stmt1 = gimple_build_assign (temp, base_val0);
  stmt1 = gimple_build_assign (temp, base_val0);
  tempn = make_ssa_name (temp, stmt1);
  tempn = make_ssa_name (temp, stmt1);
  gimple_assign_set_lhs (stmt1, tempn);
  gimple_assign_set_lhs (stmt1, tempn);
  stmt2 = gimple_build_cond (LE_EXPR, tempn, cst0, NULL_TREE, NULL_TREE);
  stmt2 = gimple_build_cond (LE_EXPR, tempn, cst0, NULL_TREE, NULL_TREE);
 
 
  VEC_quick_push (gimple, conds, stmt1);
  VEC_quick_push (gimple, conds, stmt1);
  VEC_quick_push (gimple, conds, stmt2);
  VEC_quick_push (gimple, conds, stmt2);
  (*nconds)++;
  (*nconds)++;
}
}
 
 
/* Method to generate conditional statements for guarding conditionally
/* Method to generate conditional statements for guarding conditionally
   dead calls to pow.  One or more statements can be generated for
   dead calls to pow.  One or more statements can be generated for
   each logical condition.  Statement groups of different conditions
   each logical condition.  Statement groups of different conditions
   are separated by a NULL tree and they are stored in the VEC
   are separated by a NULL tree and they are stored in the VEC
   conds.  The number of logical conditions are stored in *nconds.
   conds.  The number of logical conditions are stored in *nconds.
 
 
   See C99 standard, 7.12.7.4:2, for description of pow (x, y).
   See C99 standard, 7.12.7.4:2, for description of pow (x, y).
   The precise condition for domain errors are complex.  In this
   The precise condition for domain errors are complex.  In this
   implementation, a simplified (but conservative) valid domain
   implementation, a simplified (but conservative) valid domain
   for x and y are used: x is positive to avoid dom errors, while
   for x and y are used: x is positive to avoid dom errors, while
   y is smaller than a upper bound (depending on x) to avoid range
   y is smaller than a upper bound (depending on x) to avoid range
   errors.  Runtime code is generated to check x (if not constant)
   errors.  Runtime code is generated to check x (if not constant)
   and y against the valid domain.  If it is out, jump to the call,
   and y against the valid domain.  If it is out, jump to the call,
   otherwise the call is bypassed.  POW_CALL is the call statement,
   otherwise the call is bypassed.  POW_CALL is the call statement,
   *CONDS is a vector holding the resulting condition statements,
   *CONDS is a vector holding the resulting condition statements,
   and *NCONDS is the number of logical conditions.  */
   and *NCONDS is the number of logical conditions.  */
 
 
static void
static void
gen_conditions_for_pow (gimple pow_call, VEC (gimple, heap) *conds,
gen_conditions_for_pow (gimple pow_call, VEC (gimple, heap) *conds,
                        unsigned *nconds)
                        unsigned *nconds)
{
{
  tree base, expn;
  tree base, expn;
  enum tree_code bc;
  enum tree_code bc;
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  gcc_assert (check_pow (pow_call));
  gcc_assert (check_pow (pow_call));
#endif
#endif
 
 
  *nconds = 0;
  *nconds = 0;
 
 
  base = gimple_call_arg (pow_call, 0);
  base = gimple_call_arg (pow_call, 0);
  expn = gimple_call_arg (pow_call, 1);
  expn = gimple_call_arg (pow_call, 1);
 
 
  bc = TREE_CODE (base);
  bc = TREE_CODE (base);
 
 
  if (bc == REAL_CST)
  if (bc == REAL_CST)
    gen_conditions_for_pow_cst_base (base, expn, conds, nconds);
    gen_conditions_for_pow_cst_base (base, expn, conds, nconds);
  else if (bc == SSA_NAME)
  else if (bc == SSA_NAME)
    gen_conditions_for_pow_int_base (base, expn, conds, nconds);
    gen_conditions_for_pow_int_base (base, expn, conds, nconds);
  else
  else
    gcc_unreachable ();
    gcc_unreachable ();
}
}
 
