OpenCores
URL https://opencores.org/ocsvn/openrisc_2011-10-31/openrisc_2011-10-31/trunk

Subversion Repositories openrisc_2011-10-31

[/] [openrisc/] [tags/] [gnu-src/] [newlib-1.18.0/] [newlib-1.18.0-or32-1.0rc1/] [newlib/] [libm/] [common/] [fdlibm.h] - Diff between revs 207 and 345

Only display areas with differences | Details | Blame | View Log

Rev 207 Rev 345
 
 
/* @(#)fdlibm.h 5.1 93/09/24 */
/* @(#)fdlibm.h 5.1 93/09/24 */
/*
/*
 * ====================================================
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * software is freely granted, provided that this notice
 * is preserved.
 * is preserved.
 * ====================================================
 * ====================================================
 */
 */
 
 
/* REDHAT LOCAL: Include files.  */
/* REDHAT LOCAL: Include files.  */
#include <math.h>
#include <math.h>
#include <sys/types.h>
#include <sys/types.h>
#include <machine/ieeefp.h>
#include <machine/ieeefp.h>
 
 
/* REDHAT LOCAL: Default to XOPEN_MODE.  */
/* REDHAT LOCAL: Default to XOPEN_MODE.  */
#define _XOPEN_MODE
#define _XOPEN_MODE
 
 
/* Most routines need to check whether a float is finite, infinite, or not a
/* Most routines need to check whether a float is finite, infinite, or not a
   number, and many need to know whether the result of an operation will
   number, and many need to know whether the result of an operation will
   overflow.  These conditions depend on whether the largest exponent is
   overflow.  These conditions depend on whether the largest exponent is
   used for NaNs & infinities, or whether it's used for finite numbers.  The
   used for NaNs & infinities, or whether it's used for finite numbers.  The
   macros below wrap up that kind of information:
   macros below wrap up that kind of information:
 
 
   FLT_UWORD_IS_FINITE(X)
   FLT_UWORD_IS_FINITE(X)
        True if a positive float with bitmask X is finite.
        True if a positive float with bitmask X is finite.
 
 
   FLT_UWORD_IS_NAN(X)
   FLT_UWORD_IS_NAN(X)
        True if a positive float with bitmask X is not a number.
        True if a positive float with bitmask X is not a number.
 
 
   FLT_UWORD_IS_INFINITE(X)
   FLT_UWORD_IS_INFINITE(X)
        True if a positive float with bitmask X is +infinity.
        True if a positive float with bitmask X is +infinity.
 
 
   FLT_UWORD_MAX
   FLT_UWORD_MAX
        The bitmask of FLT_MAX.
        The bitmask of FLT_MAX.
 
 
   FLT_UWORD_HALF_MAX
   FLT_UWORD_HALF_MAX
        The bitmask of FLT_MAX/2.
        The bitmask of FLT_MAX/2.
 
 
   FLT_UWORD_EXP_MAX
   FLT_UWORD_EXP_MAX
        The bitmask of the largest finite exponent (129 if the largest
        The bitmask of the largest finite exponent (129 if the largest
        exponent is used for finite numbers, 128 otherwise).
        exponent is used for finite numbers, 128 otherwise).
 
 
   FLT_UWORD_LOG_MAX
   FLT_UWORD_LOG_MAX
        The bitmask of log(FLT_MAX), rounded down.  This value is the largest
        The bitmask of log(FLT_MAX), rounded down.  This value is the largest
        input that can be passed to exp() without producing overflow.
        input that can be passed to exp() without producing overflow.
 
 
   FLT_UWORD_LOG_2MAX
   FLT_UWORD_LOG_2MAX
        The bitmask of log(2*FLT_MAX), rounded down.  This value is the
        The bitmask of log(2*FLT_MAX), rounded down.  This value is the
        largest input than can be passed to cosh() without producing
        largest input than can be passed to cosh() without producing
        overflow.
        overflow.
 
