OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [binutils-2.18.50/] [bfd/] [som.c] - Diff between revs 156 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 156 Rev 816
/* bfd back-end for HP PA-RISC SOM objects.
/* bfd back-end for HP PA-RISC SOM objects.
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   Contributed by the Center for Software Science at the
   Contributed by the Center for Software Science at the
   University of Utah.
   University of Utah.
 
 
   This file is part of BFD, the Binary File Descriptor library.
   This file is part of BFD, the Binary File Descriptor library.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
   02110-1301, USA.  */
   02110-1301, USA.  */
 
 
#include "sysdep.h"
#include "sysdep.h"
#include "bfd.h"
#include "bfd.h"
 
 
#if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
#if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
 
 
#include "libbfd.h"
#include "libbfd.h"
#include "som.h"
#include "som.h"
#include "safe-ctype.h"
#include "safe-ctype.h"
 
 
#include <sys/param.h>
#include <sys/param.h>
#include <signal.h>
#include <signal.h>
#include <machine/reg.h>
#include <machine/reg.h>
#include <sys/file.h>
#include <sys/file.h>
 
 
/* This is the code recommended in the autoconf documentation, almost
/* This is the code recommended in the autoconf documentation, almost
   verbatim.  */
   verbatim.  */
 
 
#ifndef __GNUC__
#ifndef __GNUC__
# if HAVE_ALLOCA_H
# if HAVE_ALLOCA_H
#  include <alloca.h>
#  include <alloca.h>
# else
# else
#  ifdef _AIX
#  ifdef _AIX
/* Indented so that pre-ansi C compilers will ignore it, rather than
/* Indented so that pre-ansi C compilers will ignore it, rather than
   choke on it.  Some versions of AIX require this to be the first
   choke on it.  Some versions of AIX require this to be the first
   thing in the file.  */
   thing in the file.  */
 #pragma alloca
 #pragma alloca
#  else
#  else
#   ifndef alloca /* predefined by HP cc +Olibcalls */
#   ifndef alloca /* predefined by HP cc +Olibcalls */
#    if !defined (__STDC__) && !defined (__hpux)
#    if !defined (__STDC__) && !defined (__hpux)
extern char *alloca ();
extern char *alloca ();
#    else
#    else
extern void *alloca ();
extern void *alloca ();
#    endif /* __STDC__, __hpux */
#    endif /* __STDC__, __hpux */
#   endif /* alloca */
#   endif /* alloca */
#  endif /* _AIX */
#  endif /* _AIX */
# endif /* HAVE_ALLOCA_H */
# endif /* HAVE_ALLOCA_H */
#else
#else
extern void *alloca (size_t);
extern void *alloca (size_t);
#endif /* __GNUC__ */
#endif /* __GNUC__ */
 
 
static bfd_reloc_status_type hppa_som_reloc
static bfd_reloc_status_type hppa_som_reloc
  (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
  (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
static bfd_boolean som_mkobject (bfd *);
static bfd_boolean som_mkobject (bfd *);
static bfd_boolean som_is_space (asection *);
static bfd_boolean som_is_space (asection *);
static bfd_boolean som_is_subspace (asection *);
static bfd_boolean som_is_subspace (asection *);
static int compare_subspaces (const void *, const void *);
static int compare_subspaces (const void *, const void *);
static unsigned long som_compute_checksum (bfd *);
static unsigned long som_compute_checksum (bfd *);
static bfd_boolean som_build_and_write_symbol_table (bfd *);
static bfd_boolean som_build_and_write_symbol_table (bfd *);
static unsigned int som_slurp_symbol_table (bfd *);
static unsigned int som_slurp_symbol_table (bfd *);
 
 
/* Magic not defined in standard HP-UX header files until 8.0.  */
/* Magic not defined in standard HP-UX header files until 8.0.  */
 
 
#ifndef CPU_PA_RISC1_0
#ifndef CPU_PA_RISC1_0
#define CPU_PA_RISC1_0 0x20B
#define CPU_PA_RISC1_0 0x20B
#endif /* CPU_PA_RISC1_0 */
#endif /* CPU_PA_RISC1_0 */
 
 
#ifndef CPU_PA_RISC1_1
#ifndef CPU_PA_RISC1_1
#define CPU_PA_RISC1_1 0x210
#define CPU_PA_RISC1_1 0x210
#endif /* CPU_PA_RISC1_1 */
#endif /* CPU_PA_RISC1_1 */
 
 
#ifndef CPU_PA_RISC2_0
#ifndef CPU_PA_RISC2_0
#define CPU_PA_RISC2_0 0x214
#define CPU_PA_RISC2_0 0x214
#endif /* CPU_PA_RISC2_0 */
#endif /* CPU_PA_RISC2_0 */
 
 
#ifndef _PA_RISC1_0_ID
#ifndef _PA_RISC1_0_ID
#define _PA_RISC1_0_ID CPU_PA_RISC1_0
#define _PA_RISC1_0_ID CPU_PA_RISC1_0
#endif /* _PA_RISC1_0_ID */
#endif /* _PA_RISC1_0_ID */
 
 
#ifndef _PA_RISC1_1_ID
#ifndef _PA_RISC1_1_ID
#define _PA_RISC1_1_ID CPU_PA_RISC1_1
#define _PA_RISC1_1_ID CPU_PA_RISC1_1
#endif /* _PA_RISC1_1_ID */
#endif /* _PA_RISC1_1_ID */
 
 
#ifndef _PA_RISC2_0_ID
#ifndef _PA_RISC2_0_ID
#define _PA_RISC2_0_ID CPU_PA_RISC2_0
#define _PA_RISC2_0_ID CPU_PA_RISC2_0
#endif /* _PA_RISC2_0_ID */
#endif /* _PA_RISC2_0_ID */
 
 
#ifndef _PA_RISC_MAXID
#ifndef _PA_RISC_MAXID
#define _PA_RISC_MAXID  0x2FF
#define _PA_RISC_MAXID  0x2FF
#endif /* _PA_RISC_MAXID */
#endif /* _PA_RISC_MAXID */
 
 
#ifndef _PA_RISC_ID
#ifndef _PA_RISC_ID
#define _PA_RISC_ID(__m_num)            \
#define _PA_RISC_ID(__m_num)            \
    (((__m_num) == _PA_RISC1_0_ID) ||   \
    (((__m_num) == _PA_RISC1_0_ID) ||   \
     ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
     ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
#endif /* _PA_RISC_ID */
#endif /* _PA_RISC_ID */
 
 
/* HIUX in it's infinite stupidity changed the names for several "well
/* HIUX in it's infinite stupidity changed the names for several "well
   known" constants.  Work around such braindamage.  Try the HPUX version
   known" constants.  Work around such braindamage.  Try the HPUX version
   first, then the HIUX version, and finally provide a default.  */
   first, then the HIUX version, and finally provide a default.  */
#ifdef HPUX_AUX_ID
#ifdef HPUX_AUX_ID
#define EXEC_AUX_ID HPUX_AUX_ID
#define EXEC_AUX_ID HPUX_AUX_ID
#endif
#endif
 
 
#if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
#if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
#define EXEC_AUX_ID HIUX_AUX_ID
#define EXEC_AUX_ID HIUX_AUX_ID
#endif
#endif
 
 
#ifndef EXEC_AUX_ID
#ifndef EXEC_AUX_ID
#define EXEC_AUX_ID 0
#define EXEC_AUX_ID 0
#endif
#endif
 
 
/* Size (in chars) of the temporary buffers used during fixup and string
/* Size (in chars) of the temporary buffers used during fixup and string
   table writes.   */
   table writes.   */
 
 
#define SOM_TMP_BUFSIZE 8192
#define SOM_TMP_BUFSIZE 8192
 
 
/* Size of the hash table in archives.  */
/* Size of the hash table in archives.  */
#define SOM_LST_HASH_SIZE 31
#define SOM_LST_HASH_SIZE 31
 
 
/* Max number of SOMs to be found in an archive.  */
/* Max number of SOMs to be found in an archive.  */
#define SOM_LST_MODULE_LIMIT 1024
#define SOM_LST_MODULE_LIMIT 1024
 
 
/* Generic alignment macro.  */
/* Generic alignment macro.  */
#define SOM_ALIGN(val, alignment) \
#define SOM_ALIGN(val, alignment) \
  (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
  (((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
 
 
/* SOM allows any one of the four previous relocations to be reused
/* SOM allows any one of the four previous relocations to be reused
   with a "R_PREV_FIXUP" relocation entry.  Since R_PREV_FIXUP
   with a "R_PREV_FIXUP" relocation entry.  Since R_PREV_FIXUP
   relocations are always a single byte, using a R_PREV_FIXUP instead
   relocations are always a single byte, using a R_PREV_FIXUP instead
   of some multi-byte relocation makes object files smaller.
   of some multi-byte relocation makes object files smaller.
 
 
   Note one side effect of using a R_PREV_FIXUP is the relocation that
   Note one side effect of using a R_PREV_FIXUP is the relocation that
   is being repeated moves to the front of the queue.  */
   is being repeated moves to the front of the queue.  */
struct reloc_queue
struct reloc_queue
{
{
  unsigned char *reloc;
  unsigned char *reloc;
  unsigned int size;
  unsigned int size;
} reloc_queue[4];
} reloc_queue[4];
 
 
/* This fully describes the symbol types which may be attached to
/* This fully describes the symbol types which may be attached to
   an EXPORT or IMPORT directive.  Only SOM uses this formation
   an EXPORT or IMPORT directive.  Only SOM uses this formation
   (ELF has no need for it).  */
   (ELF has no need for it).  */
typedef enum
typedef enum
{
{
  SYMBOL_TYPE_UNKNOWN,
  SYMBOL_TYPE_UNKNOWN,
  SYMBOL_TYPE_ABSOLUTE,
  SYMBOL_TYPE_ABSOLUTE,
  SYMBOL_TYPE_CODE,
  SYMBOL_TYPE_CODE,
  SYMBOL_TYPE_DATA,
  SYMBOL_TYPE_DATA,
  SYMBOL_TYPE_ENTRY,
  SYMBOL_TYPE_ENTRY,
  SYMBOL_TYPE_MILLICODE,
  SYMBOL_TYPE_MILLICODE,
  SYMBOL_TYPE_PLABEL,
  SYMBOL_TYPE_PLABEL,
  SYMBOL_TYPE_PRI_PROG,
  SYMBOL_TYPE_PRI_PROG,
  SYMBOL_TYPE_SEC_PROG,
  SYMBOL_TYPE_SEC_PROG,
} pa_symbol_type;
} pa_symbol_type;
 
 
struct section_to_type
struct section_to_type
{
{
  char *section;
  char *section;
  char type;
  char type;
};
};
 
 
/* Assorted symbol information that needs to be derived from the BFD symbol
/* Assorted symbol information that needs to be derived from the BFD symbol
   and/or the BFD backend private symbol data.  */
   and/or the BFD backend private symbol data.  */
struct som_misc_symbol_info
struct som_misc_symbol_info
{
{
  unsigned int symbol_type;
  unsigned int symbol_type;
  unsigned int symbol_scope;
  unsigned int symbol_scope;
  unsigned int arg_reloc;
  unsigned int arg_reloc;
  unsigned int symbol_info;
  unsigned int symbol_info;
  unsigned int symbol_value;
  unsigned int symbol_value;
  unsigned int priv_level;
  unsigned int priv_level;
  unsigned int secondary_def;
  unsigned int secondary_def;
  unsigned int is_comdat;
  unsigned int is_comdat;
  unsigned int is_common;
  unsigned int is_common;
  unsigned int dup_common;
  unsigned int dup_common;
};
};
 
 
/* Map SOM section names to POSIX/BSD single-character symbol types.
/* Map SOM section names to POSIX/BSD single-character symbol types.
 
 
   This table includes all the standard subspaces as defined in the
   This table includes all the standard subspaces as defined in the
   current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
   current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
   some reason was left out, and sections specific to embedded stabs.  */
   some reason was left out, and sections specific to embedded stabs.  */
 
 
static const struct section_to_type stt[] =
static const struct section_to_type stt[] =
{
{
  {"$TEXT$", 't'},
  {"$TEXT$", 't'},
  {"$SHLIB_INFO$", 't'},
  {"$SHLIB_INFO$", 't'},
  {"$MILLICODE$", 't'},
  {"$MILLICODE$", 't'},
  {"$LIT$", 't'},
  {"$LIT$", 't'},
  {"$CODE$", 't'},
  {"$CODE$", 't'},
  {"$UNWIND_START$", 't'},
  {"$UNWIND_START$", 't'},
  {"$UNWIND$", 't'},
  {"$UNWIND$", 't'},
  {"$PRIVATE$", 'd'},
  {"$PRIVATE$", 'd'},
  {"$PLT$", 'd'},
  {"$PLT$", 'd'},
  {"$SHLIB_DATA$", 'd'},
  {"$SHLIB_DATA$", 'd'},
  {"$DATA$", 'd'},
  {"$DATA$", 'd'},
  {"$SHORTDATA$", 'g'},
  {"$SHORTDATA$", 'g'},
  {"$DLT$", 'd'},
  {"$DLT$", 'd'},
  {"$GLOBAL$", 'g'},
  {"$GLOBAL$", 'g'},
  {"$SHORTBSS$", 's'},
  {"$SHORTBSS$", 's'},
  {"$BSS$", 'b'},
  {"$BSS$", 'b'},
  {"$GDB_STRINGS$", 'N'},
  {"$GDB_STRINGS$", 'N'},
  {"$GDB_SYMBOLS$", 'N'},
  {"$GDB_SYMBOLS$", 'N'},
  {0, 0}
  {0, 0}
};
};
 
 
/* About the relocation formatting table...
/* About the relocation formatting table...
 
 
   There are 256 entries in the table, one for each possible
   There are 256 entries in the table, one for each possible
   relocation opcode available in SOM.  We index the table by
   relocation opcode available in SOM.  We index the table by
   the relocation opcode.  The names and operations are those
   the relocation opcode.  The names and operations are those
   defined by a.out_800 (4).
   defined by a.out_800 (4).
 
 
   Right now this table is only used to count and perform minimal
   Right now this table is only used to count and perform minimal
   processing on relocation streams so that they can be internalized
   processing on relocation streams so that they can be internalized
   into BFD and symbolically printed by utilities.  To make actual use
   into BFD and symbolically printed by utilities.  To make actual use
   of them would be much more difficult, BFD's concept of relocations
   of them would be much more difficult, BFD's concept of relocations
   is far too simple to handle SOM relocations.  The basic assumption
   is far too simple to handle SOM relocations.  The basic assumption
   that a relocation can be completely processed independent of other
   that a relocation can be completely processed independent of other
   relocations before an object file is written is invalid for SOM.
   relocations before an object file is written is invalid for SOM.
 
 
   The SOM relocations are meant to be processed as a stream, they
   The SOM relocations are meant to be processed as a stream, they
   specify copying of data from the input section to the output section
   specify copying of data from the input section to the output section
   while possibly modifying the data in some manner.  They also can
   while possibly modifying the data in some manner.  They also can
   specify that a variable number of zeros or uninitialized data be
   specify that a variable number of zeros or uninitialized data be
   inserted on in the output segment at the current offset.  Some
   inserted on in the output segment at the current offset.  Some
   relocations specify that some previous relocation be re-applied at
   relocations specify that some previous relocation be re-applied at
   the current location in the input/output sections.  And finally a number
   the current location in the input/output sections.  And finally a number
   of relocations have effects on other sections (R_ENTRY, R_EXIT,
   of relocations have effects on other sections (R_ENTRY, R_EXIT,
   R_UNWIND_AUX and a variety of others).  There isn't even enough room
   R_UNWIND_AUX and a variety of others).  There isn't even enough room
   in the BFD relocation data structure to store enough information to
   in the BFD relocation data structure to store enough information to
   perform all the relocations.
   perform all the relocations.
 
 
   Each entry in the table has three fields.
   Each entry in the table has three fields.
 
 
   The first entry is an index into this "class" of relocations.  This
   The first entry is an index into this "class" of relocations.  This
   index can then be used as a variable within the relocation itself.
   index can then be used as a variable within the relocation itself.
 
 
   The second field is a format string which actually controls processing
   The second field is a format string which actually controls processing
   of the relocation.  It uses a simple postfix machine to do calculations
   of the relocation.  It uses a simple postfix machine to do calculations
   based on variables/constants found in the string and the relocation
   based on variables/constants found in the string and the relocation
   stream.
   stream.
 
 
   The third field specifys whether or not this relocation may use
   The third field specifys whether or not this relocation may use
   a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
   a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
   stored in the instruction.
   stored in the instruction.
 
 
   Variables:
   Variables:
 
 
   L = input space byte count
   L = input space byte count
   D = index into class of relocations
   D = index into class of relocations
   M = output space byte count
   M = output space byte count
   N = statement number (unused?)
   N = statement number (unused?)
   O = stack operation
   O = stack operation
   R = parameter relocation bits
   R = parameter relocation bits
   S = symbol index
   S = symbol index
   T = first 32 bits of stack unwind information
   T = first 32 bits of stack unwind information
   U = second 32 bits of stack unwind information
   U = second 32 bits of stack unwind information
   V = a literal constant (usually used in the next relocation)
   V = a literal constant (usually used in the next relocation)
   P = a previous relocation
   P = a previous relocation
 
 
   Lower case letters (starting with 'b') refer to following
   Lower case letters (starting with 'b') refer to following
   bytes in the relocation stream.  'b' is the next 1 byte,
   bytes in the relocation stream.  'b' is the next 1 byte,
   c is the next 2 bytes, d is the next 3 bytes, etc...
   c is the next 2 bytes, d is the next 3 bytes, etc...
   This is the variable part of the relocation entries that
   This is the variable part of the relocation entries that
   makes our life a living hell.
   makes our life a living hell.
 
 
   numerical constants are also used in the format string.  Note
   numerical constants are also used in the format string.  Note
   the constants are represented in decimal.
   the constants are represented in decimal.
 
 
   '+', "*" and "=" represents the obvious postfix operators.
   '+', "*" and "=" represents the obvious postfix operators.
   '<' represents a left shift.
   '<' represents a left shift.
 
 
   Stack Operations:
   Stack Operations:
 
 
   Parameter Relocation Bits:
   Parameter Relocation Bits:
 
 
   Unwind Entries:
   Unwind Entries:
 
 
   Previous Relocations:  The index field represents which in the queue
   Previous Relocations:  The index field represents which in the queue
   of 4 previous fixups should be re-applied.
   of 4 previous fixups should be re-applied.
 