 
/* A helper routine to help computing the valid input domain
/* A helper routine to help computing the valid input domain
   for a builtin function.  See C99 7.12.7 for details.  In this
   for a builtin function.  See C99 7.12.7 for details.  In this
   implementation, we only handle single region domain.  The
   implementation, we only handle single region domain.  The
   resulting region can be conservative (smaller) than the actual
   resulting region can be conservative (smaller) than the actual
   one and rounded to integers.  Some of the bounds are documented
   one and rounded to integers.  Some of the bounds are documented
   in the standard, while other limit constants are computed
   in the standard, while other limit constants are computed
   assuming IEEE floating point format (for SF and DF modes).
   assuming IEEE floating point format (for SF and DF modes).
   Since IEEE only sets minimum requirements for long double format,
   Since IEEE only sets minimum requirements for long double format,
   different long double formats exist under different implementations
   different long double formats exist under different implementations
   (e.g, 64 bit double precision (DF), 80 bit double-extended
   (e.g, 64 bit double precision (DF), 80 bit double-extended
   precision (XF), and 128 bit quad precision (QF) ).  For simplicity,
   precision (XF), and 128 bit quad precision (QF) ).  For simplicity,
   in this implementation, the computed bounds for long double assume
   in this implementation, the computed bounds for long double assume
   64 bit format (DF), and are therefore conservative.  Another
   64 bit format (DF), and are therefore conservative.  Another
   assumption is that single precision float type is always SF mode,
   assumption is that single precision float type is always SF mode,
   and double type is DF mode.  This function is quite
   and double type is DF mode.  This function is quite
   implementation specific, so it may not be suitable to be part of
   implementation specific, so it may not be suitable to be part of
   builtins.c.  This needs to be revisited later to see if it can
   builtins.c.  This needs to be revisited later to see if it can
   be leveraged in x87 assembly expansion.  */
   be leveraged in x87 assembly expansion.  */
 
