OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [binutils-2.18.50/] [bfd/] [elf-eh-frame.c] - Diff between revs 156 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 156 Rev 816
/* .eh_frame section optimization.
/* .eh_frame section optimization.
   Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
   Written by Jakub Jelinek <jakub@redhat.com>.
   Written by Jakub Jelinek <jakub@redhat.com>.
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */
   MA 02110-1301, USA.  */
 
 
#include "sysdep.h"
#include "sysdep.h"
#include "bfd.h"
#include "bfd.h"
#include "libbfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "elf/dwarf2.h"
#include "elf/dwarf2.h"
 
 
#define EH_FRAME_HDR_SIZE 8
#define EH_FRAME_HDR_SIZE 8
 
 
struct cie
struct cie
{
{
  unsigned int length;
  unsigned int length;
  unsigned int hash;
  unsigned int hash;
  unsigned char version;
  unsigned char version;
  unsigned char local_personality;
  unsigned char local_personality;
  char augmentation[20];
  char augmentation[20];
  bfd_vma code_align;
  bfd_vma code_align;
  bfd_signed_vma data_align;
  bfd_signed_vma data_align;
  bfd_vma ra_column;
  bfd_vma ra_column;
  bfd_vma augmentation_size;
  bfd_vma augmentation_size;
  union {
  union {
    struct elf_link_hash_entry *h;
    struct elf_link_hash_entry *h;
    bfd_vma val;
    bfd_vma val;
    unsigned int reloc_index;
    unsigned int reloc_index;
  } personality;
  } personality;
  asection *output_sec;
  asection *output_sec;
  struct eh_cie_fde *cie_inf;
  struct eh_cie_fde *cie_inf;
  unsigned char per_encoding;
  unsigned char per_encoding;
  unsigned char lsda_encoding;
  unsigned char lsda_encoding;
  unsigned char fde_encoding;
  unsigned char fde_encoding;
  unsigned char initial_insn_length;
  unsigned char initial_insn_length;
  unsigned char can_make_lsda_relative;
  unsigned char can_make_lsda_relative;
  unsigned char initial_instructions[50];
  unsigned char initial_instructions[50];
};
};
 
 
 
 
 
 
/* If *ITER hasn't reached END yet, read the next byte into *RESULT and
/* If *ITER hasn't reached END yet, read the next byte into *RESULT and
   move onto the next byte.  Return true on success.  */
   move onto the next byte.  Return true on success.  */
 
 
static inline bfd_boolean
static inline bfd_boolean
read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
read_byte (bfd_byte **iter, bfd_byte *end, unsigned char *result)
{
{
  if (*iter >= end)
  if (*iter >= end)
    return FALSE;
    return FALSE;
  *result = *((*iter)++);
  *result = *((*iter)++);
  return TRUE;
  return TRUE;
}
}
 
 
/* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
/* Move *ITER over LENGTH bytes, or up to END, whichever is closer.
   Return true it was possible to move LENGTH bytes.  */
   Return true it was possible to move LENGTH bytes.  */
 
 
static inline bfd_boolean
static inline bfd_boolean
skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
skip_bytes (bfd_byte **iter, bfd_byte *end, bfd_size_type length)
{
{
  if ((bfd_size_type) (end - *iter) < length)
  if ((bfd_size_type) (end - *iter) < length)
    {
    {
      *iter = end;
      *iter = end;
      return FALSE;
      return FALSE;
    }
    }
  *iter += length;
  *iter += length;
  return TRUE;
  return TRUE;
}
}
 
 
/* Move *ITER over an leb128, stopping at END.  Return true if the end
/* Move *ITER over an leb128, stopping at END.  Return true if the end
   of the leb128 was found.  */
   of the leb128 was found.  */
 
 
static bfd_boolean
static bfd_boolean
skip_leb128 (bfd_byte **iter, bfd_byte *end)
skip_leb128 (bfd_byte **iter, bfd_byte *end)
{
{
  unsigned char byte;
  unsigned char byte;
  do
  do
    if (!read_byte (iter, end, &byte))
    if (!read_byte (iter, end, &byte))
      return FALSE;
      return FALSE;
  while (byte & 0x80);
  while (byte & 0x80);
  return TRUE;
  return TRUE;
}
}
 
 
/* Like skip_leb128, but treat the leb128 as an unsigned value and
/* Like skip_leb128, but treat the leb128 as an unsigned value and
   store it in *VALUE.  */
   store it in *VALUE.  */
 
 
static bfd_boolean
static bfd_boolean
read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
read_uleb128 (bfd_byte **iter, bfd_byte *end, bfd_vma *value)
{
{
  bfd_byte *start, *p;
  bfd_byte *start, *p;
 
 
  start = *iter;
  start = *iter;
  if (!skip_leb128 (iter, end))
  if (!skip_leb128 (iter, end))
    return FALSE;
    return FALSE;
 
 
  p = *iter;
  p = *iter;
  *value = *--p;
  *value = *--p;
  while (p > start)
  while (p > start)
    *value = (*value << 7) | (*--p & 0x7f);
    *value = (*value << 7) | (*--p & 0x7f);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Like read_uleb128, but for signed values.  */
/* Like read_uleb128, but for signed values.  */
 
 
static bfd_boolean
static bfd_boolean
read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
read_sleb128 (bfd_byte **iter, bfd_byte *end, bfd_signed_vma *value)
{
{
  bfd_byte *start, *p;
  bfd_byte *start, *p;
 
 
  start = *iter;
  start = *iter;
  if (!skip_leb128 (iter, end))
  if (!skip_leb128 (iter, end))
    return FALSE;
    return FALSE;
 
 
  p = *iter;
  p = *iter;
  *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
  *value = ((*--p & 0x7f) ^ 0x40) - 0x40;
  while (p > start)
  while (p > start)
    *value = (*value << 7) | (*--p & 0x7f);
    *value = (*value << 7) | (*--p & 0x7f);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Return 0 if either encoding is variable width, or not yet known to bfd.  */
/* Return 0 if either encoding is variable width, or not yet known to bfd.  */
 
 
static
static
int get_DW_EH_PE_width (int encoding, int ptr_size)
int get_DW_EH_PE_width (int encoding, int ptr_size)
{
{
  /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
  /* DW_EH_PE_ values of 0x60 and 0x70 weren't defined at the time .eh_frame
     was added to bfd.  */
     was added to bfd.  */
  if ((encoding & 0x60) == 0x60)
  if ((encoding & 0x60) == 0x60)
    return 0;
    return 0;
 
 
  switch (encoding & 7)
  switch (encoding & 7)
    {
    {
    case DW_EH_PE_udata2: return 2;
    case DW_EH_PE_udata2: return 2;
    case DW_EH_PE_udata4: return 4;
    case DW_EH_PE_udata4: return 4;
    case DW_EH_PE_udata8: return 8;
    case DW_EH_PE_udata8: return 8;
    case DW_EH_PE_absptr: return ptr_size;
    case DW_EH_PE_absptr: return ptr_size;
    default:
    default:
      break;
      break;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
#define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
#define get_DW_EH_PE_signed(encoding) (((encoding) & DW_EH_PE_signed) != 0)
 
 
/* Read a width sized value from memory.  */
/* Read a width sized value from memory.  */
 
 
static bfd_vma
static bfd_vma
read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
read_value (bfd *abfd, bfd_byte *buf, int width, int is_signed)
{
{
  bfd_vma value;
  bfd_vma value;
 
 
  switch (width)
  switch (width)
    {
    {
    case 2:
    case 2:
      if (is_signed)
      if (is_signed)
        value = bfd_get_signed_16 (abfd, buf);
        value = bfd_get_signed_16 (abfd, buf);
      else
      else
        value = bfd_get_16 (abfd, buf);
        value = bfd_get_16 (abfd, buf);
      break;
      break;
    case 4:
    case 4:
      if (is_signed)
      if (is_signed)
        value = bfd_get_signed_32 (abfd, buf);
        value = bfd_get_signed_32 (abfd, buf);
      else
      else
        value = bfd_get_32 (abfd, buf);
        value = bfd_get_32 (abfd, buf);
      break;
      break;
    case 8:
    case 8:
      if (is_signed)
      if (is_signed)
        value = bfd_get_signed_64 (abfd, buf);
        value = bfd_get_signed_64 (abfd, buf);
      else
      else
        value = bfd_get_64 (abfd, buf);
        value = bfd_get_64 (abfd, buf);
      break;
      break;
    default:
    default:
      BFD_FAIL ();
      BFD_FAIL ();
      return 0;
      return 0;
    }
    }
 
 
  return value;
  return value;
}
}
 
 
/* Store a width sized value to memory.  */
/* Store a width sized value to memory.  */
 
 
static void
static void
write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
write_value (bfd *abfd, bfd_byte *buf, bfd_vma value, int width)
{
{
  switch (width)
  switch (width)
    {
    {
    case 2: bfd_put_16 (abfd, value, buf); break;
    case 2: bfd_put_16 (abfd, value, buf); break;
    case 4: bfd_put_32 (abfd, value, buf); break;
    case 4: bfd_put_32 (abfd, value, buf); break;
    case 8: bfd_put_64 (abfd, value, buf); break;
    case 8: bfd_put_64 (abfd, value, buf); break;
    default: BFD_FAIL ();
    default: BFD_FAIL ();
    }
    }
}
}
 
 
/* Return one if C1 and C2 CIEs can be merged.  */
/* Return one if C1 and C2 CIEs can be merged.  */
 
 
static int
static int
cie_eq (const void *e1, const void *e2)
cie_eq (const void *e1, const void *e2)
{
{
  const struct cie *c1 = e1;
  const struct cie *c1 = e1;
  const struct cie *c2 = e2;
  const struct cie *c2 = e2;
 
 
  if (c1->hash == c2->hash
  if (c1->hash == c2->hash
      && c1->length == c2->length
      && c1->length == c2->length
      && c1->version == c2->version
      && c1->version == c2->version
      && c1->local_personality == c2->local_personality
      && c1->local_personality == c2->local_personality
      && strcmp (c1->augmentation, c2->augmentation) == 0
      && strcmp (c1->augmentation, c2->augmentation) == 0
      && strcmp (c1->augmentation, "eh") != 0
      && strcmp (c1->augmentation, "eh") != 0
      && c1->code_align == c2->code_align
      && c1->code_align == c2->code_align
      && c1->data_align == c2->data_align
      && c1->data_align == c2->data_align
      && c1->ra_column == c2->ra_column
      && c1->ra_column == c2->ra_column
      && c1->augmentation_size == c2->augmentation_size
      && c1->augmentation_size == c2->augmentation_size
      && memcmp (&c1->personality, &c2->personality,
      && memcmp (&c1->personality, &c2->personality,
                 sizeof (c1->personality)) == 0
                 sizeof (c1->personality)) == 0
      && c1->output_sec == c2->output_sec
      && c1->output_sec == c2->output_sec
      && c1->per_encoding == c2->per_encoding
      && c1->per_encoding == c2->per_encoding
      && c1->lsda_encoding == c2->lsda_encoding
      && c1->lsda_encoding == c2->lsda_encoding
      && c1->fde_encoding == c2->fde_encoding
      && c1->fde_encoding == c2->fde_encoding
      && c1->initial_insn_length == c2->initial_insn_length
      && c1->initial_insn_length == c2->initial_insn_length
      && memcmp (c1->initial_instructions,
      && memcmp (c1->initial_instructions,
                 c2->initial_instructions,
                 c2->initial_instructions,
                 c1->initial_insn_length) == 0)
                 c1->initial_insn_length) == 0)
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}
 
 
static hashval_t
static hashval_t
cie_hash (const void *e)
cie_hash (const void *e)
{
{
  const struct cie *c = e;
  const struct cie *c = e;
  return c->hash;
  return c->hash;
}
}
 
 
static hashval_t
static hashval_t
cie_compute_hash (struct cie *c)
cie_compute_hash (struct cie *c)
{
{
  hashval_t h = 0;
  hashval_t h = 0;
  h = iterative_hash_object (c->length, h);
  h = iterative_hash_object (c->length, h);
  h = iterative_hash_object (c->version, h);
  h = iterative_hash_object (c->version, h);
  h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
  h = iterative_hash (c->augmentation, strlen (c->augmentation) + 1, h);
  h = iterative_hash_object (c->code_align, h);
  h = iterative_hash_object (c->code_align, h);
  h = iterative_hash_object (c->data_align, h);
  h = iterative_hash_object (c->data_align, h);
  h = iterative_hash_object (c->ra_column, h);
  h = iterative_hash_object (c->ra_column, h);
  h = iterative_hash_object (c->augmentation_size, h);
  h = iterative_hash_object (c->augmentation_size, h);
  h = iterative_hash_object (c->personality, h);
  h = iterative_hash_object (c->personality, h);
  h = iterative_hash_object (c->output_sec, h);
  h = iterative_hash_object (c->output_sec, h);
  h = iterative_hash_object (c->per_encoding, h);
  h = iterative_hash_object (c->per_encoding, h);
  h = iterative_hash_object (c->lsda_encoding, h);
  h = iterative_hash_object (c->lsda_encoding, h);
  h = iterative_hash_object (c->fde_encoding, h);
  h = iterative_hash_object (c->fde_encoding, h);
  h = iterative_hash_object (c->initial_insn_length, h);
  h = iterative_hash_object (c->initial_insn_length, h);
  h = iterative_hash (c->initial_instructions, c->initial_insn_length, h);
  h = iterative_hash (c->initial_instructions, c->initial_insn_length, h);
  c->hash = h;
  c->hash = h;
  return h;
  return h;
}
}
 
