OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [binutils-2.18.50/] [bfd/] [elf32-spu.c] - Diff between revs 156 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 156 Rev 816
/* SPU specific support for 32-bit ELF
/* SPU specific support for 32-bit ELF
 
 
   Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
   Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License along
   You should have received a copy of the GNU General Public License along
   with this program; if not, write to the Free Software Foundation, Inc.,
   with this program; if not, write to the Free Software Foundation, Inc.,
   51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
   51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
 
 
#include "sysdep.h"
#include "sysdep.h"
#include "libiberty.h"
#include "libiberty.h"
#include "bfd.h"
#include "bfd.h"
#include "bfdlink.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "libbfd.h"
#include "elf-bfd.h"
#include "elf-bfd.h"
#include "elf/spu.h"
#include "elf/spu.h"
#include "elf32-spu.h"
#include "elf32-spu.h"
 
 
/* We use RELA style relocs.  Don't define USE_REL.  */
/* We use RELA style relocs.  Don't define USE_REL.  */
 
 
static bfd_reloc_status_type spu_elf_rel9 (bfd *, arelent *, asymbol *,
static bfd_reloc_status_type spu_elf_rel9 (bfd *, arelent *, asymbol *,
                                           void *, asection *,
                                           void *, asection *,
                                           bfd *, char **);
                                           bfd *, char **);
 
 
/* Values of type 'enum elf_spu_reloc_type' are used to index this
/* Values of type 'enum elf_spu_reloc_type' are used to index this
   array, so it must be declared in the order of that type.  */
   array, so it must be declared in the order of that type.  */
 
 
static reloc_howto_type elf_howto_table[] = {
static reloc_howto_type elf_howto_table[] = {
  HOWTO (R_SPU_NONE,       0, 0,  0, FALSE,  0, complain_overflow_dont,
  HOWTO (R_SPU_NONE,       0, 0,  0, FALSE,  0, complain_overflow_dont,
         bfd_elf_generic_reloc, "SPU_NONE",
         bfd_elf_generic_reloc, "SPU_NONE",
         FALSE, 0, 0x00000000, FALSE),
         FALSE, 0, 0x00000000, FALSE),
  HOWTO (R_SPU_ADDR10,     4, 2, 10, FALSE, 14, complain_overflow_bitfield,
  HOWTO (R_SPU_ADDR10,     4, 2, 10, FALSE, 14, complain_overflow_bitfield,
         bfd_elf_generic_reloc, "SPU_ADDR10",
         bfd_elf_generic_reloc, "SPU_ADDR10",
         FALSE, 0, 0x00ffc000, FALSE),
         FALSE, 0, 0x00ffc000, FALSE),
  HOWTO (R_SPU_ADDR16,     2, 2, 16, FALSE,  7, complain_overflow_bitfield,
  HOWTO (R_SPU_ADDR16,     2, 2, 16, FALSE,  7, complain_overflow_bitfield,
         bfd_elf_generic_reloc, "SPU_ADDR16",
         bfd_elf_generic_reloc, "SPU_ADDR16",
         FALSE, 0, 0x007fff80, FALSE),
         FALSE, 0, 0x007fff80, FALSE),
  HOWTO (R_SPU_ADDR16_HI, 16, 2, 16, FALSE,  7, complain_overflow_bitfield,
  HOWTO (R_SPU_ADDR16_HI, 16, 2, 16, FALSE,  7, complain_overflow_bitfield,
         bfd_elf_generic_reloc, "SPU_ADDR16_HI",
         bfd_elf_generic_reloc, "SPU_ADDR16_HI",
         FALSE, 0, 0x007fff80, FALSE),
         FALSE, 0, 0x007fff80, FALSE),
  HOWTO (R_SPU_ADDR16_LO,  0, 2, 16, FALSE,  7, complain_overflow_dont,
  HOWTO (R_SPU_ADDR16_LO,  0, 2, 16, FALSE,  7, complain_overflow_dont,
         bfd_elf_generic_reloc, "SPU_ADDR16_LO",
         bfd_elf_generic_reloc, "SPU_ADDR16_LO",
         FALSE, 0, 0x007fff80, FALSE),
         FALSE, 0, 0x007fff80, FALSE),
  HOWTO (R_SPU_ADDR18,     0, 2, 18, FALSE,  7, complain_overflow_bitfield,
  HOWTO (R_SPU_ADDR18,     0, 2, 18, FALSE,  7, complain_overflow_bitfield,
         bfd_elf_generic_reloc, "SPU_ADDR18",
         bfd_elf_generic_reloc, "SPU_ADDR18",
         FALSE, 0, 0x01ffff80, FALSE),
         FALSE, 0, 0x01ffff80, FALSE),
  HOWTO (R_SPU_ADDR32,     0, 2, 32, FALSE,  0, complain_overflow_dont,
  HOWTO (R_SPU_ADDR32,     0, 2, 32, FALSE,  0, complain_overflow_dont,
         bfd_elf_generic_reloc, "SPU_ADDR32",
         bfd_elf_generic_reloc, "SPU_ADDR32",
         FALSE, 0, 0xffffffff, FALSE),
         FALSE, 0, 0xffffffff, FALSE),
  HOWTO (R_SPU_REL16,      2, 2, 16,  TRUE,  7, complain_overflow_bitfield,
  HOWTO (R_SPU_REL16,      2, 2, 16,  TRUE,  7, complain_overflow_bitfield,
         bfd_elf_generic_reloc, "SPU_REL16",
         bfd_elf_generic_reloc, "SPU_REL16",
         FALSE, 0, 0x007fff80, TRUE),
         FALSE, 0, 0x007fff80, TRUE),
  HOWTO (R_SPU_ADDR7,      0, 2,  7, FALSE, 14, complain_overflow_dont,
  HOWTO (R_SPU_ADDR7,      0, 2,  7, FALSE, 14, complain_overflow_dont,
         bfd_elf_generic_reloc, "SPU_ADDR7",
         bfd_elf_generic_reloc, "SPU_ADDR7",
         FALSE, 0, 0x001fc000, FALSE),
         FALSE, 0, 0x001fc000, FALSE),
  HOWTO (R_SPU_REL9,       2, 2,  9,  TRUE,  0, complain_overflow_signed,
  HOWTO (R_SPU_REL9,       2, 2,  9,  TRUE,  0, complain_overflow_signed,
         spu_elf_rel9,          "SPU_REL9",
         spu_elf_rel9,          "SPU_REL9",
         FALSE, 0, 0x0180007f, TRUE),
         FALSE, 0, 0x0180007f, TRUE),
  HOWTO (R_SPU_REL9I,      2, 2,  9,  TRUE,  0, complain_overflow_signed,
  HOWTO (R_SPU_REL9I,      2, 2,  9,  TRUE,  0, complain_overflow_signed,
         spu_elf_rel9,          "SPU_REL9I",
         spu_elf_rel9,          "SPU_REL9I",
         FALSE, 0, 0x0000c07f, TRUE),
         FALSE, 0, 0x0000c07f, TRUE),
  HOWTO (R_SPU_ADDR10I,    0, 2, 10, FALSE, 14, complain_overflow_signed,
  HOWTO (R_SPU_ADDR10I,    0, 2, 10, FALSE, 14, complain_overflow_signed,
         bfd_elf_generic_reloc, "SPU_ADDR10I",
         bfd_elf_generic_reloc, "SPU_ADDR10I",
         FALSE, 0, 0x00ffc000, FALSE),
         FALSE, 0, 0x00ffc000, FALSE),
  HOWTO (R_SPU_ADDR16I,    0, 2, 16, FALSE,  7, complain_overflow_signed,
  HOWTO (R_SPU_ADDR16I,    0, 2, 16, FALSE,  7, complain_overflow_signed,
         bfd_elf_generic_reloc, "SPU_ADDR16I",
         bfd_elf_generic_reloc, "SPU_ADDR16I",
         FALSE, 0, 0x007fff80, FALSE),
         FALSE, 0, 0x007fff80, FALSE),
  HOWTO (R_SPU_REL32,      0, 2, 32, TRUE,  0, complain_overflow_dont,
  HOWTO (R_SPU_REL32,      0, 2, 32, TRUE,  0, complain_overflow_dont,
         bfd_elf_generic_reloc, "SPU_REL32",
         bfd_elf_generic_reloc, "SPU_REL32",
         FALSE, 0, 0xffffffff, TRUE),
         FALSE, 0, 0xffffffff, TRUE),
  HOWTO (R_SPU_ADDR16X,    0, 2, 16, FALSE,  7, complain_overflow_bitfield,
  HOWTO (R_SPU_ADDR16X,    0, 2, 16, FALSE,  7, complain_overflow_bitfield,
         bfd_elf_generic_reloc, "SPU_ADDR16X",
         bfd_elf_generic_reloc, "SPU_ADDR16X",
         FALSE, 0, 0x007fff80, FALSE),
         FALSE, 0, 0x007fff80, FALSE),
  HOWTO (R_SPU_PPU32,      0, 2, 32, FALSE,  0, complain_overflow_dont,
  HOWTO (R_SPU_PPU32,      0, 2, 32, FALSE,  0, complain_overflow_dont,
         bfd_elf_generic_reloc, "SPU_PPU32",
         bfd_elf_generic_reloc, "SPU_PPU32",
         FALSE, 0, 0xffffffff, FALSE),
         FALSE, 0, 0xffffffff, FALSE),
  HOWTO (R_SPU_PPU64,      0, 4, 64, FALSE,  0, complain_overflow_dont,
  HOWTO (R_SPU_PPU64,      0, 4, 64, FALSE,  0, complain_overflow_dont,
         bfd_elf_generic_reloc, "SPU_PPU64",
         bfd_elf_generic_reloc, "SPU_PPU64",
         FALSE, 0, -1, FALSE),
         FALSE, 0, -1, FALSE),
};
};
 
 
static struct bfd_elf_special_section const spu_elf_special_sections[] = {
static struct bfd_elf_special_section const spu_elf_special_sections[] = {
  { ".toe", 4, 0, SHT_NOBITS, SHF_ALLOC },
  { ".toe", 4, 0, SHT_NOBITS, SHF_ALLOC },
  { NULL, 0, 0, 0, 0 }
  { NULL, 0, 0, 0, 0 }
};
};
 
 
static enum elf_spu_reloc_type
static enum elf_spu_reloc_type
spu_elf_bfd_to_reloc_type (bfd_reloc_code_real_type code)
spu_elf_bfd_to_reloc_type (bfd_reloc_code_real_type code)
{
{
  switch (code)
  switch (code)
    {
    {
    default:
    default:
      return R_SPU_NONE;
      return R_SPU_NONE;
    case BFD_RELOC_SPU_IMM10W:
    case BFD_RELOC_SPU_IMM10W:
      return R_SPU_ADDR10;
      return R_SPU_ADDR10;
    case BFD_RELOC_SPU_IMM16W:
    case BFD_RELOC_SPU_IMM16W:
      return R_SPU_ADDR16;
      return R_SPU_ADDR16;
    case BFD_RELOC_SPU_LO16:
    case BFD_RELOC_SPU_LO16:
      return R_SPU_ADDR16_LO;
      return R_SPU_ADDR16_LO;
    case BFD_RELOC_SPU_HI16:
    case BFD_RELOC_SPU_HI16:
      return R_SPU_ADDR16_HI;
      return R_SPU_ADDR16_HI;
    case BFD_RELOC_SPU_IMM18:
    case BFD_RELOC_SPU_IMM18:
      return R_SPU_ADDR18;
      return R_SPU_ADDR18;
    case BFD_RELOC_SPU_PCREL16:
    case BFD_RELOC_SPU_PCREL16:
      return R_SPU_REL16;
      return R_SPU_REL16;
    case BFD_RELOC_SPU_IMM7:
    case BFD_RELOC_SPU_IMM7:
      return R_SPU_ADDR7;
      return R_SPU_ADDR7;
    case BFD_RELOC_SPU_IMM8:
    case BFD_RELOC_SPU_IMM8:
      return R_SPU_NONE;
      return R_SPU_NONE;
    case BFD_RELOC_SPU_PCREL9a:
    case BFD_RELOC_SPU_PCREL9a:
      return R_SPU_REL9;
      return R_SPU_REL9;
    case BFD_RELOC_SPU_PCREL9b:
    case BFD_RELOC_SPU_PCREL9b:
      return R_SPU_REL9I;
      return R_SPU_REL9I;
    case BFD_RELOC_SPU_IMM10:
    case BFD_RELOC_SPU_IMM10:
      return R_SPU_ADDR10I;
      return R_SPU_ADDR10I;
    case BFD_RELOC_SPU_IMM16:
    case BFD_RELOC_SPU_IMM16:
      return R_SPU_ADDR16I;
      return R_SPU_ADDR16I;
    case BFD_RELOC_32:
    case BFD_RELOC_32:
      return R_SPU_ADDR32;
      return R_SPU_ADDR32;
    case BFD_RELOC_32_PCREL:
    case BFD_RELOC_32_PCREL:
      return R_SPU_REL32;
      return R_SPU_REL32;
    case BFD_RELOC_SPU_PPU32:
    case BFD_RELOC_SPU_PPU32:
      return R_SPU_PPU32;
      return R_SPU_PPU32;
    case BFD_RELOC_SPU_PPU64:
    case BFD_RELOC_SPU_PPU64:
      return R_SPU_PPU64;
      return R_SPU_PPU64;
    }
    }
}
}
 
 
static void
static void
spu_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
spu_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
                       arelent *cache_ptr,
                       arelent *cache_ptr,
                       Elf_Internal_Rela *dst)
                       Elf_Internal_Rela *dst)
{
{
  enum elf_spu_reloc_type r_type;
  enum elf_spu_reloc_type r_type;
 
 
  r_type = (enum elf_spu_reloc_type) ELF32_R_TYPE (dst->r_info);
  r_type = (enum elf_spu_reloc_type) ELF32_R_TYPE (dst->r_info);
  BFD_ASSERT (r_type < R_SPU_max);
  BFD_ASSERT (r_type < R_SPU_max);
  cache_ptr->howto = &elf_howto_table[(int) r_type];
  cache_ptr->howto = &elf_howto_table[(int) r_type];
}
}
 
 
static reloc_howto_type *
static reloc_howto_type *
spu_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
spu_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
                           bfd_reloc_code_real_type code)
                           bfd_reloc_code_real_type code)
{
{
  enum elf_spu_reloc_type r_type = spu_elf_bfd_to_reloc_type (code);
  enum elf_spu_reloc_type r_type = spu_elf_bfd_to_reloc_type (code);
 
 
  if (r_type == R_SPU_NONE)
  if (r_type == R_SPU_NONE)
    return NULL;
    return NULL;
 
 
  return elf_howto_table + r_type;
  return elf_howto_table + r_type;
}
}
 
 
static reloc_howto_type *
static reloc_howto_type *
spu_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
spu_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
                           const char *r_name)
                           const char *r_name)
{
{
  unsigned int i;
  unsigned int i;
 
 
  for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
  for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
    if (elf_howto_table[i].name != NULL
    if (elf_howto_table[i].name != NULL
        && strcasecmp (elf_howto_table[i].name, r_name) == 0)
        && strcasecmp (elf_howto_table[i].name, r_name) == 0)
      return &elf_howto_table[i];
      return &elf_howto_table[i];
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Apply R_SPU_REL9 and R_SPU_REL9I relocs.  */
/* Apply R_SPU_REL9 and R_SPU_REL9I relocs.  */
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
spu_elf_rel9 (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
spu_elf_rel9 (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
              void *data, asection *input_section,
              void *data, asection *input_section,
              bfd *output_bfd, char **error_message)
              bfd *output_bfd, char **error_message)
{
{
  bfd_size_type octets;
  bfd_size_type octets;
  bfd_vma val;
  bfd_vma val;
  long insn;
  long insn;
 
 
  /* If this is a relocatable link (output_bfd test tells us), just
  /* If this is a relocatable link (output_bfd test tells us), just
     call the generic function.  Any adjustment will be done at final
     call the generic function.  Any adjustment will be done at final
     link time.  */
     link time.  */
  if (output_bfd != NULL)
  if (output_bfd != NULL)
    return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
    return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
                                  input_section, output_bfd, error_message);
                                  input_section, output_bfd, error_message);
 
 
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
  if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
    return bfd_reloc_outofrange;
    return bfd_reloc_outofrange;
  octets = reloc_entry->address * bfd_octets_per_byte (abfd);
  octets = reloc_entry->address * bfd_octets_per_byte (abfd);
 
 
  /* Get symbol value.  */
  /* Get symbol value.  */
  val = 0;
  val = 0;
  if (!bfd_is_com_section (symbol->section))
  if (!bfd_is_com_section (symbol->section))
    val = symbol->value;
    val = symbol->value;
  if (symbol->section->output_section)
  if (symbol->section->output_section)
    val += symbol->section->output_section->vma;
    val += symbol->section->output_section->vma;
 
 
  val += reloc_entry->addend;
  val += reloc_entry->addend;
 
 
  /* Make it pc-relative.  */
  /* Make it pc-relative.  */
  val -= input_section->output_section->vma + input_section->output_offset;
  val -= input_section->output_section->vma + input_section->output_offset;
 
 
  val >>= 2;
  val >>= 2;
  if (val + 256 >= 512)
  if (val + 256 >= 512)
    return bfd_reloc_overflow;
    return bfd_reloc_overflow;
 
 
  insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
  insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
 
 
  /* Move two high bits of value to REL9I and REL9 position.
  /* Move two high bits of value to REL9I and REL9 position.
     The mask will take care of selecting the right field.  */
     The mask will take care of selecting the right field.  */
  val = (val & 0x7f) | ((val & 0x180) << 7) | ((val & 0x180) << 16);
  val = (val & 0x7f) | ((val & 0x180) << 7) | ((val & 0x180) << 16);
  insn &= ~reloc_entry->howto->dst_mask;
  insn &= ~reloc_entry->howto->dst_mask;
  insn |= val & reloc_entry->howto->dst_mask;
  insn |= val & reloc_entry->howto->dst_mask;
  bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
  bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}
 
 
static bfd_boolean
static bfd_boolean
spu_elf_new_section_hook (bfd *abfd, asection *sec)
spu_elf_new_section_hook (bfd *abfd, asection *sec)
{
{
  if (!sec->used_by_bfd)
  if (!sec->used_by_bfd)
    {
    {
      struct _spu_elf_section_data *sdata;
      struct _spu_elf_section_data *sdata;
 
 
      sdata = bfd_zalloc (abfd, sizeof (*sdata));
      sdata = bfd_zalloc (abfd, sizeof (*sdata));
      if (sdata == NULL)
      if (sdata == NULL)
        return FALSE;
        return FALSE;
      sec->used_by_bfd = sdata;
      sec->used_by_bfd = sdata;
    }
    }
 
 
  return _bfd_elf_new_section_hook (abfd, sec);
  return _bfd_elf_new_section_hook (abfd, sec);
}
}
 
 
/* Specially mark defined symbols named _EAR_* with BSF_KEEP so that
/* Specially mark defined symbols named _EAR_* with BSF_KEEP so that
   strip --strip-unneeded will not remove them.  */
   strip --strip-unneeded will not remove them.  */
 
 
static void
static void
spu_elf_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *sym)
spu_elf_backend_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *sym)
{
{
  if (sym->name != NULL
  if (sym->name != NULL
      && sym->section != bfd_abs_section_ptr
      && sym->section != bfd_abs_section_ptr
      && strncmp (sym->name, "_EAR_", 5) == 0)
      && strncmp (sym->name, "_EAR_", 5) == 0)
    sym->flags |= BSF_KEEP;
    sym->flags |= BSF_KEEP;
}
}
 
 
/* SPU ELF linker hash table.  */
/* SPU ELF linker hash table.  */
 
 
struct spu_link_hash_table
struct spu_link_hash_table
{
{
  struct elf_link_hash_table elf;
  struct elf_link_hash_table elf;
 
 
  /* Shortcuts to overlay sections.  */
  /* Shortcuts to overlay sections.  */
  asection *ovtab;
  asection *ovtab;
  asection *toe;
  asection *toe;
  asection **ovl_sec;
  asection **ovl_sec;
 
 
  /* Count of stubs in each overlay section.  */
  /* Count of stubs in each overlay section.  */
  unsigned int *stub_count;
  unsigned int *stub_count;
 
 
  /* The stub section for each overlay section.  */
  /* The stub section for each overlay section.  */
  asection **stub_sec;
  asection **stub_sec;
 
 
  struct elf_link_hash_entry *ovly_load;
  struct elf_link_hash_entry *ovly_load;
  struct elf_link_hash_entry *ovly_return;
  struct elf_link_hash_entry *ovly_return;
  unsigned long ovly_load_r_symndx;
  unsigned long ovly_load_r_symndx;
 
 
  /* Number of overlay buffers.  */
  /* Number of overlay buffers.  */
  unsigned int num_buf;
  unsigned int num_buf;
 
 
  /* Total number of overlays.  */
  /* Total number of overlays.  */
  unsigned int num_overlays;
  unsigned int num_overlays;
 
 
  /* How much memory we have.  */
  /* How much memory we have.  */
  unsigned int local_store;
  unsigned int local_store;
  /* Local store --auto-overlay should reserve for non-overlay
  /* Local store --auto-overlay should reserve for non-overlay
     functions and data.  */
     functions and data.  */
  unsigned int overlay_fixed;
  unsigned int overlay_fixed;
  /* Local store --auto-overlay should reserve for stack and heap.  */
  /* Local store --auto-overlay should reserve for stack and heap.  */
  unsigned int reserved;
  unsigned int reserved;
  /* Count of overlay stubs needed in non-overlay area.  */
  /* Count of overlay stubs needed in non-overlay area.  */
  unsigned int non_ovly_stub;
  unsigned int non_ovly_stub;
 
 
  /* Stash various callbacks for --auto-overlay.  */
  /* Stash various callbacks for --auto-overlay.  */
  void (*spu_elf_load_ovl_mgr) (void);
  void (*spu_elf_load_ovl_mgr) (void);
  FILE *(*spu_elf_open_overlay_script) (void);
  FILE *(*spu_elf_open_overlay_script) (void);
  void (*spu_elf_relink) (void);
  void (*spu_elf_relink) (void);
 
 
  /* Bit 0 set if --auto-overlay.
  /* Bit 0 set if --auto-overlay.
     Bit 1 set if --auto-relink.
     Bit 1 set if --auto-relink.
     Bit 2 set if --overlay-rodata.  */
     Bit 2 set if --overlay-rodata.  */
  unsigned int auto_overlay : 3;
  unsigned int auto_overlay : 3;
#define AUTO_OVERLAY 1
#define AUTO_OVERLAY 1
#define AUTO_RELINK 2
#define AUTO_RELINK 2
#define OVERLAY_RODATA 4
#define OVERLAY_RODATA 4
 
 
  /* Set if we should emit symbols for stubs.  */
  /* Set if we should emit symbols for stubs.  */
  unsigned int emit_stub_syms:1;
  unsigned int emit_stub_syms:1;
 
 
  /* Set if we want stubs on calls out of overlay regions to
  /* Set if we want stubs on calls out of overlay regions to
     non-overlay regions.  */
     non-overlay regions.  */
  unsigned int non_overlay_stubs : 1;
  unsigned int non_overlay_stubs : 1;
 
 
  /* Set on error.  */
  /* Set on error.  */
  unsigned int stub_err : 1;
  unsigned int stub_err : 1;
 
 
  /* Set if stack size analysis should be done.  */
  /* Set if stack size analysis should be done.  */
  unsigned int stack_analysis : 1;
  unsigned int stack_analysis : 1;
 
 
  /* Set if __stack_* syms will be emitted.  */
  /* Set if __stack_* syms will be emitted.  */
  unsigned int emit_stack_syms : 1;
  unsigned int emit_stack_syms : 1;
};
};
 
 
/* Hijack the generic got fields for overlay stub accounting.  */
/* Hijack the generic got fields for overlay stub accounting.  */
 
 
struct got_entry
struct got_entry
{
{
  struct got_entry *next;
  struct got_entry *next;
  unsigned int ovl;
  unsigned int ovl;
  bfd_vma addend;
  bfd_vma addend;
  bfd_vma stub_addr;
  bfd_vma stub_addr;
};
};
 
 
#define spu_hash_table(p) \
#define spu_hash_table(p) \
  ((struct spu_link_hash_table *) ((p)->hash))
  ((struct spu_link_hash_table *) ((p)->hash))
 
 
/* Create a spu ELF linker hash table.  */
/* Create a spu ELF linker hash table.  */
 
 
static struct bfd_link_hash_table *
static struct bfd_link_hash_table *
spu_elf_link_hash_table_create (bfd *abfd)
spu_elf_link_hash_table_create (bfd *abfd)
{
{
  struct spu_link_hash_table *htab;
  struct spu_link_hash_table *htab;
 
 
  htab = bfd_malloc (sizeof (*htab));
  htab = bfd_malloc (sizeof (*htab));
  if (htab == NULL)
  if (htab == NULL)
    return NULL;
    return NULL;
 
 
  if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd,
  if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd,
                                      _bfd_elf_link_hash_newfunc,
                                      _bfd_elf_link_hash_newfunc,
                                      sizeof (struct elf_link_hash_entry)))
                                      sizeof (struct elf_link_hash_entry)))
    {
    {
      free (htab);
      free (htab);
      return NULL;
      return NULL;
    }
    }
 
 
  memset (&htab->ovtab, 0,
  memset (&htab->ovtab, 0,
          sizeof (*htab) - offsetof (struct spu_link_hash_table, ovtab));
          sizeof (*htab) - offsetof (struct spu_link_hash_table, ovtab));
 
 
  htab->elf.init_got_refcount.refcount = 0;
  htab->elf.init_got_refcount.refcount = 0;
  htab->elf.init_got_refcount.glist = NULL;
  htab->elf.init_got_refcount.glist = NULL;
  htab->elf.init_got_offset.offset = 0;
  htab->elf.init_got_offset.offset = 0;
  htab->elf.init_got_offset.glist = NULL;
  htab->elf.init_got_offset.glist = NULL;
  return &htab->elf.root;
  return &htab->elf.root;
}
}
 
 
/* Find the symbol for the given R_SYMNDX in IBFD and set *HP and *SYMP
/* Find the symbol for the given R_SYMNDX in IBFD and set *HP and *SYMP
   to (hash, NULL) for global symbols, and (NULL, sym) for locals.  Set
   to (hash, NULL) for global symbols, and (NULL, sym) for locals.  Set
   *SYMSECP to the symbol's section.  *LOCSYMSP caches local syms.  */
   *SYMSECP to the symbol's section.  *LOCSYMSP caches local syms.  */
 
 
static bfd_boolean
static bfd_boolean
get_sym_h (struct elf_link_hash_entry **hp,
get_sym_h (struct elf_link_hash_entry **hp,
           Elf_Internal_Sym **symp,
           Elf_Internal_Sym **symp,
           asection **symsecp,
           asection **symsecp,
           Elf_Internal_Sym **locsymsp,
           Elf_Internal_Sym **locsymsp,
           unsigned long r_symndx,
           unsigned long r_symndx,
           bfd *ibfd)
           bfd *ibfd)
{
{
  Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
 
 
  if (r_symndx >= symtab_hdr->sh_info)
  if (r_symndx >= symtab_hdr->sh_info)
    {
    {
      struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
      struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
 
 
      h = sym_hashes[r_symndx - symtab_hdr->sh_info];
      h = sym_hashes[r_symndx - symtab_hdr->sh_info];
      while (h->root.type == bfd_link_hash_indirect
      while (h->root.type == bfd_link_hash_indirect
             || h->root.type == bfd_link_hash_warning)
             || h->root.type == bfd_link_hash_warning)
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
        h = (struct elf_link_hash_entry *) h->root.u.i.link;
 
 
      if (hp != NULL)
      if (hp != NULL)
        *hp = h;
        *hp = h;
 
 
      if (symp != NULL)
      if (symp != NULL)
        *symp = NULL;
        *symp = NULL;
 
 
      if (symsecp != NULL)
      if (symsecp != NULL)
        {
        {
          asection *symsec = NULL;
          asection *symsec = NULL;
          if (h->root.type == bfd_link_hash_defined
          if (h->root.type == bfd_link_hash_defined
              || h->root.type == bfd_link_hash_defweak)
              || h->root.type == bfd_link_hash_defweak)
            symsec = h->root.u.def.section;
            symsec = h->root.u.def.section;
          *symsecp = symsec;
          *symsecp = symsec;
        }
        }
    }
    }
  else
  else
    {
    {
      Elf_Internal_Sym *sym;
      Elf_Internal_Sym *sym;
      Elf_Internal_Sym *locsyms = *locsymsp;
      Elf_Internal_Sym *locsyms = *locsymsp;
 
 
      if (locsyms == NULL)
      if (locsyms == NULL)
        {
        {
          locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
          locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
          if (locsyms == NULL)
          if (locsyms == NULL)
            {
            {
              size_t symcount = symtab_hdr->sh_info;
              size_t symcount = symtab_hdr->sh_info;
 
 
              /* If we are reading symbols into the contents, then
              /* If we are reading symbols into the contents, then
                 read the global syms too.  This is done to cache
                 read the global syms too.  This is done to cache
                 syms for later stack analysis.  */
                 syms for later stack analysis.  */
              if ((unsigned char **) locsymsp == &symtab_hdr->contents)
              if ((unsigned char **) locsymsp == &symtab_hdr->contents)
                symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
                symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
              locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, 0,
              locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, 0,
                                              NULL, NULL, NULL);
                                              NULL, NULL, NULL);
            }
            }
          if (locsyms == NULL)
          if (locsyms == NULL)
            return FALSE;
            return FALSE;
          *locsymsp = locsyms;
          *locsymsp = locsyms;
        }
        }
      sym = locsyms + r_symndx;
      sym = locsyms + r_symndx;
 
 
      if (hp != NULL)
      if (hp != NULL)
        *hp = NULL;
        *hp = NULL;
 
 
      if (symp != NULL)
      if (symp != NULL)
        *symp = sym;
        *symp = sym;
 
 
      if (symsecp != NULL)
      if (symsecp != NULL)
        *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
        *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Create the note section if not already present.  This is done early so
/* Create the note section if not already present.  This is done early so
   that the linker maps the sections to the right place in the output.  */
   that the linker maps the sections to the right place in the output.  */
 
 
bfd_boolean
bfd_boolean
spu_elf_create_sections (struct bfd_link_info *info,
spu_elf_create_sections (struct bfd_link_info *info,
                         int stack_analysis,
                         int stack_analysis,
                         int emit_stack_syms)
                         int emit_stack_syms)
{
{
  bfd *ibfd;
  bfd *ibfd;
  struct spu_link_hash_table *htab = spu_hash_table (info);
  struct spu_link_hash_table *htab = spu_hash_table (info);
 
 
  /* Stash some options away where we can get at them later.  */
  /* Stash some options away where we can get at them later.  */
  htab->stack_analysis = stack_analysis;
  htab->stack_analysis = stack_analysis;
  htab->emit_stack_syms = emit_stack_syms;
  htab->emit_stack_syms = emit_stack_syms;
 
 
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
    if (bfd_get_section_by_name (ibfd, SPU_PTNOTE_SPUNAME) != NULL)
    if (bfd_get_section_by_name (ibfd, SPU_PTNOTE_SPUNAME) != NULL)
      break;
      break;
 
 
  if (ibfd == NULL)
  if (ibfd == NULL)
    {
    {
      /* Make SPU_PTNOTE_SPUNAME section.  */
      /* Make SPU_PTNOTE_SPUNAME section.  */
      asection *s;
      asection *s;
      size_t name_len;
      size_t name_len;
      size_t size;
      size_t size;
      bfd_byte *data;
      bfd_byte *data;
      flagword flags;
      flagword flags;
 
 
      ibfd = info->input_bfds;
      ibfd = info->input_bfds;
      flags = SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
      flags = SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS | SEC_IN_MEMORY;
      s = bfd_make_section_anyway_with_flags (ibfd, SPU_PTNOTE_SPUNAME, flags);
      s = bfd_make_section_anyway_with_flags (ibfd, SPU_PTNOTE_SPUNAME, flags);
      if (s == NULL
      if (s == NULL
          || !bfd_set_section_alignment (ibfd, s, 4))
          || !bfd_set_section_alignment (ibfd, s, 4))
        return FALSE;
        return FALSE;
 
 
      name_len = strlen (bfd_get_filename (info->output_bfd)) + 1;
      name_len = strlen (bfd_get_filename (info->output_bfd)) + 1;
      size = 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4);
      size = 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4);
      size += (name_len + 3) & -4;
      size += (name_len + 3) & -4;
 
 
      if (!bfd_set_section_size (ibfd, s, size))
      if (!bfd_set_section_size (ibfd, s, size))
        return FALSE;
        return FALSE;
 
 
      data = bfd_zalloc (ibfd, size);
      data = bfd_zalloc (ibfd, size);
      if (data == NULL)
      if (data == NULL)
        return FALSE;
        return FALSE;
 
 
      bfd_put_32 (ibfd, sizeof (SPU_PLUGIN_NAME), data + 0);
      bfd_put_32 (ibfd, sizeof (SPU_PLUGIN_NAME), data + 0);
      bfd_put_32 (ibfd, name_len, data + 4);
      bfd_put_32 (ibfd, name_len, data + 4);
      bfd_put_32 (ibfd, 1, data + 8);
      bfd_put_32 (ibfd, 1, data + 8);
      memcpy (data + 12, SPU_PLUGIN_NAME, sizeof (SPU_PLUGIN_NAME));
      memcpy (data + 12, SPU_PLUGIN_NAME, sizeof (SPU_PLUGIN_NAME));
      memcpy (data + 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4),
      memcpy (data + 12 + ((sizeof (SPU_PLUGIN_NAME) + 3) & -4),
              bfd_get_filename (info->output_bfd), name_len);
              bfd_get_filename (info->output_bfd), name_len);
      s->contents = data;
      s->contents = data;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* qsort predicate to sort sections by vma.  */
/* qsort predicate to sort sections by vma.  */
 
 
static int
static int
sort_sections (const void *a, const void *b)
sort_sections (const void *a, const void *b)
{
{
  const asection *const *s1 = a;
  const asection *const *s1 = a;
  const asection *const *s2 = b;
  const asection *const *s2 = b;
  bfd_signed_vma delta = (*s1)->vma - (*s2)->vma;
  bfd_signed_vma delta = (*s1)->vma - (*s2)->vma;
 
 
  if (delta != 0)
  if (delta != 0)
    return delta < 0 ? -1 : 1;
    return delta < 0 ? -1 : 1;
 
 
  return (*s1)->index - (*s2)->index;
  return (*s1)->index - (*s2)->index;
}
}
 
 
/* Identify overlays in the output bfd, and number them.  */
/* Identify overlays in the output bfd, and number them.  */
 
 
bfd_boolean
bfd_boolean
spu_elf_find_overlays (struct bfd_link_info *info)
spu_elf_find_overlays (struct bfd_link_info *info)
{
{
  struct spu_link_hash_table *htab = spu_hash_table (info);
  struct spu_link_hash_table *htab = spu_hash_table (info);
  asection **alloc_sec;
  asection **alloc_sec;
  unsigned int i, n, ovl_index, num_buf;
  unsigned int i, n, ovl_index, num_buf;
  asection *s;
  asection *s;
  bfd_vma ovl_end;
  bfd_vma ovl_end;
 
 
  if (info->output_bfd->section_count < 2)
  if (info->output_bfd->section_count < 2)
    return FALSE;
    return FALSE;
 
 
  alloc_sec
  alloc_sec
    = bfd_malloc (info->output_bfd->section_count * sizeof (*alloc_sec));
    = bfd_malloc (info->output_bfd->section_count * sizeof (*alloc_sec));
  if (alloc_sec == NULL)
  if (alloc_sec == NULL)
    return FALSE;
    return FALSE;
 
