OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [tags/] [gnu-src/] [gdb-6.8/] [pre-binutils-2.20.1-sync/] [gdb/] [amd64-tdep.c] - Diff between revs 157 and 223

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 157 Rev 223
/* Target-dependent code for AMD64.
/* Target-dependent code for AMD64.
 
 
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   Contributed by Jiri Smid, SuSE Labs.
   Contributed by Jiri Smid, SuSE Labs.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "defs.h"
#include "defs.h"
#include "arch-utils.h"
#include "arch-utils.h"
#include "block.h"
#include "block.h"
#include "dummy-frame.h"
#include "dummy-frame.h"
#include "frame.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "frame-unwind.h"
#include "inferior.h"
#include "inferior.h"
#include "gdbcmd.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdbcore.h"
#include "objfiles.h"
#include "objfiles.h"
#include "regcache.h"
#include "regcache.h"
#include "regset.h"
#include "regset.h"
#include "symfile.h"
#include "symfile.h"
 
 
#include "gdb_assert.h"
#include "gdb_assert.h"
 
 
#include "amd64-tdep.h"
#include "amd64-tdep.h"
#include "i387-tdep.h"
#include "i387-tdep.h"
 
 
/* Note that the AMD64 architecture was previously known as x86-64.
/* Note that the AMD64 architecture was previously known as x86-64.
   The latter is (forever) engraved into the canonical system name as
   The latter is (forever) engraved into the canonical system name as
   returned by config.guess, and used as the name for the AMD64 port
   returned by config.guess, and used as the name for the AMD64 port
   of GNU/Linux.  The BSD's have renamed their ports to amd64; they
   of GNU/Linux.  The BSD's have renamed their ports to amd64; they
   don't like to shout.  For GDB we prefer the amd64_-prefix over the
   don't like to shout.  For GDB we prefer the amd64_-prefix over the
   x86_64_-prefix since it's so much easier to type.  */
   x86_64_-prefix since it's so much easier to type.  */
 
 
/* Register information.  */
/* Register information.  */
 
 
static const char *amd64_register_names[] =
static const char *amd64_register_names[] =
{
{
  "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
  "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
 
 
  /* %r8 is indeed register number 8.  */
  /* %r8 is indeed register number 8.  */
  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
  "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
  "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
 
 
  /* %st0 is register number 24.  */
  /* %st0 is register number 24.  */
  "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
  "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
  "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
  "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
 
 
  /* %xmm0 is register number 40.  */
  /* %xmm0 is register number 40.  */
  "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
  "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
  "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
  "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
  "mxcsr",
  "mxcsr",
};
};
 
 
/* Total number of registers.  */
/* Total number of registers.  */
#define AMD64_NUM_REGS  ARRAY_SIZE (amd64_register_names)
#define AMD64_NUM_REGS  ARRAY_SIZE (amd64_register_names)
 
 
/* Return the name of register REGNUM.  */
/* Return the name of register REGNUM.  */
 
 
const char *
const char *
amd64_register_name (struct gdbarch *gdbarch, int regnum)
amd64_register_name (struct gdbarch *gdbarch, int regnum)
{
{
  if (regnum >= 0 && regnum < AMD64_NUM_REGS)
  if (regnum >= 0 && regnum < AMD64_NUM_REGS)
    return amd64_register_names[regnum];
    return amd64_register_names[regnum];
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Return the GDB type object for the "standard" data type of data in
/* Return the GDB type object for the "standard" data type of data in
   register REGNUM. */
   register REGNUM. */
 
 
struct type *
struct type *
amd64_register_type (struct gdbarch *gdbarch, int regnum)
amd64_register_type (struct gdbarch *gdbarch, int regnum)
{
{
  if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM)
  if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM)
    return builtin_type_int64;
    return builtin_type_int64;
  if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM)
  if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM)
    return builtin_type_void_data_ptr;
    return builtin_type_void_data_ptr;
  if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM)
  if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM)
    return builtin_type_int64;
    return builtin_type_int64;
  if (regnum == AMD64_RIP_REGNUM)
  if (regnum == AMD64_RIP_REGNUM)
    return builtin_type_void_func_ptr;
    return builtin_type_void_func_ptr;
  if (regnum == AMD64_EFLAGS_REGNUM)
  if (regnum == AMD64_EFLAGS_REGNUM)
    return i386_eflags_type;
    return i386_eflags_type;
  if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM)
  if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM)
    return builtin_type_int32;
    return builtin_type_int32;
  if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7)
  if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7)
    return builtin_type_i387_ext;
    return builtin_type_i387_ext;
  if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7)
  if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7)
    return builtin_type_int32;
    return builtin_type_int32;
  if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
  if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
    return i386_sse_type (gdbarch);
    return i386_sse_type (gdbarch);
  if (regnum == AMD64_MXCSR_REGNUM)
  if (regnum == AMD64_MXCSR_REGNUM)
    return i386_mxcsr_type;
    return i386_mxcsr_type;
 
 
  internal_error (__FILE__, __LINE__, _("invalid regnum"));
  internal_error (__FILE__, __LINE__, _("invalid regnum"));
}
}
 
 
/* DWARF Register Number Mapping as defined in the System V psABI,
/* DWARF Register Number Mapping as defined in the System V psABI,
   section 3.6.  */
   section 3.6.  */
 
 
static int amd64_dwarf_regmap[] =
static int amd64_dwarf_regmap[] =
{
{
  /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI.  */
  /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI.  */
  AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
  AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
  AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
  AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
  AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
  AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
 
 
  /* Frame Pointer Register RBP.  */
  /* Frame Pointer Register RBP.  */
  AMD64_RBP_REGNUM,
  AMD64_RBP_REGNUM,
 
 
  /* Stack Pointer Register RSP.  */
  /* Stack Pointer Register RSP.  */
  AMD64_RSP_REGNUM,
  AMD64_RSP_REGNUM,
 
 
  /* Extended Integer Registers 8 - 15.  */
  /* Extended Integer Registers 8 - 15.  */
  8, 9, 10, 11, 12, 13, 14, 15,
  8, 9, 10, 11, 12, 13, 14, 15,
 
 
  /* Return Address RA.  Mapped to RIP.  */
  /* Return Address RA.  Mapped to RIP.  */
  AMD64_RIP_REGNUM,
  AMD64_RIP_REGNUM,
 
 
  /* SSE Registers 0 - 7.  */
  /* SSE Registers 0 - 7.  */
  AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
  AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
  AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
  AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
  AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
  AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
  AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
  AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
 
 
  /* Extended SSE Registers 8 - 15.  */
  /* Extended SSE Registers 8 - 15.  */
  AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
  AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
  AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
  AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
  AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
  AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
  AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
  AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
 
 
  /* Floating Point Registers 0-7.  */
  /* Floating Point Registers 0-7.  */
  AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
  AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
  AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
  AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
  AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
  AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
  AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
  AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
 
 
  /* Control and Status Flags Register.  */
  /* Control and Status Flags Register.  */
  AMD64_EFLAGS_REGNUM,
  AMD64_EFLAGS_REGNUM,
 
 
  /* Selector Registers.  */
  /* Selector Registers.  */
  AMD64_ES_REGNUM,
  AMD64_ES_REGNUM,
  AMD64_CS_REGNUM,
  AMD64_CS_REGNUM,
  AMD64_SS_REGNUM,
  AMD64_SS_REGNUM,
  AMD64_DS_REGNUM,
  AMD64_DS_REGNUM,
  AMD64_FS_REGNUM,
  AMD64_FS_REGNUM,
  AMD64_GS_REGNUM,
  AMD64_GS_REGNUM,
  -1,
  -1,
  -1,
  -1,
 
 
  /* Segment Base Address Registers.  */
  /* Segment Base Address Registers.  */
  -1,
  -1,
  -1,
  -1,
  -1,
  -1,
  -1,
  -1,
 
 
  /* Special Selector Registers.  */
  /* Special Selector Registers.  */
  -1,
  -1,
  -1,
  -1,
 