 
static inp_domain
static inp_domain
get_no_error_domain (enum built_in_function fnc)
get_no_error_domain (enum built_in_function fnc)
{
{
  switch (fnc)
  switch (fnc)
    {
    {
    /* Trig functions: return [-1, +1]  */
    /* Trig functions: return [-1, +1]  */
    CASE_FLT_FN (BUILT_IN_ACOS):
    CASE_FLT_FN (BUILT_IN_ACOS):
    CASE_FLT_FN (BUILT_IN_ASIN):
    CASE_FLT_FN (BUILT_IN_ASIN):
      return get_domain (-1, true, true,
      return get_domain (-1, true, true,
                         1, true, true);
                         1, true, true);
    /* Hyperbolic functions.  */
    /* Hyperbolic functions.  */
    CASE_FLT_FN (BUILT_IN_ACOSH):
    CASE_FLT_FN (BUILT_IN_ACOSH):
      /* acosh: [1, +inf)  */
      /* acosh: [1, +inf)  */
      return get_domain (1, true, true,
      return get_domain (1, true, true,
                         1, false, false);
                         1, false, false);
    CASE_FLT_FN (BUILT_IN_ATANH):
    CASE_FLT_FN (BUILT_IN_ATANH):
      /* atanh: (-1, +1)  */
      /* atanh: (-1, +1)  */
      return get_domain (-1, true, false,
      return get_domain (-1, true, false,
                         1, true, false);
                         1, true, false);
    case BUILT_IN_COSHF:
    case BUILT_IN_COSHF:
    case BUILT_IN_SINHF:
    case BUILT_IN_SINHF:
      /* coshf: (-89, +89)  */
      /* coshf: (-89, +89)  */
      return get_domain (-89, true, false,
      return get_domain (-89, true, false,
                         89, true, false);
                         89, true, false);
    case BUILT_IN_COSH:
    case BUILT_IN_COSH:
    case BUILT_IN_SINH:
    case BUILT_IN_SINH:
    case BUILT_IN_COSHL:
    case BUILT_IN_COSHL:
    case BUILT_IN_SINHL:
    case BUILT_IN_SINHL:
      /* cosh: (-710, +710)  */
      /* cosh: (-710, +710)  */
      return get_domain (-710, true, false,
      return get_domain (-710, true, false,
                         710, true, false);
                         710, true, false);
    /* Log functions: (0, +inf)  */
    /* Log functions: (0, +inf)  */
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG10):
    CASE_FLT_FN (BUILT_IN_LOG10):
      return get_domain (0, true, false,
      return get_domain (0, true, false,
                         0, false, false);
                         0, false, false);
    CASE_FLT_FN (BUILT_IN_LOG1P):
    CASE_FLT_FN (BUILT_IN_LOG1P):
      return get_domain (-1, true, false,
      return get_domain (-1, true, false,
                         0, false, false);
                         0, false, false);
    /* Exp functions.  */
    /* Exp functions.  */
    case BUILT_IN_EXPF:
    case BUILT_IN_EXPF:
    case BUILT_IN_EXPM1F:
    case BUILT_IN_EXPM1F:
      /* expf: (-inf, 88)  */
      /* expf: (-inf, 88)  */
      return get_domain (-1, false, false,
      return get_domain (-1, false, false,
                         88, true, false);
                         88, true, false);
    case BUILT_IN_EXP:
    case BUILT_IN_EXP:
    case BUILT_IN_EXPM1:
    case BUILT_IN_EXPM1:
    case BUILT_IN_EXPL:
    case BUILT_IN_EXPL:
    case BUILT_IN_EXPM1L:
    case BUILT_IN_EXPM1L:
      /* exp: (-inf, 709)  */
      /* exp: (-inf, 709)  */
      return get_domain (-1, false, false,
      return get_domain (-1, false, false,
                         709, true, false);
                         709, true, false);
    case BUILT_IN_EXP2F:
    case BUILT_IN_EXP2F:
      /* exp2f: (-inf, 128)  */
      /* exp2f: (-inf, 128)  */
      return get_domain (-1, false, false,
      return get_domain (-1, false, false,
                         128, true, false);
                         128, true, false);
    case BUILT_IN_EXP2:
    case BUILT_IN_EXP2:
    case BUILT_IN_EXP2L:
    case BUILT_IN_EXP2L:
      /* exp2: (-inf, 1024)  */
      /* exp2: (-inf, 1024)  */
      return get_domain (-1, false, false,
      return get_domain (-1, false, false,
                         1024, true, false);
                         1024, true, false);
    case BUILT_IN_EXP10F:
    case BUILT_IN_EXP10F:
    case BUILT_IN_POW10F:
    case BUILT_IN_POW10F:
      /* exp10f: (-inf, 38)  */
      /* exp10f: (-inf, 38)  */
      return get_domain (-1, false, false,
      return get_domain (-1, false, false,
                         38, true, false);
                         38, true, false);
    case BUILT_IN_EXP10:
    case BUILT_IN_EXP10:
    case BUILT_IN_POW10:
    case BUILT_IN_POW10:
    case BUILT_IN_EXP10L:
    case BUILT_IN_EXP10L:
    case BUILT_IN_POW10L:
    case BUILT_IN_POW10L:
      /* exp10: (-inf, 308)  */
      /* exp10: (-inf, 308)  */
      return get_domain (-1, false, false,
      return get_domain (-1, false, false,
                         308, true, false);
                         308, true, false);
    /* sqrt: [0, +inf)  */
    /* sqrt: [0, +inf)  */
    CASE_FLT_FN (BUILT_IN_SQRT):
    CASE_FLT_FN (BUILT_IN_SQRT):
      return get_domain (0, true, true,
      return get_domain (0, true, true,
                         0, false, false);
                         0, false, false);
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  gcc_unreachable ();
  gcc_unreachable ();
}
}
 
 
/* The function to generate shrink wrap conditions for a partially
/* The function to generate shrink wrap conditions for a partially
   dead builtin call whose return value is not used anywhere,
   dead builtin call whose return value is not used anywhere,
   but has to be kept live due to potential error condition.
   but has to be kept live due to potential error condition.
   BI_CALL is the builtin call, CONDS is the vector of statements
   BI_CALL is the builtin call, CONDS is the vector of statements
   for condition code, NCODES is the pointer to the number of
   for condition code, NCODES is the pointer to the number of
   logical conditions.  Statements belonging to different logical
   logical conditions.  Statements belonging to different logical
   condition are separated by NULL tree in the vector.  */
   condition are separated by NULL tree in the vector.  */
 
 
static void
static void
gen_shrink_wrap_conditions (gimple bi_call, VEC (gimple, heap) *conds,
gen_shrink_wrap_conditions (gimple bi_call, VEC (gimple, heap) *conds,
                            unsigned int *nconds)
                            unsigned int *nconds)
{
{
  gimple call;
  gimple call;
  tree fn;
  tree fn;
  enum built_in_function fnc;
  enum built_in_function fnc;
 