 
/* Return the number of extra bytes that we'll be inserting into
/* Return the number of extra bytes that we'll be inserting into
   ENTRY's augmentation string.  */
   ENTRY's augmentation string.  */
 
 
static INLINE unsigned int
static INLINE unsigned int
extra_augmentation_string_bytes (struct eh_cie_fde *entry)
extra_augmentation_string_bytes (struct eh_cie_fde *entry)
{
{
  unsigned int size = 0;
  unsigned int size = 0;
  if (entry->cie)
  if (entry->cie)
    {
    {
      if (entry->add_augmentation_size)
      if (entry->add_augmentation_size)
        size++;
        size++;
      if (entry->u.cie.add_fde_encoding)
      if (entry->u.cie.add_fde_encoding)
        size++;
        size++;
    }
    }
  return size;
  return size;
}
}
 
 
/* Likewise ENTRY's augmentation data.  */
/* Likewise ENTRY's augmentation data.  */
 
 
static INLINE unsigned int
static INLINE unsigned int
extra_augmentation_data_bytes (struct eh_cie_fde *entry)
extra_augmentation_data_bytes (struct eh_cie_fde *entry)
{
{
  unsigned int size = 0;
  unsigned int size = 0;
  if (entry->add_augmentation_size)
  if (entry->add_augmentation_size)
    size++;
    size++;
  if (entry->cie && entry->u.cie.add_fde_encoding)
  if (entry->cie && entry->u.cie.add_fde_encoding)
    size++;
    size++;
  return size;
  return size;
}
}
 
 
/* Return the size that ENTRY will have in the output.  ALIGNMENT is the
/* Return the size that ENTRY will have in the output.  ALIGNMENT is the
   required alignment of ENTRY in bytes.  */
   required alignment of ENTRY in bytes.  */
 
 
static unsigned int
static unsigned int
size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
size_of_output_cie_fde (struct eh_cie_fde *entry, unsigned int alignment)
{
{
  if (entry->removed)
  if (entry->removed)
    return 0;
    return 0;
  if (entry->size == 4)
  if (entry->size == 4)
    return 4;
    return 4;
  return (entry->size
  return (entry->size
          + extra_augmentation_string_bytes (entry)
          + extra_augmentation_string_bytes (entry)
          + extra_augmentation_data_bytes (entry)
          + extra_augmentation_data_bytes (entry)
          + alignment - 1) & -alignment;
          + alignment - 1) & -alignment;
}
}
 
 
/* Assume that the bytes between *ITER and END are CFA instructions.
/* Assume that the bytes between *ITER and END are CFA instructions.
   Try to move *ITER past the first instruction and return true on
   Try to move *ITER past the first instruction and return true on
   success.  ENCODED_PTR_WIDTH gives the width of pointer entries.  */
   success.  ENCODED_PTR_WIDTH gives the width of pointer entries.  */
 
 
static bfd_boolean
static bfd_boolean
skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
skip_cfa_op (bfd_byte **iter, bfd_byte *end, unsigned int encoded_ptr_width)
{
{
  bfd_byte op;
  bfd_byte op;
  bfd_vma length;
  bfd_vma length;
 
 
  if (!read_byte (iter, end, &op))
  if (!read_byte (iter, end, &op))
    return FALSE;
    return FALSE;
 
 
  switch (op & 0xc0 ? op & 0xc0 : op)
  switch (op & 0xc0 ? op & 0xc0 : op)
    {
    {
    case DW_CFA_nop:
    case DW_CFA_nop:
    case DW_CFA_advance_loc:
    case DW_CFA_advance_loc:
    case DW_CFA_restore:
    case DW_CFA_restore:
    case DW_CFA_remember_state:
    case DW_CFA_remember_state:
    case DW_CFA_restore_state:
    case DW_CFA_restore_state:
    case DW_CFA_GNU_window_save:
    case DW_CFA_GNU_window_save:
      /* No arguments.  */
      /* No arguments.  */
      return TRUE;
      return TRUE;
 
 
    case DW_CFA_offset:
    case DW_CFA_offset:
    case DW_CFA_restore_extended:
    case DW_CFA_restore_extended:
    case DW_CFA_undefined:
    case DW_CFA_undefined:
    case DW_CFA_same_value:
    case DW_CFA_same_value:
    case DW_CFA_def_cfa_register:
    case DW_CFA_def_cfa_register:
    case DW_CFA_def_cfa_offset:
    case DW_CFA_def_cfa_offset:
    case DW_CFA_def_cfa_offset_sf:
    case DW_CFA_def_cfa_offset_sf:
    case DW_CFA_GNU_args_size:
    case DW_CFA_GNU_args_size:
      /* One leb128 argument.  */
      /* One leb128 argument.  */
      return skip_leb128 (iter, end);
      return skip_leb128 (iter, end);
 
 
    case DW_CFA_val_offset:
    case DW_CFA_val_offset:
    case DW_CFA_val_offset_sf:
    case DW_CFA_val_offset_sf:
    case DW_CFA_offset_extended:
    case DW_CFA_offset_extended:
    case DW_CFA_register:
    case DW_CFA_register:
    case DW_CFA_def_cfa:
    case DW_CFA_def_cfa:
    case DW_CFA_offset_extended_sf:
    case DW_CFA_offset_extended_sf:
    case DW_CFA_GNU_negative_offset_extended:
    case DW_CFA_GNU_negative_offset_extended:
    case DW_CFA_def_cfa_sf:
    case DW_CFA_def_cfa_sf:
      /* Two leb128 arguments.  */
      /* Two leb128 arguments.  */
      return (skip_leb128 (iter, end)
      return (skip_leb128 (iter, end)
              && skip_leb128 (iter, end));
              && skip_leb128 (iter, end));
 
 
    case DW_CFA_def_cfa_expression:
    case DW_CFA_def_cfa_expression:
      /* A variable-length argument.  */
      /* A variable-length argument.  */
      return (read_uleb128 (iter, end, &length)
      return (read_uleb128 (iter, end, &length)
              && skip_bytes (iter, end, length));
              && skip_bytes (iter, end, length));
 
 
    case DW_CFA_expression:
    case DW_CFA_expression:
    case DW_CFA_val_expression:
    case DW_CFA_val_expression:
      /* A leb128 followed by a variable-length argument.  */
      /* A leb128 followed by a variable-length argument.  */
      return (skip_leb128 (iter, end)
      return (skip_leb128 (iter, end)
              && read_uleb128 (iter, end, &length)
              && read_uleb128 (iter, end, &length)
              && skip_bytes (iter, end, length));
              && skip_bytes (iter, end, length));
 
 
    case DW_CFA_set_loc:
    case DW_CFA_set_loc:
      return skip_bytes (iter, end, encoded_ptr_width);
      return skip_bytes (iter, end, encoded_ptr_width);
 
 
    case DW_CFA_advance_loc1:
    case DW_CFA_advance_loc1:
      return skip_bytes (iter, end, 1);
      return skip_bytes (iter, end, 1);
 
 
    case DW_CFA_advance_loc2:
    case DW_CFA_advance_loc2:
      return skip_bytes (iter, end, 2);
      return skip_bytes (iter, end, 2);
 
 
    case DW_CFA_advance_loc4:
    case DW_CFA_advance_loc4:
      return skip_bytes (iter, end, 4);
      return skip_bytes (iter, end, 4);
 
 
    case DW_CFA_MIPS_advance_loc8:
    case DW_CFA_MIPS_advance_loc8:
      return skip_bytes (iter, end, 8);
      return skip_bytes (iter, end, 8);
 
 
    default:
    default:
      return FALSE;
      return FALSE;
    }
    }
}
}
 
 
/* Try to interpret the bytes between BUF and END as CFA instructions.
/* Try to interpret the bytes between BUF and END as CFA instructions.
   If every byte makes sense, return a pointer to the first DW_CFA_nop
   If every byte makes sense, return a pointer to the first DW_CFA_nop
   padding byte, or END if there is no padding.  Return null otherwise.
   padding byte, or END if there is no padding.  Return null otherwise.
   ENCODED_PTR_WIDTH is as for skip_cfa_op.  */
   ENCODED_PTR_WIDTH is as for skip_cfa_op.  */
 
 
static bfd_byte *
static bfd_byte *
skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
skip_non_nops (bfd_byte *buf, bfd_byte *end, unsigned int encoded_ptr_width,
               unsigned int *set_loc_count)
               unsigned int *set_loc_count)
{
{
  bfd_byte *last;
  bfd_byte *last;
 
 
  last = buf;
  last = buf;
  while (buf < end)
  while (buf < end)
    if (*buf == DW_CFA_nop)
    if (*buf == DW_CFA_nop)
      buf++;
      buf++;
    else
    else
      {
      {
        if (*buf == DW_CFA_set_loc)
        if (*buf == DW_CFA_set_loc)
          ++*set_loc_count;
          ++*set_loc_count;
        if (!skip_cfa_op (&buf, end, encoded_ptr_width))
        if (!skip_cfa_op (&buf, end, encoded_ptr_width))
          return 0;
          return 0;
        last = buf;
        last = buf;
      }
      }
  return last;
  return last;
}
}
 
 
/* Called before calling _bfd_elf_parse_eh_frame on every input bfd's
/* Called before calling _bfd_elf_parse_eh_frame on every input bfd's
   .eh_frame section.  */
   .eh_frame section.  */
 
 
void
void
_bfd_elf_begin_eh_frame_parsing (struct bfd_link_info *info)
_bfd_elf_begin_eh_frame_parsing (struct bfd_link_info *info)
{
{
  struct eh_frame_hdr_info *hdr_info;
  struct eh_frame_hdr_info *hdr_info;
 
 
  hdr_info = &elf_hash_table (info)->eh_info;
  hdr_info = &elf_hash_table (info)->eh_info;
  hdr_info->merge_cies = !info->relocatable;
  hdr_info->merge_cies = !info->relocatable;
}
}
 
 
/* Try to parse .eh_frame section SEC, which belongs to ABFD.  Store the
/* Try to parse .eh_frame section SEC, which belongs to ABFD.  Store the
   information in the section's sec_info field on success.  COOKIE
   information in the section's sec_info field on success.  COOKIE
   describes the relocations in SEC.  */
   describes the relocations in SEC.  */
 
 
void
void
_bfd_elf_parse_eh_frame (bfd *abfd, struct bfd_link_info *info,
_bfd_elf_parse_eh_frame (bfd *abfd, struct bfd_link_info *info,
                         asection *sec, struct elf_reloc_cookie *cookie)
                         asection *sec, struct elf_reloc_cookie *cookie)
{
{
#define REQUIRE(COND)                                   \
#define REQUIRE(COND)                                   \
  do                                                    \
  do                                                    \
    if (!(COND))                                        \
    if (!(COND))                                        \
      goto free_no_table;                               \
      goto free_no_table;                               \
  while (0)
  while (0)
 
 
  bfd_byte *ehbuf = NULL, *buf, *end;
  bfd_byte *ehbuf = NULL, *buf, *end;
  bfd_byte *last_fde;
  bfd_byte *last_fde;
  struct eh_cie_fde *this_inf;
  struct eh_cie_fde *this_inf;
  unsigned int hdr_length, hdr_id;
  unsigned int hdr_length, hdr_id;
  unsigned int cie_count;
  unsigned int cie_count;
  struct cie *cie, *local_cies = NULL;
  struct cie *cie, *local_cies = NULL;
  struct elf_link_hash_table *htab;
  struct elf_link_hash_table *htab;
  struct eh_frame_hdr_info *hdr_info;
  struct eh_frame_hdr_info *hdr_info;
  struct eh_frame_sec_info *sec_info = NULL;
  struct eh_frame_sec_info *sec_info = NULL;
  unsigned int ptr_size;
  unsigned int ptr_size;
  unsigned int num_cies;
  unsigned int num_cies;
  unsigned int num_entries;
  unsigned int num_entries;
  elf_gc_mark_hook_fn gc_mark_hook;
  elf_gc_mark_hook_fn gc_mark_hook;
 
 
  htab = elf_hash_table (info);
  htab = elf_hash_table (info);
  hdr_info = &htab->eh_info;
  hdr_info = &htab->eh_info;
  if (hdr_info->parsed_eh_frames)
  if (hdr_info->parsed_eh_frames)
    return;
    return;
 
 
  if (sec->size == 0)
  if (sec->size == 0)
    {
    {
      /* This file does not contain .eh_frame information.  */
      /* This file does not contain .eh_frame information.  */
      return;
      return;
    }
    }
 
 
  if (bfd_is_abs_section (sec->output_section))
  if (bfd_is_abs_section (sec->output_section))
    {
    {
      /* At least one of the sections is being discarded from the
      /* At least one of the sections is being discarded from the
         link, so we should just ignore them.  */
         link, so we should just ignore them.  */
      return;
      return;
    }
    }
 
 
  /* Read the frame unwind information from abfd.  */
  /* Read the frame unwind information from abfd.  */
 
 
  REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
  REQUIRE (bfd_malloc_and_get_section (abfd, sec, &ehbuf));
 
 
  if (sec->size >= 4
  if (sec->size >= 4
      && bfd_get_32 (abfd, ehbuf) == 0
      && bfd_get_32 (abfd, ehbuf) == 0
      && cookie->rel == cookie->relend)
      && cookie->rel == cookie->relend)
    {
    {
      /* Empty .eh_frame section.  */
      /* Empty .eh_frame section.  */
      free (ehbuf);
      free (ehbuf);
      return;
      return;
    }
    }
 
