OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [tags/] [gnu-src/] [gdb-6.8/] [pre-binutils-2.20.1-sync/] [gdb/] [gdbserver/] [linux-low.c] - Diff between revs 157 and 223

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 157 Rev 223
/* Low level interface to ptrace, for the remote server for GDB.
/* Low level interface to ptrace, for the remote server for GDB.
   Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
   Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
   2006, 2007, 2008 Free Software Foundation, Inc.
   2006, 2007, 2008 Free Software Foundation, Inc.
 
 
   This file is part of GDB.
   This file is part of GDB.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
 
 
#include "server.h"
#include "server.h"
#include "linux-low.h"
#include "linux-low.h"
 
 
#include <sys/wait.h>
#include <sys/wait.h>
#include <stdio.h>
#include <stdio.h>
#include <sys/param.h>
#include <sys/param.h>
#include <sys/dir.h>
#include <sys/dir.h>
#include <sys/ptrace.h>
#include <sys/ptrace.h>
#include <sys/user.h>
#include <sys/user.h>
#include <signal.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <fcntl.h>
#include <string.h>
#include <string.h>
#include <stdlib.h>
#include <stdlib.h>
#include <unistd.h>
#include <unistd.h>
#include <errno.h>
#include <errno.h>
#include <sys/syscall.h>
#include <sys/syscall.h>
#include <sched.h>
#include <sched.h>
 
 
#ifndef PTRACE_GETSIGINFO
#ifndef PTRACE_GETSIGINFO
# define PTRACE_GETSIGINFO 0x4202
# define PTRACE_GETSIGINFO 0x4202
# define PTRACE_SETSIGINFO 0x4203
# define PTRACE_SETSIGINFO 0x4203
#endif
#endif
 
 
#ifndef O_LARGEFILE
#ifndef O_LARGEFILE
#define O_LARGEFILE 0
#define O_LARGEFILE 0
#endif
#endif
 
 
/* If the system headers did not provide the constants, hard-code the normal
/* If the system headers did not provide the constants, hard-code the normal
   values.  */
   values.  */
#ifndef PTRACE_EVENT_FORK
#ifndef PTRACE_EVENT_FORK
 
 
#define PTRACE_SETOPTIONS       0x4200
#define PTRACE_SETOPTIONS       0x4200
#define PTRACE_GETEVENTMSG      0x4201
#define PTRACE_GETEVENTMSG      0x4201
 
 
/* options set using PTRACE_SETOPTIONS */
/* options set using PTRACE_SETOPTIONS */
#define PTRACE_O_TRACESYSGOOD   0x00000001
#define PTRACE_O_TRACESYSGOOD   0x00000001
#define PTRACE_O_TRACEFORK      0x00000002
#define PTRACE_O_TRACEFORK      0x00000002
#define PTRACE_O_TRACEVFORK     0x00000004
#define PTRACE_O_TRACEVFORK     0x00000004
#define PTRACE_O_TRACECLONE     0x00000008
#define PTRACE_O_TRACECLONE     0x00000008
#define PTRACE_O_TRACEEXEC      0x00000010
#define PTRACE_O_TRACEEXEC      0x00000010
#define PTRACE_O_TRACEVFORKDONE 0x00000020
#define PTRACE_O_TRACEVFORKDONE 0x00000020
#define PTRACE_O_TRACEEXIT      0x00000040
#define PTRACE_O_TRACEEXIT      0x00000040
 
 
/* Wait extended result codes for the above trace options.  */
/* Wait extended result codes for the above trace options.  */
#define PTRACE_EVENT_FORK       1
#define PTRACE_EVENT_FORK       1
#define PTRACE_EVENT_VFORK      2
#define PTRACE_EVENT_VFORK      2
#define PTRACE_EVENT_CLONE      3
#define PTRACE_EVENT_CLONE      3
#define PTRACE_EVENT_EXEC       4
#define PTRACE_EVENT_EXEC       4
#define PTRACE_EVENT_VFORK_DONE 5
#define PTRACE_EVENT_VFORK_DONE 5
#define PTRACE_EVENT_EXIT       6
#define PTRACE_EVENT_EXIT       6
 
 
#endif /* PTRACE_EVENT_FORK */
#endif /* PTRACE_EVENT_FORK */
 
 
/* We can't always assume that this flag is available, but all systems
/* We can't always assume that this flag is available, but all systems
   with the ptrace event handlers also have __WALL, so it's safe to use
   with the ptrace event handlers also have __WALL, so it's safe to use
   in some contexts.  */
   in some contexts.  */
#ifndef __WALL
#ifndef __WALL
#define __WALL          0x40000000 /* Wait for any child.  */
#define __WALL          0x40000000 /* Wait for any child.  */
#endif
#endif
 
 
#ifdef __UCLIBC__
#ifdef __UCLIBC__
#if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
#if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
#define HAS_NOMMU
#define HAS_NOMMU
#endif
#endif
#endif
#endif
 
 
/* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
/* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
   representation of the thread ID.
   representation of the thread ID.
 
 
   ``all_processes'' is keyed by the process ID - which on Linux is (presently)
   ``all_processes'' is keyed by the process ID - which on Linux is (presently)
   the same as the LWP ID.  */
   the same as the LWP ID.  */
 
 
struct inferior_list all_processes;
struct inferior_list all_processes;
 
 
/* A list of all unknown processes which receive stop signals.  Some other
/* A list of all unknown processes which receive stop signals.  Some other
   process will presumably claim each of these as forked children
   process will presumably claim each of these as forked children
   momentarily.  */
   momentarily.  */
 
 
struct inferior_list stopped_pids;
struct inferior_list stopped_pids;
 
 
/* FIXME this is a bit of a hack, and could be removed.  */
/* FIXME this is a bit of a hack, and could be removed.  */
int stopping_threads;
int stopping_threads;
 
 
/* FIXME make into a target method?  */
/* FIXME make into a target method?  */
int using_threads = 1;
int using_threads = 1;
static int thread_db_active;
static int thread_db_active;
 
 
static int must_set_ptrace_flags;
static int must_set_ptrace_flags;
 
 
static void linux_resume_one_process (struct inferior_list_entry *entry,
static void linux_resume_one_process (struct inferior_list_entry *entry,
                                      int step, int signal, siginfo_t *info);
                                      int step, int signal, siginfo_t *info);
static void linux_resume (struct thread_resume *resume_info);
static void linux_resume (struct thread_resume *resume_info);
static void stop_all_processes (void);
static void stop_all_processes (void);
static int linux_wait_for_event (struct thread_info *child);
static int linux_wait_for_event (struct thread_info *child);
static int check_removed_breakpoint (struct process_info *event_child);
static int check_removed_breakpoint (struct process_info *event_child);
static void *add_process (unsigned long pid);
static void *add_process (unsigned long pid);
 
 
struct pending_signals
struct pending_signals
{
{
  int signal;
  int signal;
  siginfo_t info;
  siginfo_t info;
  struct pending_signals *prev;
  struct pending_signals *prev;
};
};
 
 
#define PTRACE_ARG3_TYPE long
#define PTRACE_ARG3_TYPE long
#define PTRACE_XFER_TYPE long
#define PTRACE_XFER_TYPE long
 
 
#ifdef HAVE_LINUX_REGSETS
#ifdef HAVE_LINUX_REGSETS
static int use_regsets_p = 1;
static int use_regsets_p = 1;
#endif
#endif
 
 
#define pid_of(proc) ((proc)->head.id)
#define pid_of(proc) ((proc)->head.id)
 
 
/* FIXME: Delete eventually.  */
/* FIXME: Delete eventually.  */
#define inferior_pid (pid_of (get_thread_process (current_inferior)))
#define inferior_pid (pid_of (get_thread_process (current_inferior)))
 
 
static void
static void
handle_extended_wait (struct process_info *event_child, int wstat)
handle_extended_wait (struct process_info *event_child, int wstat)
{
{
  int event = wstat >> 16;
  int event = wstat >> 16;
  struct process_info *new_process;
  struct process_info *new_process;
 
 
  if (event == PTRACE_EVENT_CLONE)
  if (event == PTRACE_EVENT_CLONE)
    {
    {
      unsigned long new_pid;
      unsigned long new_pid;
      int ret, status;
      int ret, status;
 
 
      ptrace (PTRACE_GETEVENTMSG, inferior_pid, 0, &new_pid);
      ptrace (PTRACE_GETEVENTMSG, inferior_pid, 0, &new_pid);
 
 
      /* If we haven't already seen the new PID stop, wait for it now.  */
      /* If we haven't already seen the new PID stop, wait for it now.  */
      if (! pull_pid_from_list (&stopped_pids, new_pid))
      if (! pull_pid_from_list (&stopped_pids, new_pid))
        {
        {
          /* The new child has a pending SIGSTOP.  We can't affect it until it
          /* The new child has a pending SIGSTOP.  We can't affect it until it
             hits the SIGSTOP, but we're already attached.  */
             hits the SIGSTOP, but we're already attached.  */
 
 
          do {
          do {
            ret = waitpid (new_pid, &status, __WALL);
            ret = waitpid (new_pid, &status, __WALL);
          } while (ret == -1 && errno == EINTR);
          } while (ret == -1 && errno == EINTR);
 
 
          if (ret == -1)
          if (ret == -1)
            perror_with_name ("waiting for new child");
            perror_with_name ("waiting for new child");
          else if (ret != new_pid)
          else if (ret != new_pid)
            warning ("wait returned unexpected PID %d", ret);
            warning ("wait returned unexpected PID %d", ret);
          else if (!WIFSTOPPED (status))
          else if (!WIFSTOPPED (status))
            warning ("wait returned unexpected status 0x%x", status);
            warning ("wait returned unexpected status 0x%x", status);
        }
        }
 
 
      ptrace (PTRACE_SETOPTIONS, new_pid, 0, PTRACE_O_TRACECLONE);
      ptrace (PTRACE_SETOPTIONS, new_pid, 0, PTRACE_O_TRACECLONE);
 
 
      new_process = (struct process_info *) add_process (new_pid);
      new_process = (struct process_info *) add_process (new_pid);
      add_thread (new_pid, new_process, new_pid);
      add_thread (new_pid, new_process, new_pid);
      new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));
      new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));
 
 
      /* Normally we will get the pending SIGSTOP.  But in some cases
      /* Normally we will get the pending SIGSTOP.  But in some cases
         we might get another signal delivered to the group first.
         we might get another signal delivered to the group first.
         If we do, be sure not to lose it.  */
         If we do, be sure not to lose it.  */
      if (WSTOPSIG (status) == SIGSTOP)
      if (WSTOPSIG (status) == SIGSTOP)
        {
        {
          if (stopping_threads)
          if (stopping_threads)
            new_process->stopped = 1;
            new_process->stopped = 1;
          else
          else
            ptrace (PTRACE_CONT, new_pid, 0, 0);
            ptrace (PTRACE_CONT, new_pid, 0, 0);
        }
        }
      else
      else
        {
        {
          new_process->stop_expected = 1;
          new_process->stop_expected = 1;
          if (stopping_threads)
          if (stopping_threads)
            {
            {
              new_process->stopped = 1;
              new_process->stopped = 1;
              new_process->status_pending_p = 1;
              new_process->status_pending_p = 1;
              new_process->status_pending = status;
              new_process->status_pending = status;
            }
            }
          else
          else
            /* Pass the signal on.  This is what GDB does - except
            /* Pass the signal on.  This is what GDB does - except
               shouldn't we really report it instead?  */
               shouldn't we really report it instead?  */
            ptrace (PTRACE_CONT, new_pid, 0, WSTOPSIG (status));
            ptrace (PTRACE_CONT, new_pid, 0, WSTOPSIG (status));
        }
        }
 
 
      /* Always resume the current thread.  If we are stopping
      /* Always resume the current thread.  If we are stopping
         threads, it will have a pending SIGSTOP; we may as well
         threads, it will have a pending SIGSTOP; we may as well
         collect it now.  */
         collect it now.  */
      linux_resume_one_process (&event_child->head,
      linux_resume_one_process (&event_child->head,
                                event_child->stepping, 0, NULL);
                                event_child->stepping, 0, NULL);
    }
    }
}
}
 
 
/* This function should only be called if the process got a SIGTRAP.
/* This function should only be called if the process got a SIGTRAP.
   The SIGTRAP could mean several things.
   The SIGTRAP could mean several things.
 
 
   On i386, where decr_pc_after_break is non-zero:
   On i386, where decr_pc_after_break is non-zero:
   If we were single-stepping this process using PTRACE_SINGLESTEP,
   If we were single-stepping this process using PTRACE_SINGLESTEP,
   we will get only the one SIGTRAP (even if the instruction we
   we will get only the one SIGTRAP (even if the instruction we
   stepped over was a breakpoint).  The value of $eip will be the
   stepped over was a breakpoint).  The value of $eip will be the
   next instruction.
   next instruction.
   If we continue the process using PTRACE_CONT, we will get a
   If we continue the process using PTRACE_CONT, we will get a
   SIGTRAP when we hit a breakpoint.  The value of $eip will be
   SIGTRAP when we hit a breakpoint.  The value of $eip will be
   the instruction after the breakpoint (i.e. needs to be
   the instruction after the breakpoint (i.e. needs to be
   decremented).  If we report the SIGTRAP to GDB, we must also
   decremented).  If we report the SIGTRAP to GDB, we must also
   report the undecremented PC.  If we cancel the SIGTRAP, we
   report the undecremented PC.  If we cancel the SIGTRAP, we
   must resume at the decremented PC.
   must resume at the decremented PC.
 
