OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [tags/] [gnu-src/] [newlib-1.18.0/] [newlib-1.18.0-or32-1.0rc1/] [newlib/] [libc/] [stdlib/] [dtoa.c] - Diff between revs 207 and 345

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 207 Rev 345
/****************************************************************
/****************************************************************
 *
 *
 * The author of this software is David M. Gay.
 * The author of this software is David M. Gay.
 *
 *
 * Copyright (c) 1991 by AT&T.
 * Copyright (c) 1991 by AT&T.
 *
 *
 * Permission to use, copy, modify, and distribute this software for any
 * Permission to use, copy, modify, and distribute this software for any
 * purpose without fee is hereby granted, provided that this entire notice
 * purpose without fee is hereby granted, provided that this entire notice
 * is included in all copies of any software which is or includes a copy
 * is included in all copies of any software which is or includes a copy
 * or modification of this software and in all copies of the supporting
 * or modification of this software and in all copies of the supporting
 * documentation for such software.
 * documentation for such software.
 *
 *
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
 *
 *
 ***************************************************************/
 ***************************************************************/
 
 
/* Please send bug reports to
/* Please send bug reports to
        David M. Gay
        David M. Gay
        AT&T Bell Laboratories, Room 2C-463
        AT&T Bell Laboratories, Room 2C-463
        600 Mountain Avenue
        600 Mountain Avenue
        Murray Hill, NJ 07974-2070
        Murray Hill, NJ 07974-2070
        U.S.A.
        U.S.A.
        dmg@research.att.com or research!dmg
        dmg@research.att.com or research!dmg
 */
 */
 
 
#include <_ansi.h>
#include <_ansi.h>
#include <stdlib.h>
#include <stdlib.h>
#include <reent.h>
#include <reent.h>
#include <string.h>
#include <string.h>
#include "mprec.h"
#include "mprec.h"
 
 
static int
static int
_DEFUN (quorem,
_DEFUN (quorem,
        (b, S),
        (b, S),
        _Bigint * b _AND _Bigint * S)
        _Bigint * b _AND _Bigint * S)
{
{
  int n;
  int n;
  __Long borrow, y;
  __Long borrow, y;
  __ULong carry, q, ys;
  __ULong carry, q, ys;
  __ULong *bx, *bxe, *sx, *sxe;
  __ULong *bx, *bxe, *sx, *sxe;
#ifdef Pack_32
#ifdef Pack_32
  __Long z;
  __Long z;
  __ULong si, zs;
  __ULong si, zs;
#endif
#endif
 
 
  n = S->_wds;
  n = S->_wds;
#ifdef DEBUG
#ifdef DEBUG
  /*debug*/ if (b->_wds > n)
  /*debug*/ if (b->_wds > n)
    /*debug*/ Bug ("oversize b in quorem");
    /*debug*/ Bug ("oversize b in quorem");
#endif
#endif
  if (b->_wds < n)
  if (b->_wds < n)
    return 0;
    return 0;
  sx = S->_x;
  sx = S->_x;
  sxe = sx + --n;
  sxe = sx + --n;
  bx = b->_x;
  bx = b->_x;
  bxe = bx + n;
  bxe = bx + n;
  q = *bxe / (*sxe + 1);        /* ensure q <= true quotient */
  q = *bxe / (*sxe + 1);        /* ensure q <= true quotient */
#ifdef DEBUG
#ifdef DEBUG
  /*debug*/ if (q > 9)
  /*debug*/ if (q > 9)
    /*debug*/ Bug ("oversized quotient in quorem");
    /*debug*/ Bug ("oversized quotient in quorem");
#endif
#endif
  if (q)
  if (q)
    {
    {
      borrow = 0;
      borrow = 0;
      carry = 0;
      carry = 0;
      do
      do
        {
        {
#ifdef Pack_32
#ifdef Pack_32
          si = *sx++;
          si = *sx++;
          ys = (si & 0xffff) * q + carry;
          ys = (si & 0xffff) * q + carry;
          zs = (si >> 16) * q + (ys >> 16);
          zs = (si >> 16) * q + (ys >> 16);
          carry = zs >> 16;
          carry = zs >> 16;
          y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
          y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
          borrow = y >> 16;
          borrow = y >> 16;
          Sign_Extend (borrow, y);
          Sign_Extend (borrow, y);
          z = (*bx >> 16) - (zs & 0xffff) + borrow;
          z = (*bx >> 16) - (zs & 0xffff) + borrow;
          borrow = z >> 16;
          borrow = z >> 16;
          Sign_Extend (borrow, z);
          Sign_Extend (borrow, z);
          Storeinc (bx, z, y);
          Storeinc (bx, z, y);
#else
#else
          ys = *sx++ * q + carry;
          ys = *sx++ * q + carry;
          carry = ys >> 16;
          carry = ys >> 16;
          y = *bx - (ys & 0xffff) + borrow;
          y = *bx - (ys & 0xffff) + borrow;
          borrow = y >> 16;
          borrow = y >> 16;
          Sign_Extend (borrow, y);
          Sign_Extend (borrow, y);
          *bx++ = y & 0xffff;
          *bx++ = y & 0xffff;
#endif
#endif
        }
        }
      while (sx <= sxe);
      while (sx <= sxe);
      if (!*bxe)
      if (!*bxe)
        {
        {
          bx = b->_x;
          bx = b->_x;
          while (--bxe > bx && !*bxe)
          while (--bxe > bx && !*bxe)
            --n;
            --n;
          b->_wds = n;
          b->_wds = n;
        }
        }
    }
    }
  if (cmp (b, S) >= 0)
  if (cmp (b, S) >= 0)
    {
    {
      q++;
      q++;
      borrow = 0;
      borrow = 0;
      carry = 0;
      carry = 0;
      bx = b->_x;
      bx = b->_x;
      sx = S->_x;
      sx = S->_x;
      do
      do
        {
        {
#ifdef Pack_32
#ifdef Pack_32
          si = *sx++;
          si = *sx++;
          ys = (si & 0xffff) + carry;
          ys = (si & 0xffff) + carry;
          zs = (si >> 16) + (ys >> 16);
          zs = (si >> 16) + (ys >> 16);
          carry = zs >> 16;
          carry = zs >> 16;
          y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
          y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
          borrow = y >> 16;
          borrow = y >> 16;
          Sign_Extend (borrow, y);
          Sign_Extend (borrow, y);
          z = (*bx >> 16) - (zs & 0xffff) + borrow;
          z = (*bx >> 16) - (zs & 0xffff) + borrow;
          borrow = z >> 16;
          borrow = z >> 16;
          Sign_Extend (borrow, z);
          Sign_Extend (borrow, z);
          Storeinc (bx, z, y);
          Storeinc (bx, z, y);
#else
#else
          ys = *sx++ + carry;
          ys = *sx++ + carry;
          carry = ys >> 16;
          carry = ys >> 16;
          y = *bx - (ys & 0xffff) + borrow;
          y = *bx - (ys & 0xffff) + borrow;
          borrow = y >> 16;
          borrow = y >> 16;
          Sign_Extend (borrow, y);
          Sign_Extend (borrow, y);
          *bx++ = y & 0xffff;
          *bx++ = y & 0xffff;
#endif
#endif
        }
        }
      while (sx <= sxe);
      while (sx <= sxe);
      bx = b->_x;
      bx = b->_x;
      bxe = bx + n;
      bxe = bx + n;
      if (!*bxe)
      if (!*bxe)
        {
        {
          while (--bxe > bx && !*bxe)
          while (--bxe > bx && !*bxe)
            --n;
            --n;
          b->_wds = n;
          b->_wds = n;
        }
        }
    }
    }
  return q;
  return q;
}
}
 