 
   FLT_LARGEST_EXP
   FLT_LARGEST_EXP
        The largest biased exponent that can be used for finite numbers
        The largest biased exponent that can be used for finite numbers
        (255 if the largest exponent is used for finite numbers, 254
        (255 if the largest exponent is used for finite numbers, 254
        otherwise) */
        otherwise) */
 
 
#ifdef _FLT_LARGEST_EXPONENT_IS_NORMAL
#ifdef _FLT_LARGEST_EXPONENT_IS_NORMAL
#define FLT_UWORD_IS_FINITE(x) 1
#define FLT_UWORD_IS_FINITE(x) 1
#define FLT_UWORD_IS_NAN(x) 0
#define FLT_UWORD_IS_NAN(x) 0
#define FLT_UWORD_IS_INFINITE(x) 0
#define FLT_UWORD_IS_INFINITE(x) 0
#define FLT_UWORD_MAX 0x7fffffff
#define FLT_UWORD_MAX 0x7fffffff
#define FLT_UWORD_EXP_MAX 0x43010000
#define FLT_UWORD_EXP_MAX 0x43010000
#define FLT_UWORD_LOG_MAX 0x42b2d4fc
#define FLT_UWORD_LOG_MAX 0x42b2d4fc
#define FLT_UWORD_LOG_2MAX 0x42b437e0
#define FLT_UWORD_LOG_2MAX 0x42b437e0
#define HUGE ((float)0X1.FFFFFEP128)
#define HUGE ((float)0X1.FFFFFEP128)
#else
#else
#define FLT_UWORD_IS_FINITE(x) ((x)<0x7f800000L)
#define FLT_UWORD_IS_FINITE(x) ((x)<0x7f800000L)
#define FLT_UWORD_IS_NAN(x) ((x)>0x7f800000L)
#define FLT_UWORD_IS_NAN(x) ((x)>0x7f800000L)
#define FLT_UWORD_IS_INFINITE(x) ((x)==0x7f800000L)
#define FLT_UWORD_IS_INFINITE(x) ((x)==0x7f800000L)
#define FLT_UWORD_MAX 0x7f7fffffL
#define FLT_UWORD_MAX 0x7f7fffffL
#define FLT_UWORD_EXP_MAX 0x43000000
#define FLT_UWORD_EXP_MAX 0x43000000
#define FLT_UWORD_LOG_MAX 0x42b17217
#define FLT_UWORD_LOG_MAX 0x42b17217
#define FLT_UWORD_LOG_2MAX 0x42b2d4fc
#define FLT_UWORD_LOG_2MAX 0x42b2d4fc
#define HUGE ((float)3.40282346638528860e+38)
#define HUGE ((float)3.40282346638528860e+38)
#endif
#endif
#define FLT_UWORD_HALF_MAX (FLT_UWORD_MAX-(1L<<23))
#define FLT_UWORD_HALF_MAX (FLT_UWORD_MAX-(1L<<23))
#define FLT_LARGEST_EXP (FLT_UWORD_MAX>>23)
#define FLT_LARGEST_EXP (FLT_UWORD_MAX>>23)
 
 
/* Many routines check for zero and subnormal numbers.  Such things depend
/* Many routines check for zero and subnormal numbers.  Such things depend
   on whether the target supports denormals or not:
   on whether the target supports denormals or not:
 
 
   FLT_UWORD_IS_ZERO(X)
   FLT_UWORD_IS_ZERO(X)
        True if a positive float with bitmask X is +0.  Without denormals,
        True if a positive float with bitmask X is +0.  Without denormals,
        any float with a zero exponent is a +0 representation.  With
        any float with a zero exponent is a +0 representation.  With
        denormals, the only +0 representation is a 0 bitmask.
        denormals, the only +0 representation is a 0 bitmask.
 