 
   (Presumably, not yet tested) On a non-decr_pc_after_break machine
   (Presumably, not yet tested) On a non-decr_pc_after_break machine
   with hardware or kernel single-step:
   with hardware or kernel single-step:
   If we single-step over a breakpoint instruction, our PC will
   If we single-step over a breakpoint instruction, our PC will
   point at the following instruction.  If we continue and hit a
   point at the following instruction.  If we continue and hit a
   breakpoint instruction, our PC will point at the breakpoint
   breakpoint instruction, our PC will point at the breakpoint
   instruction.  */
   instruction.  */
 
 
static CORE_ADDR
static CORE_ADDR
get_stop_pc (void)
get_stop_pc (void)
{
{
  CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
  CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
 
 
  if (get_thread_process (current_inferior)->stepping)
  if (get_thread_process (current_inferior)->stepping)
    return stop_pc;
    return stop_pc;
  else
  else
    return stop_pc - the_low_target.decr_pc_after_break;
    return stop_pc - the_low_target.decr_pc_after_break;
}
}
 
 
static void *
static void *
add_process (unsigned long pid)
add_process (unsigned long pid)
{
{
  struct process_info *process;
  struct process_info *process;
 
 
  process = (struct process_info *) malloc (sizeof (*process));
  process = (struct process_info *) malloc (sizeof (*process));
  memset (process, 0, sizeof (*process));
  memset (process, 0, sizeof (*process));
 
 
  process->head.id = pid;
  process->head.id = pid;
  process->lwpid = pid;
  process->lwpid = pid;
 
 
  add_inferior_to_list (&all_processes, &process->head);
  add_inferior_to_list (&all_processes, &process->head);
 
 
  return process;
  return process;
}
}
 
 
/* Start an inferior process and returns its pid.
/* Start an inferior process and returns its pid.
   ALLARGS is a vector of program-name and args. */
   ALLARGS is a vector of program-name and args. */
 
 
static int
static int
linux_create_inferior (char *program, char **allargs)
linux_create_inferior (char *program, char **allargs)
{
{
  void *new_process;
  void *new_process;
  int pid;
  int pid;
 
 
#if defined(__UCLIBC__) && defined(HAS_NOMMU)
#if defined(__UCLIBC__) && defined(HAS_NOMMU)
  pid = vfork ();
  pid = vfork ();
#else
#else
  pid = fork ();
  pid = fork ();
#endif
#endif
  if (pid < 0)
  if (pid < 0)
    perror_with_name ("fork");
    perror_with_name ("fork");
 
 
  if (pid == 0)
  if (pid == 0)
    {
    {
      ptrace (PTRACE_TRACEME, 0, 0, 0);
      ptrace (PTRACE_TRACEME, 0, 0, 0);
 
 
      signal (__SIGRTMIN + 1, SIG_DFL);
      signal (__SIGRTMIN + 1, SIG_DFL);
 
 
      setpgid (0, 0);
      setpgid (0, 0);
 
 
      execv (program, allargs);
      execv (program, allargs);
      if (errno == ENOENT)
      if (errno == ENOENT)
        execvp (program, allargs);
        execvp (program, allargs);
 
 
      fprintf (stderr, "Cannot exec %s: %s.\n", program,
      fprintf (stderr, "Cannot exec %s: %s.\n", program,
               strerror (errno));
               strerror (errno));
      fflush (stderr);
      fflush (stderr);
      _exit (0177);
      _exit (0177);
    }
    }
 
 
  new_process = add_process (pid);
  new_process = add_process (pid);
  add_thread (pid, new_process, pid);
  add_thread (pid, new_process, pid);
  must_set_ptrace_flags = 1;
  must_set_ptrace_flags = 1;
 
 
  return pid;
  return pid;
}
}
 
 
/* Attach to an inferior process.  */
/* Attach to an inferior process.  */
 
 
void
void
linux_attach_lwp (unsigned long pid)
linux_attach_lwp (unsigned long pid)
{
{
  struct process_info *new_process;
  struct process_info *new_process;
 
 
  if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
  if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
    {
    {
      if (all_threads.head != NULL)
      if (all_threads.head != NULL)
        {
        {
          /* If we fail to attach to an LWP, just warn.  */
          /* If we fail to attach to an LWP, just warn.  */
          fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid,
          fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid,
                   strerror (errno), errno);
                   strerror (errno), errno);
          fflush (stderr);
          fflush (stderr);
          return;
          return;
        }
        }
      else
      else
        /* If we fail to attach to a process, report an error.  */
        /* If we fail to attach to a process, report an error.  */
        error ("Cannot attach to process %ld: %s (%d)\n", pid,
        error ("Cannot attach to process %ld: %s (%d)\n", pid,
               strerror (errno), errno);
               strerror (errno), errno);
    }
    }
 
 
  ptrace (PTRACE_SETOPTIONS, pid, 0, PTRACE_O_TRACECLONE);
  ptrace (PTRACE_SETOPTIONS, pid, 0, PTRACE_O_TRACECLONE);
 
 
  new_process = (struct process_info *) add_process (pid);
  new_process = (struct process_info *) add_process (pid);
  add_thread (pid, new_process, pid);
  add_thread (pid, new_process, pid);
  new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));
  new_thread_notify (thread_id_to_gdb_id (new_process->lwpid));
 
 
  /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
  /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
     brings it to a halt.  We should ignore that SIGSTOP and resume the process
     brings it to a halt.  We should ignore that SIGSTOP and resume the process
     (unless this is the first process, in which case the flag will be cleared
     (unless this is the first process, in which case the flag will be cleared
     in linux_attach).
     in linux_attach).
 
 
     On the other hand, if we are currently trying to stop all threads, we
     On the other hand, if we are currently trying to stop all threads, we
     should treat the new thread as if we had sent it a SIGSTOP.  This works
     should treat the new thread as if we had sent it a SIGSTOP.  This works
     because we are guaranteed that add_process added us to the end of the
     because we are guaranteed that add_process added us to the end of the
     list, and so the new thread has not yet reached wait_for_sigstop (but
     list, and so the new thread has not yet reached wait_for_sigstop (but
     will).  */
     will).  */
  if (! stopping_threads)
  if (! stopping_threads)
    new_process->stop_expected = 1;
    new_process->stop_expected = 1;
}
}
 
 
int
int
linux_attach (unsigned long pid)
linux_attach (unsigned long pid)
{
{
  struct process_info *process;
  struct process_info *process;
 
 
  linux_attach_lwp (pid);
  linux_attach_lwp (pid);
 
 
  /* Don't ignore the initial SIGSTOP if we just attached to this process.
  /* Don't ignore the initial SIGSTOP if we just attached to this process.
     It will be collected by wait shortly.  */
     It will be collected by wait shortly.  */
  process = (struct process_info *) find_inferior_id (&all_processes, pid);
  process = (struct process_info *) find_inferior_id (&all_processes, pid);
  process->stop_expected = 0;
  process->stop_expected = 0;
 
 
  return 0;
  return 0;
}
}
 
 
/* Kill the inferior process.  Make us have no inferior.  */
/* Kill the inferior process.  Make us have no inferior.  */
 
 
static void
static void
linux_kill_one_process (struct inferior_list_entry *entry)
linux_kill_one_process (struct inferior_list_entry *entry)
{
{
  struct thread_info *thread = (struct thread_info *) entry;
  struct thread_info *thread = (struct thread_info *) entry;
  struct process_info *process = get_thread_process (thread);
  struct process_info *process = get_thread_process (thread);
  int wstat;
  int wstat;
 
 
  /* We avoid killing the first thread here, because of a Linux kernel (at
  /* We avoid killing the first thread here, because of a Linux kernel (at
     least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
     least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
     the children get a chance to be reaped, it will remain a zombie
     the children get a chance to be reaped, it will remain a zombie
     forever.  */
     forever.  */
  if (entry == all_threads.head)
  if (entry == all_threads.head)
    return;
    return;
 
 
  do
  do
    {
    {
      ptrace (PTRACE_KILL, pid_of (process), 0, 0);
      ptrace (PTRACE_KILL, pid_of (process), 0, 0);
 
 
      /* Make sure it died.  The loop is most likely unnecessary.  */
      /* Make sure it died.  The loop is most likely unnecessary.  */
      wstat = linux_wait_for_event (thread);
      wstat = linux_wait_for_event (thread);
    } while (WIFSTOPPED (wstat));
    } while (WIFSTOPPED (wstat));
}
}
 
 
static void
static void
linux_kill (void)
linux_kill (void)
{
{
  struct thread_info *thread = (struct thread_info *) all_threads.head;
  struct thread_info *thread = (struct thread_info *) all_threads.head;
  struct process_info *process;
  struct process_info *process;
  int wstat;
  int wstat;
 
 
  if (thread == NULL)
  if (thread == NULL)
    return;
    return;
 
 
  for_each_inferior (&all_threads, linux_kill_one_process);
  for_each_inferior (&all_threads, linux_kill_one_process);
 
 
  /* See the comment in linux_kill_one_process.  We did not kill the first
  /* See the comment in linux_kill_one_process.  We did not kill the first
     thread in the list, so do so now.  */
     thread in the list, so do so now.  */
  process = get_thread_process (thread);
  process = get_thread_process (thread);
  do
  do
    {
    {
      ptrace (PTRACE_KILL, pid_of (process), 0, 0);
      ptrace (PTRACE_KILL, pid_of (process), 0, 0);
 
 
      /* Make sure it died.  The loop is most likely unnecessary.  */
      /* Make sure it died.  The loop is most likely unnecessary.  */
      wstat = linux_wait_for_event (thread);
      wstat = linux_wait_for_event (thread);
    } while (WIFSTOPPED (wstat));
    } while (WIFSTOPPED (wstat));
 
 
  clear_inferiors ();
  clear_inferiors ();
  free (all_processes.head);
  free (all_processes.head);
  all_processes.head = all_processes.tail = NULL;
  all_processes.head = all_processes.tail = NULL;
}
}
 
 
static void
static void
linux_detach_one_process (struct inferior_list_entry *entry)
linux_detach_one_process (struct inferior_list_entry *entry)
{
{
  struct thread_info *thread = (struct thread_info *) entry;
  struct thread_info *thread = (struct thread_info *) entry;
  struct process_info *process = get_thread_process (thread);
  struct process_info *process = get_thread_process (thread);
 
 
  /* Make sure the process isn't stopped at a breakpoint that's
  /* Make sure the process isn't stopped at a breakpoint that's
     no longer there.  */
     no longer there.  */
  check_removed_breakpoint (process);
  check_removed_breakpoint (process);
 
 
  /* If this process is stopped but is expecting a SIGSTOP, then make
  /* If this process is stopped but is expecting a SIGSTOP, then make
     sure we take care of that now.  This isn't absolutely guaranteed
     sure we take care of that now.  This isn't absolutely guaranteed
     to collect the SIGSTOP, but is fairly likely to.  */
     to collect the SIGSTOP, but is fairly likely to.  */
  if (process->stop_expected)
  if (process->stop_expected)
    {
    {
      /* Clear stop_expected, so that the SIGSTOP will be reported.  */
      /* Clear stop_expected, so that the SIGSTOP will be reported.  */
      process->stop_expected = 0;
      process->stop_expected = 0;
      if (process->stopped)
      if (process->stopped)
        linux_resume_one_process (&process->head, 0, 0, NULL);
        linux_resume_one_process (&process->head, 0, 0, NULL);
      linux_wait_for_event (thread);
      linux_wait_for_event (thread);
    }
    }
 
 
  /* Flush any pending changes to the process's registers.  */
  /* Flush any pending changes to the process's registers.  */
  regcache_invalidate_one ((struct inferior_list_entry *)
  regcache_invalidate_one ((struct inferior_list_entry *)
                           get_process_thread (process));
                           get_process_thread (process));
 
 
  /* Finally, let it resume.  */
  /* Finally, let it resume.  */
  ptrace (PTRACE_DETACH, pid_of (process), 0, 0);
  ptrace (PTRACE_DETACH, pid_of (process), 0, 0);
}
}
 
 
static int
static int
linux_detach (void)
linux_detach (void)
{
{
  delete_all_breakpoints ();
  delete_all_breakpoints ();
  for_each_inferior (&all_threads, linux_detach_one_process);
  for_each_inferior (&all_threads, linux_detach_one_process);
  clear_inferiors ();
  clear_inferiors ();
  free (all_processes.head);
  free (all_processes.head);
  all_processes.head = all_processes.tail = NULL;
  all_processes.head = all_processes.tail = NULL;
  return 0;
  return 0;
}
}
 
 
static void
static void
linux_join (void)
linux_join (void)
{
{
  extern unsigned long signal_pid;
  extern unsigned long signal_pid;
  int status, ret;
  int status, ret;
 
 
  do {
  do {
    ret = waitpid (signal_pid, &status, 0);
    ret = waitpid (signal_pid, &status, 0);
    if (WIFEXITED (status) || WIFSIGNALED (status))
    if (WIFEXITED (status) || WIFSIGNALED (status))
      break;
      break;
  } while (ret != -1 || errno != ECHILD);
  } while (ret != -1 || errno != ECHILD);
}
}
 
 
/* Return nonzero if the given thread is still alive.  */
/* Return nonzero if the given thread is still alive.  */
static int
static int
linux_thread_alive (unsigned long lwpid)
linux_thread_alive (unsigned long lwpid)
{
{
  if (find_inferior_id (&all_threads, lwpid) != NULL)
  if (find_inferior_id (&all_threads, lwpid) != NULL)
    return 1;
    return 1;
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Return nonzero if this process stopped at a breakpoint which
/* Return nonzero if this process stopped at a breakpoint which
   no longer appears to be inserted.  Also adjust the PC
   no longer appears to be inserted.  Also adjust the PC
   appropriately to resume where the breakpoint used to be.  */
   appropriately to resume where the breakpoint used to be.  */
static int
static int
check_removed_breakpoint (struct process_info *event_child)
check_removed_breakpoint (struct process_info *event_child)
{
{
  CORE_ADDR stop_pc;
  CORE_ADDR stop_pc;
  struct thread_info *saved_inferior;
  struct thread_info *saved_inferior;
 
 
  if (event_child->pending_is_breakpoint == 0)
  if (event_child->pending_is_breakpoint == 0)
    return 0;
    return 0;
 
 
  if (debug_threads)
  if (debug_threads)
    fprintf (stderr, "Checking for breakpoint in process %ld.\n",
    fprintf (stderr, "Checking for breakpoint in process %ld.\n",
             event_child->lwpid);
             event_child->lwpid);
 
 
  saved_inferior = current_inferior;
  saved_inferior = current_inferior;
  current_inferior = get_process_thread (event_child);
  current_inferior = get_process_thread (event_child);
 
 
  stop_pc = get_stop_pc ();
  stop_pc = get_stop_pc ();
 