 
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
 *
 *
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
 * Inspired by "How to Print Floating-Point Numbers Accurately" by
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
 *
 *
 * Modifications:
 * Modifications:
 *      1. Rather than iterating, we use a simple numeric overestimate
 *      1. Rather than iterating, we use a simple numeric overestimate
 *         to determine k = floor(log10(d)).  We scale relevant
 *         to determine k = floor(log10(d)).  We scale relevant
 *         quantities using O(log2(k)) rather than O(k) multiplications.
 *         quantities using O(log2(k)) rather than O(k) multiplications.
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
 *         try to generate digits strictly left to right.  Instead, we
 *         try to generate digits strictly left to right.  Instead, we
 *         compute with fewer bits and propagate the carry if necessary
 *         compute with fewer bits and propagate the carry if necessary
 *         when rounding the final digit up.  This is often faster.
 *         when rounding the final digit up.  This is often faster.
 *      3. Under the assumption that input will be rounded nearest,
 *      3. Under the assumption that input will be rounded nearest,
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
 *         That is, we allow equality in stopping tests when the
 *         That is, we allow equality in stopping tests when the
 *         round-nearest rule will give the same floating-point value
 *         round-nearest rule will give the same floating-point value
 *         as would satisfaction of the stopping test with strict
 *         as would satisfaction of the stopping test with strict
 *         inequality.
 *         inequality.
 *      4. We remove common factors of powers of 2 from relevant
 *      4. We remove common factors of powers of 2 from relevant
 *         quantities.
 *         quantities.
 *      5. When converting floating-point integers less than 1e16,
 *      5. When converting floating-point integers less than 1e16,
 *         we use floating-point arithmetic rather than resorting
 *         we use floating-point arithmetic rather than resorting
 *         to multiple-precision integers.
 *         to multiple-precision integers.
 *      6. When asked to produce fewer than 15 digits, we first try
 *      6. When asked to produce fewer than 15 digits, we first try
 *         to get by with floating-point arithmetic; we resort to
 *         to get by with floating-point arithmetic; we resort to
 *         multiple-precision integer arithmetic only if we cannot
 *         multiple-precision integer arithmetic only if we cannot
 *         guarantee that the floating-point calculation has given
 *         guarantee that the floating-point calculation has given
 *         the correctly rounded result.  For k requested digits and
 *         the correctly rounded result.  For k requested digits and
 *         "uniformly" distributed input, the probability is
 *         "uniformly" distributed input, the probability is
 *         something like 10^(k-15) that we must resort to the long
 *         something like 10^(k-15) that we must resort to the long
 *         calculation.
 *         calculation.
 */
 */
 
 
 
 
char *
char *
_DEFUN (_dtoa_r,
_DEFUN (_dtoa_r,
        (ptr, _d, mode, ndigits, decpt, sign, rve),
        (ptr, _d, mode, ndigits, decpt, sign, rve),
        struct _reent *ptr _AND
        struct _reent *ptr _AND
        double _d _AND
        double _d _AND
        int mode _AND
        int mode _AND
        int ndigits _AND
        int ndigits _AND
        int *decpt _AND
        int *decpt _AND
        int *sign _AND
        int *sign _AND
        char **rve)
        char **rve)
{
{
  /*    Arguments ndigits, decpt, sign are similar to those
  /*    Arguments ndigits, decpt, sign are similar to those
        of ecvt and fcvt; trailing zeros are suppressed from
        of ecvt and fcvt; trailing zeros are suppressed from
        the returned string.  If not null, *rve is set to point
        the returned string.  If not null, *rve is set to point
        to the end of the return value.  If d is +-Infinity or NaN,
        to the end of the return value.  If d is +-Infinity or NaN,
        then *decpt is set to 9999.
        then *decpt is set to 9999.
 