 
  /* If .eh_frame section size doesn't fit into int, we cannot handle
  /* If .eh_frame section size doesn't fit into int, we cannot handle
     it (it would need to use 64-bit .eh_frame format anyway).  */
     it (it would need to use 64-bit .eh_frame format anyway).  */
  REQUIRE (sec->size == (unsigned int) sec->size);
  REQUIRE (sec->size == (unsigned int) sec->size);
 
 
  ptr_size = (get_elf_backend_data (abfd)
  ptr_size = (get_elf_backend_data (abfd)
              ->elf_backend_eh_frame_address_size (abfd, sec));
              ->elf_backend_eh_frame_address_size (abfd, sec));
  REQUIRE (ptr_size != 0);
  REQUIRE (ptr_size != 0);
 
 
  /* Go through the section contents and work out how many FDEs and
  /* Go through the section contents and work out how many FDEs and
     CIEs there are.  */
     CIEs there are.  */
  buf = ehbuf;
  buf = ehbuf;
  end = ehbuf + sec->size;
  end = ehbuf + sec->size;
  num_cies = 0;
  num_cies = 0;
  num_entries = 0;
  num_entries = 0;
  while (buf != end)
  while (buf != end)
    {
    {
      num_entries++;
      num_entries++;
 
 
      /* Read the length of the entry.  */
      /* Read the length of the entry.  */
      REQUIRE (skip_bytes (&buf, end, 4));
      REQUIRE (skip_bytes (&buf, end, 4));
      hdr_length = bfd_get_32 (abfd, buf - 4);
      hdr_length = bfd_get_32 (abfd, buf - 4);
 
 
      /* 64-bit .eh_frame is not supported.  */
      /* 64-bit .eh_frame is not supported.  */
      REQUIRE (hdr_length != 0xffffffff);
      REQUIRE (hdr_length != 0xffffffff);
      if (hdr_length == 0)
      if (hdr_length == 0)
        break;
        break;
 
 
      REQUIRE (skip_bytes (&buf, end, 4));
      REQUIRE (skip_bytes (&buf, end, 4));
      hdr_id = bfd_get_32 (abfd, buf - 4);
      hdr_id = bfd_get_32 (abfd, buf - 4);
      if (hdr_id == 0)
      if (hdr_id == 0)
        num_cies++;
        num_cies++;
 
 
      REQUIRE (skip_bytes (&buf, end, hdr_length - 4));
      REQUIRE (skip_bytes (&buf, end, hdr_length - 4));
    }
    }
 
 
  sec_info = bfd_zmalloc (sizeof (struct eh_frame_sec_info)
  sec_info = bfd_zmalloc (sizeof (struct eh_frame_sec_info)
                          + (num_entries - 1) * sizeof (struct eh_cie_fde));
                          + (num_entries - 1) * sizeof (struct eh_cie_fde));
  REQUIRE (sec_info);
  REQUIRE (sec_info);
 
 
  /* We need to have a "struct cie" for each CIE in this section.  */
  /* We need to have a "struct cie" for each CIE in this section.  */
  local_cies = bfd_zmalloc (num_cies * sizeof (*local_cies));
  local_cies = bfd_zmalloc (num_cies * sizeof (*local_cies));
  REQUIRE (local_cies);
  REQUIRE (local_cies);
 
 
#define ENSURE_NO_RELOCS(buf)                           \
#define ENSURE_NO_RELOCS(buf)                           \
  REQUIRE (!(cookie->rel < cookie->relend               \
  REQUIRE (!(cookie->rel < cookie->relend               \
             && (cookie->rel->r_offset                  \
             && (cookie->rel->r_offset                  \
                 < (bfd_size_type) ((buf) - ehbuf))     \
                 < (bfd_size_type) ((buf) - ehbuf))     \
             && cookie->rel->r_info != 0))
             && cookie->rel->r_info != 0))
 
 
#define SKIP_RELOCS(buf)                                \
#define SKIP_RELOCS(buf)                                \
  while (cookie->rel < cookie->relend                   \
  while (cookie->rel < cookie->relend                   \
         && (cookie->rel->r_offset                      \
         && (cookie->rel->r_offset                      \
             < (bfd_size_type) ((buf) - ehbuf)))        \
             < (bfd_size_type) ((buf) - ehbuf)))        \
    cookie->rel++
    cookie->rel++
 
 
#define GET_RELOC(buf)                                  \
#define GET_RELOC(buf)                                  \
  ((cookie->rel < cookie->relend                        \
  ((cookie->rel < cookie->relend                        \
    && (cookie->rel->r_offset                           \
    && (cookie->rel->r_offset                           \
        == (bfd_size_type) ((buf) - ehbuf)))            \
        == (bfd_size_type) ((buf) - ehbuf)))            \
   ? cookie->rel : NULL)
   ? cookie->rel : NULL)
 
 
  buf = ehbuf;
  buf = ehbuf;
  cie_count = 0;
  cie_count = 0;
  gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
  gc_mark_hook = get_elf_backend_data (abfd)->gc_mark_hook;
  while ((bfd_size_type) (buf - ehbuf) != sec->size)
  while ((bfd_size_type) (buf - ehbuf) != sec->size)
    {
    {
      char *aug;
      char *aug;
      bfd_byte *start, *insns, *insns_end;
      bfd_byte *start, *insns, *insns_end;
      bfd_size_type length;
      bfd_size_type length;
      unsigned int set_loc_count;
      unsigned int set_loc_count;
 
 
      this_inf = sec_info->entry + sec_info->count;
      this_inf = sec_info->entry + sec_info->count;
      last_fde = buf;
      last_fde = buf;
 
 
      /* Read the length of the entry.  */
      /* Read the length of the entry.  */
      REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
      REQUIRE (skip_bytes (&buf, ehbuf + sec->size, 4));
      hdr_length = bfd_get_32 (abfd, buf - 4);
      hdr_length = bfd_get_32 (abfd, buf - 4);
 
 
      /* The CIE/FDE must be fully contained in this input section.  */
      /* The CIE/FDE must be fully contained in this input section.  */
      REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
      REQUIRE ((bfd_size_type) (buf - ehbuf) + hdr_length <= sec->size);
      end = buf + hdr_length;
      end = buf + hdr_length;
 
 
      this_inf->offset = last_fde - ehbuf;
      this_inf->offset = last_fde - ehbuf;
      this_inf->size = 4 + hdr_length;
      this_inf->size = 4 + hdr_length;
      this_inf->reloc_index = cookie->rel - cookie->rels;
      this_inf->reloc_index = cookie->rel - cookie->rels;
 
 
      if (hdr_length == 0)
      if (hdr_length == 0)
        {
        {
          /* A zero-length CIE should only be found at the end of
          /* A zero-length CIE should only be found at the end of
             the section.  */
             the section.  */
          REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
          REQUIRE ((bfd_size_type) (buf - ehbuf) == sec->size);
          ENSURE_NO_RELOCS (buf);
          ENSURE_NO_RELOCS (buf);
          sec_info->count++;
          sec_info->count++;
          break;
          break;
        }
        }
 
 
      REQUIRE (skip_bytes (&buf, end, 4));
      REQUIRE (skip_bytes (&buf, end, 4));
      hdr_id = bfd_get_32 (abfd, buf - 4);
      hdr_id = bfd_get_32 (abfd, buf - 4);
 
 
      if (hdr_id == 0)
      if (hdr_id == 0)
        {
        {
          unsigned int initial_insn_length;
          unsigned int initial_insn_length;
 
 
          /* CIE  */
          /* CIE  */
          this_inf->cie = 1;
          this_inf->cie = 1;
 
 
          /* Point CIE to one of the section-local cie structures.  */
          /* Point CIE to one of the section-local cie structures.  */
          cie = local_cies + cie_count++;
          cie = local_cies + cie_count++;
 
 
          cie->cie_inf = this_inf;
          cie->cie_inf = this_inf;
          cie->length = hdr_length;
          cie->length = hdr_length;
          cie->output_sec = sec->output_section;
          cie->output_sec = sec->output_section;
          start = buf;
          start = buf;
          REQUIRE (read_byte (&buf, end, &cie->version));
          REQUIRE (read_byte (&buf, end, &cie->version));
 
 
          /* Cannot handle unknown versions.  */
          /* Cannot handle unknown versions.  */
          REQUIRE (cie->version == 1 || cie->version == 3);
          REQUIRE (cie->version == 1 || cie->version == 3);
          REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
          REQUIRE (strlen ((char *) buf) < sizeof (cie->augmentation));
 
 
          strcpy (cie->augmentation, (char *) buf);
          strcpy (cie->augmentation, (char *) buf);
          buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
          buf = (bfd_byte *) strchr ((char *) buf, '\0') + 1;
          ENSURE_NO_RELOCS (buf);
          ENSURE_NO_RELOCS (buf);
          if (buf[0] == 'e' && buf[1] == 'h')
          if (buf[0] == 'e' && buf[1] == 'h')
            {
            {
              /* GCC < 3.0 .eh_frame CIE */
              /* GCC < 3.0 .eh_frame CIE */
              /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
              /* We cannot merge "eh" CIEs because __EXCEPTION_TABLE__
                 is private to each CIE, so we don't need it for anything.
                 is private to each CIE, so we don't need it for anything.
                 Just skip it.  */
                 Just skip it.  */
              REQUIRE (skip_bytes (&buf, end, ptr_size));
              REQUIRE (skip_bytes (&buf, end, ptr_size));
              SKIP_RELOCS (buf);
              SKIP_RELOCS (buf);
            }
            }
          REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
          REQUIRE (read_uleb128 (&buf, end, &cie->code_align));
          REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
          REQUIRE (read_sleb128 (&buf, end, &cie->data_align));
          if (cie->version == 1)
          if (cie->version == 1)
            {
            {
              REQUIRE (buf < end);
              REQUIRE (buf < end);
              cie->ra_column = *buf++;
              cie->ra_column = *buf++;
            }
            }
          else
          else
            REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
            REQUIRE (read_uleb128 (&buf, end, &cie->ra_column));
          ENSURE_NO_RELOCS (buf);
          ENSURE_NO_RELOCS (buf);
          cie->lsda_encoding = DW_EH_PE_omit;
          cie->lsda_encoding = DW_EH_PE_omit;
          cie->fde_encoding = DW_EH_PE_omit;
          cie->fde_encoding = DW_EH_PE_omit;
          cie->per_encoding = DW_EH_PE_omit;
          cie->per_encoding = DW_EH_PE_omit;
          aug = cie->augmentation;
          aug = cie->augmentation;
          if (aug[0] != 'e' || aug[1] != 'h')
          if (aug[0] != 'e' || aug[1] != 'h')
            {
            {
              if (*aug == 'z')
              if (*aug == 'z')
                {
                {
                  aug++;
                  aug++;
                  REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
                  REQUIRE (read_uleb128 (&buf, end, &cie->augmentation_size));
                  ENSURE_NO_RELOCS (buf);
                  ENSURE_NO_RELOCS (buf);
                }
                }
 
 
              while (*aug != '\0')
              while (*aug != '\0')
                switch (*aug++)
                switch (*aug++)
                  {
                  {
                  case 'L':
                  case 'L':
                    REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
                    REQUIRE (read_byte (&buf, end, &cie->lsda_encoding));
                    ENSURE_NO_RELOCS (buf);
                    ENSURE_NO_RELOCS (buf);
                    REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
                    REQUIRE (get_DW_EH_PE_width (cie->lsda_encoding, ptr_size));
                    break;
                    break;
                  case 'R':
                  case 'R':
                    REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
                    REQUIRE (read_byte (&buf, end, &cie->fde_encoding));
                    ENSURE_NO_RELOCS (buf);
                    ENSURE_NO_RELOCS (buf);
                    REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
                    REQUIRE (get_DW_EH_PE_width (cie->fde_encoding, ptr_size));
                    break;
                    break;
                  case 'S':
                  case 'S':
                    break;
                    break;
                  case 'P':
                  case 'P':
                    {
                    {
                      int per_width;
                      int per_width;
 
 
                      REQUIRE (read_byte (&buf, end, &cie->per_encoding));
                      REQUIRE (read_byte (&buf, end, &cie->per_encoding));
                      per_width = get_DW_EH_PE_width (cie->per_encoding,
                      per_width = get_DW_EH_PE_width (cie->per_encoding,
                                                      ptr_size);
                                                      ptr_size);
                      REQUIRE (per_width);
                      REQUIRE (per_width);
                      if ((cie->per_encoding & 0xf0) == DW_EH_PE_aligned)
                      if ((cie->per_encoding & 0xf0) == DW_EH_PE_aligned)
                        {
                        {
                          length = -(buf - ehbuf) & (per_width - 1);
                          length = -(buf - ehbuf) & (per_width - 1);
                          REQUIRE (skip_bytes (&buf, end, length));
                          REQUIRE (skip_bytes (&buf, end, length));
                        }
                        }
                      ENSURE_NO_RELOCS (buf);
                      ENSURE_NO_RELOCS (buf);
                      /* Ensure we have a reloc here.  */
                      /* Ensure we have a reloc here.  */
                      REQUIRE (GET_RELOC (buf));
                      REQUIRE (GET_RELOC (buf));
                      cie->personality.reloc_index
                      cie->personality.reloc_index
                        = cookie->rel - cookie->rels;
                        = cookie->rel - cookie->rels;
                      /* Cope with MIPS-style composite relocations.  */
                      /* Cope with MIPS-style composite relocations.  */
                      do
                      do
                        cookie->rel++;
                        cookie->rel++;
                      while (GET_RELOC (buf) != NULL);
                      while (GET_RELOC (buf) != NULL);
                      REQUIRE (skip_bytes (&buf, end, per_width));
                      REQUIRE (skip_bytes (&buf, end, per_width));
                    }
                    }
                    break;
                    break;
                  default:
                  default:
                    /* Unrecognized augmentation. Better bail out.  */
                    /* Unrecognized augmentation. Better bail out.  */
                    goto free_no_table;
                    goto free_no_table;
                  }
                  }
            }
            }
 