 
  /* If the PC has changed since we stopped, then we shouldn't do
  /* If the PC has changed since we stopped, then we shouldn't do
     anything.  This happens if, for instance, GDB handled the
     anything.  This happens if, for instance, GDB handled the
     decr_pc_after_break subtraction itself.  */
     decr_pc_after_break subtraction itself.  */
  if (stop_pc != event_child->pending_stop_pc)
  if (stop_pc != event_child->pending_stop_pc)
    {
    {
      if (debug_threads)
      if (debug_threads)
        fprintf (stderr, "Ignoring, PC was changed.  Old PC was 0x%08llx\n",
        fprintf (stderr, "Ignoring, PC was changed.  Old PC was 0x%08llx\n",
                 event_child->pending_stop_pc);
                 event_child->pending_stop_pc);
 
 
      event_child->pending_is_breakpoint = 0;
      event_child->pending_is_breakpoint = 0;
      current_inferior = saved_inferior;
      current_inferior = saved_inferior;
      return 0;
      return 0;
    }
    }
 
 
  /* If the breakpoint is still there, we will report hitting it.  */
  /* If the breakpoint is still there, we will report hitting it.  */
  if ((*the_low_target.breakpoint_at) (stop_pc))
  if ((*the_low_target.breakpoint_at) (stop_pc))
    {
    {
      if (debug_threads)
      if (debug_threads)
        fprintf (stderr, "Ignoring, breakpoint is still present.\n");
        fprintf (stderr, "Ignoring, breakpoint is still present.\n");
      current_inferior = saved_inferior;
      current_inferior = saved_inferior;
      return 0;
      return 0;
    }
    }
 
 
  if (debug_threads)
  if (debug_threads)
    fprintf (stderr, "Removed breakpoint.\n");
    fprintf (stderr, "Removed breakpoint.\n");
 
 
  /* For decr_pc_after_break targets, here is where we perform the
  /* For decr_pc_after_break targets, here is where we perform the
     decrement.  We go immediately from this function to resuming,
     decrement.  We go immediately from this function to resuming,
     and can not safely call get_stop_pc () again.  */
     and can not safely call get_stop_pc () again.  */
  if (the_low_target.set_pc != NULL)
  if (the_low_target.set_pc != NULL)
    (*the_low_target.set_pc) (stop_pc);
    (*the_low_target.set_pc) (stop_pc);
 
 
  /* We consumed the pending SIGTRAP.  */
  /* We consumed the pending SIGTRAP.  */
  event_child->pending_is_breakpoint = 0;
  event_child->pending_is_breakpoint = 0;
  event_child->status_pending_p = 0;
  event_child->status_pending_p = 0;
  event_child->status_pending = 0;
  event_child->status_pending = 0;
 
 
  current_inferior = saved_inferior;
  current_inferior = saved_inferior;
  return 1;
  return 1;
}
}
 
 
/* Return 1 if this process has an interesting status pending.  This function
/* Return 1 if this process has an interesting status pending.  This function
   may silently resume an inferior process.  */
   may silently resume an inferior process.  */
static int
static int
status_pending_p (struct inferior_list_entry *entry, void *dummy)
status_pending_p (struct inferior_list_entry *entry, void *dummy)
{
{
  struct process_info *process = (struct process_info *) entry;
  struct process_info *process = (struct process_info *) entry;
 
 
  if (process->status_pending_p)
  if (process->status_pending_p)
    if (check_removed_breakpoint (process))
    if (check_removed_breakpoint (process))
      {
      {
        /* This thread was stopped at a breakpoint, and the breakpoint
        /* This thread was stopped at a breakpoint, and the breakpoint
           is now gone.  We were told to continue (or step...) all threads,
           is now gone.  We were told to continue (or step...) all threads,
           so GDB isn't trying to single-step past this breakpoint.
           so GDB isn't trying to single-step past this breakpoint.
           So instead of reporting the old SIGTRAP, pretend we got to
           So instead of reporting the old SIGTRAP, pretend we got to
           the breakpoint just after it was removed instead of just
           the breakpoint just after it was removed instead of just
           before; resume the process.  */
           before; resume the process.  */
        linux_resume_one_process (&process->head, 0, 0, NULL);
        linux_resume_one_process (&process->head, 0, 0, NULL);
        return 0;
        return 0;
      }
      }
 
 
  return process->status_pending_p;
  return process->status_pending_p;
}
}
 
 
static void
static void
linux_wait_for_process (struct process_info **childp, int *wstatp)
linux_wait_for_process (struct process_info **childp, int *wstatp)
{
{
  int ret;
  int ret;
  int to_wait_for = -1;
  int to_wait_for = -1;
 
 
  if (*childp != NULL)
  if (*childp != NULL)
    to_wait_for = (*childp)->lwpid;
    to_wait_for = (*childp)->lwpid;
 
 
retry:
retry:
  while (1)
  while (1)
    {
    {
      ret = waitpid (to_wait_for, wstatp, WNOHANG);
      ret = waitpid (to_wait_for, wstatp, WNOHANG);
 
 
      if (ret == -1)
      if (ret == -1)
        {
        {
          if (errno != ECHILD)
          if (errno != ECHILD)
            perror_with_name ("waitpid");
            perror_with_name ("waitpid");
        }
        }
      else if (ret > 0)
      else if (ret > 0)
        break;
        break;
 
 
      ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);
      ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);
 
 
      if (ret == -1)
      if (ret == -1)
        {
        {
          if (errno != ECHILD)
          if (errno != ECHILD)
            perror_with_name ("waitpid (WCLONE)");
            perror_with_name ("waitpid (WCLONE)");
        }
        }
      else if (ret > 0)
      else if (ret > 0)
        break;
        break;
 
 
      usleep (1000);
      usleep (1000);
    }
    }
 
 
  if (debug_threads
  if (debug_threads
      && (!WIFSTOPPED (*wstatp)
      && (!WIFSTOPPED (*wstatp)
          || (WSTOPSIG (*wstatp) != 32
          || (WSTOPSIG (*wstatp) != 32
              && WSTOPSIG (*wstatp) != 33)))
              && WSTOPSIG (*wstatp) != 33)))
    fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
    fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
 
 
  if (to_wait_for == -1)
  if (to_wait_for == -1)
    *childp = (struct process_info *) find_inferior_id (&all_processes, ret);
    *childp = (struct process_info *) find_inferior_id (&all_processes, ret);
 
 
  /* If we didn't find a process, one of two things presumably happened:
  /* If we didn't find a process, one of two things presumably happened:
     - A process we started and then detached from has exited.  Ignore it.
     - A process we started and then detached from has exited.  Ignore it.
     - A process we are controlling has forked and the new child's stop
     - A process we are controlling has forked and the new child's stop
     was reported to us by the kernel.  Save its PID.  */
     was reported to us by the kernel.  Save its PID.  */
  if (*childp == NULL && WIFSTOPPED (*wstatp))
  if (*childp == NULL && WIFSTOPPED (*wstatp))
    {
    {
      add_pid_to_list (&stopped_pids, ret);
      add_pid_to_list (&stopped_pids, ret);
      goto retry;
      goto retry;
    }
    }
  else if (*childp == NULL)
  else if (*childp == NULL)
    goto retry;
    goto retry;
 
 
  (*childp)->stopped = 1;
  (*childp)->stopped = 1;
  (*childp)->pending_is_breakpoint = 0;
  (*childp)->pending_is_breakpoint = 0;
 
 
  (*childp)->last_status = *wstatp;
  (*childp)->last_status = *wstatp;
 
 
  if (debug_threads
  if (debug_threads
      && WIFSTOPPED (*wstatp))
      && WIFSTOPPED (*wstatp))
    {
    {
      current_inferior = (struct thread_info *)
      current_inferior = (struct thread_info *)
        find_inferior_id (&all_threads, (*childp)->lwpid);
        find_inferior_id (&all_threads, (*childp)->lwpid);
      /* For testing only; i386_stop_pc prints out a diagnostic.  */
      /* For testing only; i386_stop_pc prints out a diagnostic.  */
      if (the_low_target.get_pc != NULL)
      if (the_low_target.get_pc != NULL)
        get_stop_pc ();
        get_stop_pc ();
    }
    }
}
}
 
 
static int
static int
linux_wait_for_event (struct thread_info *child)
linux_wait_for_event (struct thread_info *child)
{
{
  CORE_ADDR stop_pc;
  CORE_ADDR stop_pc;
  struct process_info *event_child;
  struct process_info *event_child;
  int wstat;
  int wstat;
  int bp_status;
  int bp_status;
 
 
  /* Check for a process with a pending status.  */
  /* Check for a process with a pending status.  */
  /* It is possible that the user changed the pending task's registers since
  /* It is possible that the user changed the pending task's registers since
     it stopped.  We correctly handle the change of PC if we hit a breakpoint
     it stopped.  We correctly handle the change of PC if we hit a breakpoint
     (in check_removed_breakpoint); signals should be reported anyway.  */
     (in check_removed_breakpoint); signals should be reported anyway.  */
  if (child == NULL)
  if (child == NULL)
    {
    {
      event_child = (struct process_info *)
      event_child = (struct process_info *)
        find_inferior (&all_processes, status_pending_p, NULL);
        find_inferior (&all_processes, status_pending_p, NULL);
      if (debug_threads && event_child)
      if (debug_threads && event_child)
        fprintf (stderr, "Got a pending child %ld\n", event_child->lwpid);
        fprintf (stderr, "Got a pending child %ld\n", event_child->lwpid);
    }
    }
  else
  else
    {
    {
      event_child = get_thread_process (child);
      event_child = get_thread_process (child);
      if (event_child->status_pending_p
      if (event_child->status_pending_p
          && check_removed_breakpoint (event_child))
          && check_removed_breakpoint (event_child))
        event_child = NULL;
        event_child = NULL;
    }
    }
 
 
  if (event_child != NULL)
  if (event_child != NULL)
    {
    {
      if (event_child->status_pending_p)
      if (event_child->status_pending_p)
        {
        {
          if (debug_threads)
          if (debug_threads)
            fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
            fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
                     event_child->lwpid, event_child->status_pending);
                     event_child->lwpid, event_child->status_pending);
          wstat = event_child->status_pending;
          wstat = event_child->status_pending;
          event_child->status_pending_p = 0;
          event_child->status_pending_p = 0;
          event_child->status_pending = 0;
          event_child->status_pending = 0;
          current_inferior = get_process_thread (event_child);
          current_inferior = get_process_thread (event_child);
          return wstat;
          return wstat;
        }
        }
    }
    }
 
 
  /* We only enter this loop if no process has a pending wait status.  Thus
  /* We only enter this loop if no process has a pending wait status.  Thus
     any action taken in response to a wait status inside this loop is
     any action taken in response to a wait status inside this loop is
     responding as soon as we detect the status, not after any pending
     responding as soon as we detect the status, not after any pending
     events.  */
     events.  */
  while (1)
  while (1)
    {
    {
      if (child == NULL)
      if (child == NULL)
        event_child = NULL;
        event_child = NULL;
      else
      else
        event_child = get_thread_process (child);
        event_child = get_thread_process (child);
 
 
      linux_wait_for_process (&event_child, &wstat);
      linux_wait_for_process (&event_child, &wstat);
 
 
      if (event_child == NULL)
      if (event_child == NULL)
        error ("event from unknown child");
        error ("event from unknown child");
 
 
      current_inferior = (struct thread_info *)
      current_inferior = (struct thread_info *)
        find_inferior_id (&all_threads, event_child->lwpid);
        find_inferior_id (&all_threads, event_child->lwpid);
 
 
      /* Check for thread exit.  */
      /* Check for thread exit.  */
      if (! WIFSTOPPED (wstat))
      if (! WIFSTOPPED (wstat))
        {
        {
          if (debug_threads)
          if (debug_threads)
            fprintf (stderr, "LWP %ld exiting\n", event_child->head.id);
            fprintf (stderr, "LWP %ld exiting\n", event_child->head.id);
 
 
          /* If the last thread is exiting, just return.  */
          /* If the last thread is exiting, just return.  */
          if (all_threads.head == all_threads.tail)
          if (all_threads.head == all_threads.tail)
            return wstat;
            return wstat;
 
 
          dead_thread_notify (thread_id_to_gdb_id (event_child->lwpid));
          dead_thread_notify (thread_id_to_gdb_id (event_child->lwpid));
 
 
          remove_inferior (&all_processes, &event_child->head);
          remove_inferior (&all_processes, &event_child->head);
          free (event_child);
          free (event_child);
          remove_thread (current_inferior);
          remove_thread (current_inferior);
          current_inferior = (struct thread_info *) all_threads.head;
          current_inferior = (struct thread_info *) all_threads.head;
 
 
          /* If we were waiting for this particular child to do something...
          /* If we were waiting for this particular child to do something...
             well, it did something.  */
             well, it did something.  */
          if (child != NULL)
          if (child != NULL)
            return wstat;
            return wstat;
 
 
          /* Wait for a more interesting event.  */
          /* Wait for a more interesting event.  */
          continue;
          continue;
        }
        }
 
 
      if (WIFSTOPPED (wstat)
      if (WIFSTOPPED (wstat)
          && WSTOPSIG (wstat) == SIGSTOP
          && WSTOPSIG (wstat) == SIGSTOP
          && event_child->stop_expected)
          && event_child->stop_expected)
        {
        {
          if (debug_threads)
          if (debug_threads)
            fprintf (stderr, "Expected stop.\n");
            fprintf (stderr, "Expected stop.\n");
          event_child->stop_expected = 0;
          event_child->stop_expected = 0;
          linux_resume_one_process (&event_child->head,
          linux_resume_one_process (&event_child->head,
                                    event_child->stepping, 0, NULL);
                                    event_child->stepping, 0, NULL);
          continue;
          continue;
        }
        }
 
 
      if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
      if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
          && wstat >> 16 != 0)
          && wstat >> 16 != 0)
        {
        {
          handle_extended_wait (event_child, wstat);
          handle_extended_wait (event_child, wstat);
          continue;
          continue;
        }
        }
 