 
        mode:
        mode:
                0 ==> shortest string that yields d when read in
                0 ==> shortest string that yields d when read in
                        and rounded to nearest.
                        and rounded to nearest.
                1 ==> like 0, but with Steele & White stopping rule;
                1 ==> like 0, but with Steele & White stopping rule;
                        e.g. with IEEE P754 arithmetic , mode 0 gives
                        e.g. with IEEE P754 arithmetic , mode 0 gives
                        1e23 whereas mode 1 gives 9.999999999999999e22.
                        1e23 whereas mode 1 gives 9.999999999999999e22.
                2 ==> max(1,ndigits) significant digits.  This gives a
                2 ==> max(1,ndigits) significant digits.  This gives a
                        return value similar to that of ecvt, except
                        return value similar to that of ecvt, except
                        that trailing zeros are suppressed.
                        that trailing zeros are suppressed.
                3 ==> through ndigits past the decimal point.  This
                3 ==> through ndigits past the decimal point.  This
                        gives a return value similar to that from fcvt,
                        gives a return value similar to that from fcvt,
                        except that trailing zeros are suppressed, and
                        except that trailing zeros are suppressed, and
                        ndigits can be negative.
                        ndigits can be negative.
                4-9 should give the same return values as 2-3, i.e.,
                4-9 should give the same return values as 2-3, i.e.,
                        4 <= mode <= 9 ==> same return as mode
                        4 <= mode <= 9 ==> same return as mode
                        2 + (mode & 1).  These modes are mainly for
                        2 + (mode & 1).  These modes are mainly for
                        debugging; often they run slower but sometimes
                        debugging; often they run slower but sometimes
                        faster than modes 2-3.
                        faster than modes 2-3.
                4,5,8,9 ==> left-to-right digit generation.
                4,5,8,9 ==> left-to-right digit generation.
                6-9 ==> don't try fast floating-point estimate
                6-9 ==> don't try fast floating-point estimate
                        (if applicable).
                        (if applicable).
 
 
                Values of mode other than 0-9 are treated as mode 0.
                Values of mode other than 0-9 are treated as mode 0.
 
 
                Sufficient space is allocated to the return value
                Sufficient space is allocated to the return value
                to hold the suppressed trailing zeros.
                to hold the suppressed trailing zeros.
        */
        */
 
 
  int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, j, j1, k, k0,
  int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, j, j1, k, k0,
    k_check, leftright, m2, m5, s2, s5, spec_case, try_quick;
    k_check, leftright, m2, m5, s2, s5, spec_case, try_quick;
  union double_union d, d2, eps;
  union double_union d, d2, eps;
  __Long L;
  __Long L;
#ifndef Sudden_Underflow
#ifndef Sudden_Underflow
  int denorm;
  int denorm;
  __ULong x;
  __ULong x;
#endif
#endif
  _Bigint *b, *b1, *delta, *mlo = NULL, *mhi, *S;
  _Bigint *b, *b1, *delta, *mlo = NULL, *mhi, *S;
  double ds;
  double ds;
  char *s, *s0;
  char *s, *s0;
 
 
  d.d = _d;
  d.d = _d;
 
 
  _REENT_CHECK_MP(ptr);
  _REENT_CHECK_MP(ptr);
  if (_REENT_MP_RESULT(ptr))
  if (_REENT_MP_RESULT(ptr))
    {
    {
      _REENT_MP_RESULT(ptr)->_k = _REENT_MP_RESULT_K(ptr);
      _REENT_MP_RESULT(ptr)->_k = _REENT_MP_RESULT_K(ptr);
      _REENT_MP_RESULT(ptr)->_maxwds = 1 << _REENT_MP_RESULT_K(ptr);
      _REENT_MP_RESULT(ptr)->_maxwds = 1 << _REENT_MP_RESULT_K(ptr);
      Bfree (ptr, _REENT_MP_RESULT(ptr));
      Bfree (ptr, _REENT_MP_RESULT(ptr));
      _REENT_MP_RESULT(ptr) = 0;
      _REENT_MP_RESULT(ptr) = 0;
    }
    }
 
 
  if (word0 (d) & Sign_bit)
  if (word0 (d) & Sign_bit)
    {
    {
      /* set sign for everything, including 0's and NaNs */
      /* set sign for everything, including 0's and NaNs */
      *sign = 1;
      *sign = 1;
      word0 (d) &= ~Sign_bit;   /* clear sign bit */
      word0 (d) &= ~Sign_bit;   /* clear sign bit */
    }
    }
  else
  else
    *sign = 0;
    *sign = 0;
 
 
#if defined(IEEE_Arith) + defined(VAX)
#if defined(IEEE_Arith) + defined(VAX)
#ifdef IEEE_Arith
#ifdef IEEE_Arith
  if ((word0 (d) & Exp_mask) == Exp_mask)
  if ((word0 (d) & Exp_mask) == Exp_mask)
#else
#else
  if (word0 (d) == 0x8000)
  if (word0 (d) == 0x8000)
#endif
#endif
    {
    {
      /* Infinity or NaN */
      /* Infinity or NaN */
      *decpt = 9999;
      *decpt = 9999;
      s =
      s =
#ifdef IEEE_Arith
#ifdef IEEE_Arith
        !word1 (d) && !(word0 (d) & 0xfffff) ? "Infinity" :
        !word1 (d) && !(word0 (d) & 0xfffff) ? "Infinity" :
#endif
#endif
        "NaN";
        "NaN";
      if (rve)
      if (rve)
        *rve =
        *rve =
#ifdef IEEE_Arith
#ifdef IEEE_Arith
          s[3] ? s + 8 :
          s[3] ? s + 8 :
#endif
#endif
          s + 3;
          s + 3;
      return s;
      return s;
    }
    }
#endif
#endif
#ifdef IBM
#ifdef IBM
  d.d += 0;                      /* normalize */
  d.d += 0;                      /* normalize */
#endif
#endif
  if (!d.d)
  if (!d.d)
    {
    {
      *decpt = 1;
      *decpt = 1;
      s = "0";
      s = "0";
      if (rve)
      if (rve)
        *rve = s + 1;
        *rve = s + 1;
      return s;
      return s;
    }
    }
 