 
  gcc_assert (nconds && conds);
  gcc_assert (nconds && conds);
  gcc_assert (VEC_length (gimple, conds) == 0);
  gcc_assert (VEC_length (gimple, conds) == 0);
  gcc_assert (is_gimple_call (bi_call));
  gcc_assert (is_gimple_call (bi_call));
 
 
  call = bi_call;
  call = bi_call;
  fn = gimple_call_fndecl (call);
  fn = gimple_call_fndecl (call);
  gcc_assert (fn && DECL_BUILT_IN (fn));
  gcc_assert (fn && DECL_BUILT_IN (fn));
  fnc = DECL_FUNCTION_CODE (fn);
  fnc = DECL_FUNCTION_CODE (fn);
  *nconds = 0;
  *nconds = 0;
 
 
  if (fnc == BUILT_IN_POW)
  if (fnc == BUILT_IN_POW)
    gen_conditions_for_pow (call, conds, nconds);
    gen_conditions_for_pow (call, conds, nconds);
  else
  else
    {
    {
      tree arg;
      tree arg;
      inp_domain domain = get_no_error_domain (fnc);
      inp_domain domain = get_no_error_domain (fnc);
      *nconds = 0;
      *nconds = 0;
      arg = gimple_call_arg (bi_call, 0);
      arg = gimple_call_arg (bi_call, 0);
      gen_conditions_for_domain (arg, domain, conds, nconds);
      gen_conditions_for_domain (arg, domain, conds, nconds);
    }
    }
 
 
  return;
  return;
}
}
 
 
 
 
/* Probability of the branch (to the call) is taken.  */
/* Probability of the branch (to the call) is taken.  */
#define ERR_PROB 0.01
#define ERR_PROB 0.01
 
 
/* The function to shrink wrap a partially dead builtin call
/* The function to shrink wrap a partially dead builtin call
   whose return value is not used anywhere, but has to be kept
   whose return value is not used anywhere, but has to be kept
   live due to potential error condition.  Returns true if the
   live due to potential error condition.  Returns true if the
   transformation actually happens.  */
   transformation actually happens.  */
 
 
static bool
static bool
shrink_wrap_one_built_in_call (gimple bi_call)
shrink_wrap_one_built_in_call (gimple bi_call)
{
{
  gimple_stmt_iterator bi_call_bsi;
  gimple_stmt_iterator bi_call_bsi;
  basic_block bi_call_bb, join_tgt_bb, guard_bb, guard_bb0;
  basic_block bi_call_bb, join_tgt_bb, guard_bb, guard_bb0;
  edge join_tgt_in_edge_from_call, join_tgt_in_edge_fall_thru;
  edge join_tgt_in_edge_from_call, join_tgt_in_edge_fall_thru;
  edge bi_call_in_edge0, guard_bb_in_edge;
  edge bi_call_in_edge0, guard_bb_in_edge;
  VEC (gimple, heap) *conds;
  VEC (gimple, heap) *conds;
  unsigned tn_cond_stmts, nconds;
  unsigned tn_cond_stmts, nconds;
  unsigned ci;
  unsigned ci;
  gimple cond_expr = NULL;
  gimple cond_expr = NULL;
  gimple cond_expr_start;
  gimple cond_expr_start;
  tree bi_call_label_decl;
  tree bi_call_label_decl;
  gimple bi_call_label;
  gimple bi_call_label;
 
 
  conds = VEC_alloc (gimple, heap, 12);
  conds = VEC_alloc (gimple, heap, 12);
  gen_shrink_wrap_conditions (bi_call, conds, &nconds);
  gen_shrink_wrap_conditions (bi_call, conds, &nconds);
 
 
  /* This can happen if the condition generator decides
  /* This can happen if the condition generator decides
     it is not beneficial to do the transformation.  Just
     it is not beneficial to do the transformation.  Just
     return false and do not do any transformation for
     return false and do not do any transformation for
     the call.  */
     the call.  */
  if (nconds == 0)
  if (nconds == 0)
    return false;
    return false;
 
 
  bi_call_bb = gimple_bb (bi_call);
  bi_call_bb = gimple_bb (bi_call);
 
 
  /* Now find the join target bb -- split
  /* Now find the join target bb -- split
     bi_call_bb if needed.  */
     bi_call_bb if needed.  */
  bi_call_bsi = gsi_for_stmt (bi_call);
  bi_call_bsi = gsi_for_stmt (bi_call);
 
 
  join_tgt_in_edge_from_call = split_block (bi_call_bb, bi_call);
  join_tgt_in_edge_from_call = split_block (bi_call_bb, bi_call);
  bi_call_bsi = gsi_for_stmt (bi_call);
  bi_call_bsi = gsi_for_stmt (bi_call);
 
 
  join_tgt_bb = join_tgt_in_edge_from_call->dest;
  join_tgt_bb = join_tgt_in_edge_from_call->dest;
 