 
      /* If GDB is not interested in this signal, don't stop other
      /* If GDB is not interested in this signal, don't stop other
         threads, and don't report it to GDB.  Just resume the
         threads, and don't report it to GDB.  Just resume the
         inferior right away.  We do this for threading-related
         inferior right away.  We do this for threading-related
         signals as well as any that GDB specifically requested we
         signals as well as any that GDB specifically requested we
         ignore.  But never ignore SIGSTOP if we sent it ourselves,
         ignore.  But never ignore SIGSTOP if we sent it ourselves,
         and do not ignore signals when stepping - they may require
         and do not ignore signals when stepping - they may require
         special handling to skip the signal handler.  */
         special handling to skip the signal handler.  */
      /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
      /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
         thread library?  */
         thread library?  */
      if (WIFSTOPPED (wstat)
      if (WIFSTOPPED (wstat)
          && !event_child->stepping
          && !event_child->stepping
          && (
          && (
#ifdef USE_THREAD_DB
#ifdef USE_THREAD_DB
              (thread_db_active && (WSTOPSIG (wstat) == __SIGRTMIN
              (thread_db_active && (WSTOPSIG (wstat) == __SIGRTMIN
                                    || WSTOPSIG (wstat) == __SIGRTMIN + 1))
                                    || WSTOPSIG (wstat) == __SIGRTMIN + 1))
              ||
              ||
#endif
#endif
              (pass_signals[target_signal_from_host (WSTOPSIG (wstat))]
              (pass_signals[target_signal_from_host (WSTOPSIG (wstat))]
               && (WSTOPSIG (wstat) != SIGSTOP || !stopping_threads))))
               && (WSTOPSIG (wstat) != SIGSTOP || !stopping_threads))))
        {
        {
          siginfo_t info, *info_p;
          siginfo_t info, *info_p;
 
 
          if (debug_threads)
          if (debug_threads)
            fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
            fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
                     WSTOPSIG (wstat), event_child->head.id);
                     WSTOPSIG (wstat), event_child->head.id);
 
 
          if (ptrace (PTRACE_GETSIGINFO, event_child->lwpid, 0, &info) == 0)
          if (ptrace (PTRACE_GETSIGINFO, event_child->lwpid, 0, &info) == 0)
            info_p = &info;
            info_p = &info;
          else
          else
            info_p = NULL;
            info_p = NULL;
          linux_resume_one_process (&event_child->head,
          linux_resume_one_process (&event_child->head,
                                    event_child->stepping,
                                    event_child->stepping,
                                    WSTOPSIG (wstat), info_p);
                                    WSTOPSIG (wstat), info_p);
          continue;
          continue;
        }
        }
 
 
      /* If this event was not handled above, and is not a SIGTRAP, report
      /* If this event was not handled above, and is not a SIGTRAP, report
         it.  */
         it.  */
      if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
      if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
        return wstat;
        return wstat;
 
 
      /* If this target does not support breakpoints, we simply report the
      /* If this target does not support breakpoints, we simply report the
         SIGTRAP; it's of no concern to us.  */
         SIGTRAP; it's of no concern to us.  */
      if (the_low_target.get_pc == NULL)
      if (the_low_target.get_pc == NULL)
        return wstat;
        return wstat;
 
 
      stop_pc = get_stop_pc ();
      stop_pc = get_stop_pc ();
 
 
      /* bp_reinsert will only be set if we were single-stepping.
      /* bp_reinsert will only be set if we were single-stepping.
         Notice that we will resume the process after hitting
         Notice that we will resume the process after hitting
         a gdbserver breakpoint; single-stepping to/over one
         a gdbserver breakpoint; single-stepping to/over one
         is not supported (yet).  */
         is not supported (yet).  */
      if (event_child->bp_reinsert != 0)
      if (event_child->bp_reinsert != 0)
        {
        {
          if (debug_threads)
          if (debug_threads)
            fprintf (stderr, "Reinserted breakpoint.\n");
            fprintf (stderr, "Reinserted breakpoint.\n");
          reinsert_breakpoint (event_child->bp_reinsert);
          reinsert_breakpoint (event_child->bp_reinsert);
          event_child->bp_reinsert = 0;
          event_child->bp_reinsert = 0;
 
 
          /* Clear the single-stepping flag and SIGTRAP as we resume.  */
          /* Clear the single-stepping flag and SIGTRAP as we resume.  */
          linux_resume_one_process (&event_child->head, 0, 0, NULL);
          linux_resume_one_process (&event_child->head, 0, 0, NULL);
          continue;
          continue;
        }
        }
 
 
      bp_status = check_breakpoints (stop_pc);
      bp_status = check_breakpoints (stop_pc);
 
 
      if (bp_status != 0)
      if (bp_status != 0)
        {
        {
          if (debug_threads)
          if (debug_threads)
            fprintf (stderr, "Hit a gdbserver breakpoint.\n");
            fprintf (stderr, "Hit a gdbserver breakpoint.\n");
 
 
          /* We hit one of our own breakpoints.  We mark it as a pending
          /* We hit one of our own breakpoints.  We mark it as a pending
             breakpoint, so that check_removed_breakpoint () will do the PC
             breakpoint, so that check_removed_breakpoint () will do the PC
             adjustment for us at the appropriate time.  */
             adjustment for us at the appropriate time.  */
          event_child->pending_is_breakpoint = 1;
          event_child->pending_is_breakpoint = 1;
          event_child->pending_stop_pc = stop_pc;
          event_child->pending_stop_pc = stop_pc;
 
 
          /* We may need to put the breakpoint back.  We continue in the event
          /* We may need to put the breakpoint back.  We continue in the event
             loop instead of simply replacing the breakpoint right away,
             loop instead of simply replacing the breakpoint right away,
             in order to not lose signals sent to the thread that hit the
             in order to not lose signals sent to the thread that hit the
             breakpoint.  Unfortunately this increases the window where another
             breakpoint.  Unfortunately this increases the window where another
             thread could sneak past the removed breakpoint.  For the current
             thread could sneak past the removed breakpoint.  For the current
             use of server-side breakpoints (thread creation) this is
             use of server-side breakpoints (thread creation) this is
             acceptable; but it needs to be considered before this breakpoint
             acceptable; but it needs to be considered before this breakpoint
             mechanism can be used in more general ways.  For some breakpoints
             mechanism can be used in more general ways.  For some breakpoints
             it may be necessary to stop all other threads, but that should
             it may be necessary to stop all other threads, but that should
             be avoided where possible.
             be avoided where possible.
 
 
             If breakpoint_reinsert_addr is NULL, that means that we can
             If breakpoint_reinsert_addr is NULL, that means that we can
             use PTRACE_SINGLESTEP on this platform.  Uninsert the breakpoint,
             use PTRACE_SINGLESTEP on this platform.  Uninsert the breakpoint,
             mark it for reinsertion, and single-step.
             mark it for reinsertion, and single-step.
 
 
             Otherwise, call the target function to figure out where we need
             Otherwise, call the target function to figure out where we need
             our temporary breakpoint, create it, and continue executing this
             our temporary breakpoint, create it, and continue executing this
             process.  */
             process.  */
          if (bp_status == 2)
          if (bp_status == 2)
            /* No need to reinsert.  */
            /* No need to reinsert.  */
            linux_resume_one_process (&event_child->head, 0, 0, NULL);
            linux_resume_one_process (&event_child->head, 0, 0, NULL);
          else if (the_low_target.breakpoint_reinsert_addr == NULL)
          else if (the_low_target.breakpoint_reinsert_addr == NULL)
            {
            {
              event_child->bp_reinsert = stop_pc;
              event_child->bp_reinsert = stop_pc;
              uninsert_breakpoint (stop_pc);
              uninsert_breakpoint (stop_pc);
              linux_resume_one_process (&event_child->head, 1, 0, NULL);
              linux_resume_one_process (&event_child->head, 1, 0, NULL);
            }
            }
          else
          else
            {
            {
              reinsert_breakpoint_by_bp
              reinsert_breakpoint_by_bp
                (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
                (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
              linux_resume_one_process (&event_child->head, 0, 0, NULL);
              linux_resume_one_process (&event_child->head, 0, 0, NULL);
            }
            }
 
 
          continue;
          continue;
        }
        }
 
 
      if (debug_threads)
      if (debug_threads)
        fprintf (stderr, "Hit a non-gdbserver breakpoint.\n");
        fprintf (stderr, "Hit a non-gdbserver breakpoint.\n");
 
 
      /* If we were single-stepping, we definitely want to report the
      /* If we were single-stepping, we definitely want to report the
         SIGTRAP.  The single-step operation has completed, so also
         SIGTRAP.  The single-step operation has completed, so also
         clear the stepping flag; in general this does not matter,
         clear the stepping flag; in general this does not matter,
         because the SIGTRAP will be reported to the client, which
         because the SIGTRAP will be reported to the client, which
         will give us a new action for this thread, but clear it for
         will give us a new action for this thread, but clear it for
         consistency anyway.  It's safe to clear the stepping flag
         consistency anyway.  It's safe to clear the stepping flag
         because the only consumer of get_stop_pc () after this point
         because the only consumer of get_stop_pc () after this point
         is check_removed_breakpoint, and pending_is_breakpoint is not
         is check_removed_breakpoint, and pending_is_breakpoint is not
         set.  It might be wiser to use a step_completed flag instead.  */
         set.  It might be wiser to use a step_completed flag instead.  */
      if (event_child->stepping)
      if (event_child->stepping)
        {
        {
          event_child->stepping = 0;
          event_child->stepping = 0;
          return wstat;
          return wstat;
        }
        }
 
 
      /* A SIGTRAP that we can't explain.  It may have been a breakpoint.
      /* A SIGTRAP that we can't explain.  It may have been a breakpoint.
         Check if it is a breakpoint, and if so mark the process information
         Check if it is a breakpoint, and if so mark the process information
         accordingly.  This will handle both the necessary fiddling with the
         accordingly.  This will handle both the necessary fiddling with the
         PC on decr_pc_after_break targets and suppressing extra threads
         PC on decr_pc_after_break targets and suppressing extra threads
         hitting a breakpoint if two hit it at once and then GDB removes it
         hitting a breakpoint if two hit it at once and then GDB removes it
         after the first is reported.  Arguably it would be better to report
         after the first is reported.  Arguably it would be better to report
         multiple threads hitting breakpoints simultaneously, but the current
         multiple threads hitting breakpoints simultaneously, but the current
         remote protocol does not allow this.  */
         remote protocol does not allow this.  */
      if ((*the_low_target.breakpoint_at) (stop_pc))
      if ((*the_low_target.breakpoint_at) (stop_pc))
        {
        {
          event_child->pending_is_breakpoint = 1;
          event_child->pending_is_breakpoint = 1;
          event_child->pending_stop_pc = stop_pc;
          event_child->pending_stop_pc = stop_pc;
        }
        }
 
 
      return wstat;
      return wstat;
    }
    }
 
 
  /* NOTREACHED */
  /* NOTREACHED */
  return 0;
  return 0;
}
}
 
 
/* Wait for process, returns status.  */
/* Wait for process, returns status.  */
 
 
static unsigned char
static unsigned char
linux_wait (char *status)
linux_wait (char *status)
{
{
  int w;
  int w;
  struct thread_info *child = NULL;
  struct thread_info *child = NULL;
 
 
retry:
retry:
  /* If we were only supposed to resume one thread, only wait for
  /* If we were only supposed to resume one thread, only wait for
     that thread - if it's still alive.  If it died, however - which
     that thread - if it's still alive.  If it died, however - which
     can happen if we're coming from the thread death case below -
     can happen if we're coming from the thread death case below -
     then we need to make sure we restart the other threads.  We could
     then we need to make sure we restart the other threads.  We could
     pick a thread at random or restart all; restarting all is less
     pick a thread at random or restart all; restarting all is less
     arbitrary.  */
     arbitrary.  */
  if (cont_thread != 0 && cont_thread != -1)
  if (cont_thread != 0 && cont_thread != -1)
    {
    {
      child = (struct thread_info *) find_inferior_id (&all_threads,
      child = (struct thread_info *) find_inferior_id (&all_threads,
                                                       cont_thread);
                                                       cont_thread);
 
 
      /* No stepping, no signal - unless one is pending already, of course.  */
      /* No stepping, no signal - unless one is pending already, of course.  */
      if (child == NULL)
      if (child == NULL)
        {
        {
          struct thread_resume resume_info;
          struct thread_resume resume_info;
          resume_info.thread = -1;
          resume_info.thread = -1;
          resume_info.step = resume_info.sig = resume_info.leave_stopped = 0;
          resume_info.step = resume_info.sig = resume_info.leave_stopped = 0;
          linux_resume (&resume_info);
          linux_resume (&resume_info);
        }
        }
    }
    }
 
 
  w = linux_wait_for_event (child);
  w = linux_wait_for_event (child);
  stop_all_processes ();
  stop_all_processes ();
 
 
  if (must_set_ptrace_flags)
  if (must_set_ptrace_flags)
    {
    {
      ptrace (PTRACE_SETOPTIONS, inferior_pid, 0, PTRACE_O_TRACECLONE);
      ptrace (PTRACE_SETOPTIONS, inferior_pid, 0, PTRACE_O_TRACECLONE);
      must_set_ptrace_flags = 0;
      must_set_ptrace_flags = 0;
    }
    }
 
 
  /* If we are waiting for a particular child, and it exited,
  /* If we are waiting for a particular child, and it exited,
     linux_wait_for_event will return its exit status.  Similarly if
     linux_wait_for_event will return its exit status.  Similarly if
     the last child exited.  If this is not the last child, however,
     the last child exited.  If this is not the last child, however,
     do not report it as exited until there is a 'thread exited' response
     do not report it as exited until there is a 'thread exited' response
     available in the remote protocol.  Instead, just wait for another event.
     available in the remote protocol.  Instead, just wait for another event.
     This should be safe, because if the thread crashed we will already
     This should be safe, because if the thread crashed we will already
     have reported the termination signal to GDB; that should stop any
     have reported the termination signal to GDB; that should stop any
     in-progress stepping operations, etc.
     in-progress stepping operations, etc.
 