 
   Literal Constants:  These are generally used to represent addend
   Literal Constants:  These are generally used to represent addend
   parts of relocations when these constants are not stored in the
   parts of relocations when these constants are not stored in the
   fields of the instructions themselves.  For example the instruction
   fields of the instructions themselves.  For example the instruction
   addil foo-$global$-0x1234 would use an override for "0x1234" rather
   addil foo-$global$-0x1234 would use an override for "0x1234" rather
   than storing it into the addil itself.  */
   than storing it into the addil itself.  */
 
 
struct fixup_format
struct fixup_format
{
{
  int D;
  int D;
  const char *format;
  const char *format;
};
};
 
 
static const struct fixup_format som_fixup_formats[256] =
static const struct fixup_format som_fixup_formats[256] =
{
{
  /* R_NO_RELOCATION.  */
  /* R_NO_RELOCATION.  */
  {  0, "LD1+4*=" },             /* 0x00 */
  {  0, "LD1+4*=" },             /* 0x00 */
  {  1, "LD1+4*=" },            /* 0x01 */
  {  1, "LD1+4*=" },            /* 0x01 */
  {  2, "LD1+4*=" },            /* 0x02 */
  {  2, "LD1+4*=" },            /* 0x02 */
  {  3, "LD1+4*=" },            /* 0x03 */
  {  3, "LD1+4*=" },            /* 0x03 */
  {  4, "LD1+4*=" },            /* 0x04 */
  {  4, "LD1+4*=" },            /* 0x04 */
  {  5, "LD1+4*=" },            /* 0x05 */
  {  5, "LD1+4*=" },            /* 0x05 */
  {  6, "LD1+4*=" },            /* 0x06 */
  {  6, "LD1+4*=" },            /* 0x06 */
  {  7, "LD1+4*=" },            /* 0x07 */
  {  7, "LD1+4*=" },            /* 0x07 */
  {  8, "LD1+4*=" },            /* 0x08 */
  {  8, "LD1+4*=" },            /* 0x08 */
  {  9, "LD1+4*=" },            /* 0x09 */
  {  9, "LD1+4*=" },            /* 0x09 */
  { 10, "LD1+4*=" },            /* 0x0a */
  { 10, "LD1+4*=" },            /* 0x0a */
  { 11, "LD1+4*=" },            /* 0x0b */
  { 11, "LD1+4*=" },            /* 0x0b */
  { 12, "LD1+4*=" },            /* 0x0c */
  { 12, "LD1+4*=" },            /* 0x0c */
  { 13, "LD1+4*=" },            /* 0x0d */
  { 13, "LD1+4*=" },            /* 0x0d */
  { 14, "LD1+4*=" },            /* 0x0e */
  { 14, "LD1+4*=" },            /* 0x0e */
  { 15, "LD1+4*=" },            /* 0x0f */
  { 15, "LD1+4*=" },            /* 0x0f */
  { 16, "LD1+4*=" },            /* 0x10 */
  { 16, "LD1+4*=" },            /* 0x10 */
  { 17, "LD1+4*=" },            /* 0x11 */
  { 17, "LD1+4*=" },            /* 0x11 */
  { 18, "LD1+4*=" },            /* 0x12 */
  { 18, "LD1+4*=" },            /* 0x12 */
  { 19, "LD1+4*=" },            /* 0x13 */
  { 19, "LD1+4*=" },            /* 0x13 */
  { 20, "LD1+4*=" },            /* 0x14 */
  { 20, "LD1+4*=" },            /* 0x14 */
  { 21, "LD1+4*=" },            /* 0x15 */
  { 21, "LD1+4*=" },            /* 0x15 */
  { 22, "LD1+4*=" },            /* 0x16 */
  { 22, "LD1+4*=" },            /* 0x16 */
  { 23, "LD1+4*=" },            /* 0x17 */
  { 23, "LD1+4*=" },            /* 0x17 */
  {  0, "LD8<b+1+4*=" }, /* 0x18 */
  {  0, "LD8<b+1+4*=" }, /* 0x18 */
  {  1, "LD8<b+1+4*=" },        /* 0x19 */
  {  1, "LD8<b+1+4*=" },        /* 0x19 */
  {  2, "LD8<b+1+4*=" },        /* 0x1a */
  {  2, "LD8<b+1+4*=" },        /* 0x1a */
  {  3, "LD8<b+1+4*=" },        /* 0x1b */
  {  3, "LD8<b+1+4*=" },        /* 0x1b */
  {  0, "LD16<c+1+4*=" },        /* 0x1c */
  {  0, "LD16<c+1+4*=" },        /* 0x1c */
  {  1, "LD16<c+1+4*=" },       /* 0x1d */
  {  1, "LD16<c+1+4*=" },       /* 0x1d */
  {  2, "LD16<c+1+4*=" },       /* 0x1e */
  {  2, "LD16<c+1+4*=" },       /* 0x1e */
  {  0, "Ld1+=" },               /* 0x1f */
  {  0, "Ld1+=" },               /* 0x1f */
  /* R_ZEROES.  */
  /* R_ZEROES.  */
  {  0, "Lb1+4*=" },             /* 0x20 */
  {  0, "Lb1+4*=" },             /* 0x20 */
  {  1, "Ld1+=" },              /* 0x21 */
  {  1, "Ld1+=" },              /* 0x21 */
  /* R_UNINIT.  */
  /* R_UNINIT.  */
  {  0, "Lb1+4*=" },             /* 0x22 */
  {  0, "Lb1+4*=" },             /* 0x22 */
  {  1, "Ld1+=" },              /* 0x23 */
  {  1, "Ld1+=" },              /* 0x23 */
  /* R_RELOCATION.  */
  /* R_RELOCATION.  */
  {  0, "L4=" },         /* 0x24 */
  {  0, "L4=" },         /* 0x24 */
  /* R_DATA_ONE_SYMBOL.  */
  /* R_DATA_ONE_SYMBOL.  */
  {  0, "L4=Sb=" },              /* 0x25 */
  {  0, "L4=Sb=" },              /* 0x25 */
  {  1, "L4=Sd=" },             /* 0x26 */
  {  1, "L4=Sd=" },             /* 0x26 */
  /* R_DATA_PLEBEL.  */
  /* R_DATA_PLEBEL.  */
  {  0, "L4=Sb=" },              /* 0x27 */
  {  0, "L4=Sb=" },              /* 0x27 */
  {  1, "L4=Sd=" },             /* 0x28 */
  {  1, "L4=Sd=" },             /* 0x28 */
  /* R_SPACE_REF.  */
  /* R_SPACE_REF.  */
  {  0, "L4=" },         /* 0x29 */
  {  0, "L4=" },         /* 0x29 */
  /* R_REPEATED_INIT.  */
  /* R_REPEATED_INIT.  */
  {  0, "L4=Mb1+4*=" },          /* 0x2a */
  {  0, "L4=Mb1+4*=" },          /* 0x2a */
  {  1, "Lb4*=Mb1+L*=" },       /* 0x2b */
  {  1, "Lb4*=Mb1+L*=" },       /* 0x2b */
  {  2, "Lb4*=Md1+4*=" },       /* 0x2c */
  {  2, "Lb4*=Md1+4*=" },       /* 0x2c */
  {  3, "Ld1+=Me1+=" },         /* 0x2d */
  {  3, "Ld1+=Me1+=" },         /* 0x2d */
  {  0, "" },                    /* 0x2e */
  {  0, "" },                    /* 0x2e */
  {  0, "" },                    /* 0x2f */
  {  0, "" },                    /* 0x2f */
  /* R_PCREL_CALL.  */
  /* R_PCREL_CALL.  */
  {  0, "L4=RD=Sb=" },           /* 0x30 */
  {  0, "L4=RD=Sb=" },           /* 0x30 */
  {  1, "L4=RD=Sb=" },          /* 0x31 */
  {  1, "L4=RD=Sb=" },          /* 0x31 */
  {  2, "L4=RD=Sb=" },          /* 0x32 */
  {  2, "L4=RD=Sb=" },          /* 0x32 */
  {  3, "L4=RD=Sb=" },          /* 0x33 */
  {  3, "L4=RD=Sb=" },          /* 0x33 */
  {  4, "L4=RD=Sb=" },          /* 0x34 */
  {  4, "L4=RD=Sb=" },          /* 0x34 */
  {  5, "L4=RD=Sb=" },          /* 0x35 */
  {  5, "L4=RD=Sb=" },          /* 0x35 */
  {  6, "L4=RD=Sb=" },          /* 0x36 */
  {  6, "L4=RD=Sb=" },          /* 0x36 */
  {  7, "L4=RD=Sb=" },          /* 0x37 */
  {  7, "L4=RD=Sb=" },          /* 0x37 */
  {  8, "L4=RD=Sb=" },          /* 0x38 */
  {  8, "L4=RD=Sb=" },          /* 0x38 */
  {  9, "L4=RD=Sb=" },          /* 0x39 */
  {  9, "L4=RD=Sb=" },          /* 0x39 */
  {  0, "L4=RD8<b+=Sb=" },       /* 0x3a */
  {  0, "L4=RD8<b+=Sb=" },       /* 0x3a */
  {  1, "L4=RD8<b+=Sb=" },      /* 0x3b */
  {  1, "L4=RD8<b+=Sb=" },      /* 0x3b */
  {  0, "L4=RD8<b+=Sd=" },       /* 0x3c */
  {  0, "L4=RD8<b+=Sd=" },       /* 0x3c */
  {  1, "L4=RD8<b+=Sd=" },      /* 0x3d */
  {  1, "L4=RD8<b+=Sd=" },      /* 0x3d */
  /* R_SHORT_PCREL_MODE.  */
  /* R_SHORT_PCREL_MODE.  */
  {  0, "" },                    /* 0x3e */
  {  0, "" },                    /* 0x3e */
  /* R_LONG_PCREL_MODE.  */
  /* R_LONG_PCREL_MODE.  */
  {  0, "" },                    /* 0x3f */
  {  0, "" },                    /* 0x3f */
  /* R_ABS_CALL.  */
  /* R_ABS_CALL.  */
  {  0, "L4=RD=Sb=" },           /* 0x40 */
  {  0, "L4=RD=Sb=" },           /* 0x40 */
  {  1, "L4=RD=Sb=" },          /* 0x41 */
  {  1, "L4=RD=Sb=" },          /* 0x41 */
  {  2, "L4=RD=Sb=" },          /* 0x42 */
  {  2, "L4=RD=Sb=" },          /* 0x42 */
  {  3, "L4=RD=Sb=" },          /* 0x43 */
  {  3, "L4=RD=Sb=" },          /* 0x43 */
  {  4, "L4=RD=Sb=" },          /* 0x44 */
  {  4, "L4=RD=Sb=" },          /* 0x44 */
  {  5, "L4=RD=Sb=" },          /* 0x45 */
  {  5, "L4=RD=Sb=" },          /* 0x45 */
  {  6, "L4=RD=Sb=" },          /* 0x46 */
  {  6, "L4=RD=Sb=" },          /* 0x46 */
  {  7, "L4=RD=Sb=" },          /* 0x47 */
  {  7, "L4=RD=Sb=" },          /* 0x47 */
  {  8, "L4=RD=Sb=" },          /* 0x48 */
  {  8, "L4=RD=Sb=" },          /* 0x48 */
  {  9, "L4=RD=Sb=" },          /* 0x49 */
  {  9, "L4=RD=Sb=" },          /* 0x49 */
  {  0, "L4=RD8<b+=Sb=" },       /* 0x4a */
  {  0, "L4=RD8<b+=Sb=" },       /* 0x4a */
  {  1, "L4=RD8<b+=Sb=" },      /* 0x4b */
  {  1, "L4=RD8<b+=Sb=" },      /* 0x4b */
  {  0, "L4=RD8<b+=Sd=" },       /* 0x4c */
  {  0, "L4=RD8<b+=Sd=" },       /* 0x4c */
  {  1, "L4=RD8<b+=Sd=" },      /* 0x4d */
  {  1, "L4=RD8<b+=Sd=" },      /* 0x4d */
  /* R_RESERVED.  */
  /* R_RESERVED.  */
  {  0, "" },                    /* 0x4e */
  {  0, "" },                    /* 0x4e */
  {  0, "" },                    /* 0x4f */
  {  0, "" },                    /* 0x4f */
  /* R_DP_RELATIVE.  */
  /* R_DP_RELATIVE.  */
  {  0, "L4=SD=" },              /* 0x50 */
  {  0, "L4=SD=" },              /* 0x50 */
  {  1, "L4=SD=" },             /* 0x51 */
  {  1, "L4=SD=" },             /* 0x51 */
  {  2, "L4=SD=" },             /* 0x52 */
  {  2, "L4=SD=" },             /* 0x52 */
  {  3, "L4=SD=" },             /* 0x53 */
  {  3, "L4=SD=" },             /* 0x53 */
  {  4, "L4=SD=" },             /* 0x54 */
  {  4, "L4=SD=" },             /* 0x54 */
  {  5, "L4=SD=" },             /* 0x55 */
  {  5, "L4=SD=" },             /* 0x55 */
  {  6, "L4=SD=" },             /* 0x56 */
  {  6, "L4=SD=" },             /* 0x56 */
  {  7, "L4=SD=" },             /* 0x57 */
  {  7, "L4=SD=" },             /* 0x57 */
  {  8, "L4=SD=" },             /* 0x58 */
  {  8, "L4=SD=" },             /* 0x58 */
  {  9, "L4=SD=" },             /* 0x59 */
  {  9, "L4=SD=" },             /* 0x59 */
  { 10, "L4=SD=" },             /* 0x5a */
  { 10, "L4=SD=" },             /* 0x5a */
  { 11, "L4=SD=" },             /* 0x5b */
  { 11, "L4=SD=" },             /* 0x5b */
  { 12, "L4=SD=" },             /* 0x5c */
  { 12, "L4=SD=" },             /* 0x5c */
  { 13, "L4=SD=" },             /* 0x5d */
  { 13, "L4=SD=" },             /* 0x5d */
  { 14, "L4=SD=" },             /* 0x5e */
  { 14, "L4=SD=" },             /* 0x5e */
  { 15, "L4=SD=" },             /* 0x5f */
  { 15, "L4=SD=" },             /* 0x5f */
  { 16, "L4=SD=" },             /* 0x60 */
  { 16, "L4=SD=" },             /* 0x60 */
  { 17, "L4=SD=" },             /* 0x61 */
  { 17, "L4=SD=" },             /* 0x61 */
  { 18, "L4=SD=" },             /* 0x62 */
  { 18, "L4=SD=" },             /* 0x62 */
  { 19, "L4=SD=" },             /* 0x63 */
  { 19, "L4=SD=" },             /* 0x63 */
  { 20, "L4=SD=" },             /* 0x64 */
  { 20, "L4=SD=" },             /* 0x64 */
  { 21, "L4=SD=" },             /* 0x65 */
  { 21, "L4=SD=" },             /* 0x65 */
  { 22, "L4=SD=" },             /* 0x66 */
  { 22, "L4=SD=" },             /* 0x66 */
  { 23, "L4=SD=" },             /* 0x67 */
  { 23, "L4=SD=" },             /* 0x67 */
  { 24, "L4=SD=" },             /* 0x68 */
  { 24, "L4=SD=" },             /* 0x68 */
  { 25, "L4=SD=" },             /* 0x69 */
  { 25, "L4=SD=" },             /* 0x69 */
  { 26, "L4=SD=" },             /* 0x6a */
  { 26, "L4=SD=" },             /* 0x6a */
  { 27, "L4=SD=" },             /* 0x6b */
  { 27, "L4=SD=" },             /* 0x6b */
  { 28, "L4=SD=" },             /* 0x6c */
  { 28, "L4=SD=" },             /* 0x6c */
  { 29, "L4=SD=" },             /* 0x6d */
  { 29, "L4=SD=" },             /* 0x6d */
  { 30, "L4=SD=" },             /* 0x6e */
  { 30, "L4=SD=" },             /* 0x6e */
  { 31, "L4=SD=" },             /* 0x6f */
  { 31, "L4=SD=" },             /* 0x6f */
  { 32, "L4=Sb=" },             /* 0x70 */
  { 32, "L4=Sb=" },             /* 0x70 */
  { 33, "L4=Sd=" },             /* 0x71 */
  { 33, "L4=Sd=" },             /* 0x71 */
  /* R_RESERVED.  */
  /* R_RESERVED.  */
  {  0, "" },                    /* 0x72 */
  {  0, "" },                    /* 0x72 */
  {  0, "" },                    /* 0x73 */
  {  0, "" },                    /* 0x73 */
  {  0, "" },                    /* 0x74 */
  {  0, "" },                    /* 0x74 */
  {  0, "" },                    /* 0x75 */
  {  0, "" },                    /* 0x75 */
  {  0, "" },                    /* 0x76 */
  {  0, "" },                    /* 0x76 */
  {  0, "" },                    /* 0x77 */
  {  0, "" },                    /* 0x77 */
  /* R_DLT_REL.  */
  /* R_DLT_REL.  */
  {  0, "L4=Sb=" },              /* 0x78 */
  {  0, "L4=Sb=" },              /* 0x78 */
  {  1, "L4=Sd=" },             /* 0x79 */
  {  1, "L4=Sd=" },             /* 0x79 */
  /* R_RESERVED.  */
  /* R_RESERVED.  */
  {  0, "" },                    /* 0x7a */
  {  0, "" },                    /* 0x7a */
  {  0, "" },                    /* 0x7b */
  {  0, "" },                    /* 0x7b */
  {  0, "" },                    /* 0x7c */
  {  0, "" },                    /* 0x7c */
  {  0, "" },                    /* 0x7d */
  {  0, "" },                    /* 0x7d */
  {  0, "" },                    /* 0x7e */
  {  0, "" },                    /* 0x7e */
  {  0, "" },                    /* 0x7f */
  {  0, "" },                    /* 0x7f */
  /* R_CODE_ONE_SYMBOL.  */
  /* R_CODE_ONE_SYMBOL.  */
  {  0, "L4=SD=" },              /* 0x80 */
  {  0, "L4=SD=" },              /* 0x80 */
  {  1, "L4=SD=" },             /* 0x81 */
  {  1, "L4=SD=" },             /* 0x81 */
  {  2, "L4=SD=" },             /* 0x82 */
  {  2, "L4=SD=" },             /* 0x82 */
  {  3, "L4=SD=" },             /* 0x83 */
  {  3, "L4=SD=" },             /* 0x83 */
  {  4, "L4=SD=" },             /* 0x84 */
  {  4, "L4=SD=" },             /* 0x84 */
  {  5, "L4=SD=" },             /* 0x85 */
  {  5, "L4=SD=" },             /* 0x85 */
  {  6, "L4=SD=" },             /* 0x86 */
  {  6, "L4=SD=" },             /* 0x86 */
  {  7, "L4=SD=" },             /* 0x87 */
  {  7, "L4=SD=" },             /* 0x87 */
  {  8, "L4=SD=" },             /* 0x88 */
  {  8, "L4=SD=" },             /* 0x88 */
  {  9, "L4=SD=" },             /* 0x89 */
  {  9, "L4=SD=" },             /* 0x89 */
  { 10, "L4=SD=" },             /* 0x8q */
  { 10, "L4=SD=" },             /* 0x8q */
  { 11, "L4=SD=" },             /* 0x8b */
  { 11, "L4=SD=" },             /* 0x8b */
  { 12, "L4=SD=" },             /* 0x8c */
  { 12, "L4=SD=" },             /* 0x8c */
  { 13, "L4=SD=" },             /* 0x8d */
  { 13, "L4=SD=" },             /* 0x8d */
  { 14, "L4=SD=" },             /* 0x8e */
  { 14, "L4=SD=" },             /* 0x8e */
  { 15, "L4=SD=" },             /* 0x8f */
  { 15, "L4=SD=" },             /* 0x8f */
  { 16, "L4=SD=" },             /* 0x90 */
  { 16, "L4=SD=" },             /* 0x90 */
  { 17, "L4=SD=" },             /* 0x91 */
  { 17, "L4=SD=" },             /* 0x91 */
  { 18, "L4=SD=" },             /* 0x92 */
  { 18, "L4=SD=" },             /* 0x92 */
  { 19, "L4=SD=" },             /* 0x93 */
  { 19, "L4=SD=" },             /* 0x93 */
  { 20, "L4=SD=" },             /* 0x94 */
  { 20, "L4=SD=" },             /* 0x94 */
  { 21, "L4=SD=" },             /* 0x95 */
  { 21, "L4=SD=" },             /* 0x95 */
  { 22, "L4=SD=" },             /* 0x96 */
  { 22, "L4=SD=" },             /* 0x96 */
  { 23, "L4=SD=" },             /* 0x97 */
  { 23, "L4=SD=" },             /* 0x97 */
  { 24, "L4=SD=" },             /* 0x98 */
  { 24, "L4=SD=" },             /* 0x98 */
  { 25, "L4=SD=" },             /* 0x99 */
  { 25, "L4=SD=" },             /* 0x99 */
  { 26, "L4=SD=" },             /* 0x9a */
  { 26, "L4=SD=" },             /* 0x9a */
  { 27, "L4=SD=" },             /* 0x9b */
  { 27, "L4=SD=" },             /* 0x9b */
  { 28, "L4=SD=" },             /* 0x9c */
  { 28, "L4=SD=" },             /* 0x9c */
  { 29, "L4=SD=" },             /* 0x9d */
  { 29, "L4=SD=" },             /* 0x9d */
  { 30, "L4=SD=" },             /* 0x9e */
  { 30, "L4=SD=" },             /* 0x9e */
  { 31, "L4=SD=" },             /* 0x9f */
  { 31, "L4=SD=" },             /* 0x9f */
  { 32, "L4=Sb=" },             /* 0xa0 */
  { 32, "L4=Sb=" },             /* 0xa0 */
  { 33, "L4=Sd=" },             /* 0xa1 */
  { 33, "L4=Sd=" },             /* 0xa1 */
  /* R_RESERVED.  */
  /* R_RESERVED.  */
  {  0, "" },                    /* 0xa2 */
  {  0, "" },                    /* 0xa2 */
  {  0, "" },                    /* 0xa3 */
  {  0, "" },                    /* 0xa3 */
  {  0, "" },                    /* 0xa4 */
  {  0, "" },                    /* 0xa4 */
  {  0, "" },                    /* 0xa5 */
  {  0, "" },                    /* 0xa5 */
  {  0, "" },                    /* 0xa6 */
  {  0, "" },                    /* 0xa6 */
  {  0, "" },                    /* 0xa7 */
  {  0, "" },                    /* 0xa7 */
  {  0, "" },                    /* 0xa8 */
  {  0, "" },                    /* 0xa8 */
  {  0, "" },                    /* 0xa9 */
  {  0, "" },                    /* 0xa9 */
  {  0, "" },                    /* 0xaa */
  {  0, "" },                    /* 0xaa */
  {  0, "" },                    /* 0xab */
  {  0, "" },                    /* 0xab */
  {  0, "" },                    /* 0xac */
  {  0, "" },                    /* 0xac */
  {  0, "" },                    /* 0xad */
  {  0, "" },                    /* 0xad */
  /* R_MILLI_REL.  */
  /* R_MILLI_REL.  */
  {  0, "L4=Sb=" },              /* 0xae */
  {  0, "L4=Sb=" },              /* 0xae */
  {  1, "L4=Sd=" },             /* 0xaf */
  {  1, "L4=Sd=" },             /* 0xaf */
  /* R_CODE_PLABEL.  */
  /* R_CODE_PLABEL.  */
  {  0, "L4=Sb=" },              /* 0xb0 */
  {  0, "L4=Sb=" },              /* 0xb0 */
  {  1, "L4=Sd=" },             /* 0xb1 */
  {  1, "L4=Sd=" },             /* 0xb1 */
  /* R_BREAKPOINT.  */
  /* R_BREAKPOINT.  */
  {  0, "L4=" },         /* 0xb2 */
  {  0, "L4=" },         /* 0xb2 */
  /* R_ENTRY.  */
  /* R_ENTRY.  */
  {  0, "Te=Ue=" },              /* 0xb3 */
  {  0, "Te=Ue=" },              /* 0xb3 */
  {  1, "Uf=" },                /* 0xb4 */
  {  1, "Uf=" },                /* 0xb4 */
  /* R_ALT_ENTRY.  */
  /* R_ALT_ENTRY.  */
  {  0, "" },                    /* 0xb5 */
  {  0, "" },                    /* 0xb5 */
  /* R_EXIT.  */
  /* R_EXIT.  */
  {  0, "" },                    /* 0xb6 */
  {  0, "" },                    /* 0xb6 */
  /* R_BEGIN_TRY.  */
  /* R_BEGIN_TRY.  */
  {  0, "" },                    /* 0xb7 */
  {  0, "" },                    /* 0xb7 */
  /* R_END_TRY.  */
  /* R_END_TRY.  */
  {  0, "R0=" },         /* 0xb8 */
  {  0, "R0=" },         /* 0xb8 */
  {  1, "Rb4*=" },              /* 0xb9 */
  {  1, "Rb4*=" },              /* 0xb9 */
  {  2, "Rd4*=" },              /* 0xba */
  {  2, "Rd4*=" },              /* 0xba */
  /* R_BEGIN_BRTAB.  */
  /* R_BEGIN_BRTAB.  */
  {  0, "" },                    /* 0xbb */
  {  0, "" },                    /* 0xbb */
  /* R_END_BRTAB.  */
  /* R_END_BRTAB.  */
  {  0, "" },                    /* 0xbc */
  {  0, "" },                    /* 0xbc */
  /* R_STATEMENT.  */
  /* R_STATEMENT.  */
  {  0, "Nb=" },         /* 0xbd */
  {  0, "Nb=" },         /* 0xbd */
  {  1, "Nc=" },                /* 0xbe */
  {  1, "Nc=" },                /* 0xbe */
  {  2, "Nd=" },                /* 0xbf */
  {  2, "Nd=" },                /* 0xbf */
  /* R_DATA_EXPR.  */
  /* R_DATA_EXPR.  */
  {  0, "L4=" },         /* 0xc0 */
  {  0, "L4=" },         /* 0xc0 */
  /* R_CODE_EXPR.  */
  /* R_CODE_EXPR.  */
  {  0, "L4=" },         /* 0xc1 */
  {  0, "L4=" },         /* 0xc1 */
  /* R_FSEL.  */
  /* R_FSEL.  */
  {  0, "" },                    /* 0xc2 */
  {  0, "" },                    /* 0xc2 */
  /* R_LSEL.  */
  /* R_LSEL.  */
  {  0, "" },                    /* 0xc3 */
  {  0, "" },                    /* 0xc3 */
  /* R_RSEL.  */
  /* R_RSEL.  */
  {  0, "" },                    /* 0xc4 */
  {  0, "" },                    /* 0xc4 */
  /* R_N_MODE.  */
  /* R_N_MODE.  */
  {  0, "" },                    /* 0xc5 */
  {  0, "" },                    /* 0xc5 */
  /* R_S_MODE.  */
  /* R_S_MODE.  */
  {  0, "" },                    /* 0xc6 */
  {  0, "" },                    /* 0xc6 */
  /* R_D_MODE.  */
  /* R_D_MODE.  */
  {  0, "" },                    /* 0xc7 */
  {  0, "" },                    /* 0xc7 */
  /* R_R_MODE.  */
  /* R_R_MODE.  */
  {  0, "" },                    /* 0xc8 */
  {  0, "" },                    /* 0xc8 */
  /* R_DATA_OVERRIDE.  */
  /* R_DATA_OVERRIDE.  */
  {  0, "V0=" },         /* 0xc9 */
  {  0, "V0=" },         /* 0xc9 */
  {  1, "Vb=" },                /* 0xca */
  {  1, "Vb=" },                /* 0xca */
  {  2, "Vc=" },                /* 0xcb */
  {  2, "Vc=" },                /* 0xcb */
  {  3, "Vd=" },                /* 0xcc */
  {  3, "Vd=" },                /* 0xcc */
  {  4, "Ve=" },                /* 0xcd */
  {  4, "Ve=" },                /* 0xcd */
  /* R_TRANSLATED.  */
  /* R_TRANSLATED.  */
  {  0, "" },                    /* 0xce */
  {  0, "" },                    /* 0xce */
  /* R_AUX_UNWIND.  */
  /* R_AUX_UNWIND.  */
  {  0,"Sd=Ve=Ee=" },           /* 0xcf */
  {  0,"Sd=Ve=Ee=" },           /* 0xcf */
  /* R_COMP1.  */
  /* R_COMP1.  */
  {  0, "Ob=" },         /* 0xd0 */
  {  0, "Ob=" },         /* 0xd0 */
  /* R_COMP2.  */
  /* R_COMP2.  */
  {  0, "Ob=Sd=" },              /* 0xd1 */
  {  0, "Ob=Sd=" },              /* 0xd1 */
  /* R_COMP3.  */
  /* R_COMP3.  */
  {  0, "Ob=Ve=" },              /* 0xd2 */
  {  0, "Ob=Ve=" },              /* 0xd2 */
  /* R_PREV_FIXUP.  */
  /* R_PREV_FIXUP.  */
  {  0, "P" },                   /* 0xd3 */
  {  0, "P" },                   /* 0xd3 */
  {  1, "P" },                  /* 0xd4 */
  {  1, "P" },                  /* 0xd4 */
  {  2, "P" },                  /* 0xd5 */
  {  2, "P" },                  /* 0xd5 */
  {  3, "P" },                  /* 0xd6 */
  {  3, "P" },                  /* 0xd6 */
  /* R_SEC_STMT.  */
  /* R_SEC_STMT.  */
  {  0, "" },                    /* 0xd7 */
  {  0, "" },                    /* 0xd7 */
  /* R_N0SEL.  */
  /* R_N0SEL.  */
  {  0, "" },                    /* 0xd8 */
  {  0, "" },                    /* 0xd8 */
  /* R_N1SEL.  */
  /* R_N1SEL.  */
  {  0, "" },                    /* 0xd9 */
  {  0, "" },                    /* 0xd9 */
  /* R_LINETAB.  */
  /* R_LINETAB.  */
  {  0, "Eb=Sd=Ve=" },           /* 0xda */
  {  0, "Eb=Sd=Ve=" },           /* 0xda */
  /* R_LINETAB_ESC.  */
  /* R_LINETAB_ESC.  */
  {  0, "Eb=Mb=" },              /* 0xdb */
  {  0, "Eb=Mb=" },              /* 0xdb */
  /* R_LTP_OVERRIDE.  */
  /* R_LTP_OVERRIDE.  */
  {  0, "" },                    /* 0xdc */
  {  0, "" },                    /* 0xdc */
  /* R_COMMENT.  */
  /* R_COMMENT.  */
  {  0, "Ob=Vf=" },              /* 0xdd */
  {  0, "Ob=Vf=" },              /* 0xdd */
  /* R_RESERVED.  */
  /* R_RESERVED.  */
  {  0, "" },                    /* 0xde */
  {  0, "" },                    /* 0xde */
  {  0, "" },                    /* 0xdf */
  {  0, "" },                    /* 0xdf */
  {  0, "" },                    /* 0xe0 */
  {  0, "" },                    /* 0xe0 */
  {  0, "" },                    /* 0xe1 */
  {  0, "" },                    /* 0xe1 */
  {  0, "" },                    /* 0xe2 */
  {  0, "" },                    /* 0xe2 */
  {  0, "" },                    /* 0xe3 */
  {  0, "" },                    /* 0xe3 */
  {  0, "" },                    /* 0xe4 */
  {  0, "" },                    /* 0xe4 */
  {  0, "" },                    /* 0xe5 */
  {  0, "" },                    /* 0xe5 */
  {  0, "" },                    /* 0xe6 */
  {  0, "" },                    /* 0xe6 */
  {  0, "" },                    /* 0xe7 */
  {  0, "" },                    /* 0xe7 */
  {  0, "" },                    /* 0xe8 */
  {  0, "" },                    /* 0xe8 */
  {  0, "" },                    /* 0xe9 */
  {  0, "" },                    /* 0xe9 */
  {  0, "" },                    /* 0xea */
  {  0, "" },                    /* 0xea */
  {  0, "" },                    /* 0xeb */
  {  0, "" },                    /* 0xeb */
  {  0, "" },                    /* 0xec */
  {  0, "" },                    /* 0xec */
  {  0, "" },                    /* 0xed */
  {  0, "" },                    /* 0xed */
  {  0, "" },                    /* 0xee */
  {  0, "" },                    /* 0xee */
  {  0, "" },                    /* 0xef */
  {  0, "" },                    /* 0xef */
  {  0, "" },                    /* 0xf0 */
  {  0, "" },                    /* 0xf0 */
  {  0, "" },                    /* 0xf1 */
  {  0, "" },                    /* 0xf1 */
  {  0, "" },                    /* 0xf2 */
  {  0, "" },                    /* 0xf2 */
  {  0, "" },                    /* 0xf3 */
  {  0, "" },                    /* 0xf3 */
  {  0, "" },                    /* 0xf4 */
  {  0, "" },                    /* 0xf4 */
  {  0, "" },                    /* 0xf5 */
  {  0, "" },                    /* 0xf5 */
  {  0, "" },                    /* 0xf6 */
  {  0, "" },                    /* 0xf6 */
  {  0, "" },                    /* 0xf7 */
  {  0, "" },                    /* 0xf7 */
  {  0, "" },                    /* 0xf8 */
  {  0, "" },                    /* 0xf8 */
  {  0, "" },                    /* 0xf9 */
  {  0, "" },                    /* 0xf9 */
  {  0, "" },                    /* 0xfa */
  {  0, "" },                    /* 0xfa */
  {  0, "" },                    /* 0xfb */
  {  0, "" },                    /* 0xfb */
  {  0, "" },                    /* 0xfc */
  {  0, "" },                    /* 0xfc */
  {  0, "" },                    /* 0xfd */
  {  0, "" },                    /* 0xfd */
  {  0, "" },                    /* 0xfe */
  {  0, "" },                    /* 0xfe */
  {  0, "" },                    /* 0xff */
  {  0, "" },                    /* 0xff */
};
};
 