 
   FLT_UWORD_IS_SUBNORMAL(X)
   FLT_UWORD_IS_SUBNORMAL(X)
        True if a non-zero positive float with bitmask X is subnormal.
        True if a non-zero positive float with bitmask X is subnormal.
        (Routines should check for zeros first.)
        (Routines should check for zeros first.)
 
 
   FLT_UWORD_MIN
   FLT_UWORD_MIN
        The bitmask of the smallest float above +0.  Call this number
        The bitmask of the smallest float above +0.  Call this number
        REAL_FLT_MIN...
        REAL_FLT_MIN...
 
 
   FLT_UWORD_EXP_MIN
   FLT_UWORD_EXP_MIN
        The bitmask of the float representation of REAL_FLT_MIN's exponent.
        The bitmask of the float representation of REAL_FLT_MIN's exponent.
 
 
   FLT_UWORD_LOG_MIN
   FLT_UWORD_LOG_MIN
        The bitmask of |log(REAL_FLT_MIN)|, rounding down.
        The bitmask of |log(REAL_FLT_MIN)|, rounding down.
 
 
   FLT_SMALLEST_EXP
   FLT_SMALLEST_EXP
        REAL_FLT_MIN's exponent - EXP_BIAS (1 if denormals are not supported,
        REAL_FLT_MIN's exponent - EXP_BIAS (1 if denormals are not supported,
        -22 if they are).
        -22 if they are).
*/
*/
 
 
#ifdef _FLT_NO_DENORMALS
#ifdef _FLT_NO_DENORMALS
#define FLT_UWORD_IS_ZERO(x) ((x)<0x00800000L)
#define FLT_UWORD_IS_ZERO(x) ((x)<0x00800000L)
#define FLT_UWORD_IS_SUBNORMAL(x) 0
#define FLT_UWORD_IS_SUBNORMAL(x) 0
#define FLT_UWORD_MIN 0x00800000
#define FLT_UWORD_MIN 0x00800000
#define FLT_UWORD_EXP_MIN 0x42fc0000
#define FLT_UWORD_EXP_MIN 0x42fc0000
#define FLT_UWORD_LOG_MIN 0x42aeac50
#define FLT_UWORD_LOG_MIN 0x42aeac50
#define FLT_SMALLEST_EXP 1
#define FLT_SMALLEST_EXP 1
#else
#else
#define FLT_UWORD_IS_ZERO(x) ((x)==0)
#define FLT_UWORD_IS_ZERO(x) ((x)==0)
#define FLT_UWORD_IS_SUBNORMAL(x) ((x)<0x00800000L)
#define FLT_UWORD_IS_SUBNORMAL(x) ((x)<0x00800000L)
#define FLT_UWORD_MIN 0x00000001
#define FLT_UWORD_MIN 0x00000001
#define FLT_UWORD_EXP_MIN 0x43160000
#define FLT_UWORD_EXP_MIN 0x43160000
#define FLT_UWORD_LOG_MIN 0x42cff1b5
#define FLT_UWORD_LOG_MIN 0x42cff1b5
#define FLT_SMALLEST_EXP -22
#define FLT_SMALLEST_EXP -22
#endif
#endif
 
 
#ifdef __STDC__
#ifdef __STDC__
#undef __P
#undef __P
#define __P(p)  p
#define __P(p)  p
#else
#else
#define __P(p)  ()
#define __P(p)  ()
#endif
#endif
 
 
/*
/*
 * set X_TLOSS = pi*2**52, which is possibly defined in <values.h>
 * set X_TLOSS = pi*2**52, which is possibly defined in <values.h>
 * (one may replace the following line by "#include <values.h>")
 * (one may replace the following line by "#include <values.h>")
 */
 */
 
 
#define X_TLOSS         1.41484755040568800000e+16 
#define X_TLOSS         1.41484755040568800000e+16 
 
 
/* Functions that are not documented, and are not in <math.h>.  */
/* Functions that are not documented, and are not in <math.h>.  */
 