 
     Report the exit status of the last thread to exit.  This matches
     Report the exit status of the last thread to exit.  This matches
     LinuxThreads' behavior.  */
     LinuxThreads' behavior.  */
 
 
  if (all_threads.head == all_threads.tail)
  if (all_threads.head == all_threads.tail)
    {
    {
      if (WIFEXITED (w))
      if (WIFEXITED (w))
        {
        {
          fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
          fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
          *status = 'W';
          *status = 'W';
          clear_inferiors ();
          clear_inferiors ();
          free (all_processes.head);
          free (all_processes.head);
          all_processes.head = all_processes.tail = NULL;
          all_processes.head = all_processes.tail = NULL;
          return WEXITSTATUS (w);
          return WEXITSTATUS (w);
        }
        }
      else if (!WIFSTOPPED (w))
      else if (!WIFSTOPPED (w))
        {
        {
          fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
          fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
          *status = 'X';
          *status = 'X';
          clear_inferiors ();
          clear_inferiors ();
          free (all_processes.head);
          free (all_processes.head);
          all_processes.head = all_processes.tail = NULL;
          all_processes.head = all_processes.tail = NULL;
          return target_signal_from_host (WTERMSIG (w));
          return target_signal_from_host (WTERMSIG (w));
        }
        }
    }
    }
  else
  else
    {
    {
      if (!WIFSTOPPED (w))
      if (!WIFSTOPPED (w))
        goto retry;
        goto retry;
    }
    }
 
 
  *status = 'T';
  *status = 'T';
  return target_signal_from_host (WSTOPSIG (w));
  return target_signal_from_host (WSTOPSIG (w));
}
}
 
 
/* Send a signal to an LWP.  For LinuxThreads, kill is enough; however, if
/* Send a signal to an LWP.  For LinuxThreads, kill is enough; however, if
   thread groups are in use, we need to use tkill.  */
   thread groups are in use, we need to use tkill.  */
 
 
static int
static int
kill_lwp (unsigned long lwpid, int signo)
kill_lwp (unsigned long lwpid, int signo)
{
{
  static int tkill_failed;
  static int tkill_failed;
 
 
  errno = 0;
  errno = 0;
 
 
#ifdef SYS_tkill
#ifdef SYS_tkill
  if (!tkill_failed)
  if (!tkill_failed)
    {
    {
      int ret = syscall (SYS_tkill, lwpid, signo);
      int ret = syscall (SYS_tkill, lwpid, signo);
      if (errno != ENOSYS)
      if (errno != ENOSYS)
        return ret;
        return ret;
      errno = 0;
      errno = 0;
      tkill_failed = 1;
      tkill_failed = 1;
    }
    }
#endif
#endif
 
 
  return kill (lwpid, signo);
  return kill (lwpid, signo);
}
}
 
 
static void
static void
send_sigstop (struct inferior_list_entry *entry)
send_sigstop (struct inferior_list_entry *entry)
{
{
  struct process_info *process = (struct process_info *) entry;
  struct process_info *process = (struct process_info *) entry;
 
 
  if (process->stopped)
  if (process->stopped)
    return;
    return;
 
 
  /* If we already have a pending stop signal for this process, don't
  /* If we already have a pending stop signal for this process, don't
     send another.  */
     send another.  */
  if (process->stop_expected)
  if (process->stop_expected)
    {
    {
      if (debug_threads)
      if (debug_threads)
        fprintf (stderr, "Have pending sigstop for process %ld\n",
        fprintf (stderr, "Have pending sigstop for process %ld\n",
                 process->lwpid);
                 process->lwpid);
 
 
      /* We clear the stop_expected flag so that wait_for_sigstop
      /* We clear the stop_expected flag so that wait_for_sigstop
         will receive the SIGSTOP event (instead of silently resuming and
         will receive the SIGSTOP event (instead of silently resuming and
         waiting again).  It'll be reset below.  */
         waiting again).  It'll be reset below.  */
      process->stop_expected = 0;
      process->stop_expected = 0;
      return;
      return;
    }
    }
 
 
  if (debug_threads)
  if (debug_threads)
    fprintf (stderr, "Sending sigstop to process %ld\n", process->head.id);
    fprintf (stderr, "Sending sigstop to process %ld\n", process->head.id);
 
 
  kill_lwp (process->head.id, SIGSTOP);
  kill_lwp (process->head.id, SIGSTOP);
}
}
 
 
static void
static void
wait_for_sigstop (struct inferior_list_entry *entry)
wait_for_sigstop (struct inferior_list_entry *entry)
{
{
  struct process_info *process = (struct process_info *) entry;
  struct process_info *process = (struct process_info *) entry;
  struct thread_info *saved_inferior, *thread;
  struct thread_info *saved_inferior, *thread;
  int wstat;
  int wstat;
  unsigned long saved_tid;
  unsigned long saved_tid;
 
 
  if (process->stopped)
  if (process->stopped)
    return;
    return;
 
 
  saved_inferior = current_inferior;
  saved_inferior = current_inferior;
  saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
  saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
  thread = (struct thread_info *) find_inferior_id (&all_threads,
  thread = (struct thread_info *) find_inferior_id (&all_threads,
                                                    process->lwpid);
                                                    process->lwpid);
  wstat = linux_wait_for_event (thread);
  wstat = linux_wait_for_event (thread);
 
 
  /* If we stopped with a non-SIGSTOP signal, save it for later
  /* If we stopped with a non-SIGSTOP signal, save it for later
     and record the pending SIGSTOP.  If the process exited, just
     and record the pending SIGSTOP.  If the process exited, just
     return.  */
     return.  */
  if (WIFSTOPPED (wstat)
  if (WIFSTOPPED (wstat)
      && WSTOPSIG (wstat) != SIGSTOP)
      && WSTOPSIG (wstat) != SIGSTOP)
    {
    {
      if (debug_threads)
      if (debug_threads)
        fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
        fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
                 process->lwpid, wstat);
                 process->lwpid, wstat);
      process->status_pending_p = 1;
      process->status_pending_p = 1;
      process->status_pending = wstat;
      process->status_pending = wstat;
      process->stop_expected = 1;
      process->stop_expected = 1;
    }
    }
 
 
  if (linux_thread_alive (saved_tid))
  if (linux_thread_alive (saved_tid))
    current_inferior = saved_inferior;
    current_inferior = saved_inferior;
  else
  else
    {
    {
      if (debug_threads)
      if (debug_threads)
        fprintf (stderr, "Previously current thread died.\n");
        fprintf (stderr, "Previously current thread died.\n");
 
 
      /* Set a valid thread as current.  */
      /* Set a valid thread as current.  */
      set_desired_inferior (0);
      set_desired_inferior (0);
    }
    }
}
}
 
 
static void
static void
stop_all_processes (void)
stop_all_processes (void)
{
{
  stopping_threads = 1;
  stopping_threads = 1;
  for_each_inferior (&all_processes, send_sigstop);
  for_each_inferior (&all_processes, send_sigstop);
  for_each_inferior (&all_processes, wait_for_sigstop);
  for_each_inferior (&all_processes, wait_for_sigstop);
  stopping_threads = 0;
  stopping_threads = 0;
}
}
 
 
/* Resume execution of the inferior process.
/* Resume execution of the inferior process.
   If STEP is nonzero, single-step it.
   If STEP is nonzero, single-step it.
   If SIGNAL is nonzero, give it that signal.  */
   If SIGNAL is nonzero, give it that signal.  */
 
 
static void
static void
linux_resume_one_process (struct inferior_list_entry *entry,
linux_resume_one_process (struct inferior_list_entry *entry,
                          int step, int signal, siginfo_t *info)
                          int step, int signal, siginfo_t *info)
{
{
  struct process_info *process = (struct process_info *) entry;
  struct process_info *process = (struct process_info *) entry;
  struct thread_info *saved_inferior;
  struct thread_info *saved_inferior;
 
 
  if (process->stopped == 0)
  if (process->stopped == 0)
    return;
    return;
 
 
  /* If we have pending signals or status, and a new signal, enqueue the
  /* If we have pending signals or status, and a new signal, enqueue the
     signal.  Also enqueue the signal if we are waiting to reinsert a
     signal.  Also enqueue the signal if we are waiting to reinsert a
     breakpoint; it will be picked up again below.  */
     breakpoint; it will be picked up again below.  */
  if (signal != 0
  if (signal != 0
      && (process->status_pending_p || process->pending_signals != NULL
      && (process->status_pending_p || process->pending_signals != NULL
          || process->bp_reinsert != 0))
          || process->bp_reinsert != 0))
    {
    {
      struct pending_signals *p_sig;
      struct pending_signals *p_sig;
      p_sig = malloc (sizeof (*p_sig));
      p_sig = malloc (sizeof (*p_sig));
      p_sig->prev = process->pending_signals;
      p_sig->prev = process->pending_signals;
      p_sig->signal = signal;
      p_sig->signal = signal;
      if (info == NULL)
      if (info == NULL)
        memset (&p_sig->info, 0, sizeof (siginfo_t));
        memset (&p_sig->info, 0, sizeof (siginfo_t));
      else
      else
        memcpy (&p_sig->info, info, sizeof (siginfo_t));
        memcpy (&p_sig->info, info, sizeof (siginfo_t));
      process->pending_signals = p_sig;
      process->pending_signals = p_sig;
    }
    }
 
 
  if (process->status_pending_p && !check_removed_breakpoint (process))
  if (process->status_pending_p && !check_removed_breakpoint (process))
    return;
    return;
 
 
  saved_inferior = current_inferior;
  saved_inferior = current_inferior;
  current_inferior = get_process_thread (process);
  current_inferior = get_process_thread (process);
 
 
  if (debug_threads)
  if (debug_threads)
    fprintf (stderr, "Resuming process %ld (%s, signal %d, stop %s)\n", inferior_pid,
    fprintf (stderr, "Resuming process %ld (%s, signal %d, stop %s)\n", inferior_pid,
             step ? "step" : "continue", signal,
             step ? "step" : "continue", signal,
             process->stop_expected ? "expected" : "not expected");
             process->stop_expected ? "expected" : "not expected");
 
 
  /* This bit needs some thinking about.  If we get a signal that
  /* This bit needs some thinking about.  If we get a signal that
     we must report while a single-step reinsert is still pending,
     we must report while a single-step reinsert is still pending,
     we often end up resuming the thread.  It might be better to
     we often end up resuming the thread.  It might be better to
     (ew) allow a stack of pending events; then we could be sure that
     (ew) allow a stack of pending events; then we could be sure that
     the reinsert happened right away and not lose any signals.
     the reinsert happened right away and not lose any signals.
 
 
     Making this stack would also shrink the window in which breakpoints are
     Making this stack would also shrink the window in which breakpoints are
     uninserted (see comment in linux_wait_for_process) but not enough for
     uninserted (see comment in linux_wait_for_process) but not enough for
     complete correctness, so it won't solve that problem.  It may be
     complete correctness, so it won't solve that problem.  It may be
     worthwhile just to solve this one, however.  */
     worthwhile just to solve this one, however.  */
  if (process->bp_reinsert != 0)
  if (process->bp_reinsert != 0)
    {
    {
      if (debug_threads)
      if (debug_threads)
        fprintf (stderr, "  pending reinsert at %08lx", (long)process->bp_reinsert);
        fprintf (stderr, "  pending reinsert at %08lx", (long)process->bp_reinsert);
      if (step == 0)
      if (step == 0)
        fprintf (stderr, "BAD - reinserting but not stepping.\n");
        fprintf (stderr, "BAD - reinserting but not stepping.\n");
      step = 1;
      step = 1;
 
 
      /* Postpone any pending signal.  It was enqueued above.  */
      /* Postpone any pending signal.  It was enqueued above.  */
      signal = 0;
      signal = 0;
    }
    }
 
 
  check_removed_breakpoint (process);
  check_removed_breakpoint (process);
 
 
  if (debug_threads && the_low_target.get_pc != NULL)
  if (debug_threads && the_low_target.get_pc != NULL)
    {
    {
      fprintf (stderr, "  ");
      fprintf (stderr, "  ");
      (*the_low_target.get_pc) ();
      (*the_low_target.get_pc) ();
    }
    }
 
 
  /* If we have pending signals, consume one unless we are trying to reinsert
  /* If we have pending signals, consume one unless we are trying to reinsert
     a breakpoint.  */
     a breakpoint.  */
  if (process->pending_signals != NULL && process->bp_reinsert == 0)
  if (process->pending_signals != NULL && process->bp_reinsert == 0)
    {
    {
      struct pending_signals **p_sig;
      struct pending_signals **p_sig;
 
 
      p_sig = &process->pending_signals;
      p_sig = &process->pending_signals;
      while ((*p_sig)->prev != NULL)
      while ((*p_sig)->prev != NULL)
        p_sig = &(*p_sig)->prev;
        p_sig = &(*p_sig)->prev;
 
 
      signal = (*p_sig)->signal;
      signal = (*p_sig)->signal;
      if ((*p_sig)->info.si_signo != 0)
      if ((*p_sig)->info.si_signo != 0)
        ptrace (PTRACE_SETSIGINFO, process->lwpid, 0, &(*p_sig)->info);
        ptrace (PTRACE_SETSIGINFO, process->lwpid, 0, &(*p_sig)->info);
 
 
      free (*p_sig);
      free (*p_sig);
      *p_sig = NULL;
      *p_sig = NULL;
    }
    }
 
 
  regcache_invalidate_one ((struct inferior_list_entry *)
  regcache_invalidate_one ((struct inferior_list_entry *)
                           get_process_thread (process));
                           get_process_thread (process));
  errno = 0;
  errno = 0;
  process->stopped = 0;
  process->stopped = 0;
  process->stepping = step;
  process->stepping = step;
  ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal);
  ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal);
 
 
  current_inferior = saved_inferior;
  current_inferior = saved_inferior;
  if (errno)
  if (errno)
    perror_with_name ("ptrace");
    perror_with_name ("ptrace");
}
}
 
 
static struct thread_resume *resume_ptr;
static struct thread_resume *resume_ptr;
 
 
/* This function is called once per thread.  We look up the thread
/* This function is called once per thread.  We look up the thread
   in RESUME_PTR, and mark the thread with a pointer to the appropriate
   in RESUME_PTR, and mark the thread with a pointer to the appropriate
   resume request.
   resume request.
 