 
          /* For shared libraries, try to get rid of as many RELATIVE relocs
          /* For shared libraries, try to get rid of as many RELATIVE relocs
             as possible.  */
             as possible.  */
          if (info->shared
          if (info->shared
              && (get_elf_backend_data (abfd)
              && (get_elf_backend_data (abfd)
                  ->elf_backend_can_make_relative_eh_frame
                  ->elf_backend_can_make_relative_eh_frame
                  (abfd, info, sec)))
                  (abfd, info, sec)))
            {
            {
              if ((cie->fde_encoding & 0xf0) == DW_EH_PE_absptr)
              if ((cie->fde_encoding & 0xf0) == DW_EH_PE_absptr)
                this_inf->make_relative = 1;
                this_inf->make_relative = 1;
              /* If the CIE doesn't already have an 'R' entry, it's fairly
              /* If the CIE doesn't already have an 'R' entry, it's fairly
                 easy to add one, provided that there's no aligned data
                 easy to add one, provided that there's no aligned data
                 after the augmentation string.  */
                 after the augmentation string.  */
              else if (cie->fde_encoding == DW_EH_PE_omit
              else if (cie->fde_encoding == DW_EH_PE_omit
                       && (cie->per_encoding & 0xf0) != DW_EH_PE_aligned)
                       && (cie->per_encoding & 0xf0) != DW_EH_PE_aligned)
                {
                {
                  if (*cie->augmentation == 0)
                  if (*cie->augmentation == 0)
                    this_inf->add_augmentation_size = 1;
                    this_inf->add_augmentation_size = 1;
                  this_inf->u.cie.add_fde_encoding = 1;
                  this_inf->u.cie.add_fde_encoding = 1;
                  this_inf->make_relative = 1;
                  this_inf->make_relative = 1;
                }
                }
            }
            }
 
 
          if (info->shared
          if (info->shared
              && (get_elf_backend_data (abfd)
              && (get_elf_backend_data (abfd)
                  ->elf_backend_can_make_lsda_relative_eh_frame
                  ->elf_backend_can_make_lsda_relative_eh_frame
                  (abfd, info, sec))
                  (abfd, info, sec))
              && (cie->lsda_encoding & 0xf0) == DW_EH_PE_absptr)
              && (cie->lsda_encoding & 0xf0) == DW_EH_PE_absptr)
            cie->can_make_lsda_relative = 1;
            cie->can_make_lsda_relative = 1;
 
 
          /* If FDE encoding was not specified, it defaults to
          /* If FDE encoding was not specified, it defaults to
             DW_EH_absptr.  */
             DW_EH_absptr.  */
          if (cie->fde_encoding == DW_EH_PE_omit)
          if (cie->fde_encoding == DW_EH_PE_omit)
            cie->fde_encoding = DW_EH_PE_absptr;
            cie->fde_encoding = DW_EH_PE_absptr;
 
 
          initial_insn_length = end - buf;
          initial_insn_length = end - buf;
          if (initial_insn_length <= sizeof (cie->initial_instructions))
          if (initial_insn_length <= sizeof (cie->initial_instructions))
            {
            {
              cie->initial_insn_length = initial_insn_length;
              cie->initial_insn_length = initial_insn_length;
              memcpy (cie->initial_instructions, buf, initial_insn_length);
              memcpy (cie->initial_instructions, buf, initial_insn_length);
            }
            }
          insns = buf;
          insns = buf;
          buf += initial_insn_length;
          buf += initial_insn_length;
          ENSURE_NO_RELOCS (buf);
          ENSURE_NO_RELOCS (buf);
 
 
          if (hdr_info->merge_cies)
          if (hdr_info->merge_cies)
            this_inf->u.cie.u.full_cie = cie;
            this_inf->u.cie.u.full_cie = cie;
          this_inf->u.cie.per_encoding_relative
          this_inf->u.cie.per_encoding_relative
            = (cie->per_encoding & 0x70) == DW_EH_PE_pcrel;
            = (cie->per_encoding & 0x70) == DW_EH_PE_pcrel;
        }
        }
      else
      else
        {
        {
          asection *rsec;
          asection *rsec;
 
 
          /* Find the corresponding CIE.  */
          /* Find the corresponding CIE.  */
          unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
          unsigned int cie_offset = this_inf->offset + 4 - hdr_id;
          for (cie = local_cies; cie < local_cies + cie_count; cie++)
          for (cie = local_cies; cie < local_cies + cie_count; cie++)
            if (cie_offset == cie->cie_inf->offset)
            if (cie_offset == cie->cie_inf->offset)
              break;
              break;
 
 
          /* Ensure this FDE references one of the CIEs in this input
          /* Ensure this FDE references one of the CIEs in this input
             section.  */
             section.  */
          REQUIRE (cie != local_cies + cie_count);
          REQUIRE (cie != local_cies + cie_count);
          this_inf->u.fde.cie_inf = cie->cie_inf;
          this_inf->u.fde.cie_inf = cie->cie_inf;
          this_inf->make_relative = cie->cie_inf->make_relative;
          this_inf->make_relative = cie->cie_inf->make_relative;
          this_inf->add_augmentation_size
          this_inf->add_augmentation_size
            = cie->cie_inf->add_augmentation_size;
            = cie->cie_inf->add_augmentation_size;
 
 
          ENSURE_NO_RELOCS (buf);
          ENSURE_NO_RELOCS (buf);
          REQUIRE (GET_RELOC (buf));
          REQUIRE (GET_RELOC (buf));
 
 
          /* Chain together the FDEs for each section.  */
          /* Chain together the FDEs for each section.  */
          rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
          rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
          REQUIRE (rsec && rsec->owner == abfd);
          REQUIRE (rsec && rsec->owner == abfd);
          this_inf->u.fde.next_for_section = elf_fde_list (rsec);
          this_inf->u.fde.next_for_section = elf_fde_list (rsec);
          elf_fde_list (rsec) = this_inf;
          elf_fde_list (rsec) = this_inf;
 
 
          /* Skip the initial location and address range.  */
          /* Skip the initial location and address range.  */
          start = buf;
          start = buf;
          length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
          length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
          REQUIRE (skip_bytes (&buf, end, 2 * length));
          REQUIRE (skip_bytes (&buf, end, 2 * length));
 
 
          /* Skip the augmentation size, if present.  */
          /* Skip the augmentation size, if present.  */
          if (cie->augmentation[0] == 'z')
          if (cie->augmentation[0] == 'z')
            REQUIRE (read_uleb128 (&buf, end, &length));
            REQUIRE (read_uleb128 (&buf, end, &length));
          else
          else
            length = 0;
            length = 0;
 
 
          /* Of the supported augmentation characters above, only 'L'
          /* Of the supported augmentation characters above, only 'L'
             adds augmentation data to the FDE.  This code would need to
             adds augmentation data to the FDE.  This code would need to
             be adjusted if any future augmentations do the same thing.  */
             be adjusted if any future augmentations do the same thing.  */
          if (cie->lsda_encoding != DW_EH_PE_omit)
          if (cie->lsda_encoding != DW_EH_PE_omit)
            {
            {
              SKIP_RELOCS (buf);
              SKIP_RELOCS (buf);
              if (cie->can_make_lsda_relative && GET_RELOC (buf))
              if (cie->can_make_lsda_relative && GET_RELOC (buf))
                cie->cie_inf->u.cie.make_lsda_relative = 1;
                cie->cie_inf->u.cie.make_lsda_relative = 1;
              this_inf->lsda_offset = buf - start;
              this_inf->lsda_offset = buf - start;
              /* If there's no 'z' augmentation, we don't know where the
              /* If there's no 'z' augmentation, we don't know where the
                 CFA insns begin.  Assume no padding.  */
                 CFA insns begin.  Assume no padding.  */
              if (cie->augmentation[0] != 'z')
              if (cie->augmentation[0] != 'z')
                length = end - buf;
                length = end - buf;
            }
            }
 
 
          /* Skip over the augmentation data.  */
          /* Skip over the augmentation data.  */
          REQUIRE (skip_bytes (&buf, end, length));
          REQUIRE (skip_bytes (&buf, end, length));
          insns = buf;
          insns = buf;
 
 
          buf = last_fde + 4 + hdr_length;
          buf = last_fde + 4 + hdr_length;
          SKIP_RELOCS (buf);
          SKIP_RELOCS (buf);
        }
        }
 
 
      /* Try to interpret the CFA instructions and find the first
      /* Try to interpret the CFA instructions and find the first
         padding nop.  Shrink this_inf's size so that it doesn't
         padding nop.  Shrink this_inf's size so that it doesn't
         include the padding.  */
         include the padding.  */
      length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
      length = get_DW_EH_PE_width (cie->fde_encoding, ptr_size);
      set_loc_count = 0;
      set_loc_count = 0;
      insns_end = skip_non_nops (insns, end, length, &set_loc_count);
      insns_end = skip_non_nops (insns, end, length, &set_loc_count);
      /* If we don't understand the CFA instructions, we can't know
      /* If we don't understand the CFA instructions, we can't know
         what needs to be adjusted there.  */
         what needs to be adjusted there.  */
      if (insns_end == NULL
      if (insns_end == NULL
          /* For the time being we don't support DW_CFA_set_loc in
          /* For the time being we don't support DW_CFA_set_loc in
             CIE instructions.  */
             CIE instructions.  */
          || (set_loc_count && this_inf->cie))
          || (set_loc_count && this_inf->cie))
        goto free_no_table;
        goto free_no_table;
      this_inf->size -= end - insns_end;
      this_inf->size -= end - insns_end;
      if (insns_end != end && this_inf->cie)
      if (insns_end != end && this_inf->cie)
        {
        {
          cie->initial_insn_length -= end - insns_end;
          cie->initial_insn_length -= end - insns_end;
          cie->length -= end - insns_end;
          cie->length -= end - insns_end;
        }
        }
      if (set_loc_count
      if (set_loc_count
          && ((cie->fde_encoding & 0xf0) == DW_EH_PE_pcrel
          && ((cie->fde_encoding & 0xf0) == DW_EH_PE_pcrel
              || this_inf->make_relative))
              || this_inf->make_relative))
        {
        {
          unsigned int cnt;
          unsigned int cnt;
          bfd_byte *p;
          bfd_byte *p;
 
 
          this_inf->set_loc = bfd_malloc ((set_loc_count + 1)
          this_inf->set_loc = bfd_malloc ((set_loc_count + 1)
                                          * sizeof (unsigned int));
                                          * sizeof (unsigned int));
          REQUIRE (this_inf->set_loc);
          REQUIRE (this_inf->set_loc);
          this_inf->set_loc[0] = set_loc_count;
          this_inf->set_loc[0] = set_loc_count;
          p = insns;
          p = insns;
          cnt = 0;
          cnt = 0;
          while (p < end)
          while (p < end)
            {
            {
              if (*p == DW_CFA_set_loc)
              if (*p == DW_CFA_set_loc)
                this_inf->set_loc[++cnt] = p + 1 - start;
                this_inf->set_loc[++cnt] = p + 1 - start;
              REQUIRE (skip_cfa_op (&p, end, length));
              REQUIRE (skip_cfa_op (&p, end, length));
            }
            }
        }
        }
 
 
      this_inf->removed = 1;
      this_inf->removed = 1;
      this_inf->fde_encoding = cie->fde_encoding;
      this_inf->fde_encoding = cie->fde_encoding;
      this_inf->lsda_encoding = cie->lsda_encoding;
      this_inf->lsda_encoding = cie->lsda_encoding;
      sec_info->count++;
      sec_info->count++;
    }
    }
  BFD_ASSERT (sec_info->count == num_entries);
  BFD_ASSERT (sec_info->count == num_entries);
  BFD_ASSERT (cie_count == num_cies);
  BFD_ASSERT (cie_count == num_cies);
 
 
  elf_section_data (sec)->sec_info = sec_info;
  elf_section_data (sec)->sec_info = sec_info;
  sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
  sec->sec_info_type = ELF_INFO_TYPE_EH_FRAME;
  if (hdr_info->merge_cies)
  if (hdr_info->merge_cies)
    {
    {
      sec_info->cies = local_cies;
      sec_info->cies = local_cies;
      local_cies = NULL;
      local_cies = NULL;
    }
    }
  goto success;
  goto success;
 
 
 free_no_table:
 free_no_table:
  (*info->callbacks->einfo)
  (*info->callbacks->einfo)
    (_("%P: error in %B(%A); no .eh_frame_hdr table will be created.\n"),
    (_("%P: error in %B(%A); no .eh_frame_hdr table will be created.\n"),
     abfd, sec);
     abfd, sec);
  hdr_info->table = FALSE;
  hdr_info->table = FALSE;
  if (sec_info)
  if (sec_info)
    free (sec_info);
    free (sec_info);
 success:
 success:
  if (ehbuf)
  if (ehbuf)
    free (ehbuf);
    free (ehbuf);
  if (local_cies)
  if (local_cies)
    free (local_cies);
    free (local_cies);
#undef REQUIRE
#undef REQUIRE
}
}
 
 
/* Finish a pass over all .eh_frame sections.  */
/* Finish a pass over all .eh_frame sections.  */
 
 
void
void
_bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info)
_bfd_elf_end_eh_frame_parsing (struct bfd_link_info *info)
{
{
  struct eh_frame_hdr_info *hdr_info;
  struct eh_frame_hdr_info *hdr_info;
 
 
  hdr_info = &elf_hash_table (info)->eh_info;
  hdr_info = &elf_hash_table (info)->eh_info;
  hdr_info->parsed_eh_frames = TRUE;
  hdr_info->parsed_eh_frames = TRUE;
}
}
 