 
static const int comp1_opcodes[] =
static const int comp1_opcodes[] =
{
{
  0x00,
  0x00,
  0x40,
  0x40,
  0x41,
  0x41,
  0x42,
  0x42,
  0x43,
  0x43,
  0x44,
  0x44,
  0x45,
  0x45,
  0x46,
  0x46,
  0x47,
  0x47,
  0x48,
  0x48,
  0x49,
  0x49,
  0x4a,
  0x4a,
  0x4b,
  0x4b,
  0x60,
  0x60,
  0x80,
  0x80,
  0xa0,
  0xa0,
  0xc0,
  0xc0,
  -1
  -1
};
};
 
 
static const int comp2_opcodes[] =
static const int comp2_opcodes[] =
{
{
  0x00,
  0x00,
  0x80,
  0x80,
  0x82,
  0x82,
  0xc0,
  0xc0,
  -1
  -1
};
};
 
 
static const int comp3_opcodes[] =
static const int comp3_opcodes[] =
{
{
  0x00,
  0x00,
  0x02,
  0x02,
  -1
  -1
};
};
 
 
/* These apparently are not in older versions of hpux reloc.h (hpux7).  */
/* These apparently are not in older versions of hpux reloc.h (hpux7).  */
#ifndef R_DLT_REL
#ifndef R_DLT_REL
#define R_DLT_REL 0x78
#define R_DLT_REL 0x78
#endif
#endif
 
 
#ifndef R_AUX_UNWIND
#ifndef R_AUX_UNWIND
#define R_AUX_UNWIND 0xcf
#define R_AUX_UNWIND 0xcf
#endif
#endif
 
 
#ifndef R_SEC_STMT
#ifndef R_SEC_STMT
#define R_SEC_STMT 0xd7
#define R_SEC_STMT 0xd7
#endif
#endif
 
 
/* And these first appeared in hpux10.  */
/* And these first appeared in hpux10.  */
#ifndef R_SHORT_PCREL_MODE
#ifndef R_SHORT_PCREL_MODE
#define NO_PCREL_MODES
#define NO_PCREL_MODES
#define R_SHORT_PCREL_MODE 0x3e
#define R_SHORT_PCREL_MODE 0x3e
#endif
#endif
 
 
#ifndef R_LONG_PCREL_MODE
#ifndef R_LONG_PCREL_MODE
#define R_LONG_PCREL_MODE 0x3f
#define R_LONG_PCREL_MODE 0x3f
#endif
#endif
 
 
#ifndef R_N0SEL
#ifndef R_N0SEL
#define R_N0SEL 0xd8
#define R_N0SEL 0xd8
#endif
#endif
 
 
#ifndef R_N1SEL
#ifndef R_N1SEL
#define R_N1SEL 0xd9
#define R_N1SEL 0xd9
#endif
#endif
 
 
#ifndef R_LINETAB
#ifndef R_LINETAB
#define R_LINETAB 0xda
#define R_LINETAB 0xda
#endif
#endif
 
 
#ifndef R_LINETAB_ESC
#ifndef R_LINETAB_ESC
#define R_LINETAB_ESC 0xdb
#define R_LINETAB_ESC 0xdb
#endif
#endif
 
 
#ifndef R_LTP_OVERRIDE
#ifndef R_LTP_OVERRIDE
#define R_LTP_OVERRIDE 0xdc
#define R_LTP_OVERRIDE 0xdc
#endif
#endif
 
 
#ifndef R_COMMENT
#ifndef R_COMMENT
#define R_COMMENT 0xdd
#define R_COMMENT 0xdd
#endif
#endif
 
 
#define SOM_HOWTO(TYPE, NAME)   \
#define SOM_HOWTO(TYPE, NAME)   \
  HOWTO(TYPE, 0, 0, 32, FALSE, 0, 0, hppa_som_reloc, NAME, FALSE, 0, 0, FALSE)
  HOWTO(TYPE, 0, 0, 32, FALSE, 0, 0, hppa_som_reloc, NAME, FALSE, 0, 0, FALSE)
 
 
static reloc_howto_type som_hppa_howto_table[] =
static reloc_howto_type som_hppa_howto_table[] =
{
{
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
  SOM_HOWTO (R_ZEROES, "R_ZEROES"),
  SOM_HOWTO (R_ZEROES, "R_ZEROES"),
  SOM_HOWTO (R_ZEROES, "R_ZEROES"),
  SOM_HOWTO (R_ZEROES, "R_ZEROES"),
  SOM_HOWTO (R_UNINIT, "R_UNINIT"),
  SOM_HOWTO (R_UNINIT, "R_UNINIT"),
  SOM_HOWTO (R_UNINIT, "R_UNINIT"),
  SOM_HOWTO (R_UNINIT, "R_UNINIT"),
  SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
  SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
  SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
  SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
  SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
  SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
  SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
  SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
  SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
  SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
  SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
  SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
  SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
  SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
  SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
  SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
  SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
  SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
  SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
  SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
  SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
  SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
  SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
  SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
  SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
  SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
  SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
  SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
  SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
  SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
  SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
  SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
  SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
  SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
  SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
  SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
  SOM_HOWTO (R_ENTRY, "R_ENTRY"),
  SOM_HOWTO (R_ENTRY, "R_ENTRY"),
  SOM_HOWTO (R_ENTRY, "R_ENTRY"),
  SOM_HOWTO (R_ENTRY, "R_ENTRY"),
  SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
  SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
  SOM_HOWTO (R_EXIT, "R_EXIT"),
  SOM_HOWTO (R_EXIT, "R_EXIT"),
  SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
  SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
  SOM_HOWTO (R_END_TRY, "R_END_TRY"),
  SOM_HOWTO (R_END_TRY, "R_END_TRY"),
  SOM_HOWTO (R_END_TRY, "R_END_TRY"),
  SOM_HOWTO (R_END_TRY, "R_END_TRY"),
  SOM_HOWTO (R_END_TRY, "R_END_TRY"),
  SOM_HOWTO (R_END_TRY, "R_END_TRY"),
  SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
  SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
  SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
  SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
  SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
  SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
  SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
  SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
  SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
  SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
  SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
  SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
  SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
  SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
  SOM_HOWTO (R_FSEL, "R_FSEL"),
  SOM_HOWTO (R_FSEL, "R_FSEL"),
  SOM_HOWTO (R_LSEL, "R_LSEL"),
  SOM_HOWTO (R_LSEL, "R_LSEL"),
  SOM_HOWTO (R_RSEL, "R_RSEL"),
  SOM_HOWTO (R_RSEL, "R_RSEL"),
  SOM_HOWTO (R_N_MODE, "R_N_MODE"),
  SOM_HOWTO (R_N_MODE, "R_N_MODE"),
  SOM_HOWTO (R_S_MODE, "R_S_MODE"),
  SOM_HOWTO (R_S_MODE, "R_S_MODE"),
  SOM_HOWTO (R_D_MODE, "R_D_MODE"),
  SOM_HOWTO (R_D_MODE, "R_D_MODE"),
  SOM_HOWTO (R_R_MODE, "R_R_MODE"),
  SOM_HOWTO (R_R_MODE, "R_R_MODE"),
  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
  SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
  SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
  SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
  SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
  SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
  SOM_HOWTO (R_COMP1, "R_COMP1"),
  SOM_HOWTO (R_COMP1, "R_COMP1"),
  SOM_HOWTO (R_COMP2, "R_COMP2"),
  SOM_HOWTO (R_COMP2, "R_COMP2"),
  SOM_HOWTO (R_COMP3, "R_COMP3"),
  SOM_HOWTO (R_COMP3, "R_COMP3"),
  SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
  SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
  SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
  SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
  SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
  SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
  SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
  SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
  SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
  SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
  SOM_HOWTO (R_N0SEL, "R_N0SEL"),
  SOM_HOWTO (R_N0SEL, "R_N0SEL"),
  SOM_HOWTO (R_N1SEL, "R_N1SEL"),
  SOM_HOWTO (R_N1SEL, "R_N1SEL"),
  SOM_HOWTO (R_LINETAB, "R_LINETAB"),
  SOM_HOWTO (R_LINETAB, "R_LINETAB"),
  SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
  SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
  SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
  SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
  SOM_HOWTO (R_COMMENT, "R_COMMENT"),
  SOM_HOWTO (R_COMMENT, "R_COMMENT"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED"),
  SOM_HOWTO (R_RESERVED, "R_RESERVED")
  SOM_HOWTO (R_RESERVED, "R_RESERVED")
};
};
 
 
/* Initialize the SOM relocation queue.  By definition the queue holds
/* Initialize the SOM relocation queue.  By definition the queue holds
   the last four multibyte fixups.  */
   the last four multibyte fixups.  */
 
 
static void
static void
som_initialize_reloc_queue (struct reloc_queue *queue)
som_initialize_reloc_queue (struct reloc_queue *queue)
{
{
  queue[0].reloc = NULL;
  queue[0].reloc = NULL;
  queue[0].size = 0;
  queue[0].size = 0;
  queue[1].reloc = NULL;
  queue[1].reloc = NULL;
  queue[1].size = 0;
  queue[1].size = 0;
  queue[2].reloc = NULL;
  queue[2].reloc = NULL;
  queue[2].size = 0;
  queue[2].size = 0;
  queue[3].reloc = NULL;
  queue[3].reloc = NULL;
  queue[3].size = 0;
  queue[3].size = 0;
}
}
 
 
/* Insert a new relocation into the relocation queue.  */
/* Insert a new relocation into the relocation queue.  */
 
 
static void
static void
som_reloc_queue_insert (unsigned char *p,
som_reloc_queue_insert (unsigned char *p,
                        unsigned int size,
                        unsigned int size,
                        struct reloc_queue *queue)
                        struct reloc_queue *queue)
{
{
  queue[3].reloc = queue[2].reloc;
  queue[3].reloc = queue[2].reloc;
  queue[3].size = queue[2].size;
  queue[3].size = queue[2].size;
  queue[2].reloc = queue[1].reloc;
  queue[2].reloc = queue[1].reloc;
  queue[2].size = queue[1].size;
  queue[2].size = queue[1].size;
  queue[1].reloc = queue[0].reloc;
  queue[1].reloc = queue[0].reloc;
  queue[1].size = queue[0].size;
  queue[1].size = queue[0].size;
  queue[0].reloc = p;
  queue[0].reloc = p;
  queue[0].size = size;
  queue[0].size = size;
}
}
 