 
  /* Floating Point Control Registers.  */
  /* Floating Point Control Registers.  */
  AMD64_MXCSR_REGNUM,
  AMD64_MXCSR_REGNUM,
  AMD64_FCTRL_REGNUM,
  AMD64_FCTRL_REGNUM,
  AMD64_FSTAT_REGNUM
  AMD64_FSTAT_REGNUM
};
};
 
 
static const int amd64_dwarf_regmap_len =
static const int amd64_dwarf_regmap_len =
  (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
  (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
 
 
/* Convert DWARF register number REG to the appropriate register
/* Convert DWARF register number REG to the appropriate register
   number used by GDB.  */
   number used by GDB.  */
 
 
static int
static int
amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
{
  int regnum = -1;
  int regnum = -1;
 
 
  if (reg >= 0 && reg < amd64_dwarf_regmap_len)
  if (reg >= 0 && reg < amd64_dwarf_regmap_len)
    regnum = amd64_dwarf_regmap[reg];
    regnum = amd64_dwarf_regmap[reg];
 
 
  if (regnum == -1)
  if (regnum == -1)
    warning (_("Unmapped DWARF Register #%d encountered."), reg);
    warning (_("Unmapped DWARF Register #%d encountered."), reg);
 
 
  return regnum;
  return regnum;
}
}
 
 


 
 
/* Register classes as defined in the psABI.  */
/* Register classes as defined in the psABI.  */
 
 
enum amd64_reg_class
enum amd64_reg_class
{
{
  AMD64_INTEGER,
  AMD64_INTEGER,
  AMD64_SSE,
  AMD64_SSE,
  AMD64_SSEUP,
  AMD64_SSEUP,
  AMD64_X87,
  AMD64_X87,
  AMD64_X87UP,
  AMD64_X87UP,
  AMD64_COMPLEX_X87,
  AMD64_COMPLEX_X87,
  AMD64_NO_CLASS,
  AMD64_NO_CLASS,
  AMD64_MEMORY
  AMD64_MEMORY
};
};
 
 
/* Return the union class of CLASS1 and CLASS2.  See the psABI for
/* Return the union class of CLASS1 and CLASS2.  See the psABI for
   details.  */
   details.  */
 
 
static enum amd64_reg_class
static enum amd64_reg_class
amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
{
{
  /* Rule (a): If both classes are equal, this is the resulting class.  */
  /* Rule (a): If both classes are equal, this is the resulting class.  */
  if (class1 == class2)
  if (class1 == class2)
    return class1;
    return class1;
 
 
  /* Rule (b): If one of the classes is NO_CLASS, the resulting class
  /* Rule (b): If one of the classes is NO_CLASS, the resulting class
     is the other class.  */
     is the other class.  */
  if (class1 == AMD64_NO_CLASS)
  if (class1 == AMD64_NO_CLASS)
    return class2;
    return class2;
  if (class2 == AMD64_NO_CLASS)
  if (class2 == AMD64_NO_CLASS)
    return class1;
    return class1;
 
 
  /* Rule (c): If one of the classes is MEMORY, the result is MEMORY.  */
  /* Rule (c): If one of the classes is MEMORY, the result is MEMORY.  */
  if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
  if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
    return AMD64_MEMORY;
    return AMD64_MEMORY;
 
 
  /* Rule (d): If one of the classes is INTEGER, the result is INTEGER.  */
  /* Rule (d): If one of the classes is INTEGER, the result is INTEGER.  */
  if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
  if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
    return AMD64_INTEGER;
    return AMD64_INTEGER;
 
 
  /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
  /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
     MEMORY is used as class.  */
     MEMORY is used as class.  */
  if (class1 == AMD64_X87 || class1 == AMD64_X87UP
  if (class1 == AMD64_X87 || class1 == AMD64_X87UP
      || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
      || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
      || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
      || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
    return AMD64_MEMORY;
    return AMD64_MEMORY;
 
 
  /* Rule (f): Otherwise class SSE is used.  */
  /* Rule (f): Otherwise class SSE is used.  */
  return AMD64_SSE;
  return AMD64_SSE;
}
}
 
 
static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
 
 
/* Return non-zero if TYPE is a non-POD structure or union type.  */
/* Return non-zero if TYPE is a non-POD structure or union type.  */
 
 
static int
static int
amd64_non_pod_p (struct type *type)
amd64_non_pod_p (struct type *type)
{
{
  /* ??? A class with a base class certainly isn't POD, but does this
  /* ??? A class with a base class certainly isn't POD, but does this
     catch all non-POD structure types?  */
     catch all non-POD structure types?  */
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
  if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
/* Classify TYPE according to the rules for aggregate (structures and
/* Classify TYPE according to the rules for aggregate (structures and
   arrays) and union types, and store the result in CLASS.  */
   arrays) and union types, and store the result in CLASS.  */
 
 
static void
static void
amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
{
{
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
 
 
  /* 1. If the size of an object is larger than two eightbytes, or in
  /* 1. If the size of an object is larger than two eightbytes, or in
        C++, is a non-POD structure or union type, or contains
        C++, is a non-POD structure or union type, or contains
        unaligned fields, it has class memory.  */
        unaligned fields, it has class memory.  */
  if (len > 16 || amd64_non_pod_p (type))
  if (len > 16 || amd64_non_pod_p (type))
    {
    {
      class[0] = class[1] = AMD64_MEMORY;
      class[0] = class[1] = AMD64_MEMORY;
      return;
      return;
    }
    }
 
 
  /* 2. Both eightbytes get initialized to class NO_CLASS.  */
  /* 2. Both eightbytes get initialized to class NO_CLASS.  */
  class[0] = class[1] = AMD64_NO_CLASS;
  class[0] = class[1] = AMD64_NO_CLASS;
 
 
  /* 3. Each field of an object is classified recursively so that
  /* 3. Each field of an object is classified recursively so that
        always two fields are considered. The resulting class is
        always two fields are considered. The resulting class is
        calculated according to the classes of the fields in the
        calculated according to the classes of the fields in the
        eightbyte: */
        eightbyte: */
 
 
  if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
  if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
    {
    {
      struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
      struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
 
 
      /* All fields in an array have the same type.  */
      /* All fields in an array have the same type.  */
      amd64_classify (subtype, class);
      amd64_classify (subtype, class);
      if (len > 8 && class[1] == AMD64_NO_CLASS)
      if (len > 8 && class[1] == AMD64_NO_CLASS)
        class[1] = class[0];
        class[1] = class[0];
    }
    }
  else
  else
    {
    {
      int i;
      int i;
 
 
      /* Structure or union.  */
      /* Structure or union.  */
      gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
      gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
                  || TYPE_CODE (type) == TYPE_CODE_UNION);
                  || TYPE_CODE (type) == TYPE_CODE_UNION);
 
 
      for (i = 0; i < TYPE_NFIELDS (type); i++)
      for (i = 0; i < TYPE_NFIELDS (type); i++)
        {
        {
          struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
          struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
          int pos = TYPE_FIELD_BITPOS (type, i) / 64;
          int pos = TYPE_FIELD_BITPOS (type, i) / 64;
          enum amd64_reg_class subclass[2];
          enum amd64_reg_class subclass[2];
 
 
          /* Ignore static fields.  */
          /* Ignore static fields.  */
          if (TYPE_FIELD_STATIC (type, i))
          if (TYPE_FIELD_STATIC (type, i))
            continue;
            continue;
 
 
          gdb_assert (pos == 0 || pos == 1);
          gdb_assert (pos == 0 || pos == 1);
 
 
          amd64_classify (subtype, subclass);
          amd64_classify (subtype, subclass);
          class[pos] = amd64_merge_classes (class[pos], subclass[0]);
          class[pos] = amd64_merge_classes (class[pos], subclass[0]);
          if (pos == 0)
          if (pos == 0)
            class[1] = amd64_merge_classes (class[1], subclass[1]);
            class[1] = amd64_merge_classes (class[1], subclass[1]);
        }
        }
    }
    }
 
 
  /* 4. Then a post merger cleanup is done:  */
  /* 4. Then a post merger cleanup is done:  */
 
 
  /* Rule (a): If one of the classes is MEMORY, the whole argument is
  /* Rule (a): If one of the classes is MEMORY, the whole argument is
     passed in memory.  */
     passed in memory.  */
  if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
  if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
    class[0] = class[1] = AMD64_MEMORY;
    class[0] = class[1] = AMD64_MEMORY;
 