 
  /* Pick out all the alloced sections.  */
  /* Pick out all the alloced sections.  */
  for (n = 0, s = info->output_bfd->sections; s != NULL; s = s->next)
  for (n = 0, s = info->output_bfd->sections; s != NULL; s = s->next)
    if ((s->flags & SEC_ALLOC) != 0
    if ((s->flags & SEC_ALLOC) != 0
        && (s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != SEC_THREAD_LOCAL
        && (s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != SEC_THREAD_LOCAL
        && s->size != 0)
        && s->size != 0)
      alloc_sec[n++] = s;
      alloc_sec[n++] = s;
 
 
  if (n == 0)
  if (n == 0)
    {
    {
      free (alloc_sec);
      free (alloc_sec);
      return FALSE;
      return FALSE;
    }
    }
 
 
  /* Sort them by vma.  */
  /* Sort them by vma.  */
  qsort (alloc_sec, n, sizeof (*alloc_sec), sort_sections);
  qsort (alloc_sec, n, sizeof (*alloc_sec), sort_sections);
 
 
  /* Look for overlapping vmas.  Any with overlap must be overlays.
  /* Look for overlapping vmas.  Any with overlap must be overlays.
     Count them.  Also count the number of overlay regions.  */
     Count them.  Also count the number of overlay regions.  */
  ovl_end = alloc_sec[0]->vma + alloc_sec[0]->size;
  ovl_end = alloc_sec[0]->vma + alloc_sec[0]->size;
  for (ovl_index = 0, num_buf = 0, i = 1; i < n; i++)
  for (ovl_index = 0, num_buf = 0, i = 1; i < n; i++)
    {
    {
      s = alloc_sec[i];
      s = alloc_sec[i];
      if (s->vma < ovl_end)
      if (s->vma < ovl_end)
        {
        {
          asection *s0 = alloc_sec[i - 1];
          asection *s0 = alloc_sec[i - 1];
 
 
          if (spu_elf_section_data (s0)->u.o.ovl_index == 0)
          if (spu_elf_section_data (s0)->u.o.ovl_index == 0)
            {
            {
              alloc_sec[ovl_index] = s0;
              alloc_sec[ovl_index] = s0;
              spu_elf_section_data (s0)->u.o.ovl_index = ++ovl_index;
              spu_elf_section_data (s0)->u.o.ovl_index = ++ovl_index;
              spu_elf_section_data (s0)->u.o.ovl_buf = ++num_buf;
              spu_elf_section_data (s0)->u.o.ovl_buf = ++num_buf;
            }
            }
          alloc_sec[ovl_index] = s;
          alloc_sec[ovl_index] = s;
          spu_elf_section_data (s)->u.o.ovl_index = ++ovl_index;
          spu_elf_section_data (s)->u.o.ovl_index = ++ovl_index;
          spu_elf_section_data (s)->u.o.ovl_buf = num_buf;
          spu_elf_section_data (s)->u.o.ovl_buf = num_buf;
          if (s0->vma != s->vma)
          if (s0->vma != s->vma)
            {
            {
              info->callbacks->einfo (_("%X%P: overlay sections %A and %A "
              info->callbacks->einfo (_("%X%P: overlay sections %A and %A "
                                        "do not start at the same address.\n"),
                                        "do not start at the same address.\n"),
                                      s0, s);
                                      s0, s);
              return FALSE;
              return FALSE;
            }
            }
          if (ovl_end < s->vma + s->size)
          if (ovl_end < s->vma + s->size)
            ovl_end = s->vma + s->size;
            ovl_end = s->vma + s->size;
        }
        }
      else
      else
        ovl_end = s->vma + s->size;
        ovl_end = s->vma + s->size;
    }
    }
 
 
  htab->num_overlays = ovl_index;
  htab->num_overlays = ovl_index;
  htab->num_buf = num_buf;
  htab->num_buf = num_buf;
  htab->ovl_sec = alloc_sec;
  htab->ovl_sec = alloc_sec;
  htab->ovly_load = elf_link_hash_lookup (&htab->elf, "__ovly_load",
  htab->ovly_load = elf_link_hash_lookup (&htab->elf, "__ovly_load",
                                          FALSE, FALSE, FALSE);
                                          FALSE, FALSE, FALSE);
  htab->ovly_return = elf_link_hash_lookup (&htab->elf, "__ovly_return",
  htab->ovly_return = elf_link_hash_lookup (&htab->elf, "__ovly_return",
                                            FALSE, FALSE, FALSE);
                                            FALSE, FALSE, FALSE);
  return ovl_index != 0;
  return ovl_index != 0;
}
}
 
 
/* Support two sizes of overlay stubs, a slower more compact stub of two
/* Support two sizes of overlay stubs, a slower more compact stub of two
   intructions, and a faster stub of four instructions.  */
   intructions, and a faster stub of four instructions.  */
#ifndef OVL_STUB_SIZE
#ifndef OVL_STUB_SIZE
/* Default to faster.  */
/* Default to faster.  */
#define OVL_STUB_SIZE 16
#define OVL_STUB_SIZE 16
/* #define OVL_STUB_SIZE 8 */
/* #define OVL_STUB_SIZE 8 */
#endif
#endif
#define BRSL    0x33000000
#define BRSL    0x33000000
#define BR      0x32000000
#define BR      0x32000000
#define NOP     0x40200000
#define NOP     0x40200000
#define LNOP    0x00200000
#define LNOP    0x00200000
#define ILA     0x42000000
#define ILA     0x42000000
 
 
/* Return true for all relative and absolute branch instructions.
/* Return true for all relative and absolute branch instructions.
   bra   00110000 0..
   bra   00110000 0..
   brasl 00110001 0..
   brasl 00110001 0..
   br    00110010 0..
   br    00110010 0..
   brsl  00110011 0..
   brsl  00110011 0..
   brz   00100000 0..
   brz   00100000 0..
   brnz  00100001 0..
   brnz  00100001 0..
   brhz  00100010 0..
   brhz  00100010 0..
   brhnz 00100011 0..  */
   brhnz 00100011 0..  */
 
 
static bfd_boolean
static bfd_boolean
is_branch (const unsigned char *insn)
is_branch (const unsigned char *insn)
{
{
  return (insn[0] & 0xec) == 0x20 && (insn[1] & 0x80) == 0;
  return (insn[0] & 0xec) == 0x20 && (insn[1] & 0x80) == 0;
}
}
 
 
/* Return true for all indirect branch instructions.
/* Return true for all indirect branch instructions.
   bi     00110101 000
   bi     00110101 000
   bisl   00110101 001
   bisl   00110101 001
   iret   00110101 010
   iret   00110101 010
   bisled 00110101 011
   bisled 00110101 011
   biz    00100101 000
   biz    00100101 000
   binz   00100101 001
   binz   00100101 001
   bihz   00100101 010
   bihz   00100101 010
   bihnz  00100101 011  */
   bihnz  00100101 011  */
 
 
static bfd_boolean
static bfd_boolean
is_indirect_branch (const unsigned char *insn)
is_indirect_branch (const unsigned char *insn)
{
{
  return (insn[0] & 0xef) == 0x25 && (insn[1] & 0x80) == 0;
  return (insn[0] & 0xef) == 0x25 && (insn[1] & 0x80) == 0;
}
}
 
 
/* Return true for branch hint instructions.
/* Return true for branch hint instructions.
   hbra  0001000..
   hbra  0001000..
   hbrr  0001001..  */
   hbrr  0001001..  */
 
 
static bfd_boolean
static bfd_boolean
is_hint (const unsigned char *insn)
is_hint (const unsigned char *insn)
{
{
  return (insn[0] & 0xfc) == 0x10;
  return (insn[0] & 0xfc) == 0x10;
}
}
 
 
/* True if INPUT_SECTION might need overlay stubs.  */
/* True if INPUT_SECTION might need overlay stubs.  */
 
 
static bfd_boolean
static bfd_boolean
maybe_needs_stubs (asection *input_section, bfd *output_bfd)
maybe_needs_stubs (asection *input_section, bfd *output_bfd)
{
{
  /* No stubs for debug sections and suchlike.  */
  /* No stubs for debug sections and suchlike.  */
  if ((input_section->flags & SEC_ALLOC) == 0)
  if ((input_section->flags & SEC_ALLOC) == 0)
    return FALSE;
    return FALSE;
 
 
  /* No stubs for link-once sections that will be discarded.  */
  /* No stubs for link-once sections that will be discarded.  */
  if (input_section->output_section == NULL
  if (input_section->output_section == NULL
      || input_section->output_section->owner != output_bfd)
      || input_section->output_section->owner != output_bfd)
    return FALSE;
    return FALSE;
 
 
  /* Don't create stubs for .eh_frame references.  */
  /* Don't create stubs for .eh_frame references.  */
  if (strcmp (input_section->name, ".eh_frame") == 0)
  if (strcmp (input_section->name, ".eh_frame") == 0)
    return FALSE;
    return FALSE;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
enum _stub_type
enum _stub_type
{
{
  no_stub,
  no_stub,
  ovl_stub,
  ovl_stub,
  nonovl_stub,
  nonovl_stub,
  stub_error
  stub_error
};
};
 
 
/* Return non-zero if this reloc symbol should go via an overlay stub.
/* Return non-zero if this reloc symbol should go via an overlay stub.
   Return 2 if the stub must be in non-overlay area.  */
   Return 2 if the stub must be in non-overlay area.  */
 
 
static enum _stub_type
static enum _stub_type
needs_ovl_stub (struct elf_link_hash_entry *h,
needs_ovl_stub (struct elf_link_hash_entry *h,
                Elf_Internal_Sym *sym,
                Elf_Internal_Sym *sym,
                asection *sym_sec,
                asection *sym_sec,
                asection *input_section,
                asection *input_section,
                Elf_Internal_Rela *irela,
                Elf_Internal_Rela *irela,
                bfd_byte *contents,
                bfd_byte *contents,
                struct bfd_link_info *info)
                struct bfd_link_info *info)
{
{
  struct spu_link_hash_table *htab = spu_hash_table (info);
  struct spu_link_hash_table *htab = spu_hash_table (info);
  enum elf_spu_reloc_type r_type;
  enum elf_spu_reloc_type r_type;
  unsigned int sym_type;
  unsigned int sym_type;
  bfd_boolean branch;
  bfd_boolean branch;
  enum _stub_type ret = no_stub;
  enum _stub_type ret = no_stub;
 
 
  if (sym_sec == NULL
  if (sym_sec == NULL
      || sym_sec->output_section == NULL
      || sym_sec->output_section == NULL
      || sym_sec->output_section->owner != info->output_bfd
      || sym_sec->output_section->owner != info->output_bfd
      || spu_elf_section_data (sym_sec->output_section) == NULL)
      || spu_elf_section_data (sym_sec->output_section) == NULL)
    return ret;
    return ret;
 
 
  if (h != NULL)
  if (h != NULL)
    {
    {
      /* Ensure no stubs for user supplied overlay manager syms.  */
      /* Ensure no stubs for user supplied overlay manager syms.  */
      if (h == htab->ovly_load || h == htab->ovly_return)
      if (h == htab->ovly_load || h == htab->ovly_return)
        return ret;
        return ret;
 
 
      /* setjmp always goes via an overlay stub, because then the return
      /* setjmp always goes via an overlay stub, because then the return
         and hence the longjmp goes via __ovly_return.  That magically
         and hence the longjmp goes via __ovly_return.  That magically
         makes setjmp/longjmp between overlays work.  */
         makes setjmp/longjmp between overlays work.  */
      if (strncmp (h->root.root.string, "setjmp", 6) == 0
      if (strncmp (h->root.root.string, "setjmp", 6) == 0
          && (h->root.root.string[6] == '\0' || h->root.root.string[6] == '@'))
          && (h->root.root.string[6] == '\0' || h->root.root.string[6] == '@'))
        ret = ovl_stub;
        ret = ovl_stub;
    }
    }
 
 
  /* Usually, symbols in non-overlay sections don't need stubs.  */
  /* Usually, symbols in non-overlay sections don't need stubs.  */
  if (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index == 0
  if (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index == 0
      && !htab->non_overlay_stubs)
      && !htab->non_overlay_stubs)
    return ret;
    return ret;
 
 
  if (h != NULL)
  if (h != NULL)
    sym_type = h->type;
    sym_type = h->type;
  else
  else
    sym_type = ELF_ST_TYPE (sym->st_info);
    sym_type = ELF_ST_TYPE (sym->st_info);
 
 
  r_type = ELF32_R_TYPE (irela->r_info);
  r_type = ELF32_R_TYPE (irela->r_info);
  branch = FALSE;
  branch = FALSE;
  if (r_type == R_SPU_REL16 || r_type == R_SPU_ADDR16)
  if (r_type == R_SPU_REL16 || r_type == R_SPU_ADDR16)
    {
    {
      bfd_byte insn[4];
      bfd_byte insn[4];
 
 
      if (contents == NULL)
      if (contents == NULL)
        {
        {
          contents = insn;
          contents = insn;
          if (!bfd_get_section_contents (input_section->owner,
          if (!bfd_get_section_contents (input_section->owner,
                                         input_section,
                                         input_section,
                                         contents,
                                         contents,
                                         irela->r_offset, 4))
                                         irela->r_offset, 4))
            return stub_error;
            return stub_error;
        }
        }
      else
      else
        contents += irela->r_offset;
        contents += irela->r_offset;
 
 
      if (is_branch (contents) || is_hint (contents))
      if (is_branch (contents) || is_hint (contents))
        {
        {
          branch = TRUE;
          branch = TRUE;
          if ((contents[0] & 0xfd) == 0x31
          if ((contents[0] & 0xfd) == 0x31
              && sym_type != STT_FUNC
              && sym_type != STT_FUNC
              && contents != insn)
              && contents != insn)
            {
            {
              /* It's common for people to write assembly and forget
              /* It's common for people to write assembly and forget
                 to give function symbols the right type.  Handle
                 to give function symbols the right type.  Handle
                 calls to such symbols, but warn so that (hopefully)
                 calls to such symbols, but warn so that (hopefully)
                 people will fix their code.  We need the symbol
                 people will fix their code.  We need the symbol
                 type to be correct to distinguish function pointer
                 type to be correct to distinguish function pointer
                 initialisation from other pointer initialisations.  */
                 initialisation from other pointer initialisations.  */
              const char *sym_name;
              const char *sym_name;
 
 
              if (h != NULL)
              if (h != NULL)
                sym_name = h->root.root.string;
                sym_name = h->root.root.string;
              else
              else
                {
                {
                  Elf_Internal_Shdr *symtab_hdr;
                  Elf_Internal_Shdr *symtab_hdr;
                  symtab_hdr = &elf_tdata (input_section->owner)->symtab_hdr;
                  symtab_hdr = &elf_tdata (input_section->owner)->symtab_hdr;
                  sym_name = bfd_elf_sym_name (input_section->owner,
                  sym_name = bfd_elf_sym_name (input_section->owner,
                                               symtab_hdr,
                                               symtab_hdr,
                                               sym,
                                               sym,
                                               sym_sec);
                                               sym_sec);
                }
                }
              (*_bfd_error_handler) (_("warning: call to non-function"
              (*_bfd_error_handler) (_("warning: call to non-function"
                                       " symbol %s defined in %B"),
                                       " symbol %s defined in %B"),
                                     sym_sec->owner, sym_name);
                                     sym_sec->owner, sym_name);
 
 
            }
            }
        }
        }
    }
    }
 
 
  if (sym_type != STT_FUNC
  if (sym_type != STT_FUNC
      && !branch
      && !branch
      && (sym_sec->flags & SEC_CODE) == 0)
      && (sym_sec->flags & SEC_CODE) == 0)
    return ret;
    return ret;
 
 
  /* A reference from some other section to a symbol in an overlay
  /* A reference from some other section to a symbol in an overlay
     section needs a stub.  */
     section needs a stub.  */
  if (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index
  if (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index
       != spu_elf_section_data (input_section->output_section)->u.o.ovl_index)
       != spu_elf_section_data (input_section->output_section)->u.o.ovl_index)
    return ovl_stub;
    return ovl_stub;
 
 
  /* If this insn isn't a branch then we are possibly taking the
  /* If this insn isn't a branch then we are possibly taking the
     address of a function and passing it out somehow.  */
     address of a function and passing it out somehow.  */
  return !branch && sym_type == STT_FUNC ? nonovl_stub : ret;
  return !branch && sym_type == STT_FUNC ? nonovl_stub : ret;
}
}
 
 
static bfd_boolean
static bfd_boolean
count_stub (struct spu_link_hash_table *htab,
count_stub (struct spu_link_hash_table *htab,
            bfd *ibfd,
            bfd *ibfd,
            asection *isec,
            asection *isec,
            enum _stub_type stub_type,
            enum _stub_type stub_type,
            struct elf_link_hash_entry *h,
            struct elf_link_hash_entry *h,
            const Elf_Internal_Rela *irela)
            const Elf_Internal_Rela *irela)
{
{
  unsigned int ovl = 0;
  unsigned int ovl = 0;
  struct got_entry *g, **head;
  struct got_entry *g, **head;
  bfd_vma addend;
  bfd_vma addend;
 
 
  /* If this instruction is a branch or call, we need a stub
  /* If this instruction is a branch or call, we need a stub
     for it.  One stub per function per overlay.
     for it.  One stub per function per overlay.
     If it isn't a branch, then we are taking the address of
     If it isn't a branch, then we are taking the address of
     this function so need a stub in the non-overlay area
     this function so need a stub in the non-overlay area
     for it.  One stub per function.  */
     for it.  One stub per function.  */
  if (stub_type != nonovl_stub)
  if (stub_type != nonovl_stub)
    ovl = spu_elf_section_data (isec->output_section)->u.o.ovl_index;
    ovl = spu_elf_section_data (isec->output_section)->u.o.ovl_index;
 
 
  if (h != NULL)
  if (h != NULL)
    head = &h->got.glist;
    head = &h->got.glist;
  else
  else
    {
    {
      if (elf_local_got_ents (ibfd) == NULL)
      if (elf_local_got_ents (ibfd) == NULL)
        {
        {
          bfd_size_type amt = (elf_tdata (ibfd)->symtab_hdr.sh_info
          bfd_size_type amt = (elf_tdata (ibfd)->symtab_hdr.sh_info
                               * sizeof (*elf_local_got_ents (ibfd)));
                               * sizeof (*elf_local_got_ents (ibfd)));
          elf_local_got_ents (ibfd) = bfd_zmalloc (amt);
          elf_local_got_ents (ibfd) = bfd_zmalloc (amt);
          if (elf_local_got_ents (ibfd) == NULL)
          if (elf_local_got_ents (ibfd) == NULL)
            return FALSE;
            return FALSE;
        }
        }
      head = elf_local_got_ents (ibfd) + ELF32_R_SYM (irela->r_info);
      head = elf_local_got_ents (ibfd) + ELF32_R_SYM (irela->r_info);
    }
    }
 
 
  addend = 0;
  addend = 0;
  if (irela != NULL)
  if (irela != NULL)
    addend = irela->r_addend;
    addend = irela->r_addend;
 
 
  if (ovl == 0)
  if (ovl == 0)
    {
    {
      struct got_entry *gnext;
      struct got_entry *gnext;
 
 
      for (g = *head; g != NULL; g = g->next)
      for (g = *head; g != NULL; g = g->next)
        if (g->addend == addend && g->ovl == 0)
        if (g->addend == addend && g->ovl == 0)
          break;
          break;
 
 
      if (g == NULL)
      if (g == NULL)
        {
        {
          /* Need a new non-overlay area stub.  Zap other stubs.  */
          /* Need a new non-overlay area stub.  Zap other stubs.  */
          for (g = *head; g != NULL; g = gnext)
          for (g = *head; g != NULL; g = gnext)
            {
            {
              gnext = g->next;
              gnext = g->next;
              if (g->addend == addend)
              if (g->addend == addend)
                {
                {
                  htab->stub_count[g->ovl] -= 1;
                  htab->stub_count[g->ovl] -= 1;
                  free (g);
                  free (g);
                }
                }
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      for (g = *head; g != NULL; g = g->next)
      for (g = *head; g != NULL; g = g->next)
        if (g->addend == addend && (g->ovl == ovl || g->ovl == 0))
        if (g->addend == addend && (g->ovl == ovl || g->ovl == 0))
          break;
          break;
    }
    }
 
 
  if (g == NULL)
  if (g == NULL)
    {
    {
      g = bfd_malloc (sizeof *g);
      g = bfd_malloc (sizeof *g);
      if (g == NULL)
      if (g == NULL)
        return FALSE;
        return FALSE;
      g->ovl = ovl;
      g->ovl = ovl;
      g->addend = addend;
      g->addend = addend;
      g->stub_addr = (bfd_vma) -1;
      g->stub_addr = (bfd_vma) -1;
      g->next = *head;
      g->next = *head;
      *head = g;
      *head = g;
 
 
      htab->stub_count[ovl] += 1;
      htab->stub_count[ovl] += 1;
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Two instruction overlay stubs look like:
/* Two instruction overlay stubs look like:
 
 
   brsl $75,__ovly_load
   brsl $75,__ovly_load
   .word target_ovl_and_address
   .word target_ovl_and_address
 
 
   ovl_and_address is a word with the overlay number in the top 14 bits
   ovl_and_address is a word with the overlay number in the top 14 bits
   and local store address in the bottom 18 bits.
   and local store address in the bottom 18 bits.
 
 
   Four instruction overlay stubs look like:
   Four instruction overlay stubs look like:
 
 
   ila $78,ovl_number
   ila $78,ovl_number
   lnop
   lnop
   ila $79,target_address
   ila $79,target_address
   br __ovly_load  */
   br __ovly_load  */
 
 
static bfd_boolean
static bfd_boolean
build_stub (struct spu_link_hash_table *htab,
build_stub (struct spu_link_hash_table *htab,
            bfd *ibfd,
            bfd *ibfd,
            asection *isec,
            asection *isec,
            enum _stub_type stub_type,
            enum _stub_type stub_type,
            struct elf_link_hash_entry *h,
            struct elf_link_hash_entry *h,
            const Elf_Internal_Rela *irela,
            const Elf_Internal_Rela *irela,
            bfd_vma dest,
            bfd_vma dest,
            asection *dest_sec)
            asection *dest_sec)
{
{
  unsigned int ovl;
  unsigned int ovl;
  struct got_entry *g, **head;
  struct got_entry *g, **head;
  asection *sec;
  asection *sec;
  bfd_vma addend, val, from, to;
  bfd_vma addend, val, from, to;
 
 
  ovl = 0;
  ovl = 0;
  if (stub_type != nonovl_stub)
  if (stub_type != nonovl_stub)
    ovl = spu_elf_section_data (isec->output_section)->u.o.ovl_index;
    ovl = spu_elf_section_data (isec->output_section)->u.o.ovl_index;
 
 
  if (h != NULL)
  if (h != NULL)
    head = &h->got.glist;
    head = &h->got.glist;
  else
  else
    head = elf_local_got_ents (ibfd) + ELF32_R_SYM (irela->r_info);
    head = elf_local_got_ents (ibfd) + ELF32_R_SYM (irela->r_info);
 
 
  addend = 0;
  addend = 0;
  if (irela != NULL)
  if (irela != NULL)
    addend = irela->r_addend;
    addend = irela->r_addend;
 
 
  for (g = *head; g != NULL; g = g->next)
  for (g = *head; g != NULL; g = g->next)
    if (g->addend == addend && (g->ovl == ovl || g->ovl == 0))
    if (g->addend == addend && (g->ovl == ovl || g->ovl == 0))
      break;
      break;
  if (g == NULL)
  if (g == NULL)
    abort ();
    abort ();
 
 
  if (g->ovl == 0 && ovl != 0)
  if (g->ovl == 0 && ovl != 0)
    return TRUE;
    return TRUE;
 
 
  if (g->stub_addr != (bfd_vma) -1)
  if (g->stub_addr != (bfd_vma) -1)
    return TRUE;
    return TRUE;
 
 
  sec = htab->stub_sec[ovl];
  sec = htab->stub_sec[ovl];
  dest += dest_sec->output_offset + dest_sec->output_section->vma;
  dest += dest_sec->output_offset + dest_sec->output_section->vma;
  from = sec->size + sec->output_offset + sec->output_section->vma;
  from = sec->size + sec->output_offset + sec->output_section->vma;
  g->stub_addr = from;
  g->stub_addr = from;
  to = (htab->ovly_load->root.u.def.value
  to = (htab->ovly_load->root.u.def.value
        + htab->ovly_load->root.u.def.section->output_offset
        + htab->ovly_load->root.u.def.section->output_offset
        + htab->ovly_load->root.u.def.section->output_section->vma);
        + htab->ovly_load->root.u.def.section->output_section->vma);
  val = to - from;
  val = to - from;
  if (OVL_STUB_SIZE == 16)
  if (OVL_STUB_SIZE == 16)
    val -= 12;
    val -= 12;
  if (((dest | to | from) & 3) != 0
  if (((dest | to | from) & 3) != 0
      || val + 0x20000 >= 0x40000)
      || val + 0x20000 >= 0x40000)
    {
    {
      htab->stub_err = 1;
      htab->stub_err = 1;
      return FALSE;
      return FALSE;
    }
    }
  ovl = spu_elf_section_data (dest_sec->output_section)->u.o.ovl_index;
  ovl = spu_elf_section_data (dest_sec->output_section)->u.o.ovl_index;
 
 
  if (OVL_STUB_SIZE == 16)
  if (OVL_STUB_SIZE == 16)
    {
    {
      bfd_put_32 (sec->owner, ILA + ((ovl << 7) & 0x01ffff80) + 78,
      bfd_put_32 (sec->owner, ILA + ((ovl << 7) & 0x01ffff80) + 78,
                  sec->contents + sec->size);
                  sec->contents + sec->size);
      bfd_put_32 (sec->owner, LNOP,
      bfd_put_32 (sec->owner, LNOP,
                  sec->contents + sec->size + 4);
                  sec->contents + sec->size + 4);
      bfd_put_32 (sec->owner, ILA + ((dest << 7) & 0x01ffff80) + 79,
      bfd_put_32 (sec->owner, ILA + ((dest << 7) & 0x01ffff80) + 79,
                  sec->contents + sec->size + 8);
                  sec->contents + sec->size + 8);
      bfd_put_32 (sec->owner, BR + ((val << 5) & 0x007fff80),
      bfd_put_32 (sec->owner, BR + ((val << 5) & 0x007fff80),
                  sec->contents + sec->size + 12);
                  sec->contents + sec->size + 12);
    }
    }
  else if (OVL_STUB_SIZE == 8)
  else if (OVL_STUB_SIZE == 8)
    {
    {
      bfd_put_32 (sec->owner, BRSL + ((val << 5) & 0x007fff80) + 75,
      bfd_put_32 (sec->owner, BRSL + ((val << 5) & 0x007fff80) + 75,
                  sec->contents + sec->size);
                  sec->contents + sec->size);
 
 
      val = (dest & 0x3ffff) | (ovl << 14);
      val = (dest & 0x3ffff) | (ovl << 14);
      bfd_put_32 (sec->owner, val,
      bfd_put_32 (sec->owner, val,
                  sec->contents + sec->size + 4);
                  sec->contents + sec->size + 4);
    }
    }
  else
  else
    abort ();
    abort ();
  sec->size += OVL_STUB_SIZE;
  sec->size += OVL_STUB_SIZE;
 
 
  if (htab->emit_stub_syms)
  if (htab->emit_stub_syms)
    {
    {
      size_t len;
      size_t len;
      char *name;
      char *name;
      int add;
      int add;
 
 
      len = 8 + sizeof (".ovl_call.") - 1;
      len = 8 + sizeof (".ovl_call.") - 1;
      if (h != NULL)
      if (h != NULL)
        len += strlen (h->root.root.string);
        len += strlen (h->root.root.string);
      else
      else
        len += 8 + 1 + 8;
        len += 8 + 1 + 8;
      add = 0;
      add = 0;
      if (irela != NULL)
      if (irela != NULL)
        add = (int) irela->r_addend & 0xffffffff;
        add = (int) irela->r_addend & 0xffffffff;
      if (add != 0)
      if (add != 0)
        len += 1 + 8;
        len += 1 + 8;
      name = bfd_malloc (len);
      name = bfd_malloc (len);
      if (name == NULL)
      if (name == NULL)
        return FALSE;
        return FALSE;
 
 
      sprintf (name, "%08x.ovl_call.", g->ovl);
      sprintf (name, "%08x.ovl_call.", g->ovl);
      if (h != NULL)
      if (h != NULL)
        strcpy (name + 8 + sizeof (".ovl_call.") - 1, h->root.root.string);
        strcpy (name + 8 + sizeof (".ovl_call.") - 1, h->root.root.string);
      else
      else
        sprintf (name + 8 + sizeof (".ovl_call.") - 1, "%x:%x",
        sprintf (name + 8 + sizeof (".ovl_call.") - 1, "%x:%x",
                 dest_sec->id & 0xffffffff,
                 dest_sec->id & 0xffffffff,
                 (int) ELF32_R_SYM (irela->r_info) & 0xffffffff);
                 (int) ELF32_R_SYM (irela->r_info) & 0xffffffff);
      if (add != 0)
      if (add != 0)
        sprintf (name + len - 9, "+%x", add);
        sprintf (name + len - 9, "+%x", add);
 
 
      h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE);
      h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE);
      free (name);
      free (name);
      if (h == NULL)
      if (h == NULL)
        return FALSE;
        return FALSE;
      if (h->root.type == bfd_link_hash_new)
      if (h->root.type == bfd_link_hash_new)
        {
        {
          h->root.type = bfd_link_hash_defined;
          h->root.type = bfd_link_hash_defined;
          h->root.u.def.section = sec;
          h->root.u.def.section = sec;
          h->root.u.def.value = sec->size - OVL_STUB_SIZE;
          h->root.u.def.value = sec->size - OVL_STUB_SIZE;
          h->size = OVL_STUB_SIZE;
          h->size = OVL_STUB_SIZE;
          h->type = STT_FUNC;
          h->type = STT_FUNC;
          h->ref_regular = 1;
          h->ref_regular = 1;
          h->def_regular = 1;
          h->def_regular = 1;
          h->ref_regular_nonweak = 1;
          h->ref_regular_nonweak = 1;
          h->forced_local = 1;
          h->forced_local = 1;
          h->non_elf = 0;
          h->non_elf = 0;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Called via elf_link_hash_traverse to allocate stubs for any _SPUEAR_
/* Called via elf_link_hash_traverse to allocate stubs for any _SPUEAR_
   symbols.  */
   symbols.  */
 
 
static bfd_boolean
static bfd_boolean
allocate_spuear_stubs (struct elf_link_hash_entry *h, void *inf)
allocate_spuear_stubs (struct elf_link_hash_entry *h, void *inf)
{
{
  /* Symbols starting with _SPUEAR_ need a stub because they may be
  /* Symbols starting with _SPUEAR_ need a stub because they may be
     invoked by the PPU.  */
     invoked by the PPU.  */
  struct bfd_link_info *info = inf;
  struct bfd_link_info *info = inf;
  struct spu_link_hash_table *htab = spu_hash_table (info);
  struct spu_link_hash_table *htab = spu_hash_table (info);
  asection *sym_sec;
  asection *sym_sec;
 
 
  if ((h->root.type == bfd_link_hash_defined
  if ((h->root.type == bfd_link_hash_defined
       || h->root.type == bfd_link_hash_defweak)
       || h->root.type == bfd_link_hash_defweak)
      && h->def_regular
      && h->def_regular
      && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0
      && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0
      && (sym_sec = h->root.u.def.section) != NULL
      && (sym_sec = h->root.u.def.section) != NULL
      && sym_sec->output_section != NULL
      && sym_sec->output_section != NULL
      && sym_sec->output_section->owner == info->output_bfd
      && sym_sec->output_section->owner == info->output_bfd
      && spu_elf_section_data (sym_sec->output_section) != NULL
      && spu_elf_section_data (sym_sec->output_section) != NULL
      && (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index != 0
      && (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index != 0
          || htab->non_overlay_stubs))
          || htab->non_overlay_stubs))
    {
    {
      count_stub (htab, NULL, NULL, nonovl_stub, h, NULL);
      count_stub (htab, NULL, NULL, nonovl_stub, h, NULL);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
build_spuear_stubs (struct elf_link_hash_entry *h, void *inf)
build_spuear_stubs (struct elf_link_hash_entry *h, void *inf)
{
{
  /* Symbols starting with _SPUEAR_ need a stub because they may be
  /* Symbols starting with _SPUEAR_ need a stub because they may be
     invoked by the PPU.  */
     invoked by the PPU.  */
  struct bfd_link_info *info = inf;
  struct bfd_link_info *info = inf;
  struct spu_link_hash_table *htab = spu_hash_table (info);
  struct spu_link_hash_table *htab = spu_hash_table (info);
  asection *sym_sec;
  asection *sym_sec;
 
 
  if ((h->root.type == bfd_link_hash_defined
  if ((h->root.type == bfd_link_hash_defined
       || h->root.type == bfd_link_hash_defweak)
       || h->root.type == bfd_link_hash_defweak)
      && h->def_regular
      && h->def_regular
      && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0
      && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0
      && (sym_sec = h->root.u.def.section) != NULL
      && (sym_sec = h->root.u.def.section) != NULL
      && sym_sec->output_section != NULL
      && sym_sec->output_section != NULL
      && sym_sec->output_section->owner == info->output_bfd
      && sym_sec->output_section->owner == info->output_bfd
      && spu_elf_section_data (sym_sec->output_section) != NULL
      && spu_elf_section_data (sym_sec->output_section) != NULL
      && (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index != 0
      && (spu_elf_section_data (sym_sec->output_section)->u.o.ovl_index != 0
          || htab->non_overlay_stubs))
          || htab->non_overlay_stubs))
    {
    {
      build_stub (htab, NULL, NULL, nonovl_stub, h, NULL,
      build_stub (htab, NULL, NULL, nonovl_stub, h, NULL,
                  h->root.u.def.value, sym_sec);
                  h->root.u.def.value, sym_sec);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Size or build stubs.  */
/* Size or build stubs.  */
 
 
static bfd_boolean
static bfd_boolean
process_stubs (struct bfd_link_info *info, bfd_boolean build)
process_stubs (struct bfd_link_info *info, bfd_boolean build)
{
{
  struct spu_link_hash_table *htab = spu_hash_table (info);
  struct spu_link_hash_table *htab = spu_hash_table (info);
  bfd *ibfd;
  bfd *ibfd;
 