 
/* Mark all relocations against CIE or FDE ENT, which occurs in
/* Mark all relocations against CIE or FDE ENT, which occurs in
   .eh_frame section SEC.  COOKIE describes the relocations in SEC;
   .eh_frame section SEC.  COOKIE describes the relocations in SEC;
   its "rel" field can be changed freely.  */
   its "rel" field can be changed freely.  */
 
 
static bfd_boolean
static bfd_boolean
mark_entry (struct bfd_link_info *info, asection *sec,
mark_entry (struct bfd_link_info *info, asection *sec,
            struct eh_cie_fde *ent, elf_gc_mark_hook_fn gc_mark_hook,
            struct eh_cie_fde *ent, elf_gc_mark_hook_fn gc_mark_hook,
            struct elf_reloc_cookie *cookie)
            struct elf_reloc_cookie *cookie)
{
{
  for (cookie->rel = cookie->rels + ent->reloc_index;
  for (cookie->rel = cookie->rels + ent->reloc_index;
       cookie->rel < cookie->relend
       cookie->rel < cookie->relend
         && cookie->rel->r_offset < ent->offset + ent->size;
         && cookie->rel->r_offset < ent->offset + ent->size;
       cookie->rel++)
       cookie->rel++)
    if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, cookie))
    if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, cookie))
      return FALSE;
      return FALSE;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Mark all the relocations against FDEs that relate to code in input
/* Mark all the relocations against FDEs that relate to code in input
   section SEC.  The FDEs belong to .eh_frame section EH_FRAME, whose
   section SEC.  The FDEs belong to .eh_frame section EH_FRAME, whose
   relocations are described by COOKIE.  */
   relocations are described by COOKIE.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_gc_mark_fdes (struct bfd_link_info *info, asection *sec,
_bfd_elf_gc_mark_fdes (struct bfd_link_info *info, asection *sec,
                       asection *eh_frame, elf_gc_mark_hook_fn gc_mark_hook,
                       asection *eh_frame, elf_gc_mark_hook_fn gc_mark_hook,
                       struct elf_reloc_cookie *cookie)
                       struct elf_reloc_cookie *cookie)
{
{
  struct eh_cie_fde *fde, *cie;
  struct eh_cie_fde *fde, *cie;
 
 
  for (fde = elf_fde_list (sec); fde; fde = fde->u.fde.next_for_section)
  for (fde = elf_fde_list (sec); fde; fde = fde->u.fde.next_for_section)
    {
    {
      if (!mark_entry (info, eh_frame, fde, gc_mark_hook, cookie))
      if (!mark_entry (info, eh_frame, fde, gc_mark_hook, cookie))
        return FALSE;
        return FALSE;
 
 
      /* At this stage, all cie_inf fields point to local CIEs, so we
      /* At this stage, all cie_inf fields point to local CIEs, so we
         can use the same cookie to refer to them.  */
         can use the same cookie to refer to them.  */
      cie = fde->u.fde.cie_inf;
      cie = fde->u.fde.cie_inf;
      if (!cie->u.cie.gc_mark)
      if (!cie->u.cie.gc_mark)
        {
        {
          cie->u.cie.gc_mark = 1;
          cie->u.cie.gc_mark = 1;
          if (!mark_entry (info, eh_frame, cie, gc_mark_hook, cookie))
          if (!mark_entry (info, eh_frame, cie, gc_mark_hook, cookie))
            return FALSE;
            return FALSE;
        }
        }
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Input section SEC of ABFD is an .eh_frame section that contains the
/* Input section SEC of ABFD is an .eh_frame section that contains the
   CIE described by CIE_INF.  Return a version of CIE_INF that is going
   CIE described by CIE_INF.  Return a version of CIE_INF that is going
   to be kept in the output, adding CIE_INF to the output if necessary.
   to be kept in the output, adding CIE_INF to the output if necessary.
 
 
   HDR_INFO is the .eh_frame_hdr information and COOKIE describes the
   HDR_INFO is the .eh_frame_hdr information and COOKIE describes the
   relocations in REL.  */
   relocations in REL.  */
 
 
static struct eh_cie_fde *
static struct eh_cie_fde *
find_merged_cie (bfd *abfd, asection *sec,
find_merged_cie (bfd *abfd, asection *sec,
                 struct eh_frame_hdr_info *hdr_info,
                 struct eh_frame_hdr_info *hdr_info,
                 struct elf_reloc_cookie *cookie,
                 struct elf_reloc_cookie *cookie,
                 struct eh_cie_fde *cie_inf)
                 struct eh_cie_fde *cie_inf)
{
{
  unsigned long r_symndx;
  unsigned long r_symndx;
  struct cie *cie, *new_cie;
  struct cie *cie, *new_cie;
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *rel;
  void **loc;
  void **loc;
 
 
  /* Use CIE_INF if we have already decided to keep it.  */
  /* Use CIE_INF if we have already decided to keep it.  */
  if (!cie_inf->removed)
  if (!cie_inf->removed)
    return cie_inf;
    return cie_inf;
 
 
  /* If we have merged CIE_INF with another CIE, use that CIE instead.  */
  /* If we have merged CIE_INF with another CIE, use that CIE instead.  */
  if (cie_inf->u.cie.merged)
  if (cie_inf->u.cie.merged)
    return cie_inf->u.cie.u.merged_with;
    return cie_inf->u.cie.u.merged_with;
 
 
  cie = cie_inf->u.cie.u.full_cie;
  cie = cie_inf->u.cie.u.full_cie;
 
 
  /* Assume we will need to keep CIE_INF.  */
  /* Assume we will need to keep CIE_INF.  */
  cie_inf->removed = 0;
  cie_inf->removed = 0;
  cie_inf->u.cie.u.sec = sec;
  cie_inf->u.cie.u.sec = sec;
 
 
  /* If we are not merging CIEs, use CIE_INF.  */
  /* If we are not merging CIEs, use CIE_INF.  */
  if (cie == NULL)
  if (cie == NULL)
    return cie_inf;
    return cie_inf;
 
 
  if (cie->per_encoding != DW_EH_PE_omit)
  if (cie->per_encoding != DW_EH_PE_omit)
    {
    {
      /* Work out the address of personality routine, either as an absolute
      /* Work out the address of personality routine, either as an absolute
         value or as a symbol.  */
         value or as a symbol.  */
      rel = cookie->rels + cie->personality.reloc_index;
      rel = cookie->rels + cie->personality.reloc_index;
      memset (&cie->personality, 0, sizeof (cie->personality));
      memset (&cie->personality, 0, sizeof (cie->personality));
#ifdef BFD64
#ifdef BFD64
      if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
      if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
        r_symndx = ELF64_R_SYM (rel->r_info);
        r_symndx = ELF64_R_SYM (rel->r_info);
      else
      else
#endif
#endif
        r_symndx = ELF32_R_SYM (rel->r_info);
        r_symndx = ELF32_R_SYM (rel->r_info);
      if (r_symndx >= cookie->locsymcount
      if (r_symndx >= cookie->locsymcount
          || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
          || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
        {
        {
          struct elf_link_hash_entry *h;
          struct elf_link_hash_entry *h;
 
 
          r_symndx -= cookie->extsymoff;
          r_symndx -= cookie->extsymoff;
          h = cookie->sym_hashes[r_symndx];
          h = cookie->sym_hashes[r_symndx];
 
 
          while (h->root.type == bfd_link_hash_indirect
          while (h->root.type == bfd_link_hash_indirect
                 || h->root.type == bfd_link_hash_warning)
                 || h->root.type == bfd_link_hash_warning)
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
          cie->personality.h = h;
          cie->personality.h = h;
        }
        }
      else
      else
        {
        {
          Elf_Internal_Sym *sym;
          Elf_Internal_Sym *sym;
          asection *sym_sec;
          asection *sym_sec;
 
 
          sym = &cookie->locsyms[r_symndx];
          sym = &cookie->locsyms[r_symndx];
          sym_sec = bfd_section_from_elf_index (abfd, sym->st_shndx);
          sym_sec = bfd_section_from_elf_index (abfd, sym->st_shndx);
          if (sym_sec == NULL)
          if (sym_sec == NULL)
            return cie_inf;
            return cie_inf;
 
 
          if (sym_sec->kept_section != NULL)
          if (sym_sec->kept_section != NULL)
            sym_sec = sym_sec->kept_section;
            sym_sec = sym_sec->kept_section;
          if (sym_sec->output_section == NULL)
          if (sym_sec->output_section == NULL)
            return cie_inf;
            return cie_inf;
 
 
          cie->local_personality = 1;
          cie->local_personality = 1;
          cie->personality.val = (sym->st_value
          cie->personality.val = (sym->st_value
                                  + sym_sec->output_offset
                                  + sym_sec->output_offset
                                  + sym_sec->output_section->vma);
                                  + sym_sec->output_section->vma);
        }
        }
    }
    }
 
 
  /* See if we can merge this CIE with an earlier one.  */
  /* See if we can merge this CIE with an earlier one.  */
  cie->output_sec = sec->output_section;
  cie->output_sec = sec->output_section;
  cie_compute_hash (cie);
  cie_compute_hash (cie);
  if (hdr_info->cies == NULL)
  if (hdr_info->cies == NULL)
    {
    {
      hdr_info->cies = htab_try_create (1, cie_hash, cie_eq, free);
      hdr_info->cies = htab_try_create (1, cie_hash, cie_eq, free);
      if (hdr_info->cies == NULL)
      if (hdr_info->cies == NULL)
        return cie_inf;
        return cie_inf;
    }
    }
  loc = htab_find_slot_with_hash (hdr_info->cies, cie, cie->hash, INSERT);
  loc = htab_find_slot_with_hash (hdr_info->cies, cie, cie->hash, INSERT);
  if (loc == NULL)
  if (loc == NULL)
    return cie_inf;
    return cie_inf;
 
 
  new_cie = (struct cie *) *loc;
  new_cie = (struct cie *) *loc;
  if (new_cie == NULL)
  if (new_cie == NULL)
    {
    {
      /* Keep CIE_INF and record it in the hash table.  */
      /* Keep CIE_INF and record it in the hash table.  */
      new_cie = malloc (sizeof (struct cie));
      new_cie = malloc (sizeof (struct cie));
      if (new_cie == NULL)
      if (new_cie == NULL)
        return cie_inf;
        return cie_inf;
 
 
      memcpy (new_cie, cie, sizeof (struct cie));
      memcpy (new_cie, cie, sizeof (struct cie));
      *loc = new_cie;
      *loc = new_cie;
    }
    }
  else
  else
    {
    {
      /* Merge CIE_INF with NEW_CIE->CIE_INF.  */
      /* Merge CIE_INF with NEW_CIE->CIE_INF.  */
      cie_inf->removed = 1;
      cie_inf->removed = 1;
      cie_inf->u.cie.merged = 1;
      cie_inf->u.cie.merged = 1;
      cie_inf->u.cie.u.merged_with = new_cie->cie_inf;
      cie_inf->u.cie.u.merged_with = new_cie->cie_inf;
      if (cie_inf->u.cie.make_lsda_relative)
      if (cie_inf->u.cie.make_lsda_relative)
        new_cie->cie_inf->u.cie.make_lsda_relative = 1;
        new_cie->cie_inf->u.cie.make_lsda_relative = 1;
    }
    }
  return new_cie->cie_inf;
  return new_cie->cie_inf;
}
}
 
 
/* This function is called for each input file before the .eh_frame
/* This function is called for each input file before the .eh_frame
   section is relocated.  It discards duplicate CIEs and FDEs for discarded
   section is relocated.  It discards duplicate CIEs and FDEs for discarded
   functions.  The function returns TRUE iff any entries have been
   functions.  The function returns TRUE iff any entries have been
   deleted.  */
   deleted.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_discard_section_eh_frame
_bfd_elf_discard_section_eh_frame
   (bfd *abfd, struct bfd_link_info *info, asection *sec,
   (bfd *abfd, struct bfd_link_info *info, asection *sec,
    bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
    bfd_boolean (*reloc_symbol_deleted_p) (bfd_vma, void *),
    struct elf_reloc_cookie *cookie)
    struct elf_reloc_cookie *cookie)
{
{
  struct eh_cie_fde *ent;
  struct eh_cie_fde *ent;
  struct eh_frame_sec_info *sec_info;
  struct eh_frame_sec_info *sec_info;
  struct eh_frame_hdr_info *hdr_info;
  struct eh_frame_hdr_info *hdr_info;
  unsigned int ptr_size, offset;
  unsigned int ptr_size, offset;
 
 
  sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
  sec_info = (struct eh_frame_sec_info *) elf_section_data (sec)->sec_info;
  if (sec_info == NULL)
  if (sec_info == NULL)
    return FALSE;
    return FALSE;
 