 
  /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
  /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
     SSE.  */
     SSE.  */
  if (class[0] == AMD64_SSEUP)
  if (class[0] == AMD64_SSEUP)
    class[0] = AMD64_SSE;
    class[0] = AMD64_SSE;
  if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
  if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
    class[1] = AMD64_SSE;
    class[1] = AMD64_SSE;
}
}
 
 
/* Classify TYPE, and store the result in CLASS.  */
/* Classify TYPE, and store the result in CLASS.  */
 
 
static void
static void
amd64_classify (struct type *type, enum amd64_reg_class class[2])
amd64_classify (struct type *type, enum amd64_reg_class class[2])
{
{
  enum type_code code = TYPE_CODE (type);
  enum type_code code = TYPE_CODE (type);
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
 
 
  class[0] = class[1] = AMD64_NO_CLASS;
  class[0] = class[1] = AMD64_NO_CLASS;
 
 
  /* Arguments of types (signed and unsigned) _Bool, char, short, int,
  /* Arguments of types (signed and unsigned) _Bool, char, short, int,
     long, long long, and pointers are in the INTEGER class.  Similarly,
     long, long long, and pointers are in the INTEGER class.  Similarly,
     range types, used by languages such as Ada, are also in the INTEGER
     range types, used by languages such as Ada, are also in the INTEGER
     class.  */
     class.  */
  if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
  if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
       || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
       || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
       || code == TYPE_CODE_CHAR
       || code == TYPE_CODE_CHAR
       || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
       || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
      && (len == 1 || len == 2 || len == 4 || len == 8))
      && (len == 1 || len == 2 || len == 4 || len == 8))
    class[0] = AMD64_INTEGER;
    class[0] = AMD64_INTEGER;
 
 
  /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
  /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
     are in class SSE.  */
     are in class SSE.  */
  else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
  else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
           && (len == 4 || len == 8))
           && (len == 4 || len == 8))
    /* FIXME: __m64 .  */
    /* FIXME: __m64 .  */
    class[0] = AMD64_SSE;
    class[0] = AMD64_SSE;
 
 
  /* Arguments of types __float128, _Decimal128 and __m128 are split into
  /* Arguments of types __float128, _Decimal128 and __m128 are split into
     two halves.  The least significant ones belong to class SSE, the most
     two halves.  The least significant ones belong to class SSE, the most
     significant one to class SSEUP.  */
     significant one to class SSEUP.  */
  else if (code == TYPE_CODE_DECFLOAT && len == 16)
  else if (code == TYPE_CODE_DECFLOAT && len == 16)
    /* FIXME: __float128, __m128.  */
    /* FIXME: __float128, __m128.  */
    class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
    class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
 
 
  /* The 64-bit mantissa of arguments of type long double belongs to
  /* The 64-bit mantissa of arguments of type long double belongs to
     class X87, the 16-bit exponent plus 6 bytes of padding belongs to
     class X87, the 16-bit exponent plus 6 bytes of padding belongs to
     class X87UP.  */
     class X87UP.  */
  else if (code == TYPE_CODE_FLT && len == 16)
  else if (code == TYPE_CODE_FLT && len == 16)
    /* Class X87 and X87UP.  */
    /* Class X87 and X87UP.  */
    class[0] = AMD64_X87, class[1] = AMD64_X87UP;
    class[0] = AMD64_X87, class[1] = AMD64_X87UP;
 
 
  /* Aggregates.  */
  /* Aggregates.  */
  else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
  else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
           || code == TYPE_CODE_UNION)
           || code == TYPE_CODE_UNION)
    amd64_classify_aggregate (type, class);
    amd64_classify_aggregate (type, class);
}
}
 
 
static enum return_value_convention
static enum return_value_convention
amd64_return_value (struct gdbarch *gdbarch, struct type *type,
amd64_return_value (struct gdbarch *gdbarch, struct type *type,
                    struct regcache *regcache,
                    struct regcache *regcache,
                    gdb_byte *readbuf, const gdb_byte *writebuf)
                    gdb_byte *readbuf, const gdb_byte *writebuf)
{
{
  enum amd64_reg_class class[2];
  enum amd64_reg_class class[2];
  int len = TYPE_LENGTH (type);
  int len = TYPE_LENGTH (type);
  static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
  static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
  static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
  static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
  int integer_reg = 0;
  int integer_reg = 0;
  int sse_reg = 0;
  int sse_reg = 0;
  int i;
  int i;
 
 
  gdb_assert (!(readbuf && writebuf));
  gdb_assert (!(readbuf && writebuf));
 
 
  /* 1. Classify the return type with the classification algorithm.  */
  /* 1. Classify the return type with the classification algorithm.  */
  amd64_classify (type, class);
  amd64_classify (type, class);
 
 
  /* 2. If the type has class MEMORY, then the caller provides space
  /* 2. If the type has class MEMORY, then the caller provides space
     for the return value and passes the address of this storage in
     for the return value and passes the address of this storage in
     %rdi as if it were the first argument to the function. In effect,
     %rdi as if it were the first argument to the function. In effect,
     this address becomes a hidden first argument.
     this address becomes a hidden first argument.
 
 
     On return %rax will contain the address that has been passed in
     On return %rax will contain the address that has been passed in
     by the caller in %rdi.  */
     by the caller in %rdi.  */
  if (class[0] == AMD64_MEMORY)
  if (class[0] == AMD64_MEMORY)
    {
    {
      /* As indicated by the comment above, the ABI guarantees that we
      /* As indicated by the comment above, the ABI guarantees that we
         can always find the return value just after the function has
         can always find the return value just after the function has
         returned.  */
         returned.  */
 
 
      if (readbuf)
      if (readbuf)
        {
        {
          ULONGEST addr;
          ULONGEST addr;
 
 
          regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
          regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
          read_memory (addr, readbuf, TYPE_LENGTH (type));
          read_memory (addr, readbuf, TYPE_LENGTH (type));
        }
        }
 
 
      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
    }
    }
 
 
  gdb_assert (class[1] != AMD64_MEMORY);
  gdb_assert (class[1] != AMD64_MEMORY);
  gdb_assert (len <= 16);
  gdb_assert (len <= 16);
 
 
  for (i = 0; len > 0; i++, len -= 8)
  for (i = 0; len > 0; i++, len -= 8)
    {
    {
      int regnum = -1;
      int regnum = -1;
      int offset = 0;
      int offset = 0;
 
 
      switch (class[i])
      switch (class[i])
        {
        {
        case AMD64_INTEGER:
        case AMD64_INTEGER:
          /* 3. If the class is INTEGER, the next available register
          /* 3. If the class is INTEGER, the next available register
             of the sequence %rax, %rdx is used.  */
             of the sequence %rax, %rdx is used.  */
          regnum = integer_regnum[integer_reg++];
          regnum = integer_regnum[integer_reg++];
          break;
          break;
 
 
        case AMD64_SSE:
        case AMD64_SSE:
          /* 4. If the class is SSE, the next available SSE register
          /* 4. If the class is SSE, the next available SSE register
             of the sequence %xmm0, %xmm1 is used.  */
             of the sequence %xmm0, %xmm1 is used.  */
          regnum = sse_regnum[sse_reg++];
          regnum = sse_regnum[sse_reg++];
          break;
          break;
 
 
        case AMD64_SSEUP:
        case AMD64_SSEUP:
          /* 5. If the class is SSEUP, the eightbyte is passed in the
          /* 5. If the class is SSEUP, the eightbyte is passed in the
             upper half of the last used SSE register.  */
             upper half of the last used SSE register.  */
          gdb_assert (sse_reg > 0);
          gdb_assert (sse_reg > 0);
          regnum = sse_regnum[sse_reg - 1];
          regnum = sse_regnum[sse_reg - 1];
          offset = 8;
          offset = 8;
          break;
          break;
 