 
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
    {
    {
      extern const bfd_target bfd_elf32_spu_vec;
      extern const bfd_target bfd_elf32_spu_vec;
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Shdr *symtab_hdr;
      asection *isec;
      asection *isec;
      Elf_Internal_Sym *local_syms = NULL;
      Elf_Internal_Sym *local_syms = NULL;
      void *psyms;
      void *psyms;
 
 
      if (ibfd->xvec != &bfd_elf32_spu_vec)
      if (ibfd->xvec != &bfd_elf32_spu_vec)
        continue;
        continue;
 
 
      /* We'll need the symbol table in a second.  */
      /* We'll need the symbol table in a second.  */
      symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
      symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
      if (symtab_hdr->sh_info == 0)
      if (symtab_hdr->sh_info == 0)
        continue;
        continue;
 
 
      /* Arrange to read and keep global syms for later stack analysis.  */
      /* Arrange to read and keep global syms for later stack analysis.  */
      psyms = &local_syms;
      psyms = &local_syms;
      if (htab->stack_analysis)
      if (htab->stack_analysis)
        psyms = &symtab_hdr->contents;
        psyms = &symtab_hdr->contents;
 
 
      /* Walk over each section attached to the input bfd.  */
      /* Walk over each section attached to the input bfd.  */
      for (isec = ibfd->sections; isec != NULL; isec = isec->next)
      for (isec = ibfd->sections; isec != NULL; isec = isec->next)
        {
        {
          Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
          Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
 
 
          /* If there aren't any relocs, then there's nothing more to do.  */
          /* If there aren't any relocs, then there's nothing more to do.  */
          if ((isec->flags & SEC_RELOC) == 0
          if ((isec->flags & SEC_RELOC) == 0
              || isec->reloc_count == 0)
              || isec->reloc_count == 0)
            continue;
            continue;
 
 
          if (!maybe_needs_stubs (isec, info->output_bfd))
          if (!maybe_needs_stubs (isec, info->output_bfd))
            continue;
            continue;
 
 
          /* Get the relocs.  */
          /* Get the relocs.  */
          internal_relocs = _bfd_elf_link_read_relocs (ibfd, isec, NULL, NULL,
          internal_relocs = _bfd_elf_link_read_relocs (ibfd, isec, NULL, NULL,
                                                       info->keep_memory);
                                                       info->keep_memory);
          if (internal_relocs == NULL)
          if (internal_relocs == NULL)
            goto error_ret_free_local;
            goto error_ret_free_local;
 
 
          /* Now examine each relocation.  */
          /* Now examine each relocation.  */
          irela = internal_relocs;
          irela = internal_relocs;
          irelaend = irela + isec->reloc_count;
          irelaend = irela + isec->reloc_count;
          for (; irela < irelaend; irela++)
          for (; irela < irelaend; irela++)
            {
            {
              enum elf_spu_reloc_type r_type;
              enum elf_spu_reloc_type r_type;
              unsigned int r_indx;
              unsigned int r_indx;
              asection *sym_sec;
              asection *sym_sec;
              Elf_Internal_Sym *sym;
              Elf_Internal_Sym *sym;
              struct elf_link_hash_entry *h;
              struct elf_link_hash_entry *h;
              enum _stub_type stub_type;
              enum _stub_type stub_type;
 
 
              r_type = ELF32_R_TYPE (irela->r_info);
              r_type = ELF32_R_TYPE (irela->r_info);
              r_indx = ELF32_R_SYM (irela->r_info);
              r_indx = ELF32_R_SYM (irela->r_info);
 
 
              if (r_type >= R_SPU_max)
              if (r_type >= R_SPU_max)
                {
                {
                  bfd_set_error (bfd_error_bad_value);
                  bfd_set_error (bfd_error_bad_value);
                error_ret_free_internal:
                error_ret_free_internal:
                  if (elf_section_data (isec)->relocs != internal_relocs)
                  if (elf_section_data (isec)->relocs != internal_relocs)
                    free (internal_relocs);
                    free (internal_relocs);
                error_ret_free_local:
                error_ret_free_local:
                  if (local_syms != NULL
                  if (local_syms != NULL
                      && (symtab_hdr->contents
                      && (symtab_hdr->contents
                          != (unsigned char *) local_syms))
                          != (unsigned char *) local_syms))
                    free (local_syms);
                    free (local_syms);
                  return FALSE;
                  return FALSE;
                }
                }
 
 
              /* Determine the reloc target section.  */
              /* Determine the reloc target section.  */
              if (!get_sym_h (&h, &sym, &sym_sec, psyms, r_indx, ibfd))
              if (!get_sym_h (&h, &sym, &sym_sec, psyms, r_indx, ibfd))
                goto error_ret_free_internal;
                goto error_ret_free_internal;
 
 
              stub_type = needs_ovl_stub (h, sym, sym_sec, isec, irela,
              stub_type = needs_ovl_stub (h, sym, sym_sec, isec, irela,
                                          NULL, info);
                                          NULL, info);
              if (stub_type == no_stub)
              if (stub_type == no_stub)
                continue;
                continue;
              else if (stub_type == stub_error)
              else if (stub_type == stub_error)
                goto error_ret_free_internal;
                goto error_ret_free_internal;
 
 
              if (htab->stub_count == NULL)
              if (htab->stub_count == NULL)
                {
                {
                  bfd_size_type amt;
                  bfd_size_type amt;
                  amt = (htab->num_overlays + 1) * sizeof (*htab->stub_count);
                  amt = (htab->num_overlays + 1) * sizeof (*htab->stub_count);
                  htab->stub_count = bfd_zmalloc (amt);
                  htab->stub_count = bfd_zmalloc (amt);
                  if (htab->stub_count == NULL)
                  if (htab->stub_count == NULL)
                    goto error_ret_free_internal;
                    goto error_ret_free_internal;
                }
                }
 
 
              if (!build)
              if (!build)
                {
                {
                  if (!count_stub (htab, ibfd, isec, stub_type, h, irela))
                  if (!count_stub (htab, ibfd, isec, stub_type, h, irela))
                    goto error_ret_free_internal;
                    goto error_ret_free_internal;
                }
                }
              else
              else
                {
                {
                  bfd_vma dest;
                  bfd_vma dest;
 
 
                  if (h != NULL)
                  if (h != NULL)
                    dest = h->root.u.def.value;
                    dest = h->root.u.def.value;
                  else
                  else
                    dest = sym->st_value;
                    dest = sym->st_value;
                  dest += irela->r_addend;
                  dest += irela->r_addend;
                  if (!build_stub (htab, ibfd, isec, stub_type, h, irela,
                  if (!build_stub (htab, ibfd, isec, stub_type, h, irela,
                                   dest, sym_sec))
                                   dest, sym_sec))
                    goto error_ret_free_internal;
                    goto error_ret_free_internal;
                }
                }
            }
            }
 
 
          /* We're done with the internal relocs, free them.  */
          /* We're done with the internal relocs, free them.  */
          if (elf_section_data (isec)->relocs != internal_relocs)
          if (elf_section_data (isec)->relocs != internal_relocs)
            free (internal_relocs);
            free (internal_relocs);
        }
        }
 
 
      if (local_syms != NULL
      if (local_syms != NULL
          && symtab_hdr->contents != (unsigned char *) local_syms)
          && symtab_hdr->contents != (unsigned char *) local_syms)
        {
        {
          if (!info->keep_memory)
          if (!info->keep_memory)
            free (local_syms);
            free (local_syms);
          else
          else
            symtab_hdr->contents = (unsigned char *) local_syms;
            symtab_hdr->contents = (unsigned char *) local_syms;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Allocate space for overlay call and return stubs.  */
/* Allocate space for overlay call and return stubs.  */
 
 
int
int
spu_elf_size_stubs (struct bfd_link_info *info,
spu_elf_size_stubs (struct bfd_link_info *info,
                    void (*place_spu_section) (asection *, asection *,
                    void (*place_spu_section) (asection *, asection *,
                                               const char *),
                                               const char *),
                    int non_overlay_stubs)
                    int non_overlay_stubs)
{
{
  struct spu_link_hash_table *htab = spu_hash_table (info);
  struct spu_link_hash_table *htab = spu_hash_table (info);
  bfd *ibfd;
  bfd *ibfd;
  bfd_size_type amt;
  bfd_size_type amt;
  flagword flags;
  flagword flags;
  unsigned int i;
  unsigned int i;
  asection *stub;
  asection *stub;
 
 
  htab->non_overlay_stubs = non_overlay_stubs;
  htab->non_overlay_stubs = non_overlay_stubs;
  if (!process_stubs (info, FALSE))
  if (!process_stubs (info, FALSE))
    return 0;
    return 0;
 
 
  elf_link_hash_traverse (&htab->elf, allocate_spuear_stubs, info);
  elf_link_hash_traverse (&htab->elf, allocate_spuear_stubs, info);
  if (htab->stub_err)
  if (htab->stub_err)
    return 0;
    return 0;
 
 
  if (htab->stub_count == NULL)
  if (htab->stub_count == NULL)
    return 1;
    return 1;
 
 
  ibfd = info->input_bfds;
  ibfd = info->input_bfds;
  amt = (htab->num_overlays + 1) * sizeof (*htab->stub_sec);
  amt = (htab->num_overlays + 1) * sizeof (*htab->stub_sec);
  htab->stub_sec = bfd_zmalloc (amt);
  htab->stub_sec = bfd_zmalloc (amt);
  if (htab->stub_sec == NULL)
  if (htab->stub_sec == NULL)
    return 0;
    return 0;
 
 
  flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
  flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
           | SEC_HAS_CONTENTS | SEC_IN_MEMORY);
           | SEC_HAS_CONTENTS | SEC_IN_MEMORY);
  stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags);
  stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags);
  htab->stub_sec[0] = stub;
  htab->stub_sec[0] = stub;
  if (stub == NULL
  if (stub == NULL
      || !bfd_set_section_alignment (ibfd, stub, 3 + (OVL_STUB_SIZE > 8)))
      || !bfd_set_section_alignment (ibfd, stub, 3 + (OVL_STUB_SIZE > 8)))
    return 0;
    return 0;
  stub->size = htab->stub_count[0] * OVL_STUB_SIZE;
  stub->size = htab->stub_count[0] * OVL_STUB_SIZE;
  (*place_spu_section) (stub, NULL, ".text");
  (*place_spu_section) (stub, NULL, ".text");
 
 
  for (i = 0; i < htab->num_overlays; ++i)
  for (i = 0; i < htab->num_overlays; ++i)
    {
    {
      asection *osec = htab->ovl_sec[i];
      asection *osec = htab->ovl_sec[i];
      unsigned int ovl = spu_elf_section_data (osec)->u.o.ovl_index;
      unsigned int ovl = spu_elf_section_data (osec)->u.o.ovl_index;
      stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags);
      stub = bfd_make_section_anyway_with_flags (ibfd, ".stub", flags);
      htab->stub_sec[ovl] = stub;
      htab->stub_sec[ovl] = stub;
      if (stub == NULL
      if (stub == NULL
          || !bfd_set_section_alignment (ibfd, stub, 3 + (OVL_STUB_SIZE > 8)))
          || !bfd_set_section_alignment (ibfd, stub, 3 + (OVL_STUB_SIZE > 8)))
        return 0;
        return 0;
      stub->size = htab->stub_count[ovl] * OVL_STUB_SIZE;
      stub->size = htab->stub_count[ovl] * OVL_STUB_SIZE;
      (*place_spu_section) (stub, osec, NULL);
      (*place_spu_section) (stub, osec, NULL);
    }
    }
 
 
 /* htab->ovtab consists of two arrays.
 /* htab->ovtab consists of two arrays.
    .   struct {
    .   struct {
    .     u32 vma;
    .     u32 vma;
    .     u32 size;
    .     u32 size;
    .     u32 file_off;
    .     u32 file_off;
    .     u32 buf;
    .     u32 buf;
    .   } _ovly_table[];
    .   } _ovly_table[];
    .
    .
    .   struct {
    .   struct {
    .     u32 mapped;
    .     u32 mapped;
    .   } _ovly_buf_table[];
    .   } _ovly_buf_table[];
    .  */
    .  */
 
 
  flags = (SEC_ALLOC | SEC_LOAD
  flags = (SEC_ALLOC | SEC_LOAD
           | SEC_HAS_CONTENTS | SEC_IN_MEMORY);
           | SEC_HAS_CONTENTS | SEC_IN_MEMORY);
  htab->ovtab = bfd_make_section_anyway_with_flags (ibfd, ".ovtab", flags);
  htab->ovtab = bfd_make_section_anyway_with_flags (ibfd, ".ovtab", flags);
  if (htab->ovtab == NULL
  if (htab->ovtab == NULL
      || !bfd_set_section_alignment (ibfd, htab->ovtab, 4))
      || !bfd_set_section_alignment (ibfd, htab->ovtab, 4))
    return 0;
    return 0;
 
 
  htab->ovtab->size = htab->num_overlays * 16 + 16 + htab->num_buf * 4;
  htab->ovtab->size = htab->num_overlays * 16 + 16 + htab->num_buf * 4;
  (*place_spu_section) (htab->ovtab, NULL, ".data");
  (*place_spu_section) (htab->ovtab, NULL, ".data");
 
 
  htab->toe = bfd_make_section_anyway_with_flags (ibfd, ".toe", SEC_ALLOC);
  htab->toe = bfd_make_section_anyway_with_flags (ibfd, ".toe", SEC_ALLOC);
  if (htab->toe == NULL
  if (htab->toe == NULL
      || !bfd_set_section_alignment (ibfd, htab->toe, 4))
      || !bfd_set_section_alignment (ibfd, htab->toe, 4))
    return 0;
    return 0;
  htab->toe->size = 16;
  htab->toe->size = 16;
  (*place_spu_section) (htab->toe, NULL, ".toe");
  (*place_spu_section) (htab->toe, NULL, ".toe");
 
 
  return 2;
  return 2;
}
}
 
 
/* Functions to handle embedded spu_ovl.o object.  */
/* Functions to handle embedded spu_ovl.o object.  */
 
 
static void *
static void *
ovl_mgr_open (struct bfd *nbfd ATTRIBUTE_UNUSED, void *stream)
ovl_mgr_open (struct bfd *nbfd ATTRIBUTE_UNUSED, void *stream)
{
{
  return stream;
  return stream;
}
}
 
 
static file_ptr
static file_ptr
ovl_mgr_pread (struct bfd *abfd ATTRIBUTE_UNUSED,
ovl_mgr_pread (struct bfd *abfd ATTRIBUTE_UNUSED,
               void *stream,
               void *stream,
               void *buf,
               void *buf,
               file_ptr nbytes,
               file_ptr nbytes,
               file_ptr offset)
               file_ptr offset)
{
{
  struct _ovl_stream *os;
  struct _ovl_stream *os;
  size_t count;
  size_t count;
  size_t max;
  size_t max;
 
 
  os = (struct _ovl_stream *) stream;
  os = (struct _ovl_stream *) stream;
  max = (const char *) os->end - (const char *) os->start;
  max = (const char *) os->end - (const char *) os->start;
 
 
  if ((ufile_ptr) offset >= max)
  if ((ufile_ptr) offset >= max)
    return 0;
    return 0;
 
 
  count = nbytes;
  count = nbytes;
  if (count > max - offset)
  if (count > max - offset)
    count = max - offset;
    count = max - offset;
 
 
  memcpy (buf, (const char *) os->start + offset, count);
  memcpy (buf, (const char *) os->start + offset, count);
  return count;
  return count;
}
}
 
 
bfd_boolean
bfd_boolean
spu_elf_open_builtin_lib (bfd **ovl_bfd, const struct _ovl_stream *stream)
spu_elf_open_builtin_lib (bfd **ovl_bfd, const struct _ovl_stream *stream)
{
{
  *ovl_bfd = bfd_openr_iovec ("builtin ovl_mgr",
  *ovl_bfd = bfd_openr_iovec ("builtin ovl_mgr",
                              "elf32-spu",
                              "elf32-spu",
                              ovl_mgr_open,
                              ovl_mgr_open,
                              (void *) stream,
                              (void *) stream,
                              ovl_mgr_pread,
                              ovl_mgr_pread,
                              NULL,
                              NULL,
                              NULL);
                              NULL);
  return *ovl_bfd != NULL;
  return *ovl_bfd != NULL;
}
}
 
 
/* Define an STT_OBJECT symbol.  */
/* Define an STT_OBJECT symbol.  */
 
 
static struct elf_link_hash_entry *
static struct elf_link_hash_entry *
define_ovtab_symbol (struct spu_link_hash_table *htab, const char *name)
define_ovtab_symbol (struct spu_link_hash_table *htab, const char *name)
{
{
  struct elf_link_hash_entry *h;
  struct elf_link_hash_entry *h;
 
 
  h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
  h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
  if (h == NULL)
  if (h == NULL)
    return NULL;
    return NULL;
 
 
  if (h->root.type != bfd_link_hash_defined
  if (h->root.type != bfd_link_hash_defined
      || !h->def_regular)
      || !h->def_regular)
    {
    {
      h->root.type = bfd_link_hash_defined;
      h->root.type = bfd_link_hash_defined;
      h->root.u.def.section = htab->ovtab;
      h->root.u.def.section = htab->ovtab;
      h->type = STT_OBJECT;
      h->type = STT_OBJECT;
      h->ref_regular = 1;
      h->ref_regular = 1;
      h->def_regular = 1;
      h->def_regular = 1;
      h->ref_regular_nonweak = 1;
      h->ref_regular_nonweak = 1;
      h->non_elf = 0;
      h->non_elf = 0;
    }
    }
  else
  else
    {
    {
      (*_bfd_error_handler) (_("%B is not allowed to define %s"),
      (*_bfd_error_handler) (_("%B is not allowed to define %s"),
                             h->root.u.def.section->owner,
                             h->root.u.def.section->owner,
                             h->root.root.string);
                             h->root.root.string);
      bfd_set_error (bfd_error_bad_value);
      bfd_set_error (bfd_error_bad_value);
      return NULL;
      return NULL;
    }
    }
 
 
  return h;
  return h;
}
}
 
 
/* Fill in all stubs and the overlay tables.  */
/* Fill in all stubs and the overlay tables.  */
 
 
bfd_boolean
bfd_boolean
spu_elf_build_stubs (struct bfd_link_info *info, int emit_syms)
spu_elf_build_stubs (struct bfd_link_info *info, int emit_syms)
{
{
  struct spu_link_hash_table *htab = spu_hash_table (info);
  struct spu_link_hash_table *htab = spu_hash_table (info);
  struct elf_link_hash_entry *h;
  struct elf_link_hash_entry *h;
  bfd_byte *p;
  bfd_byte *p;
  asection *s;
  asection *s;
  bfd *obfd;
  bfd *obfd;
  unsigned int i;
  unsigned int i;
 
 
  htab->emit_stub_syms = emit_syms;
  htab->emit_stub_syms = emit_syms;
  if (htab->stub_count == NULL)
  if (htab->stub_count == NULL)
    return TRUE;
    return TRUE;
 
 
  for (i = 0; i <= htab->num_overlays; i++)
  for (i = 0; i <= htab->num_overlays; i++)
    if (htab->stub_sec[i]->size != 0)
    if (htab->stub_sec[i]->size != 0)
      {
      {
        htab->stub_sec[i]->contents = bfd_zalloc (htab->stub_sec[i]->owner,
        htab->stub_sec[i]->contents = bfd_zalloc (htab->stub_sec[i]->owner,
                                                  htab->stub_sec[i]->size);
                                                  htab->stub_sec[i]->size);
        if (htab->stub_sec[i]->contents == NULL)
        if (htab->stub_sec[i]->contents == NULL)
          return FALSE;
          return FALSE;
        htab->stub_sec[i]->rawsize = htab->stub_sec[i]->size;
        htab->stub_sec[i]->rawsize = htab->stub_sec[i]->size;
        htab->stub_sec[i]->size = 0;
        htab->stub_sec[i]->size = 0;
      }
      }
 
 
  h = elf_link_hash_lookup (&htab->elf, "__ovly_load", FALSE, FALSE, FALSE);
  h = elf_link_hash_lookup (&htab->elf, "__ovly_load", FALSE, FALSE, FALSE);
  htab->ovly_load = h;
  htab->ovly_load = h;
  BFD_ASSERT (h != NULL
  BFD_ASSERT (h != NULL
              && (h->root.type == bfd_link_hash_defined
              && (h->root.type == bfd_link_hash_defined
                  || h->root.type == bfd_link_hash_defweak)
                  || h->root.type == bfd_link_hash_defweak)
              && h->def_regular);
              && h->def_regular);
 
 
  s = h->root.u.def.section->output_section;
  s = h->root.u.def.section->output_section;
  if (spu_elf_section_data (s)->u.o.ovl_index)
  if (spu_elf_section_data (s)->u.o.ovl_index)
    {
    {
      (*_bfd_error_handler) (_("%s in overlay section"),
      (*_bfd_error_handler) (_("%s in overlay section"),
                             h->root.root.string);
                             h->root.root.string);
      bfd_set_error (bfd_error_bad_value);
      bfd_set_error (bfd_error_bad_value);
      return FALSE;
      return FALSE;
    }
    }
 
 
  h = elf_link_hash_lookup (&htab->elf, "__ovly_return", FALSE, FALSE, FALSE);
  h = elf_link_hash_lookup (&htab->elf, "__ovly_return", FALSE, FALSE, FALSE);
  htab->ovly_return = h;
  htab->ovly_return = h;
 
 
  /* Fill in all the stubs.  */
  /* Fill in all the stubs.  */
  process_stubs (info, TRUE);
  process_stubs (info, TRUE);
 
 
  elf_link_hash_traverse (&htab->elf, build_spuear_stubs, info);
  elf_link_hash_traverse (&htab->elf, build_spuear_stubs, info);
  if (htab->stub_err)
  if (htab->stub_err)
    return FALSE;
    return FALSE;
 
 
  for (i = 0; i <= htab->num_overlays; i++)
  for (i = 0; i <= htab->num_overlays; i++)
    {
    {
      if (htab->stub_sec[i]->size != htab->stub_sec[i]->rawsize)
      if (htab->stub_sec[i]->size != htab->stub_sec[i]->rawsize)
        {
        {
          (*_bfd_error_handler)  (_("stubs don't match calculated size"));
          (*_bfd_error_handler)  (_("stubs don't match calculated size"));
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
        }
        }
      htab->stub_sec[i]->rawsize = 0;
      htab->stub_sec[i]->rawsize = 0;
    }
    }
 
 
  if (htab->stub_err)
  if (htab->stub_err)
    {
    {
      (*_bfd_error_handler) (_("overlay stub relocation overflow"));
      (*_bfd_error_handler) (_("overlay stub relocation overflow"));
      bfd_set_error (bfd_error_bad_value);
      bfd_set_error (bfd_error_bad_value);
      return FALSE;
      return FALSE;
    }
    }
 
 
  htab->ovtab->contents = bfd_zalloc (htab->ovtab->owner, htab->ovtab->size);
  htab->ovtab->contents = bfd_zalloc (htab->ovtab->owner, htab->ovtab->size);
  if (htab->ovtab->contents == NULL)
  if (htab->ovtab->contents == NULL)
    return FALSE;
    return FALSE;
 
 
  /* Write out _ovly_table.  */
  /* Write out _ovly_table.  */
  p = htab->ovtab->contents;
  p = htab->ovtab->contents;
  /* set low bit of .size to mark non-overlay area as present.  */
  /* set low bit of .size to mark non-overlay area as present.  */
  p[7] = 1;
  p[7] = 1;
  obfd = htab->ovtab->output_section->owner;
  obfd = htab->ovtab->output_section->owner;
  for (s = obfd->sections; s != NULL; s = s->next)
  for (s = obfd->sections; s != NULL; s = s->next)
    {
    {
      unsigned int ovl_index = spu_elf_section_data (s)->u.o.ovl_index;
      unsigned int ovl_index = spu_elf_section_data (s)->u.o.ovl_index;
 
 
      if (ovl_index != 0)
      if (ovl_index != 0)
        {
        {
          unsigned long off = ovl_index * 16;
          unsigned long off = ovl_index * 16;
          unsigned int ovl_buf = spu_elf_section_data (s)->u.o.ovl_buf;
          unsigned int ovl_buf = spu_elf_section_data (s)->u.o.ovl_buf;
 
 
          bfd_put_32 (htab->ovtab->owner, s->vma, p + off);
          bfd_put_32 (htab->ovtab->owner, s->vma, p + off);
          bfd_put_32 (htab->ovtab->owner, (s->size + 15) & -16, p + off + 4);
          bfd_put_32 (htab->ovtab->owner, (s->size + 15) & -16, p + off + 4);
          /* file_off written later in spu_elf_modify_program_headers.  */
          /* file_off written later in spu_elf_modify_program_headers.  */
          bfd_put_32 (htab->ovtab->owner, ovl_buf, p + off + 12);
          bfd_put_32 (htab->ovtab->owner, ovl_buf, p + off + 12);
        }
        }
    }
    }
 
 
  h = define_ovtab_symbol (htab, "_ovly_table");
  h = define_ovtab_symbol (htab, "_ovly_table");
  if (h == NULL)
  if (h == NULL)
    return FALSE;
    return FALSE;
  h->root.u.def.value = 16;
  h->root.u.def.value = 16;
  h->size = htab->num_overlays * 16;
  h->size = htab->num_overlays * 16;
 
 
  h = define_ovtab_symbol (htab, "_ovly_table_end");
  h = define_ovtab_symbol (htab, "_ovly_table_end");
  if (h == NULL)
  if (h == NULL)
    return FALSE;
    return FALSE;
  h->root.u.def.value = htab->num_overlays * 16 + 16;
  h->root.u.def.value = htab->num_overlays * 16 + 16;
  h->size = 0;
  h->size = 0;
 
 
  h = define_ovtab_symbol (htab, "_ovly_buf_table");
  h = define_ovtab_symbol (htab, "_ovly_buf_table");
  if (h == NULL)
  if (h == NULL)
    return FALSE;
    return FALSE;
  h->root.u.def.value = htab->num_overlays * 16 + 16;
  h->root.u.def.value = htab->num_overlays * 16 + 16;
  h->size = htab->num_buf * 4;
  h->size = htab->num_buf * 4;
 
 
  h = define_ovtab_symbol (htab, "_ovly_buf_table_end");
  h = define_ovtab_symbol (htab, "_ovly_buf_table_end");
  if (h == NULL)
  if (h == NULL)
    return FALSE;
    return FALSE;
  h->root.u.def.value = htab->num_overlays * 16 + 16 + htab->num_buf * 4;
  h->root.u.def.value = htab->num_overlays * 16 + 16 + htab->num_buf * 4;
  h->size = 0;
  h->size = 0;
 
 
  h = define_ovtab_symbol (htab, "_EAR_");
  h = define_ovtab_symbol (htab, "_EAR_");
  if (h == NULL)
  if (h == NULL)
    return FALSE;
    return FALSE;
  h->root.u.def.section = htab->toe;
  h->root.u.def.section = htab->toe;
  h->root.u.def.value = 0;
  h->root.u.def.value = 0;
  h->size = 16;
  h->size = 16;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Check that all loadable section VMAs lie in the range
/* Check that all loadable section VMAs lie in the range
   LO .. HI inclusive, and stash some parameters for --auto-overlay.  */
   LO .. HI inclusive, and stash some parameters for --auto-overlay.  */
 
 
asection *
asection *
spu_elf_check_vma (struct bfd_link_info *info,
spu_elf_check_vma (struct bfd_link_info *info,
                   int auto_overlay,
                   int auto_overlay,
                   unsigned int lo,
                   unsigned int lo,
                   unsigned int hi,
                   unsigned int hi,
                   unsigned int overlay_fixed,
                   unsigned int overlay_fixed,
                   unsigned int reserved,
                   unsigned int reserved,
                   void (*spu_elf_load_ovl_mgr) (void),
                   void (*spu_elf_load_ovl_mgr) (void),
                   FILE *(*spu_elf_open_overlay_script) (void),
                   FILE *(*spu_elf_open_overlay_script) (void),
                   void (*spu_elf_relink) (void))
                   void (*spu_elf_relink) (void))
{
{
  struct elf_segment_map *m;
  struct elf_segment_map *m;
  unsigned int i;
  unsigned int i;
  struct spu_link_hash_table *htab = spu_hash_table (info);
  struct spu_link_hash_table *htab = spu_hash_table (info);
  bfd *abfd = info->output_bfd;
  bfd *abfd = info->output_bfd;
 
 
  if (auto_overlay & AUTO_OVERLAY)
  if (auto_overlay & AUTO_OVERLAY)
    htab->auto_overlay = auto_overlay;
    htab->auto_overlay = auto_overlay;
  htab->local_store = hi + 1 - lo;
  htab->local_store = hi + 1 - lo;
  htab->overlay_fixed = overlay_fixed;
  htab->overlay_fixed = overlay_fixed;
  htab->reserved = reserved;
  htab->reserved = reserved;
  htab->spu_elf_load_ovl_mgr = spu_elf_load_ovl_mgr;
  htab->spu_elf_load_ovl_mgr = spu_elf_load_ovl_mgr;
  htab->spu_elf_open_overlay_script = spu_elf_open_overlay_script;
  htab->spu_elf_open_overlay_script = spu_elf_open_overlay_script;
  htab->spu_elf_relink = spu_elf_relink;
  htab->spu_elf_relink = spu_elf_relink;
 
 
  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
    if (m->p_type == PT_LOAD)
    if (m->p_type == PT_LOAD)
      for (i = 0; i < m->count; i++)
      for (i = 0; i < m->count; i++)
        if (m->sections[i]->size != 0
        if (m->sections[i]->size != 0
            && (m->sections[i]->vma < lo
            && (m->sections[i]->vma < lo
                || m->sections[i]->vma > hi
                || m->sections[i]->vma > hi
                || m->sections[i]->vma + m->sections[i]->size - 1 > hi))
                || m->sections[i]->vma + m->sections[i]->size - 1 > hi))
          return m->sections[i];
          return m->sections[i];
 
 
  /* No need for overlays if it all fits.  */
  /* No need for overlays if it all fits.  */
  htab->auto_overlay = 0;
  htab->auto_overlay = 0;
  return NULL;
  return NULL;
}
}
 