 
  /* Now it is time to insert the first conditional expression
  /* Now it is time to insert the first conditional expression
     into bi_call_bb and split this bb so that bi_call is
     into bi_call_bb and split this bb so that bi_call is
     shrink-wrapped.  */
     shrink-wrapped.  */
  tn_cond_stmts = VEC_length (gimple, conds);
  tn_cond_stmts = VEC_length (gimple, conds);
  cond_expr = NULL;
  cond_expr = NULL;
  cond_expr_start = VEC_index (gimple, conds, 0);
  cond_expr_start = VEC_index (gimple, conds, 0);
  for (ci = 0; ci < tn_cond_stmts; ci++)
  for (ci = 0; ci < tn_cond_stmts; ci++)
    {
    {
      gimple c = VEC_index (gimple, conds, ci);
      gimple c = VEC_index (gimple, conds, ci);
      gcc_assert (c || ci != 0);
      gcc_assert (c || ci != 0);
      if (!c)
      if (!c)
        break;
        break;
      gsi_insert_before (&bi_call_bsi, c, GSI_SAME_STMT);
      gsi_insert_before (&bi_call_bsi, c, GSI_SAME_STMT);
      cond_expr = c;
      cond_expr = c;
    }
    }
  nconds--;
  nconds--;
  ci++;
  ci++;
  gcc_assert (cond_expr && gimple_code (cond_expr) == GIMPLE_COND);
  gcc_assert (cond_expr && gimple_code (cond_expr) == GIMPLE_COND);
 
 
  /* Now the label.  */
  /* Now the label.  */
  bi_call_label_decl = create_artificial_label (gimple_location (bi_call));
  bi_call_label_decl = create_artificial_label (gimple_location (bi_call));
  bi_call_label = gimple_build_label (bi_call_label_decl);
  bi_call_label = gimple_build_label (bi_call_label_decl);
  gsi_insert_before (&bi_call_bsi, bi_call_label, GSI_SAME_STMT);
  gsi_insert_before (&bi_call_bsi, bi_call_label, GSI_SAME_STMT);
 
 
  bi_call_in_edge0 = split_block (bi_call_bb, cond_expr);
  bi_call_in_edge0 = split_block (bi_call_bb, cond_expr);
  bi_call_in_edge0->flags &= ~EDGE_FALLTHRU;
  bi_call_in_edge0->flags &= ~EDGE_FALLTHRU;
  bi_call_in_edge0->flags |= EDGE_TRUE_VALUE;
  bi_call_in_edge0->flags |= EDGE_TRUE_VALUE;
  guard_bb0 = bi_call_bb;
  guard_bb0 = bi_call_bb;
  bi_call_bb = bi_call_in_edge0->dest;
  bi_call_bb = bi_call_in_edge0->dest;
  join_tgt_in_edge_fall_thru = make_edge (guard_bb0, join_tgt_bb,
  join_tgt_in_edge_fall_thru = make_edge (guard_bb0, join_tgt_bb,
                                          EDGE_FALSE_VALUE);
                                          EDGE_FALSE_VALUE);
 
 
  bi_call_in_edge0->probability = REG_BR_PROB_BASE * ERR_PROB;
  bi_call_in_edge0->probability = REG_BR_PROB_BASE * ERR_PROB;
  join_tgt_in_edge_fall_thru->probability =
  join_tgt_in_edge_fall_thru->probability =
      REG_BR_PROB_BASE - bi_call_in_edge0->probability;
      REG_BR_PROB_BASE - bi_call_in_edge0->probability;
 