 
        case AMD64_X87:
        case AMD64_X87:
          /* 6. If the class is X87, the value is returned on the X87
          /* 6. If the class is X87, the value is returned on the X87
             stack in %st0 as 80-bit x87 number.  */
             stack in %st0 as 80-bit x87 number.  */
          regnum = AMD64_ST0_REGNUM;
          regnum = AMD64_ST0_REGNUM;
          if (writebuf)
          if (writebuf)
            i387_return_value (gdbarch, regcache);
            i387_return_value (gdbarch, regcache);
          break;
          break;
 
 
        case AMD64_X87UP:
        case AMD64_X87UP:
          /* 7. If the class is X87UP, the value is returned together
          /* 7. If the class is X87UP, the value is returned together
             with the previous X87 value in %st0.  */
             with the previous X87 value in %st0.  */
          gdb_assert (i > 0 && class[0] == AMD64_X87);
          gdb_assert (i > 0 && class[0] == AMD64_X87);
          regnum = AMD64_ST0_REGNUM;
          regnum = AMD64_ST0_REGNUM;
          offset = 8;
          offset = 8;
          len = 2;
          len = 2;
          break;
          break;
 
 
        case AMD64_NO_CLASS:
        case AMD64_NO_CLASS:
          continue;
          continue;
 
 
        default:
        default:
          gdb_assert (!"Unexpected register class.");
          gdb_assert (!"Unexpected register class.");
        }
        }
 
 
      gdb_assert (regnum != -1);
      gdb_assert (regnum != -1);
 
 
      if (readbuf)
      if (readbuf)
        regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
        regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
                                readbuf + i * 8);
                                readbuf + i * 8);
      if (writebuf)
      if (writebuf)
        regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
        regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
                                 writebuf + i * 8);
                                 writebuf + i * 8);
    }
    }
 
 
  return RETURN_VALUE_REGISTER_CONVENTION;
  return RETURN_VALUE_REGISTER_CONVENTION;
}
}


 
 
static CORE_ADDR
static CORE_ADDR
amd64_push_arguments (struct regcache *regcache, int nargs,
amd64_push_arguments (struct regcache *regcache, int nargs,
                      struct value **args, CORE_ADDR sp, int struct_return)
                      struct value **args, CORE_ADDR sp, int struct_return)
{
{
  static int integer_regnum[] =
  static int integer_regnum[] =
  {
  {
    AMD64_RDI_REGNUM,           /* %rdi */
    AMD64_RDI_REGNUM,           /* %rdi */
    AMD64_RSI_REGNUM,           /* %rsi */
    AMD64_RSI_REGNUM,           /* %rsi */
    AMD64_RDX_REGNUM,           /* %rdx */
    AMD64_RDX_REGNUM,           /* %rdx */
    AMD64_RCX_REGNUM,           /* %rcx */
    AMD64_RCX_REGNUM,           /* %rcx */
    8,                          /* %r8 */
    8,                          /* %r8 */
    9                           /* %r9 */
    9                           /* %r9 */
  };
  };
  static int sse_regnum[] =
  static int sse_regnum[] =
  {
  {
    /* %xmm0 ... %xmm7 */
    /* %xmm0 ... %xmm7 */
    AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
    AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
    AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
    AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
    AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
    AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
    AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
    AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
  };
  };
  struct value **stack_args = alloca (nargs * sizeof (struct value *));
  struct value **stack_args = alloca (nargs * sizeof (struct value *));
  int num_stack_args = 0;
  int num_stack_args = 0;
  int num_elements = 0;
  int num_elements = 0;
  int element = 0;
  int element = 0;
  int integer_reg = 0;
  int integer_reg = 0;
  int sse_reg = 0;
  int sse_reg = 0;
  int i;
  int i;
 
 
  /* Reserve a register for the "hidden" argument.  */
  /* Reserve a register for the "hidden" argument.  */
  if (struct_return)
  if (struct_return)
    integer_reg++;
    integer_reg++;
 
 
  for (i = 0; i < nargs; i++)
  for (i = 0; i < nargs; i++)
    {
    {
      struct type *type = value_type (args[i]);
      struct type *type = value_type (args[i]);
      int len = TYPE_LENGTH (type);
      int len = TYPE_LENGTH (type);
      enum amd64_reg_class class[2];
      enum amd64_reg_class class[2];
      int needed_integer_regs = 0;
      int needed_integer_regs = 0;
      int needed_sse_regs = 0;
      int needed_sse_regs = 0;
      int j;
      int j;
 
 
      /* Classify argument.  */
      /* Classify argument.  */
      amd64_classify (type, class);
      amd64_classify (type, class);
 
 
      /* Calculate the number of integer and SSE registers needed for
      /* Calculate the number of integer and SSE registers needed for
         this argument.  */
         this argument.  */
      for (j = 0; j < 2; j++)
      for (j = 0; j < 2; j++)
        {
        {
          if (class[j] == AMD64_INTEGER)
          if (class[j] == AMD64_INTEGER)
            needed_integer_regs++;
            needed_integer_regs++;
          else if (class[j] == AMD64_SSE)
          else if (class[j] == AMD64_SSE)
            needed_sse_regs++;
            needed_sse_regs++;
        }
        }
 
 
      /* Check whether enough registers are available, and if the
      /* Check whether enough registers are available, and if the
         argument should be passed in registers at all.  */
         argument should be passed in registers at all.  */
      if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
      if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
          || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
          || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
          || (needed_integer_regs == 0 && needed_sse_regs == 0))
          || (needed_integer_regs == 0 && needed_sse_regs == 0))
        {
        {
          /* The argument will be passed on the stack.  */
          /* The argument will be passed on the stack.  */
          num_elements += ((len + 7) / 8);
          num_elements += ((len + 7) / 8);
          stack_args[num_stack_args++] = args[i];
          stack_args[num_stack_args++] = args[i];
        }
        }
      else
      else
        {
        {
          /* The argument will be passed in registers.  */
          /* The argument will be passed in registers.  */
          const gdb_byte *valbuf = value_contents (args[i]);
          const gdb_byte *valbuf = value_contents (args[i]);
          gdb_byte buf[8];
          gdb_byte buf[8];
 
 
          gdb_assert (len <= 16);
          gdb_assert (len <= 16);
 
 
          for (j = 0; len > 0; j++, len -= 8)
          for (j = 0; len > 0; j++, len -= 8)
            {
            {
              int regnum = -1;
              int regnum = -1;
              int offset = 0;
              int offset = 0;
 
 
              switch (class[j])
              switch (class[j])
                {
                {
                case AMD64_INTEGER:
                case AMD64_INTEGER:
                  regnum = integer_regnum[integer_reg++];
                  regnum = integer_regnum[integer_reg++];
                  break;
                  break;
 
 
                case AMD64_SSE:
                case AMD64_SSE:
                  regnum = sse_regnum[sse_reg++];
                  regnum = sse_regnum[sse_reg++];
                  break;
                  break;
 
 
                case AMD64_SSEUP:
                case AMD64_SSEUP:
                  gdb_assert (sse_reg > 0);
                  gdb_assert (sse_reg > 0);
                  regnum = sse_regnum[sse_reg - 1];
                  regnum = sse_regnum[sse_reg - 1];
                  offset = 8;
                  offset = 8;
                  break;
                  break;
 
 
                default:
                default:
                  gdb_assert (!"Unexpected register class.");
                  gdb_assert (!"Unexpected register class.");
                }
                }
 
 
              gdb_assert (regnum != -1);
              gdb_assert (regnum != -1);
              memset (buf, 0, sizeof buf);
              memset (buf, 0, sizeof buf);
              memcpy (buf, valbuf + j * 8, min (len, 8));
              memcpy (buf, valbuf + j * 8, min (len, 8));
              regcache_raw_write_part (regcache, regnum, offset, 8, buf);
              regcache_raw_write_part (regcache, regnum, offset, 8, buf);
            }
            }
        }
        }
    }
    }
 
 
  /* Allocate space for the arguments on the stack.  */
  /* Allocate space for the arguments on the stack.  */
  sp -= num_elements * 8;
  sp -= num_elements * 8;
 
 
  /* The psABI says that "The end of the input argument area shall be
  /* The psABI says that "The end of the input argument area shall be
     aligned on a 16 byte boundary."  */
     aligned on a 16 byte boundary."  */
  sp &= ~0xf;
  sp &= ~0xf;
 