 
  b = d2b (ptr, d.d, &be, &bbits);
  b = d2b (ptr, d.d, &be, &bbits);
#ifdef Sudden_Underflow
#ifdef Sudden_Underflow
  i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1));
  i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1));
#else
#else
  if ((i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1))) != 0)
  if ((i = (int) (word0 (d) >> Exp_shift1 & (Exp_mask >> Exp_shift1))) != 0)
    {
    {
#endif
#endif
      d2.d = d.d;
      d2.d = d.d;
      word0 (d2) &= Frac_mask1;
      word0 (d2) &= Frac_mask1;
      word0 (d2) |= Exp_11;
      word0 (d2) |= Exp_11;
#ifdef IBM
#ifdef IBM
      if (j = 11 - hi0bits (word0 (d2) & Frac_mask))
      if (j = 11 - hi0bits (word0 (d2) & Frac_mask))
        d2.d /= 1 << j;
        d2.d /= 1 << j;
#endif
#endif
 
 
      /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
      /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
                 * log10(x)      =  log(x) / log(10)
                 * log10(x)      =  log(x) / log(10)
                 *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
                 *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
                 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
                 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
                 *
                 *
                 * This suggests computing an approximation k to log10(d) by
                 * This suggests computing an approximation k to log10(d) by
                 *
                 *
                 * k = (i - Bias)*0.301029995663981
                 * k = (i - Bias)*0.301029995663981
                 *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
                 *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
                 *
                 *
                 * We want k to be too large rather than too small.
                 * We want k to be too large rather than too small.
                 * The error in the first-order Taylor series approximation
                 * The error in the first-order Taylor series approximation
                 * is in our favor, so we just round up the constant enough
                 * is in our favor, so we just round up the constant enough
                 * to compensate for any error in the multiplication of
                 * to compensate for any error in the multiplication of
                 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
                 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
                 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
                 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
                 * adding 1e-13 to the constant term more than suffices.
                 * adding 1e-13 to the constant term more than suffices.
                 * Hence we adjust the constant term to 0.1760912590558.
                 * Hence we adjust the constant term to 0.1760912590558.
                 * (We could get a more accurate k by invoking log10,
                 * (We could get a more accurate k by invoking log10,
                 *  but this is probably not worthwhile.)
                 *  but this is probably not worthwhile.)
                 */
                 */
 
 
      i -= Bias;
      i -= Bias;
#ifdef IBM
#ifdef IBM
      i <<= 2;
      i <<= 2;
      i += j;
      i += j;
#endif
#endif
#ifndef Sudden_Underflow
#ifndef Sudden_Underflow
      denorm = 0;
      denorm = 0;
    }
    }
  else
  else
    {
    {
      /* d is denormalized */
      /* d is denormalized */
 
 
      i = bbits + be + (Bias + (P - 1) - 1);
      i = bbits + be + (Bias + (P - 1) - 1);
#if defined (_DOUBLE_IS_32BITS)
#if defined (_DOUBLE_IS_32BITS)
      x = word0 (d) << (32 - i);
      x = word0 (d) << (32 - i);
#else
#else
      x = (i > 32) ? (word0 (d) << (64 - i)) | (word1 (d) >> (i - 32))
      x = (i > 32) ? (word0 (d) << (64 - i)) | (word1 (d) >> (i - 32))
       : (word1 (d) << (32 - i));
       : (word1 (d) << (32 - i));
#endif
#endif
      d2.d = x;
      d2.d = x;
      word0 (d2) -= 31 * Exp_msk1;      /* adjust exponent */
      word0 (d2) -= 31 * Exp_msk1;      /* adjust exponent */
      i -= (Bias + (P - 1) - 1) + 1;
      i -= (Bias + (P - 1) - 1) + 1;
      denorm = 1;
      denorm = 1;
    }
    }
#endif
#endif
#if defined (_DOUBLE_IS_32BITS)
#if defined (_DOUBLE_IS_32BITS)
  ds = (d2.d - 1.5) * 0.289529651 + 0.176091269 + i * 0.30103001;
  ds = (d2.d - 1.5) * 0.289529651 + 0.176091269 + i * 0.30103001;
#else
#else
  ds = (d2.d - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981;
  ds = (d2.d - 1.5) * 0.289529654602168 + 0.1760912590558 + i * 0.301029995663981;
#endif
#endif
  k = (int) ds;
  k = (int) ds;
  if (ds < 0. && ds != k)
  if (ds < 0. && ds != k)
    k--;                        /* want k = floor(ds) */
    k--;                        /* want k = floor(ds) */
  k_check = 1;
  k_check = 1;
  if (k >= 0 && k <= Ten_pmax)
  if (k >= 0 && k <= Ten_pmax)
    {
    {
      if (d.d < tens[k])
      if (d.d < tens[k])
        k--;
        k--;
      k_check = 0;
      k_check = 0;
    }
    }
  j = bbits - i - 1;
  j = bbits - i - 1;
  if (j >= 0)
  if (j >= 0)
    {
    {
      b2 = 0;
      b2 = 0;
      s2 = j;
      s2 = j;
    }
    }
  else
  else
    {
    {
      b2 = -j;
      b2 = -j;
      s2 = 0;
      s2 = 0;
    }
    }
  if (k >= 0)
  if (k >= 0)
    {
    {
      b5 = 0;
      b5 = 0;
      s5 = k;
      s5 = k;
      s2 += k;
      s2 += k;
    }
    }
  else
  else
    {
    {
      b2 -= k;
      b2 -= k;
      b5 = -k;
      b5 = -k;
      s5 = 0;
      s5 = 0;
    }
    }
  if (mode < 0 || mode > 9)
  if (mode < 0 || mode > 9)
    mode = 0;
    mode = 0;
  try_quick = 1;
  try_quick = 1;
  if (mode > 5)
  if (mode > 5)
    {
    {
      mode -= 4;
      mode -= 4;
      try_quick = 0;
      try_quick = 0;
    }
    }
  leftright = 1;
  leftright = 1;
  ilim = ilim1 = -1;
  ilim = ilim1 = -1;
  switch (mode)
  switch (mode)
    {
    {
    case 0:
    case 0:
    case 1:
    case 1:
      i = 18;
      i = 18;
      ndigits = 0;
      ndigits = 0;
      break;
      break;
    case 2:
    case 2:
      leftright = 0;
      leftright = 0;
      /* no break */
      /* no break */
    case 4:
    case 4:
      if (ndigits <= 0)
      if (ndigits <= 0)
        ndigits = 1;
        ndigits = 1;
      ilim = ilim1 = i = ndigits;
      ilim = ilim1 = i = ndigits;
      break;
      break;
    case 3:
    case 3:
      leftright = 0;
      leftright = 0;
      /* no break */
      /* no break */
    case 5:
    case 5:
      i = ndigits + k + 1;
      i = ndigits + k + 1;
      ilim = i;
      ilim = i;
      ilim1 = i - 1;
      ilim1 = i - 1;
      if (i <= 0)
      if (i <= 0)
        i = 1;
        i = 1;
    }
    }
  j = sizeof (__ULong);
  j = sizeof (__ULong);
  for (_REENT_MP_RESULT_K(ptr) = 0; sizeof (_Bigint) - sizeof (__ULong) + j <= i;
  for (_REENT_MP_RESULT_K(ptr) = 0; sizeof (_Bigint) - sizeof (__ULong) + j <= i;
       j <<= 1)
       j <<= 1)
    _REENT_MP_RESULT_K(ptr)++;
    _REENT_MP_RESULT_K(ptr)++;
  _REENT_MP_RESULT(ptr) = Balloc (ptr, _REENT_MP_RESULT_K(ptr));
  _REENT_MP_RESULT(ptr) = Balloc (ptr, _REENT_MP_RESULT_K(ptr));
  s = s0 = (char *) _REENT_MP_RESULT(ptr);
  s = s0 = (char *) _REENT_MP_RESULT(ptr);
 