 
/* When an entry in the relocation queue is reused, the entry moves
/* When an entry in the relocation queue is reused, the entry moves
   to the front of the queue.  */
   to the front of the queue.  */
 
 
static void
static void
som_reloc_queue_fix (struct reloc_queue *queue, unsigned int index)
som_reloc_queue_fix (struct reloc_queue *queue, unsigned int index)
{
{
  if (index == 0)
  if (index == 0)
    return;
    return;
 
 
  if (index == 1)
  if (index == 1)
    {
    {
      unsigned char *tmp1 = queue[0].reloc;
      unsigned char *tmp1 = queue[0].reloc;
      unsigned int tmp2 = queue[0].size;
      unsigned int tmp2 = queue[0].size;
 
 
      queue[0].reloc = queue[1].reloc;
      queue[0].reloc = queue[1].reloc;
      queue[0].size = queue[1].size;
      queue[0].size = queue[1].size;
      queue[1].reloc = tmp1;
      queue[1].reloc = tmp1;
      queue[1].size = tmp2;
      queue[1].size = tmp2;
      return;
      return;
    }
    }
 
 
  if (index == 2)
  if (index == 2)
    {
    {
      unsigned char *tmp1 = queue[0].reloc;
      unsigned char *tmp1 = queue[0].reloc;
      unsigned int tmp2 = queue[0].size;
      unsigned int tmp2 = queue[0].size;
 
 
      queue[0].reloc = queue[2].reloc;
      queue[0].reloc = queue[2].reloc;
      queue[0].size = queue[2].size;
      queue[0].size = queue[2].size;
      queue[2].reloc = queue[1].reloc;
      queue[2].reloc = queue[1].reloc;
      queue[2].size = queue[1].size;
      queue[2].size = queue[1].size;
      queue[1].reloc = tmp1;
      queue[1].reloc = tmp1;
      queue[1].size = tmp2;
      queue[1].size = tmp2;
      return;
      return;
    }
    }
 
 
  if (index == 3)
  if (index == 3)
    {
    {
      unsigned char *tmp1 = queue[0].reloc;
      unsigned char *tmp1 = queue[0].reloc;
      unsigned int tmp2 = queue[0].size;
      unsigned int tmp2 = queue[0].size;
 
 
      queue[0].reloc = queue[3].reloc;
      queue[0].reloc = queue[3].reloc;
      queue[0].size = queue[3].size;
      queue[0].size = queue[3].size;
      queue[3].reloc = queue[2].reloc;
      queue[3].reloc = queue[2].reloc;
      queue[3].size = queue[2].size;
      queue[3].size = queue[2].size;
      queue[2].reloc = queue[1].reloc;
      queue[2].reloc = queue[1].reloc;
      queue[2].size = queue[1].size;
      queue[2].size = queue[1].size;
      queue[1].reloc = tmp1;
      queue[1].reloc = tmp1;
      queue[1].size = tmp2;
      queue[1].size = tmp2;
      return;
      return;
    }
    }
  abort ();
  abort ();
}
}
 
 
/* Search for a particular relocation in the relocation queue.  */
/* Search for a particular relocation in the relocation queue.  */
 
 
static int
static int
som_reloc_queue_find (unsigned char *p,
som_reloc_queue_find (unsigned char *p,
                      unsigned int size,
                      unsigned int size,
                      struct reloc_queue *queue)
                      struct reloc_queue *queue)
{
{
  if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
  if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
      && size == queue[0].size)
      && size == queue[0].size)
    return 0;
    return 0;
  if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
  if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
      && size == queue[1].size)
      && size == queue[1].size)
    return 1;
    return 1;
  if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
  if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
      && size == queue[2].size)
      && size == queue[2].size)
    return 2;
    return 2;
  if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
  if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
      && size == queue[3].size)
      && size == queue[3].size)
    return 3;
    return 3;
  return -1;
  return -1;
}
}
 
 
static unsigned char *
static unsigned char *
try_prev_fixup (bfd *abfd ATTRIBUTE_UNUSED,
try_prev_fixup (bfd *abfd ATTRIBUTE_UNUSED,
                unsigned int *subspace_reloc_sizep,
                unsigned int *subspace_reloc_sizep,
                unsigned char *p,
                unsigned char *p,
                unsigned int size,
                unsigned int size,
                struct reloc_queue *queue)
                struct reloc_queue *queue)
{
{
  int queue_index = som_reloc_queue_find (p, size, queue);
  int queue_index = som_reloc_queue_find (p, size, queue);
 
 
  if (queue_index != -1)
  if (queue_index != -1)
    {
    {
      /* Found this in a previous fixup.  Undo the fixup we
      /* Found this in a previous fixup.  Undo the fixup we
         just built and use R_PREV_FIXUP instead.  We saved
         just built and use R_PREV_FIXUP instead.  We saved
         a total of size - 1 bytes in the fixup stream.  */
         a total of size - 1 bytes in the fixup stream.  */
      bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
      bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
      p += 1;
      p += 1;
      *subspace_reloc_sizep += 1;
      *subspace_reloc_sizep += 1;
      som_reloc_queue_fix (queue, queue_index);
      som_reloc_queue_fix (queue, queue_index);
    }
    }
  else
  else
    {
    {
      som_reloc_queue_insert (p, size, queue);
      som_reloc_queue_insert (p, size, queue);
      *subspace_reloc_sizep += size;
      *subspace_reloc_sizep += size;
      p += size;
      p += size;
    }
    }
  return p;
  return p;
}
}
 
 
/* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
/* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
   bytes without any relocation.  Update the size of the subspace
   bytes without any relocation.  Update the size of the subspace
   relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
   relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
   current pointer into the relocation stream.  */
   current pointer into the relocation stream.  */
 
 
static unsigned char *
static unsigned char *
som_reloc_skip (bfd *abfd,
som_reloc_skip (bfd *abfd,
                unsigned int skip,
                unsigned int skip,
                unsigned char *p,
                unsigned char *p,
                unsigned int *subspace_reloc_sizep,
                unsigned int *subspace_reloc_sizep,
                struct reloc_queue *queue)
                struct reloc_queue *queue)
{
{
  /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
  /* Use a 4 byte R_NO_RELOCATION entry with a maximal value
     then R_PREV_FIXUPs to get the difference down to a
     then R_PREV_FIXUPs to get the difference down to a
     reasonable size.  */
     reasonable size.  */
  if (skip >= 0x1000000)
  if (skip >= 0x1000000)
    {
    {
      skip -= 0x1000000;
      skip -= 0x1000000;
      bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
      bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
      bfd_put_8 (abfd, 0xff, p + 1);
      bfd_put_8 (abfd, 0xff, p + 1);
      bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
      bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
      while (skip >= 0x1000000)
      while (skip >= 0x1000000)
        {
        {
          skip -= 0x1000000;
          skip -= 0x1000000;
          bfd_put_8 (abfd, R_PREV_FIXUP, p);
          bfd_put_8 (abfd, R_PREV_FIXUP, p);
          p++;
          p++;
          *subspace_reloc_sizep += 1;
          *subspace_reloc_sizep += 1;
          /* No need to adjust queue here since we are repeating the
          /* No need to adjust queue here since we are repeating the
             most recent fixup.  */
             most recent fixup.  */
        }
        }
    }
    }
 
 
  /* The difference must be less than 0x1000000.  Use one
  /* The difference must be less than 0x1000000.  Use one
     more R_NO_RELOCATION entry to get to the right difference.  */
     more R_NO_RELOCATION entry to get to the right difference.  */
  if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
  if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
    {
    {
      /* Difference can be handled in a simple single-byte
      /* Difference can be handled in a simple single-byte
         R_NO_RELOCATION entry.  */
         R_NO_RELOCATION entry.  */
      if (skip <= 0x60)
      if (skip <= 0x60)
        {
        {
          bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
          bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
          *subspace_reloc_sizep += 1;
          *subspace_reloc_sizep += 1;
          p++;
          p++;
        }
        }
      /* Handle it with a two byte R_NO_RELOCATION entry.  */
      /* Handle it with a two byte R_NO_RELOCATION entry.  */
      else if (skip <= 0x1000)
      else if (skip <= 0x1000)
        {
        {
          bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
          bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
          bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
          bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
          p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
          p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
        }
        }
      /* Handle it with a three byte R_NO_RELOCATION entry.  */
      /* Handle it with a three byte R_NO_RELOCATION entry.  */
      else
      else
        {
        {
          bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
          bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
          bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
          bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
          p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
          p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
        }
        }
    }
    }
  /* Ugh.  Punt and use a 4 byte entry.  */
  /* Ugh.  Punt and use a 4 byte entry.  */
  else if (skip > 0)
  else if (skip > 0)
    {
    {
      bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
      bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
      bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
      bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
      bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
      bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
    }
    }
  return p;
  return p;
}
}
 
 
/* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
/* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
   from a BFD relocation.  Update the size of the subspace relocation
   from a BFD relocation.  Update the size of the subspace relocation
   stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
   stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
   into the relocation stream.  */
   into the relocation stream.  */
 
 
static unsigned char *
static unsigned char *
som_reloc_addend (bfd *abfd,
som_reloc_addend (bfd *abfd,
                  bfd_vma addend,
                  bfd_vma addend,
                  unsigned char *p,
                  unsigned char *p,
                  unsigned int *subspace_reloc_sizep,
                  unsigned int *subspace_reloc_sizep,
                  struct reloc_queue *queue)
                  struct reloc_queue *queue)
{
{
  if (addend + 0x80 < 0x100)
  if (addend + 0x80 < 0x100)
    {
    {
      bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
      bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
      bfd_put_8 (abfd, addend, p + 1);
      bfd_put_8 (abfd, addend, p + 1);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
    }
    }
  else if (addend + 0x8000 < 0x10000)
  else if (addend + 0x8000 < 0x10000)
    {
    {
      bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
      bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
      bfd_put_16 (abfd, addend, p + 1);
      bfd_put_16 (abfd, addend, p + 1);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
    }
    }
  else if (addend + 0x800000 < 0x1000000)
  else if (addend + 0x800000 < 0x1000000)
    {
    {
      bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
      bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
      bfd_put_8 (abfd, addend >> 16, p + 1);
      bfd_put_8 (abfd, addend >> 16, p + 1);
      bfd_put_16 (abfd, addend, p + 2);
      bfd_put_16 (abfd, addend, p + 2);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
    }
    }
  else
  else
    {
    {
      bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
      bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
      bfd_put_32 (abfd, addend, p + 1);
      bfd_put_32 (abfd, addend, p + 1);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
      p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
    }
    }
  return p;
  return p;
}
}
 
 
/* Handle a single function call relocation.  */
/* Handle a single function call relocation.  */
 
 
static unsigned char *
static unsigned char *
som_reloc_call (bfd *abfd,
som_reloc_call (bfd *abfd,
                unsigned char *p,
                unsigned char *p,
                unsigned int *subspace_reloc_sizep,
                unsigned int *subspace_reloc_sizep,
                arelent *bfd_reloc,
                arelent *bfd_reloc,
                int sym_num,
                int sym_num,
                struct reloc_queue *queue)
                struct reloc_queue *queue)
{
{
  int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
  int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
  int rtn_bits = arg_bits & 0x3;
  int rtn_bits = arg_bits & 0x3;
  int type, done = 0;
  int type, done = 0;
 
 
  /* You'll never believe all this is necessary to handle relocations
  /* You'll never believe all this is necessary to handle relocations
     for function calls.  Having to compute and pack the argument
     for function calls.  Having to compute and pack the argument
     relocation bits is the real nightmare.
     relocation bits is the real nightmare.
 
 
     If you're interested in how this works, just forget it.  You really
     If you're interested in how this works, just forget it.  You really
     do not want to know about this braindamage.  */
     do not want to know about this braindamage.  */
 
 
  /* First see if this can be done with a "simple" relocation.  Simple
  /* First see if this can be done with a "simple" relocation.  Simple
     relocations have a symbol number < 0x100 and have simple encodings
     relocations have a symbol number < 0x100 and have simple encodings
     of argument relocations.  */
     of argument relocations.  */
 
 
  if (sym_num < 0x100)
  if (sym_num < 0x100)
    {
    {
      switch (arg_bits)
      switch (arg_bits)
        {
        {
        case 0:
        case 0:
        case 1:
        case 1:
          type = 0;
          type = 0;
          break;
          break;
        case 1 << 8:
        case 1 << 8:
        case 1 << 8 | 1:
        case 1 << 8 | 1:
          type = 1;
          type = 1;
          break;
          break;
        case 1 << 8 | 1 << 6:
        case 1 << 8 | 1 << 6:
        case 1 << 8 | 1 << 6 | 1:
        case 1 << 8 | 1 << 6 | 1:
          type = 2;
          type = 2;
          break;
          break;
        case 1 << 8 | 1 << 6 | 1 << 4:
        case 1 << 8 | 1 << 6 | 1 << 4:
        case 1 << 8 | 1 << 6 | 1 << 4 | 1:
        case 1 << 8 | 1 << 6 | 1 << 4 | 1:
          type = 3;
          type = 3;
          break;
          break;
        case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
        case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
        case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
        case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
          type = 4;
          type = 4;
          break;
          break;
        default:
        default:
          /* Not one of the easy encodings.  This will have to be
          /* Not one of the easy encodings.  This will have to be
             handled by the more complex code below.  */
             handled by the more complex code below.  */
          type = -1;
          type = -1;
          break;
          break;
        }
        }
      if (type != -1)
      if (type != -1)
        {
        {
          /* Account for the return value too.  */
          /* Account for the return value too.  */
          if (rtn_bits)
          if (rtn_bits)
            type += 5;
            type += 5;
 
 
          /* Emit a 2 byte relocation.  Then see if it can be handled
          /* Emit a 2 byte relocation.  Then see if it can be handled
             with a relocation which is already in the relocation queue.  */
             with a relocation which is already in the relocation queue.  */
          bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
          bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
          bfd_put_8 (abfd, sym_num, p + 1);
          bfd_put_8 (abfd, sym_num, p + 1);
          p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
          p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
          done = 1;
          done = 1;
        }
        }
    }
    }
 
 
  /* If this could not be handled with a simple relocation, then do a hard
  /* If this could not be handled with a simple relocation, then do a hard
     one.  Hard relocations occur if the symbol number was too high or if
     one.  Hard relocations occur if the symbol number was too high or if
     the encoding of argument relocation bits is too complex.  */
     the encoding of argument relocation bits is too complex.  */
  if (! done)
  if (! done)
    {
    {
      /* Don't ask about these magic sequences.  I took them straight
      /* Don't ask about these magic sequences.  I took them straight
         from gas-1.36 which took them from the a.out man page.  */
         from gas-1.36 which took them from the a.out man page.  */
      type = rtn_bits;
      type = rtn_bits;
      if ((arg_bits >> 6 & 0xf) == 0xe)
      if ((arg_bits >> 6 & 0xf) == 0xe)
        type += 9 * 40;
        type += 9 * 40;
      else
      else
        type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
        type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
      if ((arg_bits >> 2 & 0xf) == 0xe)
      if ((arg_bits >> 2 & 0xf) == 0xe)
        type += 9 * 4;
        type += 9 * 4;
      else
      else
        type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
        type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
 
 
      /* Output the first two bytes of the relocation.  These describe
      /* Output the first two bytes of the relocation.  These describe
         the length of the relocation and encoding style.  */
         the length of the relocation and encoding style.  */
      bfd_put_8 (abfd, bfd_reloc->howto->type + 10
      bfd_put_8 (abfd, bfd_reloc->howto->type + 10
                 + 2 * (sym_num >= 0x100) + (type >= 0x100),
                 + 2 * (sym_num >= 0x100) + (type >= 0x100),
                 p);
                 p);
      bfd_put_8 (abfd, type, p + 1);
      bfd_put_8 (abfd, type, p + 1);
 
 
      /* Now output the symbol index and see if this bizarre relocation
      /* Now output the symbol index and see if this bizarre relocation
         just happened to be in the relocation queue.  */
         just happened to be in the relocation queue.  */
      if (sym_num < 0x100)
      if (sym_num < 0x100)
        {
        {
          bfd_put_8 (abfd, sym_num, p + 2);
          bfd_put_8 (abfd, sym_num, p + 2);
          p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
          p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
        }
        }
      else
      else
        {
        {
          bfd_put_8 (abfd, sym_num >> 16, p + 2);
          bfd_put_8 (abfd, sym_num >> 16, p + 2);
          bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
          bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
          p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
          p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
        }
        }
    }
    }
  return p;
  return p;
}
}
 
 
/* Return the logarithm of X, base 2, considering X unsigned,
/* Return the logarithm of X, base 2, considering X unsigned,
   if X is a power of 2.  Otherwise, returns -1.  */
   if X is a power of 2.  Otherwise, returns -1.  */
 
 
static int
static int
exact_log2 (unsigned int x)
exact_log2 (unsigned int x)
{
{
  int log = 0;
  int log = 0;
 
 
  /* Test for 0 or a power of 2.  */
  /* Test for 0 or a power of 2.  */
  if (x == 0 || x != (x & -x))
  if (x == 0 || x != (x & -x))
    return -1;
    return -1;
 
 
  while ((x >>= 1) != 0)
  while ((x >>= 1) != 0)
    log++;
    log++;
  return log;
  return log;
}
}
 
 
static bfd_reloc_status_type
static bfd_reloc_status_type
hppa_som_reloc (bfd *abfd ATTRIBUTE_UNUSED,
hppa_som_reloc (bfd *abfd ATTRIBUTE_UNUSED,
                arelent *reloc_entry,
                arelent *reloc_entry,
                asymbol *symbol_in ATTRIBUTE_UNUSED,
                asymbol *symbol_in ATTRIBUTE_UNUSED,
                void *data ATTRIBUTE_UNUSED,
                void *data ATTRIBUTE_UNUSED,
                asection *input_section,
                asection *input_section,
                bfd *output_bfd,
                bfd *output_bfd,
                char **error_message ATTRIBUTE_UNUSED)
                char **error_message ATTRIBUTE_UNUSED)
{
{
  if (output_bfd)
  if (output_bfd)
    reloc_entry->address += input_section->output_offset;
    reloc_entry->address += input_section->output_offset;
 
 
  return bfd_reloc_ok;
  return bfd_reloc_ok;
}
}
 
 
/* Given a generic HPPA relocation type, the instruction format,
/* Given a generic HPPA relocation type, the instruction format,
   and a field selector, return one or more appropriate SOM relocations.  */
   and a field selector, return one or more appropriate SOM relocations.  */
 
 
int **
int **
hppa_som_gen_reloc_type (bfd *abfd,
hppa_som_gen_reloc_type (bfd *abfd,
                         int base_type,
                         int base_type,
                         int format,
                         int format,
                         enum hppa_reloc_field_selector_type_alt field,
                         enum hppa_reloc_field_selector_type_alt field,
                         int sym_diff,
                         int sym_diff,
                         asymbol *sym)
                         asymbol *sym)
{
{
  int *final_type, **final_types;
  int *final_type, **final_types;
 
 
  final_types = bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
  final_types = bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
  final_type = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
  final_type = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
  if (!final_types || !final_type)
  if (!final_types || !final_type)
    return NULL;
    return NULL;
 