 
  /* Write out the arguments to the stack.  */
  /* Write out the arguments to the stack.  */
  for (i = 0; i < num_stack_args; i++)
  for (i = 0; i < num_stack_args; i++)
    {
    {
      struct type *type = value_type (stack_args[i]);
      struct type *type = value_type (stack_args[i]);
      const gdb_byte *valbuf = value_contents (stack_args[i]);
      const gdb_byte *valbuf = value_contents (stack_args[i]);
      int len = TYPE_LENGTH (type);
      int len = TYPE_LENGTH (type);
 
 
      write_memory (sp + element * 8, valbuf, len);
      write_memory (sp + element * 8, valbuf, len);
      element += ((len + 7) / 8);
      element += ((len + 7) / 8);
    }
    }
 
 
  /* The psABI says that "For calls that may call functions that use
  /* The psABI says that "For calls that may call functions that use
     varargs or stdargs (prototype-less calls or calls to functions
     varargs or stdargs (prototype-less calls or calls to functions
     containing ellipsis (...) in the declaration) %al is used as
     containing ellipsis (...) in the declaration) %al is used as
     hidden argument to specify the number of SSE registers used.  */
     hidden argument to specify the number of SSE registers used.  */
  regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
  regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
  return sp;
  return sp;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                       struct regcache *regcache, CORE_ADDR bp_addr,
                       struct regcache *regcache, CORE_ADDR bp_addr,
                       int nargs, struct value **args,  CORE_ADDR sp,
                       int nargs, struct value **args,  CORE_ADDR sp,
                       int struct_return, CORE_ADDR struct_addr)
                       int struct_return, CORE_ADDR struct_addr)
{
{
  gdb_byte buf[8];
  gdb_byte buf[8];
 
 
  /* Pass arguments.  */
  /* Pass arguments.  */
  sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
  sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
 
 
  /* Pass "hidden" argument".  */
  /* Pass "hidden" argument".  */
  if (struct_return)
  if (struct_return)
    {
    {
      store_unsigned_integer (buf, 8, struct_addr);
      store_unsigned_integer (buf, 8, struct_addr);
      regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
      regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
    }
    }
 
 
  /* Store return address.  */
  /* Store return address.  */
  sp -= 8;
  sp -= 8;
  store_unsigned_integer (buf, 8, bp_addr);
  store_unsigned_integer (buf, 8, bp_addr);
  write_memory (sp, buf, 8);
  write_memory (sp, buf, 8);
 
 
  /* Finally, update the stack pointer...  */
  /* Finally, update the stack pointer...  */
  store_unsigned_integer (buf, 8, sp);
  store_unsigned_integer (buf, 8, sp);
  regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
  regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
 
 
  /* ...and fake a frame pointer.  */
  /* ...and fake a frame pointer.  */
  regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
  regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
 
 
  return sp + 16;
  return sp + 16;
}
}


 
 
/* The maximum number of saved registers.  This should include %rip.  */
/* The maximum number of saved registers.  This should include %rip.  */
#define AMD64_NUM_SAVED_REGS    AMD64_NUM_GREGS
#define AMD64_NUM_SAVED_REGS    AMD64_NUM_GREGS
 
 
struct amd64_frame_cache
struct amd64_frame_cache
{
{
  /* Base address.  */
  /* Base address.  */
  CORE_ADDR base;
  CORE_ADDR base;
  CORE_ADDR sp_offset;
  CORE_ADDR sp_offset;
  CORE_ADDR pc;
  CORE_ADDR pc;
 
 
  /* Saved registers.  */
  /* Saved registers.  */
  CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
  CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
  CORE_ADDR saved_sp;
  CORE_ADDR saved_sp;
 
 
  /* Do we have a frame?  */
  /* Do we have a frame?  */
  int frameless_p;
  int frameless_p;
};
};
 
 
/* Initialize a frame cache.  */
/* Initialize a frame cache.  */
 
 
static void
static void
amd64_init_frame_cache (struct amd64_frame_cache *cache)
amd64_init_frame_cache (struct amd64_frame_cache *cache)
{
{
  int i;
  int i;
 
 
  /* Base address.  */
  /* Base address.  */
  cache->base = 0;
  cache->base = 0;
  cache->sp_offset = -8;
  cache->sp_offset = -8;
  cache->pc = 0;
  cache->pc = 0;
 
 
  /* Saved registers.  We initialize these to -1 since zero is a valid
  /* Saved registers.  We initialize these to -1 since zero is a valid
     offset (that's where %rbp is supposed to be stored).  */
     offset (that's where %rbp is supposed to be stored).  */
  for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
  for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
    cache->saved_regs[i] = -1;
    cache->saved_regs[i] = -1;
  cache->saved_sp = 0;
  cache->saved_sp = 0;
 
 
  /* Frameless until proven otherwise.  */
  /* Frameless until proven otherwise.  */
  cache->frameless_p = 1;
  cache->frameless_p = 1;
}
}
 
 
/* Allocate and initialize a frame cache.  */
/* Allocate and initialize a frame cache.  */
 
 
static struct amd64_frame_cache *
static struct amd64_frame_cache *
amd64_alloc_frame_cache (void)
amd64_alloc_frame_cache (void)
{
{
  struct amd64_frame_cache *cache;
  struct amd64_frame_cache *cache;
 
 
  cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
  cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
  amd64_init_frame_cache (cache);
  amd64_init_frame_cache (cache);
  return cache;
  return cache;
}
}
 
 
/* Do a limited analysis of the prologue at PC and update CACHE
/* Do a limited analysis of the prologue at PC and update CACHE
   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
   address where the analysis stopped.
   address where the analysis stopped.
 
 
   We will handle only functions beginning with:
   We will handle only functions beginning with:
 
 
      pushq %rbp        0x55
      pushq %rbp        0x55
      movq %rsp, %rbp   0x48 0x89 0xe5
      movq %rsp, %rbp   0x48 0x89 0xe5
 
 
   Any function that doesn't start with this sequence will be assumed
   Any function that doesn't start with this sequence will be assumed
   to have no prologue and thus no valid frame pointer in %rbp.  */
   to have no prologue and thus no valid frame pointer in %rbp.  */
 
 
static CORE_ADDR
static CORE_ADDR
amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
                        struct amd64_frame_cache *cache)
                        struct amd64_frame_cache *cache)
{
{
  static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
  static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
  gdb_byte buf[3];
  gdb_byte buf[3];
  gdb_byte op;
  gdb_byte op;
 
 
  if (current_pc <= pc)
  if (current_pc <= pc)
    return current_pc;
    return current_pc;
 
 
  op = read_memory_unsigned_integer (pc, 1);
  op = read_memory_unsigned_integer (pc, 1);
 
 
  if (op == 0x55)               /* pushq %rbp */
  if (op == 0x55)               /* pushq %rbp */
    {
    {
      /* Take into account that we've executed the `pushq %rbp' that
      /* Take into account that we've executed the `pushq %rbp' that
         starts this instruction sequence.  */
         starts this instruction sequence.  */
      cache->saved_regs[AMD64_RBP_REGNUM] = 0;
      cache->saved_regs[AMD64_RBP_REGNUM] = 0;
      cache->sp_offset += 8;
      cache->sp_offset += 8;
 
 
      /* If that's all, return now.  */
      /* If that's all, return now.  */
      if (current_pc <= pc + 1)
      if (current_pc <= pc + 1)
        return current_pc;
        return current_pc;
 
 
      /* Check for `movq %rsp, %rbp'.  */
      /* Check for `movq %rsp, %rbp'.  */
      read_memory (pc + 1, buf, 3);
      read_memory (pc + 1, buf, 3);
      if (memcmp (buf, proto, 3) != 0)
      if (memcmp (buf, proto, 3) != 0)
        return pc + 1;
        return pc + 1;
 