 
   This algorithm is O(threads * resume elements), but resume elements
   This algorithm is O(threads * resume elements), but resume elements
   is small (and will remain small at least until GDB supports thread
   is small (and will remain small at least until GDB supports thread
   suspension).  */
   suspension).  */
static void
static void
linux_set_resume_request (struct inferior_list_entry *entry)
linux_set_resume_request (struct inferior_list_entry *entry)
{
{
  struct process_info *process;
  struct process_info *process;
  struct thread_info *thread;
  struct thread_info *thread;
  int ndx;
  int ndx;
 
 
  thread = (struct thread_info *) entry;
  thread = (struct thread_info *) entry;
  process = get_thread_process (thread);
  process = get_thread_process (thread);
 
 
  ndx = 0;
  ndx = 0;
  while (resume_ptr[ndx].thread != -1 && resume_ptr[ndx].thread != entry->id)
  while (resume_ptr[ndx].thread != -1 && resume_ptr[ndx].thread != entry->id)
    ndx++;
    ndx++;
 
 
  process->resume = &resume_ptr[ndx];
  process->resume = &resume_ptr[ndx];
}
}
 
 
/* This function is called once per thread.  We check the thread's resume
/* This function is called once per thread.  We check the thread's resume
   request, which will tell us whether to resume, step, or leave the thread
   request, which will tell us whether to resume, step, or leave the thread
   stopped; and what signal, if any, it should be sent.  For threads which
   stopped; and what signal, if any, it should be sent.  For threads which
   we aren't explicitly told otherwise, we preserve the stepping flag; this
   we aren't explicitly told otherwise, we preserve the stepping flag; this
   is used for stepping over gdbserver-placed breakpoints.  */
   is used for stepping over gdbserver-placed breakpoints.  */
 
 
static void
static void
linux_continue_one_thread (struct inferior_list_entry *entry)
linux_continue_one_thread (struct inferior_list_entry *entry)
{
{
  struct process_info *process;
  struct process_info *process;
  struct thread_info *thread;
  struct thread_info *thread;
  int step;
  int step;
 
 
  thread = (struct thread_info *) entry;
  thread = (struct thread_info *) entry;
  process = get_thread_process (thread);
  process = get_thread_process (thread);
 
 
  if (process->resume->leave_stopped)
  if (process->resume->leave_stopped)
    return;
    return;
 
 
  if (process->resume->thread == -1)
  if (process->resume->thread == -1)
    step = process->stepping || process->resume->step;
    step = process->stepping || process->resume->step;
  else
  else
    step = process->resume->step;
    step = process->resume->step;
 
 
  linux_resume_one_process (&process->head, step, process->resume->sig, NULL);
  linux_resume_one_process (&process->head, step, process->resume->sig, NULL);
 
 
  process->resume = NULL;
  process->resume = NULL;
}
}
 
 
/* This function is called once per thread.  We check the thread's resume
/* This function is called once per thread.  We check the thread's resume
   request, which will tell us whether to resume, step, or leave the thread
   request, which will tell us whether to resume, step, or leave the thread
   stopped; and what signal, if any, it should be sent.  We queue any needed
   stopped; and what signal, if any, it should be sent.  We queue any needed
   signals, since we won't actually resume.  We already have a pending event
   signals, since we won't actually resume.  We already have a pending event
   to report, so we don't need to preserve any step requests; they should
   to report, so we don't need to preserve any step requests; they should
   be re-issued if necessary.  */
   be re-issued if necessary.  */
 
 
static void
static void
linux_queue_one_thread (struct inferior_list_entry *entry)
linux_queue_one_thread (struct inferior_list_entry *entry)
{
{
  struct process_info *process;
  struct process_info *process;
  struct thread_info *thread;
  struct thread_info *thread;
 
 
  thread = (struct thread_info *) entry;
  thread = (struct thread_info *) entry;
  process = get_thread_process (thread);
  process = get_thread_process (thread);
 
 
  if (process->resume->leave_stopped)
  if (process->resume->leave_stopped)
    return;
    return;
 
 
  /* If we have a new signal, enqueue the signal.  */
  /* If we have a new signal, enqueue the signal.  */
  if (process->resume->sig != 0)
  if (process->resume->sig != 0)
    {
    {
      struct pending_signals *p_sig;
      struct pending_signals *p_sig;
      p_sig = malloc (sizeof (*p_sig));
      p_sig = malloc (sizeof (*p_sig));
      p_sig->prev = process->pending_signals;
      p_sig->prev = process->pending_signals;
      p_sig->signal = process->resume->sig;
      p_sig->signal = process->resume->sig;
      memset (&p_sig->info, 0, sizeof (siginfo_t));
      memset (&p_sig->info, 0, sizeof (siginfo_t));
 
 
      /* If this is the same signal we were previously stopped by,
      /* If this is the same signal we were previously stopped by,
         make sure to queue its siginfo.  We can ignore the return
         make sure to queue its siginfo.  We can ignore the return
         value of ptrace; if it fails, we'll skip
         value of ptrace; if it fails, we'll skip
         PTRACE_SETSIGINFO.  */
         PTRACE_SETSIGINFO.  */
      if (WIFSTOPPED (process->last_status)
      if (WIFSTOPPED (process->last_status)
          && WSTOPSIG (process->last_status) == process->resume->sig)
          && WSTOPSIG (process->last_status) == process->resume->sig)
        ptrace (PTRACE_GETSIGINFO, process->lwpid, 0, &p_sig->info);
        ptrace (PTRACE_GETSIGINFO, process->lwpid, 0, &p_sig->info);
 
 
      process->pending_signals = p_sig;
      process->pending_signals = p_sig;
    }
    }
 
 
  process->resume = NULL;
  process->resume = NULL;
}
}
 
 
/* Set DUMMY if this process has an interesting status pending.  */
/* Set DUMMY if this process has an interesting status pending.  */
static int
static int
resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
{
{
  struct process_info *process = (struct process_info *) entry;
  struct process_info *process = (struct process_info *) entry;
 
 
  /* Processes which will not be resumed are not interesting, because
  /* Processes which will not be resumed are not interesting, because
     we might not wait for them next time through linux_wait.  */
     we might not wait for them next time through linux_wait.  */
  if (process->resume->leave_stopped)
  if (process->resume->leave_stopped)
    return 0;
    return 0;
 
 
  /* If this thread has a removed breakpoint, we won't have any
  /* If this thread has a removed breakpoint, we won't have any
     events to report later, so check now.  check_removed_breakpoint
     events to report later, so check now.  check_removed_breakpoint
     may clear status_pending_p.  We avoid calling check_removed_breakpoint
     may clear status_pending_p.  We avoid calling check_removed_breakpoint
     for any thread that we are not otherwise going to resume - this
     for any thread that we are not otherwise going to resume - this
     lets us preserve stopped status when two threads hit a breakpoint.
     lets us preserve stopped status when two threads hit a breakpoint.
     GDB removes the breakpoint to single-step a particular thread
     GDB removes the breakpoint to single-step a particular thread
     past it, then re-inserts it and resumes all threads.  We want
     past it, then re-inserts it and resumes all threads.  We want
     to report the second thread without resuming it in the interim.  */
     to report the second thread without resuming it in the interim.  */
  if (process->status_pending_p)
  if (process->status_pending_p)
    check_removed_breakpoint (process);
    check_removed_breakpoint (process);
 
 
  if (process->status_pending_p)
  if (process->status_pending_p)
    * (int *) flag_p = 1;
    * (int *) flag_p = 1;
 
 
  return 0;
  return 0;
}
}
 
 
static void
static void
linux_resume (struct thread_resume *resume_info)
linux_resume (struct thread_resume *resume_info)
{
{
  int pending_flag;
  int pending_flag;
 
 
  /* Yes, the use of a global here is rather ugly.  */
  /* Yes, the use of a global here is rather ugly.  */
  resume_ptr = resume_info;
  resume_ptr = resume_info;
 
 
  for_each_inferior (&all_threads, linux_set_resume_request);
  for_each_inferior (&all_threads, linux_set_resume_request);
 
 
  /* If there is a thread which would otherwise be resumed, which
  /* If there is a thread which would otherwise be resumed, which
     has a pending status, then don't resume any threads - we can just
     has a pending status, then don't resume any threads - we can just
     report the pending status.  Make sure to queue any signals
     report the pending status.  Make sure to queue any signals
     that would otherwise be sent.  */
     that would otherwise be sent.  */
  pending_flag = 0;
  pending_flag = 0;
  find_inferior (&all_processes, resume_status_pending_p, &pending_flag);
  find_inferior (&all_processes, resume_status_pending_p, &pending_flag);
 
 
  if (debug_threads)
  if (debug_threads)
    {
    {
      if (pending_flag)
      if (pending_flag)
        fprintf (stderr, "Not resuming, pending status\n");
        fprintf (stderr, "Not resuming, pending status\n");
      else
      else
        fprintf (stderr, "Resuming, no pending status\n");
        fprintf (stderr, "Resuming, no pending status\n");
    }
    }
 
 
  if (pending_flag)
  if (pending_flag)
    for_each_inferior (&all_threads, linux_queue_one_thread);
    for_each_inferior (&all_threads, linux_queue_one_thread);
  else
  else
    for_each_inferior (&all_threads, linux_continue_one_thread);
    for_each_inferior (&all_threads, linux_continue_one_thread);
}
}
 
 
#ifdef HAVE_LINUX_USRREGS
#ifdef HAVE_LINUX_USRREGS
 
 
int
int
register_addr (int regnum)
register_addr (int regnum)
{
{
  int addr;
  int addr;
 
 
  if (regnum < 0 || regnum >= the_low_target.num_regs)
  if (regnum < 0 || regnum >= the_low_target.num_regs)
    error ("Invalid register number %d.", regnum);
    error ("Invalid register number %d.", regnum);
 
 
  addr = the_low_target.regmap[regnum];
  addr = the_low_target.regmap[regnum];
 
 
  return addr;
  return addr;
}
}
 
 
/* Fetch one register.  */
/* Fetch one register.  */
static void
static void
fetch_register (int regno)
fetch_register (int regno)
{
{
  CORE_ADDR regaddr;
  CORE_ADDR regaddr;
  int i, size;
  int i, size;
  char *buf;
  char *buf;
 
 
  if (regno >= the_low_target.num_regs)
  if (regno >= the_low_target.num_regs)
    return;
    return;
  if ((*the_low_target.cannot_fetch_register) (regno))
  if ((*the_low_target.cannot_fetch_register) (regno))
    return;
    return;
 
 
  regaddr = register_addr (regno);
  regaddr = register_addr (regno);
  if (regaddr == -1)
  if (regaddr == -1)
    return;
    return;
  size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
  size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
         & - sizeof (PTRACE_XFER_TYPE);
         & - sizeof (PTRACE_XFER_TYPE);
  buf = alloca (size);
  buf = alloca (size);
  for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
  for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
    {
    {
      errno = 0;
      errno = 0;
      *(PTRACE_XFER_TYPE *) (buf + i) =
      *(PTRACE_XFER_TYPE *) (buf + i) =
        ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
        ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
      regaddr += sizeof (PTRACE_XFER_TYPE);
      regaddr += sizeof (PTRACE_XFER_TYPE);
      if (errno != 0)
      if (errno != 0)
        {
        {
          /* Warning, not error, in case we are attached; sometimes the
          /* Warning, not error, in case we are attached; sometimes the
             kernel doesn't let us at the registers.  */
             kernel doesn't let us at the registers.  */
          char *err = strerror (errno);
          char *err = strerror (errno);
          char *msg = alloca (strlen (err) + 128);
          char *msg = alloca (strlen (err) + 128);
          sprintf (msg, "reading register %d: %s", regno, err);
          sprintf (msg, "reading register %d: %s", regno, err);
          error (msg);
          error (msg);
          goto error_exit;
          goto error_exit;
        }
        }
    }
    }
  if (the_low_target.left_pad_xfer
  if (the_low_target.left_pad_xfer
      && register_size (regno) < sizeof (PTRACE_XFER_TYPE))
      && register_size (regno) < sizeof (PTRACE_XFER_TYPE))
    supply_register (regno, (buf + sizeof (PTRACE_XFER_TYPE)
    supply_register (regno, (buf + sizeof (PTRACE_XFER_TYPE)
                             - register_size (regno)));
                             - register_size (regno)));
  else
  else
    supply_register (regno, buf);
    supply_register (regno, buf);
 
 
error_exit:;
error_exit:;
}
}
 
 
/* Fetch all registers, or just one, from the child process.  */
/* Fetch all registers, or just one, from the child process.  */
static void
static void
usr_fetch_inferior_registers (int regno)
usr_fetch_inferior_registers (int regno)
{
{
  if (regno == -1 || regno == 0)
  if (regno == -1 || regno == 0)
    for (regno = 0; regno < the_low_target.num_regs; regno++)
    for (regno = 0; regno < the_low_target.num_regs; regno++)
      fetch_register (regno);
      fetch_register (regno);
  else
  else
    fetch_register (regno);
    fetch_register (regno);
}
}
 
 
/* Store our register values back into the inferior.
/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */
   Otherwise, REGNO specifies which register (so we can save time).  */
static void
static void
usr_store_inferior_registers (int regno)
usr_store_inferior_registers (int regno)
{
{
  CORE_ADDR regaddr;
  CORE_ADDR regaddr;
  int i, size;
  int i, size;
  char *buf;
  char *buf;
 
 
  if (regno >= 0)
  if (regno >= 0)
    {
    {
      if (regno >= the_low_target.num_regs)
      if (regno >= the_low_target.num_regs)
        return;
        return;
 
 
      if ((*the_low_target.cannot_store_register) (regno) == 1)
      if ((*the_low_target.cannot_store_register) (regno) == 1)
        return;
        return;
 
 
      regaddr = register_addr (regno);
      regaddr = register_addr (regno);
      if (regaddr == -1)
      if (regaddr == -1)
        return;
        return;
      errno = 0;
      errno = 0;
      size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
      size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
             & - sizeof (PTRACE_XFER_TYPE);
             & - sizeof (PTRACE_XFER_TYPE);
      buf = alloca (size);
      buf = alloca (size);
      memset (buf, 0, size);
      memset (buf, 0, size);
      if (the_low_target.left_pad_xfer
      if (the_low_target.left_pad_xfer
          && register_size (regno) < sizeof (PTRACE_XFER_TYPE))
          && register_size (regno) < sizeof (PTRACE_XFER_TYPE))
        collect_register (regno, (buf + sizeof (PTRACE_XFER_TYPE)
        collect_register (regno, (buf + sizeof (PTRACE_XFER_TYPE)
                                  - register_size (regno)));
                                  - register_size (regno)));
      else
      else
        collect_register (regno, buf);
        collect_register (regno, buf);
      for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
      for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
        {
        {
          errno = 0;
          errno = 0;
          ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
          ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
                  *(PTRACE_XFER_TYPE *) (buf + i));
                  *(PTRACE_XFER_TYPE *) (buf + i));
          if (errno != 0)
          if (errno != 0)
            {
            {
              if ((*the_low_target.cannot_store_register) (regno) == 0)
              if ((*the_low_target.cannot_store_register) (regno) == 0)
                {
                {
                  char *err = strerror (errno);
                  char *err = strerror (errno);
                  char *msg = alloca (strlen (err) + 128);
                  char *msg = alloca (strlen (err) + 128);
                  sprintf (msg, "writing register %d: %s",
                  sprintf (msg, "writing register %d: %s",
                           regno, err);
                           regno, err);
                  error (msg);
                  error (msg);
                  return;
                  return;
                }
                }
            }
            }
          regaddr += sizeof (PTRACE_XFER_TYPE);
          regaddr += sizeof (PTRACE_XFER_TYPE);
        }
        }
    }
    }
  else
  else
    for (regno = 0; regno < the_low_target.num_regs; regno++)
    for (regno = 0; regno < the_low_target.num_regs; regno++)
      usr_store_inferior_registers (regno);
      usr_store_inferior_registers (regno);
}
}
#endif /* HAVE_LINUX_USRREGS */
#endif /* HAVE_LINUX_USRREGS */
 