 
  /* The field selector may require additional relocations to be
  /* The field selector may require additional relocations to be
     generated.  It's impossible to know at this moment if additional
     generated.  It's impossible to know at this moment if additional
     relocations will be needed, so we make them.  The code to actually
     relocations will be needed, so we make them.  The code to actually
     write the relocation/fixup stream is responsible for removing
     write the relocation/fixup stream is responsible for removing
     any redundant relocations.  */
     any redundant relocations.  */
  switch (field)
  switch (field)
    {
    {
    case e_fsel:
    case e_fsel:
    case e_psel:
    case e_psel:
    case e_lpsel:
    case e_lpsel:
    case e_rpsel:
    case e_rpsel:
      final_types[0] = final_type;
      final_types[0] = final_type;
      final_types[1] = NULL;
      final_types[1] = NULL;
      final_types[2] = NULL;
      final_types[2] = NULL;
      *final_type = base_type;
      *final_type = base_type;
      break;
      break;
 
 
    case e_tsel:
    case e_tsel:
    case e_ltsel:
    case e_ltsel:
    case e_rtsel:
    case e_rtsel:
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      if (!final_types[0])
      if (!final_types[0])
        return NULL;
        return NULL;
      if (field == e_tsel)
      if (field == e_tsel)
        *final_types[0] = R_FSEL;
        *final_types[0] = R_FSEL;
      else if (field == e_ltsel)
      else if (field == e_ltsel)
        *final_types[0] = R_LSEL;
        *final_types[0] = R_LSEL;
      else
      else
        *final_types[0] = R_RSEL;
        *final_types[0] = R_RSEL;
      final_types[1] = final_type;
      final_types[1] = final_type;
      final_types[2] = NULL;
      final_types[2] = NULL;
      *final_type = base_type;
      *final_type = base_type;
      break;
      break;
 
 
    case e_lssel:
    case e_lssel:
    case e_rssel:
    case e_rssel:
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      if (!final_types[0])
      if (!final_types[0])
        return NULL;
        return NULL;
      *final_types[0] = R_S_MODE;
      *final_types[0] = R_S_MODE;
      final_types[1] = final_type;
      final_types[1] = final_type;
      final_types[2] = NULL;
      final_types[2] = NULL;
      *final_type = base_type;
      *final_type = base_type;
      break;
      break;
 
 
    case e_lsel:
    case e_lsel:
    case e_rsel:
    case e_rsel:
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      if (!final_types[0])
      if (!final_types[0])
        return NULL;
        return NULL;
      *final_types[0] = R_N_MODE;
      *final_types[0] = R_N_MODE;
      final_types[1] = final_type;
      final_types[1] = final_type;
      final_types[2] = NULL;
      final_types[2] = NULL;
      *final_type = base_type;
      *final_type = base_type;
      break;
      break;
 
 
    case e_ldsel:
    case e_ldsel:
    case e_rdsel:
    case e_rdsel:
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      if (!final_types[0])
      if (!final_types[0])
        return NULL;
        return NULL;
      *final_types[0] = R_D_MODE;
      *final_types[0] = R_D_MODE;
      final_types[1] = final_type;
      final_types[1] = final_type;
      final_types[2] = NULL;
      final_types[2] = NULL;
      *final_type = base_type;
      *final_type = base_type;
      break;
      break;
 
 
    case e_lrsel:
    case e_lrsel:
    case e_rrsel:
    case e_rrsel:
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      if (!final_types[0])
      if (!final_types[0])
        return NULL;
        return NULL;
      *final_types[0] = R_R_MODE;
      *final_types[0] = R_R_MODE;
      final_types[1] = final_type;
      final_types[1] = final_type;
      final_types[2] = NULL;
      final_types[2] = NULL;
      *final_type = base_type;
      *final_type = base_type;
      break;
      break;
 
 
    case e_nsel:
    case e_nsel:
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      if (!final_types[0])
      if (!final_types[0])
        return NULL;
        return NULL;
      *final_types[0] = R_N1SEL;
      *final_types[0] = R_N1SEL;
      final_types[1] = final_type;
      final_types[1] = final_type;
      final_types[2] = NULL;
      final_types[2] = NULL;
      *final_type = base_type;
      *final_type = base_type;
      break;
      break;
 
 
    case e_nlsel:
    case e_nlsel:
    case e_nlrsel:
    case e_nlrsel:
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      if (!final_types[0])
      if (!final_types[0])
        return NULL;
        return NULL;
      *final_types[0] = R_N0SEL;
      *final_types[0] = R_N0SEL;
      final_types[1] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      final_types[1] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
      if (!final_types[1])
      if (!final_types[1])
        return NULL;
        return NULL;
      if (field == e_nlsel)
      if (field == e_nlsel)
        *final_types[1] = R_N_MODE;
        *final_types[1] = R_N_MODE;
      else
      else
        *final_types[1] = R_R_MODE;
        *final_types[1] = R_R_MODE;
      final_types[2] = final_type;
      final_types[2] = final_type;
      final_types[3] = NULL;
      final_types[3] = NULL;
      *final_type = base_type;
      *final_type = base_type;
      break;
      break;
 
 
    /* FIXME: These two field selectors are not currently supported.  */
    /* FIXME: These two field selectors are not currently supported.  */
    case e_ltpsel:
    case e_ltpsel:
    case e_rtpsel:
    case e_rtpsel:
      abort ();
      abort ();
    }
    }
 
 
  switch (base_type)
  switch (base_type)
    {
    {
    case R_HPPA:
    case R_HPPA:
      /* The difference of two symbols needs *very* special handling.  */
      /* The difference of two symbols needs *very* special handling.  */
      if (sym_diff)
      if (sym_diff)
        {
        {
          bfd_size_type amt = sizeof (int);
          bfd_size_type amt = sizeof (int);
 
 
          final_types[0] = bfd_alloc (abfd, amt);
          final_types[0] = bfd_alloc (abfd, amt);
          final_types[1] = bfd_alloc (abfd, amt);
          final_types[1] = bfd_alloc (abfd, amt);
          final_types[2] = bfd_alloc (abfd, amt);
          final_types[2] = bfd_alloc (abfd, amt);
          final_types[3] = bfd_alloc (abfd, amt);
          final_types[3] = bfd_alloc (abfd, amt);
          if (!final_types[0] || !final_types[1] || !final_types[2])
          if (!final_types[0] || !final_types[1] || !final_types[2])
            return NULL;
            return NULL;
          if (field == e_fsel)
          if (field == e_fsel)
            *final_types[0] = R_FSEL;
            *final_types[0] = R_FSEL;
          else if (field == e_rsel)
          else if (field == e_rsel)
            *final_types[0] = R_RSEL;
            *final_types[0] = R_RSEL;
          else if (field == e_lsel)
          else if (field == e_lsel)
            *final_types[0] = R_LSEL;
            *final_types[0] = R_LSEL;
          *final_types[1] = R_COMP2;
          *final_types[1] = R_COMP2;
          *final_types[2] = R_COMP2;
          *final_types[2] = R_COMP2;
          *final_types[3] = R_COMP1;
          *final_types[3] = R_COMP1;
          final_types[4] = final_type;
          final_types[4] = final_type;
          if (format == 32)
          if (format == 32)
            *final_types[4] = R_DATA_EXPR;
            *final_types[4] = R_DATA_EXPR;
          else
          else
            *final_types[4] = R_CODE_EXPR;
            *final_types[4] = R_CODE_EXPR;
          final_types[5] = NULL;
          final_types[5] = NULL;
          break;
          break;
        }
        }
      /* PLABELs get their own relocation type.  */
      /* PLABELs get their own relocation type.  */
      else if (field == e_psel
      else if (field == e_psel
               || field == e_lpsel
               || field == e_lpsel
               || field == e_rpsel)
               || field == e_rpsel)
        {
        {
          /* A PLABEL relocation that has a size of 32 bits must
          /* A PLABEL relocation that has a size of 32 bits must
             be a R_DATA_PLABEL.  All others are R_CODE_PLABELs.  */
             be a R_DATA_PLABEL.  All others are R_CODE_PLABELs.  */
          if (format == 32)
          if (format == 32)
            *final_type = R_DATA_PLABEL;
            *final_type = R_DATA_PLABEL;
          else
          else
            *final_type = R_CODE_PLABEL;
            *final_type = R_CODE_PLABEL;
        }
        }
      /* PIC stuff.  */
      /* PIC stuff.  */
      else if (field == e_tsel
      else if (field == e_tsel
               || field == e_ltsel
               || field == e_ltsel
               || field == e_rtsel)
               || field == e_rtsel)
        *final_type = R_DLT_REL;
        *final_type = R_DLT_REL;
      /* A relocation in the data space is always a full 32bits.  */
      /* A relocation in the data space is always a full 32bits.  */
      else if (format == 32)
      else if (format == 32)
        {
        {
          *final_type = R_DATA_ONE_SYMBOL;
          *final_type = R_DATA_ONE_SYMBOL;
 
 
          /* If there's no SOM symbol type associated with this BFD
          /* If there's no SOM symbol type associated with this BFD
             symbol, then set the symbol type to ST_DATA.
             symbol, then set the symbol type to ST_DATA.
 
 
             Only do this if the type is going to default later when
             Only do this if the type is going to default later when
             we write the object file.
             we write the object file.
 
 
             This is done so that the linker never encounters an
             This is done so that the linker never encounters an
             R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
             R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
 
 
             This allows the compiler to generate exception handling
             This allows the compiler to generate exception handling
             tables.
             tables.
 
 
             Note that one day we may need to also emit BEGIN_BRTAB and
             Note that one day we may need to also emit BEGIN_BRTAB and
             END_BRTAB to prevent the linker from optimizing away insns
             END_BRTAB to prevent the linker from optimizing away insns
             in exception handling regions.  */
             in exception handling regions.  */
          if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
          if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
              && (sym->flags & BSF_SECTION_SYM) == 0
              && (sym->flags & BSF_SECTION_SYM) == 0
              && (sym->flags & BSF_FUNCTION) == 0
              && (sym->flags & BSF_FUNCTION) == 0
              && ! bfd_is_com_section (sym->section))
              && ! bfd_is_com_section (sym->section))
            som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
            som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
        }
        }
      break;
      break;
 
 
    case R_HPPA_GOTOFF:
    case R_HPPA_GOTOFF:
      /* More PLABEL special cases.  */
      /* More PLABEL special cases.  */
      if (field == e_psel
      if (field == e_psel
          || field == e_lpsel
          || field == e_lpsel
          || field == e_rpsel)
          || field == e_rpsel)
        *final_type = R_DATA_PLABEL;
        *final_type = R_DATA_PLABEL;
      break;
      break;
 
 
    case R_HPPA_COMPLEX:
    case R_HPPA_COMPLEX:
      /* The difference of two symbols needs *very* special handling.  */
      /* The difference of two symbols needs *very* special handling.  */
      if (sym_diff)
      if (sym_diff)
        {
        {
          bfd_size_type amt = sizeof (int);
          bfd_size_type amt = sizeof (int);
 
 
          final_types[0] = bfd_alloc (abfd, amt);
          final_types[0] = bfd_alloc (abfd, amt);
          final_types[1] = bfd_alloc (abfd, amt);
          final_types[1] = bfd_alloc (abfd, amt);
          final_types[2] = bfd_alloc (abfd, amt);
          final_types[2] = bfd_alloc (abfd, amt);
          final_types[3] = bfd_alloc (abfd, amt);
          final_types[3] = bfd_alloc (abfd, amt);
          if (!final_types[0] || !final_types[1] || !final_types[2])
          if (!final_types[0] || !final_types[1] || !final_types[2])
            return NULL;
            return NULL;
          if (field == e_fsel)
          if (field == e_fsel)
            *final_types[0] = R_FSEL;
            *final_types[0] = R_FSEL;
          else if (field == e_rsel)
          else if (field == e_rsel)
            *final_types[0] = R_RSEL;
            *final_types[0] = R_RSEL;
          else if (field == e_lsel)
          else if (field == e_lsel)
            *final_types[0] = R_LSEL;
            *final_types[0] = R_LSEL;
          *final_types[1] = R_COMP2;
          *final_types[1] = R_COMP2;
          *final_types[2] = R_COMP2;
          *final_types[2] = R_COMP2;
          *final_types[3] = R_COMP1;
          *final_types[3] = R_COMP1;
          final_types[4] = final_type;
          final_types[4] = final_type;
          if (format == 32)
          if (format == 32)
            *final_types[4] = R_DATA_EXPR;
            *final_types[4] = R_DATA_EXPR;
          else
          else
            *final_types[4] = R_CODE_EXPR;
            *final_types[4] = R_CODE_EXPR;
          final_types[5] = NULL;
          final_types[5] = NULL;
          break;
          break;
        }
        }
      else
      else
        break;
        break;
 
 
    case R_HPPA_NONE:
    case R_HPPA_NONE:
    case R_HPPA_ABS_CALL:
    case R_HPPA_ABS_CALL:
      /* Right now we can default all these.  */
      /* Right now we can default all these.  */
      break;
      break;
 
 
    case R_HPPA_PCREL_CALL:
    case R_HPPA_PCREL_CALL:
      {
      {
#ifndef NO_PCREL_MODES
#ifndef NO_PCREL_MODES
        /* If we have short and long pcrel modes, then generate the proper
        /* If we have short and long pcrel modes, then generate the proper
           mode selector, then the pcrel relocation.  Redundant selectors
           mode selector, then the pcrel relocation.  Redundant selectors
           will be eliminated as the relocs are sized and emitted.  */
           will be eliminated as the relocs are sized and emitted.  */
        bfd_size_type amt = sizeof (int);
        bfd_size_type amt = sizeof (int);
 
 
        final_types[0] = bfd_alloc (abfd, amt);
        final_types[0] = bfd_alloc (abfd, amt);
        if (!final_types[0])
        if (!final_types[0])
          return NULL;
          return NULL;
        if (format == 17)
        if (format == 17)
          *final_types[0] = R_SHORT_PCREL_MODE;
          *final_types[0] = R_SHORT_PCREL_MODE;
        else
        else
          *final_types[0] = R_LONG_PCREL_MODE;
          *final_types[0] = R_LONG_PCREL_MODE;
        final_types[1] = final_type;
        final_types[1] = final_type;
        final_types[2] = NULL;
        final_types[2] = NULL;
        *final_type = base_type;
        *final_type = base_type;
#endif
#endif
        break;
        break;
      }
      }
    }
    }
  return final_types;
  return final_types;
}
}
 
 
/* Return the address of the correct entry in the PA SOM relocation
/* Return the address of the correct entry in the PA SOM relocation
   howto table.  */
   howto table.  */
 
 
static reloc_howto_type *
static reloc_howto_type *
som_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
som_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
                           bfd_reloc_code_real_type code)
                           bfd_reloc_code_real_type code)
{
{
  if ((int) code < (int) R_NO_RELOCATION + 255)
  if ((int) code < (int) R_NO_RELOCATION + 255)
    {
    {
      BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
      BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
      return &som_hppa_howto_table[(int) code];
      return &som_hppa_howto_table[(int) code];
    }
    }
 
 
  return NULL;
  return NULL;
}
}
 
 
static reloc_howto_type *
static reloc_howto_type *
som_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
som_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
                           const char *r_name)
                           const char *r_name)
{
{
  unsigned int i;
  unsigned int i;
 
 
  for (i = 0;
  for (i = 0;
       i < sizeof (som_hppa_howto_table) / sizeof (som_hppa_howto_table[0]);
       i < sizeof (som_hppa_howto_table) / sizeof (som_hppa_howto_table[0]);
       i++)
       i++)
    if (som_hppa_howto_table[i].name != NULL
    if (som_hppa_howto_table[i].name != NULL
        && strcasecmp (som_hppa_howto_table[i].name, r_name) == 0)
        && strcasecmp (som_hppa_howto_table[i].name, r_name) == 0)
      return &som_hppa_howto_table[i];
      return &som_hppa_howto_table[i];
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Perform some initialization for an object.  Save results of this
/* Perform some initialization for an object.  Save results of this
   initialization in the BFD.  */
   initialization in the BFD.  */
 
 
static const bfd_target *
static const bfd_target *
som_object_setup (bfd *abfd,
som_object_setup (bfd *abfd,
                  struct header *file_hdrp,
                  struct header *file_hdrp,
                  struct som_exec_auxhdr *aux_hdrp,
                  struct som_exec_auxhdr *aux_hdrp,
                  unsigned long current_offset)
                  unsigned long current_offset)
{
{
  asection *section;
  asection *section;
 
 
  /* som_mkobject will set bfd_error if som_mkobject fails.  */
  /* som_mkobject will set bfd_error if som_mkobject fails.  */
  if (! som_mkobject (abfd))
  if (! som_mkobject (abfd))
    return NULL;
    return NULL;
 
 
  /* Set BFD flags based on what information is available in the SOM.  */
  /* Set BFD flags based on what information is available in the SOM.  */
  abfd->flags = BFD_NO_FLAGS;
  abfd->flags = BFD_NO_FLAGS;
  if (file_hdrp->symbol_total)
  if (file_hdrp->symbol_total)
    abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
    abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
 
 
  switch (file_hdrp->a_magic)
  switch (file_hdrp->a_magic)
    {
    {
    case DEMAND_MAGIC:
    case DEMAND_MAGIC:
      abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
      abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
      break;
      break;
    case SHARE_MAGIC:
    case SHARE_MAGIC:
      abfd->flags |= (WP_TEXT | EXEC_P);
      abfd->flags |= (WP_TEXT | EXEC_P);
      break;
      break;
    case EXEC_MAGIC:
    case EXEC_MAGIC:
      abfd->flags |= (EXEC_P);
      abfd->flags |= (EXEC_P);
      break;
      break;
    case RELOC_MAGIC:
    case RELOC_MAGIC:
      abfd->flags |= HAS_RELOC;
      abfd->flags |= HAS_RELOC;
      break;
      break;
#ifdef SHL_MAGIC
#ifdef SHL_MAGIC
    case SHL_MAGIC:
    case SHL_MAGIC:
#endif
#endif
#ifdef DL_MAGIC
#ifdef DL_MAGIC
    case DL_MAGIC:
    case DL_MAGIC:
#endif
#endif
      abfd->flags |= DYNAMIC;
      abfd->flags |= DYNAMIC;
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* Save the auxiliary header.  */
  /* Save the auxiliary header.  */
  obj_som_exec_hdr (abfd) = aux_hdrp;
  obj_som_exec_hdr (abfd) = aux_hdrp;
 
 
  /* Allocate space to hold the saved exec header information.  */
  /* Allocate space to hold the saved exec header information.  */
  obj_som_exec_data (abfd) = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
  obj_som_exec_data (abfd) = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
  if (obj_som_exec_data (abfd) == NULL)
  if (obj_som_exec_data (abfd) == NULL)
    return NULL;
    return NULL;
 
 
  /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
  /* The braindamaged OSF1 linker switched exec_flags and exec_entry!
 
 
     We used to identify OSF1 binaries based on NEW_VERSION_ID, but
     We used to identify OSF1 binaries based on NEW_VERSION_ID, but
     apparently the latest HPUX linker is using NEW_VERSION_ID now.
     apparently the latest HPUX linker is using NEW_VERSION_ID now.
 
 
     It's about time, OSF has used the new id since at least 1992;
     It's about time, OSF has used the new id since at least 1992;
     HPUX didn't start till nearly 1995!.
     HPUX didn't start till nearly 1995!.
 
 
     The new approach examines the entry field for an executable.  If
     The new approach examines the entry field for an executable.  If
     it is not 4-byte aligned then it's not a proper code address and
     it is not 4-byte aligned then it's not a proper code address and
     we guess it's really the executable flags.  For a main program,
     we guess it's really the executable flags.  For a main program,
     we also consider zero to be indicative of a buggy linker, since
     we also consider zero to be indicative of a buggy linker, since
     that is not a valid entry point.  The entry point for a shared
     that is not a valid entry point.  The entry point for a shared
     library, however, can be zero so we do not consider that to be
     library, however, can be zero so we do not consider that to be
     indicative of a buggy linker.  */
     indicative of a buggy linker.  */
  if (aux_hdrp)
  if (aux_hdrp)
    {
    {
      int found = 0;
      int found = 0;
 
 
      for (section = abfd->sections; section; section = section->next)
      for (section = abfd->sections; section; section = section->next)
        {
        {
          bfd_vma entry;
          bfd_vma entry;
 
 
          if ((section->flags & SEC_CODE) == 0)
          if ((section->flags & SEC_CODE) == 0)
            continue;
            continue;
          entry = aux_hdrp->exec_entry + aux_hdrp->exec_tmem;
          entry = aux_hdrp->exec_entry + aux_hdrp->exec_tmem;
          if (entry >= section->vma
          if (entry >= section->vma
              && entry < section->vma + section->size)
              && entry < section->vma + section->size)
            found = 1;
            found = 1;
        }
        }
      if ((aux_hdrp->exec_entry == 0 && !(abfd->flags & DYNAMIC))
      if ((aux_hdrp->exec_entry == 0 && !(abfd->flags & DYNAMIC))
          || (aux_hdrp->exec_entry & 0x3) != 0
          || (aux_hdrp->exec_entry & 0x3) != 0
          || ! found)
          || ! found)
        {
        {
          bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
          bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
          obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
          obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
        }
        }
      else
      else
        {
        {
          bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
          bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
          obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
          obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
        }
        }
    }
    }
 
 
  obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
  obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
 
 
  bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
  bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
  bfd_get_symcount (abfd) = file_hdrp->symbol_total;
  bfd_get_symcount (abfd) = file_hdrp->symbol_total;
 