 
/* OFFSET in SEC (presumably) is the beginning of a function prologue.
/* OFFSET in SEC (presumably) is the beginning of a function prologue.
   Search for stack adjusting insns, and return the sp delta.  */
   Search for stack adjusting insns, and return the sp delta.  */
 
 
static int
static int
find_function_stack_adjust (asection *sec, bfd_vma offset)
find_function_stack_adjust (asection *sec, bfd_vma offset)
{
{
  int unrecog;
  int unrecog;
  int reg[128];
  int reg[128];
 
 
  memset (reg, 0, sizeof (reg));
  memset (reg, 0, sizeof (reg));
  for (unrecog = 0; offset + 4 <= sec->size && unrecog < 32; offset += 4)
  for (unrecog = 0; offset + 4 <= sec->size && unrecog < 32; offset += 4)
    {
    {
      unsigned char buf[4];
      unsigned char buf[4];
      int rt, ra;
      int rt, ra;
      int imm;
      int imm;
 
 
      /* Assume no relocs on stack adjusing insns.  */
      /* Assume no relocs on stack adjusing insns.  */
      if (!bfd_get_section_contents (sec->owner, sec, buf, offset, 4))
      if (!bfd_get_section_contents (sec->owner, sec, buf, offset, 4))
        break;
        break;
 
 
      if (buf[0] == 0x24 /* stqd */)
      if (buf[0] == 0x24 /* stqd */)
        continue;
        continue;
 
 
      rt = buf[3] & 0x7f;
      rt = buf[3] & 0x7f;
      ra = ((buf[2] & 0x3f) << 1) | (buf[3] >> 7);
      ra = ((buf[2] & 0x3f) << 1) | (buf[3] >> 7);
      /* Partly decoded immediate field.  */
      /* Partly decoded immediate field.  */
      imm = (buf[1] << 9) | (buf[2] << 1) | (buf[3] >> 7);
      imm = (buf[1] << 9) | (buf[2] << 1) | (buf[3] >> 7);
 
 
      if (buf[0] == 0x1c /* ai */)
      if (buf[0] == 0x1c /* ai */)
        {
        {
          imm >>= 7;
          imm >>= 7;
          imm = (imm ^ 0x200) - 0x200;
          imm = (imm ^ 0x200) - 0x200;
          reg[rt] = reg[ra] + imm;
          reg[rt] = reg[ra] + imm;
 
 
          if (rt == 1 /* sp */)
          if (rt == 1 /* sp */)
            {
            {
              if (imm > 0)
              if (imm > 0)
                break;
                break;
              return reg[rt];
              return reg[rt];
            }
            }
        }
        }
      else if (buf[0] == 0x18 && (buf[1] & 0xe0) == 0 /* a */)
      else if (buf[0] == 0x18 && (buf[1] & 0xe0) == 0 /* a */)
        {
        {
          int rb = ((buf[1] & 0x1f) << 2) | ((buf[2] & 0xc0) >> 6);
          int rb = ((buf[1] & 0x1f) << 2) | ((buf[2] & 0xc0) >> 6);
 
 
          reg[rt] = reg[ra] + reg[rb];
          reg[rt] = reg[ra] + reg[rb];
          if (rt == 1)
          if (rt == 1)
            return reg[rt];
            return reg[rt];
        }
        }
      else if ((buf[0] & 0xfc) == 0x40 /* il, ilh, ilhu, ila */)
      else if ((buf[0] & 0xfc) == 0x40 /* il, ilh, ilhu, ila */)
        {
        {
          if (buf[0] >= 0x42 /* ila */)
          if (buf[0] >= 0x42 /* ila */)
            imm |= (buf[0] & 1) << 17;
            imm |= (buf[0] & 1) << 17;
          else
          else
            {
            {
              imm &= 0xffff;
              imm &= 0xffff;
 
 
              if (buf[0] == 0x40 /* il */)
              if (buf[0] == 0x40 /* il */)
                {
                {
                  if ((buf[1] & 0x80) == 0)
                  if ((buf[1] & 0x80) == 0)
                    goto unknown_insn;
                    goto unknown_insn;
                  imm = (imm ^ 0x8000) - 0x8000;
                  imm = (imm ^ 0x8000) - 0x8000;
                }
                }
              else if ((buf[1] & 0x80) == 0 /* ilhu */)
              else if ((buf[1] & 0x80) == 0 /* ilhu */)
                imm <<= 16;
                imm <<= 16;
            }
            }
          reg[rt] = imm;
          reg[rt] = imm;
          continue;
          continue;
        }
        }
      else if (buf[0] == 0x60 && (buf[1] & 0x80) != 0 /* iohl */)
      else if (buf[0] == 0x60 && (buf[1] & 0x80) != 0 /* iohl */)
        {
        {
          reg[rt] |= imm & 0xffff;
          reg[rt] |= imm & 0xffff;
          continue;
          continue;
        }
        }
      else if (buf[0] == 0x04 /* ori */)
      else if (buf[0] == 0x04 /* ori */)
        {
        {
          imm >>= 7;
          imm >>= 7;
          imm = (imm ^ 0x200) - 0x200;
          imm = (imm ^ 0x200) - 0x200;
          reg[rt] = reg[ra] | imm;
          reg[rt] = reg[ra] | imm;
          continue;
          continue;
        }
        }
      else if ((buf[0] == 0x33 && imm == 1 /* brsl .+4 */)
      else if ((buf[0] == 0x33 && imm == 1 /* brsl .+4 */)
               || (buf[0] == 0x08 && (buf[1] & 0xe0) == 0 /* sf */))
               || (buf[0] == 0x08 && (buf[1] & 0xe0) == 0 /* sf */))
        {
        {
          /* Used in pic reg load.  Say rt is trashed.  */
          /* Used in pic reg load.  Say rt is trashed.  */
          reg[rt] = 0;
          reg[rt] = 0;
          continue;
          continue;
        }
        }
      else if (is_branch (buf) || is_indirect_branch (buf))
      else if (is_branch (buf) || is_indirect_branch (buf))
        /* If we hit a branch then we must be out of the prologue.  */
        /* If we hit a branch then we must be out of the prologue.  */
        break;
        break;
    unknown_insn:
    unknown_insn:
      ++unrecog;
      ++unrecog;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* qsort predicate to sort symbols by section and value.  */
/* qsort predicate to sort symbols by section and value.  */
 
 
static Elf_Internal_Sym *sort_syms_syms;
static Elf_Internal_Sym *sort_syms_syms;
static asection **sort_syms_psecs;
static asection **sort_syms_psecs;
 
 
static int
static int
sort_syms (const void *a, const void *b)
sort_syms (const void *a, const void *b)
{
{
  Elf_Internal_Sym *const *s1 = a;
  Elf_Internal_Sym *const *s1 = a;
  Elf_Internal_Sym *const *s2 = b;
  Elf_Internal_Sym *const *s2 = b;
  asection *sec1,*sec2;
  asection *sec1,*sec2;
  bfd_signed_vma delta;
  bfd_signed_vma delta;
 
 
  sec1 = sort_syms_psecs[*s1 - sort_syms_syms];
  sec1 = sort_syms_psecs[*s1 - sort_syms_syms];
  sec2 = sort_syms_psecs[*s2 - sort_syms_syms];
  sec2 = sort_syms_psecs[*s2 - sort_syms_syms];
 
 
  if (sec1 != sec2)
  if (sec1 != sec2)
    return sec1->index - sec2->index;
    return sec1->index - sec2->index;
 
 
  delta = (*s1)->st_value - (*s2)->st_value;
  delta = (*s1)->st_value - (*s2)->st_value;
  if (delta != 0)
  if (delta != 0)
    return delta < 0 ? -1 : 1;
    return delta < 0 ? -1 : 1;
 
 
  delta = (*s2)->st_size - (*s1)->st_size;
  delta = (*s2)->st_size - (*s1)->st_size;
  if (delta != 0)
  if (delta != 0)
    return delta < 0 ? -1 : 1;
    return delta < 0 ? -1 : 1;
 
 
  return *s1 < *s2 ? -1 : 1;
  return *s1 < *s2 ? -1 : 1;
}
}
 
 
struct call_info
struct call_info
{
{
  struct function_info *fun;
  struct function_info *fun;
  struct call_info *next;
  struct call_info *next;
  unsigned int count;
  unsigned int count;
  unsigned int max_depth;
  unsigned int max_depth;
  unsigned int is_tail : 1;
  unsigned int is_tail : 1;
  unsigned int is_pasted : 1;
  unsigned int is_pasted : 1;
};
};
 
 
struct function_info
struct function_info
{
{
  /* List of functions called.  Also branches to hot/cold part of
  /* List of functions called.  Also branches to hot/cold part of
     function.  */
     function.  */
  struct call_info *call_list;
  struct call_info *call_list;
  /* For hot/cold part of function, point to owner.  */
  /* For hot/cold part of function, point to owner.  */
  struct function_info *start;
  struct function_info *start;
  /* Symbol at start of function.  */
  /* Symbol at start of function.  */
  union {
  union {
    Elf_Internal_Sym *sym;
    Elf_Internal_Sym *sym;
    struct elf_link_hash_entry *h;
    struct elf_link_hash_entry *h;
  } u;
  } u;
  /* Function section.  */
  /* Function section.  */
  asection *sec;
  asection *sec;
  asection *rodata;
  asection *rodata;
  /* Where last called from, and number of sections called from.  */
  /* Where last called from, and number of sections called from.  */
  asection *last_caller;
  asection *last_caller;
  unsigned int call_count;
  unsigned int call_count;
  /* Address range of (this part of) function.  */
  /* Address range of (this part of) function.  */
  bfd_vma lo, hi;
  bfd_vma lo, hi;
  /* Stack usage.  */
  /* Stack usage.  */
  int stack;
  int stack;
  /* Distance from root of call tree.  Tail and hot/cold branches
  /* Distance from root of call tree.  Tail and hot/cold branches
     count as one deeper.  We aren't counting stack frames here.  */
     count as one deeper.  We aren't counting stack frames here.  */
  unsigned int depth;
  unsigned int depth;
  /* Set if global symbol.  */
  /* Set if global symbol.  */
  unsigned int global : 1;
  unsigned int global : 1;
  /* Set if known to be start of function (as distinct from a hunk
  /* Set if known to be start of function (as distinct from a hunk
     in hot/cold section.  */
     in hot/cold section.  */
  unsigned int is_func : 1;
  unsigned int is_func : 1;
  /* Set if not a root node.  */
  /* Set if not a root node.  */
  unsigned int non_root : 1;
  unsigned int non_root : 1;
  /* Flags used during call tree traversal.  It's cheaper to replicate
  /* Flags used during call tree traversal.  It's cheaper to replicate
     the visit flags than have one which needs clearing after a traversal.  */
     the visit flags than have one which needs clearing after a traversal.  */
  unsigned int visit1 : 1;
  unsigned int visit1 : 1;
  unsigned int visit2 : 1;
  unsigned int visit2 : 1;
  unsigned int marking : 1;
  unsigned int marking : 1;
  unsigned int visit3 : 1;
  unsigned int visit3 : 1;
  unsigned int visit4 : 1;
  unsigned int visit4 : 1;
  unsigned int visit5 : 1;
  unsigned int visit5 : 1;
  unsigned int visit6 : 1;
  unsigned int visit6 : 1;
  unsigned int visit7 : 1;
  unsigned int visit7 : 1;
};
};
 
 
struct spu_elf_stack_info
struct spu_elf_stack_info
{
{
  int num_fun;
  int num_fun;
  int max_fun;
  int max_fun;
  /* Variable size array describing functions, one per contiguous
  /* Variable size array describing functions, one per contiguous
     address range belonging to a function.  */
     address range belonging to a function.  */
  struct function_info fun[1];
  struct function_info fun[1];
};
};
 
 
/* Allocate a struct spu_elf_stack_info with MAX_FUN struct function_info
/* Allocate a struct spu_elf_stack_info with MAX_FUN struct function_info
   entries for section SEC.  */
   entries for section SEC.  */
 
 
static struct spu_elf_stack_info *
static struct spu_elf_stack_info *
alloc_stack_info (asection *sec, int max_fun)
alloc_stack_info (asection *sec, int max_fun)
{
{
  struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
  struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  amt = sizeof (struct spu_elf_stack_info);
  amt = sizeof (struct spu_elf_stack_info);
  amt += (max_fun - 1) * sizeof (struct function_info);
  amt += (max_fun - 1) * sizeof (struct function_info);
  sec_data->u.i.stack_info = bfd_zmalloc (amt);
  sec_data->u.i.stack_info = bfd_zmalloc (amt);
  if (sec_data->u.i.stack_info != NULL)
  if (sec_data->u.i.stack_info != NULL)
    sec_data->u.i.stack_info->max_fun = max_fun;
    sec_data->u.i.stack_info->max_fun = max_fun;
  return sec_data->u.i.stack_info;
  return sec_data->u.i.stack_info;
}
}
 
 
/* Add a new struct function_info describing a (part of a) function
/* Add a new struct function_info describing a (part of a) function
   starting at SYM_H.  Keep the array sorted by address.  */
   starting at SYM_H.  Keep the array sorted by address.  */
 
 
static struct function_info *
static struct function_info *
maybe_insert_function (asection *sec,
maybe_insert_function (asection *sec,
                       void *sym_h,
                       void *sym_h,
                       bfd_boolean global,
                       bfd_boolean global,
                       bfd_boolean is_func)
                       bfd_boolean is_func)
{
{
  struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
  struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
  struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
  struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
  int i;
  int i;
  bfd_vma off, size;
  bfd_vma off, size;
 
 
  if (sinfo == NULL)
  if (sinfo == NULL)
    {
    {
      sinfo = alloc_stack_info (sec, 20);
      sinfo = alloc_stack_info (sec, 20);
      if (sinfo == NULL)
      if (sinfo == NULL)
        return NULL;
        return NULL;
    }
    }
 
 
  if (!global)
  if (!global)
    {
    {
      Elf_Internal_Sym *sym = sym_h;
      Elf_Internal_Sym *sym = sym_h;
      off = sym->st_value;
      off = sym->st_value;
      size = sym->st_size;
      size = sym->st_size;
    }
    }
  else
  else
    {
    {
      struct elf_link_hash_entry *h = sym_h;
      struct elf_link_hash_entry *h = sym_h;
      off = h->root.u.def.value;
      off = h->root.u.def.value;
      size = h->size;
      size = h->size;
    }
    }
 
 
  for (i = sinfo->num_fun; --i >= 0; )
  for (i = sinfo->num_fun; --i >= 0; )
    if (sinfo->fun[i].lo <= off)
    if (sinfo->fun[i].lo <= off)
      break;
      break;
 
 
  if (i >= 0)
  if (i >= 0)
    {
    {
      /* Don't add another entry for an alias, but do update some
      /* Don't add another entry for an alias, but do update some
         info.  */
         info.  */
      if (sinfo->fun[i].lo == off)
      if (sinfo->fun[i].lo == off)
        {
        {
          /* Prefer globals over local syms.  */
          /* Prefer globals over local syms.  */
          if (global && !sinfo->fun[i].global)
          if (global && !sinfo->fun[i].global)
            {
            {
              sinfo->fun[i].global = TRUE;
              sinfo->fun[i].global = TRUE;
              sinfo->fun[i].u.h = sym_h;
              sinfo->fun[i].u.h = sym_h;
            }
            }
          if (is_func)
          if (is_func)
            sinfo->fun[i].is_func = TRUE;
            sinfo->fun[i].is_func = TRUE;
          return &sinfo->fun[i];
          return &sinfo->fun[i];
        }
        }
      /* Ignore a zero-size symbol inside an existing function.  */
      /* Ignore a zero-size symbol inside an existing function.  */
      else if (sinfo->fun[i].hi > off && size == 0)
      else if (sinfo->fun[i].hi > off && size == 0)
        return &sinfo->fun[i];
        return &sinfo->fun[i];
    }
    }
 
 
  if (++i < sinfo->num_fun)
  if (++i < sinfo->num_fun)
    memmove (&sinfo->fun[i + 1], &sinfo->fun[i],
    memmove (&sinfo->fun[i + 1], &sinfo->fun[i],
             (sinfo->num_fun - i) * sizeof (sinfo->fun[i]));
             (sinfo->num_fun - i) * sizeof (sinfo->fun[i]));
  else if (i >= sinfo->max_fun)
  else if (i >= sinfo->max_fun)
    {
    {
      bfd_size_type amt = sizeof (struct spu_elf_stack_info);
      bfd_size_type amt = sizeof (struct spu_elf_stack_info);
      bfd_size_type old = amt;
      bfd_size_type old = amt;
 
 
      old += (sinfo->max_fun - 1) * sizeof (struct function_info);
      old += (sinfo->max_fun - 1) * sizeof (struct function_info);
      sinfo->max_fun += 20 + (sinfo->max_fun >> 1);
      sinfo->max_fun += 20 + (sinfo->max_fun >> 1);
      amt += (sinfo->max_fun - 1) * sizeof (struct function_info);
      amt += (sinfo->max_fun - 1) * sizeof (struct function_info);
      sinfo = bfd_realloc (sinfo, amt);
      sinfo = bfd_realloc (sinfo, amt);
      if (sinfo == NULL)
      if (sinfo == NULL)
        return NULL;
        return NULL;
      memset ((char *) sinfo + old, 0, amt - old);
      memset ((char *) sinfo + old, 0, amt - old);
      sec_data->u.i.stack_info = sinfo;
      sec_data->u.i.stack_info = sinfo;
    }
    }
  sinfo->fun[i].is_func = is_func;
  sinfo->fun[i].is_func = is_func;
  sinfo->fun[i].global = global;
  sinfo->fun[i].global = global;
  sinfo->fun[i].sec = sec;
  sinfo->fun[i].sec = sec;
  if (global)
  if (global)
    sinfo->fun[i].u.h = sym_h;
    sinfo->fun[i].u.h = sym_h;
  else
  else
    sinfo->fun[i].u.sym = sym_h;
    sinfo->fun[i].u.sym = sym_h;
  sinfo->fun[i].lo = off;
  sinfo->fun[i].lo = off;
  sinfo->fun[i].hi = off + size;
  sinfo->fun[i].hi = off + size;
  sinfo->fun[i].stack = -find_function_stack_adjust (sec, off);
  sinfo->fun[i].stack = -find_function_stack_adjust (sec, off);
  sinfo->num_fun += 1;
  sinfo->num_fun += 1;
  return &sinfo->fun[i];
  return &sinfo->fun[i];
}
}
 
 
/* Return the name of FUN.  */
/* Return the name of FUN.  */
 
 
static const char *
static const char *
func_name (struct function_info *fun)
func_name (struct function_info *fun)
{
{
  asection *sec;
  asection *sec;
  bfd *ibfd;
  bfd *ibfd;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
 
 
  while (fun->start != NULL)
  while (fun->start != NULL)
    fun = fun->start;
    fun = fun->start;
 
 
  if (fun->global)
  if (fun->global)
    return fun->u.h->root.root.string;
    return fun->u.h->root.root.string;
 
 
  sec = fun->sec;
  sec = fun->sec;
  if (fun->u.sym->st_name == 0)
  if (fun->u.sym->st_name == 0)
    {
    {
      size_t len = strlen (sec->name);
      size_t len = strlen (sec->name);
      char *name = bfd_malloc (len + 10);
      char *name = bfd_malloc (len + 10);
      if (name == NULL)
      if (name == NULL)
        return "(null)";
        return "(null)";
      sprintf (name, "%s+%lx", sec->name,
      sprintf (name, "%s+%lx", sec->name,
               (unsigned long) fun->u.sym->st_value & 0xffffffff);
               (unsigned long) fun->u.sym->st_value & 0xffffffff);
      return name;
      return name;
    }
    }
  ibfd = sec->owner;
  ibfd = sec->owner;
  symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
  return bfd_elf_sym_name (ibfd, symtab_hdr, fun->u.sym, sec);
  return bfd_elf_sym_name (ibfd, symtab_hdr, fun->u.sym, sec);
}
}
 
 
/* Read the instruction at OFF in SEC.  Return true iff the instruction
/* Read the instruction at OFF in SEC.  Return true iff the instruction
   is a nop, lnop, or stop 0 (all zero insn).  */
   is a nop, lnop, or stop 0 (all zero insn).  */
 
 
static bfd_boolean
static bfd_boolean
is_nop (asection *sec, bfd_vma off)
is_nop (asection *sec, bfd_vma off)
{
{
  unsigned char insn[4];
  unsigned char insn[4];
 
 
  if (off + 4 > sec->size
  if (off + 4 > sec->size
      || !bfd_get_section_contents (sec->owner, sec, insn, off, 4))
      || !bfd_get_section_contents (sec->owner, sec, insn, off, 4))
    return FALSE;
    return FALSE;
  if ((insn[0] & 0xbf) == 0 && (insn[1] & 0xe0) == 0x20)
  if ((insn[0] & 0xbf) == 0 && (insn[1] & 0xe0) == 0x20)
    return TRUE;
    return TRUE;
  if (insn[0] == 0 && insn[1] == 0 && insn[2] == 0 && insn[3] == 0)
  if (insn[0] == 0 && insn[1] == 0 && insn[2] == 0 && insn[3] == 0)
    return TRUE;
    return TRUE;
  return FALSE;
  return FALSE;
}
}
 
 
/* Extend the range of FUN to cover nop padding up to LIMIT.
/* Extend the range of FUN to cover nop padding up to LIMIT.
   Return TRUE iff some instruction other than a NOP was found.  */
   Return TRUE iff some instruction other than a NOP was found.  */
 
 
static bfd_boolean
static bfd_boolean
insns_at_end (struct function_info *fun, bfd_vma limit)
insns_at_end (struct function_info *fun, bfd_vma limit)
{
{
  bfd_vma off = (fun->hi + 3) & -4;
  bfd_vma off = (fun->hi + 3) & -4;
 
 
  while (off < limit && is_nop (fun->sec, off))
  while (off < limit && is_nop (fun->sec, off))
    off += 4;
    off += 4;
  if (off < limit)
  if (off < limit)
    {
    {
      fun->hi = off;
      fun->hi = off;
      return TRUE;
      return TRUE;
    }
    }
  fun->hi = limit;
  fun->hi = limit;
  return FALSE;
  return FALSE;
}
}
 
 
/* Check and fix overlapping function ranges.  Return TRUE iff there
/* Check and fix overlapping function ranges.  Return TRUE iff there
   are gaps in the current info we have about functions in SEC.  */
   are gaps in the current info we have about functions in SEC.  */
 
 
static bfd_boolean
static bfd_boolean
check_function_ranges (asection *sec, struct bfd_link_info *info)
check_function_ranges (asection *sec, struct bfd_link_info *info)
{
{
  struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
  struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
  struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
  struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
  int i;
  int i;
  bfd_boolean gaps = FALSE;
  bfd_boolean gaps = FALSE;
 
 
  if (sinfo == NULL)
  if (sinfo == NULL)
    return FALSE;
    return FALSE;
 
 
  for (i = 1; i < sinfo->num_fun; i++)
  for (i = 1; i < sinfo->num_fun; i++)
    if (sinfo->fun[i - 1].hi > sinfo->fun[i].lo)
    if (sinfo->fun[i - 1].hi > sinfo->fun[i].lo)
      {
      {
        /* Fix overlapping symbols.  */
        /* Fix overlapping symbols.  */
        const char *f1 = func_name (&sinfo->fun[i - 1]);
        const char *f1 = func_name (&sinfo->fun[i - 1]);
        const char *f2 = func_name (&sinfo->fun[i]);
        const char *f2 = func_name (&sinfo->fun[i]);
 
 
        info->callbacks->einfo (_("warning: %s overlaps %s\n"), f1, f2);
        info->callbacks->einfo (_("warning: %s overlaps %s\n"), f1, f2);
        sinfo->fun[i - 1].hi = sinfo->fun[i].lo;
        sinfo->fun[i - 1].hi = sinfo->fun[i].lo;
      }
      }
    else if (insns_at_end (&sinfo->fun[i - 1], sinfo->fun[i].lo))
    else if (insns_at_end (&sinfo->fun[i - 1], sinfo->fun[i].lo))
      gaps = TRUE;
      gaps = TRUE;
 
 
  if (sinfo->num_fun == 0)
  if (sinfo->num_fun == 0)
    gaps = TRUE;
    gaps = TRUE;
  else
  else
    {
    {
      if (sinfo->fun[0].lo != 0)
      if (sinfo->fun[0].lo != 0)
        gaps = TRUE;
        gaps = TRUE;
      if (sinfo->fun[sinfo->num_fun - 1].hi > sec->size)
      if (sinfo->fun[sinfo->num_fun - 1].hi > sec->size)
        {
        {
          const char *f1 = func_name (&sinfo->fun[sinfo->num_fun - 1]);
          const char *f1 = func_name (&sinfo->fun[sinfo->num_fun - 1]);
 
 
          info->callbacks->einfo (_("warning: %s exceeds section size\n"), f1);
          info->callbacks->einfo (_("warning: %s exceeds section size\n"), f1);
          sinfo->fun[sinfo->num_fun - 1].hi = sec->size;
          sinfo->fun[sinfo->num_fun - 1].hi = sec->size;
        }
        }
      else if (insns_at_end (&sinfo->fun[sinfo->num_fun - 1], sec->size))
      else if (insns_at_end (&sinfo->fun[sinfo->num_fun - 1], sec->size))
        gaps = TRUE;
        gaps = TRUE;
    }
    }
  return gaps;
  return gaps;
}
}
 
 
/* Search current function info for a function that contains address
/* Search current function info for a function that contains address
   OFFSET in section SEC.  */
   OFFSET in section SEC.  */
 
 
static struct function_info *
static struct function_info *
find_function (asection *sec, bfd_vma offset, struct bfd_link_info *info)
find_function (asection *sec, bfd_vma offset, struct bfd_link_info *info)
{
{
  struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
  struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
  struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
  struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
  int lo, hi, mid;
  int lo, hi, mid;
 
 
  lo = 0;
  lo = 0;
  hi = sinfo->num_fun;
  hi = sinfo->num_fun;
  while (lo < hi)
  while (lo < hi)
    {
    {
      mid = (lo + hi) / 2;
      mid = (lo + hi) / 2;
      if (offset < sinfo->fun[mid].lo)
      if (offset < sinfo->fun[mid].lo)
        hi = mid;
        hi = mid;
      else if (offset >= sinfo->fun[mid].hi)
      else if (offset >= sinfo->fun[mid].hi)
        lo = mid + 1;
        lo = mid + 1;
      else
      else
        return &sinfo->fun[mid];
        return &sinfo->fun[mid];
    }
    }
  info->callbacks->einfo (_("%A:0x%v not found in function table\n"),
  info->callbacks->einfo (_("%A:0x%v not found in function table\n"),
                          sec, offset);
                          sec, offset);
  return NULL;
  return NULL;
}
}
 
 
/* Add CALLEE to CALLER call list if not already present.  Return TRUE
/* Add CALLEE to CALLER call list if not already present.  Return TRUE
   if CALLEE was new.  If this function return FALSE, CALLEE should
   if CALLEE was new.  If this function return FALSE, CALLEE should
   be freed.  */
   be freed.  */
 
 
static bfd_boolean
static bfd_boolean
insert_callee (struct function_info *caller, struct call_info *callee)
insert_callee (struct function_info *caller, struct call_info *callee)
{
{
  struct call_info **pp, *p;
  struct call_info **pp, *p;
 
 
  for (pp = &caller->call_list; (p = *pp) != NULL; pp = &p->next)
  for (pp = &caller->call_list; (p = *pp) != NULL; pp = &p->next)
    if (p->fun == callee->fun)
    if (p->fun == callee->fun)
      {
      {
        /* Tail calls use less stack than normal calls.  Retain entry
        /* Tail calls use less stack than normal calls.  Retain entry
           for normal call over one for tail call.  */
           for normal call over one for tail call.  */
        p->is_tail &= callee->is_tail;
        p->is_tail &= callee->is_tail;
        if (!p->is_tail)
        if (!p->is_tail)
          {
          {
            p->fun->start = NULL;
            p->fun->start = NULL;
            p->fun->is_func = TRUE;
            p->fun->is_func = TRUE;
          }
          }
        p->count += 1;
        p->count += 1;
        /* Reorder list so most recent call is first.  */
        /* Reorder list so most recent call is first.  */
        *pp = p->next;
        *pp = p->next;
        p->next = caller->call_list;
        p->next = caller->call_list;
        caller->call_list = p;
        caller->call_list = p;
        return FALSE;
        return FALSE;
      }
      }
  callee->next = caller->call_list;
  callee->next = caller->call_list;
  callee->count += 1;
  callee->count += 1;
  caller->call_list = callee;
  caller->call_list = callee;
  return TRUE;
  return TRUE;
}
}
 
 
/* Copy CALL and insert the copy into CALLER.  */
/* Copy CALL and insert the copy into CALLER.  */
 
 
static bfd_boolean
static bfd_boolean
copy_callee (struct function_info *caller, const struct call_info *call)
copy_callee (struct function_info *caller, const struct call_info *call)
{
{
  struct call_info *callee;
  struct call_info *callee;
  callee = bfd_malloc (sizeof (*callee));
  callee = bfd_malloc (sizeof (*callee));
  if (callee == NULL)
  if (callee == NULL)
    return FALSE;
    return FALSE;
  *callee = *call;
  *callee = *call;
  if (!insert_callee (caller, callee))
  if (!insert_callee (caller, callee))
    free (callee);
    free (callee);
  return TRUE;
  return TRUE;
}
}
 
 
/* We're only interested in code sections.  Testing SEC_IN_MEMORY excludes
/* We're only interested in code sections.  Testing SEC_IN_MEMORY excludes
   overlay stub sections.  */
   overlay stub sections.  */
 
 
static bfd_boolean
static bfd_boolean
interesting_section (asection *s, bfd *obfd)
interesting_section (asection *s, bfd *obfd)
{
{
  return (s->output_section != NULL
  return (s->output_section != NULL
          && s->output_section->owner == obfd
          && s->output_section->owner == obfd
          && ((s->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_IN_MEMORY))
          && ((s->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_IN_MEMORY))
              == (SEC_ALLOC | SEC_LOAD | SEC_CODE))
              == (SEC_ALLOC | SEC_LOAD | SEC_CODE))
          && s->size != 0);
          && s->size != 0);
}
}
 