 
      /* OK, we actually have a frame.  */
      /* OK, we actually have a frame.  */
      cache->frameless_p = 0;
      cache->frameless_p = 0;
      return pc + 4;
      return pc + 4;
    }
    }
 
 
  return pc;
  return pc;
}
}
 
 
/* Return PC of first real instruction.  */
/* Return PC of first real instruction.  */
 
 
static CORE_ADDR
static CORE_ADDR
amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
{
{
  struct amd64_frame_cache cache;
  struct amd64_frame_cache cache;
  CORE_ADDR pc;
  CORE_ADDR pc;
 
 
  amd64_init_frame_cache (&cache);
  amd64_init_frame_cache (&cache);
  pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffffLL, &cache);
  pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffffLL, &cache);
  if (cache.frameless_p)
  if (cache.frameless_p)
    return start_pc;
    return start_pc;
 
 
  return pc;
  return pc;
}
}


 
 
/* Normal frames.  */
/* Normal frames.  */
 
 
static struct amd64_frame_cache *
static struct amd64_frame_cache *
amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
{
{
  struct amd64_frame_cache *cache;
  struct amd64_frame_cache *cache;
  gdb_byte buf[8];
  gdb_byte buf[8];
  int i;
  int i;
 
 
  if (*this_cache)
  if (*this_cache)
    return *this_cache;
    return *this_cache;
 
 
  cache = amd64_alloc_frame_cache ();
  cache = amd64_alloc_frame_cache ();
  *this_cache = cache;
  *this_cache = cache;
 
 
  cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
  cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
  if (cache->pc != 0)
  if (cache->pc != 0)
    amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
    amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
 
 
  if (cache->frameless_p)
  if (cache->frameless_p)
    {
    {
      /* We didn't find a valid frame.  If we're at the start of a
      /* We didn't find a valid frame.  If we're at the start of a
         function, or somewhere half-way its prologue, the function's
         function, or somewhere half-way its prologue, the function's
         frame probably hasn't been fully setup yet.  Try to
         frame probably hasn't been fully setup yet.  Try to
         reconstruct the base address for the stack frame by looking
         reconstruct the base address for the stack frame by looking
         at the stack pointer.  For truly "frameless" functions this
         at the stack pointer.  For truly "frameless" functions this
         might work too.  */
         might work too.  */
 
 
      frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
      frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
      cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
      cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
    }
    }
  else
  else
    {
    {
      frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
      frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
      cache->base = extract_unsigned_integer (buf, 8);
      cache->base = extract_unsigned_integer (buf, 8);
    }
    }
 
 
  /* Now that we have the base address for the stack frame we can
  /* Now that we have the base address for the stack frame we can
     calculate the value of %rsp in the calling frame.  */
     calculate the value of %rsp in the calling frame.  */
  cache->saved_sp = cache->base + 16;
  cache->saved_sp = cache->base + 16;
 
 
  /* For normal frames, %rip is stored at 8(%rbp).  If we don't have a
  /* For normal frames, %rip is stored at 8(%rbp).  If we don't have a
     frame we find it at the same offset from the reconstructed base
     frame we find it at the same offset from the reconstructed base
     address.  */
     address.  */
  cache->saved_regs[AMD64_RIP_REGNUM] = 8;
  cache->saved_regs[AMD64_RIP_REGNUM] = 8;
 
 
  /* Adjust all the saved registers such that they contain addresses
  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
     instead of offsets.  */
  for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
  for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
    if (cache->saved_regs[i] != -1)
    if (cache->saved_regs[i] != -1)
      cache->saved_regs[i] += cache->base;
      cache->saved_regs[i] += cache->base;
 
 
  return cache;
  return cache;
}
}
 
 
static void
static void
amd64_frame_this_id (struct frame_info *next_frame, void **this_cache,
amd64_frame_this_id (struct frame_info *next_frame, void **this_cache,
                     struct frame_id *this_id)
                     struct frame_id *this_id)
{
{
  struct amd64_frame_cache *cache =
  struct amd64_frame_cache *cache =
    amd64_frame_cache (next_frame, this_cache);
    amd64_frame_cache (next_frame, this_cache);
 
 
  /* This marks the outermost frame.  */
  /* This marks the outermost frame.  */
  if (cache->base == 0)
  if (cache->base == 0)
    return;
    return;
 
 
  (*this_id) = frame_id_build (cache->base + 16, cache->pc);
  (*this_id) = frame_id_build (cache->base + 16, cache->pc);
}
}
 
 
static void
static void
amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
                           int regnum, int *optimizedp,
                           int regnum, int *optimizedp,
                           enum lval_type *lvalp, CORE_ADDR *addrp,
                           enum lval_type *lvalp, CORE_ADDR *addrp,
                           int *realnump, gdb_byte *valuep)
                           int *realnump, gdb_byte *valuep)
{
{
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  struct gdbarch *gdbarch = get_frame_arch (next_frame);
  struct amd64_frame_cache *cache =
  struct amd64_frame_cache *cache =
    amd64_frame_cache (next_frame, this_cache);
    amd64_frame_cache (next_frame, this_cache);
 
 
  gdb_assert (regnum >= 0);
  gdb_assert (regnum >= 0);
 
 
  if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
  if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
    {
    {
      *optimizedp = 0;
      *optimizedp = 0;
      *lvalp = not_lval;
      *lvalp = not_lval;
      *addrp = 0;
      *addrp = 0;
      *realnump = -1;
      *realnump = -1;
      if (valuep)
      if (valuep)
        {
        {
          /* Store the value.  */
          /* Store the value.  */
          store_unsigned_integer (valuep, 8, cache->saved_sp);
          store_unsigned_integer (valuep, 8, cache->saved_sp);
        }
        }
      return;
      return;
    }
    }
 
 
  if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
  if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
    {
    {
      *optimizedp = 0;
      *optimizedp = 0;
      *lvalp = lval_memory;
      *lvalp = lval_memory;
      *addrp = cache->saved_regs[regnum];
      *addrp = cache->saved_regs[regnum];
      *realnump = -1;
      *realnump = -1;
      if (valuep)
      if (valuep)
        {
        {
          /* Read the value in from memory.  */
          /* Read the value in from memory.  */
          read_memory (*addrp, valuep,
          read_memory (*addrp, valuep,
                       register_size (gdbarch, regnum));
                       register_size (gdbarch, regnum));
        }
        }
      return;
      return;
    }
    }
 
 
  *optimizedp = 0;
  *optimizedp = 0;
  *lvalp = lval_register;
  *lvalp = lval_register;
  *addrp = 0;
  *addrp = 0;
  *realnump = regnum;
  *realnump = regnum;
  if (valuep)
  if (valuep)
    frame_unwind_register (next_frame, (*realnump), valuep);
    frame_unwind_register (next_frame, (*realnump), valuep);
}
}
 
 
static const struct frame_unwind amd64_frame_unwind =
static const struct frame_unwind amd64_frame_unwind =
{
{
  NORMAL_FRAME,
  NORMAL_FRAME,
  amd64_frame_this_id,
  amd64_frame_this_id,
  amd64_frame_prev_register
  amd64_frame_prev_register
};
};
 
 
static const struct frame_unwind *
static const struct frame_unwind *
amd64_frame_sniffer (struct frame_info *next_frame)
amd64_frame_sniffer (struct frame_info *next_frame)
{
{
  return &amd64_frame_unwind;
  return &amd64_frame_unwind;
}
}


 
 
/* Signal trampolines.  */
/* Signal trampolines.  */
 
 
/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
   64-bit variants.  This would require using identical frame caches
   64-bit variants.  This would require using identical frame caches
   on both platforms.  */
   on both platforms.  */
 
 
static struct amd64_frame_cache *
static struct amd64_frame_cache *
amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
{
{
  struct amd64_frame_cache *cache;
  struct amd64_frame_cache *cache;
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
  CORE_ADDR addr;
  CORE_ADDR addr;
  gdb_byte buf[8];
  gdb_byte buf[8];
  int i;
  int i;
 
 
  if (*this_cache)
  if (*this_cache)
    return *this_cache;
    return *this_cache;
 
 
  cache = amd64_alloc_frame_cache ();
  cache = amd64_alloc_frame_cache ();
 
 
  frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
  frame_unwind_register (next_frame, AMD64_RSP_REGNUM, buf);
  cache->base = extract_unsigned_integer (buf, 8) - 8;
  cache->base = extract_unsigned_integer (buf, 8) - 8;
 
 
  addr = tdep->sigcontext_addr (next_frame);
  addr = tdep->sigcontext_addr (next_frame);
  gdb_assert (tdep->sc_reg_offset);
  gdb_assert (tdep->sc_reg_offset);
  gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
  gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
  for (i = 0; i < tdep->sc_num_regs; i++)
  for (i = 0; i < tdep->sc_num_regs; i++)
    if (tdep->sc_reg_offset[i] != -1)
    if (tdep->sc_reg_offset[i] != -1)
      cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
      cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
 