 
  /* Initialize the saved symbol table and string table to NULL.
  /* Initialize the saved symbol table and string table to NULL.
     Save important offsets and sizes from the SOM header into
     Save important offsets and sizes from the SOM header into
     the BFD.  */
     the BFD.  */
  obj_som_stringtab (abfd) = NULL;
  obj_som_stringtab (abfd) = NULL;
  obj_som_symtab (abfd) = NULL;
  obj_som_symtab (abfd) = NULL;
  obj_som_sorted_syms (abfd) = NULL;
  obj_som_sorted_syms (abfd) = NULL;
  obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
  obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
  obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
  obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
  obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
  obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
                                + current_offset);
                                + current_offset);
  obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
  obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
                                  + current_offset);
                                  + current_offset);
  obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
  obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
 
 
  return abfd->xvec;
  return abfd->xvec;
}
}
 
 
/* Convert all of the space and subspace info into BFD sections.  Each space
/* Convert all of the space and subspace info into BFD sections.  Each space
   contains a number of subspaces, which in turn describe the mapping between
   contains a number of subspaces, which in turn describe the mapping between
   regions of the exec file, and the address space that the program runs in.
   regions of the exec file, and the address space that the program runs in.
   BFD sections which correspond to spaces will overlap the sections for the
   BFD sections which correspond to spaces will overlap the sections for the
   associated subspaces.  */
   associated subspaces.  */
 
 
static bfd_boolean
static bfd_boolean
setup_sections (bfd *abfd,
setup_sections (bfd *abfd,
                struct header *file_hdr,
                struct header *file_hdr,
                unsigned long current_offset)
                unsigned long current_offset)
{
{
  char *space_strings;
  char *space_strings;
  unsigned int space_index, i;
  unsigned int space_index, i;
  unsigned int total_subspaces = 0;
  unsigned int total_subspaces = 0;
  asection **subspace_sections = NULL;
  asection **subspace_sections = NULL;
  asection *section;
  asection *section;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  /* First, read in space names.  */
  /* First, read in space names.  */
  amt = file_hdr->space_strings_size;
  amt = file_hdr->space_strings_size;
  space_strings = bfd_malloc (amt);
  space_strings = bfd_malloc (amt);
  if (!space_strings && amt != 0)
  if (!space_strings && amt != 0)
    goto error_return;
    goto error_return;
 
 
  if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
  if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
                SEEK_SET) != 0)
                SEEK_SET) != 0)
    goto error_return;
    goto error_return;
  if (bfd_bread (space_strings, amt, abfd) != amt)
  if (bfd_bread (space_strings, amt, abfd) != amt)
    goto error_return;
    goto error_return;
 
 
  /* Loop over all of the space dictionaries, building up sections.  */
  /* Loop over all of the space dictionaries, building up sections.  */
  for (space_index = 0; space_index < file_hdr->space_total; space_index++)
  for (space_index = 0; space_index < file_hdr->space_total; space_index++)
    {
    {
      struct space_dictionary_record space;
      struct space_dictionary_record space;
      struct som_subspace_dictionary_record subspace, save_subspace;
      struct som_subspace_dictionary_record subspace, save_subspace;
      unsigned int subspace_index;
      unsigned int subspace_index;
      asection *space_asect;
      asection *space_asect;
      bfd_size_type space_size = 0;
      bfd_size_type space_size = 0;
      char *newname;
      char *newname;
 
 
      /* Read the space dictionary element.  */
      /* Read the space dictionary element.  */
      if (bfd_seek (abfd,
      if (bfd_seek (abfd,
                    (current_offset + file_hdr->space_location
                    (current_offset + file_hdr->space_location
                     + space_index * sizeof space),
                     + space_index * sizeof space),
                    SEEK_SET) != 0)
                    SEEK_SET) != 0)
        goto error_return;
        goto error_return;
      amt = sizeof space;
      amt = sizeof space;
      if (bfd_bread (&space, amt, abfd) != amt)
      if (bfd_bread (&space, amt, abfd) != amt)
        goto error_return;
        goto error_return;
 
 
      /* Setup the space name string.  */
      /* Setup the space name string.  */
      space.name.n_name = space.name.n_strx + space_strings;
      space.name.n_name = space.name.n_strx + space_strings;
 
 
      /* Make a section out of it.  */
      /* Make a section out of it.  */
      amt = strlen (space.name.n_name) + 1;
      amt = strlen (space.name.n_name) + 1;
      newname = bfd_alloc (abfd, amt);
      newname = bfd_alloc (abfd, amt);
      if (!newname)
      if (!newname)
        goto error_return;
        goto error_return;
      strcpy (newname, space.name.n_name);
      strcpy (newname, space.name.n_name);
 
 
      space_asect = bfd_make_section_anyway (abfd, newname);
      space_asect = bfd_make_section_anyway (abfd, newname);
      if (!space_asect)
      if (!space_asect)
        goto error_return;
        goto error_return;
 
 
      if (space.is_loadable == 0)
      if (space.is_loadable == 0)
        space_asect->flags |= SEC_DEBUGGING;
        space_asect->flags |= SEC_DEBUGGING;
 
 
      /* Set up all the attributes for the space.  */
      /* Set up all the attributes for the space.  */
      if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
      if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
                                            space.is_private, space.sort_key,
                                            space.is_private, space.sort_key,
                                            space.space_number))
                                            space.space_number))
        goto error_return;
        goto error_return;
 
 
      /* If the space has no subspaces, then we're done.  */
      /* If the space has no subspaces, then we're done.  */
      if (space.subspace_quantity == 0)
      if (space.subspace_quantity == 0)
        continue;
        continue;
 
 
      /* Now, read in the first subspace for this space.  */
      /* Now, read in the first subspace for this space.  */
      if (bfd_seek (abfd,
      if (bfd_seek (abfd,
                    (current_offset + file_hdr->subspace_location
                    (current_offset + file_hdr->subspace_location
                     + space.subspace_index * sizeof subspace),
                     + space.subspace_index * sizeof subspace),
                    SEEK_SET) != 0)
                    SEEK_SET) != 0)
        goto error_return;
        goto error_return;
      amt = sizeof subspace;
      amt = sizeof subspace;
      if (bfd_bread (&subspace, amt, abfd) != amt)
      if (bfd_bread (&subspace, amt, abfd) != amt)
        goto error_return;
        goto error_return;
      /* Seek back to the start of the subspaces for loop below.  */
      /* Seek back to the start of the subspaces for loop below.  */
      if (bfd_seek (abfd,
      if (bfd_seek (abfd,
                    (current_offset + file_hdr->subspace_location
                    (current_offset + file_hdr->subspace_location
                     + space.subspace_index * sizeof subspace),
                     + space.subspace_index * sizeof subspace),
                    SEEK_SET) != 0)
                    SEEK_SET) != 0)
        goto error_return;
        goto error_return;
 
 
      /* Setup the start address and file loc from the first subspace
      /* Setup the start address and file loc from the first subspace
         record.  */
         record.  */
      space_asect->vma = subspace.subspace_start;
      space_asect->vma = subspace.subspace_start;
      space_asect->filepos = subspace.file_loc_init_value + current_offset;
      space_asect->filepos = subspace.file_loc_init_value + current_offset;
      space_asect->alignment_power = exact_log2 (subspace.alignment);
      space_asect->alignment_power = exact_log2 (subspace.alignment);
      if (space_asect->alignment_power == (unsigned) -1)
      if (space_asect->alignment_power == (unsigned) -1)
        goto error_return;
        goto error_return;
 
 
      /* Initialize save_subspace so we can reliably determine if this
      /* Initialize save_subspace so we can reliably determine if this
         loop placed any useful values into it.  */
         loop placed any useful values into it.  */
      memset (&save_subspace, 0, sizeof (save_subspace));
      memset (&save_subspace, 0, sizeof (save_subspace));
 
 
      /* Loop over the rest of the subspaces, building up more sections.  */
      /* Loop over the rest of the subspaces, building up more sections.  */
      for (subspace_index = 0; subspace_index < space.subspace_quantity;
      for (subspace_index = 0; subspace_index < space.subspace_quantity;
           subspace_index++)
           subspace_index++)
        {
        {
          asection *subspace_asect;
          asection *subspace_asect;
 
 
          /* Read in the next subspace.  */
          /* Read in the next subspace.  */
          amt = sizeof subspace;
          amt = sizeof subspace;
          if (bfd_bread (&subspace, amt, abfd) != amt)
          if (bfd_bread (&subspace, amt, abfd) != amt)
            goto error_return;
            goto error_return;
 
 
          /* Setup the subspace name string.  */
          /* Setup the subspace name string.  */
          subspace.name.n_name = subspace.name.n_strx + space_strings;
          subspace.name.n_name = subspace.name.n_strx + space_strings;
 
 
          amt = strlen (subspace.name.n_name) + 1;
          amt = strlen (subspace.name.n_name) + 1;
          newname = bfd_alloc (abfd, amt);
          newname = bfd_alloc (abfd, amt);
          if (!newname)
          if (!newname)
            goto error_return;
            goto error_return;
          strcpy (newname, subspace.name.n_name);
          strcpy (newname, subspace.name.n_name);
 
 
          /* Make a section out of this subspace.  */
          /* Make a section out of this subspace.  */
          subspace_asect = bfd_make_section_anyway (abfd, newname);
          subspace_asect = bfd_make_section_anyway (abfd, newname);
          if (!subspace_asect)
          if (!subspace_asect)
            goto error_return;
            goto error_return;
 
 
          /* Store private information about the section.  */
          /* Store private information about the section.  */
          if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
          if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
                                                   subspace.access_control_bits,
                                                   subspace.access_control_bits,
                                                   subspace.sort_key,
                                                   subspace.sort_key,
                                                   subspace.quadrant,
                                                   subspace.quadrant,
                                                   subspace.is_comdat,
                                                   subspace.is_comdat,
                                                   subspace.is_common,
                                                   subspace.is_common,
                                                   subspace.dup_common))
                                                   subspace.dup_common))
            goto error_return;
            goto error_return;
 
 
          /* Keep an easy mapping between subspaces and sections.
          /* Keep an easy mapping between subspaces and sections.
             Note we do not necessarily read the subspaces in the
             Note we do not necessarily read the subspaces in the
             same order in which they appear in the object file.
             same order in which they appear in the object file.
 
 
             So to make the target index come out correctly, we
             So to make the target index come out correctly, we
             store the location of the subspace header in target
             store the location of the subspace header in target
             index, then sort using the location of the subspace
             index, then sort using the location of the subspace
             header as the key.  Then we can assign correct
             header as the key.  Then we can assign correct
             subspace indices.  */
             subspace indices.  */
          total_subspaces++;
          total_subspaces++;
          subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
          subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
 
 
          /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
          /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
             by the access_control_bits in the subspace header.  */
             by the access_control_bits in the subspace header.  */
          switch (subspace.access_control_bits >> 4)
          switch (subspace.access_control_bits >> 4)
            {
            {
            /* Readonly data.  */
            /* Readonly data.  */
            case 0x0:
            case 0x0:
              subspace_asect->flags |= SEC_DATA | SEC_READONLY;
              subspace_asect->flags |= SEC_DATA | SEC_READONLY;
              break;
              break;
 
 
            /* Normal data.  */
            /* Normal data.  */
            case 0x1:
            case 0x1:
              subspace_asect->flags |= SEC_DATA;
              subspace_asect->flags |= SEC_DATA;
              break;
              break;
 
 
            /* Readonly code and the gateways.
            /* Readonly code and the gateways.
               Gateways have other attributes which do not map
               Gateways have other attributes which do not map
               into anything BFD knows about.  */
               into anything BFD knows about.  */
            case 0x2:
            case 0x2:
            case 0x4:
            case 0x4:
            case 0x5:
            case 0x5:
            case 0x6:
            case 0x6:
            case 0x7:
            case 0x7:
              subspace_asect->flags |= SEC_CODE | SEC_READONLY;
              subspace_asect->flags |= SEC_CODE | SEC_READONLY;
              break;
              break;
 
 
            /* dynamic (writable) code.  */
            /* dynamic (writable) code.  */
            case 0x3:
            case 0x3:
              subspace_asect->flags |= SEC_CODE;
              subspace_asect->flags |= SEC_CODE;
              break;
              break;
            }
            }
 
 
          if (subspace.is_comdat || subspace.is_common || subspace.dup_common)
          if (subspace.is_comdat || subspace.is_common || subspace.dup_common)
            subspace_asect->flags |= SEC_LINK_ONCE;
            subspace_asect->flags |= SEC_LINK_ONCE;
 
 
          if (subspace.subspace_length > 0)
          if (subspace.subspace_length > 0)
            subspace_asect->flags |= SEC_HAS_CONTENTS;
            subspace_asect->flags |= SEC_HAS_CONTENTS;
 
 
          if (subspace.is_loadable)
          if (subspace.is_loadable)
            subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
            subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
          else
          else
            subspace_asect->flags |= SEC_DEBUGGING;
            subspace_asect->flags |= SEC_DEBUGGING;
 
 
          if (subspace.code_only)
          if (subspace.code_only)
            subspace_asect->flags |= SEC_CODE;
            subspace_asect->flags |= SEC_CODE;
 
 
          /* Both file_loc_init_value and initialization_length will
          /* Both file_loc_init_value and initialization_length will
             be zero for a BSS like subspace.  */
             be zero for a BSS like subspace.  */
          if (subspace.file_loc_init_value == 0
          if (subspace.file_loc_init_value == 0
              && subspace.initialization_length == 0)
              && subspace.initialization_length == 0)
            subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
            subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
 
 
          /* This subspace has relocations.
          /* This subspace has relocations.
             The fixup_request_quantity is a byte count for the number of
             The fixup_request_quantity is a byte count for the number of
             entries in the relocation stream; it is not the actual number
             entries in the relocation stream; it is not the actual number
             of relocations in the subspace.  */
             of relocations in the subspace.  */
          if (subspace.fixup_request_quantity != 0)
          if (subspace.fixup_request_quantity != 0)
            {
            {
              subspace_asect->flags |= SEC_RELOC;
              subspace_asect->flags |= SEC_RELOC;
              subspace_asect->rel_filepos = subspace.fixup_request_index;
              subspace_asect->rel_filepos = subspace.fixup_request_index;
              som_section_data (subspace_asect)->reloc_size
              som_section_data (subspace_asect)->reloc_size
                = subspace.fixup_request_quantity;
                = subspace.fixup_request_quantity;
              /* We can not determine this yet.  When we read in the
              /* We can not determine this yet.  When we read in the
                 relocation table the correct value will be filled in.  */
                 relocation table the correct value will be filled in.  */
              subspace_asect->reloc_count = (unsigned) -1;
              subspace_asect->reloc_count = (unsigned) -1;
            }
            }
 
 
          /* Update save_subspace if appropriate.  */
          /* Update save_subspace if appropriate.  */
          if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
          if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
            save_subspace = subspace;
            save_subspace = subspace;
 
 
          subspace_asect->vma = subspace.subspace_start;
          subspace_asect->vma = subspace.subspace_start;
          subspace_asect->size = subspace.subspace_length;
          subspace_asect->size = subspace.subspace_length;
          subspace_asect->filepos = (subspace.file_loc_init_value
          subspace_asect->filepos = (subspace.file_loc_init_value
                                     + current_offset);
                                     + current_offset);
          subspace_asect->alignment_power = exact_log2 (subspace.alignment);
          subspace_asect->alignment_power = exact_log2 (subspace.alignment);
          if (subspace_asect->alignment_power == (unsigned) -1)
          if (subspace_asect->alignment_power == (unsigned) -1)
            goto error_return;
            goto error_return;
 
 
          /* Keep track of the accumulated sizes of the sections.  */
          /* Keep track of the accumulated sizes of the sections.  */
          space_size += subspace.subspace_length;
          space_size += subspace.subspace_length;
        }
        }
 
 
      /* This can happen for a .o which defines symbols in otherwise
      /* This can happen for a .o which defines symbols in otherwise
         empty subspaces.  */
         empty subspaces.  */
      if (!save_subspace.file_loc_init_value)
      if (!save_subspace.file_loc_init_value)
        space_asect->size = 0;
        space_asect->size = 0;
      else
      else
        {
        {
          if (file_hdr->a_magic != RELOC_MAGIC)
          if (file_hdr->a_magic != RELOC_MAGIC)
            {
            {
              /* Setup the size for the space section based upon the info
              /* Setup the size for the space section based upon the info
                 in the last subspace of the space.  */
                 in the last subspace of the space.  */
              space_asect->size = (save_subspace.subspace_start
              space_asect->size = (save_subspace.subspace_start
                                   - space_asect->vma
                                   - space_asect->vma
                                   + save_subspace.subspace_length);
                                   + save_subspace.subspace_length);
            }
            }
          else
          else
            {
            {
              /* The subspace_start field is not initialised in relocatable
              /* The subspace_start field is not initialised in relocatable
                 only objects, so it cannot be used for length calculations.
                 only objects, so it cannot be used for length calculations.
                 Instead we use the space_size value which we have been
                 Instead we use the space_size value which we have been
                 accumulating.  This isn't an accurate estimate since it
                 accumulating.  This isn't an accurate estimate since it
                 ignores alignment and ordering issues.  */
                 ignores alignment and ordering issues.  */
              space_asect->size = space_size;
              space_asect->size = space_size;
            }
            }
        }
        }
    }
    }
  /* Now that we've read in all the subspace records, we need to assign
  /* Now that we've read in all the subspace records, we need to assign
     a target index to each subspace.  */
     a target index to each subspace.  */
  amt = total_subspaces;
  amt = total_subspaces;
  amt *= sizeof (asection *);
  amt *= sizeof (asection *);
  subspace_sections = bfd_malloc (amt);
  subspace_sections = bfd_malloc (amt);
  if (subspace_sections == NULL)
  if (subspace_sections == NULL)
    goto error_return;
    goto error_return;
 
 
  for (i = 0, section = abfd->sections; section; section = section->next)
  for (i = 0, section = abfd->sections; section; section = section->next)
    {
    {
      if (!som_is_subspace (section))
      if (!som_is_subspace (section))
        continue;
        continue;
 
 
      subspace_sections[i] = section;
      subspace_sections[i] = section;
      i++;
      i++;
    }
    }
  qsort (subspace_sections, total_subspaces,
  qsort (subspace_sections, total_subspaces,
         sizeof (asection *), compare_subspaces);
         sizeof (asection *), compare_subspaces);
 
 
  /* subspace_sections is now sorted in the order in which the subspaces
  /* subspace_sections is now sorted in the order in which the subspaces
     appear in the object file.  Assign an index to each one now.  */
     appear in the object file.  Assign an index to each one now.  */
  for (i = 0; i < total_subspaces; i++)
  for (i = 0; i < total_subspaces; i++)
    subspace_sections[i]->target_index = i;
    subspace_sections[i]->target_index = i;
 
 
  if (space_strings != NULL)
  if (space_strings != NULL)
    free (space_strings);
    free (space_strings);
 
 
  if (subspace_sections != NULL)
  if (subspace_sections != NULL)
    free (subspace_sections);
    free (subspace_sections);
 
 
  return TRUE;
  return TRUE;
 
 
 error_return:
 error_return:
  if (space_strings != NULL)
  if (space_strings != NULL)
    free (space_strings);
    free (space_strings);
 
 
  if (subspace_sections != NULL)
  if (subspace_sections != NULL)
    free (subspace_sections);
    free (subspace_sections);
  return FALSE;
  return FALSE;
}
}
 
 
/* Read in a SOM object and make it into a BFD.  */
/* Read in a SOM object and make it into a BFD.  */
 
 
static const bfd_target *
static const bfd_target *
som_object_p (bfd *abfd)
som_object_p (bfd *abfd)
{
{
  struct header file_hdr;
  struct header file_hdr;
  struct som_exec_auxhdr *aux_hdr_ptr = NULL;
  struct som_exec_auxhdr *aux_hdr_ptr = NULL;
  unsigned long current_offset = 0;
  unsigned long current_offset = 0;
  struct lst_header lst_header;
  struct lst_header lst_header;
  struct som_entry som_entry;
  struct som_entry som_entry;
  bfd_size_type amt;
  bfd_size_type amt;
#define ENTRY_SIZE sizeof (struct som_entry)
#define ENTRY_SIZE sizeof (struct som_entry)
 
 
  amt = FILE_HDR_SIZE;
  amt = FILE_HDR_SIZE;
  if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
  if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
    {
    {
      if (bfd_get_error () != bfd_error_system_call)
      if (bfd_get_error () != bfd_error_system_call)
        bfd_set_error (bfd_error_wrong_format);
        bfd_set_error (bfd_error_wrong_format);
      return NULL;
      return NULL;
    }
    }
 
 
  if (!_PA_RISC_ID (file_hdr.system_id))
  if (!_PA_RISC_ID (file_hdr.system_id))
    {
    {
      bfd_set_error (bfd_error_wrong_format);
      bfd_set_error (bfd_error_wrong_format);
      return NULL;
      return NULL;
    }
    }
 
 
  switch (file_hdr.a_magic)
  switch (file_hdr.a_magic)
    {
    {
    case RELOC_MAGIC:
    case RELOC_MAGIC:
    case EXEC_MAGIC:
    case EXEC_MAGIC:
    case SHARE_MAGIC:
    case SHARE_MAGIC:
    case DEMAND_MAGIC:
    case DEMAND_MAGIC:
#ifdef DL_MAGIC
#ifdef DL_MAGIC
    case DL_MAGIC:
    case DL_MAGIC:
#endif
#endif
#ifdef SHL_MAGIC
#ifdef SHL_MAGIC
    case SHL_MAGIC:
    case SHL_MAGIC:
#endif
#endif
#ifdef SHARED_MAGIC_CNX
#ifdef SHARED_MAGIC_CNX
    case SHARED_MAGIC_CNX:
    case SHARED_MAGIC_CNX:
#endif
#endif
      break;
      break;
 