 
  hdr_info = &elf_hash_table (info)->eh_info;
  hdr_info = &elf_hash_table (info)->eh_info;
  for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
  for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
    if (!ent->cie)
    if (!ent->cie)
      {
      {
        cookie->rel = cookie->rels + ent->reloc_index;
        cookie->rel = cookie->rels + ent->reloc_index;
        BFD_ASSERT (cookie->rel < cookie->relend
        BFD_ASSERT (cookie->rel < cookie->relend
                    && cookie->rel->r_offset == ent->offset + 8);
                    && cookie->rel->r_offset == ent->offset + 8);
        if (!(*reloc_symbol_deleted_p) (ent->offset + 8, cookie))
        if (!(*reloc_symbol_deleted_p) (ent->offset + 8, cookie))
          {
          {
            if (info->shared
            if (info->shared
                && (((ent->fde_encoding & 0xf0) == DW_EH_PE_absptr
                && (((ent->fde_encoding & 0xf0) == DW_EH_PE_absptr
                     && ent->make_relative == 0)
                     && ent->make_relative == 0)
                    || (ent->fde_encoding & 0xf0) == DW_EH_PE_aligned))
                    || (ent->fde_encoding & 0xf0) == DW_EH_PE_aligned))
              {
              {
                /* If a shared library uses absolute pointers
                /* If a shared library uses absolute pointers
                   which we cannot turn into PC relative,
                   which we cannot turn into PC relative,
                   don't create the binary search table,
                   don't create the binary search table,
                   since it is affected by runtime relocations.  */
                   since it is affected by runtime relocations.  */
                hdr_info->table = FALSE;
                hdr_info->table = FALSE;
                (*info->callbacks->einfo)
                (*info->callbacks->einfo)
                  (_("%P: fde encoding in %B(%A) prevents .eh_frame_hdr"
                  (_("%P: fde encoding in %B(%A) prevents .eh_frame_hdr"
                     " table being created.\n"), abfd, sec);
                     " table being created.\n"), abfd, sec);
              }
              }
            ent->removed = 0;
            ent->removed = 0;
            hdr_info->fde_count++;
            hdr_info->fde_count++;
            ent->u.fde.cie_inf = find_merged_cie (abfd, sec, hdr_info, cookie,
            ent->u.fde.cie_inf = find_merged_cie (abfd, sec, hdr_info, cookie,
                                                  ent->u.fde.cie_inf);
                                                  ent->u.fde.cie_inf);
          }
          }
      }
      }
 
 
  if (sec_info->cies)
  if (sec_info->cies)
    {
    {
      free (sec_info->cies);
      free (sec_info->cies);
      sec_info->cies = NULL;
      sec_info->cies = NULL;
    }
    }
 
 
  ptr_size = (get_elf_backend_data (sec->owner)
  ptr_size = (get_elf_backend_data (sec->owner)
              ->elf_backend_eh_frame_address_size (sec->owner, sec));
              ->elf_backend_eh_frame_address_size (sec->owner, sec));
  offset = 0;
  offset = 0;
  for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
  for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
    if (!ent->removed)
    if (!ent->removed)
      {
      {
        ent->new_offset = offset;
        ent->new_offset = offset;
        offset += size_of_output_cie_fde (ent, ptr_size);
        offset += size_of_output_cie_fde (ent, ptr_size);
      }
      }
 
 
  sec->rawsize = sec->size;
  sec->rawsize = sec->size;
  sec->size = offset;
  sec->size = offset;
  return offset != sec->rawsize;
  return offset != sec->rawsize;
}
}
 
 
/* This function is called for .eh_frame_hdr section after
/* This function is called for .eh_frame_hdr section after
   _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
   _bfd_elf_discard_section_eh_frame has been called on all .eh_frame
   input sections.  It finalizes the size of .eh_frame_hdr section.  */
   input sections.  It finalizes the size of .eh_frame_hdr section.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
_bfd_elf_discard_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
{
{
  struct elf_link_hash_table *htab;
  struct elf_link_hash_table *htab;
  struct eh_frame_hdr_info *hdr_info;
  struct eh_frame_hdr_info *hdr_info;
  asection *sec;
  asection *sec;
 
 
  htab = elf_hash_table (info);
  htab = elf_hash_table (info);
  hdr_info = &htab->eh_info;
  hdr_info = &htab->eh_info;
 
 
  if (hdr_info->cies != NULL)
  if (hdr_info->cies != NULL)
    {
    {
      htab_delete (hdr_info->cies);
      htab_delete (hdr_info->cies);
      hdr_info->cies = NULL;
      hdr_info->cies = NULL;
    }
    }
 
 
  sec = hdr_info->hdr_sec;
  sec = hdr_info->hdr_sec;
  if (sec == NULL)
  if (sec == NULL)
    return FALSE;
    return FALSE;
 
 
  sec->size = EH_FRAME_HDR_SIZE;
  sec->size = EH_FRAME_HDR_SIZE;
  if (hdr_info->table)
  if (hdr_info->table)
    sec->size += 4 + hdr_info->fde_count * 8;
    sec->size += 4 + hdr_info->fde_count * 8;
 
 
  elf_tdata (abfd)->eh_frame_hdr = sec;
  elf_tdata (abfd)->eh_frame_hdr = sec;
  return TRUE;
  return TRUE;
}
}
 
 
/* This function is called from size_dynamic_sections.
/* This function is called from size_dynamic_sections.
   It needs to decide whether .eh_frame_hdr should be output or not,
   It needs to decide whether .eh_frame_hdr should be output or not,
   because when the dynamic symbol table has been sized it is too late
   because when the dynamic symbol table has been sized it is too late
   to strip sections.  */
   to strip sections.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
_bfd_elf_maybe_strip_eh_frame_hdr (struct bfd_link_info *info)
{
{
  asection *o;
  asection *o;
  bfd *abfd;
  bfd *abfd;
  struct elf_link_hash_table *htab;
  struct elf_link_hash_table *htab;
  struct eh_frame_hdr_info *hdr_info;
  struct eh_frame_hdr_info *hdr_info;
 
 
  htab = elf_hash_table (info);
  htab = elf_hash_table (info);
  hdr_info = &htab->eh_info;
  hdr_info = &htab->eh_info;
  if (hdr_info->hdr_sec == NULL)
  if (hdr_info->hdr_sec == NULL)
    return TRUE;
    return TRUE;
 
 
  if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
  if (bfd_is_abs_section (hdr_info->hdr_sec->output_section))
    {
    {
      hdr_info->hdr_sec = NULL;
      hdr_info->hdr_sec = NULL;
      return TRUE;
      return TRUE;
    }
    }
 
 
  abfd = NULL;
  abfd = NULL;
  if (info->eh_frame_hdr)
  if (info->eh_frame_hdr)
    for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
    for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
      {
      {
        /* Count only sections which have at least a single CIE or FDE.
        /* Count only sections which have at least a single CIE or FDE.
           There cannot be any CIE or FDE <= 8 bytes.  */
           There cannot be any CIE or FDE <= 8 bytes.  */
        o = bfd_get_section_by_name (abfd, ".eh_frame");
        o = bfd_get_section_by_name (abfd, ".eh_frame");
        if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
        if (o && o->size > 8 && !bfd_is_abs_section (o->output_section))
          break;
          break;
      }
      }
 
 
  if (abfd == NULL)
  if (abfd == NULL)
    {
    {
      hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
      hdr_info->hdr_sec->flags |= SEC_EXCLUDE;
      hdr_info->hdr_sec = NULL;
      hdr_info->hdr_sec = NULL;
      return TRUE;
      return TRUE;
    }
    }
 
 
  hdr_info->table = TRUE;
  hdr_info->table = TRUE;
  return TRUE;
  return TRUE;
}
}
 
 
/* Adjust an address in the .eh_frame section.  Given OFFSET within
/* Adjust an address in the .eh_frame section.  Given OFFSET within
   SEC, this returns the new offset in the adjusted .eh_frame section,
   SEC, this returns the new offset in the adjusted .eh_frame section,
   or -1 if the address refers to a CIE/FDE which has been removed
   or -1 if the address refers to a CIE/FDE which has been removed
   or to offset with dynamic relocation which is no longer needed.  */
   or to offset with dynamic relocation which is no longer needed.  */
 
 
bfd_vma
bfd_vma
_bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
_bfd_elf_eh_frame_section_offset (bfd *output_bfd ATTRIBUTE_UNUSED,
                                  struct bfd_link_info *info,
                                  struct bfd_link_info *info,
                                  asection *sec,
                                  asection *sec,
                                  bfd_vma offset)
                                  bfd_vma offset)
{
{
  struct eh_frame_sec_info *sec_info;
  struct eh_frame_sec_info *sec_info;
  struct elf_link_hash_table *htab;
  struct elf_link_hash_table *htab;
  struct eh_frame_hdr_info *hdr_info;
  struct eh_frame_hdr_info *hdr_info;
  unsigned int lo, hi, mid;
  unsigned int lo, hi, mid;
 
 
  if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
  if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
    return offset;
    return offset;
  sec_info = elf_section_data (sec)->sec_info;
  sec_info = elf_section_data (sec)->sec_info;
 
 
  if (offset >= sec->rawsize)
  if (offset >= sec->rawsize)
    return offset - sec->rawsize + sec->size;
    return offset - sec->rawsize + sec->size;
 
 
  htab = elf_hash_table (info);
  htab = elf_hash_table (info);
  hdr_info = &htab->eh_info;
  hdr_info = &htab->eh_info;
 
 
  lo = 0;
  lo = 0;
  hi = sec_info->count;
  hi = sec_info->count;
  mid = 0;
  mid = 0;
  while (lo < hi)
  while (lo < hi)
    {
    {
      mid = (lo + hi) / 2;
      mid = (lo + hi) / 2;
      if (offset < sec_info->entry[mid].offset)
      if (offset < sec_info->entry[mid].offset)
        hi = mid;
        hi = mid;
      else if (offset
      else if (offset
               >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
               >= sec_info->entry[mid].offset + sec_info->entry[mid].size)
        lo = mid + 1;
        lo = mid + 1;
      else
      else
        break;
        break;
    }
    }
 
 
  BFD_ASSERT (lo < hi);
  BFD_ASSERT (lo < hi);
 
 
  /* FDE or CIE was removed.  */
  /* FDE or CIE was removed.  */
  if (sec_info->entry[mid].removed)
  if (sec_info->entry[mid].removed)
    return (bfd_vma) -1;
    return (bfd_vma) -1;
 
 
  /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
  /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
     relocation against FDE's initial_location field.  */
     relocation against FDE's initial_location field.  */
  if (!sec_info->entry[mid].cie
  if (!sec_info->entry[mid].cie
      && sec_info->entry[mid].make_relative
      && sec_info->entry[mid].make_relative
      && offset == sec_info->entry[mid].offset + 8)
      && offset == sec_info->entry[mid].offset + 8)
    return (bfd_vma) -2;
    return (bfd_vma) -2;
 
 
  /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
  /* If converting LSDA pointers to DW_EH_PE_pcrel, there will be no need
     for run-time relocation against LSDA field.  */
     for run-time relocation against LSDA field.  */
  if (!sec_info->entry[mid].cie
  if (!sec_info->entry[mid].cie
      && sec_info->entry[mid].u.fde.cie_inf->u.cie.make_lsda_relative
      && sec_info->entry[mid].u.fde.cie_inf->u.cie.make_lsda_relative
      && offset == (sec_info->entry[mid].offset + 8
      && offset == (sec_info->entry[mid].offset + 8
                    + sec_info->entry[mid].lsda_offset))
                    + sec_info->entry[mid].lsda_offset))
    return (bfd_vma) -2;
    return (bfd_vma) -2;
 
 
  /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
  /* If converting to DW_EH_PE_pcrel, there will be no need for run-time
     relocation against DW_CFA_set_loc's arguments.  */
     relocation against DW_CFA_set_loc's arguments.  */
  if (sec_info->entry[mid].set_loc
  if (sec_info->entry[mid].set_loc
      && sec_info->entry[mid].make_relative
      && sec_info->entry[mid].make_relative
      && (offset >= sec_info->entry[mid].offset + 8
      && (offset >= sec_info->entry[mid].offset + 8
                    + sec_info->entry[mid].set_loc[1]))
                    + sec_info->entry[mid].set_loc[1]))
    {
    {
      unsigned int cnt;
      unsigned int cnt;
 
 
      for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
      for (cnt = 1; cnt <= sec_info->entry[mid].set_loc[0]; cnt++)
        if (offset == sec_info->entry[mid].offset + 8
        if (offset == sec_info->entry[mid].offset + 8
                      + sec_info->entry[mid].set_loc[cnt])
                      + sec_info->entry[mid].set_loc[cnt])
          return (bfd_vma) -2;
          return (bfd_vma) -2;
    }
    }
 
 
  /* Any new augmentation bytes go before the first relocation.  */
  /* Any new augmentation bytes go before the first relocation.  */
  return (offset + sec_info->entry[mid].new_offset
  return (offset + sec_info->entry[mid].new_offset
          - sec_info->entry[mid].offset
          - sec_info->entry[mid].offset
          + extra_augmentation_string_bytes (sec_info->entry + mid)
          + extra_augmentation_string_bytes (sec_info->entry + mid)
          + extra_augmentation_data_bytes (sec_info->entry + mid));
          + extra_augmentation_data_bytes (sec_info->entry + mid));
}
}
 
 
/* Write out .eh_frame section.  This is called with the relocated
/* Write out .eh_frame section.  This is called with the relocated
   contents.  */
   contents.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_write_section_eh_frame (bfd *abfd,
_bfd_elf_write_section_eh_frame (bfd *abfd,
                                 struct bfd_link_info *info,
                                 struct bfd_link_info *info,
                                 asection *sec,
                                 asection *sec,
                                 bfd_byte *contents)
                                 bfd_byte *contents)
{
{
  struct eh_frame_sec_info *sec_info;
  struct eh_frame_sec_info *sec_info;
  struct elf_link_hash_table *htab;
  struct elf_link_hash_table *htab;
  struct eh_frame_hdr_info *hdr_info;
  struct eh_frame_hdr_info *hdr_info;
  unsigned int ptr_size;
  unsigned int ptr_size;
  struct eh_cie_fde *ent;
  struct eh_cie_fde *ent;
 
 
  if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
  if (sec->sec_info_type != ELF_INFO_TYPE_EH_FRAME)
    return bfd_set_section_contents (abfd, sec->output_section, contents,
    return bfd_set_section_contents (abfd, sec->output_section, contents,
                                     sec->output_offset, sec->size);
                                     sec->output_offset, sec->size);
 
 
  ptr_size = (get_elf_backend_data (abfd)
  ptr_size = (get_elf_backend_data (abfd)
              ->elf_backend_eh_frame_address_size (abfd, sec));
              ->elf_backend_eh_frame_address_size (abfd, sec));
  BFD_ASSERT (ptr_size != 0);
  BFD_ASSERT (ptr_size != 0);
 
 
  sec_info = elf_section_data (sec)->sec_info;
  sec_info = elf_section_data (sec)->sec_info;
  htab = elf_hash_table (info);
  htab = elf_hash_table (info);
  hdr_info = &htab->eh_info;
  hdr_info = &htab->eh_info;
 
 
  if (hdr_info->table && hdr_info->array == NULL)
  if (hdr_info->table && hdr_info->array == NULL)
    hdr_info->array
    hdr_info->array
      = bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
      = bfd_malloc (hdr_info->fde_count * sizeof(*hdr_info->array));
  if (hdr_info->array == NULL)
  if (hdr_info->array == NULL)
    hdr_info = NULL;
    hdr_info = NULL;
 