 
/* Rummage through the relocs for SEC, looking for function calls.
/* Rummage through the relocs for SEC, looking for function calls.
   If CALL_TREE is true, fill in call graph.  If CALL_TREE is false,
   If CALL_TREE is true, fill in call graph.  If CALL_TREE is false,
   mark destination symbols on calls as being functions.  Also
   mark destination symbols on calls as being functions.  Also
   look at branches, which may be tail calls or go to hot/cold
   look at branches, which may be tail calls or go to hot/cold
   section part of same function.  */
   section part of same function.  */
 
 
static bfd_boolean
static bfd_boolean
mark_functions_via_relocs (asection *sec,
mark_functions_via_relocs (asection *sec,
                           struct bfd_link_info *info,
                           struct bfd_link_info *info,
                           int call_tree)
                           int call_tree)
{
{
  Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
  Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Sym *syms;
  Elf_Internal_Sym *syms;
  void *psyms;
  void *psyms;
  static bfd_boolean warned;
  static bfd_boolean warned;
 
 
  if (!interesting_section (sec, info->output_bfd)
  if (!interesting_section (sec, info->output_bfd)
      || sec->reloc_count == 0)
      || sec->reloc_count == 0)
    return TRUE;
    return TRUE;
 
 
  internal_relocs = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL,
  internal_relocs = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL,
                                               info->keep_memory);
                                               info->keep_memory);
  if (internal_relocs == NULL)
  if (internal_relocs == NULL)
    return FALSE;
    return FALSE;
 
 
  symtab_hdr = &elf_tdata (sec->owner)->symtab_hdr;
  symtab_hdr = &elf_tdata (sec->owner)->symtab_hdr;
  psyms = &symtab_hdr->contents;
  psyms = &symtab_hdr->contents;
  syms = *(Elf_Internal_Sym **) psyms;
  syms = *(Elf_Internal_Sym **) psyms;
  irela = internal_relocs;
  irela = internal_relocs;
  irelaend = irela + sec->reloc_count;
  irelaend = irela + sec->reloc_count;
  for (; irela < irelaend; irela++)
  for (; irela < irelaend; irela++)
    {
    {
      enum elf_spu_reloc_type r_type;
      enum elf_spu_reloc_type r_type;
      unsigned int r_indx;
      unsigned int r_indx;
      asection *sym_sec;
      asection *sym_sec;
      Elf_Internal_Sym *sym;
      Elf_Internal_Sym *sym;
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      bfd_vma val;
      bfd_vma val;
      bfd_boolean reject, is_call;
      bfd_boolean reject, is_call;
      struct function_info *caller;
      struct function_info *caller;
      struct call_info *callee;
      struct call_info *callee;
 
 
      reject = FALSE;
      reject = FALSE;
      r_type = ELF32_R_TYPE (irela->r_info);
      r_type = ELF32_R_TYPE (irela->r_info);
      if (r_type != R_SPU_REL16
      if (r_type != R_SPU_REL16
          && r_type != R_SPU_ADDR16)
          && r_type != R_SPU_ADDR16)
        {
        {
          reject = TRUE;
          reject = TRUE;
          if (!(call_tree && spu_hash_table (info)->auto_overlay))
          if (!(call_tree && spu_hash_table (info)->auto_overlay))
            continue;
            continue;
        }
        }
 
 
      r_indx = ELF32_R_SYM (irela->r_info);
      r_indx = ELF32_R_SYM (irela->r_info);
      if (!get_sym_h (&h, &sym, &sym_sec, psyms, r_indx, sec->owner))
      if (!get_sym_h (&h, &sym, &sym_sec, psyms, r_indx, sec->owner))
        return FALSE;
        return FALSE;
 
 
      if (sym_sec == NULL
      if (sym_sec == NULL
          || sym_sec->output_section == NULL
          || sym_sec->output_section == NULL
          || sym_sec->output_section->owner != info->output_bfd)
          || sym_sec->output_section->owner != info->output_bfd)
        continue;
        continue;
 
 
      is_call = FALSE;
      is_call = FALSE;
      if (!reject)
      if (!reject)
        {
        {
          unsigned char insn[4];
          unsigned char insn[4];
 
 
          if (!bfd_get_section_contents (sec->owner, sec, insn,
          if (!bfd_get_section_contents (sec->owner, sec, insn,
                                         irela->r_offset, 4))
                                         irela->r_offset, 4))
            return FALSE;
            return FALSE;
          if (is_branch (insn))
          if (is_branch (insn))
            {
            {
              is_call = (insn[0] & 0xfd) == 0x31;
              is_call = (insn[0] & 0xfd) == 0x31;
              if ((sym_sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE))
              if ((sym_sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_CODE))
                  != (SEC_ALLOC | SEC_LOAD | SEC_CODE))
                  != (SEC_ALLOC | SEC_LOAD | SEC_CODE))
                {
                {
                  if (!warned)
                  if (!warned)
                    info->callbacks->einfo
                    info->callbacks->einfo
                      (_("%B(%A+0x%v): call to non-code section"
                      (_("%B(%A+0x%v): call to non-code section"
                         " %B(%A), analysis incomplete\n"),
                         " %B(%A), analysis incomplete\n"),
                       sec->owner, sec, irela->r_offset,
                       sec->owner, sec, irela->r_offset,
                       sym_sec->owner, sym_sec);
                       sym_sec->owner, sym_sec);
                  warned = TRUE;
                  warned = TRUE;
                  continue;
                  continue;
                }
                }
            }
            }
          else
          else
            {
            {
              reject = TRUE;
              reject = TRUE;
              if (!(call_tree && spu_hash_table (info)->auto_overlay)
              if (!(call_tree && spu_hash_table (info)->auto_overlay)
                  || is_hint (insn))
                  || is_hint (insn))
                continue;
                continue;
            }
            }
        }
        }
 
 
      if (reject)
      if (reject)
        {
        {
          /* For --auto-overlay, count possible stubs we need for
          /* For --auto-overlay, count possible stubs we need for
             function pointer references.  */
             function pointer references.  */
          unsigned int sym_type;
          unsigned int sym_type;
          if (h)
          if (h)
            sym_type = h->type;
            sym_type = h->type;
          else
          else
            sym_type = ELF_ST_TYPE (sym->st_info);
            sym_type = ELF_ST_TYPE (sym->st_info);
          if (sym_type == STT_FUNC)
          if (sym_type == STT_FUNC)
            spu_hash_table (info)->non_ovly_stub += 1;
            spu_hash_table (info)->non_ovly_stub += 1;
          continue;
          continue;
        }
        }
 
 
      if (h)
      if (h)
        val = h->root.u.def.value;
        val = h->root.u.def.value;
      else
      else
        val = sym->st_value;
        val = sym->st_value;
      val += irela->r_addend;
      val += irela->r_addend;
 
 
      if (!call_tree)
      if (!call_tree)
        {
        {
          struct function_info *fun;
          struct function_info *fun;
 
 
          if (irela->r_addend != 0)
          if (irela->r_addend != 0)
            {
            {
              Elf_Internal_Sym *fake = bfd_zmalloc (sizeof (*fake));
              Elf_Internal_Sym *fake = bfd_zmalloc (sizeof (*fake));
              if (fake == NULL)
              if (fake == NULL)
                return FALSE;
                return FALSE;
              fake->st_value = val;
              fake->st_value = val;
              fake->st_shndx
              fake->st_shndx
                = _bfd_elf_section_from_bfd_section (sym_sec->owner, sym_sec);
                = _bfd_elf_section_from_bfd_section (sym_sec->owner, sym_sec);
              sym = fake;
              sym = fake;
            }
            }
          if (sym)
          if (sym)
            fun = maybe_insert_function (sym_sec, sym, FALSE, is_call);
            fun = maybe_insert_function (sym_sec, sym, FALSE, is_call);
          else
          else
            fun = maybe_insert_function (sym_sec, h, TRUE, is_call);
            fun = maybe_insert_function (sym_sec, h, TRUE, is_call);
          if (fun == NULL)
          if (fun == NULL)
            return FALSE;
            return FALSE;
          if (irela->r_addend != 0
          if (irela->r_addend != 0
              && fun->u.sym != sym)
              && fun->u.sym != sym)
            free (sym);
            free (sym);
          continue;
          continue;
        }
        }
 
 
      caller = find_function (sec, irela->r_offset, info);
      caller = find_function (sec, irela->r_offset, info);
      if (caller == NULL)
      if (caller == NULL)
        return FALSE;
        return FALSE;
      callee = bfd_malloc (sizeof *callee);
      callee = bfd_malloc (sizeof *callee);
      if (callee == NULL)
      if (callee == NULL)
        return FALSE;
        return FALSE;
 
 
      callee->fun = find_function (sym_sec, val, info);
      callee->fun = find_function (sym_sec, val, info);
      if (callee->fun == NULL)
      if (callee->fun == NULL)
        return FALSE;
        return FALSE;
      callee->is_tail = !is_call;
      callee->is_tail = !is_call;
      callee->is_pasted = FALSE;
      callee->is_pasted = FALSE;
      callee->count = 0;
      callee->count = 0;
      if (callee->fun->last_caller != sec)
      if (callee->fun->last_caller != sec)
        {
        {
          callee->fun->last_caller = sec;
          callee->fun->last_caller = sec;
          callee->fun->call_count += 1;
          callee->fun->call_count += 1;
        }
        }
      if (!insert_callee (caller, callee))
      if (!insert_callee (caller, callee))
        free (callee);
        free (callee);
      else if (!is_call
      else if (!is_call
               && !callee->fun->is_func
               && !callee->fun->is_func
               && callee->fun->stack == 0)
               && callee->fun->stack == 0)
        {
        {
          /* This is either a tail call or a branch from one part of
          /* This is either a tail call or a branch from one part of
             the function to another, ie. hot/cold section.  If the
             the function to another, ie. hot/cold section.  If the
             destination has been called by some other function then
             destination has been called by some other function then
             it is a separate function.  We also assume that functions
             it is a separate function.  We also assume that functions
             are not split across input files.  */
             are not split across input files.  */
          if (sec->owner != sym_sec->owner)
          if (sec->owner != sym_sec->owner)
            {
            {
              callee->fun->start = NULL;
              callee->fun->start = NULL;
              callee->fun->is_func = TRUE;
              callee->fun->is_func = TRUE;
            }
            }
          else if (callee->fun->start == NULL)
          else if (callee->fun->start == NULL)
            callee->fun->start = caller;
            callee->fun->start = caller;
          else
          else
            {
            {
              struct function_info *callee_start;
              struct function_info *callee_start;
              struct function_info *caller_start;
              struct function_info *caller_start;
              callee_start = callee->fun;
              callee_start = callee->fun;
              while (callee_start->start)
              while (callee_start->start)
                callee_start = callee_start->start;
                callee_start = callee_start->start;
              caller_start = caller;
              caller_start = caller;
              while (caller_start->start)
              while (caller_start->start)
                caller_start = caller_start->start;
                caller_start = caller_start->start;
              if (caller_start != callee_start)
              if (caller_start != callee_start)
                {
                {
                  callee->fun->start = NULL;
                  callee->fun->start = NULL;
                  callee->fun->is_func = TRUE;
                  callee->fun->is_func = TRUE;
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Handle something like .init or .fini, which has a piece of a function.
/* Handle something like .init or .fini, which has a piece of a function.
   These sections are pasted together to form a single function.  */
   These sections are pasted together to form a single function.  */
 
 
static bfd_boolean
static bfd_boolean
pasted_function (asection *sec, struct bfd_link_info *info)
pasted_function (asection *sec, struct bfd_link_info *info)
{
{
  struct bfd_link_order *l;
  struct bfd_link_order *l;
  struct _spu_elf_section_data *sec_data;
  struct _spu_elf_section_data *sec_data;
  struct spu_elf_stack_info *sinfo;
  struct spu_elf_stack_info *sinfo;
  Elf_Internal_Sym *fake;
  Elf_Internal_Sym *fake;
  struct function_info *fun, *fun_start;
  struct function_info *fun, *fun_start;
 
 
  fake = bfd_zmalloc (sizeof (*fake));
  fake = bfd_zmalloc (sizeof (*fake));
  if (fake == NULL)
  if (fake == NULL)
    return FALSE;
    return FALSE;
  fake->st_value = 0;
  fake->st_value = 0;
  fake->st_size = sec->size;
  fake->st_size = sec->size;
  fake->st_shndx
  fake->st_shndx
    = _bfd_elf_section_from_bfd_section (sec->owner, sec);
    = _bfd_elf_section_from_bfd_section (sec->owner, sec);
  fun = maybe_insert_function (sec, fake, FALSE, FALSE);
  fun = maybe_insert_function (sec, fake, FALSE, FALSE);
  if (!fun)
  if (!fun)
    return FALSE;
    return FALSE;
 
 
  /* Find a function immediately preceding this section.  */
  /* Find a function immediately preceding this section.  */
  fun_start = NULL;
  fun_start = NULL;
  for (l = sec->output_section->map_head.link_order; l != NULL; l = l->next)
  for (l = sec->output_section->map_head.link_order; l != NULL; l = l->next)
    {
    {
      if (l->u.indirect.section == sec)
      if (l->u.indirect.section == sec)
        {
        {
          if (fun_start != NULL)
          if (fun_start != NULL)
            {
            {
              struct call_info *callee = bfd_malloc (sizeof *callee);
              struct call_info *callee = bfd_malloc (sizeof *callee);
              if (callee == NULL)
              if (callee == NULL)
                return FALSE;
                return FALSE;
 
 
              fun->start = fun_start;
              fun->start = fun_start;
              callee->fun = fun;
              callee->fun = fun;
              callee->is_tail = TRUE;
              callee->is_tail = TRUE;
              callee->is_pasted = TRUE;
              callee->is_pasted = TRUE;
              callee->count = 0;
              callee->count = 0;
              if (!insert_callee (fun_start, callee))
              if (!insert_callee (fun_start, callee))
                free (callee);
                free (callee);
              return TRUE;
              return TRUE;
            }
            }
          break;
          break;
        }
        }
      if (l->type == bfd_indirect_link_order
      if (l->type == bfd_indirect_link_order
          && (sec_data = spu_elf_section_data (l->u.indirect.section)) != NULL
          && (sec_data = spu_elf_section_data (l->u.indirect.section)) != NULL
          && (sinfo = sec_data->u.i.stack_info) != NULL
          && (sinfo = sec_data->u.i.stack_info) != NULL
          && sinfo->num_fun != 0)
          && sinfo->num_fun != 0)
        fun_start = &sinfo->fun[sinfo->num_fun - 1];
        fun_start = &sinfo->fun[sinfo->num_fun - 1];
    }
    }
 
 
  info->callbacks->einfo (_("%A link_order not found\n"), sec);
  info->callbacks->einfo (_("%A link_order not found\n"), sec);
  return FALSE;
  return FALSE;
}
}
 
 
/* Map address ranges in code sections to functions.  */
/* Map address ranges in code sections to functions.  */
 
 
static bfd_boolean
static bfd_boolean
discover_functions (struct bfd_link_info *info)
discover_functions (struct bfd_link_info *info)
{
{
  bfd *ibfd;
  bfd *ibfd;
  int bfd_idx;
  int bfd_idx;
  Elf_Internal_Sym ***psym_arr;
  Elf_Internal_Sym ***psym_arr;
  asection ***sec_arr;
  asection ***sec_arr;
  bfd_boolean gaps = FALSE;
  bfd_boolean gaps = FALSE;
 
 
  bfd_idx = 0;
  bfd_idx = 0;
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
    bfd_idx++;
    bfd_idx++;
 
 
  psym_arr = bfd_zmalloc (bfd_idx * sizeof (*psym_arr));
  psym_arr = bfd_zmalloc (bfd_idx * sizeof (*psym_arr));
  if (psym_arr == NULL)
  if (psym_arr == NULL)
    return FALSE;
    return FALSE;
  sec_arr = bfd_zmalloc (bfd_idx * sizeof (*sec_arr));
  sec_arr = bfd_zmalloc (bfd_idx * sizeof (*sec_arr));
  if (sec_arr == NULL)
  if (sec_arr == NULL)
    return FALSE;
    return FALSE;
 
 
 
 
  for (ibfd = info->input_bfds, bfd_idx = 0;
  for (ibfd = info->input_bfds, bfd_idx = 0;
       ibfd != NULL;
       ibfd != NULL;
       ibfd = ibfd->link_next, bfd_idx++)
       ibfd = ibfd->link_next, bfd_idx++)
    {
    {
      extern const bfd_target bfd_elf32_spu_vec;
      extern const bfd_target bfd_elf32_spu_vec;
      Elf_Internal_Shdr *symtab_hdr;
      Elf_Internal_Shdr *symtab_hdr;
      asection *sec;
      asection *sec;
      size_t symcount;
      size_t symcount;
      Elf_Internal_Sym *syms, *sy, **psyms, **psy;
      Elf_Internal_Sym *syms, *sy, **psyms, **psy;
      asection **psecs, **p;
      asection **psecs, **p;
 
 
      if (ibfd->xvec != &bfd_elf32_spu_vec)
      if (ibfd->xvec != &bfd_elf32_spu_vec)
        continue;
        continue;
 
 
      /* Read all the symbols.  */
      /* Read all the symbols.  */
      symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
      symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
      symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
      symcount = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
      if (symcount == 0)
      if (symcount == 0)
        {
        {
          if (!gaps)
          if (!gaps)
            for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
            for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
              if (interesting_section (sec, info->output_bfd))
              if (interesting_section (sec, info->output_bfd))
                {
                {
                  gaps = TRUE;
                  gaps = TRUE;
                  break;
                  break;
                }
                }
          continue;
          continue;
        }
        }
 
 
      syms = (Elf_Internal_Sym *) symtab_hdr->contents;
      syms = (Elf_Internal_Sym *) symtab_hdr->contents;
      if (syms == NULL)
      if (syms == NULL)
        {
        {
          syms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, 0,
          syms = bfd_elf_get_elf_syms (ibfd, symtab_hdr, symcount, 0,
                                       NULL, NULL, NULL);
                                       NULL, NULL, NULL);
          symtab_hdr->contents = (void *) syms;
          symtab_hdr->contents = (void *) syms;
          if (syms == NULL)
          if (syms == NULL)
            return FALSE;
            return FALSE;
        }
        }
 
 
      /* Select defined function symbols that are going to be output.  */
      /* Select defined function symbols that are going to be output.  */
      psyms = bfd_malloc ((symcount + 1) * sizeof (*psyms));
      psyms = bfd_malloc ((symcount + 1) * sizeof (*psyms));
      if (psyms == NULL)
      if (psyms == NULL)
        return FALSE;
        return FALSE;
      psym_arr[bfd_idx] = psyms;
      psym_arr[bfd_idx] = psyms;
      psecs = bfd_malloc (symcount * sizeof (*psecs));
      psecs = bfd_malloc (symcount * sizeof (*psecs));
      if (psecs == NULL)
      if (psecs == NULL)
        return FALSE;
        return FALSE;
      sec_arr[bfd_idx] = psecs;
      sec_arr[bfd_idx] = psecs;
      for (psy = psyms, p = psecs, sy = syms; sy < syms + symcount; ++p, ++sy)
      for (psy = psyms, p = psecs, sy = syms; sy < syms + symcount; ++p, ++sy)
        if (ELF_ST_TYPE (sy->st_info) == STT_NOTYPE
        if (ELF_ST_TYPE (sy->st_info) == STT_NOTYPE
            || ELF_ST_TYPE (sy->st_info) == STT_FUNC)
            || ELF_ST_TYPE (sy->st_info) == STT_FUNC)
          {
          {
            asection *s;
            asection *s;
 
 
            *p = s = bfd_section_from_elf_index (ibfd, sy->st_shndx);
            *p = s = bfd_section_from_elf_index (ibfd, sy->st_shndx);
            if (s != NULL && interesting_section (s, info->output_bfd))
            if (s != NULL && interesting_section (s, info->output_bfd))
              *psy++ = sy;
              *psy++ = sy;
          }
          }
      symcount = psy - psyms;
      symcount = psy - psyms;
      *psy = NULL;
      *psy = NULL;
 
 
      /* Sort them by section and offset within section.  */
      /* Sort them by section and offset within section.  */
      sort_syms_syms = syms;
      sort_syms_syms = syms;
      sort_syms_psecs = psecs;
      sort_syms_psecs = psecs;
      qsort (psyms, symcount, sizeof (*psyms), sort_syms);
      qsort (psyms, symcount, sizeof (*psyms), sort_syms);
 
 
      /* Now inspect the function symbols.  */
      /* Now inspect the function symbols.  */
      for (psy = psyms; psy < psyms + symcount; )
      for (psy = psyms; psy < psyms + symcount; )
        {
        {
          asection *s = psecs[*psy - syms];
          asection *s = psecs[*psy - syms];
          Elf_Internal_Sym **psy2;
          Elf_Internal_Sym **psy2;
 
 
          for (psy2 = psy; ++psy2 < psyms + symcount; )
          for (psy2 = psy; ++psy2 < psyms + symcount; )
            if (psecs[*psy2 - syms] != s)
            if (psecs[*psy2 - syms] != s)
              break;
              break;
 
 
          if (!alloc_stack_info (s, psy2 - psy))
          if (!alloc_stack_info (s, psy2 - psy))
            return FALSE;
            return FALSE;
          psy = psy2;
          psy = psy2;
        }
        }
 
 
      /* First install info about properly typed and sized functions.
      /* First install info about properly typed and sized functions.
         In an ideal world this will cover all code sections, except
         In an ideal world this will cover all code sections, except
         when partitioning functions into hot and cold sections,
         when partitioning functions into hot and cold sections,
         and the horrible pasted together .init and .fini functions.  */
         and the horrible pasted together .init and .fini functions.  */
      for (psy = psyms; psy < psyms + symcount; ++psy)
      for (psy = psyms; psy < psyms + symcount; ++psy)
        {
        {
          sy = *psy;
          sy = *psy;
          if (ELF_ST_TYPE (sy->st_info) == STT_FUNC)
          if (ELF_ST_TYPE (sy->st_info) == STT_FUNC)
            {
            {
              asection *s = psecs[sy - syms];
              asection *s = psecs[sy - syms];
              if (!maybe_insert_function (s, sy, FALSE, TRUE))
              if (!maybe_insert_function (s, sy, FALSE, TRUE))
                return FALSE;
                return FALSE;
            }
            }
        }
        }
 
 
      for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
      for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
        if (interesting_section (sec, info->output_bfd))
        if (interesting_section (sec, info->output_bfd))
          gaps |= check_function_ranges (sec, info);
          gaps |= check_function_ranges (sec, info);
    }
    }
 
 
  if (gaps)
  if (gaps)
    {
    {
      /* See if we can discover more function symbols by looking at
      /* See if we can discover more function symbols by looking at
         relocations.  */
         relocations.  */
      for (ibfd = info->input_bfds, bfd_idx = 0;
      for (ibfd = info->input_bfds, bfd_idx = 0;
           ibfd != NULL;
           ibfd != NULL;
           ibfd = ibfd->link_next, bfd_idx++)
           ibfd = ibfd->link_next, bfd_idx++)
        {
        {
          asection *sec;
          asection *sec;
 
 
          if (psym_arr[bfd_idx] == NULL)
          if (psym_arr[bfd_idx] == NULL)
            continue;
            continue;
 
 
          for (sec = ibfd->sections; sec != NULL; sec = sec->next)
          for (sec = ibfd->sections; sec != NULL; sec = sec->next)
            if (!mark_functions_via_relocs (sec, info, FALSE))
            if (!mark_functions_via_relocs (sec, info, FALSE))
              return FALSE;
              return FALSE;
        }
        }
 
 
      for (ibfd = info->input_bfds, bfd_idx = 0;
      for (ibfd = info->input_bfds, bfd_idx = 0;
           ibfd != NULL;
           ibfd != NULL;
           ibfd = ibfd->link_next, bfd_idx++)
           ibfd = ibfd->link_next, bfd_idx++)
        {
        {
          Elf_Internal_Shdr *symtab_hdr;
          Elf_Internal_Shdr *symtab_hdr;
          asection *sec;
          asection *sec;
          Elf_Internal_Sym *syms, *sy, **psyms, **psy;
          Elf_Internal_Sym *syms, *sy, **psyms, **psy;
          asection **psecs;
          asection **psecs;
 
 
          if ((psyms = psym_arr[bfd_idx]) == NULL)
          if ((psyms = psym_arr[bfd_idx]) == NULL)
            continue;
            continue;
 
 
          psecs = sec_arr[bfd_idx];
          psecs = sec_arr[bfd_idx];
 
 
          symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
          symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
          syms = (Elf_Internal_Sym *) symtab_hdr->contents;
          syms = (Elf_Internal_Sym *) symtab_hdr->contents;
 
 
          gaps = FALSE;
          gaps = FALSE;
          for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
          for (sec = ibfd->sections; sec != NULL && !gaps; sec = sec->next)
            if (interesting_section (sec, info->output_bfd))
            if (interesting_section (sec, info->output_bfd))
              gaps |= check_function_ranges (sec, info);
              gaps |= check_function_ranges (sec, info);
          if (!gaps)
          if (!gaps)
            continue;
            continue;
 
 
          /* Finally, install all globals.  */
          /* Finally, install all globals.  */
          for (psy = psyms; (sy = *psy) != NULL; ++psy)
          for (psy = psyms; (sy = *psy) != NULL; ++psy)
            {
            {
              asection *s;
              asection *s;
 
 
              s = psecs[sy - syms];
              s = psecs[sy - syms];
 
 
              /* Global syms might be improperly typed functions.  */
              /* Global syms might be improperly typed functions.  */
              if (ELF_ST_TYPE (sy->st_info) != STT_FUNC
              if (ELF_ST_TYPE (sy->st_info) != STT_FUNC
                  && ELF_ST_BIND (sy->st_info) == STB_GLOBAL)
                  && ELF_ST_BIND (sy->st_info) == STB_GLOBAL)
                {
                {
                  if (!maybe_insert_function (s, sy, FALSE, FALSE))
                  if (!maybe_insert_function (s, sy, FALSE, FALSE))
                    return FALSE;
                    return FALSE;
                }
                }
            }
            }
        }
        }
 
 
      for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
      for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
        {
        {
          extern const bfd_target bfd_elf32_spu_vec;
          extern const bfd_target bfd_elf32_spu_vec;
          asection *sec;
          asection *sec;
 
 
          if (ibfd->xvec != &bfd_elf32_spu_vec)
          if (ibfd->xvec != &bfd_elf32_spu_vec)
            continue;
            continue;
 
 
          /* Some of the symbols we've installed as marking the
          /* Some of the symbols we've installed as marking the
             beginning of functions may have a size of zero.  Extend
             beginning of functions may have a size of zero.  Extend
             the range of such functions to the beginning of the
             the range of such functions to the beginning of the
             next symbol of interest.  */
             next symbol of interest.  */
          for (sec = ibfd->sections; sec != NULL; sec = sec->next)
          for (sec = ibfd->sections; sec != NULL; sec = sec->next)
            if (interesting_section (sec, info->output_bfd))
            if (interesting_section (sec, info->output_bfd))
              {
              {
                struct _spu_elf_section_data *sec_data;
                struct _spu_elf_section_data *sec_data;
                struct spu_elf_stack_info *sinfo;
                struct spu_elf_stack_info *sinfo;
 
 
                sec_data = spu_elf_section_data (sec);
                sec_data = spu_elf_section_data (sec);
                sinfo = sec_data->u.i.stack_info;
                sinfo = sec_data->u.i.stack_info;
                if (sinfo != NULL)
                if (sinfo != NULL)
                  {
                  {
                    int fun_idx;
                    int fun_idx;
                    bfd_vma hi = sec->size;
                    bfd_vma hi = sec->size;
 
 
                    for (fun_idx = sinfo->num_fun; --fun_idx >= 0; )
                    for (fun_idx = sinfo->num_fun; --fun_idx >= 0; )
                      {
                      {
                        sinfo->fun[fun_idx].hi = hi;
                        sinfo->fun[fun_idx].hi = hi;
                        hi = sinfo->fun[fun_idx].lo;
                        hi = sinfo->fun[fun_idx].lo;
                      }
                      }
                  }
                  }
                /* No symbols in this section.  Must be .init or .fini
                /* No symbols in this section.  Must be .init or .fini
                   or something similar.  */
                   or something similar.  */
                else if (!pasted_function (sec, info))
                else if (!pasted_function (sec, info))
                  return FALSE;
                  return FALSE;
              }
              }
        }
        }
    }
    }
 
 
  for (ibfd = info->input_bfds, bfd_idx = 0;
  for (ibfd = info->input_bfds, bfd_idx = 0;
       ibfd != NULL;
       ibfd != NULL;
       ibfd = ibfd->link_next, bfd_idx++)
       ibfd = ibfd->link_next, bfd_idx++)
    {
    {
      if (psym_arr[bfd_idx] == NULL)
      if (psym_arr[bfd_idx] == NULL)
        continue;
        continue;
 
 
      free (psym_arr[bfd_idx]);
      free (psym_arr[bfd_idx]);
      free (sec_arr[bfd_idx]);
      free (sec_arr[bfd_idx]);
    }
    }
 
 
  free (psym_arr);
  free (psym_arr);
  free (sec_arr);
  free (sec_arr);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Iterate over all function_info we have collected, calling DOIT on
/* Iterate over all function_info we have collected, calling DOIT on
   each node if ROOT_ONLY is false.  Only call DOIT on root nodes
   each node if ROOT_ONLY is false.  Only call DOIT on root nodes
   if ROOT_ONLY.  */
   if ROOT_ONLY.  */
 
 
static bfd_boolean
static bfd_boolean
for_each_node (bfd_boolean (*doit) (struct function_info *,
for_each_node (bfd_boolean (*doit) (struct function_info *,
                                    struct bfd_link_info *,
                                    struct bfd_link_info *,
                                    void *),
                                    void *),
               struct bfd_link_info *info,
               struct bfd_link_info *info,
               void *param,
               void *param,
               int root_only)
               int root_only)
{
{
  bfd *ibfd;
  bfd *ibfd;
 
 
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
    {
    {
      extern const bfd_target bfd_elf32_spu_vec;
      extern const bfd_target bfd_elf32_spu_vec;
      asection *sec;
      asection *sec;
 
 
      if (ibfd->xvec != &bfd_elf32_spu_vec)
      if (ibfd->xvec != &bfd_elf32_spu_vec)
        continue;
        continue;
 
 
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
        {
        {
          struct _spu_elf_section_data *sec_data;
          struct _spu_elf_section_data *sec_data;
          struct spu_elf_stack_info *sinfo;
          struct spu_elf_stack_info *sinfo;
 
 
          if ((sec_data = spu_elf_section_data (sec)) != NULL
          if ((sec_data = spu_elf_section_data (sec)) != NULL
              && (sinfo = sec_data->u.i.stack_info) != NULL)
              && (sinfo = sec_data->u.i.stack_info) != NULL)
            {
            {
              int i;
              int i;
              for (i = 0; i < sinfo->num_fun; ++i)
              for (i = 0; i < sinfo->num_fun; ++i)
                if (!root_only || !sinfo->fun[i].non_root)
                if (!root_only || !sinfo->fun[i].non_root)
                  if (!doit (&sinfo->fun[i], info, param))
                  if (!doit (&sinfo->fun[i], info, param))
                    return FALSE;
                    return FALSE;
            }
            }
        }
        }
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Transfer call info attached to struct function_info entries for
/* Transfer call info attached to struct function_info entries for
   all of a given function's sections to the first entry.  */
   all of a given function's sections to the first entry.  */
 
 
static bfd_boolean
static bfd_boolean
transfer_calls (struct function_info *fun,
transfer_calls (struct function_info *fun,
                struct bfd_link_info *info ATTRIBUTE_UNUSED,
                struct bfd_link_info *info ATTRIBUTE_UNUSED,
                void *param ATTRIBUTE_UNUSED)
                void *param ATTRIBUTE_UNUSED)
{
{
  struct function_info *start = fun->start;
  struct function_info *start = fun->start;
 
 
  if (start != NULL)
  if (start != NULL)
    {
    {
      struct call_info *call, *call_next;
      struct call_info *call, *call_next;
 
 
      while (start->start != NULL)
      while (start->start != NULL)
        start = start->start;
        start = start->start;
      for (call = fun->call_list; call != NULL; call = call_next)
      for (call = fun->call_list; call != NULL; call = call_next)
        {
        {
          call_next = call->next;
          call_next = call->next;
          if (!insert_callee (start, call))
          if (!insert_callee (start, call))
            free (call);
            free (call);
        }
        }
      fun->call_list = NULL;
      fun->call_list = NULL;
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Mark nodes in the call graph that are called by some other node.  */
/* Mark nodes in the call graph that are called by some other node.  */
 
 
static bfd_boolean
static bfd_boolean
mark_non_root (struct function_info *fun,
mark_non_root (struct function_info *fun,
               struct bfd_link_info *info ATTRIBUTE_UNUSED,
               struct bfd_link_info *info ATTRIBUTE_UNUSED,
               void *param ATTRIBUTE_UNUSED)
               void *param ATTRIBUTE_UNUSED)
{
{
  struct call_info *call;
  struct call_info *call;
 
 
  if (fun->visit1)
  if (fun->visit1)
    return TRUE;
    return TRUE;
  fun->visit1 = TRUE;
  fun->visit1 = TRUE;
  for (call = fun->call_list; call; call = call->next)
  for (call = fun->call_list; call; call = call->next)
    {
    {
      call->fun->non_root = TRUE;
      call->fun->non_root = TRUE;
      mark_non_root (call->fun, 0, 0);
      mark_non_root (call->fun, 0, 0);
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Remove cycles from the call graph.  Set depth of nodes.  */
/* Remove cycles from the call graph.  Set depth of nodes.  */
 
 
static bfd_boolean
static bfd_boolean
remove_cycles (struct function_info *fun,
remove_cycles (struct function_info *fun,
               struct bfd_link_info *info,
               struct bfd_link_info *info,
               void *param)
               void *param)
{
{
  struct call_info **callp, *call;
  struct call_info **callp, *call;
  unsigned int depth = *(unsigned int *) param;
  unsigned int depth = *(unsigned int *) param;
  unsigned int max_depth = depth;
  unsigned int max_depth = depth;
 
 
  fun->depth = depth;
  fun->depth = depth;
  fun->visit2 = TRUE;
  fun->visit2 = TRUE;
  fun->marking = TRUE;
  fun->marking = TRUE;
 
 
  callp = &fun->call_list;
  callp = &fun->call_list;
  while ((call = *callp) != NULL)
  while ((call = *callp) != NULL)
    {
    {
      if (!call->fun->visit2)
      if (!call->fun->visit2)
        {
        {
          call->max_depth = depth + !call->is_pasted;
          call->max_depth = depth + !call->is_pasted;
          if (!remove_cycles (call->fun, info, &call->max_depth))
          if (!remove_cycles (call->fun, info, &call->max_depth))
            return FALSE;
            return FALSE;
          if (max_depth < call->max_depth)
          if (max_depth < call->max_depth)
            max_depth = call->max_depth;
            max_depth = call->max_depth;
        }
        }
      else if (call->fun->marking)
      else if (call->fun->marking)
        {
        {
          if (!spu_hash_table (info)->auto_overlay)
          if (!spu_hash_table (info)->auto_overlay)
            {
            {
              const char *f1 = func_name (fun);
              const char *f1 = func_name (fun);
              const char *f2 = func_name (call->fun);
              const char *f2 = func_name (call->fun);
 
 
              info->callbacks->info (_("Stack analysis will ignore the call "
              info->callbacks->info (_("Stack analysis will ignore the call "
                                       "from %s to %s\n"),
                                       "from %s to %s\n"),
                                     f1, f2);
                                     f1, f2);
            }
            }
          *callp = call->next;
          *callp = call->next;
          free (call);
          free (call);
          continue;
          continue;
        }
        }
      callp = &call->next;
      callp = &call->next;
    }
    }
  fun->marking = FALSE;
  fun->marking = FALSE;
  *(unsigned int *) param = max_depth;
  *(unsigned int *) param = max_depth;
  return TRUE;
  return TRUE;
}
}
 
 
/* Populate call_list for each function.  */
/* Populate call_list for each function.  */
 
 
static bfd_boolean
static bfd_boolean
build_call_tree (struct bfd_link_info *info)
build_call_tree (struct bfd_link_info *info)
{
{
  bfd *ibfd;
  bfd *ibfd;
  unsigned int depth;
  unsigned int depth;
 
 
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
    {
    {
      extern const bfd_target bfd_elf32_spu_vec;
      extern const bfd_target bfd_elf32_spu_vec;
      asection *sec;
      asection *sec;
 
 
      if (ibfd->xvec != &bfd_elf32_spu_vec)
      if (ibfd->xvec != &bfd_elf32_spu_vec)
        continue;
        continue;
 
 
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
        if (!mark_functions_via_relocs (sec, info, TRUE))
        if (!mark_functions_via_relocs (sec, info, TRUE))
          return FALSE;
          return FALSE;
    }
    }
 
 
  /* Transfer call info from hot/cold section part of function
  /* Transfer call info from hot/cold section part of function
     to main entry.  */
     to main entry.  */
  if (!spu_hash_table (info)->auto_overlay
  if (!spu_hash_table (info)->auto_overlay
      && !for_each_node (transfer_calls, info, 0, FALSE))
      && !for_each_node (transfer_calls, info, 0, FALSE))
    return FALSE;
    return FALSE;
 
 
  /* Find the call graph root(s).  */
  /* Find the call graph root(s).  */
  if (!for_each_node (mark_non_root, info, 0, FALSE))
  if (!for_each_node (mark_non_root, info, 0, FALSE))
    return FALSE;
    return FALSE;
 
 
  /* Remove cycles from the call graph.  We start from the root node(s)
  /* Remove cycles from the call graph.  We start from the root node(s)
     so that we break cycles in a reasonable place.  */
     so that we break cycles in a reasonable place.  */
  depth = 0;
  depth = 0;
  return for_each_node (remove_cycles, info, &depth, TRUE);
  return for_each_node (remove_cycles, info, &depth, TRUE);
}
}
 
 
/* qsort predicate to sort calls by max_depth then count.  */
/* qsort predicate to sort calls by max_depth then count.  */
 
 
static int
static int
sort_calls (const void *a, const void *b)
sort_calls (const void *a, const void *b)
{
{
  struct call_info *const *c1 = a;
  struct call_info *const *c1 = a;
  struct call_info *const *c2 = b;
  struct call_info *const *c2 = b;
  int delta;
  int delta;
 
 
  delta = (*c2)->max_depth - (*c1)->max_depth;
  delta = (*c2)->max_depth - (*c1)->max_depth;
  if (delta != 0)
  if (delta != 0)
    return delta;
    return delta;
 
 
  delta = (*c2)->count - (*c1)->count;
  delta = (*c2)->count - (*c1)->count;
  if (delta != 0)
  if (delta != 0)
    return delta;
    return delta;
 
 
  return c1 - c2;
  return c1 - c2;
}
}
 
 
struct _mos_param {
struct _mos_param {
  unsigned int max_overlay_size;
  unsigned int max_overlay_size;
};
};
 
 
/* Set linker_mark and gc_mark on any sections that we will put in
/* Set linker_mark and gc_mark on any sections that we will put in
   overlays.  These flags are used by the generic ELF linker, but we
   overlays.  These flags are used by the generic ELF linker, but we
   won't be continuing on to bfd_elf_final_link so it is OK to use
   won't be continuing on to bfd_elf_final_link so it is OK to use
   them.  linker_mark is clear before we get here.  Set segment_mark
   them.  linker_mark is clear before we get here.  Set segment_mark
   on sections that are part of a pasted function (excluding the last
   on sections that are part of a pasted function (excluding the last
   section).
   section).
 