 
  if (ilim >= 0 && ilim <= Quick_max && try_quick)
  if (ilim >= 0 && ilim <= Quick_max && try_quick)
    {
    {
      /* Try to get by with floating-point arithmetic. */
      /* Try to get by with floating-point arithmetic. */
 
 
      i = 0;
      i = 0;
      d2.d = d.d;
      d2.d = d.d;
      k0 = k;
      k0 = k;
      ilim0 = ilim;
      ilim0 = ilim;
      ieps = 2;                 /* conservative */
      ieps = 2;                 /* conservative */
      if (k > 0)
      if (k > 0)
        {
        {
          ds = tens[k & 0xf];
          ds = tens[k & 0xf];
          j = k >> 4;
          j = k >> 4;
          if (j & Bletch)
          if (j & Bletch)
            {
            {
              /* prevent overflows */
              /* prevent overflows */
              j &= Bletch - 1;
              j &= Bletch - 1;
              d.d /= bigtens[n_bigtens - 1];
              d.d /= bigtens[n_bigtens - 1];
              ieps++;
              ieps++;
            }
            }
          for (; j; j >>= 1, i++)
          for (; j; j >>= 1, i++)
            if (j & 1)
            if (j & 1)
              {
              {
                ieps++;
                ieps++;
                ds *= bigtens[i];
                ds *= bigtens[i];
              }
              }
          d.d /= ds;
          d.d /= ds;
        }
        }
      else if ((j1 = -k) != 0)
      else if ((j1 = -k) != 0)
        {
        {
          d.d *= tens[j1 & 0xf];
          d.d *= tens[j1 & 0xf];
          for (j = j1 >> 4; j; j >>= 1, i++)
          for (j = j1 >> 4; j; j >>= 1, i++)
            if (j & 1)
            if (j & 1)
              {
              {
                ieps++;
                ieps++;
                d.d *= bigtens[i];
                d.d *= bigtens[i];
              }
              }
        }
        }
      if (k_check && d.d < 1. && ilim > 0)
      if (k_check && d.d < 1. && ilim > 0)
        {
        {
          if (ilim1 <= 0)
          if (ilim1 <= 0)
            goto fast_failed;
            goto fast_failed;
          ilim = ilim1;
          ilim = ilim1;
          k--;
          k--;
          d.d *= 10.;
          d.d *= 10.;
          ieps++;
          ieps++;
        }
        }
      eps.d = ieps * d.d + 7.;
      eps.d = ieps * d.d + 7.;
      word0 (eps) -= (P - 1) * Exp_msk1;
      word0 (eps) -= (P - 1) * Exp_msk1;
      if (ilim == 0)
      if (ilim == 0)
        {
        {
          S = mhi = 0;
          S = mhi = 0;
          d.d -= 5.;
          d.d -= 5.;
          if (d.d > eps.d)
          if (d.d > eps.d)
            goto one_digit;
            goto one_digit;
          if (d.d < -eps.d)
          if (d.d < -eps.d)
            goto no_digits;
            goto no_digits;
          goto fast_failed;
          goto fast_failed;
        }
        }
#ifndef No_leftright
#ifndef No_leftright
      if (leftright)
      if (leftright)
        {
        {
          /* Use Steele & White method of only
          /* Use Steele & White method of only
           * generating digits needed.
           * generating digits needed.
           */
           */
          eps.d = 0.5 / tens[ilim - 1] - eps.d;
          eps.d = 0.5 / tens[ilim - 1] - eps.d;
          for (i = 0;;)
          for (i = 0;;)
            {
            {
              L = d.d;
              L = d.d;
              d.d -= L;
              d.d -= L;
              *s++ = '0' + (int) L;
              *s++ = '0' + (int) L;
              if (d.d < eps.d)
              if (d.d < eps.d)
                goto ret1;
                goto ret1;
              if (1. - d.d < eps.d)
              if (1. - d.d < eps.d)
                goto bump_up;
                goto bump_up;
              if (++i >= ilim)
              if (++i >= ilim)
                break;
                break;
              eps.d *= 10.;
              eps.d *= 10.;
              d.d *= 10.;
              d.d *= 10.;
            }
            }
        }
        }
      else
      else
        {
        {
#endif
#endif
          /* Generate ilim digits, then fix them up. */
          /* Generate ilim digits, then fix them up. */
          eps.d *= tens[ilim - 1];
          eps.d *= tens[ilim - 1];
          for (i = 1;; i++, d.d *= 10.)
          for (i = 1;; i++, d.d *= 10.)
            {
            {
              L = d.d;
              L = d.d;
              d.d -= L;
              d.d -= L;
              *s++ = '0' + (int) L;
              *s++ = '0' + (int) L;
              if (i == ilim)
              if (i == ilim)
                {
                {
                  if (d.d > 0.5 + eps.d)
                  if (d.d > 0.5 + eps.d)
                    goto bump_up;
                    goto bump_up;
                  else if (d.d < 0.5 - eps.d)
                  else if (d.d < 0.5 - eps.d)
                    {
                    {
                      while (*--s == '0');
                      while (*--s == '0');
                      s++;
                      s++;
                      goto ret1;
                      goto ret1;
                    }
                    }
                  break;
                  break;
                }
                }
            }
            }
#ifndef No_leftright
#ifndef No_leftright
        }
        }
#endif
#endif
    fast_failed:
    fast_failed:
      s = s0;
      s = s0;
      d.d = d2.d;
      d.d = d2.d;
      k = k0;
      k = k0;
      ilim = ilim0;
      ilim = ilim0;
    }
    }
 