 
  /* The new offsets can be bigger or smaller than the original offsets.
  /* The new offsets can be bigger or smaller than the original offsets.
     We therefore need to make two passes over the section: one backward
     We therefore need to make two passes over the section: one backward
     pass to move entries up and one forward pass to move entries down.
     pass to move entries up and one forward pass to move entries down.
     The two passes won't interfere with each other because entries are
     The two passes won't interfere with each other because entries are
     not reordered  */
     not reordered  */
  for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
  for (ent = sec_info->entry + sec_info->count; ent-- != sec_info->entry;)
    if (!ent->removed && ent->new_offset > ent->offset)
    if (!ent->removed && ent->new_offset > ent->offset)
      memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
      memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
 
 
  for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
  for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
    if (!ent->removed && ent->new_offset < ent->offset)
    if (!ent->removed && ent->new_offset < ent->offset)
      memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
      memmove (contents + ent->new_offset, contents + ent->offset, ent->size);
 
 
  for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
  for (ent = sec_info->entry; ent < sec_info->entry + sec_info->count; ++ent)
    {
    {
      unsigned char *buf, *end;
      unsigned char *buf, *end;
      unsigned int new_size;
      unsigned int new_size;
 
 
      if (ent->removed)
      if (ent->removed)
        continue;
        continue;
 
 
      if (ent->size == 4)
      if (ent->size == 4)
        {
        {
          /* Any terminating FDE must be at the end of the section.  */
          /* Any terminating FDE must be at the end of the section.  */
          BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
          BFD_ASSERT (ent == sec_info->entry + sec_info->count - 1);
          continue;
          continue;
        }
        }
 
 
      buf = contents + ent->new_offset;
      buf = contents + ent->new_offset;
      end = buf + ent->size;
      end = buf + ent->size;
      new_size = size_of_output_cie_fde (ent, ptr_size);
      new_size = size_of_output_cie_fde (ent, ptr_size);
 
 
      /* Update the size.  It may be shrinked.  */
      /* Update the size.  It may be shrinked.  */
      bfd_put_32 (abfd, new_size - 4, buf);
      bfd_put_32 (abfd, new_size - 4, buf);
 
 
      /* Filling the extra bytes with DW_CFA_nops.  */
      /* Filling the extra bytes with DW_CFA_nops.  */
      if (new_size != ent->size)
      if (new_size != ent->size)
        memset (end, 0, new_size - ent->size);
        memset (end, 0, new_size - ent->size);
 
 
      if (ent->cie)
      if (ent->cie)
        {
        {
          /* CIE */
          /* CIE */
          if (ent->make_relative
          if (ent->make_relative
              || ent->u.cie.make_lsda_relative
              || ent->u.cie.make_lsda_relative
              || ent->u.cie.per_encoding_relative)
              || ent->u.cie.per_encoding_relative)
            {
            {
              char *aug;
              char *aug;
              unsigned int action, extra_string, extra_data;
              unsigned int action, extra_string, extra_data;
              unsigned int per_width, per_encoding;
              unsigned int per_width, per_encoding;
 
 
              /* Need to find 'R' or 'L' augmentation's argument and modify
              /* Need to find 'R' or 'L' augmentation's argument and modify
                 DW_EH_PE_* value.  */
                 DW_EH_PE_* value.  */
              action = ((ent->make_relative ? 1 : 0)
              action = ((ent->make_relative ? 1 : 0)
                        | (ent->u.cie.make_lsda_relative ? 2 : 0)
                        | (ent->u.cie.make_lsda_relative ? 2 : 0)
                        | (ent->u.cie.per_encoding_relative ? 4 : 0));
                        | (ent->u.cie.per_encoding_relative ? 4 : 0));
              extra_string = extra_augmentation_string_bytes (ent);
              extra_string = extra_augmentation_string_bytes (ent);
              extra_data = extra_augmentation_data_bytes (ent);
              extra_data = extra_augmentation_data_bytes (ent);
 
 
              /* Skip length, id and version.  */
              /* Skip length, id and version.  */
              buf += 9;
              buf += 9;
              aug = (char *) buf;
              aug = (char *) buf;
              buf += strlen (aug) + 1;
              buf += strlen (aug) + 1;
              skip_leb128 (&buf, end);
              skip_leb128 (&buf, end);
              skip_leb128 (&buf, end);
              skip_leb128 (&buf, end);
              skip_leb128 (&buf, end);
              skip_leb128 (&buf, end);
              if (*aug == 'z')
              if (*aug == 'z')
                {
                {
                  /* The uleb128 will always be a single byte for the kind
                  /* The uleb128 will always be a single byte for the kind
                     of augmentation strings that we're prepared to handle.  */
                     of augmentation strings that we're prepared to handle.  */
                  *buf++ += extra_data;
                  *buf++ += extra_data;
                  aug++;
                  aug++;
                }
                }
 
 
              /* Make room for the new augmentation string and data bytes.  */
              /* Make room for the new augmentation string and data bytes.  */
              memmove (buf + extra_string + extra_data, buf, end - buf);
              memmove (buf + extra_string + extra_data, buf, end - buf);
              memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
              memmove (aug + extra_string, aug, buf - (bfd_byte *) aug);
              buf += extra_string;
              buf += extra_string;
              end += extra_string + extra_data;
              end += extra_string + extra_data;
 
 
              if (ent->add_augmentation_size)
              if (ent->add_augmentation_size)
                {
                {
                  *aug++ = 'z';
                  *aug++ = 'z';
                  *buf++ = extra_data - 1;
                  *buf++ = extra_data - 1;
                }
                }
              if (ent->u.cie.add_fde_encoding)
              if (ent->u.cie.add_fde_encoding)
                {
                {
                  BFD_ASSERT (action & 1);
                  BFD_ASSERT (action & 1);
                  *aug++ = 'R';
                  *aug++ = 'R';
                  *buf++ = DW_EH_PE_pcrel;
                  *buf++ = DW_EH_PE_pcrel;
                  action &= ~1;
                  action &= ~1;
                }
                }
 
 
              while (action)
              while (action)
                switch (*aug++)
                switch (*aug++)
                  {
                  {
                  case 'L':
                  case 'L':
                    if (action & 2)
                    if (action & 2)
                      {
                      {
                        BFD_ASSERT (*buf == ent->lsda_encoding);
                        BFD_ASSERT (*buf == ent->lsda_encoding);
                        *buf |= DW_EH_PE_pcrel;
                        *buf |= DW_EH_PE_pcrel;
                        action &= ~2;
                        action &= ~2;
                      }
                      }
                    buf++;
                    buf++;
                    break;
                    break;
                  case 'P':
                  case 'P':
                    per_encoding = *buf++;
                    per_encoding = *buf++;
                    per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
                    per_width = get_DW_EH_PE_width (per_encoding, ptr_size);
                    BFD_ASSERT (per_width != 0);
                    BFD_ASSERT (per_width != 0);
                    BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
                    BFD_ASSERT (((per_encoding & 0x70) == DW_EH_PE_pcrel)
                                == ent->u.cie.per_encoding_relative);
                                == ent->u.cie.per_encoding_relative);
                    if ((per_encoding & 0xf0) == DW_EH_PE_aligned)
                    if ((per_encoding & 0xf0) == DW_EH_PE_aligned)
                      buf = (contents
                      buf = (contents
                             + ((buf - contents + per_width - 1)
                             + ((buf - contents + per_width - 1)
                                & ~((bfd_size_type) per_width - 1)));
                                & ~((bfd_size_type) per_width - 1)));
                    if (action & 4)
                    if (action & 4)
                      {
                      {
                        bfd_vma val;
                        bfd_vma val;
 
 
                        val = read_value (abfd, buf, per_width,
                        val = read_value (abfd, buf, per_width,
                                          get_DW_EH_PE_signed (per_encoding));
                                          get_DW_EH_PE_signed (per_encoding));
                        val += ent->offset - ent->new_offset;
                        val += ent->offset - ent->new_offset;
                        val -= extra_string + extra_data;
                        val -= extra_string + extra_data;
                        write_value (abfd, buf, val, per_width);
                        write_value (abfd, buf, val, per_width);
                        action &= ~4;
                        action &= ~4;
                      }
                      }
                    buf += per_width;
                    buf += per_width;
                    break;
                    break;
                  case 'R':
                  case 'R':
                    if (action & 1)
                    if (action & 1)
                      {
                      {
                        BFD_ASSERT (*buf == ent->fde_encoding);
                        BFD_ASSERT (*buf == ent->fde_encoding);
                        *buf |= DW_EH_PE_pcrel;
                        *buf |= DW_EH_PE_pcrel;
                        action &= ~1;
                        action &= ~1;
                      }
                      }
                    buf++;
                    buf++;
                    break;
                    break;
                  case 'S':
                  case 'S':
                    break;
                    break;
                  default:
                  default:
                    BFD_FAIL ();
                    BFD_FAIL ();
                  }
                  }
            }
            }
        }
        }
      else
      else
        {
        {
          /* FDE */
          /* FDE */
          bfd_vma value, address;
          bfd_vma value, address;
          unsigned int width;
          unsigned int width;
          bfd_byte *start;
          bfd_byte *start;
          struct eh_cie_fde *cie;
          struct eh_cie_fde *cie;
 
 
          /* Skip length.  */
          /* Skip length.  */
          cie = ent->u.fde.cie_inf;
          cie = ent->u.fde.cie_inf;
          buf += 4;
          buf += 4;
          value = ((ent->new_offset + sec->output_offset + 4)
          value = ((ent->new_offset + sec->output_offset + 4)
                   - (cie->new_offset + cie->u.cie.u.sec->output_offset));
                   - (cie->new_offset + cie->u.cie.u.sec->output_offset));
          bfd_put_32 (abfd, value, buf);
          bfd_put_32 (abfd, value, buf);
          buf += 4;
          buf += 4;
          width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
          width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
          value = read_value (abfd, buf, width,
          value = read_value (abfd, buf, width,
                              get_DW_EH_PE_signed (ent->fde_encoding));
                              get_DW_EH_PE_signed (ent->fde_encoding));
          address = value;
          address = value;
          if (value)
          if (value)
            {
            {
              switch (ent->fde_encoding & 0xf0)
              switch (ent->fde_encoding & 0xf0)
                {
                {
                case DW_EH_PE_indirect:
                case DW_EH_PE_indirect:
                case DW_EH_PE_textrel:
                case DW_EH_PE_textrel:
                  BFD_ASSERT (hdr_info == NULL);
                  BFD_ASSERT (hdr_info == NULL);
                  break;
                  break;
                case DW_EH_PE_datarel:
                case DW_EH_PE_datarel:
                  {
                  {
                    asection *got = bfd_get_section_by_name (abfd, ".got");
                    asection *got = bfd_get_section_by_name (abfd, ".got");
 
 
                    BFD_ASSERT (got != NULL);
                    BFD_ASSERT (got != NULL);
                    address += got->vma;
                    address += got->vma;
                  }
                  }
                  break;
                  break;
                case DW_EH_PE_pcrel:
                case DW_EH_PE_pcrel:
                  value += ent->offset - ent->new_offset;
                  value += ent->offset - ent->new_offset;
                  address += (sec->output_section->vma
                  address += (sec->output_section->vma
                              + sec->output_offset
                              + sec->output_offset
                              + ent->offset + 8);
                              + ent->offset + 8);
                  break;
                  break;
                }
                }
              if (ent->make_relative)
              if (ent->make_relative)
                value -= (sec->output_section->vma
                value -= (sec->output_section->vma
                          + sec->output_offset
                          + sec->output_offset
                          + ent->new_offset + 8);
                          + ent->new_offset + 8);
              write_value (abfd, buf, value, width);
              write_value (abfd, buf, value, width);
            }
            }
 
 
          start = buf;
          start = buf;
 
 
          if (hdr_info)
          if (hdr_info)
            {
            {
              hdr_info->array[hdr_info->array_count].initial_loc = address;
              hdr_info->array[hdr_info->array_count].initial_loc = address;
              hdr_info->array[hdr_info->array_count++].fde
              hdr_info->array[hdr_info->array_count++].fde
                = (sec->output_section->vma
                = (sec->output_section->vma
                   + sec->output_offset
                   + sec->output_offset
                   + ent->new_offset);
                   + ent->new_offset);
            }
            }
 