 
#ifdef _SCALB_INT
#ifdef _SCALB_INT
extern double scalb __P((double, int));
extern double scalb __P((double, int));
#else
#else
extern double scalb __P((double, double));
extern double scalb __P((double, double));
#endif
#endif
extern double significand __P((double));
extern double significand __P((double));
 
 
/* ieee style elementary functions */
/* ieee style elementary functions */
extern double __ieee754_sqrt __P((double));
extern double __ieee754_sqrt __P((double));
extern double __ieee754_acos __P((double));
extern double __ieee754_acos __P((double));
extern double __ieee754_acosh __P((double));
extern double __ieee754_acosh __P((double));
extern double __ieee754_log __P((double));
extern double __ieee754_log __P((double));
extern double __ieee754_atanh __P((double));
extern double __ieee754_atanh __P((double));
extern double __ieee754_asin __P((double));
extern double __ieee754_asin __P((double));
extern double __ieee754_atan2 __P((double,double));
extern double __ieee754_atan2 __P((double,double));
extern double __ieee754_exp __P((double));
extern double __ieee754_exp __P((double));
extern double __ieee754_cosh __P((double));
extern double __ieee754_cosh __P((double));
extern double __ieee754_fmod __P((double,double));
extern double __ieee754_fmod __P((double,double));
extern double __ieee754_pow __P((double,double));
extern double __ieee754_pow __P((double,double));
extern double __ieee754_lgamma_r __P((double,int *));
extern double __ieee754_lgamma_r __P((double,int *));
extern double __ieee754_gamma_r __P((double,int *));
extern double __ieee754_gamma_r __P((double,int *));
extern double __ieee754_log10 __P((double));
extern double __ieee754_log10 __P((double));
extern double __ieee754_sinh __P((double));
extern double __ieee754_sinh __P((double));
extern double __ieee754_hypot __P((double,double));
extern double __ieee754_hypot __P((double,double));
extern double __ieee754_j0 __P((double));
extern double __ieee754_j0 __P((double));
extern double __ieee754_j1 __P((double));
extern double __ieee754_j1 __P((double));
extern double __ieee754_y0 __P((double));
extern double __ieee754_y0 __P((double));
extern double __ieee754_y1 __P((double));
extern double __ieee754_y1 __P((double));
extern double __ieee754_jn __P((int,double));
extern double __ieee754_jn __P((int,double));
extern double __ieee754_yn __P((int,double));
extern double __ieee754_yn __P((int,double));
extern double __ieee754_remainder __P((double,double));
extern double __ieee754_remainder __P((double,double));
extern __int32_t __ieee754_rem_pio2 __P((double,double*));
extern __int32_t __ieee754_rem_pio2 __P((double,double*));
#ifdef _SCALB_INT
#ifdef _SCALB_INT
extern double __ieee754_scalb __P((double,int));
extern double __ieee754_scalb __P((double,int));
#else
#else
extern double __ieee754_scalb __P((double,double));
extern double __ieee754_scalb __P((double,double));
#endif
#endif
 
 
/* fdlibm kernel function */
/* fdlibm kernel function */
extern double __kernel_standard __P((double,double,int));
extern double __kernel_standard __P((double,double,int));
extern double __kernel_sin __P((double,double,int));
extern double __kernel_sin __P((double,double,int));
extern double __kernel_cos __P((double,double));
extern double __kernel_cos __P((double,double));
extern double __kernel_tan __P((double,double,int));
extern double __kernel_tan __P((double,double,int));
extern int    __kernel_rem_pio2 __P((double*,double*,int,int,int,const __int32_t*));
extern int    __kernel_rem_pio2 __P((double*,double*,int,int,int,const __int32_t*));
 
 
/* Undocumented float functions.  */
/* Undocumented float functions.  */
#ifdef _SCALB_INT
#ifdef _SCALB_INT
extern float scalbf __P((float, int));
extern float scalbf __P((float, int));
#else
#else
extern float scalbf __P((float, float));
extern float scalbf __P((float, float));
#endif
#endif
extern float significandf __P((float));
extern float significandf __P((float));
 