 
 
 
 
 
#ifdef HAVE_LINUX_REGSETS
#ifdef HAVE_LINUX_REGSETS
 
 
static int
static int
regsets_fetch_inferior_registers ()
regsets_fetch_inferior_registers ()
{
{
  struct regset_info *regset;
  struct regset_info *regset;
  int saw_general_regs = 0;
  int saw_general_regs = 0;
 
 
  regset = target_regsets;
  regset = target_regsets;
 
 
  while (regset->size >= 0)
  while (regset->size >= 0)
    {
    {
      void *buf;
      void *buf;
      int res;
      int res;
 
 
      if (regset->size == 0)
      if (regset->size == 0)
        {
        {
          regset ++;
          regset ++;
          continue;
          continue;
        }
        }
 
 
      buf = malloc (regset->size);
      buf = malloc (regset->size);
      res = ptrace (regset->get_request, inferior_pid, 0, buf);
      res = ptrace (regset->get_request, inferior_pid, 0, buf);
      if (res < 0)
      if (res < 0)
        {
        {
          if (errno == EIO)
          if (errno == EIO)
            {
            {
              /* If we get EIO on the first regset, do not try regsets again.
              /* If we get EIO on the first regset, do not try regsets again.
                 If we get EIO on a later regset, disable that regset.  */
                 If we get EIO on a later regset, disable that regset.  */
              if (regset == target_regsets)
              if (regset == target_regsets)
                {
                {
                  use_regsets_p = 0;
                  use_regsets_p = 0;
                  return -1;
                  return -1;
                }
                }
              else
              else
                {
                {
                  regset->size = 0;
                  regset->size = 0;
                  continue;
                  continue;
                }
                }
            }
            }
          else
          else
            {
            {
              char s[256];
              char s[256];
              sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%ld",
              sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%ld",
                       inferior_pid);
                       inferior_pid);
              perror (s);
              perror (s);
            }
            }
        }
        }
      else if (regset->type == GENERAL_REGS)
      else if (regset->type == GENERAL_REGS)
        saw_general_regs = 1;
        saw_general_regs = 1;
      regset->store_function (buf);
      regset->store_function (buf);
      regset ++;
      regset ++;
    }
    }
  if (saw_general_regs)
  if (saw_general_regs)
    return 0;
    return 0;
  else
  else
    return 1;
    return 1;
}
}
 
 
static int
static int
regsets_store_inferior_registers ()
regsets_store_inferior_registers ()
{
{
  struct regset_info *regset;
  struct regset_info *regset;
  int saw_general_regs = 0;
  int saw_general_regs = 0;
 
 
  regset = target_regsets;
  regset = target_regsets;
 
 
  while (regset->size >= 0)
  while (regset->size >= 0)
    {
    {
      void *buf;
      void *buf;
      int res;
      int res;
 
 
      if (regset->size == 0)
      if (regset->size == 0)
        {
        {
          regset ++;
          regset ++;
          continue;
          continue;
        }
        }
 
 
      buf = malloc (regset->size);
      buf = malloc (regset->size);
 
 
      /* First fill the buffer with the current register set contents,
      /* First fill the buffer with the current register set contents,
         in case there are any items in the kernel's regset that are
         in case there are any items in the kernel's regset that are
         not in gdbserver's regcache.  */
         not in gdbserver's regcache.  */
      res = ptrace (regset->get_request, inferior_pid, 0, buf);
      res = ptrace (regset->get_request, inferior_pid, 0, buf);
 
 
      if (res == 0)
      if (res == 0)
        {
        {
          /* Then overlay our cached registers on that.  */
          /* Then overlay our cached registers on that.  */
          regset->fill_function (buf);
          regset->fill_function (buf);
 
 
          /* Only now do we write the register set.  */
          /* Only now do we write the register set.  */
          res = ptrace (regset->set_request, inferior_pid, 0, buf);
          res = ptrace (regset->set_request, inferior_pid, 0, buf);
        }
        }
 
 
      if (res < 0)
      if (res < 0)
        {
        {
          if (errno == EIO)
          if (errno == EIO)
            {
            {
              /* If we get EIO on the first regset, do not try regsets again.
              /* If we get EIO on the first regset, do not try regsets again.
                 If we get EIO on a later regset, disable that regset.  */
                 If we get EIO on a later regset, disable that regset.  */
              if (regset == target_regsets)
              if (regset == target_regsets)
                {
                {
                  use_regsets_p = 0;
                  use_regsets_p = 0;
                  return -1;
                  return -1;
                }
                }
              else
              else
                {
                {
                  regset->size = 0;
                  regset->size = 0;
                  continue;
                  continue;
                }
                }
            }
            }
          else
          else
            {
            {
              perror ("Warning: ptrace(regsets_store_inferior_registers)");
              perror ("Warning: ptrace(regsets_store_inferior_registers)");
            }
            }
        }
        }
      else if (regset->type == GENERAL_REGS)
      else if (regset->type == GENERAL_REGS)
        saw_general_regs = 1;
        saw_general_regs = 1;
      regset ++;
      regset ++;
      free (buf);
      free (buf);
    }
    }
  if (saw_general_regs)
  if (saw_general_regs)
    return 0;
    return 0;
  else
  else
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
#endif /* HAVE_LINUX_REGSETS */
#endif /* HAVE_LINUX_REGSETS */
 
 
 
 
void
void
linux_fetch_registers (int regno)
linux_fetch_registers (int regno)
{
{
#ifdef HAVE_LINUX_REGSETS
#ifdef HAVE_LINUX_REGSETS
  if (use_regsets_p)
  if (use_regsets_p)
    {
    {
      if (regsets_fetch_inferior_registers () == 0)
      if (regsets_fetch_inferior_registers () == 0)
        return;
        return;
    }
    }
#endif
#endif
#ifdef HAVE_LINUX_USRREGS
#ifdef HAVE_LINUX_USRREGS
  usr_fetch_inferior_registers (regno);
  usr_fetch_inferior_registers (regno);
#endif
#endif
}
}
 
 
void
void
linux_store_registers (int regno)
linux_store_registers (int regno)
{
{
#ifdef HAVE_LINUX_REGSETS
#ifdef HAVE_LINUX_REGSETS
  if (use_regsets_p)
  if (use_regsets_p)
    {
    {
      if (regsets_store_inferior_registers () == 0)
      if (regsets_store_inferior_registers () == 0)
        return;
        return;
    }
    }
#endif
#endif
#ifdef HAVE_LINUX_USRREGS
#ifdef HAVE_LINUX_USRREGS
  usr_store_inferior_registers (regno);
  usr_store_inferior_registers (regno);
#endif
#endif
}
}
 
 
 
 
/* Copy LEN bytes from inferior's memory starting at MEMADDR
/* Copy LEN bytes from inferior's memory starting at MEMADDR
   to debugger memory starting at MYADDR.  */
   to debugger memory starting at MYADDR.  */
 
 
static int
static int
linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
{
{
  register int i;
  register int i;
  /* Round starting address down to longword boundary.  */
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
  register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
  /* Round ending address up; get number of longwords that makes.  */
  /* Round ending address up; get number of longwords that makes.  */
  register int count
  register int count
    = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
    = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
      / sizeof (PTRACE_XFER_TYPE);
      / sizeof (PTRACE_XFER_TYPE);
  /* Allocate buffer of that many longwords.  */
  /* Allocate buffer of that many longwords.  */
  register PTRACE_XFER_TYPE *buffer
  register PTRACE_XFER_TYPE *buffer
    = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
    = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
  int fd;
  int fd;
  char filename[64];
  char filename[64];
 
 
  /* Try using /proc.  Don't bother for one word.  */
  /* Try using /proc.  Don't bother for one word.  */
  if (len >= 3 * sizeof (long))
  if (len >= 3 * sizeof (long))
    {
    {
      /* We could keep this file open and cache it - possibly one per
      /* We could keep this file open and cache it - possibly one per
         thread.  That requires some juggling, but is even faster.  */
         thread.  That requires some juggling, but is even faster.  */
      sprintf (filename, "/proc/%ld/mem", inferior_pid);
      sprintf (filename, "/proc/%ld/mem", inferior_pid);
      fd = open (filename, O_RDONLY | O_LARGEFILE);
      fd = open (filename, O_RDONLY | O_LARGEFILE);
      if (fd == -1)
      if (fd == -1)
        goto no_proc;
        goto no_proc;
 
 
      /* If pread64 is available, use it.  It's faster if the kernel
      /* If pread64 is available, use it.  It's faster if the kernel
         supports it (only one syscall), and it's 64-bit safe even on
         supports it (only one syscall), and it's 64-bit safe even on
         32-bit platforms (for instance, SPARC debugging a SPARC64
         32-bit platforms (for instance, SPARC debugging a SPARC64
         application).  */
         application).  */
#ifdef HAVE_PREAD64
#ifdef HAVE_PREAD64
      if (pread64 (fd, myaddr, len, memaddr) != len)
      if (pread64 (fd, myaddr, len, memaddr) != len)
#else
#else
      if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, memaddr, len) != len)
      if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, memaddr, len) != len)
#endif
#endif
        {
        {
          close (fd);
          close (fd);
          goto no_proc;
          goto no_proc;
        }
        }
 
 
      close (fd);
      close (fd);
      return 0;
      return 0;
    }
    }
 
 
 no_proc:
 no_proc:
  /* Read all the longwords */
  /* Read all the longwords */
  for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
  for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
    {
    {
      errno = 0;
      errno = 0;
      buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
      buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
      if (errno)
      if (errno)
        return errno;
        return errno;
    }
    }
 
 
  /* Copy appropriate bytes out of the buffer.  */
  /* Copy appropriate bytes out of the buffer.  */
  memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
  memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
 
 
  return 0;
  return 0;
}
}
 
 
/* Copy LEN bytes of data from debugger memory at MYADDR
/* Copy LEN bytes of data from debugger memory at MYADDR
   to inferior's memory at MEMADDR.
   to inferior's memory at MEMADDR.
   On failure (cannot write the inferior)
   On failure (cannot write the inferior)
   returns the value of errno.  */
   returns the value of errno.  */
 
 
static int
static int
linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
{
{
  register int i;
  register int i;
  /* Round starting address down to longword boundary.  */
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
  register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
  /* Round ending address up; get number of longwords that makes.  */
  /* Round ending address up; get number of longwords that makes.  */
  register int count
  register int count
  = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
  = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
  /* Allocate buffer of that many longwords.  */
  /* Allocate buffer of that many longwords.  */
  register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
  register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
  extern int errno;
  extern int errno;
 
 
  if (debug_threads)
  if (debug_threads)
    {
    {
      fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
      fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
    }
    }
 
 
  /* Fill start and end extra bytes of buffer with existing memory data.  */
  /* Fill start and end extra bytes of buffer with existing memory data.  */
 
 
  buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
  buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
                      (PTRACE_ARG3_TYPE) addr, 0);
                      (PTRACE_ARG3_TYPE) addr, 0);
 
 
  if (count > 1)
  if (count > 1)
    {
    {
      buffer[count - 1]
      buffer[count - 1]
        = ptrace (PTRACE_PEEKTEXT, inferior_pid,
        = ptrace (PTRACE_PEEKTEXT, inferior_pid,
                  (PTRACE_ARG3_TYPE) (addr + (count - 1)
                  (PTRACE_ARG3_TYPE) (addr + (count - 1)
                                      * sizeof (PTRACE_XFER_TYPE)),
                                      * sizeof (PTRACE_XFER_TYPE)),
                  0);
                  0);
    }
    }
 
 
  /* Copy data to be written over corresponding part of buffer */
  /* Copy data to be written over corresponding part of buffer */
 
 
  memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
  memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
 
 
  /* Write the entire buffer.  */
  /* Write the entire buffer.  */
 
 
  for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
  for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
    {
    {
      errno = 0;
      errno = 0;
      ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
      ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
      if (errno)
      if (errno)
        return errno;
        return errno;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
static int linux_supports_tracefork_flag;
static int linux_supports_tracefork_flag;
 
 
/* Helper functions for linux_test_for_tracefork, called via clone ().  */
/* Helper functions for linux_test_for_tracefork, called via clone ().  */
 
 
static int
static int
linux_tracefork_grandchild (void *arg)
linux_tracefork_grandchild (void *arg)
{
{
  _exit (0);
  _exit (0);
}
}
 
 
#define STACK_SIZE 4096
#define STACK_SIZE 4096
 
 
static int
static int
linux_tracefork_child (void *arg)
linux_tracefork_child (void *arg)
{
{
  ptrace (PTRACE_TRACEME, 0, 0, 0);
  ptrace (PTRACE_TRACEME, 0, 0, 0);
  kill (getpid (), SIGSTOP);
  kill (getpid (), SIGSTOP);
#ifdef __ia64__
#ifdef __ia64__
  __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
  __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
            CLONE_VM | SIGCHLD, NULL);
            CLONE_VM | SIGCHLD, NULL);
#else
#else
  clone (linux_tracefork_grandchild, arg + STACK_SIZE,
  clone (linux_tracefork_grandchild, arg + STACK_SIZE,
         CLONE_VM | SIGCHLD, NULL);
         CLONE_VM | SIGCHLD, NULL);
#endif
#endif
  _exit (0);
  _exit (0);
}
}
 