 
  /* Do we have a "small" integer? */
  /* Do we have a "small" integer? */
 
 
  if (be >= 0 && k <= Int_max)
  if (be >= 0 && k <= Int_max)
    {
    {
      /* Yes. */
      /* Yes. */
      ds = tens[k];
      ds = tens[k];
      if (ndigits < 0 && ilim <= 0)
      if (ndigits < 0 && ilim <= 0)
        {
        {
          S = mhi = 0;
          S = mhi = 0;
          if (ilim < 0 || d.d <= 5 * ds)
          if (ilim < 0 || d.d <= 5 * ds)
            goto no_digits;
            goto no_digits;
          goto one_digit;
          goto one_digit;
        }
        }
      for (i = 1;; i++)
      for (i = 1;; i++)
        {
        {
          L = d.d / ds;
          L = d.d / ds;
          d.d -= L * ds;
          d.d -= L * ds;
#ifdef Check_FLT_ROUNDS
#ifdef Check_FLT_ROUNDS
          /* If FLT_ROUNDS == 2, L will usually be high by 1 */
          /* If FLT_ROUNDS == 2, L will usually be high by 1 */
          if (d.d < 0)
          if (d.d < 0)
            {
            {
              L--;
              L--;
              d.d += ds;
              d.d += ds;
            }
            }
#endif
#endif
          *s++ = '0' + (int) L;
          *s++ = '0' + (int) L;
          if (i == ilim)
          if (i == ilim)
            {
            {
              d.d += d.d;
              d.d += d.d;
             if ((d.d > ds) || ((d.d == ds) && (L & 1)))
             if ((d.d > ds) || ((d.d == ds) && (L & 1)))
                {
                {
                bump_up:
                bump_up:
                  while (*--s == '9')
                  while (*--s == '9')
                    if (s == s0)
                    if (s == s0)
                      {
                      {
                        k++;
                        k++;
                        *s = '0';
                        *s = '0';
                        break;
                        break;
                      }
                      }
                  ++*s++;
                  ++*s++;
                }
                }
              break;
              break;
            }
            }
          if (!(d.d *= 10.))
          if (!(d.d *= 10.))
            break;
            break;
        }
        }
      goto ret1;
      goto ret1;
    }
    }
 