 
/* ieee style elementary float functions */
/* ieee style elementary float functions */
extern float __ieee754_sqrtf __P((float));
extern float __ieee754_sqrtf __P((float));
extern float __ieee754_acosf __P((float));
extern float __ieee754_acosf __P((float));
extern float __ieee754_acoshf __P((float));
extern float __ieee754_acoshf __P((float));
extern float __ieee754_logf __P((float));
extern float __ieee754_logf __P((float));
extern float __ieee754_atanhf __P((float));
extern float __ieee754_atanhf __P((float));
extern float __ieee754_asinf __P((float));
extern float __ieee754_asinf __P((float));
extern float __ieee754_atan2f __P((float,float));
extern float __ieee754_atan2f __P((float,float));
extern float __ieee754_expf __P((float));
extern float __ieee754_expf __P((float));
extern float __ieee754_coshf __P((float));
extern float __ieee754_coshf __P((float));
extern float __ieee754_fmodf __P((float,float));
extern float __ieee754_fmodf __P((float,float));
extern float __ieee754_powf __P((float,float));
extern float __ieee754_powf __P((float,float));
extern float __ieee754_lgammaf_r __P((float,int *));
extern float __ieee754_lgammaf_r __P((float,int *));
extern float __ieee754_gammaf_r __P((float,int *));
extern float __ieee754_gammaf_r __P((float,int *));
extern float __ieee754_log10f __P((float));
extern float __ieee754_log10f __P((float));
extern float __ieee754_sinhf __P((float));
extern float __ieee754_sinhf __P((float));
extern float __ieee754_hypotf __P((float,float));
extern float __ieee754_hypotf __P((float,float));
extern float __ieee754_j0f __P((float));
extern float __ieee754_j0f __P((float));
extern float __ieee754_j1f __P((float));
extern float __ieee754_j1f __P((float));
extern float __ieee754_y0f __P((float));
extern float __ieee754_y0f __P((float));
extern float __ieee754_y1f __P((float));
extern float __ieee754_y1f __P((float));
extern float __ieee754_jnf __P((int,float));
extern float __ieee754_jnf __P((int,float));
extern float __ieee754_ynf __P((int,float));
extern float __ieee754_ynf __P((int,float));
extern float __ieee754_remainderf __P((float,float));
extern float __ieee754_remainderf __P((float,float));
extern __int32_t __ieee754_rem_pio2f __P((float,float*));
extern __int32_t __ieee754_rem_pio2f __P((float,float*));
#ifdef _SCALB_INT
#ifdef _SCALB_INT
extern float __ieee754_scalbf __P((float,int));
extern float __ieee754_scalbf __P((float,int));
#else
#else
extern float __ieee754_scalbf __P((float,float));
extern float __ieee754_scalbf __P((float,float));
#endif
#endif
 
 
/* float versions of fdlibm kernel functions */
/* float versions of fdlibm kernel functions */
extern float __kernel_sinf __P((float,float,int));
extern float __kernel_sinf __P((float,float,int));
extern float __kernel_cosf __P((float,float));
extern float __kernel_cosf __P((float,float));
extern float __kernel_tanf __P((float,float,int));
extern float __kernel_tanf __P((float,float,int));
extern int   __kernel_rem_pio2f __P((float*,float*,int,int,int,const __int32_t*));
extern int   __kernel_rem_pio2f __P((float*,float*,int,int,int,const __int32_t*));
 