 
  /* Code generation for the rest of the conditions  */
  /* Code generation for the rest of the conditions  */
  guard_bb = guard_bb0;
  guard_bb = guard_bb0;
  while (nconds > 0)
  while (nconds > 0)
    {
    {
      unsigned ci0;
      unsigned ci0;
      edge bi_call_in_edge;
      edge bi_call_in_edge;
      gimple_stmt_iterator guard_bsi = gsi_for_stmt (cond_expr_start);
      gimple_stmt_iterator guard_bsi = gsi_for_stmt (cond_expr_start);
      ci0 = ci;
      ci0 = ci;
      cond_expr_start = VEC_index (gimple, conds, ci0);
      cond_expr_start = VEC_index (gimple, conds, ci0);
      for (; ci < tn_cond_stmts; ci++)
      for (; ci < tn_cond_stmts; ci++)
        {
        {
          gimple c = VEC_index (gimple, conds, ci);
          gimple c = VEC_index (gimple, conds, ci);
          gcc_assert (c || ci != ci0);
          gcc_assert (c || ci != ci0);
          if (!c)
          if (!c)
            break;
            break;
          gsi_insert_before (&guard_bsi, c, GSI_SAME_STMT);
          gsi_insert_before (&guard_bsi, c, GSI_SAME_STMT);
          cond_expr = c;
          cond_expr = c;
        }
        }
      nconds--;
      nconds--;
      ci++;
      ci++;
      gcc_assert (cond_expr && gimple_code (cond_expr) == GIMPLE_COND);
      gcc_assert (cond_expr && gimple_code (cond_expr) == GIMPLE_COND);
      guard_bb_in_edge = split_block (guard_bb, cond_expr);
      guard_bb_in_edge = split_block (guard_bb, cond_expr);
      guard_bb_in_edge->flags &= ~EDGE_FALLTHRU;
      guard_bb_in_edge->flags &= ~EDGE_FALLTHRU;
      guard_bb_in_edge->flags |= EDGE_FALSE_VALUE;
      guard_bb_in_edge->flags |= EDGE_FALSE_VALUE;
 
 
      bi_call_in_edge = make_edge (guard_bb, bi_call_bb, EDGE_TRUE_VALUE);
      bi_call_in_edge = make_edge (guard_bb, bi_call_bb, EDGE_TRUE_VALUE);
 
 
      bi_call_in_edge->probability = REG_BR_PROB_BASE * ERR_PROB;
      bi_call_in_edge->probability = REG_BR_PROB_BASE * ERR_PROB;
      guard_bb_in_edge->probability =
      guard_bb_in_edge->probability =
          REG_BR_PROB_BASE - bi_call_in_edge->probability;
          REG_BR_PROB_BASE - bi_call_in_edge->probability;
    }
    }
 
 
  VEC_free (gimple, heap, conds);
  VEC_free (gimple, heap, conds);
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      location_t loc;
      location_t loc;
      loc = gimple_location (bi_call);
      loc = gimple_location (bi_call);
      fprintf (dump_file,
      fprintf (dump_file,
               "%s:%d: note: function call is shrink-wrapped"
               "%s:%d: note: function call is shrink-wrapped"
               " into error conditions.\n",
               " into error conditions.\n",
               LOCATION_FILE (loc), LOCATION_LINE (loc));
               LOCATION_FILE (loc), LOCATION_LINE (loc));
    }
    }
 
 
  return true;
  return true;
}
}
 
 
/* The top level function for conditional dead code shrink
/* The top level function for conditional dead code shrink
   wrapping transformation.  */
   wrapping transformation.  */
 
 
static bool
static bool
shrink_wrap_conditional_dead_built_in_calls (VEC (gimple, heap) *calls)
shrink_wrap_conditional_dead_built_in_calls (VEC (gimple, heap) *calls)
{
{
  bool changed = false;
  bool changed = false;
  unsigned i = 0;
  unsigned i = 0;
 
 
  unsigned n = VEC_length (gimple, calls);
  unsigned n = VEC_length (gimple, calls);
  if (n == 0)
  if (n == 0)
    return false;
    return false;
 
 
  for (; i < n ; i++)
  for (; i < n ; i++)
    {
    {
      gimple bi_call = VEC_index (gimple, calls, i);
      gimple bi_call = VEC_index (gimple, calls, i);
      changed |= shrink_wrap_one_built_in_call (bi_call);
      changed |= shrink_wrap_one_built_in_call (bi_call);
    }
    }
 