 
  m2 = b2;
  m2 = b2;
  m5 = b5;
  m5 = b5;
  mhi = mlo = 0;
  mhi = mlo = 0;
  if (leftright)
  if (leftright)
    {
    {
      if (mode < 2)
      if (mode < 2)
        {
        {
          i =
          i =
#ifndef Sudden_Underflow
#ifndef Sudden_Underflow
            denorm ? be + (Bias + (P - 1) - 1 + 1) :
            denorm ? be + (Bias + (P - 1) - 1 + 1) :
#endif
#endif
#ifdef IBM
#ifdef IBM
            1 + 4 * P - 3 - bbits + ((bbits + be - 1) & 3);
            1 + 4 * P - 3 - bbits + ((bbits + be - 1) & 3);
#else
#else
            1 + P - bbits;
            1 + P - bbits;
#endif
#endif
        }
        }
      else
      else
        {
        {
          j = ilim - 1;
          j = ilim - 1;
          if (m5 >= j)
          if (m5 >= j)
            m5 -= j;
            m5 -= j;
          else
          else
            {
            {
              s5 += j -= m5;
              s5 += j -= m5;
              b5 += j;
              b5 += j;
              m5 = 0;
              m5 = 0;
            }
            }
          if ((i = ilim) < 0)
          if ((i = ilim) < 0)
            {
            {
              m2 -= i;
              m2 -= i;
              i = 0;
              i = 0;
            }
            }
        }
        }
      b2 += i;
      b2 += i;
      s2 += i;
      s2 += i;
      mhi = i2b (ptr, 1);
      mhi = i2b (ptr, 1);
    }
    }
  if (m2 > 0 && s2 > 0)
  if (m2 > 0 && s2 > 0)
    {
    {
      i = m2 < s2 ? m2 : s2;
      i = m2 < s2 ? m2 : s2;
      b2 -= i;
      b2 -= i;
      m2 -= i;
      m2 -= i;
      s2 -= i;
      s2 -= i;
    }
    }
  if (b5 > 0)
  if (b5 > 0)
    {
    {
      if (leftright)
      if (leftright)
        {
        {
          if (m5 > 0)
          if (m5 > 0)
            {
            {
              mhi = pow5mult (ptr, mhi, m5);
              mhi = pow5mult (ptr, mhi, m5);
              b1 = mult (ptr, mhi, b);
              b1 = mult (ptr, mhi, b);
              Bfree (ptr, b);
              Bfree (ptr, b);
              b = b1;
              b = b1;
            }
            }
         if ((j = b5 - m5) != 0)
         if ((j = b5 - m5) != 0)
            b = pow5mult (ptr, b, j);
            b = pow5mult (ptr, b, j);
        }
        }
      else
      else
        b = pow5mult (ptr, b, b5);
        b = pow5mult (ptr, b, b5);
    }
    }
  S = i2b (ptr, 1);
  S = i2b (ptr, 1);
  if (s5 > 0)
  if (s5 > 0)
    S = pow5mult (ptr, S, s5);
    S = pow5mult (ptr, S, s5);
 
 
  /* Check for special case that d is a normalized power of 2. */
  /* Check for special case that d is a normalized power of 2. */
 
 
  spec_case = 0;
  spec_case = 0;
  if (mode < 2)
  if (mode < 2)
    {
    {
      if (!word1 (d) && !(word0 (d) & Bndry_mask)
      if (!word1 (d) && !(word0 (d) & Bndry_mask)
#ifndef Sudden_Underflow
#ifndef Sudden_Underflow
          && word0 (d) & Exp_mask
          && word0 (d) & Exp_mask
#endif
#endif
        )
        )
        {
        {
          /* The special case */
          /* The special case */
          b2 += Log2P;
          b2 += Log2P;
          s2 += Log2P;
          s2 += Log2P;
          spec_case = 1;
          spec_case = 1;
        }
        }
    }
    }
 
 
  /* Arrange for convenient computation of quotients:
  /* Arrange for convenient computation of quotients:
   * shift left if necessary so divisor has 4 leading 0 bits.
   * shift left if necessary so divisor has 4 leading 0 bits.
   *
   *
   * Perhaps we should just compute leading 28 bits of S once
   * Perhaps we should just compute leading 28 bits of S once
   * and for all and pass them and a shift to quorem, so it
   * and for all and pass them and a shift to quorem, so it
   * can do shifts and ors to compute the numerator for q.
   * can do shifts and ors to compute the numerator for q.
   */
   */
 
 
#ifdef Pack_32
#ifdef Pack_32
  if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0x1f) != 0)
  if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0x1f) != 0)
    i = 32 - i;
    i = 32 - i;
#else
#else
  if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0xf) != 0)
  if ((i = ((s5 ? 32 - hi0bits (S->_x[S->_wds - 1]) : 1) + s2) & 0xf) != 0)
    i = 16 - i;
    i = 16 - i;
#endif
#endif
  if (i > 4)
  if (i > 4)
    {
    {
      i -= 4;
      i -= 4;
      b2 += i;
      b2 += i;
      m2 += i;
      m2 += i;
      s2 += i;
      s2 += i;
    }
    }
  else if (i < 4)
  else if (i < 4)
    {
    {
      i += 28;
      i += 28;
      b2 += i;
      b2 += i;
      m2 += i;
      m2 += i;
      s2 += i;
      s2 += i;
    }
    }
  if (b2 > 0)
  if (b2 > 0)
    b = lshift (ptr, b, b2);
    b = lshift (ptr, b, b2);
  if (s2 > 0)
  if (s2 > 0)
    S = lshift (ptr, S, s2);
    S = lshift (ptr, S, s2);
  if (k_check)
  if (k_check)
    {
    {
      if (cmp (b, S) < 0)
      if (cmp (b, S) < 0)
        {
        {
          k--;
          k--;
          b = multadd (ptr, b, 10, 0);   /* we botched the k estimate */
          b = multadd (ptr, b, 10, 0);   /* we botched the k estimate */
          if (leftright)
          if (leftright)
            mhi = multadd (ptr, mhi, 10, 0);
            mhi = multadd (ptr, mhi, 10, 0);
          ilim = ilim1;
          ilim = ilim1;
        }
        }
    }
    }
  if (ilim <= 0 && mode > 2)
  if (ilim <= 0 && mode > 2)
    {
    {
      if (ilim < 0 || cmp (b, S = multadd (ptr, S, 5, 0)) <= 0)
      if (ilim < 0 || cmp (b, S = multadd (ptr, S, 5, 0)) <= 0)
        {
        {
          /* no digits, fcvt style */
          /* no digits, fcvt style */
        no_digits:
        no_digits:
          k = -1 - ndigits;
          k = -1 - ndigits;
          goto ret;
          goto ret;
        }
        }
    one_digit:
    one_digit:
      *s++ = '1';
      *s++ = '1';
      k++;
      k++;
      goto ret;
      goto ret;
    }
    }
  if (leftright)
  if (leftright)
    {
    {
      if (m2 > 0)
      if (m2 > 0)
        mhi = lshift (ptr, mhi, m2);
        mhi = lshift (ptr, mhi, m2);
 