 
/* The original code used statements like
/* The original code used statements like
        n0 = ((*(int*)&one)>>29)^1;             * index of high word *
        n0 = ((*(int*)&one)>>29)^1;             * index of high word *
        ix0 = *(n0+(int*)&x);                   * high word of x *
        ix0 = *(n0+(int*)&x);                   * high word of x *
        ix1 = *((1-n0)+(int*)&x);               * low word of x *
        ix1 = *((1-n0)+(int*)&x);               * low word of x *
   to dig two 32 bit words out of the 64 bit IEEE floating point
   to dig two 32 bit words out of the 64 bit IEEE floating point
   value.  That is non-ANSI, and, moreover, the gcc instruction
   value.  That is non-ANSI, and, moreover, the gcc instruction
   scheduler gets it wrong.  We instead use the following macros.
   scheduler gets it wrong.  We instead use the following macros.
   Unlike the original code, we determine the endianness at compile
   Unlike the original code, we determine the endianness at compile
   time, not at run time; I don't see much benefit to selecting
   time, not at run time; I don't see much benefit to selecting
   endianness at run time.  */
   endianness at run time.  */
 
 
#ifndef __IEEE_BIG_ENDIAN
#ifndef __IEEE_BIG_ENDIAN
#ifndef __IEEE_LITTLE_ENDIAN
#ifndef __IEEE_LITTLE_ENDIAN
 #error Must define endianness
 #error Must define endianness
#endif
#endif
#endif
#endif
 
 
/* A union which permits us to convert between a double and two 32 bit
/* A union which permits us to convert between a double and two 32 bit
   ints.  */
   ints.  */
 
 
#ifdef __IEEE_BIG_ENDIAN
#ifdef __IEEE_BIG_ENDIAN
 
 
typedef union
typedef union
{
{
  double value;
  double value;
  struct
  struct
  {
  {
    __uint32_t msw;
    __uint32_t msw;
    __uint32_t lsw;
    __uint32_t lsw;
  } parts;
  } parts;
} ieee_double_shape_type;
} ieee_double_shape_type;
 
 
#endif
#endif
 
 
#ifdef __IEEE_LITTLE_ENDIAN
#ifdef __IEEE_LITTLE_ENDIAN
 
 
typedef union
typedef union
{
{
  double value;
  double value;
  struct
  struct
  {
  {
    __uint32_t lsw;
    __uint32_t lsw;
    __uint32_t msw;
    __uint32_t msw;
  } parts;
  } parts;
} ieee_double_shape_type;
} ieee_double_shape_type;
 
 
#endif
#endif
 
 
/* Get two 32 bit ints from a double.  */
/* Get two 32 bit ints from a double.  */
 
 
#define EXTRACT_WORDS(ix0,ix1,d)                                \
#define EXTRACT_WORDS(ix0,ix1,d)                                \
do {                                                            \
do {                                                            \
  ieee_double_shape_type ew_u;                                  \
  ieee_double_shape_type ew_u;                                  \
  ew_u.value = (d);                                             \
  ew_u.value = (d);                                             \
  (ix0) = ew_u.parts.msw;                                       \
  (ix0) = ew_u.parts.msw;                                       \
  (ix1) = ew_u.parts.lsw;                                       \
  (ix1) = ew_u.parts.lsw;                                       \
} while (0)
} while (0)
 
 
/* Get the more significant 32 bit int from a double.  */
/* Get the more significant 32 bit int from a double.  */
 
 
#define GET_HIGH_WORD(i,d)                                      \
#define GET_HIGH_WORD(i,d)                                      \
do {                                                            \
do {                                                            \
  ieee_double_shape_type gh_u;                                  \
  ieee_double_shape_type gh_u;                                  \
  gh_u.value = (d);                                             \
  gh_u.value = (d);                                             \
  (i) = gh_u.parts.msw;                                         \
  (i) = gh_u.parts.msw;                                         \
} while (0)
} while (0)
 
 
/* Get the less significant 32 bit int from a double.  */
/* Get the less significant 32 bit int from a double.  */
 