 
   Set up function rodata section if --overlay-rodata.  We don't
   Set up function rodata section if --overlay-rodata.  We don't
   currently include merged string constant rodata sections since
   currently include merged string constant rodata sections since
 
 
   Sort the call graph so that the deepest nodes will be visited
   Sort the call graph so that the deepest nodes will be visited
   first.  */
   first.  */
 
 
static bfd_boolean
static bfd_boolean
mark_overlay_section (struct function_info *fun,
mark_overlay_section (struct function_info *fun,
                      struct bfd_link_info *info,
                      struct bfd_link_info *info,
                      void *param)
                      void *param)
{
{
  struct call_info *call;
  struct call_info *call;
  unsigned int count;
  unsigned int count;
  struct _mos_param *mos_param = param;
  struct _mos_param *mos_param = param;
 
 
  if (fun->visit4)
  if (fun->visit4)
    return TRUE;
    return TRUE;
 
 
  fun->visit4 = TRUE;
  fun->visit4 = TRUE;
  if (!fun->sec->linker_mark)
  if (!fun->sec->linker_mark)
    {
    {
      fun->sec->linker_mark = 1;
      fun->sec->linker_mark = 1;
      fun->sec->gc_mark = 1;
      fun->sec->gc_mark = 1;
      fun->sec->segment_mark = 0;
      fun->sec->segment_mark = 0;
      /* Ensure SEC_CODE is set on this text section (it ought to
      /* Ensure SEC_CODE is set on this text section (it ought to
         be!), and SEC_CODE is clear on rodata sections.  We use
         be!), and SEC_CODE is clear on rodata sections.  We use
         this flag to differentiate the two overlay section types.  */
         this flag to differentiate the two overlay section types.  */
      fun->sec->flags |= SEC_CODE;
      fun->sec->flags |= SEC_CODE;
      if (spu_hash_table (info)->auto_overlay & OVERLAY_RODATA)
      if (spu_hash_table (info)->auto_overlay & OVERLAY_RODATA)
        {
        {
          char *name = NULL;
          char *name = NULL;
          unsigned int size;
          unsigned int size;
 
 
          /* Find the rodata section corresponding to this function's
          /* Find the rodata section corresponding to this function's
             text section.  */
             text section.  */
          if (strcmp (fun->sec->name, ".text") == 0)
          if (strcmp (fun->sec->name, ".text") == 0)
            {
            {
              name = bfd_malloc (sizeof (".rodata"));
              name = bfd_malloc (sizeof (".rodata"));
              if (name == NULL)
              if (name == NULL)
                return FALSE;
                return FALSE;
              memcpy (name, ".rodata", sizeof (".rodata"));
              memcpy (name, ".rodata", sizeof (".rodata"));
            }
            }
          else if (strncmp (fun->sec->name, ".text.", 6) == 0)
          else if (strncmp (fun->sec->name, ".text.", 6) == 0)
            {
            {
              size_t len = strlen (fun->sec->name);
              size_t len = strlen (fun->sec->name);
              name = bfd_malloc (len + 3);
              name = bfd_malloc (len + 3);
              if (name == NULL)
              if (name == NULL)
                return FALSE;
                return FALSE;
              memcpy (name, ".rodata", sizeof (".rodata"));
              memcpy (name, ".rodata", sizeof (".rodata"));
              memcpy (name + 7, fun->sec->name + 5, len - 4);
              memcpy (name + 7, fun->sec->name + 5, len - 4);
            }
            }
          else if (strncmp (fun->sec->name, ".gnu.linkonce.t.", 16) == 0)
          else if (strncmp (fun->sec->name, ".gnu.linkonce.t.", 16) == 0)
            {
            {
              size_t len = strlen (fun->sec->name) + 1;
              size_t len = strlen (fun->sec->name) + 1;
              name = bfd_malloc (len);
              name = bfd_malloc (len);
              if (name == NULL)
              if (name == NULL)
                return FALSE;
                return FALSE;
              memcpy (name, fun->sec->name, len);
              memcpy (name, fun->sec->name, len);
              name[14] = 'r';
              name[14] = 'r';
            }
            }
 
 
          if (name != NULL)
          if (name != NULL)
            {
            {
              asection *rodata = NULL;
              asection *rodata = NULL;
              asection *group_sec = elf_section_data (fun->sec)->next_in_group;
              asection *group_sec = elf_section_data (fun->sec)->next_in_group;
              if (group_sec == NULL)
              if (group_sec == NULL)
                rodata = bfd_get_section_by_name (fun->sec->owner, name);
                rodata = bfd_get_section_by_name (fun->sec->owner, name);
              else
              else
                while (group_sec != NULL && group_sec != fun->sec)
                while (group_sec != NULL && group_sec != fun->sec)
                  {
                  {
                    if (strcmp (group_sec->name, name) == 0)
                    if (strcmp (group_sec->name, name) == 0)
                      {
                      {
                        rodata = group_sec;
                        rodata = group_sec;
                        break;
                        break;
                      }
                      }
                    group_sec = elf_section_data (group_sec)->next_in_group;
                    group_sec = elf_section_data (group_sec)->next_in_group;
                  }
                  }
              fun->rodata = rodata;
              fun->rodata = rodata;
              if (fun->rodata)
              if (fun->rodata)
                {
                {
                  fun->rodata->linker_mark = 1;
                  fun->rodata->linker_mark = 1;
                  fun->rodata->gc_mark = 1;
                  fun->rodata->gc_mark = 1;
                  fun->rodata->flags &= ~SEC_CODE;
                  fun->rodata->flags &= ~SEC_CODE;
                }
                }
              free (name);
              free (name);
            }
            }
          size = fun->sec->size;
          size = fun->sec->size;
          if (fun->rodata)
          if (fun->rodata)
            size += fun->rodata->size;
            size += fun->rodata->size;
          if (mos_param->max_overlay_size < size)
          if (mos_param->max_overlay_size < size)
            mos_param->max_overlay_size = size;
            mos_param->max_overlay_size = size;
        }
        }
    }
    }
 
 
  for (count = 0, call = fun->call_list; call != NULL; call = call->next)
  for (count = 0, call = fun->call_list; call != NULL; call = call->next)
    count += 1;
    count += 1;
 
 
  if (count > 1)
  if (count > 1)
    {
    {
      struct call_info **calls = bfd_malloc (count * sizeof (*calls));
      struct call_info **calls = bfd_malloc (count * sizeof (*calls));
      if (calls == NULL)
      if (calls == NULL)
        return FALSE;
        return FALSE;
 
 
      for (count = 0, call = fun->call_list; call != NULL; call = call->next)
      for (count = 0, call = fun->call_list; call != NULL; call = call->next)
        calls[count++] = call;
        calls[count++] = call;
 
 
      qsort (calls, count, sizeof (*calls), sort_calls);
      qsort (calls, count, sizeof (*calls), sort_calls);
 
 
      fun->call_list = NULL;
      fun->call_list = NULL;
      while (count != 0)
      while (count != 0)
        {
        {
          --count;
          --count;
          calls[count]->next = fun->call_list;
          calls[count]->next = fun->call_list;
          fun->call_list = calls[count];
          fun->call_list = calls[count];
        }
        }
      free (calls);
      free (calls);
    }
    }
 
 
  for (call = fun->call_list; call != NULL; call = call->next)
  for (call = fun->call_list; call != NULL; call = call->next)
    {
    {
      if (call->is_pasted)
      if (call->is_pasted)
        {
        {
          /* There can only be one is_pasted call per function_info.  */
          /* There can only be one is_pasted call per function_info.  */
          BFD_ASSERT (!fun->sec->segment_mark);
          BFD_ASSERT (!fun->sec->segment_mark);
          fun->sec->segment_mark = 1;
          fun->sec->segment_mark = 1;
        }
        }
      if (!mark_overlay_section (call->fun, info, param))
      if (!mark_overlay_section (call->fun, info, param))
        return FALSE;
        return FALSE;
    }
    }
 
 
  /* Don't put entry code into an overlay.  The overlay manager needs
  /* Don't put entry code into an overlay.  The overlay manager needs
     a stack!  */
     a stack!  */
  if (fun->lo + fun->sec->output_offset + fun->sec->output_section->vma
  if (fun->lo + fun->sec->output_offset + fun->sec->output_section->vma
      == info->output_bfd->start_address)
      == info->output_bfd->start_address)
    {
    {
      fun->sec->linker_mark = 0;
      fun->sec->linker_mark = 0;
      if (fun->rodata != NULL)
      if (fun->rodata != NULL)
        fun->rodata->linker_mark = 0;
        fun->rodata->linker_mark = 0;
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
struct _uos_param {
struct _uos_param {
  asection *exclude_input_section;
  asection *exclude_input_section;
  asection *exclude_output_section;
  asection *exclude_output_section;
  unsigned long clearing;
  unsigned long clearing;
};
};
 
 
/* Undo some of mark_overlay_section's work.  */
/* Undo some of mark_overlay_section's work.  */
 
 
static bfd_boolean
static bfd_boolean
unmark_overlay_section (struct function_info *fun,
unmark_overlay_section (struct function_info *fun,
                        struct bfd_link_info *info,
                        struct bfd_link_info *info,
                        void *param)
                        void *param)
{
{
  struct call_info *call;
  struct call_info *call;
  struct _uos_param *uos_param = param;
  struct _uos_param *uos_param = param;
  unsigned int excluded = 0;
  unsigned int excluded = 0;
 
 
  if (fun->visit5)
  if (fun->visit5)
    return TRUE;
    return TRUE;
 
 
  fun->visit5 = TRUE;
  fun->visit5 = TRUE;
 
 
  excluded = 0;
  excluded = 0;
  if (fun->sec == uos_param->exclude_input_section
  if (fun->sec == uos_param->exclude_input_section
      || fun->sec->output_section == uos_param->exclude_output_section)
      || fun->sec->output_section == uos_param->exclude_output_section)
    excluded = 1;
    excluded = 1;
 
 
  uos_param->clearing += excluded;
  uos_param->clearing += excluded;
 
 
  if (uos_param->clearing)
  if (uos_param->clearing)
    {
    {
      fun->sec->linker_mark = 0;
      fun->sec->linker_mark = 0;
      if (fun->rodata)
      if (fun->rodata)
        fun->rodata->linker_mark = 0;
        fun->rodata->linker_mark = 0;
    }
    }
 
 
  for (call = fun->call_list; call != NULL; call = call->next)
  for (call = fun->call_list; call != NULL; call = call->next)
    if (!unmark_overlay_section (call->fun, info, param))
    if (!unmark_overlay_section (call->fun, info, param))
      return FALSE;
      return FALSE;
 
 
  uos_param->clearing -= excluded;
  uos_param->clearing -= excluded;
  return TRUE;
  return TRUE;
}
}
 
 
struct _cl_param {
struct _cl_param {
  unsigned int lib_size;
  unsigned int lib_size;
  asection **lib_sections;
  asection **lib_sections;
};
};
 
 
/* Add sections we have marked as belonging to overlays to an array
/* Add sections we have marked as belonging to overlays to an array
   for consideration as non-overlay sections.  The array consist of
   for consideration as non-overlay sections.  The array consist of
   pairs of sections, (text,rodata), for functions in the call graph.  */
   pairs of sections, (text,rodata), for functions in the call graph.  */
 
 
static bfd_boolean
static bfd_boolean
collect_lib_sections (struct function_info *fun,
collect_lib_sections (struct function_info *fun,
                      struct bfd_link_info *info,
                      struct bfd_link_info *info,
                      void *param)
                      void *param)
{
{
  struct _cl_param *lib_param = param;
  struct _cl_param *lib_param = param;
  struct call_info *call;
  struct call_info *call;
  unsigned int size;
  unsigned int size;
 
 
  if (fun->visit6)
  if (fun->visit6)
    return TRUE;
    return TRUE;
 
 
  fun->visit6 = TRUE;
  fun->visit6 = TRUE;
  if (!fun->sec->linker_mark || !fun->sec->gc_mark || fun->sec->segment_mark)
  if (!fun->sec->linker_mark || !fun->sec->gc_mark || fun->sec->segment_mark)
    return TRUE;
    return TRUE;
 
 
  size = fun->sec->size;
  size = fun->sec->size;
  if (fun->rodata)
  if (fun->rodata)
    size += fun->rodata->size;
    size += fun->rodata->size;
  if (size > lib_param->lib_size)
  if (size > lib_param->lib_size)
    return TRUE;
    return TRUE;
 
 
  *lib_param->lib_sections++ = fun->sec;
  *lib_param->lib_sections++ = fun->sec;
  fun->sec->gc_mark = 0;
  fun->sec->gc_mark = 0;
  if (fun->rodata && fun->rodata->linker_mark && fun->rodata->gc_mark)
  if (fun->rodata && fun->rodata->linker_mark && fun->rodata->gc_mark)
    {
    {
      *lib_param->lib_sections++ = fun->rodata;
      *lib_param->lib_sections++ = fun->rodata;
      fun->rodata->gc_mark = 0;
      fun->rodata->gc_mark = 0;
    }
    }
  else
  else
    *lib_param->lib_sections++ = NULL;
    *lib_param->lib_sections++ = NULL;
 
 
  for (call = fun->call_list; call != NULL; call = call->next)
  for (call = fun->call_list; call != NULL; call = call->next)
    collect_lib_sections (call->fun, info, param);
    collect_lib_sections (call->fun, info, param);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* qsort predicate to sort sections by call count.  */
/* qsort predicate to sort sections by call count.  */
 
 
static int
static int
sort_lib (const void *a, const void *b)
sort_lib (const void *a, const void *b)
{
{
  asection *const *s1 = a;
  asection *const *s1 = a;
  asection *const *s2 = b;
  asection *const *s2 = b;
  struct _spu_elf_section_data *sec_data;
  struct _spu_elf_section_data *sec_data;
  struct spu_elf_stack_info *sinfo;
  struct spu_elf_stack_info *sinfo;
  int delta;
  int delta;
 
 
  delta = 0;
  delta = 0;
  if ((sec_data = spu_elf_section_data (*s1)) != NULL
  if ((sec_data = spu_elf_section_data (*s1)) != NULL
      && (sinfo = sec_data->u.i.stack_info) != NULL)
      && (sinfo = sec_data->u.i.stack_info) != NULL)
    {
    {
      int i;
      int i;
      for (i = 0; i < sinfo->num_fun; ++i)
      for (i = 0; i < sinfo->num_fun; ++i)
        delta -= sinfo->fun[i].call_count;
        delta -= sinfo->fun[i].call_count;
    }
    }
 
 
  if ((sec_data = spu_elf_section_data (*s2)) != NULL
  if ((sec_data = spu_elf_section_data (*s2)) != NULL
      && (sinfo = sec_data->u.i.stack_info) != NULL)
      && (sinfo = sec_data->u.i.stack_info) != NULL)
    {
    {
      int i;
      int i;
      for (i = 0; i < sinfo->num_fun; ++i)
      for (i = 0; i < sinfo->num_fun; ++i)
        delta += sinfo->fun[i].call_count;
        delta += sinfo->fun[i].call_count;
    }
    }
 
 
  if (delta != 0)
  if (delta != 0)
    return delta;
    return delta;
 
 
  return s1 - s2;
  return s1 - s2;
}
}
 
 
/* Remove some sections from those marked to be in overlays.  Choose
/* Remove some sections from those marked to be in overlays.  Choose
   those that are called from many places, likely library functions.  */
   those that are called from many places, likely library functions.  */
 
 
static unsigned int
static unsigned int
auto_ovl_lib_functions (struct bfd_link_info *info, unsigned int lib_size)
auto_ovl_lib_functions (struct bfd_link_info *info, unsigned int lib_size)
{
{
  bfd *ibfd;
  bfd *ibfd;
  asection **lib_sections;
  asection **lib_sections;
  unsigned int i, lib_count;
  unsigned int i, lib_count;
  struct _cl_param collect_lib_param;
  struct _cl_param collect_lib_param;
  struct function_info dummy_caller;
  struct function_info dummy_caller;
 
 
  memset (&dummy_caller, 0, sizeof (dummy_caller));
  memset (&dummy_caller, 0, sizeof (dummy_caller));
  lib_count = 0;
  lib_count = 0;
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
    {
    {
      extern const bfd_target bfd_elf32_spu_vec;
      extern const bfd_target bfd_elf32_spu_vec;
      asection *sec;
      asection *sec;
 
 
      if (ibfd->xvec != &bfd_elf32_spu_vec)
      if (ibfd->xvec != &bfd_elf32_spu_vec)
        continue;
        continue;
 
 
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
        if (sec->linker_mark
        if (sec->linker_mark
            && sec->size < lib_size
            && sec->size < lib_size
            && (sec->flags & SEC_CODE) != 0)
            && (sec->flags & SEC_CODE) != 0)
          lib_count += 1;
          lib_count += 1;
    }
    }
  lib_sections = bfd_malloc (lib_count * 2 * sizeof (*lib_sections));
  lib_sections = bfd_malloc (lib_count * 2 * sizeof (*lib_sections));
  if (lib_sections == NULL)
  if (lib_sections == NULL)
    return (unsigned int) -1;
    return (unsigned int) -1;
  collect_lib_param.lib_size = lib_size;
  collect_lib_param.lib_size = lib_size;
  collect_lib_param.lib_sections = lib_sections;
  collect_lib_param.lib_sections = lib_sections;
  if (!for_each_node (collect_lib_sections, info, &collect_lib_param,
  if (!for_each_node (collect_lib_sections, info, &collect_lib_param,
                      TRUE))
                      TRUE))
    return (unsigned int) -1;
    return (unsigned int) -1;
  lib_count = (collect_lib_param.lib_sections - lib_sections) / 2;
  lib_count = (collect_lib_param.lib_sections - lib_sections) / 2;
 
 
  /* Sort sections so that those with the most calls are first.  */
  /* Sort sections so that those with the most calls are first.  */
  if (lib_count > 1)
  if (lib_count > 1)
    qsort (lib_sections, lib_count, 2 * sizeof (*lib_sections), sort_lib);
    qsort (lib_sections, lib_count, 2 * sizeof (*lib_sections), sort_lib);
 
 
  for (i = 0; i < lib_count; i++)
  for (i = 0; i < lib_count; i++)
    {
    {
      unsigned int tmp, stub_size;
      unsigned int tmp, stub_size;
      asection *sec;
      asection *sec;
      struct _spu_elf_section_data *sec_data;
      struct _spu_elf_section_data *sec_data;
      struct spu_elf_stack_info *sinfo;
      struct spu_elf_stack_info *sinfo;
 
 
      sec = lib_sections[2 * i];
      sec = lib_sections[2 * i];
      /* If this section is OK, its size must be less than lib_size.  */
      /* If this section is OK, its size must be less than lib_size.  */
      tmp = sec->size;
      tmp = sec->size;
      /* If it has a rodata section, then add that too.  */
      /* If it has a rodata section, then add that too.  */
      if (lib_sections[2 * i + 1])
      if (lib_sections[2 * i + 1])
        tmp += lib_sections[2 * i + 1]->size;
        tmp += lib_sections[2 * i + 1]->size;
      /* Add any new overlay call stubs needed by the section.  */
      /* Add any new overlay call stubs needed by the section.  */
      stub_size = 0;
      stub_size = 0;
      if (tmp < lib_size
      if (tmp < lib_size
          && (sec_data = spu_elf_section_data (sec)) != NULL
          && (sec_data = spu_elf_section_data (sec)) != NULL
          && (sinfo = sec_data->u.i.stack_info) != NULL)
          && (sinfo = sec_data->u.i.stack_info) != NULL)
        {
        {
          int k;
          int k;
          struct call_info *call;
          struct call_info *call;
 
 
          for (k = 0; k < sinfo->num_fun; ++k)
          for (k = 0; k < sinfo->num_fun; ++k)
            for (call = sinfo->fun[k].call_list; call; call = call->next)
            for (call = sinfo->fun[k].call_list; call; call = call->next)
              if (call->fun->sec->linker_mark)
              if (call->fun->sec->linker_mark)
                {
                {
                  struct call_info *p;
                  struct call_info *p;
                  for (p = dummy_caller.call_list; p; p = p->next)
                  for (p = dummy_caller.call_list; p; p = p->next)
                    if (p->fun == call->fun)
                    if (p->fun == call->fun)
                      break;
                      break;
                  if (!p)
                  if (!p)
                    stub_size += OVL_STUB_SIZE;
                    stub_size += OVL_STUB_SIZE;
                }
                }
        }
        }
      if (tmp + stub_size < lib_size)
      if (tmp + stub_size < lib_size)
        {
        {
          struct call_info **pp, *p;
          struct call_info **pp, *p;
 
 
          /* This section fits.  Mark it as non-overlay.  */
          /* This section fits.  Mark it as non-overlay.  */
          lib_sections[2 * i]->linker_mark = 0;
          lib_sections[2 * i]->linker_mark = 0;
          if (lib_sections[2 * i + 1])
          if (lib_sections[2 * i + 1])
            lib_sections[2 * i + 1]->linker_mark = 0;
            lib_sections[2 * i + 1]->linker_mark = 0;
          lib_size -= tmp + stub_size;
          lib_size -= tmp + stub_size;
          /* Call stubs to the section we just added are no longer
          /* Call stubs to the section we just added are no longer
             needed.  */
             needed.  */
          pp = &dummy_caller.call_list;
          pp = &dummy_caller.call_list;
          while ((p = *pp) != NULL)
          while ((p = *pp) != NULL)
            if (!p->fun->sec->linker_mark)
            if (!p->fun->sec->linker_mark)
              {
              {
                lib_size += OVL_STUB_SIZE;
                lib_size += OVL_STUB_SIZE;
                *pp = p->next;
                *pp = p->next;
                free (p);
                free (p);
              }
              }
            else
            else
              pp = &p->next;
              pp = &p->next;
          /* Add new call stubs to dummy_caller.  */
          /* Add new call stubs to dummy_caller.  */
          if ((sec_data = spu_elf_section_data (sec)) != NULL
          if ((sec_data = spu_elf_section_data (sec)) != NULL
              && (sinfo = sec_data->u.i.stack_info) != NULL)
              && (sinfo = sec_data->u.i.stack_info) != NULL)
            {
            {
              int k;
              int k;
              struct call_info *call;
              struct call_info *call;
 
 
              for (k = 0; k < sinfo->num_fun; ++k)
              for (k = 0; k < sinfo->num_fun; ++k)
                for (call = sinfo->fun[k].call_list;
                for (call = sinfo->fun[k].call_list;
                     call;
                     call;
                     call = call->next)
                     call = call->next)
                  if (call->fun->sec->linker_mark)
                  if (call->fun->sec->linker_mark)
                    {
                    {
                      struct call_info *callee;
                      struct call_info *callee;
                      callee = bfd_malloc (sizeof (*callee));
                      callee = bfd_malloc (sizeof (*callee));
                      if (callee == NULL)
                      if (callee == NULL)
                        return (unsigned int) -1;
                        return (unsigned int) -1;
                      *callee = *call;
                      *callee = *call;
                      if (!insert_callee (&dummy_caller, callee))
                      if (!insert_callee (&dummy_caller, callee))
                        free (callee);
                        free (callee);
                    }
                    }
            }
            }
        }
        }
    }
    }
  while (dummy_caller.call_list != NULL)
  while (dummy_caller.call_list != NULL)
    {
    {
      struct call_info *call = dummy_caller.call_list;
      struct call_info *call = dummy_caller.call_list;
      dummy_caller.call_list = call->next;
      dummy_caller.call_list = call->next;
      free (call);
      free (call);
    }
    }
  for (i = 0; i < 2 * lib_count; i++)
  for (i = 0; i < 2 * lib_count; i++)
    if (lib_sections[i])
    if (lib_sections[i])
      lib_sections[i]->gc_mark = 1;
      lib_sections[i]->gc_mark = 1;
  free (lib_sections);
  free (lib_sections);
  return lib_size;
  return lib_size;
}
}
 
 
/* Build an array of overlay sections.  The deepest node's section is
/* Build an array of overlay sections.  The deepest node's section is
   added first, then its parent node's section, then everything called
   added first, then its parent node's section, then everything called
   from the parent section.  The idea being to group sections to
   from the parent section.  The idea being to group sections to
   minimise calls between different overlays.  */
   minimise calls between different overlays.  */
 
 
static bfd_boolean
static bfd_boolean
collect_overlays (struct function_info *fun,
collect_overlays (struct function_info *fun,
                  struct bfd_link_info *info,
                  struct bfd_link_info *info,
                  void *param)
                  void *param)
{
{
  struct call_info *call;
  struct call_info *call;
  bfd_boolean added_fun;
  bfd_boolean added_fun;
  asection ***ovly_sections = param;
  asection ***ovly_sections = param;
 
 
  if (fun->visit7)
  if (fun->visit7)
    return TRUE;
    return TRUE;
 
 
  fun->visit7 = TRUE;
  fun->visit7 = TRUE;
  for (call = fun->call_list; call != NULL; call = call->next)
  for (call = fun->call_list; call != NULL; call = call->next)
    if (!call->is_pasted)
    if (!call->is_pasted)
      {
      {
        if (!collect_overlays (call->fun, info, ovly_sections))
        if (!collect_overlays (call->fun, info, ovly_sections))
          return FALSE;
          return FALSE;
        break;
        break;
      }
      }
 
 
  added_fun = FALSE;
  added_fun = FALSE;
  if (fun->sec->linker_mark && fun->sec->gc_mark)
  if (fun->sec->linker_mark && fun->sec->gc_mark)
    {
    {
      fun->sec->gc_mark = 0;
      fun->sec->gc_mark = 0;
      *(*ovly_sections)++ = fun->sec;
      *(*ovly_sections)++ = fun->sec;
      if (fun->rodata && fun->rodata->linker_mark && fun->rodata->gc_mark)
      if (fun->rodata && fun->rodata->linker_mark && fun->rodata->gc_mark)
        {
        {
          fun->rodata->gc_mark = 0;
          fun->rodata->gc_mark = 0;
          *(*ovly_sections)++ = fun->rodata;
          *(*ovly_sections)++ = fun->rodata;
        }
        }
      else
      else
        *(*ovly_sections)++ = NULL;
        *(*ovly_sections)++ = NULL;
      added_fun = TRUE;
      added_fun = TRUE;
 
 
      /* Pasted sections must stay with the first section.  We don't
      /* Pasted sections must stay with the first section.  We don't
         put pasted sections in the array, just the first section.
         put pasted sections in the array, just the first section.
         Mark subsequent sections as already considered.  */
         Mark subsequent sections as already considered.  */
      if (fun->sec->segment_mark)
      if (fun->sec->segment_mark)
        {
        {
          struct function_info *call_fun = fun;
          struct function_info *call_fun = fun;
          do
          do
            {
            {
              for (call = call_fun->call_list; call != NULL; call = call->next)
              for (call = call_fun->call_list; call != NULL; call = call->next)
                if (call->is_pasted)
                if (call->is_pasted)
                  {
                  {
                    call_fun = call->fun;
                    call_fun = call->fun;
                    call_fun->sec->gc_mark = 0;
                    call_fun->sec->gc_mark = 0;
                    if (call_fun->rodata)
                    if (call_fun->rodata)
                      call_fun->rodata->gc_mark = 0;
                      call_fun->rodata->gc_mark = 0;
                    break;
                    break;
                  }
                  }
              if (call == NULL)
              if (call == NULL)
                abort ();
                abort ();
            }
            }
          while (call_fun->sec->segment_mark);
          while (call_fun->sec->segment_mark);
        }
        }
    }
    }
 
 
  for (call = fun->call_list; call != NULL; call = call->next)
  for (call = fun->call_list; call != NULL; call = call->next)
    if (!collect_overlays (call->fun, info, ovly_sections))
    if (!collect_overlays (call->fun, info, ovly_sections))
      return FALSE;
      return FALSE;
 
 
  if (added_fun)
  if (added_fun)
    {
    {
      struct _spu_elf_section_data *sec_data;
      struct _spu_elf_section_data *sec_data;
      struct spu_elf_stack_info *sinfo;
      struct spu_elf_stack_info *sinfo;
 
 
      if ((sec_data = spu_elf_section_data (fun->sec)) != NULL
      if ((sec_data = spu_elf_section_data (fun->sec)) != NULL
          && (sinfo = sec_data->u.i.stack_info) != NULL)
          && (sinfo = sec_data->u.i.stack_info) != NULL)
        {
        {
          int i;
          int i;
          for (i = 0; i < sinfo->num_fun; ++i)
          for (i = 0; i < sinfo->num_fun; ++i)
            if (!collect_overlays (&sinfo->fun[i], info, ovly_sections))
            if (!collect_overlays (&sinfo->fun[i], info, ovly_sections))
              return FALSE;
              return FALSE;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
struct _sum_stack_param {
struct _sum_stack_param {
  size_t cum_stack;
  size_t cum_stack;
  size_t overall_stack;
  size_t overall_stack;
  bfd_boolean emit_stack_syms;
  bfd_boolean emit_stack_syms;
};
};
 