 
  *this_cache = cache;
  *this_cache = cache;
  return cache;
  return cache;
}
}
 
 
static void
static void
amd64_sigtramp_frame_this_id (struct frame_info *next_frame,
amd64_sigtramp_frame_this_id (struct frame_info *next_frame,
                              void **this_cache, struct frame_id *this_id)
                              void **this_cache, struct frame_id *this_id)
{
{
  struct amd64_frame_cache *cache =
  struct amd64_frame_cache *cache =
    amd64_sigtramp_frame_cache (next_frame, this_cache);
    amd64_sigtramp_frame_cache (next_frame, this_cache);
 
 
  (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
  (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
}
}
 
 
static void
static void
amd64_sigtramp_frame_prev_register (struct frame_info *next_frame,
amd64_sigtramp_frame_prev_register (struct frame_info *next_frame,
                                    void **this_cache,
                                    void **this_cache,
                                    int regnum, int *optimizedp,
                                    int regnum, int *optimizedp,
                                    enum lval_type *lvalp, CORE_ADDR *addrp,
                                    enum lval_type *lvalp, CORE_ADDR *addrp,
                                    int *realnump, gdb_byte *valuep)
                                    int *realnump, gdb_byte *valuep)
{
{
  /* Make sure we've initialized the cache.  */
  /* Make sure we've initialized the cache.  */
  amd64_sigtramp_frame_cache (next_frame, this_cache);
  amd64_sigtramp_frame_cache (next_frame, this_cache);
 
 
  amd64_frame_prev_register (next_frame, this_cache, regnum,
  amd64_frame_prev_register (next_frame, this_cache, regnum,
                             optimizedp, lvalp, addrp, realnump, valuep);
                             optimizedp, lvalp, addrp, realnump, valuep);
}
}
 
 
static const struct frame_unwind amd64_sigtramp_frame_unwind =
static const struct frame_unwind amd64_sigtramp_frame_unwind =
{
{
  SIGTRAMP_FRAME,
  SIGTRAMP_FRAME,
  amd64_sigtramp_frame_this_id,
  amd64_sigtramp_frame_this_id,
  amd64_sigtramp_frame_prev_register
  amd64_sigtramp_frame_prev_register
};
};
 
 
static const struct frame_unwind *
static const struct frame_unwind *
amd64_sigtramp_frame_sniffer (struct frame_info *next_frame)
amd64_sigtramp_frame_sniffer (struct frame_info *next_frame)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
 
 
  /* We shouldn't even bother if we don't have a sigcontext_addr
  /* We shouldn't even bother if we don't have a sigcontext_addr
     handler.  */
     handler.  */
  if (tdep->sigcontext_addr == NULL)
  if (tdep->sigcontext_addr == NULL)
    return NULL;
    return NULL;
 
 
  if (tdep->sigtramp_p != NULL)
  if (tdep->sigtramp_p != NULL)
    {
    {
      if (tdep->sigtramp_p (next_frame))
      if (tdep->sigtramp_p (next_frame))
        return &amd64_sigtramp_frame_unwind;
        return &amd64_sigtramp_frame_unwind;
    }
    }
 
 
  if (tdep->sigtramp_start != 0)
  if (tdep->sigtramp_start != 0)
    {
    {
      CORE_ADDR pc = frame_pc_unwind (next_frame);
      CORE_ADDR pc = frame_pc_unwind (next_frame);
 
 
      gdb_assert (tdep->sigtramp_end != 0);
      gdb_assert (tdep->sigtramp_end != 0);
      if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
      if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
        return &amd64_sigtramp_frame_unwind;
        return &amd64_sigtramp_frame_unwind;
    }
    }
 
 
  return NULL;
  return NULL;
}
}


 
 
static CORE_ADDR
static CORE_ADDR
amd64_frame_base_address (struct frame_info *next_frame, void **this_cache)
amd64_frame_base_address (struct frame_info *next_frame, void **this_cache)
{
{
  struct amd64_frame_cache *cache =
  struct amd64_frame_cache *cache =
    amd64_frame_cache (next_frame, this_cache);
    amd64_frame_cache (next_frame, this_cache);
 
 
  return cache->base;
  return cache->base;
}
}
 
 
static const struct frame_base amd64_frame_base =
static const struct frame_base amd64_frame_base =
{
{
  &amd64_frame_unwind,
  &amd64_frame_unwind,
  amd64_frame_base_address,
  amd64_frame_base_address,
  amd64_frame_base_address,
  amd64_frame_base_address,
  amd64_frame_base_address
  amd64_frame_base_address
};
};
 
 
static struct frame_id
static struct frame_id
amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
{
  gdb_byte buf[8];
  gdb_byte buf[8];
  CORE_ADDR fp;
  CORE_ADDR fp;
 
 
  frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
  frame_unwind_register (next_frame, AMD64_RBP_REGNUM, buf);
  fp = extract_unsigned_integer (buf, 8);
  fp = extract_unsigned_integer (buf, 8);
 
 
  return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
  return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
}
}
 
 
/* 16 byte align the SP per frame requirements.  */
/* 16 byte align the SP per frame requirements.  */
 
 
static CORE_ADDR
static CORE_ADDR
amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
{
  return sp & -(CORE_ADDR)16;
  return sp & -(CORE_ADDR)16;
}
}


 
 
/* Supply register REGNUM from the buffer specified by FPREGS and LEN
/* Supply register REGNUM from the buffer specified by FPREGS and LEN
   in the floating-point register set REGSET to register cache
   in the floating-point register set REGSET to register cache
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
   REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
 
 
static void
static void
amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
                       int regnum, const void *fpregs, size_t len)
                       int regnum, const void *fpregs, size_t len)
{
{
  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
 
 
  gdb_assert (len == tdep->sizeof_fpregset);
  gdb_assert (len == tdep->sizeof_fpregset);
  amd64_supply_fxsave (regcache, regnum, fpregs);
  amd64_supply_fxsave (regcache, regnum, fpregs);
}
}
 
 
/* Collect register REGNUM from the register cache REGCACHE and store
/* Collect register REGNUM from the register cache REGCACHE and store
   it in the buffer specified by FPREGS and LEN as described by the
   it in the buffer specified by FPREGS and LEN as described by the
   floating-point register set REGSET.  If REGNUM is -1, do this for
   floating-point register set REGSET.  If REGNUM is -1, do this for
   all registers in REGSET.  */
   all registers in REGSET.  */
 
 
static void
static void
amd64_collect_fpregset (const struct regset *regset,
amd64_collect_fpregset (const struct regset *regset,
                        const struct regcache *regcache,
                        const struct regcache *regcache,
                        int regnum, void *fpregs, size_t len)
                        int regnum, void *fpregs, size_t len)
{
{
  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
  const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
 
 
  gdb_assert (len == tdep->sizeof_fpregset);
  gdb_assert (len == tdep->sizeof_fpregset);
  amd64_collect_fxsave (regcache, regnum, fpregs);
  amd64_collect_fxsave (regcache, regnum, fpregs);
}
}
 
 
/* Return the appropriate register set for the core section identified
/* Return the appropriate register set for the core section identified
   by SECT_NAME and SECT_SIZE.  */
   by SECT_NAME and SECT_SIZE.  */
 
 
static const struct regset *
static const struct regset *
amd64_regset_from_core_section (struct gdbarch *gdbarch,
amd64_regset_from_core_section (struct gdbarch *gdbarch,
                                const char *sect_name, size_t sect_size)
                                const char *sect_name, size_t sect_size)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
  if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
    {
    {
      if (tdep->fpregset == NULL)
      if (tdep->fpregset == NULL)
        tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
        tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
                                       amd64_collect_fpregset);
                                       amd64_collect_fpregset);
 
 
      return tdep->fpregset;
      return tdep->fpregset;
    }
    }
 
 
  return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
  return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
}
}