 
      /* Compute mlo -- check for special case
      /* Compute mlo -- check for special case
       * that d is a normalized power of 2.
       * that d is a normalized power of 2.
       */
       */
 
 
      mlo = mhi;
      mlo = mhi;
      if (spec_case)
      if (spec_case)
        {
        {
          mhi = Balloc (ptr, mhi->_k);
          mhi = Balloc (ptr, mhi->_k);
          Bcopy (mhi, mlo);
          Bcopy (mhi, mlo);
          mhi = lshift (ptr, mhi, Log2P);
          mhi = lshift (ptr, mhi, Log2P);
        }
        }
 
 
      for (i = 1;; i++)
      for (i = 1;; i++)
        {
        {
          dig = quorem (b, S) + '0';
          dig = quorem (b, S) + '0';
          /* Do we yet have the shortest decimal string
          /* Do we yet have the shortest decimal string
           * that will round to d?
           * that will round to d?
           */
           */
          j = cmp (b, mlo);
          j = cmp (b, mlo);
          delta = diff (ptr, S, mhi);
          delta = diff (ptr, S, mhi);
          j1 = delta->_sign ? 1 : cmp (b, delta);
          j1 = delta->_sign ? 1 : cmp (b, delta);
          Bfree (ptr, delta);
          Bfree (ptr, delta);
#ifndef ROUND_BIASED
#ifndef ROUND_BIASED
          if (j1 == 0 && !mode && !(word1 (d) & 1))
          if (j1 == 0 && !mode && !(word1 (d) & 1))
            {
            {
              if (dig == '9')
              if (dig == '9')
                goto round_9_up;
                goto round_9_up;
              if (j > 0)
              if (j > 0)
                dig++;
                dig++;
              *s++ = dig;
              *s++ = dig;
              goto ret;
              goto ret;
            }
            }
#endif
#endif
         if ((j < 0) || ((j == 0) && !mode
         if ((j < 0) || ((j == 0) && !mode
#ifndef ROUND_BIASED
#ifndef ROUND_BIASED
              && !(word1 (d) & 1)
              && !(word1 (d) & 1)
#endif
#endif
           ))
           ))
            {
            {
              if (j1 > 0)
              if (j1 > 0)
                {
                {
                  b = lshift (ptr, b, 1);
                  b = lshift (ptr, b, 1);
                  j1 = cmp (b, S);
                  j1 = cmp (b, S);
                 if (((j1 > 0) || ((j1 == 0) && (dig & 1)))
                 if (((j1 > 0) || ((j1 == 0) && (dig & 1)))
                      && dig++ == '9')
                      && dig++ == '9')
                    goto round_9_up;
                    goto round_9_up;
                }
                }
              *s++ = dig;
              *s++ = dig;
              goto ret;
              goto ret;
            }
            }
          if (j1 > 0)
          if (j1 > 0)
            {
            {
              if (dig == '9')
              if (dig == '9')
                {               /* possible if i == 1 */
                {               /* possible if i == 1 */
                round_9_up:
                round_9_up:
                  *s++ = '9';
                  *s++ = '9';
                  goto roundoff;
                  goto roundoff;
                }
                }
              *s++ = dig + 1;
              *s++ = dig + 1;
              goto ret;
              goto ret;
            }
            }
          *s++ = dig;
          *s++ = dig;
          if (i == ilim)
          if (i == ilim)
            break;
            break;
          b = multadd (ptr, b, 10, 0);
          b = multadd (ptr, b, 10, 0);
          if (mlo == mhi)
          if (mlo == mhi)
            mlo = mhi = multadd (ptr, mhi, 10, 0);
            mlo = mhi = multadd (ptr, mhi, 10, 0);
          else
          else
            {
            {
              mlo = multadd (ptr, mlo, 10, 0);
              mlo = multadd (ptr, mlo, 10, 0);
              mhi = multadd (ptr, mhi, 10, 0);
              mhi = multadd (ptr, mhi, 10, 0);
            }
            }
        }
        }
    }
    }
  else
  else
    for (i = 1;; i++)
    for (i = 1;; i++)
      {
      {
        *s++ = dig = quorem (b, S) + '0';
        *s++ = dig = quorem (b, S) + '0';
        if (i >= ilim)
        if (i >= ilim)
          break;
          break;
        b = multadd (ptr, b, 10, 0);
        b = multadd (ptr, b, 10, 0);
      }
      }
 
 
  /* Round off last digit */
  /* Round off last digit */
 
 
  b = lshift (ptr, b, 1);
  b = lshift (ptr, b, 1);
  j = cmp (b, S);
  j = cmp (b, S);
  if ((j > 0) || ((j == 0) && (dig & 1)))
  if ((j > 0) || ((j == 0) && (dig & 1)))
    {
    {
    roundoff:
    roundoff:
      while (*--s == '9')
      while (*--s == '9')
        if (s == s0)
        if (s == s0)
          {
          {
            k++;
            k++;
            *s++ = '1';
            *s++ = '1';
            goto ret;
            goto ret;
          }
          }
      ++*s++;
      ++*s++;
    }
    }
  else
  else
    {
    {
      while (*--s == '0');
      while (*--s == '0');
      s++;
      s++;
    }
    }
ret:
ret:
  Bfree (ptr, S);
  Bfree (ptr, S);
  if (mhi)
  if (mhi)
    {
    {
      if (mlo && mlo != mhi)
      if (mlo && mlo != mhi)
        Bfree (ptr, mlo);
        Bfree (ptr, mlo);
      Bfree (ptr, mhi);
      Bfree (ptr, mhi);
    }
    }
ret1:
ret1:
  Bfree (ptr, b);
  Bfree (ptr, b);
  *s = 0;
  *s = 0;
  *decpt = k + 1;
  *decpt = k + 1;
  if (rve)
  if (rve)
    *rve = s;
    *rve = s;
  return s0;
  return s0;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.