 
/* Descend the call graph for FUN, accumulating total stack required.  */
/* Descend the call graph for FUN, accumulating total stack required.  */
 
 
static bfd_boolean
static bfd_boolean
sum_stack (struct function_info *fun,
sum_stack (struct function_info *fun,
           struct bfd_link_info *info,
           struct bfd_link_info *info,
           void *param)
           void *param)
{
{
  struct call_info *call;
  struct call_info *call;
  struct function_info *max;
  struct function_info *max;
  size_t stack, cum_stack;
  size_t stack, cum_stack;
  const char *f1;
  const char *f1;
  bfd_boolean has_call;
  bfd_boolean has_call;
  struct _sum_stack_param *sum_stack_param = param;
  struct _sum_stack_param *sum_stack_param = param;
  struct spu_link_hash_table *htab;
  struct spu_link_hash_table *htab;
 
 
  cum_stack = fun->stack;
  cum_stack = fun->stack;
  sum_stack_param->cum_stack = cum_stack;
  sum_stack_param->cum_stack = cum_stack;
  if (fun->visit3)
  if (fun->visit3)
    return TRUE;
    return TRUE;
 
 
  has_call = FALSE;
  has_call = FALSE;
  max = NULL;
  max = NULL;
  for (call = fun->call_list; call; call = call->next)
  for (call = fun->call_list; call; call = call->next)
    {
    {
      if (!call->is_pasted)
      if (!call->is_pasted)
        has_call = TRUE;
        has_call = TRUE;
      if (!sum_stack (call->fun, info, sum_stack_param))
      if (!sum_stack (call->fun, info, sum_stack_param))
        return FALSE;
        return FALSE;
      stack = sum_stack_param->cum_stack;
      stack = sum_stack_param->cum_stack;
      /* Include caller stack for normal calls, don't do so for
      /* Include caller stack for normal calls, don't do so for
         tail calls.  fun->stack here is local stack usage for
         tail calls.  fun->stack here is local stack usage for
         this function.  */
         this function.  */
      if (!call->is_tail || call->is_pasted || call->fun->start != NULL)
      if (!call->is_tail || call->is_pasted || call->fun->start != NULL)
        stack += fun->stack;
        stack += fun->stack;
      if (cum_stack < stack)
      if (cum_stack < stack)
        {
        {
          cum_stack = stack;
          cum_stack = stack;
          max = call->fun;
          max = call->fun;
        }
        }
    }
    }
 
 
  sum_stack_param->cum_stack = cum_stack;
  sum_stack_param->cum_stack = cum_stack;
  stack = fun->stack;
  stack = fun->stack;
  /* Now fun->stack holds cumulative stack.  */
  /* Now fun->stack holds cumulative stack.  */
  fun->stack = cum_stack;
  fun->stack = cum_stack;
  fun->visit3 = TRUE;
  fun->visit3 = TRUE;
 
 
  if (!fun->non_root
  if (!fun->non_root
      && sum_stack_param->overall_stack < cum_stack)
      && sum_stack_param->overall_stack < cum_stack)
    sum_stack_param->overall_stack = cum_stack;
    sum_stack_param->overall_stack = cum_stack;
 
 
  htab = spu_hash_table (info);
  htab = spu_hash_table (info);
  if (htab->auto_overlay)
  if (htab->auto_overlay)
    return TRUE;
    return TRUE;
 
 
  f1 = func_name (fun);
  f1 = func_name (fun);
  if (!fun->non_root)
  if (!fun->non_root)
    info->callbacks->info (_("  %s: 0x%v\n"), f1, (bfd_vma) cum_stack);
    info->callbacks->info (_("  %s: 0x%v\n"), f1, (bfd_vma) cum_stack);
  info->callbacks->minfo (_("%s: 0x%v 0x%v\n"),
  info->callbacks->minfo (_("%s: 0x%v 0x%v\n"),
                          f1, (bfd_vma) stack, (bfd_vma) cum_stack);
                          f1, (bfd_vma) stack, (bfd_vma) cum_stack);
 
 
  if (has_call)
  if (has_call)
    {
    {
      info->callbacks->minfo (_("  calls:\n"));
      info->callbacks->minfo (_("  calls:\n"));
      for (call = fun->call_list; call; call = call->next)
      for (call = fun->call_list; call; call = call->next)
        if (!call->is_pasted)
        if (!call->is_pasted)
          {
          {
            const char *f2 = func_name (call->fun);
            const char *f2 = func_name (call->fun);
            const char *ann1 = call->fun == max ? "*" : " ";
            const char *ann1 = call->fun == max ? "*" : " ";
            const char *ann2 = call->is_tail ? "t" : " ";
            const char *ann2 = call->is_tail ? "t" : " ";
 
 
            info->callbacks->minfo (_("   %s%s %s\n"), ann1, ann2, f2);
            info->callbacks->minfo (_("   %s%s %s\n"), ann1, ann2, f2);
          }
          }
    }
    }
 
 
  if (sum_stack_param->emit_stack_syms)
  if (sum_stack_param->emit_stack_syms)
    {
    {
      char *name = bfd_malloc (18 + strlen (f1));
      char *name = bfd_malloc (18 + strlen (f1));
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
 
 
      if (name == NULL)
      if (name == NULL)
        return FALSE;
        return FALSE;
 
 
      if (fun->global || ELF_ST_BIND (fun->u.sym->st_info) == STB_GLOBAL)
      if (fun->global || ELF_ST_BIND (fun->u.sym->st_info) == STB_GLOBAL)
        sprintf (name, "__stack_%s", f1);
        sprintf (name, "__stack_%s", f1);
      else
      else
        sprintf (name, "__stack_%x_%s", fun->sec->id & 0xffffffff, f1);
        sprintf (name, "__stack_%x_%s", fun->sec->id & 0xffffffff, f1);
 
 
      h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE);
      h = elf_link_hash_lookup (&htab->elf, name, TRUE, TRUE, FALSE);
      free (name);
      free (name);
      if (h != NULL
      if (h != NULL
          && (h->root.type == bfd_link_hash_new
          && (h->root.type == bfd_link_hash_new
              || h->root.type == bfd_link_hash_undefined
              || h->root.type == bfd_link_hash_undefined
              || h->root.type == bfd_link_hash_undefweak))
              || h->root.type == bfd_link_hash_undefweak))
        {
        {
          h->root.type = bfd_link_hash_defined;
          h->root.type = bfd_link_hash_defined;
          h->root.u.def.section = bfd_abs_section_ptr;
          h->root.u.def.section = bfd_abs_section_ptr;
          h->root.u.def.value = cum_stack;
          h->root.u.def.value = cum_stack;
          h->size = 0;
          h->size = 0;
          h->type = 0;
          h->type = 0;
          h->ref_regular = 1;
          h->ref_regular = 1;
          h->def_regular = 1;
          h->def_regular = 1;
          h->ref_regular_nonweak = 1;
          h->ref_regular_nonweak = 1;
          h->forced_local = 1;
          h->forced_local = 1;
          h->non_elf = 0;
          h->non_elf = 0;
        }
        }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* SEC is part of a pasted function.  Return the call_info for the
/* SEC is part of a pasted function.  Return the call_info for the
   next section of this function.  */
   next section of this function.  */
 
 
static struct call_info *
static struct call_info *
find_pasted_call (asection *sec)
find_pasted_call (asection *sec)
{
{
  struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
  struct _spu_elf_section_data *sec_data = spu_elf_section_data (sec);
  struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
  struct spu_elf_stack_info *sinfo = sec_data->u.i.stack_info;
  struct call_info *call;
  struct call_info *call;
  int k;
  int k;
 
 
  for (k = 0; k < sinfo->num_fun; ++k)
  for (k = 0; k < sinfo->num_fun; ++k)
    for (call = sinfo->fun[k].call_list; call != NULL; call = call->next)
    for (call = sinfo->fun[k].call_list; call != NULL; call = call->next)
      if (call->is_pasted)
      if (call->is_pasted)
        return call;
        return call;
  abort ();
  abort ();
  return 0;
  return 0;
}
}
 
 
/* qsort predicate to sort bfds by file name.  */
/* qsort predicate to sort bfds by file name.  */
 
 
static int
static int
sort_bfds (const void *a, const void *b)
sort_bfds (const void *a, const void *b)
{
{
  bfd *const *abfd1 = a;
  bfd *const *abfd1 = a;
  bfd *const *abfd2 = b;
  bfd *const *abfd2 = b;
 
 
  return strcmp ((*abfd1)->filename, (*abfd2)->filename);
  return strcmp ((*abfd1)->filename, (*abfd2)->filename);
}
}
 
 
/* Handle --auto-overlay.  */
/* Handle --auto-overlay.  */
 
 
static void spu_elf_auto_overlay (struct bfd_link_info *, void (*) (void))
static void spu_elf_auto_overlay (struct bfd_link_info *, void (*) (void))
     ATTRIBUTE_NORETURN;
     ATTRIBUTE_NORETURN;
 
 
static void
static void
spu_elf_auto_overlay (struct bfd_link_info *info,
spu_elf_auto_overlay (struct bfd_link_info *info,
                      void (*spu_elf_load_ovl_mgr) (void))
                      void (*spu_elf_load_ovl_mgr) (void))
{
{
  bfd *ibfd;
  bfd *ibfd;
  bfd **bfd_arr;
  bfd **bfd_arr;
  struct elf_segment_map *m;
  struct elf_segment_map *m;
  unsigned int fixed_size, lo, hi;
  unsigned int fixed_size, lo, hi;
  struct spu_link_hash_table *htab;
  struct spu_link_hash_table *htab;
  unsigned int base, i, count, bfd_count;
  unsigned int base, i, count, bfd_count;
  int ovlynum;
  int ovlynum;
  asection **ovly_sections, **ovly_p;
  asection **ovly_sections, **ovly_p;
  FILE *script;
  FILE *script;
  unsigned int total_overlay_size, overlay_size;
  unsigned int total_overlay_size, overlay_size;
  struct elf_link_hash_entry *h;
  struct elf_link_hash_entry *h;
  struct _mos_param mos_param;
  struct _mos_param mos_param;
  struct _uos_param uos_param;
  struct _uos_param uos_param;
  struct function_info dummy_caller;
  struct function_info dummy_caller;
 
 
  /* Find the extents of our loadable image.  */
  /* Find the extents of our loadable image.  */
  lo = (unsigned int) -1;
  lo = (unsigned int) -1;
  hi = 0;
  hi = 0;
  for (m = elf_tdata (info->output_bfd)->segment_map; m != NULL; m = m->next)
  for (m = elf_tdata (info->output_bfd)->segment_map; m != NULL; m = m->next)
    if (m->p_type == PT_LOAD)
    if (m->p_type == PT_LOAD)
      for (i = 0; i < m->count; i++)
      for (i = 0; i < m->count; i++)
        if (m->sections[i]->size != 0)
        if (m->sections[i]->size != 0)
          {
          {
            if (m->sections[i]->vma < lo)
            if (m->sections[i]->vma < lo)
              lo = m->sections[i]->vma;
              lo = m->sections[i]->vma;
            if (m->sections[i]->vma + m->sections[i]->size - 1 > hi)
            if (m->sections[i]->vma + m->sections[i]->size - 1 > hi)
              hi = m->sections[i]->vma + m->sections[i]->size - 1;
              hi = m->sections[i]->vma + m->sections[i]->size - 1;
          }
          }
  fixed_size = hi + 1 - lo;
  fixed_size = hi + 1 - lo;
 
 
  if (!discover_functions (info))
  if (!discover_functions (info))
    goto err_exit;
    goto err_exit;
 
 
  if (!build_call_tree (info))
  if (!build_call_tree (info))
    goto err_exit;
    goto err_exit;
 
 
  uos_param.exclude_input_section = 0;
  uos_param.exclude_input_section = 0;
  uos_param.exclude_output_section
  uos_param.exclude_output_section
    = bfd_get_section_by_name (info->output_bfd, ".interrupt");
    = bfd_get_section_by_name (info->output_bfd, ".interrupt");
 
 
  htab = spu_hash_table (info);
  htab = spu_hash_table (info);
  h = elf_link_hash_lookup (&htab->elf, "__ovly_load",
  h = elf_link_hash_lookup (&htab->elf, "__ovly_load",
                            FALSE, FALSE, FALSE);
                            FALSE, FALSE, FALSE);
  if (h != NULL
  if (h != NULL
      && (h->root.type == bfd_link_hash_defined
      && (h->root.type == bfd_link_hash_defined
          || h->root.type == bfd_link_hash_defweak)
          || h->root.type == bfd_link_hash_defweak)
      && h->def_regular)
      && h->def_regular)
    {
    {
      /* We have a user supplied overlay manager.  */
      /* We have a user supplied overlay manager.  */
      uos_param.exclude_input_section = h->root.u.def.section;
      uos_param.exclude_input_section = h->root.u.def.section;
    }
    }
  else
  else
    {
    {
      /* If no user overlay manager, spu_elf_load_ovl_mgr will add our
      /* If no user overlay manager, spu_elf_load_ovl_mgr will add our
         builtin version to .text, and will adjust .text size.  */
         builtin version to .text, and will adjust .text size.  */
      asection *text = bfd_get_section_by_name (info->output_bfd, ".text");
      asection *text = bfd_get_section_by_name (info->output_bfd, ".text");
      if (text != NULL)
      if (text != NULL)
        fixed_size -= text->size;
        fixed_size -= text->size;
      spu_elf_load_ovl_mgr ();
      spu_elf_load_ovl_mgr ();
      text = bfd_get_section_by_name (info->output_bfd, ".text");
      text = bfd_get_section_by_name (info->output_bfd, ".text");
      if (text != NULL)
      if (text != NULL)
        fixed_size += text->size;
        fixed_size += text->size;
    }
    }
 
 
  /* Mark overlay sections, and find max overlay section size.  */
  /* Mark overlay sections, and find max overlay section size.  */
  mos_param.max_overlay_size = 0;
  mos_param.max_overlay_size = 0;
  if (!for_each_node (mark_overlay_section, info, &mos_param, TRUE))
  if (!for_each_node (mark_overlay_section, info, &mos_param, TRUE))
    goto err_exit;
    goto err_exit;
 
 
  /* We can't put the overlay manager or interrupt routines in
  /* We can't put the overlay manager or interrupt routines in
     overlays.  */
     overlays.  */
  uos_param.clearing = 0;
  uos_param.clearing = 0;
  if ((uos_param.exclude_input_section
  if ((uos_param.exclude_input_section
       || uos_param.exclude_output_section)
       || uos_param.exclude_output_section)
      && !for_each_node (unmark_overlay_section, info, &uos_param, TRUE))
      && !for_each_node (unmark_overlay_section, info, &uos_param, TRUE))
    goto err_exit;
    goto err_exit;
 
 
  bfd_count = 0;
  bfd_count = 0;
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
    ++bfd_count;
    ++bfd_count;
  bfd_arr = bfd_malloc (bfd_count * sizeof (*bfd_arr));
  bfd_arr = bfd_malloc (bfd_count * sizeof (*bfd_arr));
  if (bfd_arr == NULL)
  if (bfd_arr == NULL)
    goto err_exit;
    goto err_exit;
 
 
  /* Count overlay sections, and subtract their sizes from "fixed_size".  */
  /* Count overlay sections, and subtract their sizes from "fixed_size".  */
  count = 0;
  count = 0;
  bfd_count = 0;
  bfd_count = 0;
  total_overlay_size = 0;
  total_overlay_size = 0;
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
  for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
    {
    {
      extern const bfd_target bfd_elf32_spu_vec;
      extern const bfd_target bfd_elf32_spu_vec;
      asection *sec;
      asection *sec;
      unsigned int old_count;
      unsigned int old_count;
 
 
      if (ibfd->xvec != &bfd_elf32_spu_vec)
      if (ibfd->xvec != &bfd_elf32_spu_vec)
        continue;
        continue;
 
 
      old_count = count;
      old_count = count;
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
      for (sec = ibfd->sections; sec != NULL; sec = sec->next)
        if (sec->linker_mark)
        if (sec->linker_mark)
          {
          {
            if ((sec->flags & SEC_CODE) != 0)
            if ((sec->flags & SEC_CODE) != 0)
              count += 1;
              count += 1;
            fixed_size -= sec->size;
            fixed_size -= sec->size;
            total_overlay_size += sec->size;
            total_overlay_size += sec->size;
          }
          }
      if (count != old_count)
      if (count != old_count)
        bfd_arr[bfd_count++] = ibfd;
        bfd_arr[bfd_count++] = ibfd;
    }
    }
 
 
  /* Since the overlay link script selects sections by file name and
  /* Since the overlay link script selects sections by file name and
     section name, ensure that file names are unique.  */
     section name, ensure that file names are unique.  */
  if (bfd_count > 1)
  if (bfd_count > 1)
    {
    {
      bfd_boolean ok = TRUE;
      bfd_boolean ok = TRUE;
 
 
      qsort (bfd_arr, bfd_count, sizeof (*bfd_arr), sort_bfds);
      qsort (bfd_arr, bfd_count, sizeof (*bfd_arr), sort_bfds);
      for (i = 1; i < bfd_count; ++i)
      for (i = 1; i < bfd_count; ++i)
        if (strcmp (bfd_arr[i - 1]->filename, bfd_arr[i]->filename) == 0)
        if (strcmp (bfd_arr[i - 1]->filename, bfd_arr[i]->filename) == 0)
          {
          {
            if (bfd_arr[i - 1]->my_archive && bfd_arr[i]->my_archive)
            if (bfd_arr[i - 1]->my_archive && bfd_arr[i]->my_archive)
              {
              {
                if (bfd_arr[i - 1]->my_archive == bfd_arr[i]->my_archive)
                if (bfd_arr[i - 1]->my_archive == bfd_arr[i]->my_archive)
                  info->callbacks->einfo (_("%s duplicated in %s\n"),
                  info->callbacks->einfo (_("%s duplicated in %s\n"),
                                          bfd_arr[i - 1]->filename,
                                          bfd_arr[i - 1]->filename,
                                          bfd_arr[i - 1]->my_archive->filename);
                                          bfd_arr[i - 1]->my_archive->filename);
                else
                else
                  info->callbacks->einfo (_("%s in both %s and %s\n"),
                  info->callbacks->einfo (_("%s in both %s and %s\n"),
                                          bfd_arr[i - 1]->filename,
                                          bfd_arr[i - 1]->filename,
                                          bfd_arr[i - 1]->my_archive->filename,
                                          bfd_arr[i - 1]->my_archive->filename,
                                          bfd_arr[i]->my_archive->filename);
                                          bfd_arr[i]->my_archive->filename);
              }
              }
            else if (bfd_arr[i - 1]->my_archive)
            else if (bfd_arr[i - 1]->my_archive)
              info->callbacks->einfo (_("%s in %s and as an object\n"),
              info->callbacks->einfo (_("%s in %s and as an object\n"),
                                      bfd_arr[i - 1]->filename,
                                      bfd_arr[i - 1]->filename,
                                      bfd_arr[i - 1]->my_archive->filename);
                                      bfd_arr[i - 1]->my_archive->filename);
            else if (bfd_arr[i]->my_archive)
            else if (bfd_arr[i]->my_archive)
              info->callbacks->einfo (_("%s in %s and as an object\n"),
              info->callbacks->einfo (_("%s in %s and as an object\n"),
                                      bfd_arr[i]->filename,
                                      bfd_arr[i]->filename,
                                      bfd_arr[i]->my_archive->filename);
                                      bfd_arr[i]->my_archive->filename);
            else
            else
              info->callbacks->einfo (_("%s duplicated\n"),
              info->callbacks->einfo (_("%s duplicated\n"),
                                      bfd_arr[i]->filename);
                                      bfd_arr[i]->filename);
            ok = FALSE;
            ok = FALSE;
          }
          }
      if (!ok)
      if (!ok)
        {
        {
          /* FIXME: modify plain object files from foo.o to ./foo.o
          /* FIXME: modify plain object files from foo.o to ./foo.o
             and emit EXCLUDE_FILE to handle the duplicates in
             and emit EXCLUDE_FILE to handle the duplicates in
             archives.  There is a pathological case we can't handle:
             archives.  There is a pathological case we can't handle:
             We may have duplicate file names within a single archive.  */
             We may have duplicate file names within a single archive.  */
          info->callbacks->einfo (_("sorry, no support for duplicate "
          info->callbacks->einfo (_("sorry, no support for duplicate "
                                    "object files in auto-overlay script\n"));
                                    "object files in auto-overlay script\n"));
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          goto err_exit;
          goto err_exit;
        }
        }
    }
    }
  free (bfd_arr);
  free (bfd_arr);
 
 
  if (htab->reserved == 0)
  if (htab->reserved == 0)
    {
    {
      struct _sum_stack_param sum_stack_param;
      struct _sum_stack_param sum_stack_param;
 
 
      sum_stack_param.emit_stack_syms = 0;
      sum_stack_param.emit_stack_syms = 0;
      sum_stack_param.overall_stack = 0;
      sum_stack_param.overall_stack = 0;
      if (!for_each_node (sum_stack, info, &sum_stack_param, TRUE))
      if (!for_each_node (sum_stack, info, &sum_stack_param, TRUE))
        goto err_exit;
        goto err_exit;
      htab->reserved = sum_stack_param.overall_stack;
      htab->reserved = sum_stack_param.overall_stack;
    }
    }
  fixed_size += htab->reserved;
  fixed_size += htab->reserved;
  fixed_size += htab->non_ovly_stub * OVL_STUB_SIZE;
  fixed_size += htab->non_ovly_stub * OVL_STUB_SIZE;
  if (fixed_size + mos_param.max_overlay_size <= htab->local_store)
  if (fixed_size + mos_param.max_overlay_size <= htab->local_store)
    {
    {
      /* Guess number of overlays.  Assuming overlay buffer is on
      /* Guess number of overlays.  Assuming overlay buffer is on
         average only half full should be conservative.  */
         average only half full should be conservative.  */
      ovlynum = total_overlay_size * 2 / (htab->local_store - fixed_size);
      ovlynum = total_overlay_size * 2 / (htab->local_store - fixed_size);
      /* Space for _ovly_table[], _ovly_buf_table[] and toe.  */
      /* Space for _ovly_table[], _ovly_buf_table[] and toe.  */
      fixed_size += ovlynum * 16 + 16 + 4 + 16;
      fixed_size += ovlynum * 16 + 16 + 4 + 16;
    }
    }
 
 
  if (fixed_size + mos_param.max_overlay_size > htab->local_store)
  if (fixed_size + mos_param.max_overlay_size > htab->local_store)
    info->callbacks->einfo (_("non-overlay plus maximum overlay size "
    info->callbacks->einfo (_("non-overlay plus maximum overlay size "
                              "of 0x%x exceeds local store\n"),
                              "of 0x%x exceeds local store\n"),
                            fixed_size + mos_param.max_overlay_size);
                            fixed_size + mos_param.max_overlay_size);
 
 
  /* Now see if we should put some functions in the non-overlay area.  */
  /* Now see if we should put some functions in the non-overlay area.  */
  if (fixed_size < htab->overlay_fixed
  if (fixed_size < htab->overlay_fixed
      && htab->overlay_fixed + mos_param.max_overlay_size < htab->local_store)
      && htab->overlay_fixed + mos_param.max_overlay_size < htab->local_store)
    {
    {
      unsigned int lib_size = htab->overlay_fixed - fixed_size;
      unsigned int lib_size = htab->overlay_fixed - fixed_size;
      lib_size = auto_ovl_lib_functions (info, lib_size);
      lib_size = auto_ovl_lib_functions (info, lib_size);
      if (lib_size == (unsigned int) -1)
      if (lib_size == (unsigned int) -1)
        goto err_exit;
        goto err_exit;
      fixed_size = htab->overlay_fixed - lib_size;
      fixed_size = htab->overlay_fixed - lib_size;
    }
    }
 
 
  /* Build an array of sections, suitably sorted to place into
  /* Build an array of sections, suitably sorted to place into
     overlays.  */
     overlays.  */
  ovly_sections = bfd_malloc (2 * count * sizeof (*ovly_sections));
  ovly_sections = bfd_malloc (2 * count * sizeof (*ovly_sections));
  if (ovly_sections == NULL)
  if (ovly_sections == NULL)
    goto err_exit;
    goto err_exit;
  ovly_p = ovly_sections;
  ovly_p = ovly_sections;
  if (!for_each_node (collect_overlays, info, &ovly_p, TRUE))
  if (!for_each_node (collect_overlays, info, &ovly_p, TRUE))
    goto err_exit;
    goto err_exit;
  count = (size_t) (ovly_p - ovly_sections) / 2;
  count = (size_t) (ovly_p - ovly_sections) / 2;
 
 
  script = htab->spu_elf_open_overlay_script ();
  script = htab->spu_elf_open_overlay_script ();
 
 
  if (fprintf (script, "SECTIONS\n{\n OVERLAY :\n {\n") <= 0)
  if (fprintf (script, "SECTIONS\n{\n OVERLAY :\n {\n") <= 0)
    goto file_err;
    goto file_err;
 
 
  memset (&dummy_caller, 0, sizeof (dummy_caller));
  memset (&dummy_caller, 0, sizeof (dummy_caller));
  overlay_size = htab->local_store - fixed_size;
  overlay_size = htab->local_store - fixed_size;
  base = 0;
  base = 0;
  ovlynum = 0;
  ovlynum = 0;
  while (base < count)
  while (base < count)
    {
    {
      unsigned int size = 0;
      unsigned int size = 0;
      unsigned int j;
      unsigned int j;
 
 
      for (i = base; i < count; i++)
      for (i = base; i < count; i++)
        {
        {
          asection *sec;
          asection *sec;
          unsigned int tmp;
          unsigned int tmp;
          unsigned int stub_size;
          unsigned int stub_size;
          struct call_info *call, *pasty;
          struct call_info *call, *pasty;
          struct _spu_elf_section_data *sec_data;
          struct _spu_elf_section_data *sec_data;
          struct spu_elf_stack_info *sinfo;
          struct spu_elf_stack_info *sinfo;
          int k;
          int k;
 
 
          /* See whether we can add this section to the current
          /* See whether we can add this section to the current
             overlay without overflowing our overlay buffer.  */
             overlay without overflowing our overlay buffer.  */
          sec = ovly_sections[2 * i];
          sec = ovly_sections[2 * i];
          tmp = size + sec->size;
          tmp = size + sec->size;
          if (ovly_sections[2 * i + 1])
          if (ovly_sections[2 * i + 1])
            tmp += ovly_sections[2 * i + 1]->size;
            tmp += ovly_sections[2 * i + 1]->size;
          if (tmp > overlay_size)
          if (tmp > overlay_size)
            break;
            break;
          if (sec->segment_mark)
          if (sec->segment_mark)
            {
            {
              /* Pasted sections must stay together, so add their
              /* Pasted sections must stay together, so add their
                 sizes too.  */
                 sizes too.  */
              struct call_info *pasty = find_pasted_call (sec);
              struct call_info *pasty = find_pasted_call (sec);
              while (pasty != NULL)
              while (pasty != NULL)
                {
                {
                  struct function_info *call_fun = pasty->fun;
                  struct function_info *call_fun = pasty->fun;
                  tmp += call_fun->sec->size;
                  tmp += call_fun->sec->size;
                  if (call_fun->rodata)
                  if (call_fun->rodata)
                    tmp += call_fun->rodata->size;
                    tmp += call_fun->rodata->size;
                  for (pasty = call_fun->call_list; pasty; pasty = pasty->next)
                  for (pasty = call_fun->call_list; pasty; pasty = pasty->next)
                    if (pasty->is_pasted)
                    if (pasty->is_pasted)
                      break;
                      break;
                }
                }
            }
            }
          if (tmp > overlay_size)
          if (tmp > overlay_size)
            break;
            break;
 
 
          /* If we add this section, we might need new overlay call
          /* If we add this section, we might need new overlay call
             stubs.  Add any overlay section calls to dummy_call.  */
             stubs.  Add any overlay section calls to dummy_call.  */
          pasty = NULL;
          pasty = NULL;
          sec_data = spu_elf_section_data (sec);
          sec_data = spu_elf_section_data (sec);
          sinfo = sec_data->u.i.stack_info;
          sinfo = sec_data->u.i.stack_info;
          for (k = 0; k < sinfo->num_fun; ++k)
          for (k = 0; k < sinfo->num_fun; ++k)
            for (call = sinfo->fun[k].call_list; call; call = call->next)
            for (call = sinfo->fun[k].call_list; call; call = call->next)
              if (call->is_pasted)
              if (call->is_pasted)
                {
                {
                  BFD_ASSERT (pasty == NULL);
                  BFD_ASSERT (pasty == NULL);
                  pasty = call;
                  pasty = call;
                }
                }
              else if (call->fun->sec->linker_mark)
              else if (call->fun->sec->linker_mark)
                {
                {
                  if (!copy_callee (&dummy_caller, call))
                  if (!copy_callee (&dummy_caller, call))
                    goto err_exit;
                    goto err_exit;
                }
                }
          while (pasty != NULL)
          while (pasty != NULL)
            {
            {
              struct function_info *call_fun = pasty->fun;
              struct function_info *call_fun = pasty->fun;
              pasty = NULL;
              pasty = NULL;
              for (call = call_fun->call_list; call; call = call->next)
              for (call = call_fun->call_list; call; call = call->next)
                if (call->is_pasted)
                if (call->is_pasted)
                  {
                  {
                    BFD_ASSERT (pasty == NULL);
                    BFD_ASSERT (pasty == NULL);
                    pasty = call;
                    pasty = call;
                  }
                  }
                else if (!copy_callee (&dummy_caller, call))
                else if (!copy_callee (&dummy_caller, call))
                  goto err_exit;
                  goto err_exit;
            }
            }
 
 
          /* Calculate call stub size.  */
          /* Calculate call stub size.  */
          stub_size = 0;
          stub_size = 0;
          for (call = dummy_caller.call_list; call; call = call->next)
          for (call = dummy_caller.call_list; call; call = call->next)
            {
            {
              unsigned int k;
              unsigned int k;
 
 
              stub_size += OVL_STUB_SIZE;
              stub_size += OVL_STUB_SIZE;
              /* If the call is within this overlay, we won't need a
              /* If the call is within this overlay, we won't need a
                 stub.  */
                 stub.  */
              for (k = base; k < i + 1; k++)
              for (k = base; k < i + 1; k++)
                if (call->fun->sec == ovly_sections[2 * k])
                if (call->fun->sec == ovly_sections[2 * k])
                  {
                  {
                    stub_size -= OVL_STUB_SIZE;
                    stub_size -= OVL_STUB_SIZE;
                    break;
                    break;
                  }
                  }
            }
            }
          if (tmp + stub_size > overlay_size)
          if (tmp + stub_size > overlay_size)
            break;
            break;
 
 
          size = tmp;
          size = tmp;
        }
        }
 
 
      if (i == base)
      if (i == base)
        {
        {
          info->callbacks->einfo (_("%B:%A%s exceeds overlay size\n"),
          info->callbacks->einfo (_("%B:%A%s exceeds overlay size\n"),
                                  ovly_sections[2 * i]->owner,
                                  ovly_sections[2 * i]->owner,
                                  ovly_sections[2 * i],
                                  ovly_sections[2 * i],
                                  ovly_sections[2 * i + 1] ? " + rodata" : "");
                                  ovly_sections[2 * i + 1] ? " + rodata" : "");
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          goto err_exit;
          goto err_exit;
        }
        }
 
 
      if (fprintf (script, "  .ovly%d {\n", ++ovlynum) <= 0)
      if (fprintf (script, "  .ovly%d {\n", ++ovlynum) <= 0)
        goto file_err;
        goto file_err;
      for (j = base; j < i; j++)
      for (j = base; j < i; j++)
        {
        {
          asection *sec = ovly_sections[2 * j];
          asection *sec = ovly_sections[2 * j];
 
 
          if (fprintf (script, "   [%c]%s (%s)\n",
          if (fprintf (script, "   [%c]%s (%s)\n",
                       sec->owner->filename[0],
                       sec->owner->filename[0],
                       sec->owner->filename + 1,
                       sec->owner->filename + 1,
                       sec->name) <= 0)
                       sec->name) <= 0)
            goto file_err;
            goto file_err;
          if (sec->segment_mark)
          if (sec->segment_mark)
            {
            {
              struct call_info *call = find_pasted_call (sec);
              struct call_info *call = find_pasted_call (sec);
              while (call != NULL)
              while (call != NULL)
                {
                {
                  struct function_info *call_fun = call->fun;
                  struct function_info *call_fun = call->fun;
                  sec = call_fun->sec;
                  sec = call_fun->sec;
                  if (fprintf (script, "   [%c]%s (%s)\n",
                  if (fprintf (script, "   [%c]%s (%s)\n",
                               sec->owner->filename[0],
                               sec->owner->filename[0],
                               sec->owner->filename + 1,
                               sec->owner->filename + 1,
                               sec->name) <= 0)
                               sec->name) <= 0)
                    goto file_err;
                    goto file_err;
                  for (call = call_fun->call_list; call; call = call->next)
                  for (call = call_fun->call_list; call; call = call->next)
                    if (call->is_pasted)
                    if (call->is_pasted)
                      break;
                      break;
                }
                }
            }
            }
        }
        }
 
 
      for (j = base; j < i; j++)
      for (j = base; j < i; j++)
        {
        {
          asection *sec = ovly_sections[2 * j + 1];
          asection *sec = ovly_sections[2 * j + 1];
          if (sec != NULL && fprintf (script, "   [%c]%s (%s)\n",
          if (sec != NULL && fprintf (script, "   [%c]%s (%s)\n",
                                      sec->owner->filename[0],
                                      sec->owner->filename[0],
                                      sec->owner->filename + 1,
                                      sec->owner->filename + 1,
                                      sec->name) <= 0)
                                      sec->name) <= 0)
            goto file_err;
            goto file_err;
 
 
          sec = ovly_sections[2 * j];
          sec = ovly_sections[2 * j];
          if (sec->segment_mark)
          if (sec->segment_mark)
            {
            {
              struct call_info *call = find_pasted_call (sec);
              struct call_info *call = find_pasted_call (sec);
              while (call != NULL)
              while (call != NULL)
                {
                {
                  struct function_info *call_fun = call->fun;
                  struct function_info *call_fun = call->fun;
                  sec = call_fun->rodata;
                  sec = call_fun->rodata;
                  if (sec != NULL && fprintf (script, "   [%c]%s (%s)\n",
                  if (sec != NULL && fprintf (script, "   [%c]%s (%s)\n",
                                              sec->owner->filename[0],
                                              sec->owner->filename[0],
                                              sec->owner->filename + 1,
                                              sec->owner->filename + 1,
                                              sec->name) <= 0)
                                              sec->name) <= 0)
                    goto file_err;
                    goto file_err;
                  for (call = call_fun->call_list; call; call = call->next)
                  for (call = call_fun->call_list; call; call = call->next)
                    if (call->is_pasted)
                    if (call->is_pasted)
                      break;
                      break;
                }
                }
            }
            }
        }
        }
 
 
      if (fprintf (script, "  }\n") <= 0)
      if (fprintf (script, "  }\n") <= 0)
        goto file_err;
        goto file_err;
 
 
      while (dummy_caller.call_list != NULL)
      while (dummy_caller.call_list != NULL)
        {
        {
          struct call_info *call = dummy_caller.call_list;
          struct call_info *call = dummy_caller.call_list;
          dummy_caller.call_list = call->next;
          dummy_caller.call_list = call->next;
          free (call);
          free (call);
        }
        }
 
 
      base = i;
      base = i;
    }
    }
  free (ovly_sections);
  free (ovly_sections);
 
 
  if (fprintf (script, " }\n}\nINSERT AFTER .text;\n") <= 0)
  if (fprintf (script, " }\n}\nINSERT AFTER .text;\n") <= 0)
    goto file_err;
    goto file_err;
  if (fclose (script) != 0)
  if (fclose (script) != 0)
    goto file_err;
    goto file_err;
 
 
  if (htab->auto_overlay & AUTO_RELINK)
  if (htab->auto_overlay & AUTO_RELINK)
    htab->spu_elf_relink ();
    htab->spu_elf_relink ();
 
 
  xexit (0);
  xexit (0);
 
 
 file_err:
 file_err:
  bfd_set_error (bfd_error_system_call);
  bfd_set_error (bfd_error_system_call);
 err_exit:
 err_exit:
  info->callbacks->einfo ("%F%P: auto overlay error: %E\n");
  info->callbacks->einfo ("%F%P: auto overlay error: %E\n");
  xexit (1);
  xexit (1);
}
}
 