 
  return changed;
  return changed;
}
}
 
 
/* Pass entry points.  */
/* Pass entry points.  */
 
 
static unsigned int
static unsigned int
tree_call_cdce (void)
tree_call_cdce (void)
{
{
  basic_block bb;
  basic_block bb;
  gimple_stmt_iterator i;
  gimple_stmt_iterator i;
  bool something_changed = false;
  bool something_changed = false;
  VEC (gimple, heap) *cond_dead_built_in_calls = NULL;
  VEC (gimple, heap) *cond_dead_built_in_calls = NULL;
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      /* Collect dead call candidates.  */
      /* Collect dead call candidates.  */
      for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
      for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
        {
        {
          gimple stmt = gsi_stmt (i);
          gimple stmt = gsi_stmt (i);
          if (is_gimple_call (stmt)
          if (is_gimple_call (stmt)
              && is_call_dce_candidate (stmt))
              && is_call_dce_candidate (stmt))
            {
            {
              if (dump_file && (dump_flags & TDF_DETAILS))
              if (dump_file && (dump_flags & TDF_DETAILS))
                {
                {
                  fprintf (dump_file, "Found conditional dead call: ");
                  fprintf (dump_file, "Found conditional dead call: ");
                  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
                  print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
                  fprintf (dump_file, "\n");
                  fprintf (dump_file, "\n");
                }
                }
              if (cond_dead_built_in_calls == NULL)
              if (cond_dead_built_in_calls == NULL)
                cond_dead_built_in_calls = VEC_alloc (gimple, heap, 64);
                cond_dead_built_in_calls = VEC_alloc (gimple, heap, 64);
              VEC_safe_push (gimple, heap, cond_dead_built_in_calls, stmt);
              VEC_safe_push (gimple, heap, cond_dead_built_in_calls, stmt);
            }
            }
        }
        }
    }
    }
 
 
  if (cond_dead_built_in_calls == NULL)
  if (cond_dead_built_in_calls == NULL)
    return 0;
    return 0;
 
 
  something_changed
  something_changed
    = shrink_wrap_conditional_dead_built_in_calls (cond_dead_built_in_calls);
    = shrink_wrap_conditional_dead_built_in_calls (cond_dead_built_in_calls);
 
 
  VEC_free (gimple, heap, cond_dead_built_in_calls);
  VEC_free (gimple, heap, cond_dead_built_in_calls);
 
 
  if (something_changed)
  if (something_changed)
    {
    {
      free_dominance_info (CDI_DOMINATORS);
      free_dominance_info (CDI_DOMINATORS);
      free_dominance_info (CDI_POST_DOMINATORS);
      free_dominance_info (CDI_POST_DOMINATORS);
      /* As we introduced new control-flow we need to insert PHI-nodes
      /* As we introduced new control-flow we need to insert PHI-nodes
         for the call-clobbers of the remaining call.  */
         for the call-clobbers of the remaining call.  */
      mark_sym_for_renaming (gimple_vop (cfun));
      mark_sym_for_renaming (gimple_vop (cfun));
      return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
      return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
              | TODO_remove_unused_locals);
              | TODO_remove_unused_locals);
    }
    }
  else
  else
    return 0;
    return 0;
}
}
 
 
static bool
static bool
gate_call_cdce (void)
gate_call_cdce (void)
{
{
  /* The limit constants used in the implementation
  /* The limit constants used in the implementation
     assume IEEE floating point format.  Other formats
     assume IEEE floating point format.  Other formats
     can be supported in the future if needed.  */
     can be supported in the future if needed.  */
  return flag_tree_builtin_call_dce != 0 && optimize_function_for_speed_p (cfun);
  return flag_tree_builtin_call_dce != 0 && optimize_function_for_speed_p (cfun);
}
}
 
 
struct gimple_opt_pass pass_call_cdce =
struct gimple_opt_pass pass_call_cdce =
{
{
 {
 {
  GIMPLE_PASS,
  GIMPLE_PASS,
  "cdce",                               /* name */
  "cdce",                               /* name */
  gate_call_cdce,                       /* gate */
  gate_call_cdce,                       /* gate */
  tree_call_cdce,                       /* execute */
  tree_call_cdce,                       /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_TREE_CALL_CDCE,                    /* tv_id */
  TV_TREE_CALL_CDCE,                    /* tv_id */
  PROP_cfg | PROP_ssa,                  /* properties_required */
  PROP_cfg | PROP_ssa,                  /* properties_required */
  0,                                    /* properties_provided */
  0,                                    /* properties_provided */
  0,                                    /* properties_destroyed */
  0,                                    /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func | TODO_verify_ssa      /* todo_flags_finish */
  TODO_dump_func | TODO_verify_ssa      /* todo_flags_finish */
 }
 }
};
};
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.