 
/* Wrapper function for waitpid which handles EINTR.  */
/* Wrapper function for waitpid which handles EINTR.  */
 
 
static int
static int
my_waitpid (int pid, int *status, int flags)
my_waitpid (int pid, int *status, int flags)
{
{
  int ret;
  int ret;
  do
  do
    {
    {
      ret = waitpid (pid, status, flags);
      ret = waitpid (pid, status, flags);
    }
    }
  while (ret == -1 && errno == EINTR);
  while (ret == -1 && errno == EINTR);
 
 
  return ret;
  return ret;
}
}
 
 
/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.  Make
/* Determine if PTRACE_O_TRACEFORK can be used to follow fork events.  Make
   sure that we can enable the option, and that it had the desired
   sure that we can enable the option, and that it had the desired
   effect.  */
   effect.  */
 
 
static void
static void
linux_test_for_tracefork (void)
linux_test_for_tracefork (void)
{
{
  int child_pid, ret, status;
  int child_pid, ret, status;
  long second_pid;
  long second_pid;
  char *stack = malloc (STACK_SIZE * 4);
  char *stack = malloc (STACK_SIZE * 4);
 
 
  linux_supports_tracefork_flag = 0;
  linux_supports_tracefork_flag = 0;
 
 
  /* Use CLONE_VM instead of fork, to support uClinux (no MMU).  */
  /* Use CLONE_VM instead of fork, to support uClinux (no MMU).  */
#ifdef __ia64__
#ifdef __ia64__
  child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
  child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
                        CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
                        CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
#else
#else
  child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
  child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
                     CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
                     CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
#endif
#endif
  if (child_pid == -1)
  if (child_pid == -1)
    perror_with_name ("clone");
    perror_with_name ("clone");
 
 
  ret = my_waitpid (child_pid, &status, 0);
  ret = my_waitpid (child_pid, &status, 0);
  if (ret == -1)
  if (ret == -1)
    perror_with_name ("waitpid");
    perror_with_name ("waitpid");
  else if (ret != child_pid)
  else if (ret != child_pid)
    error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
    error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
  if (! WIFSTOPPED (status))
  if (! WIFSTOPPED (status))
    error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
    error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
 
 
  ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
  ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
  if (ret != 0)
  if (ret != 0)
    {
    {
      ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
      ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
      if (ret != 0)
      if (ret != 0)
        {
        {
          warning ("linux_test_for_tracefork: failed to kill child");
          warning ("linux_test_for_tracefork: failed to kill child");
          return;
          return;
        }
        }
 
 
      ret = my_waitpid (child_pid, &status, 0);
      ret = my_waitpid (child_pid, &status, 0);
      if (ret != child_pid)
      if (ret != child_pid)
        warning ("linux_test_for_tracefork: failed to wait for killed child");
        warning ("linux_test_for_tracefork: failed to wait for killed child");
      else if (!WIFSIGNALED (status))
      else if (!WIFSIGNALED (status))
        warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
        warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
                 "killed child", status);
                 "killed child", status);
 
 
      return;
      return;
    }
    }
 
 
  ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
  ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
  if (ret != 0)
  if (ret != 0)
    warning ("linux_test_for_tracefork: failed to resume child");
    warning ("linux_test_for_tracefork: failed to resume child");
 
 
  ret = my_waitpid (child_pid, &status, 0);
  ret = my_waitpid (child_pid, &status, 0);
 
 
  if (ret == child_pid && WIFSTOPPED (status)
  if (ret == child_pid && WIFSTOPPED (status)
      && status >> 16 == PTRACE_EVENT_FORK)
      && status >> 16 == PTRACE_EVENT_FORK)
    {
    {
      second_pid = 0;
      second_pid = 0;
      ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
      ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
      if (ret == 0 && second_pid != 0)
      if (ret == 0 && second_pid != 0)
        {
        {
          int second_status;
          int second_status;
 
 
          linux_supports_tracefork_flag = 1;
          linux_supports_tracefork_flag = 1;
          my_waitpid (second_pid, &second_status, 0);
          my_waitpid (second_pid, &second_status, 0);
          ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
          ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
          if (ret != 0)
          if (ret != 0)
            warning ("linux_test_for_tracefork: failed to kill second child");
            warning ("linux_test_for_tracefork: failed to kill second child");
          my_waitpid (second_pid, &status, 0);
          my_waitpid (second_pid, &status, 0);
        }
        }
    }
    }
  else
  else
    warning ("linux_test_for_tracefork: unexpected result from waitpid "
    warning ("linux_test_for_tracefork: unexpected result from waitpid "
             "(%d, status 0x%x)", ret, status);
             "(%d, status 0x%x)", ret, status);
 
 
  do
  do
    {
    {
      ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
      ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
      if (ret != 0)
      if (ret != 0)
        warning ("linux_test_for_tracefork: failed to kill child");
        warning ("linux_test_for_tracefork: failed to kill child");
      my_waitpid (child_pid, &status, 0);
      my_waitpid (child_pid, &status, 0);
    }
    }
  while (WIFSTOPPED (status));
  while (WIFSTOPPED (status));
 
 
  free (stack);
  free (stack);
}
}
 
 
 
 
static void
static void
linux_look_up_symbols (void)
linux_look_up_symbols (void)
{
{
#ifdef USE_THREAD_DB
#ifdef USE_THREAD_DB
  if (thread_db_active)
  if (thread_db_active)
    return;
    return;
 
 
  thread_db_active = thread_db_init (!linux_supports_tracefork_flag);
  thread_db_active = thread_db_init (!linux_supports_tracefork_flag);
#endif
#endif
}
}
 
 
static void
static void
linux_request_interrupt (void)
linux_request_interrupt (void)
{
{
  extern unsigned long signal_pid;
  extern unsigned long signal_pid;
 
 
  if (cont_thread != 0 && cont_thread != -1)
  if (cont_thread != 0 && cont_thread != -1)
    {
    {
      struct process_info *process;
      struct process_info *process;
 
 
      process = get_thread_process (current_inferior);
      process = get_thread_process (current_inferior);
      kill_lwp (process->lwpid, SIGINT);
      kill_lwp (process->lwpid, SIGINT);
    }
    }
  else
  else
    kill_lwp (signal_pid, SIGINT);
    kill_lwp (signal_pid, SIGINT);
}
}
 
 
/* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
/* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
   to debugger memory starting at MYADDR.  */
   to debugger memory starting at MYADDR.  */
 
 
static int
static int
linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
{
{
  char filename[PATH_MAX];
  char filename[PATH_MAX];
  int fd, n;
  int fd, n;
 
 
  snprintf (filename, sizeof filename, "/proc/%ld/auxv", inferior_pid);
  snprintf (filename, sizeof filename, "/proc/%ld/auxv", inferior_pid);
 
 
  fd = open (filename, O_RDONLY);
  fd = open (filename, O_RDONLY);
  if (fd < 0)
  if (fd < 0)
    return -1;
    return -1;
 
 
  if (offset != (CORE_ADDR) 0
  if (offset != (CORE_ADDR) 0
      && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
      && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
    n = -1;
    n = -1;
  else
  else
    n = read (fd, myaddr, len);
    n = read (fd, myaddr, len);
 
 
  close (fd);
  close (fd);
 
 
  return n;
  return n;
}
}
 
 
/* These watchpoint related wrapper functions simply pass on the function call
/* These watchpoint related wrapper functions simply pass on the function call
   if the target has registered a corresponding function.  */
   if the target has registered a corresponding function.  */
 
 
static int
static int
linux_insert_watchpoint (char type, CORE_ADDR addr, int len)
linux_insert_watchpoint (char type, CORE_ADDR addr, int len)
{
{
  if (the_low_target.insert_watchpoint != NULL)
  if (the_low_target.insert_watchpoint != NULL)
    return the_low_target.insert_watchpoint (type, addr, len);
    return the_low_target.insert_watchpoint (type, addr, len);
  else
  else
    /* Unsupported (see target.h).  */
    /* Unsupported (see target.h).  */
    return 1;
    return 1;
}
}
 
 
static int
static int
linux_remove_watchpoint (char type, CORE_ADDR addr, int len)
linux_remove_watchpoint (char type, CORE_ADDR addr, int len)
{
{
  if (the_low_target.remove_watchpoint != NULL)
  if (the_low_target.remove_watchpoint != NULL)
    return the_low_target.remove_watchpoint (type, addr, len);
    return the_low_target.remove_watchpoint (type, addr, len);
  else
  else
    /* Unsupported (see target.h).  */
    /* Unsupported (see target.h).  */
    return 1;
    return 1;
}
}
 
 
static int
static int
linux_stopped_by_watchpoint (void)
linux_stopped_by_watchpoint (void)
{
{
  if (the_low_target.stopped_by_watchpoint != NULL)
  if (the_low_target.stopped_by_watchpoint != NULL)
    return the_low_target.stopped_by_watchpoint ();
    return the_low_target.stopped_by_watchpoint ();
  else
  else
    return 0;
    return 0;
}
}
 
 
static CORE_ADDR
static CORE_ADDR
linux_stopped_data_address (void)
linux_stopped_data_address (void)
{
{
  if (the_low_target.stopped_data_address != NULL)
  if (the_low_target.stopped_data_address != NULL)
    return the_low_target.stopped_data_address ();
    return the_low_target.stopped_data_address ();
  else
  else
    return 0;
    return 0;
}
}
 
 
#if defined(__UCLIBC__) && defined(HAS_NOMMU)
#if defined(__UCLIBC__) && defined(HAS_NOMMU)
#if defined(__mcoldfire__)
#if defined(__mcoldfire__)
/* These should really be defined in the kernel's ptrace.h header.  */
/* These should really be defined in the kernel's ptrace.h header.  */
#define PT_TEXT_ADDR 49*4
#define PT_TEXT_ADDR 49*4
#define PT_DATA_ADDR 50*4
#define PT_DATA_ADDR 50*4
#define PT_TEXT_END_ADDR  51*4
#define PT_TEXT_END_ADDR  51*4
#endif
#endif
 
 
/* Under uClinux, programs are loaded at non-zero offsets, which we need
/* Under uClinux, programs are loaded at non-zero offsets, which we need
   to tell gdb about.  */
   to tell gdb about.  */
 
 
static int
static int
linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
{
{
#if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
#if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
  unsigned long text, text_end, data;
  unsigned long text, text_end, data;
  int pid = get_thread_process (current_inferior)->head.id;
  int pid = get_thread_process (current_inferior)->head.id;
 
 
  errno = 0;
  errno = 0;
 
 
  text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
  text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
  text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
  text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
  data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);
  data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);
 
 
  if (errno == 0)
  if (errno == 0)
    {
    {
      /* Both text and data offsets produced at compile-time (and so
      /* Both text and data offsets produced at compile-time (and so
         used by gdb) are relative to the beginning of the program,
         used by gdb) are relative to the beginning of the program,
         with the data segment immediately following the text segment.
         with the data segment immediately following the text segment.
         However, the actual runtime layout in memory may put the data
         However, the actual runtime layout in memory may put the data
         somewhere else, so when we send gdb a data base-address, we
         somewhere else, so when we send gdb a data base-address, we
         use the real data base address and subtract the compile-time
         use the real data base address and subtract the compile-time
         data base-address from it (which is just the length of the
         data base-address from it (which is just the length of the
         text segment).  BSS immediately follows data in both
         text segment).  BSS immediately follows data in both
         cases.  */
         cases.  */
      *text_p = text;
      *text_p = text;
      *data_p = data - (text_end - text);
      *data_p = data - (text_end - text);
 
 
      return 1;
      return 1;
    }
    }
#endif
#endif
 return 0;
 return 0;
}
}
#endif
#endif
 
 
static const char *
static const char *
linux_arch_string (void)
linux_arch_string (void)
{
{
  return the_low_target.arch_string;
  return the_low_target.arch_string;
}
}
 
 
static struct target_ops linux_target_ops = {
static struct target_ops linux_target_ops = {
  linux_create_inferior,
  linux_create_inferior,
  linux_attach,
  linux_attach,
  linux_kill,
  linux_kill,
  linux_detach,
  linux_detach,
  linux_join,
  linux_join,
  linux_thread_alive,
  linux_thread_alive,
  linux_resume,
  linux_resume,
  linux_wait,
  linux_wait,
  linux_fetch_registers,
  linux_fetch_registers,
  linux_store_registers,
  linux_store_registers,
  linux_read_memory,
  linux_read_memory,
  linux_write_memory,
  linux_write_memory,
  linux_look_up_symbols,
  linux_look_up_symbols,
  linux_request_interrupt,
  linux_request_interrupt,
  linux_read_auxv,
  linux_read_auxv,
  linux_insert_watchpoint,
  linux_insert_watchpoint,
  linux_remove_watchpoint,
  linux_remove_watchpoint,
  linux_stopped_by_watchpoint,
  linux_stopped_by_watchpoint,
  linux_stopped_data_address,
  linux_stopped_data_address,
#if defined(__UCLIBC__) && defined(HAS_NOMMU)
#if defined(__UCLIBC__) && defined(HAS_NOMMU)
  linux_read_offsets,
  linux_read_offsets,
#else
#else
  NULL,
  NULL,
#endif
#endif
#ifdef USE_THREAD_DB
#ifdef USE_THREAD_DB
  thread_db_get_tls_address,
  thread_db_get_tls_address,
#else
#else
  NULL,
  NULL,
#endif
#endif
  linux_arch_string,
  linux_arch_string,
  NULL,
  NULL,
  hostio_last_error_from_errno,
  hostio_last_error_from_errno,
};
};
 
 
static void
static void
linux_init_signals ()
linux_init_signals ()
{
{
  /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
  /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
     to find what the cancel signal actually is.  */
     to find what the cancel signal actually is.  */
  signal (__SIGRTMIN+1, SIG_IGN);
  signal (__SIGRTMIN+1, SIG_IGN);
}
}
 
 
void
void
initialize_low (void)
initialize_low (void)
{
{
  thread_db_active = 0;
  thread_db_active = 0;
  set_target_ops (&linux_target_ops);
  set_target_ops (&linux_target_ops);
  set_breakpoint_data (the_low_target.breakpoint,
  set_breakpoint_data (the_low_target.breakpoint,
                       the_low_target.breakpoint_len);
                       the_low_target.breakpoint_len);
  init_registers ();
  init_registers ();
  linux_init_signals ();
  linux_init_signals ();
  linux_test_for_tracefork ();
  linux_test_for_tracefork ();
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.