 
          if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel
          if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel
              || cie->u.cie.make_lsda_relative)
              || cie->u.cie.make_lsda_relative)
            {
            {
              buf += ent->lsda_offset;
              buf += ent->lsda_offset;
              width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
              width = get_DW_EH_PE_width (ent->lsda_encoding, ptr_size);
              value = read_value (abfd, buf, width,
              value = read_value (abfd, buf, width,
                                  get_DW_EH_PE_signed (ent->lsda_encoding));
                                  get_DW_EH_PE_signed (ent->lsda_encoding));
              if (value)
              if (value)
                {
                {
                  if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel)
                  if ((ent->lsda_encoding & 0xf0) == DW_EH_PE_pcrel)
                    value += ent->offset - ent->new_offset;
                    value += ent->offset - ent->new_offset;
                  else if (cie->u.cie.make_lsda_relative)
                  else if (cie->u.cie.make_lsda_relative)
                    value -= (sec->output_section->vma
                    value -= (sec->output_section->vma
                              + sec->output_offset
                              + sec->output_offset
                              + ent->new_offset + 8 + ent->lsda_offset);
                              + ent->new_offset + 8 + ent->lsda_offset);
                  write_value (abfd, buf, value, width);
                  write_value (abfd, buf, value, width);
                }
                }
            }
            }
          else if (ent->add_augmentation_size)
          else if (ent->add_augmentation_size)
            {
            {
              /* Skip the PC and length and insert a zero byte for the
              /* Skip the PC and length and insert a zero byte for the
                 augmentation size.  */
                 augmentation size.  */
              buf += width * 2;
              buf += width * 2;
              memmove (buf + 1, buf, end - buf);
              memmove (buf + 1, buf, end - buf);
              *buf = 0;
              *buf = 0;
            }
            }
 
 
          if (ent->set_loc)
          if (ent->set_loc)
            {
            {
              /* Adjust DW_CFA_set_loc.  */
              /* Adjust DW_CFA_set_loc.  */
              unsigned int cnt, width;
              unsigned int cnt, width;
              bfd_vma new_offset;
              bfd_vma new_offset;
 
 
              width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
              width = get_DW_EH_PE_width (ent->fde_encoding, ptr_size);
              new_offset = ent->new_offset + 8
              new_offset = ent->new_offset + 8
                           + extra_augmentation_string_bytes (ent)
                           + extra_augmentation_string_bytes (ent)
                           + extra_augmentation_data_bytes (ent);
                           + extra_augmentation_data_bytes (ent);
 
 
              for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
              for (cnt = 1; cnt <= ent->set_loc[0]; cnt++)
                {
                {
                  bfd_vma value;
                  bfd_vma value;
                  buf = start + ent->set_loc[cnt];
                  buf = start + ent->set_loc[cnt];
 
 
                  value = read_value (abfd, buf, width,
                  value = read_value (abfd, buf, width,
                                      get_DW_EH_PE_signed (ent->fde_encoding));
                                      get_DW_EH_PE_signed (ent->fde_encoding));
                  if (!value)
                  if (!value)
                    continue;
                    continue;
 
 
                  if ((ent->fde_encoding & 0xf0) == DW_EH_PE_pcrel)
                  if ((ent->fde_encoding & 0xf0) == DW_EH_PE_pcrel)
                    value += ent->offset + 8 - new_offset;
                    value += ent->offset + 8 - new_offset;
                  if (ent->make_relative)
                  if (ent->make_relative)
                    value -= (sec->output_section->vma
                    value -= (sec->output_section->vma
                              + sec->output_offset
                              + sec->output_offset
                              + new_offset + ent->set_loc[cnt]);
                              + new_offset + ent->set_loc[cnt]);
                  write_value (abfd, buf, value, width);
                  write_value (abfd, buf, value, width);
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  /* We don't align the section to its section alignment since the
  /* We don't align the section to its section alignment since the
     runtime library only expects all CIE/FDE records aligned at
     runtime library only expects all CIE/FDE records aligned at
     the pointer size. _bfd_elf_discard_section_eh_frame should
     the pointer size. _bfd_elf_discard_section_eh_frame should
     have padded CIE/FDE records to multiple of pointer size with
     have padded CIE/FDE records to multiple of pointer size with
     size_of_output_cie_fde.  */
     size_of_output_cie_fde.  */
  if ((sec->size % ptr_size) != 0)
  if ((sec->size % ptr_size) != 0)
    abort ();
    abort ();
 
 
  return bfd_set_section_contents (abfd, sec->output_section,
  return bfd_set_section_contents (abfd, sec->output_section,
                                   contents, (file_ptr) sec->output_offset,
                                   contents, (file_ptr) sec->output_offset,
                                   sec->size);
                                   sec->size);
}
}
 
 
/* Helper function used to sort .eh_frame_hdr search table by increasing
/* Helper function used to sort .eh_frame_hdr search table by increasing
   VMA of FDE initial location.  */
   VMA of FDE initial location.  */
 
 
static int
static int
vma_compare (const void *a, const void *b)
vma_compare (const void *a, const void *b)
{
{
  const struct eh_frame_array_ent *p = a;
  const struct eh_frame_array_ent *p = a;
  const struct eh_frame_array_ent *q = b;
  const struct eh_frame_array_ent *q = b;
  if (p->initial_loc > q->initial_loc)
  if (p->initial_loc > q->initial_loc)
    return 1;
    return 1;
  if (p->initial_loc < q->initial_loc)
  if (p->initial_loc < q->initial_loc)
    return -1;
    return -1;
  return 0;
  return 0;
}
}
 
 
/* Write out .eh_frame_hdr section.  This must be called after
/* Write out .eh_frame_hdr section.  This must be called after
   _bfd_elf_write_section_eh_frame has been called on all input
   _bfd_elf_write_section_eh_frame has been called on all input
   .eh_frame sections.
   .eh_frame sections.
   .eh_frame_hdr format:
   .eh_frame_hdr format:
   ubyte version                (currently 1)
   ubyte version                (currently 1)
   ubyte eh_frame_ptr_enc       (DW_EH_PE_* encoding of pointer to start of
   ubyte eh_frame_ptr_enc       (DW_EH_PE_* encoding of pointer to start of
                                 .eh_frame section)
                                 .eh_frame section)
   ubyte fde_count_enc          (DW_EH_PE_* encoding of total FDE count
   ubyte fde_count_enc          (DW_EH_PE_* encoding of total FDE count
                                 number (or DW_EH_PE_omit if there is no
                                 number (or DW_EH_PE_omit if there is no
                                 binary search table computed))
                                 binary search table computed))
   ubyte table_enc              (DW_EH_PE_* encoding of binary search table,
   ubyte table_enc              (DW_EH_PE_* encoding of binary search table,
                                 or DW_EH_PE_omit if not present.
                                 or DW_EH_PE_omit if not present.
                                 DW_EH_PE_datarel is using address of
                                 DW_EH_PE_datarel is using address of
                                 .eh_frame_hdr section start as base)
                                 .eh_frame_hdr section start as base)
   [encoded] eh_frame_ptr       (pointer to start of .eh_frame section)
   [encoded] eh_frame_ptr       (pointer to start of .eh_frame section)
   optionally followed by:
   optionally followed by:
   [encoded] fde_count          (total number of FDEs in .eh_frame section)
   [encoded] fde_count          (total number of FDEs in .eh_frame section)
   fde_count x [encoded] initial_loc, fde
   fde_count x [encoded] initial_loc, fde
                                (array of encoded pairs containing
                                (array of encoded pairs containing
                                 FDE initial_location field and FDE address,
                                 FDE initial_location field and FDE address,
                                 sorted by increasing initial_loc).  */
                                 sorted by increasing initial_loc).  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
_bfd_elf_write_section_eh_frame_hdr (bfd *abfd, struct bfd_link_info *info)
{
{
  struct elf_link_hash_table *htab;
  struct elf_link_hash_table *htab;
  struct eh_frame_hdr_info *hdr_info;
  struct eh_frame_hdr_info *hdr_info;
  asection *sec;
  asection *sec;
  bfd_byte *contents;
  bfd_byte *contents;
  asection *eh_frame_sec;
  asection *eh_frame_sec;
  bfd_size_type size;
  bfd_size_type size;
  bfd_boolean retval;
  bfd_boolean retval;
  bfd_vma encoded_eh_frame;
  bfd_vma encoded_eh_frame;
 
 
  htab = elf_hash_table (info);
  htab = elf_hash_table (info);
  hdr_info = &htab->eh_info;
  hdr_info = &htab->eh_info;
  sec = hdr_info->hdr_sec;
  sec = hdr_info->hdr_sec;
  if (sec == NULL)
  if (sec == NULL)
    return TRUE;
    return TRUE;
 
 
  size = EH_FRAME_HDR_SIZE;
  size = EH_FRAME_HDR_SIZE;
  if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
  if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
    size += 4 + hdr_info->fde_count * 8;
    size += 4 + hdr_info->fde_count * 8;
  contents = bfd_malloc (size);
  contents = bfd_malloc (size);
  if (contents == NULL)
  if (contents == NULL)
    return FALSE;
    return FALSE;
 
 
  eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
  eh_frame_sec = bfd_get_section_by_name (abfd, ".eh_frame");
  if (eh_frame_sec == NULL)
  if (eh_frame_sec == NULL)
    {
    {
      free (contents);
      free (contents);
      return FALSE;
      return FALSE;
    }
    }
 
 
  memset (contents, 0, EH_FRAME_HDR_SIZE);
  memset (contents, 0, EH_FRAME_HDR_SIZE);
  contents[0] = 1;                               /* Version.  */
  contents[0] = 1;                               /* Version.  */
  contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
  contents[1] = get_elf_backend_data (abfd)->elf_backend_encode_eh_address
    (abfd, info, eh_frame_sec, 0, sec, 4,
    (abfd, info, eh_frame_sec, 0, sec, 4,
     &encoded_eh_frame);                        /* .eh_frame offset.  */
     &encoded_eh_frame);                        /* .eh_frame offset.  */
 
 
  if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
  if (hdr_info->array && hdr_info->array_count == hdr_info->fde_count)
    {
    {
      contents[2] = DW_EH_PE_udata4;            /* FDE count encoding.  */
      contents[2] = DW_EH_PE_udata4;            /* FDE count encoding.  */
      contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc.  */
      contents[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4; /* Search table enc.  */
    }
    }
  else
  else
    {
    {
      contents[2] = DW_EH_PE_omit;
      contents[2] = DW_EH_PE_omit;
      contents[3] = DW_EH_PE_omit;
      contents[3] = DW_EH_PE_omit;
    }
    }
  bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
  bfd_put_32 (abfd, encoded_eh_frame, contents + 4);
 
 
  if (contents[2] != DW_EH_PE_omit)
  if (contents[2] != DW_EH_PE_omit)
    {
    {
      unsigned int i;
      unsigned int i;
 
 
      bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
      bfd_put_32 (abfd, hdr_info->fde_count, contents + EH_FRAME_HDR_SIZE);
      qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
      qsort (hdr_info->array, hdr_info->fde_count, sizeof (*hdr_info->array),
             vma_compare);
             vma_compare);
      for (i = 0; i < hdr_info->fde_count; i++)
      for (i = 0; i < hdr_info->fde_count; i++)
        {
        {
          bfd_put_32 (abfd,
          bfd_put_32 (abfd,
                      hdr_info->array[i].initial_loc
                      hdr_info->array[i].initial_loc
                      - sec->output_section->vma,
                      - sec->output_section->vma,
                      contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
                      contents + EH_FRAME_HDR_SIZE + i * 8 + 4);
          bfd_put_32 (abfd,
          bfd_put_32 (abfd,
                      hdr_info->array[i].fde - sec->output_section->vma,
                      hdr_info->array[i].fde - sec->output_section->vma,
                      contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
                      contents + EH_FRAME_HDR_SIZE + i * 8 + 8);
        }
        }
    }
    }
 
 
  retval = bfd_set_section_contents (abfd, sec->output_section,
  retval = bfd_set_section_contents (abfd, sec->output_section,
                                     contents, (file_ptr) sec->output_offset,
                                     contents, (file_ptr) sec->output_offset,
                                     sec->size);
                                     sec->size);
  free (contents);
  free (contents);
  return retval;
  return retval;
}
}
 
 
/* Return the width of FDE addresses.  This is the default implementation.  */
/* Return the width of FDE addresses.  This is the default implementation.  */
 
 
unsigned int
unsigned int
_bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
_bfd_elf_eh_frame_address_size (bfd *abfd, asection *sec ATTRIBUTE_UNUSED)
{
{
  return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
  return elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64 ? 8 : 4;
}
}
 
 
/* Decide whether we can use a PC-relative encoding within the given
/* Decide whether we can use a PC-relative encoding within the given
   EH frame section.  This is the default implementation.  */
   EH frame section.  This is the default implementation.  */
 
 
bfd_boolean
bfd_boolean
_bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
_bfd_elf_can_make_relative (bfd *input_bfd ATTRIBUTE_UNUSED,
                            struct bfd_link_info *info ATTRIBUTE_UNUSED,
                            struct bfd_link_info *info ATTRIBUTE_UNUSED,
                            asection *eh_frame_section ATTRIBUTE_UNUSED)
                            asection *eh_frame_section ATTRIBUTE_UNUSED)
{
{
  return TRUE;
  return TRUE;
}
}
 
 
/* Select an encoding for the given address.  Preference is given to
/* Select an encoding for the given address.  Preference is given to
   PC-relative addressing modes.  */
   PC-relative addressing modes.  */
 
 
bfd_byte
bfd_byte
_bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
_bfd_elf_encode_eh_address (bfd *abfd ATTRIBUTE_UNUSED,
                            struct bfd_link_info *info ATTRIBUTE_UNUSED,
                            struct bfd_link_info *info ATTRIBUTE_UNUSED,
                            asection *osec, bfd_vma offset,
                            asection *osec, bfd_vma offset,
                            asection *loc_sec, bfd_vma loc_offset,
                            asection *loc_sec, bfd_vma loc_offset,
                            bfd_vma *encoded)
                            bfd_vma *encoded)
{
{
  *encoded = osec->vma + offset -
  *encoded = osec->vma + offset -
    (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
    (loc_sec->output_section->vma + loc_sec->output_offset + loc_offset);
  return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
  return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.