 
 
void
void
amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
 
 
  /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
  /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
     floating-point registers.  */
     floating-point registers.  */
  tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
  tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
 
 
  /* AMD64 has an FPU and 16 SSE registers.  */
  /* AMD64 has an FPU and 16 SSE registers.  */
  tdep->st0_regnum = AMD64_ST0_REGNUM;
  tdep->st0_regnum = AMD64_ST0_REGNUM;
  tdep->num_xmm_regs = 16;
  tdep->num_xmm_regs = 16;
 
 
  /* This is what all the fuss is about.  */
  /* This is what all the fuss is about.  */
  set_gdbarch_long_bit (gdbarch, 64);
  set_gdbarch_long_bit (gdbarch, 64);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_ptr_bit (gdbarch, 64);
  set_gdbarch_ptr_bit (gdbarch, 64);
 
 
  /* In contrast to the i386, on AMD64 a `long double' actually takes
  /* In contrast to the i386, on AMD64 a `long double' actually takes
     up 128 bits, even though it's still based on the i387 extended
     up 128 bits, even though it's still based on the i387 extended
     floating-point format which has only 80 significant bits.  */
     floating-point format which has only 80 significant bits.  */
  set_gdbarch_long_double_bit (gdbarch, 128);
  set_gdbarch_long_double_bit (gdbarch, 128);
 
 
  set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
  set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
  set_gdbarch_register_name (gdbarch, amd64_register_name);
  set_gdbarch_register_name (gdbarch, amd64_register_name);
  set_gdbarch_register_type (gdbarch, amd64_register_type);
  set_gdbarch_register_type (gdbarch, amd64_register_type);
 
 
  /* Register numbers of various important registers.  */
  /* Register numbers of various important registers.  */
  set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
  set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
  set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
  set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
  set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
  set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
  set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
  set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
 
 
  /* The "default" register numbering scheme for AMD64 is referred to
  /* The "default" register numbering scheme for AMD64 is referred to
     as the "DWARF Register Number Mapping" in the System V psABI.
     as the "DWARF Register Number Mapping" in the System V psABI.
     The preferred debugging format for all known AMD64 targets is
     The preferred debugging format for all known AMD64 targets is
     actually DWARF2, and GCC doesn't seem to support DWARF (that is
     actually DWARF2, and GCC doesn't seem to support DWARF (that is
     DWARF-1), but we provide the same mapping just in case.  This
     DWARF-1), but we provide the same mapping just in case.  This
     mapping is also used for stabs, which GCC does support.  */
     mapping is also used for stabs, which GCC does support.  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
  set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
  set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
  set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
 
 
  /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
  /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
     be in use on any of the supported AMD64 targets.  */
     be in use on any of the supported AMD64 targets.  */
 
 
  /* Call dummy code.  */
  /* Call dummy code.  */
  set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
  set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
  set_gdbarch_frame_align (gdbarch, amd64_frame_align);
  set_gdbarch_frame_align (gdbarch, amd64_frame_align);
  set_gdbarch_frame_red_zone_size (gdbarch, 128);
  set_gdbarch_frame_red_zone_size (gdbarch, 128);
 
 
  set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
  set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
  set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
  set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
  set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
  set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
 
 
  set_gdbarch_return_value (gdbarch, amd64_return_value);
  set_gdbarch_return_value (gdbarch, amd64_return_value);
 
 
  set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
  set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
 
 
  /* Avoid wiring in the MMX registers for now.  */
  /* Avoid wiring in the MMX registers for now.  */
  set_gdbarch_num_pseudo_regs (gdbarch, 0);
  set_gdbarch_num_pseudo_regs (gdbarch, 0);
  tdep->mm0_regnum = -1;
  tdep->mm0_regnum = -1;
 
 
  set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id);
  set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id);
 
 
  frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer);
  frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer);
  frame_base_set_default (gdbarch, &amd64_frame_base);
  frame_base_set_default (gdbarch, &amd64_frame_base);
 
 
  /* If we have a register mapping, enable the generic core file support.  */
  /* If we have a register mapping, enable the generic core file support.  */
  if (tdep->gregset_reg_offset)
  if (tdep->gregset_reg_offset)
    set_gdbarch_regset_from_core_section (gdbarch,
    set_gdbarch_regset_from_core_section (gdbarch,
                                          amd64_regset_from_core_section);
                                          amd64_regset_from_core_section);
}
}


 
 
#define I387_ST0_REGNUM AMD64_ST0_REGNUM
#define I387_ST0_REGNUM AMD64_ST0_REGNUM
 
 
/* The 64-bit FXSAVE format differs from the 32-bit format in the
/* The 64-bit FXSAVE format differs from the 32-bit format in the
   sense that the instruction pointer and data pointer are simply
   sense that the instruction pointer and data pointer are simply
   64-bit offsets into the code segment and the data segment instead
   64-bit offsets into the code segment and the data segment instead
   of a selector offset pair.  The functions below store the upper 32
   of a selector offset pair.  The functions below store the upper 32
   bits of these pointers (instead of just the 16-bits of the segment
   bits of these pointers (instead of just the 16-bits of the segment
   selector).  */
   selector).  */
 
 
/* Fill register REGNUM in REGCACHE with the appropriate
/* Fill register REGNUM in REGCACHE with the appropriate
   floating-point or SSE register value from *FXSAVE.  If REGNUM is
   floating-point or SSE register value from *FXSAVE.  If REGNUM is
   -1, do this for all registers.  This function masks off any of the
   -1, do this for all registers.  This function masks off any of the
   reserved bits in *FXSAVE.  */
   reserved bits in *FXSAVE.  */
 
 
void
void
amd64_supply_fxsave (struct regcache *regcache, int regnum,
amd64_supply_fxsave (struct regcache *regcache, int regnum,
                      const void *fxsave)
                      const void *fxsave)
{
{
  i387_supply_fxsave (regcache, regnum, fxsave);
  i387_supply_fxsave (regcache, regnum, fxsave);
 
 
  if (fxsave && gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
  if (fxsave && gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
    {
    {
      const gdb_byte *regs = fxsave;
      const gdb_byte *regs = fxsave;
 
 
      if (regnum == -1 || regnum == I387_FISEG_REGNUM)
      if (regnum == -1 || regnum == I387_FISEG_REGNUM)
        regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
        regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
      if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
      if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
        regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
        regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
    }
    }
}
}
 
 
/* Fill register REGNUM (if it is a floating-point or SSE register) in
/* Fill register REGNUM (if it is a floating-point or SSE register) in
   *FXSAVE with the value from REGCACHE.  If REGNUM is -1, do this for
   *FXSAVE with the value from REGCACHE.  If REGNUM is -1, do this for
   all registers.  This function doesn't touch any of the reserved
   all registers.  This function doesn't touch any of the reserved
   bits in *FXSAVE.  */
   bits in *FXSAVE.  */
 
 
void
void
amd64_collect_fxsave (const struct regcache *regcache, int regnum,
amd64_collect_fxsave (const struct regcache *regcache, int regnum,
                      void *fxsave)
                      void *fxsave)
{
{
  gdb_byte *regs = fxsave;
  gdb_byte *regs = fxsave;
 
 
  i387_collect_fxsave (regcache, regnum, fxsave);
  i387_collect_fxsave (regcache, regnum, fxsave);
 
 
  if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
  if (gdbarch_ptr_bit (get_regcache_arch (regcache)) == 64)
    {
    {
      if (regnum == -1 || regnum == I387_FISEG_REGNUM)
      if (regnum == -1 || regnum == I387_FISEG_REGNUM)
        regcache_raw_collect (regcache, I387_FISEG_REGNUM, regs + 12);
        regcache_raw_collect (regcache, I387_FISEG_REGNUM, regs + 12);
      if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
      if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
        regcache_raw_collect (regcache, I387_FOSEG_REGNUM, regs + 20);
        regcache_raw_collect (regcache, I387_FOSEG_REGNUM, regs + 20);
    }
    }
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.