 
#ifdef EXECLIBMAGIC
#ifdef EXECLIBMAGIC
    case EXECLIBMAGIC:
    case EXECLIBMAGIC:
      /* Read the lst header and determine where the SOM directory begins.  */
      /* Read the lst header and determine where the SOM directory begins.  */
 
 
      if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
      if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
        {
        {
          if (bfd_get_error () != bfd_error_system_call)
          if (bfd_get_error () != bfd_error_system_call)
            bfd_set_error (bfd_error_wrong_format);
            bfd_set_error (bfd_error_wrong_format);
          return NULL;
          return NULL;
        }
        }
 
 
      amt = SLSTHDR;
      amt = SLSTHDR;
      if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
      if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
        {
        {
          if (bfd_get_error () != bfd_error_system_call)
          if (bfd_get_error () != bfd_error_system_call)
            bfd_set_error (bfd_error_wrong_format);
            bfd_set_error (bfd_error_wrong_format);
          return NULL;
          return NULL;
        }
        }
 
 
      /* Position to and read the first directory entry.  */
      /* Position to and read the first directory entry.  */
 
 
      if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0)
      if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0)
        {
        {
          if (bfd_get_error () != bfd_error_system_call)
          if (bfd_get_error () != bfd_error_system_call)
            bfd_set_error (bfd_error_wrong_format);
            bfd_set_error (bfd_error_wrong_format);
          return NULL;
          return NULL;
        }
        }
 
 
      amt = ENTRY_SIZE;
      amt = ENTRY_SIZE;
      if (bfd_bread ((void *) &som_entry, amt, abfd) != amt)
      if (bfd_bread ((void *) &som_entry, amt, abfd) != amt)
        {
        {
          if (bfd_get_error () != bfd_error_system_call)
          if (bfd_get_error () != bfd_error_system_call)
            bfd_set_error (bfd_error_wrong_format);
            bfd_set_error (bfd_error_wrong_format);
          return NULL;
          return NULL;
        }
        }
 
 
      /* Now position to the first SOM.  */
      /* Now position to the first SOM.  */
 
 
      if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0)
      if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0)
        {
        {
          if (bfd_get_error () != bfd_error_system_call)
          if (bfd_get_error () != bfd_error_system_call)
            bfd_set_error (bfd_error_wrong_format);
            bfd_set_error (bfd_error_wrong_format);
          return NULL;
          return NULL;
        }
        }
 
 
      current_offset = som_entry.location;
      current_offset = som_entry.location;
 
 
      /* And finally, re-read the som header.  */
      /* And finally, re-read the som header.  */
      amt = FILE_HDR_SIZE;
      amt = FILE_HDR_SIZE;
      if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
      if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
        {
        {
          if (bfd_get_error () != bfd_error_system_call)
          if (bfd_get_error () != bfd_error_system_call)
            bfd_set_error (bfd_error_wrong_format);
            bfd_set_error (bfd_error_wrong_format);
          return NULL;
          return NULL;
        }
        }
 
 
      break;
      break;
#endif
#endif
 
 
    default:
    default:
      bfd_set_error (bfd_error_wrong_format);
      bfd_set_error (bfd_error_wrong_format);
      return NULL;
      return NULL;
    }
    }
 
 
  if (file_hdr.version_id != VERSION_ID
  if (file_hdr.version_id != VERSION_ID
      && file_hdr.version_id != NEW_VERSION_ID)
      && file_hdr.version_id != NEW_VERSION_ID)
    {
    {
      bfd_set_error (bfd_error_wrong_format);
      bfd_set_error (bfd_error_wrong_format);
      return NULL;
      return NULL;
    }
    }
 
 
  /* If the aux_header_size field in the file header is zero, then this
  /* If the aux_header_size field in the file header is zero, then this
     object is an incomplete executable (a .o file).  Do not try to read
     object is an incomplete executable (a .o file).  Do not try to read
     a non-existant auxiliary header.  */
     a non-existant auxiliary header.  */
  if (file_hdr.aux_header_size != 0)
  if (file_hdr.aux_header_size != 0)
    {
    {
      aux_hdr_ptr = bfd_zalloc (abfd,
      aux_hdr_ptr = bfd_zalloc (abfd,
                                (bfd_size_type) sizeof (*aux_hdr_ptr));
                                (bfd_size_type) sizeof (*aux_hdr_ptr));
      if (aux_hdr_ptr == NULL)
      if (aux_hdr_ptr == NULL)
        return NULL;
        return NULL;
      amt = AUX_HDR_SIZE;
      amt = AUX_HDR_SIZE;
      if (bfd_bread ((void *) aux_hdr_ptr, amt, abfd) != amt)
      if (bfd_bread ((void *) aux_hdr_ptr, amt, abfd) != amt)
        {
        {
          if (bfd_get_error () != bfd_error_system_call)
          if (bfd_get_error () != bfd_error_system_call)
            bfd_set_error (bfd_error_wrong_format);
            bfd_set_error (bfd_error_wrong_format);
          return NULL;
          return NULL;
        }
        }
    }
    }
 
 
  if (!setup_sections (abfd, &file_hdr, current_offset))
  if (!setup_sections (abfd, &file_hdr, current_offset))
    {
    {
      /* setup_sections does not bubble up a bfd error code.  */
      /* setup_sections does not bubble up a bfd error code.  */
      bfd_set_error (bfd_error_bad_value);
      bfd_set_error (bfd_error_bad_value);
      return NULL;
      return NULL;
    }
    }
 
 
  /* This appears to be a valid SOM object.  Do some initialization.  */
  /* This appears to be a valid SOM object.  Do some initialization.  */
  return som_object_setup (abfd, &file_hdr, aux_hdr_ptr, current_offset);
  return som_object_setup (abfd, &file_hdr, aux_hdr_ptr, current_offset);
}
}
 
 
/* Create a SOM object.  */
/* Create a SOM object.  */
 
 
static bfd_boolean
static bfd_boolean
som_mkobject (bfd *abfd)
som_mkobject (bfd *abfd)
{
{
  /* Allocate memory to hold backend information.  */
  /* Allocate memory to hold backend information.  */
  abfd->tdata.som_data = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
  abfd->tdata.som_data = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
  if (abfd->tdata.som_data == NULL)
  if (abfd->tdata.som_data == NULL)
    return FALSE;
    return FALSE;
  return TRUE;
  return TRUE;
}
}
 
 
/* Initialize some information in the file header.  This routine makes
/* Initialize some information in the file header.  This routine makes
   not attempt at doing the right thing for a full executable; it
   not attempt at doing the right thing for a full executable; it
   is only meant to handle relocatable objects.  */
   is only meant to handle relocatable objects.  */
 
 
static bfd_boolean
static bfd_boolean
som_prep_headers (bfd *abfd)
som_prep_headers (bfd *abfd)
{
{
  struct header *file_hdr;
  struct header *file_hdr;
  asection *section;
  asection *section;
  bfd_size_type amt = sizeof (struct header);
  bfd_size_type amt = sizeof (struct header);
 
 
  /* Make and attach a file header to the BFD.  */
  /* Make and attach a file header to the BFD.  */
  file_hdr = bfd_zalloc (abfd, amt);
  file_hdr = bfd_zalloc (abfd, amt);
  if (file_hdr == NULL)
  if (file_hdr == NULL)
    return FALSE;
    return FALSE;
  obj_som_file_hdr (abfd) = file_hdr;
  obj_som_file_hdr (abfd) = file_hdr;
 
 
  if (abfd->flags & (EXEC_P | DYNAMIC))
  if (abfd->flags & (EXEC_P | DYNAMIC))
    {
    {
      /* Make and attach an exec header to the BFD.  */
      /* Make and attach an exec header to the BFD.  */
      amt = sizeof (struct som_exec_auxhdr);
      amt = sizeof (struct som_exec_auxhdr);
      obj_som_exec_hdr (abfd) = bfd_zalloc (abfd, amt);
      obj_som_exec_hdr (abfd) = bfd_zalloc (abfd, amt);
      if (obj_som_exec_hdr (abfd) == NULL)
      if (obj_som_exec_hdr (abfd) == NULL)
        return FALSE;
        return FALSE;
 
 
      if (abfd->flags & D_PAGED)
      if (abfd->flags & D_PAGED)
        file_hdr->a_magic = DEMAND_MAGIC;
        file_hdr->a_magic = DEMAND_MAGIC;
      else if (abfd->flags & WP_TEXT)
      else if (abfd->flags & WP_TEXT)
        file_hdr->a_magic = SHARE_MAGIC;
        file_hdr->a_magic = SHARE_MAGIC;
#ifdef SHL_MAGIC
#ifdef SHL_MAGIC
      else if (abfd->flags & DYNAMIC)
      else if (abfd->flags & DYNAMIC)
        file_hdr->a_magic = SHL_MAGIC;
        file_hdr->a_magic = SHL_MAGIC;
#endif
#endif
      else
      else
        file_hdr->a_magic = EXEC_MAGIC;
        file_hdr->a_magic = EXEC_MAGIC;
    }
    }
  else
  else
    file_hdr->a_magic = RELOC_MAGIC;
    file_hdr->a_magic = RELOC_MAGIC;
 
 
  /* These fields are optional, and embedding timestamps is not always
  /* These fields are optional, and embedding timestamps is not always
     a wise thing to do, it makes comparing objects during a multi-stage
     a wise thing to do, it makes comparing objects during a multi-stage
     bootstrap difficult.  */
     bootstrap difficult.  */
  file_hdr->file_time.secs = 0;
  file_hdr->file_time.secs = 0;
  file_hdr->file_time.nanosecs = 0;
  file_hdr->file_time.nanosecs = 0;
 
 
  file_hdr->entry_space = 0;
  file_hdr->entry_space = 0;
  file_hdr->entry_subspace = 0;
  file_hdr->entry_subspace = 0;
  file_hdr->entry_offset = 0;
  file_hdr->entry_offset = 0;
  file_hdr->presumed_dp = 0;
  file_hdr->presumed_dp = 0;
 
 
  /* Now iterate over the sections translating information from
  /* Now iterate over the sections translating information from
     BFD sections to SOM spaces/subspaces.  */
     BFD sections to SOM spaces/subspaces.  */
  for (section = abfd->sections; section != NULL; section = section->next)
  for (section = abfd->sections; section != NULL; section = section->next)
    {
    {
      /* Ignore anything which has not been marked as a space or
      /* Ignore anything which has not been marked as a space or
         subspace.  */
         subspace.  */
      if (!som_is_space (section) && !som_is_subspace (section))
      if (!som_is_space (section) && !som_is_subspace (section))
        continue;
        continue;
 
 
      if (som_is_space (section))
      if (som_is_space (section))
        {
        {
          /* Allocate space for the space dictionary.  */
          /* Allocate space for the space dictionary.  */
          amt = sizeof (struct space_dictionary_record);
          amt = sizeof (struct space_dictionary_record);
          som_section_data (section)->space_dict = bfd_zalloc (abfd, amt);
          som_section_data (section)->space_dict = bfd_zalloc (abfd, amt);
          if (som_section_data (section)->space_dict == NULL)
          if (som_section_data (section)->space_dict == NULL)
            return FALSE;
            return FALSE;
          /* Set space attributes.  Note most attributes of SOM spaces
          /* Set space attributes.  Note most attributes of SOM spaces
             are set based on the subspaces it contains.  */
             are set based on the subspaces it contains.  */
          som_section_data (section)->space_dict->loader_fix_index = -1;
          som_section_data (section)->space_dict->loader_fix_index = -1;
          som_section_data (section)->space_dict->init_pointer_index = -1;
          som_section_data (section)->space_dict->init_pointer_index = -1;
 
 
          /* Set more attributes that were stuffed away in private data.  */
          /* Set more attributes that were stuffed away in private data.  */
          som_section_data (section)->space_dict->sort_key =
          som_section_data (section)->space_dict->sort_key =
            som_section_data (section)->copy_data->sort_key;
            som_section_data (section)->copy_data->sort_key;
          som_section_data (section)->space_dict->is_defined =
          som_section_data (section)->space_dict->is_defined =
            som_section_data (section)->copy_data->is_defined;
            som_section_data (section)->copy_data->is_defined;
          som_section_data (section)->space_dict->is_private =
          som_section_data (section)->space_dict->is_private =
            som_section_data (section)->copy_data->is_private;
            som_section_data (section)->copy_data->is_private;
          som_section_data (section)->space_dict->space_number =
          som_section_data (section)->space_dict->space_number =
            som_section_data (section)->copy_data->space_number;
            som_section_data (section)->copy_data->space_number;
        }
        }
      else
      else
        {
        {
          /* Allocate space for the subspace dictionary.  */
          /* Allocate space for the subspace dictionary.  */
          amt = sizeof (struct som_subspace_dictionary_record);
          amt = sizeof (struct som_subspace_dictionary_record);
          som_section_data (section)->subspace_dict = bfd_zalloc (abfd, amt);
          som_section_data (section)->subspace_dict = bfd_zalloc (abfd, amt);
          if (som_section_data (section)->subspace_dict == NULL)
          if (som_section_data (section)->subspace_dict == NULL)
            return FALSE;
            return FALSE;
 
 
          /* Set subspace attributes.  Basic stuff is done here, additional
          /* Set subspace attributes.  Basic stuff is done here, additional
             attributes are filled in later as more information becomes
             attributes are filled in later as more information becomes
             available.  */
             available.  */
          if (section->flags & SEC_ALLOC)
          if (section->flags & SEC_ALLOC)
            som_section_data (section)->subspace_dict->is_loadable = 1;
            som_section_data (section)->subspace_dict->is_loadable = 1;
 
 
          if (section->flags & SEC_CODE)
          if (section->flags & SEC_CODE)
            som_section_data (section)->subspace_dict->code_only = 1;
            som_section_data (section)->subspace_dict->code_only = 1;
 
 
          som_section_data (section)->subspace_dict->subspace_start =
          som_section_data (section)->subspace_dict->subspace_start =
            section->vma;
            section->vma;
          som_section_data (section)->subspace_dict->subspace_length =
          som_section_data (section)->subspace_dict->subspace_length =
            section->size;
            section->size;
          som_section_data (section)->subspace_dict->initialization_length =
          som_section_data (section)->subspace_dict->initialization_length =
            section->size;
            section->size;
          som_section_data (section)->subspace_dict->alignment =
          som_section_data (section)->subspace_dict->alignment =
            1 << section->alignment_power;
            1 << section->alignment_power;
 
 
          /* Set more attributes that were stuffed away in private data.  */
          /* Set more attributes that were stuffed away in private data.  */
          som_section_data (section)->subspace_dict->sort_key =
          som_section_data (section)->subspace_dict->sort_key =
            som_section_data (section)->copy_data->sort_key;
            som_section_data (section)->copy_data->sort_key;
          som_section_data (section)->subspace_dict->access_control_bits =
          som_section_data (section)->subspace_dict->access_control_bits =
            som_section_data (section)->copy_data->access_control_bits;
            som_section_data (section)->copy_data->access_control_bits;
          som_section_data (section)->subspace_dict->quadrant =
          som_section_data (section)->subspace_dict->quadrant =
            som_section_data (section)->copy_data->quadrant;
            som_section_data (section)->copy_data->quadrant;
          som_section_data (section)->subspace_dict->is_comdat =
          som_section_data (section)->subspace_dict->is_comdat =
            som_section_data (section)->copy_data->is_comdat;
            som_section_data (section)->copy_data->is_comdat;
          som_section_data (section)->subspace_dict->is_common =
          som_section_data (section)->subspace_dict->is_common =
            som_section_data (section)->copy_data->is_common;
            som_section_data (section)->copy_data->is_common;
          som_section_data (section)->subspace_dict->dup_common =
          som_section_data (section)->subspace_dict->dup_common =
            som_section_data (section)->copy_data->dup_common;
            som_section_data (section)->copy_data->dup_common;
        }
        }
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Return TRUE if the given section is a SOM space, FALSE otherwise.  */
/* Return TRUE if the given section is a SOM space, FALSE otherwise.  */
 
 
static bfd_boolean
static bfd_boolean
som_is_space (asection *section)
som_is_space (asection *section)
{
{
  /* If no copy data is available, then it's neither a space nor a
  /* If no copy data is available, then it's neither a space nor a
     subspace.  */
     subspace.  */
  if (som_section_data (section)->copy_data == NULL)
  if (som_section_data (section)->copy_data == NULL)
    return FALSE;
    return FALSE;
 
 
  /* If the containing space isn't the same as the given section,
  /* If the containing space isn't the same as the given section,
     then this isn't a space.  */
     then this isn't a space.  */
  if (som_section_data (section)->copy_data->container != section
  if (som_section_data (section)->copy_data->container != section
      && (som_section_data (section)->copy_data->container->output_section
      && (som_section_data (section)->copy_data->container->output_section
          != section))
          != section))
    return FALSE;
    return FALSE;
 
 
  /* OK.  Must be a space.  */
  /* OK.  Must be a space.  */
  return TRUE;
  return TRUE;
}
}
 
 
/* Return TRUE if the given section is a SOM subspace, FALSE otherwise.  */
/* Return TRUE if the given section is a SOM subspace, FALSE otherwise.  */
 
 
static bfd_boolean
static bfd_boolean
som_is_subspace (asection *section)
som_is_subspace (asection *section)
{
{
  /* If no copy data is available, then it's neither a space nor a
  /* If no copy data is available, then it's neither a space nor a
     subspace.  */
     subspace.  */
  if (som_section_data (section)->copy_data == NULL)
  if (som_section_data (section)->copy_data == NULL)
    return FALSE;
    return FALSE;
 
 
  /* If the containing space is the same as the given section,
  /* If the containing space is the same as the given section,
     then this isn't a subspace.  */
     then this isn't a subspace.  */
  if (som_section_data (section)->copy_data->container == section
  if (som_section_data (section)->copy_data->container == section
      || (som_section_data (section)->copy_data->container->output_section
      || (som_section_data (section)->copy_data->container->output_section
          == section))
          == section))
    return FALSE;
    return FALSE;
 
 
  /* OK.  Must be a subspace.  */
  /* OK.  Must be a subspace.  */
  return TRUE;
  return TRUE;
}
}
 
 
/* Return TRUE if the given space contains the given subspace.  It
/* Return TRUE if the given space contains the given subspace.  It
   is safe to assume space really is a space, and subspace really
   is safe to assume space really is a space, and subspace really
   is a subspace.  */
   is a subspace.  */
 
 
static bfd_boolean
static bfd_boolean
som_is_container (asection *space, asection *subspace)
som_is_container (asection *space, asection *subspace)
{
{
  return (som_section_data (subspace)->copy_data->container == space)
  return (som_section_data (subspace)->copy_data->container == space)
    || (som_section_data (subspace)->copy_data->container->output_section
    || (som_section_data (subspace)->copy_data->container->output_section
        == space);
        == space);
}
}
 
 
/* Count and return the number of spaces attached to the given BFD.  */
/* Count and return the number of spaces attached to the given BFD.  */
 
 
static unsigned long
static unsigned long
som_count_spaces (bfd *abfd)
som_count_spaces (bfd *abfd)
{
{
  int count = 0;
  int count = 0;
  asection *section;
  asection *section;
 
 
  for (section = abfd->sections; section != NULL; section = section->next)
  for (section = abfd->sections; section != NULL; section = section->next)
    count += som_is_space (section);
    count += som_is_space (section);
 
 
  return count;
  return count;
}
}
 
 
/* Count the number of subspaces attached to the given BFD.  */
/* Count the number of subspaces attached to the given BFD.  */
 
 
static unsigned long
static unsigned long
som_count_subspaces (bfd *abfd)
som_count_subspaces (bfd *abfd)
{
{
  int count = 0;
  int count = 0;
  asection *section;
  asection *section;
 
 
  for (section = abfd->sections; section != NULL; section = section->next)
  for (section = abfd->sections; section != NULL; section = section->next)
    count += som_is_subspace (section);
    count += som_is_subspace (section);
 
 
  return count;
  return count;
}
}
 
 
/* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
/* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
 
 
   We desire symbols to be ordered starting with the symbol with the
   We desire symbols to be ordered starting with the symbol with the
   highest relocation count down to the symbol with the lowest relocation
   highest relocation count down to the symbol with the lowest relocation
   count.  Doing so compacts the relocation stream.  */
   count.  Doing so compacts the relocation stream.  */
 
 
static int
static int
compare_syms (const void *arg1, const void *arg2)
compare_syms (const void *arg1, const void *arg2)
{
{
  asymbol **sym1 = (asymbol **) arg1;
  asymbol **sym1 = (asymbol **) arg1;
  asymbol **sym2 = (asymbol **) arg2;
  asymbol **sym2 = (asymbol **) arg2;
  unsigned int count1, count2;
  unsigned int count1, count2;
 