 
/* Provide an estimate of total stack required.  */
/* Provide an estimate of total stack required.  */
 
 
static bfd_boolean
static bfd_boolean
spu_elf_stack_analysis (struct bfd_link_info *info, int emit_stack_syms)
spu_elf_stack_analysis (struct bfd_link_info *info, int emit_stack_syms)
{
{
  struct _sum_stack_param sum_stack_param;
  struct _sum_stack_param sum_stack_param;
 
 
  if (!discover_functions (info))
  if (!discover_functions (info))
    return FALSE;
    return FALSE;
 
 
  if (!build_call_tree (info))
  if (!build_call_tree (info))
    return FALSE;
    return FALSE;
 
 
  info->callbacks->info (_("Stack size for call graph root nodes.\n"));
  info->callbacks->info (_("Stack size for call graph root nodes.\n"));
  info->callbacks->minfo (_("\nStack size for functions.  "
  info->callbacks->minfo (_("\nStack size for functions.  "
                            "Annotations: '*' max stack, 't' tail call\n"));
                            "Annotations: '*' max stack, 't' tail call\n"));
 
 
  sum_stack_param.emit_stack_syms = emit_stack_syms;
  sum_stack_param.emit_stack_syms = emit_stack_syms;
  sum_stack_param.overall_stack = 0;
  sum_stack_param.overall_stack = 0;
  if (!for_each_node (sum_stack, info, &sum_stack_param, TRUE))
  if (!for_each_node (sum_stack, info, &sum_stack_param, TRUE))
    return FALSE;
    return FALSE;
 
 
  info->callbacks->info (_("Maximum stack required is 0x%v\n"),
  info->callbacks->info (_("Maximum stack required is 0x%v\n"),
                         (bfd_vma) sum_stack_param.overall_stack);
                         (bfd_vma) sum_stack_param.overall_stack);
  return TRUE;
  return TRUE;
}
}
 
 
/* Perform a final link.  */
/* Perform a final link.  */
 
 
static bfd_boolean
static bfd_boolean
spu_elf_final_link (bfd *output_bfd, struct bfd_link_info *info)
spu_elf_final_link (bfd *output_bfd, struct bfd_link_info *info)
{
{
  struct spu_link_hash_table *htab = spu_hash_table (info);
  struct spu_link_hash_table *htab = spu_hash_table (info);
 
 
  if (htab->auto_overlay)
  if (htab->auto_overlay)
    spu_elf_auto_overlay (info, htab->spu_elf_load_ovl_mgr);
    spu_elf_auto_overlay (info, htab->spu_elf_load_ovl_mgr);
 
 
  if (htab->stack_analysis
  if (htab->stack_analysis
      && !spu_elf_stack_analysis (info, htab->emit_stack_syms))
      && !spu_elf_stack_analysis (info, htab->emit_stack_syms))
    info->callbacks->einfo ("%X%P: stack analysis error: %E\n");
    info->callbacks->einfo ("%X%P: stack analysis error: %E\n");
 
 
  return bfd_elf_final_link (output_bfd, info);
  return bfd_elf_final_link (output_bfd, info);
}
}
 
 
/* Called when not normally emitting relocs, ie. !info->relocatable
/* Called when not normally emitting relocs, ie. !info->relocatable
   and !info->emitrelocations.  Returns a count of special relocs
   and !info->emitrelocations.  Returns a count of special relocs
   that need to be emitted.  */
   that need to be emitted.  */
 
 
static unsigned int
static unsigned int
spu_elf_count_relocs (asection *sec, Elf_Internal_Rela *relocs)
spu_elf_count_relocs (asection *sec, Elf_Internal_Rela *relocs)
{
{
  unsigned int count = 0;
  unsigned int count = 0;
  Elf_Internal_Rela *relend = relocs + sec->reloc_count;
  Elf_Internal_Rela *relend = relocs + sec->reloc_count;
 
 
  for (; relocs < relend; relocs++)
  for (; relocs < relend; relocs++)
    {
    {
      int r_type = ELF32_R_TYPE (relocs->r_info);
      int r_type = ELF32_R_TYPE (relocs->r_info);
      if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
      if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
        ++count;
        ++count;
    }
    }
 
 
  return count;
  return count;
}
}
 
 
/* Apply RELOCS to CONTENTS of INPUT_SECTION from INPUT_BFD.  */
/* Apply RELOCS to CONTENTS of INPUT_SECTION from INPUT_BFD.  */
 
 
static int
static int
spu_elf_relocate_section (bfd *output_bfd,
spu_elf_relocate_section (bfd *output_bfd,
                          struct bfd_link_info *info,
                          struct bfd_link_info *info,
                          bfd *input_bfd,
                          bfd *input_bfd,
                          asection *input_section,
                          asection *input_section,
                          bfd_byte *contents,
                          bfd_byte *contents,
                          Elf_Internal_Rela *relocs,
                          Elf_Internal_Rela *relocs,
                          Elf_Internal_Sym *local_syms,
                          Elf_Internal_Sym *local_syms,
                          asection **local_sections)
                          asection **local_sections)
{
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Shdr *symtab_hdr;
  struct elf_link_hash_entry **sym_hashes;
  struct elf_link_hash_entry **sym_hashes;
  Elf_Internal_Rela *rel, *relend;
  Elf_Internal_Rela *rel, *relend;
  struct spu_link_hash_table *htab;
  struct spu_link_hash_table *htab;
  int ret = TRUE;
  int ret = TRUE;
  bfd_boolean emit_these_relocs = FALSE;
  bfd_boolean emit_these_relocs = FALSE;
  bfd_boolean stubs;
  bfd_boolean stubs;
 
 
  htab = spu_hash_table (info);
  htab = spu_hash_table (info);
  stubs = (htab->stub_sec != NULL
  stubs = (htab->stub_sec != NULL
           && maybe_needs_stubs (input_section, output_bfd));
           && maybe_needs_stubs (input_section, output_bfd));
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
  sym_hashes = (struct elf_link_hash_entry **) (elf_sym_hashes (input_bfd));
  sym_hashes = (struct elf_link_hash_entry **) (elf_sym_hashes (input_bfd));
 
 
  rel = relocs;
  rel = relocs;
  relend = relocs + input_section->reloc_count;
  relend = relocs + input_section->reloc_count;
  for (; rel < relend; rel++)
  for (; rel < relend; rel++)
    {
    {
      int r_type;
      int r_type;
      reloc_howto_type *howto;
      reloc_howto_type *howto;
      unsigned long r_symndx;
      unsigned long r_symndx;
      Elf_Internal_Sym *sym;
      Elf_Internal_Sym *sym;
      asection *sec;
      asection *sec;
      struct elf_link_hash_entry *h;
      struct elf_link_hash_entry *h;
      const char *sym_name;
      const char *sym_name;
      bfd_vma relocation;
      bfd_vma relocation;
      bfd_vma addend;
      bfd_vma addend;
      bfd_reloc_status_type r;
      bfd_reloc_status_type r;
      bfd_boolean unresolved_reloc;
      bfd_boolean unresolved_reloc;
      bfd_boolean warned;
      bfd_boolean warned;
 
 
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_symndx = ELF32_R_SYM (rel->r_info);
      r_type = ELF32_R_TYPE (rel->r_info);
      r_type = ELF32_R_TYPE (rel->r_info);
      if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
      if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
        {
        {
          emit_these_relocs = TRUE;
          emit_these_relocs = TRUE;
          continue;
          continue;
        }
        }
 
 
      howto = elf_howto_table + r_type;
      howto = elf_howto_table + r_type;
      unresolved_reloc = FALSE;
      unresolved_reloc = FALSE;
      warned = FALSE;
      warned = FALSE;
      h = NULL;
      h = NULL;
      sym = NULL;
      sym = NULL;
      sec = NULL;
      sec = NULL;
      if (r_symndx < symtab_hdr->sh_info)
      if (r_symndx < symtab_hdr->sh_info)
        {
        {
          sym = local_syms + r_symndx;
          sym = local_syms + r_symndx;
          sec = local_sections[r_symndx];
          sec = local_sections[r_symndx];
          sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
          sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
          relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
          relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
        }
        }
      else
      else
        {
        {
          RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
          RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
                                   r_symndx, symtab_hdr, sym_hashes,
                                   r_symndx, symtab_hdr, sym_hashes,
                                   h, sec, relocation,
                                   h, sec, relocation,
                                   unresolved_reloc, warned);
                                   unresolved_reloc, warned);
          sym_name = h->root.root.string;
          sym_name = h->root.root.string;
        }
        }
 
 
      if (sec != NULL && elf_discarded_section (sec))
      if (sec != NULL && elf_discarded_section (sec))
        {
        {
          /* For relocs against symbols from removed linkonce sections,
          /* For relocs against symbols from removed linkonce sections,
             or sections discarded by a linker script, we just want the
             or sections discarded by a linker script, we just want the
             section contents zeroed.  Avoid any special processing.  */
             section contents zeroed.  Avoid any special processing.  */
          _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
          _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
          rel->r_info = 0;
          rel->r_info = 0;
          rel->r_addend = 0;
          rel->r_addend = 0;
          continue;
          continue;
        }
        }
 
 
      if (info->relocatable)
      if (info->relocatable)
        continue;
        continue;
 
 
      if (unresolved_reloc)
      if (unresolved_reloc)
        {
        {
          (*_bfd_error_handler)
          (*_bfd_error_handler)
            (_("%B(%s+0x%lx): unresolvable %s relocation against symbol `%s'"),
            (_("%B(%s+0x%lx): unresolvable %s relocation against symbol `%s'"),
             input_bfd,
             input_bfd,
             bfd_get_section_name (input_bfd, input_section),
             bfd_get_section_name (input_bfd, input_section),
             (long) rel->r_offset,
             (long) rel->r_offset,
             howto->name,
             howto->name,
             sym_name);
             sym_name);
          ret = FALSE;
          ret = FALSE;
        }
        }
 
 
      /* If this symbol is in an overlay area, we may need to relocate
      /* If this symbol is in an overlay area, we may need to relocate
         to the overlay stub.  */
         to the overlay stub.  */
      addend = rel->r_addend;
      addend = rel->r_addend;
      if (stubs)
      if (stubs)
        {
        {
          enum _stub_type stub_type;
          enum _stub_type stub_type;
 
 
          stub_type = needs_ovl_stub (h, sym, sec, input_section, rel,
          stub_type = needs_ovl_stub (h, sym, sec, input_section, rel,
                                      contents, info);
                                      contents, info);
          if (stub_type != no_stub)
          if (stub_type != no_stub)
            {
            {
              unsigned int ovl = 0;
              unsigned int ovl = 0;
              struct got_entry *g, **head;
              struct got_entry *g, **head;
 
 
              if (stub_type != nonovl_stub)
              if (stub_type != nonovl_stub)
                ovl = (spu_elf_section_data (input_section->output_section)
                ovl = (spu_elf_section_data (input_section->output_section)
                       ->u.o.ovl_index);
                       ->u.o.ovl_index);
 
 
              if (h != NULL)
              if (h != NULL)
                head = &h->got.glist;
                head = &h->got.glist;
              else
              else
                head = elf_local_got_ents (input_bfd) + r_symndx;
                head = elf_local_got_ents (input_bfd) + r_symndx;
 
 
              for (g = *head; g != NULL; g = g->next)
              for (g = *head; g != NULL; g = g->next)
                if (g->addend == addend && (g->ovl == ovl || g->ovl == 0))
                if (g->addend == addend && (g->ovl == ovl || g->ovl == 0))
                  break;
                  break;
              if (g == NULL)
              if (g == NULL)
                abort ();
                abort ();
 
 
              relocation = g->stub_addr;
              relocation = g->stub_addr;
              addend = 0;
              addend = 0;
            }
            }
        }
        }
 
 
      r = _bfd_final_link_relocate (howto,
      r = _bfd_final_link_relocate (howto,
                                    input_bfd,
                                    input_bfd,
                                    input_section,
                                    input_section,
                                    contents,
                                    contents,
                                    rel->r_offset, relocation, addend);
                                    rel->r_offset, relocation, addend);
 
 
      if (r != bfd_reloc_ok)
      if (r != bfd_reloc_ok)
        {
        {
          const char *msg = (const char *) 0;
          const char *msg = (const char *) 0;
 
 
          switch (r)
          switch (r)
            {
            {
            case bfd_reloc_overflow:
            case bfd_reloc_overflow:
              if (!((*info->callbacks->reloc_overflow)
              if (!((*info->callbacks->reloc_overflow)
                    (info, (h ? &h->root : NULL), sym_name, howto->name,
                    (info, (h ? &h->root : NULL), sym_name, howto->name,
                     (bfd_vma) 0, input_bfd, input_section, rel->r_offset)))
                     (bfd_vma) 0, input_bfd, input_section, rel->r_offset)))
                return FALSE;
                return FALSE;
              break;
              break;
 
 
            case bfd_reloc_undefined:
            case bfd_reloc_undefined:
              if (!((*info->callbacks->undefined_symbol)
              if (!((*info->callbacks->undefined_symbol)
                    (info, sym_name, input_bfd, input_section,
                    (info, sym_name, input_bfd, input_section,
                     rel->r_offset, TRUE)))
                     rel->r_offset, TRUE)))
                return FALSE;
                return FALSE;
              break;
              break;
 
 
            case bfd_reloc_outofrange:
            case bfd_reloc_outofrange:
              msg = _("internal error: out of range error");
              msg = _("internal error: out of range error");
              goto common_error;
              goto common_error;
 
 
            case bfd_reloc_notsupported:
            case bfd_reloc_notsupported:
              msg = _("internal error: unsupported relocation error");
              msg = _("internal error: unsupported relocation error");
              goto common_error;
              goto common_error;
 
 
            case bfd_reloc_dangerous:
            case bfd_reloc_dangerous:
              msg = _("internal error: dangerous error");
              msg = _("internal error: dangerous error");
              goto common_error;
              goto common_error;
 
 
            default:
            default:
              msg = _("internal error: unknown error");
              msg = _("internal error: unknown error");
              /* fall through */
              /* fall through */
 
 
            common_error:
            common_error:
              ret = FALSE;
              ret = FALSE;
              if (!((*info->callbacks->warning)
              if (!((*info->callbacks->warning)
                    (info, msg, sym_name, input_bfd, input_section,
                    (info, msg, sym_name, input_bfd, input_section,
                     rel->r_offset)))
                     rel->r_offset)))
                return FALSE;
                return FALSE;
              break;
              break;
            }
            }
        }
        }
    }
    }
 
 
  if (ret
  if (ret
      && emit_these_relocs
      && emit_these_relocs
      && !info->relocatable
      && !info->relocatable
      && !info->emitrelocations)
      && !info->emitrelocations)
    {
    {
      Elf_Internal_Rela *wrel;
      Elf_Internal_Rela *wrel;
      Elf_Internal_Shdr *rel_hdr;
      Elf_Internal_Shdr *rel_hdr;
 
 
      wrel = rel = relocs;
      wrel = rel = relocs;
      relend = relocs + input_section->reloc_count;
      relend = relocs + input_section->reloc_count;
      for (; rel < relend; rel++)
      for (; rel < relend; rel++)
        {
        {
          int r_type;
          int r_type;
 
 
          r_type = ELF32_R_TYPE (rel->r_info);
          r_type = ELF32_R_TYPE (rel->r_info);
          if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
          if (r_type == R_SPU_PPU32 || r_type == R_SPU_PPU64)
            *wrel++ = *rel;
            *wrel++ = *rel;
        }
        }
      input_section->reloc_count = wrel - relocs;
      input_section->reloc_count = wrel - relocs;
      /* Backflips for _bfd_elf_link_output_relocs.  */
      /* Backflips for _bfd_elf_link_output_relocs.  */
      rel_hdr = &elf_section_data (input_section)->rel_hdr;
      rel_hdr = &elf_section_data (input_section)->rel_hdr;
      rel_hdr->sh_size = input_section->reloc_count * rel_hdr->sh_entsize;
      rel_hdr->sh_size = input_section->reloc_count * rel_hdr->sh_entsize;
      ret = 2;
      ret = 2;
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
/* Adjust _SPUEAR_ syms to point at their overlay stubs.  */
/* Adjust _SPUEAR_ syms to point at their overlay stubs.  */
 
 
static bfd_boolean
static bfd_boolean
spu_elf_output_symbol_hook (struct bfd_link_info *info,
spu_elf_output_symbol_hook (struct bfd_link_info *info,
                            const char *sym_name ATTRIBUTE_UNUSED,
                            const char *sym_name ATTRIBUTE_UNUSED,
                            Elf_Internal_Sym *sym,
                            Elf_Internal_Sym *sym,
                            asection *sym_sec ATTRIBUTE_UNUSED,
                            asection *sym_sec ATTRIBUTE_UNUSED,
                            struct elf_link_hash_entry *h)
                            struct elf_link_hash_entry *h)
{
{
  struct spu_link_hash_table *htab = spu_hash_table (info);
  struct spu_link_hash_table *htab = spu_hash_table (info);
 
 
  if (!info->relocatable
  if (!info->relocatable
      && htab->stub_sec != NULL
      && htab->stub_sec != NULL
      && h != NULL
      && h != NULL
      && (h->root.type == bfd_link_hash_defined
      && (h->root.type == bfd_link_hash_defined
          || h->root.type == bfd_link_hash_defweak)
          || h->root.type == bfd_link_hash_defweak)
      && h->def_regular
      && h->def_regular
      && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0)
      && strncmp (h->root.root.string, "_SPUEAR_", 8) == 0)
    {
    {
      struct got_entry *g;
      struct got_entry *g;
 
 
      for (g = h->got.glist; g != NULL; g = g->next)
      for (g = h->got.glist; g != NULL; g = g->next)
        if (g->addend == 0 && g->ovl == 0)
        if (g->addend == 0 && g->ovl == 0)
          {
          {
            sym->st_shndx = (_bfd_elf_section_from_bfd_section
            sym->st_shndx = (_bfd_elf_section_from_bfd_section
                             (htab->stub_sec[0]->output_section->owner,
                             (htab->stub_sec[0]->output_section->owner,
                              htab->stub_sec[0]->output_section));
                              htab->stub_sec[0]->output_section));
            sym->st_value = g->stub_addr;
            sym->st_value = g->stub_addr;
            break;
            break;
          }
          }
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static int spu_plugin = 0;
static int spu_plugin = 0;
 
 
void
void
spu_elf_plugin (int val)
spu_elf_plugin (int val)
{
{
  spu_plugin = val;
  spu_plugin = val;
}
}
 
 
/* Set ELF header e_type for plugins.  */
/* Set ELF header e_type for plugins.  */
 
 
static void
static void
spu_elf_post_process_headers (bfd *abfd,
spu_elf_post_process_headers (bfd *abfd,
                              struct bfd_link_info *info ATTRIBUTE_UNUSED)
                              struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
{
  if (spu_plugin)
  if (spu_plugin)
    {
    {
      Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
      Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
 
 
      i_ehdrp->e_type = ET_DYN;
      i_ehdrp->e_type = ET_DYN;
    }
    }
}
}
 
 
/* We may add an extra PT_LOAD segment for .toe.  We also need extra
/* We may add an extra PT_LOAD segment for .toe.  We also need extra
   segments for overlays.  */
   segments for overlays.  */
 
 
static int
static int
spu_elf_additional_program_headers (bfd *abfd, struct bfd_link_info *info)
spu_elf_additional_program_headers (bfd *abfd, struct bfd_link_info *info)
{
{
  struct spu_link_hash_table *htab = spu_hash_table (info);
  struct spu_link_hash_table *htab = spu_hash_table (info);
  int extra = htab->num_overlays;
  int extra = htab->num_overlays;
  asection *sec;
  asection *sec;
 
 
  if (extra)
  if (extra)
    ++extra;
    ++extra;
 
 
  sec = bfd_get_section_by_name (abfd, ".toe");
  sec = bfd_get_section_by_name (abfd, ".toe");
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
  if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
    ++extra;
    ++extra;
 
 
  return extra;
  return extra;
}
}
 
 
/* Remove .toe section from other PT_LOAD segments and put it in
/* Remove .toe section from other PT_LOAD segments and put it in
   a segment of its own.  Put overlays in separate segments too.  */
   a segment of its own.  Put overlays in separate segments too.  */
 
 
static bfd_boolean
static bfd_boolean
spu_elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
spu_elf_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
{
{
  asection *toe, *s;
  asection *toe, *s;
  struct elf_segment_map *m;
  struct elf_segment_map *m;
  unsigned int i;
  unsigned int i;
 
 
  if (info == NULL)
  if (info == NULL)
    return TRUE;
    return TRUE;
 
 
  toe = bfd_get_section_by_name (abfd, ".toe");
  toe = bfd_get_section_by_name (abfd, ".toe");
  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
    if (m->p_type == PT_LOAD && m->count > 1)
    if (m->p_type == PT_LOAD && m->count > 1)
      for (i = 0; i < m->count; i++)
      for (i = 0; i < m->count; i++)
        if ((s = m->sections[i]) == toe
        if ((s = m->sections[i]) == toe
            || spu_elf_section_data (s)->u.o.ovl_index != 0)
            || spu_elf_section_data (s)->u.o.ovl_index != 0)
          {
          {
            struct elf_segment_map *m2;
            struct elf_segment_map *m2;
            bfd_vma amt;
            bfd_vma amt;
 
 
            if (i + 1 < m->count)
            if (i + 1 < m->count)
              {
              {
                amt = sizeof (struct elf_segment_map);
                amt = sizeof (struct elf_segment_map);
                amt += (m->count - (i + 2)) * sizeof (m->sections[0]);
                amt += (m->count - (i + 2)) * sizeof (m->sections[0]);
                m2 = bfd_zalloc (abfd, amt);
                m2 = bfd_zalloc (abfd, amt);
                if (m2 == NULL)
                if (m2 == NULL)
                  return FALSE;
                  return FALSE;
                m2->count = m->count - (i + 1);
                m2->count = m->count - (i + 1);
                memcpy (m2->sections, m->sections + i + 1,
                memcpy (m2->sections, m->sections + i + 1,
                        m2->count * sizeof (m->sections[0]));
                        m2->count * sizeof (m->sections[0]));
                m2->p_type = PT_LOAD;
                m2->p_type = PT_LOAD;
                m2->next = m->next;
                m2->next = m->next;
                m->next = m2;
                m->next = m2;
              }
              }
            m->count = 1;
            m->count = 1;
            if (i != 0)
            if (i != 0)
              {
              {
                m->count = i;
                m->count = i;
                amt = sizeof (struct elf_segment_map);
                amt = sizeof (struct elf_segment_map);
                m2 = bfd_zalloc (abfd, amt);
                m2 = bfd_zalloc (abfd, amt);
                if (m2 == NULL)
                if (m2 == NULL)
                  return FALSE;
                  return FALSE;
                m2->p_type = PT_LOAD;
                m2->p_type = PT_LOAD;
                m2->count = 1;
                m2->count = 1;
                m2->sections[0] = s;
                m2->sections[0] = s;
                m2->next = m->next;
                m2->next = m->next;
                m->next = m2;
                m->next = m2;
              }
              }
            break;
            break;
          }
          }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Tweak the section type of .note.spu_name.  */
/* Tweak the section type of .note.spu_name.  */
 
 
static bfd_boolean
static bfd_boolean
spu_elf_fake_sections (bfd *obfd ATTRIBUTE_UNUSED,
spu_elf_fake_sections (bfd *obfd ATTRIBUTE_UNUSED,
                       Elf_Internal_Shdr *hdr,
                       Elf_Internal_Shdr *hdr,
                       asection *sec)
                       asection *sec)
{
{
  if (strcmp (sec->name, SPU_PTNOTE_SPUNAME) == 0)
  if (strcmp (sec->name, SPU_PTNOTE_SPUNAME) == 0)
    hdr->sh_type = SHT_NOTE;
    hdr->sh_type = SHT_NOTE;
  return TRUE;
  return TRUE;
}
}
 
 
/* Tweak phdrs before writing them out.  */
/* Tweak phdrs before writing them out.  */
 
 
static int
static int
spu_elf_modify_program_headers (bfd *abfd, struct bfd_link_info *info)
spu_elf_modify_program_headers (bfd *abfd, struct bfd_link_info *info)
{
{
  const struct elf_backend_data *bed;
  const struct elf_backend_data *bed;
  struct elf_obj_tdata *tdata;
  struct elf_obj_tdata *tdata;
  Elf_Internal_Phdr *phdr, *last;
  Elf_Internal_Phdr *phdr, *last;
  struct spu_link_hash_table *htab;
  struct spu_link_hash_table *htab;
  unsigned int count;
  unsigned int count;
  unsigned int i;
  unsigned int i;
 
 
  if (info == NULL)
  if (info == NULL)
    return TRUE;
    return TRUE;
 
 
  bed = get_elf_backend_data (abfd);
  bed = get_elf_backend_data (abfd);
  tdata = elf_tdata (abfd);
  tdata = elf_tdata (abfd);
  phdr = tdata->phdr;
  phdr = tdata->phdr;
  count = tdata->program_header_size / bed->s->sizeof_phdr;
  count = tdata->program_header_size / bed->s->sizeof_phdr;
  htab = spu_hash_table (info);
  htab = spu_hash_table (info);
  if (htab->num_overlays != 0)
  if (htab->num_overlays != 0)
    {
    {
      struct elf_segment_map *m;
      struct elf_segment_map *m;
      unsigned int o;
      unsigned int o;
 
 
      for (i = 0, m = elf_tdata (abfd)->segment_map; m; ++i, m = m->next)
      for (i = 0, m = elf_tdata (abfd)->segment_map; m; ++i, m = m->next)
        if (m->count != 0
        if (m->count != 0
            && (o = spu_elf_section_data (m->sections[0])->u.o.ovl_index) != 0)
            && (o = spu_elf_section_data (m->sections[0])->u.o.ovl_index) != 0)
          {
          {
            /* Mark this as an overlay header.  */
            /* Mark this as an overlay header.  */
            phdr[i].p_flags |= PF_OVERLAY;
            phdr[i].p_flags |= PF_OVERLAY;
 
 
            if (htab->ovtab != NULL && htab->ovtab->size != 0)
            if (htab->ovtab != NULL && htab->ovtab->size != 0)
              {
              {
                bfd_byte *p = htab->ovtab->contents;
                bfd_byte *p = htab->ovtab->contents;
                unsigned int off = o * 16 + 8;
                unsigned int off = o * 16 + 8;
 
 
                /* Write file_off into _ovly_table.  */
                /* Write file_off into _ovly_table.  */
                bfd_put_32 (htab->ovtab->owner, phdr[i].p_offset, p + off);
                bfd_put_32 (htab->ovtab->owner, phdr[i].p_offset, p + off);
              }
              }
          }
          }
    }
    }
 
 
  /* Round up p_filesz and p_memsz of PT_LOAD segments to multiples
  /* Round up p_filesz and p_memsz of PT_LOAD segments to multiples
     of 16.  This should always be possible when using the standard
     of 16.  This should always be possible when using the standard
     linker scripts, but don't create overlapping segments if
     linker scripts, but don't create overlapping segments if
     someone is playing games with linker scripts.  */
     someone is playing games with linker scripts.  */
  last = NULL;
  last = NULL;
  for (i = count; i-- != 0; )
  for (i = count; i-- != 0; )
    if (phdr[i].p_type == PT_LOAD)
    if (phdr[i].p_type == PT_LOAD)
      {
      {
        unsigned adjust;
        unsigned adjust;
 
 
        adjust = -phdr[i].p_filesz & 15;
        adjust = -phdr[i].p_filesz & 15;
        if (adjust != 0
        if (adjust != 0
            && last != NULL
            && last != NULL
            && phdr[i].p_offset + phdr[i].p_filesz > last->p_offset - adjust)
            && phdr[i].p_offset + phdr[i].p_filesz > last->p_offset - adjust)
          break;
          break;
 
 
        adjust = -phdr[i].p_memsz & 15;
        adjust = -phdr[i].p_memsz & 15;
        if (adjust != 0
        if (adjust != 0
            && last != NULL
            && last != NULL
            && phdr[i].p_filesz != 0
            && phdr[i].p_filesz != 0
            && phdr[i].p_vaddr + phdr[i].p_memsz > last->p_vaddr - adjust
            && phdr[i].p_vaddr + phdr[i].p_memsz > last->p_vaddr - adjust
            && phdr[i].p_vaddr + phdr[i].p_memsz <= last->p_vaddr)
            && phdr[i].p_vaddr + phdr[i].p_memsz <= last->p_vaddr)
          break;
          break;
 
 
        if (phdr[i].p_filesz != 0)
        if (phdr[i].p_filesz != 0)
          last = &phdr[i];
          last = &phdr[i];
      }
      }
 
 
  if (i == (unsigned int) -1)
  if (i == (unsigned int) -1)
    for (i = count; i-- != 0; )
    for (i = count; i-- != 0; )
      if (phdr[i].p_type == PT_LOAD)
      if (phdr[i].p_type == PT_LOAD)
        {
        {
        unsigned adjust;
        unsigned adjust;
 
 
        adjust = -phdr[i].p_filesz & 15;
        adjust = -phdr[i].p_filesz & 15;
        phdr[i].p_filesz += adjust;
        phdr[i].p_filesz += adjust;
 
 
        adjust = -phdr[i].p_memsz & 15;
        adjust = -phdr[i].p_memsz & 15;
        phdr[i].p_memsz += adjust;
        phdr[i].p_memsz += adjust;
      }
      }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
#define TARGET_BIG_SYM          bfd_elf32_spu_vec
#define TARGET_BIG_SYM          bfd_elf32_spu_vec
#define TARGET_BIG_NAME         "elf32-spu"
#define TARGET_BIG_NAME         "elf32-spu"
#define ELF_ARCH                bfd_arch_spu
#define ELF_ARCH                bfd_arch_spu
#define ELF_MACHINE_CODE        EM_SPU
#define ELF_MACHINE_CODE        EM_SPU
/* This matches the alignment need for DMA.  */
/* This matches the alignment need for DMA.  */
#define ELF_MAXPAGESIZE         0x80
#define ELF_MAXPAGESIZE         0x80
#define elf_backend_rela_normal         1
#define elf_backend_rela_normal         1
#define elf_backend_can_gc_sections     1
#define elf_backend_can_gc_sections     1
 
 
#define bfd_elf32_bfd_reloc_type_lookup         spu_elf_reloc_type_lookup
#define bfd_elf32_bfd_reloc_type_lookup         spu_elf_reloc_type_lookup
#define bfd_elf32_bfd_reloc_name_lookup spu_elf_reloc_name_lookup
#define bfd_elf32_bfd_reloc_name_lookup spu_elf_reloc_name_lookup
#define elf_info_to_howto                       spu_elf_info_to_howto
#define elf_info_to_howto                       spu_elf_info_to_howto
#define elf_backend_count_relocs                spu_elf_count_relocs
#define elf_backend_count_relocs                spu_elf_count_relocs
#define elf_backend_relocate_section            spu_elf_relocate_section
#define elf_backend_relocate_section            spu_elf_relocate_section
#define elf_backend_symbol_processing           spu_elf_backend_symbol_processing
#define elf_backend_symbol_processing           spu_elf_backend_symbol_processing
#define elf_backend_link_output_symbol_hook     spu_elf_output_symbol_hook
#define elf_backend_link_output_symbol_hook     spu_elf_output_symbol_hook
#define bfd_elf32_new_section_hook              spu_elf_new_section_hook
#define bfd_elf32_new_section_hook              spu_elf_new_section_hook
#define bfd_elf32_bfd_link_hash_table_create    spu_elf_link_hash_table_create
#define bfd_elf32_bfd_link_hash_table_create    spu_elf_link_hash_table_create
 
 
#define elf_backend_additional_program_headers  spu_elf_additional_program_headers
#define elf_backend_additional_program_headers  spu_elf_additional_program_headers
#define elf_backend_modify_segment_map          spu_elf_modify_segment_map
#define elf_backend_modify_segment_map          spu_elf_modify_segment_map
#define elf_backend_modify_program_headers      spu_elf_modify_program_headers
#define elf_backend_modify_program_headers      spu_elf_modify_program_headers
#define elf_backend_post_process_headers        spu_elf_post_process_headers
#define elf_backend_post_process_headers        spu_elf_post_process_headers
#define elf_backend_fake_sections               spu_elf_fake_sections
#define elf_backend_fake_sections               spu_elf_fake_sections
#define elf_backend_special_sections            spu_elf_special_sections
#define elf_backend_special_sections            spu_elf_special_sections
#define bfd_elf32_bfd_final_link                spu_elf_final_link
#define bfd_elf32_bfd_final_link                spu_elf_final_link
 
 
#include "elf32-target.h"
#include "elf32-target.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.