 
#define GET_LOW_WORD(i,d)                                       \
#define GET_LOW_WORD(i,d)                                       \
do {                                                            \
do {                                                            \
  ieee_double_shape_type gl_u;                                  \
  ieee_double_shape_type gl_u;                                  \
  gl_u.value = (d);                                             \
  gl_u.value = (d);                                             \
  (i) = gl_u.parts.lsw;                                         \
  (i) = gl_u.parts.lsw;                                         \
} while (0)
} while (0)
 
 
/* Set a double from two 32 bit ints.  */
/* Set a double from two 32 bit ints.  */
 
 
#define INSERT_WORDS(d,ix0,ix1)                                 \
#define INSERT_WORDS(d,ix0,ix1)                                 \
do {                                                            \
do {                                                            \
  ieee_double_shape_type iw_u;                                  \
  ieee_double_shape_type iw_u;                                  \
  iw_u.parts.msw = (ix0);                                       \
  iw_u.parts.msw = (ix0);                                       \
  iw_u.parts.lsw = (ix1);                                       \
  iw_u.parts.lsw = (ix1);                                       \
  (d) = iw_u.value;                                             \
  (d) = iw_u.value;                                             \
} while (0)
} while (0)
 
 
/* Set the more significant 32 bits of a double from an int.  */
/* Set the more significant 32 bits of a double from an int.  */
 
 
#define SET_HIGH_WORD(d,v)                                      \
#define SET_HIGH_WORD(d,v)                                      \
do {                                                            \
do {                                                            \
  ieee_double_shape_type sh_u;                                  \
  ieee_double_shape_type sh_u;                                  \
  sh_u.value = (d);                                             \
  sh_u.value = (d);                                             \
  sh_u.parts.msw = (v);                                         \
  sh_u.parts.msw = (v);                                         \
  (d) = sh_u.value;                                             \
  (d) = sh_u.value;                                             \
} while (0)
} while (0)
 
 
/* Set the less significant 32 bits of a double from an int.  */
/* Set the less significant 32 bits of a double from an int.  */
 
 
#define SET_LOW_WORD(d,v)                                       \
#define SET_LOW_WORD(d,v)                                       \
do {                                                            \
do {                                                            \
  ieee_double_shape_type sl_u;                                  \
  ieee_double_shape_type sl_u;                                  \
  sl_u.value = (d);                                             \
  sl_u.value = (d);                                             \
  sl_u.parts.lsw = (v);                                         \
  sl_u.parts.lsw = (v);                                         \
  (d) = sl_u.value;                                             \
  (d) = sl_u.value;                                             \
} while (0)
} while (0)
 
 
/* A union which permits us to convert between a float and a 32 bit
/* A union which permits us to convert between a float and a 32 bit
   int.  */
   int.  */
 
 
typedef union
typedef union
{
{
  float value;
  float value;
  __uint32_t word;
  __uint32_t word;
} ieee_float_shape_type;
} ieee_float_shape_type;
 
 
/* Get a 32 bit int from a float.  */
/* Get a 32 bit int from a float.  */
 
 
#define GET_FLOAT_WORD(i,d)                                     \
#define GET_FLOAT_WORD(i,d)                                     \
do {                                                            \
do {                                                            \
  ieee_float_shape_type gf_u;                                   \
  ieee_float_shape_type gf_u;                                   \
  gf_u.value = (d);                                             \
  gf_u.value = (d);                                             \
  (i) = gf_u.word;                                              \
  (i) = gf_u.word;                                              \
} while (0)
} while (0)
 
 
/* Set a float from a 32 bit int.  */
/* Set a float from a 32 bit int.  */
 
 
#define SET_FLOAT_WORD(d,i)                                     \
#define SET_FLOAT_WORD(d,i)                                     \
do {                                                            \
do {                                                            \
  ieee_float_shape_type sf_u;                                   \
  ieee_float_shape_type sf_u;                                   \
  sf_u.word = (i);                                              \
  sf_u.word = (i);                                              \
  (d) = sf_u.value;                                             \
  (d) = sf_u.value;                                             \
} while (0)
} while (0)
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.