 
  /* Get relocation count for each symbol.  Note that the count
  /* Get relocation count for each symbol.  Note that the count
     is stored in the udata pointer for section symbols!  */
     is stored in the udata pointer for section symbols!  */
  if ((*sym1)->flags & BSF_SECTION_SYM)
  if ((*sym1)->flags & BSF_SECTION_SYM)
    count1 = (*sym1)->udata.i;
    count1 = (*sym1)->udata.i;
  else
  else
    count1 = som_symbol_data (*sym1)->reloc_count;
    count1 = som_symbol_data (*sym1)->reloc_count;
 
 
  if ((*sym2)->flags & BSF_SECTION_SYM)
  if ((*sym2)->flags & BSF_SECTION_SYM)
    count2 = (*sym2)->udata.i;
    count2 = (*sym2)->udata.i;
  else
  else
    count2 = som_symbol_data (*sym2)->reloc_count;
    count2 = som_symbol_data (*sym2)->reloc_count;
 
 
  /* Return the appropriate value.  */
  /* Return the appropriate value.  */
  if (count1 < count2)
  if (count1 < count2)
    return 1;
    return 1;
  else if (count1 > count2)
  else if (count1 > count2)
    return -1;
    return -1;
  return 0;
  return 0;
}
}
 
 
/* Return -1, 0, 1 indicating the relative ordering of subspace1
/* Return -1, 0, 1 indicating the relative ordering of subspace1
   and subspace.  */
   and subspace.  */
 
 
static int
static int
compare_subspaces (const void *arg1, const void *arg2)
compare_subspaces (const void *arg1, const void *arg2)
{
{
  asection **subspace1 = (asection **) arg1;
  asection **subspace1 = (asection **) arg1;
  asection **subspace2 = (asection **) arg2;
  asection **subspace2 = (asection **) arg2;
 
 
  if ((*subspace1)->target_index < (*subspace2)->target_index)
  if ((*subspace1)->target_index < (*subspace2)->target_index)
    return -1;
    return -1;
  else if ((*subspace2)->target_index < (*subspace1)->target_index)
  else if ((*subspace2)->target_index < (*subspace1)->target_index)
    return 1;
    return 1;
  else
  else
    return 0;
    return 0;
}
}
 
 
/* Perform various work in preparation for emitting the fixup stream.  */
/* Perform various work in preparation for emitting the fixup stream.  */
 
 
static void
static void
som_prep_for_fixups (bfd *abfd, asymbol **syms, unsigned long num_syms)
som_prep_for_fixups (bfd *abfd, asymbol **syms, unsigned long num_syms)
{
{
  unsigned long i;
  unsigned long i;
  asection *section;
  asection *section;
  asymbol **sorted_syms;
  asymbol **sorted_syms;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  /* Most SOM relocations involving a symbol have a length which is
  /* Most SOM relocations involving a symbol have a length which is
     dependent on the index of the symbol.  So symbols which are
     dependent on the index of the symbol.  So symbols which are
     used often in relocations should have a small index.  */
     used often in relocations should have a small index.  */
 
 
  /* First initialize the counters for each symbol.  */
  /* First initialize the counters for each symbol.  */
  for (i = 0; i < num_syms; i++)
  for (i = 0; i < num_syms; i++)
    {
    {
      /* Handle a section symbol; these have no pointers back to the
      /* Handle a section symbol; these have no pointers back to the
         SOM symbol info.  So we just use the udata field to hold the
         SOM symbol info.  So we just use the udata field to hold the
         relocation count.  */
         relocation count.  */
      if (som_symbol_data (syms[i]) == NULL
      if (som_symbol_data (syms[i]) == NULL
          || syms[i]->flags & BSF_SECTION_SYM)
          || syms[i]->flags & BSF_SECTION_SYM)
        {
        {
          syms[i]->flags |= BSF_SECTION_SYM;
          syms[i]->flags |= BSF_SECTION_SYM;
          syms[i]->udata.i = 0;
          syms[i]->udata.i = 0;
        }
        }
      else
      else
        som_symbol_data (syms[i])->reloc_count = 0;
        som_symbol_data (syms[i])->reloc_count = 0;
    }
    }
 
 
  /* Now that the counters are initialized, make a weighted count
  /* Now that the counters are initialized, make a weighted count
     of how often a given symbol is used in a relocation.  */
     of how often a given symbol is used in a relocation.  */
  for (section = abfd->sections; section != NULL; section = section->next)
  for (section = abfd->sections; section != NULL; section = section->next)
    {
    {
      int j;
      int j;
 
 
      /* Does this section have any relocations?  */
      /* Does this section have any relocations?  */
      if ((int) section->reloc_count <= 0)
      if ((int) section->reloc_count <= 0)
        continue;
        continue;
 
 
      /* Walk through each relocation for this section.  */
      /* Walk through each relocation for this section.  */
      for (j = 1; j < (int) section->reloc_count; j++)
      for (j = 1; j < (int) section->reloc_count; j++)
        {
        {
          arelent *reloc = section->orelocation[j];
          arelent *reloc = section->orelocation[j];
          int scale;
          int scale;
 
 
          /* A relocation against a symbol in the *ABS* section really
          /* A relocation against a symbol in the *ABS* section really
             does not have a symbol.  Likewise if the symbol isn't associated
             does not have a symbol.  Likewise if the symbol isn't associated
             with any section.  */
             with any section.  */
          if (reloc->sym_ptr_ptr == NULL
          if (reloc->sym_ptr_ptr == NULL
              || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
              || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
            continue;
            continue;
 
 
          /* Scaling to encourage symbols involved in R_DP_RELATIVE
          /* Scaling to encourage symbols involved in R_DP_RELATIVE
             and R_CODE_ONE_SYMBOL relocations to come first.  These
             and R_CODE_ONE_SYMBOL relocations to come first.  These
             two relocations have single byte versions if the symbol
             two relocations have single byte versions if the symbol
             index is very small.  */
             index is very small.  */
          if (reloc->howto->type == R_DP_RELATIVE
          if (reloc->howto->type == R_DP_RELATIVE
              || reloc->howto->type == R_CODE_ONE_SYMBOL)
              || reloc->howto->type == R_CODE_ONE_SYMBOL)
            scale = 2;
            scale = 2;
          else
          else
            scale = 1;
            scale = 1;
 
 
          /* Handle section symbols by storing the count in the udata
          /* Handle section symbols by storing the count in the udata
             field.  It will not be used and the count is very important
             field.  It will not be used and the count is very important
             for these symbols.  */
             for these symbols.  */
          if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
          if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
            {
            {
              (*reloc->sym_ptr_ptr)->udata.i =
              (*reloc->sym_ptr_ptr)->udata.i =
                (*reloc->sym_ptr_ptr)->udata.i + scale;
                (*reloc->sym_ptr_ptr)->udata.i + scale;
              continue;
              continue;
            }
            }
 
 
          /* A normal symbol.  Increment the count.  */
          /* A normal symbol.  Increment the count.  */
          som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
          som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
        }
        }
    }
    }
 
 
  /* Sort a copy of the symbol table, rather than the canonical
  /* Sort a copy of the symbol table, rather than the canonical
     output symbol table.  */
     output symbol table.  */
  amt = num_syms;
  amt = num_syms;
  amt *= sizeof (asymbol *);
  amt *= sizeof (asymbol *);
  sorted_syms = bfd_zalloc (abfd, amt);
  sorted_syms = bfd_zalloc (abfd, amt);
  memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
  memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
  qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
  qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
  obj_som_sorted_syms (abfd) = sorted_syms;
  obj_som_sorted_syms (abfd) = sorted_syms;
 
 
  /* Compute the symbol indexes, they will be needed by the relocation
  /* Compute the symbol indexes, they will be needed by the relocation
     code.  */
     code.  */
  for (i = 0; i < num_syms; i++)
  for (i = 0; i < num_syms; i++)
    {
    {
      /* A section symbol.  Again, there is no pointer to backend symbol
      /* A section symbol.  Again, there is no pointer to backend symbol
         information, so we reuse the udata field again.  */
         information, so we reuse the udata field again.  */
      if (sorted_syms[i]->flags & BSF_SECTION_SYM)
      if (sorted_syms[i]->flags & BSF_SECTION_SYM)
        sorted_syms[i]->udata.i = i;
        sorted_syms[i]->udata.i = i;
      else
      else
        som_symbol_data (sorted_syms[i])->index = i;
        som_symbol_data (sorted_syms[i])->index = i;
    }
    }
}
}
 
 
static bfd_boolean
static bfd_boolean
som_write_fixups (bfd *abfd,
som_write_fixups (bfd *abfd,
                  unsigned long current_offset,
                  unsigned long current_offset,
                  unsigned int *total_reloc_sizep)
                  unsigned int *total_reloc_sizep)
{
{
  unsigned int i, j;
  unsigned int i, j;
  /* Chunk of memory that we can use as buffer space, then throw
  /* Chunk of memory that we can use as buffer space, then throw
     away.  */
     away.  */
  unsigned char tmp_space[SOM_TMP_BUFSIZE];
  unsigned char tmp_space[SOM_TMP_BUFSIZE];
  unsigned char *p;
  unsigned char *p;
  unsigned int total_reloc_size = 0;
  unsigned int total_reloc_size = 0;
  unsigned int subspace_reloc_size = 0;
  unsigned int subspace_reloc_size = 0;
  unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
  unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
  asection *section = abfd->sections;
  asection *section = abfd->sections;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  memset (tmp_space, 0, SOM_TMP_BUFSIZE);
  memset (tmp_space, 0, SOM_TMP_BUFSIZE);
  p = tmp_space;
  p = tmp_space;
 
 
  /* All the fixups for a particular subspace are emitted in a single
  /* All the fixups for a particular subspace are emitted in a single
     stream.  All the subspaces for a particular space are emitted
     stream.  All the subspaces for a particular space are emitted
     as a single stream.
     as a single stream.
 
 
     So, to get all the locations correct one must iterate through all the
     So, to get all the locations correct one must iterate through all the
     spaces, for each space iterate through its subspaces and output a
     spaces, for each space iterate through its subspaces and output a
     fixups stream.  */
     fixups stream.  */
  for (i = 0; i < num_spaces; i++)
  for (i = 0; i < num_spaces; i++)
    {
    {
      asection *subsection;
      asection *subsection;
 
 
      /* Find a space.  */
      /* Find a space.  */
      while (!som_is_space (section))
      while (!som_is_space (section))
        section = section->next;
        section = section->next;
 
 
      /* Now iterate through each of its subspaces.  */
      /* Now iterate through each of its subspaces.  */
      for (subsection = abfd->sections;
      for (subsection = abfd->sections;
           subsection != NULL;
           subsection != NULL;
           subsection = subsection->next)
           subsection = subsection->next)
        {
        {
          int reloc_offset;
          int reloc_offset;
          unsigned int current_rounding_mode;
          unsigned int current_rounding_mode;
#ifndef NO_PCREL_MODES
#ifndef NO_PCREL_MODES
          unsigned int current_call_mode;
          unsigned int current_call_mode;
#endif
#endif
 
 
          /* Find a subspace of this space.  */
          /* Find a subspace of this space.  */
          if (!som_is_subspace (subsection)
          if (!som_is_subspace (subsection)
              || !som_is_container (section, subsection))
              || !som_is_container (section, subsection))
            continue;
            continue;
 
 
          /* If this subspace does not have real data, then we are
          /* If this subspace does not have real data, then we are
             finished with it.  */
             finished with it.  */
          if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
          if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
            {
            {
              som_section_data (subsection)->subspace_dict->fixup_request_index
              som_section_data (subsection)->subspace_dict->fixup_request_index
                = -1;
                = -1;
              continue;
              continue;
            }
            }
 
 
          /* This subspace has some relocations.  Put the relocation stream
          /* This subspace has some relocations.  Put the relocation stream
             index into the subspace record.  */
             index into the subspace record.  */
          som_section_data (subsection)->subspace_dict->fixup_request_index
          som_section_data (subsection)->subspace_dict->fixup_request_index
            = total_reloc_size;
            = total_reloc_size;
 
 
          /* To make life easier start over with a clean slate for
          /* To make life easier start over with a clean slate for
             each subspace.  Seek to the start of the relocation stream
             each subspace.  Seek to the start of the relocation stream
             for this subspace in preparation for writing out its fixup
             for this subspace in preparation for writing out its fixup
             stream.  */
             stream.  */
          if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
          if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
            return FALSE;
            return FALSE;
 
 
          /* Buffer space has already been allocated.  Just perform some
          /* Buffer space has already been allocated.  Just perform some
             initialization here.  */
             initialization here.  */
          p = tmp_space;
          p = tmp_space;
          subspace_reloc_size = 0;
          subspace_reloc_size = 0;
          reloc_offset = 0;
          reloc_offset = 0;
          som_initialize_reloc_queue (reloc_queue);
          som_initialize_reloc_queue (reloc_queue);
          current_rounding_mode = R_N_MODE;
          current_rounding_mode = R_N_MODE;
#ifndef NO_PCREL_MODES
#ifndef NO_PCREL_MODES
          current_call_mode = R_SHORT_PCREL_MODE;
          current_call_mode = R_SHORT_PCREL_MODE;
#endif
#endif
 
 
          /* Translate each BFD relocation into one or more SOM
          /* Translate each BFD relocation into one or more SOM
             relocations.  */
             relocations.  */
          for (j = 0; j < subsection->reloc_count; j++)
          for (j = 0; j < subsection->reloc_count; j++)
            {
            {
              arelent *bfd_reloc = subsection->orelocation[j];
              arelent *bfd_reloc = subsection->orelocation[j];
              unsigned int skip;
              unsigned int skip;
              int sym_num;
              int sym_num;
 
 
              /* Get the symbol number.  Remember it's stored in a
              /* Get the symbol number.  Remember it's stored in a
                 special place for section symbols.  */
                 special place for section symbols.  */
              if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
              if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
                sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
                sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
              else
              else
                sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
                sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
 
 
              /* If there is not enough room for the next couple relocations,
              /* If there is not enough room for the next couple relocations,
                 then dump the current buffer contents now.  Also reinitialize
                 then dump the current buffer contents now.  Also reinitialize
                 the relocation queue.
                 the relocation queue.
 
 
                 No single BFD relocation could ever translate into more
                 No single BFD relocation could ever translate into more
                 than 100 bytes of SOM relocations (20bytes is probably the
                 than 100 bytes of SOM relocations (20bytes is probably the
                 upper limit, but leave lots of space for growth).  */
                 upper limit, but leave lots of space for growth).  */
              if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
              if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
                {
                {
                  amt = p - tmp_space;
                  amt = p - tmp_space;
                  if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
                  if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
                    return FALSE;
                    return FALSE;
 
 
                  p = tmp_space;
                  p = tmp_space;
                  som_initialize_reloc_queue (reloc_queue);
                  som_initialize_reloc_queue (reloc_queue);
                }
                }
 
 
              /* Emit R_NO_RELOCATION fixups to map any bytes which were
              /* Emit R_NO_RELOCATION fixups to map any bytes which were
                 skipped.  */
                 skipped.  */
              skip = bfd_reloc->address - reloc_offset;
              skip = bfd_reloc->address - reloc_offset;
              p = som_reloc_skip (abfd, skip, p,
              p = som_reloc_skip (abfd, skip, p,
                                  &subspace_reloc_size, reloc_queue);
                                  &subspace_reloc_size, reloc_queue);
 
 
              /* Update reloc_offset for the next iteration.
              /* Update reloc_offset for the next iteration.
 
 
                 Many relocations do not consume input bytes.  They
                 Many relocations do not consume input bytes.  They
                 are markers, or set state necessary to perform some
                 are markers, or set state necessary to perform some
                 later relocation.  */
                 later relocation.  */
              switch (bfd_reloc->howto->type)
              switch (bfd_reloc->howto->type)
                {
                {
                case R_ENTRY:
                case R_ENTRY:
                case R_ALT_ENTRY:
                case R_ALT_ENTRY:
                case R_EXIT:
                case R_EXIT:
                case R_N_MODE:
                case R_N_MODE:
                case R_S_MODE:
                case R_S_MODE:
                case R_D_MODE:
                case R_D_MODE:
                case R_R_MODE:
                case R_R_MODE:
                case R_FSEL:
                case R_FSEL:
                case R_LSEL:
                case R_LSEL:
                case R_RSEL:
                case R_RSEL:
                case R_COMP1:
                case R_COMP1:
                case R_COMP2:
                case R_COMP2:
                case R_BEGIN_BRTAB:
                case R_BEGIN_BRTAB:
                case R_END_BRTAB:
                case R_END_BRTAB:
                case R_BEGIN_TRY:
                case R_BEGIN_TRY:
                case R_END_TRY:
                case R_END_TRY:
                case R_N0SEL:
                case R_N0SEL:
                case R_N1SEL:
                case R_N1SEL:
#ifndef NO_PCREL_MODES
#ifndef NO_PCREL_MODES
                case R_SHORT_PCREL_MODE:
                case R_SHORT_PCREL_MODE:
                case R_LONG_PCREL_MODE:
                case R_LONG_PCREL_MODE:
#endif
#endif
                  reloc_offset = bfd_reloc->address;
                  reloc_offset = bfd_reloc->address;
                  break;
                  break;
 
 
                default:
                default:
                  reloc_offset = bfd_reloc->address + 4;
                  reloc_offset = bfd_reloc->address + 4;
                  break;
                  break;
                }
                }
 
 
              /* Now the actual relocation we care about.  */
              /* Now the actual relocation we care about.  */
              switch (bfd_reloc->howto->type)
              switch (bfd_reloc->howto->type)
                {
                {
                case R_PCREL_CALL:
                case R_PCREL_CALL:
                case R_ABS_CALL:
                case R_ABS_CALL:
                  p = som_reloc_call (abfd, p, &subspace_reloc_size,
                  p = som_reloc_call (abfd, p, &subspace_reloc_size,
                                      bfd_reloc, sym_num, reloc_queue);
                                      bfd_reloc, sym_num, reloc_queue);
                  break;
                  break;
 
 
                case R_CODE_ONE_SYMBOL:
                case R_CODE_ONE_SYMBOL:
                case R_DP_RELATIVE:
                case R_DP_RELATIVE:
                  /* Account for any addend.  */
                  /* Account for any addend.  */
                  if (bfd_reloc->addend)
                  if (bfd_reloc->addend)
                    p = som_reloc_addend (abfd, bfd_reloc->addend, p,
                    p = som_reloc_addend (abfd, bfd_reloc->addend, p,
                                          &subspace_reloc_size, reloc_queue);
                                          &subspace_reloc_size, reloc_queue);
 
 
                  if (sym_num < 0x20)
                  if (sym_num < 0x20)
                    {
                    {
                      bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
                      bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
                      subspace_reloc_size += 1;
                      subspace_reloc_size += 1;
                      p += 1;
                      p += 1;
                    }
                    }
                  else if (sym_num < 0x100)
                  else if (sym_num < 0x100)
                    {
                    {
                      bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
                      bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
                      bfd_put_8 (abfd, sym_num, p + 1);
                      bfd_put_8 (abfd, sym_num, p + 1);
                      p = try_prev_fixup (abfd, &subspace_reloc_size, p,
                      p = try_prev_fixup (abfd, &subspace_reloc_size, p,
                                          2, reloc_queue);
                                          2, reloc_queue);
                    }
                    }
                  else if (sym_num < 0x10000000)
                  else if (sym_num < 0x10000000)
                    {
                    {
                      bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
                      bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
                      bfd_put_8 (abfd, sym_num >> 16, p + 1);
                      bfd_put_8 (abfd, sym_num >> 16, p + 1);
                      bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
                      bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
                      p = try_prev_fixup (abfd, &subspace_reloc_size,
                      p = try_prev_fixup (abfd, &subspace_reloc_size,
                                          p, 4, reloc_queue);
                                          p, 4, reloc_queue);
                    }
                    }
                  else
                  else
                    abort ();
                    abort ();
                  break;
                  break;
 
 
                case R_DATA_ONE_SYMBOL:
                case R_DATA_ONE_SYMBOL:
                case R_DATA_PLABEL:
                case R_DATA_PLABEL:
                case R_CODE_PLABEL:
                case R_CODE_PLABEL:
                case R_DLT_REL:
                case R_DLT_REL:
                  /* Account for any addend using R_DATA_OVERRIDE.  */
                  /* Account for any addend using R_DATA_OVERRIDE.  */
                  if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
                  if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
                      && bfd_reloc->addend)
                      && bfd_reloc->addend)
                    p = som_reloc_addend (abfd, bfd_reloc->addend, p,
                    p = som_reloc_addend (abfd, bfd_reloc->addend, p,
                                          &subspace_reloc_size, reloc_queue);
                                          &subspace_reloc_size, reloc_queue);
 
 
                  if (sym_num < 0x100)
                  if (sym_num < 0x100)
                    {
                    {
                      bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                      bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                      bfd_put_8 (abfd, sym_num, p + 1);
                      bfd_put_8 (abfd, sym_num, p + 1);
                      p = try_prev_fixup (abfd, &subspace_reloc_size, p,
                      p = try_prev_fixup (abfd, &subspace_reloc_size, p,
                                          2, reloc_queue);
                                          2, reloc_queue);
                    }
                    }
                  else if (sym_num < 0x10000000)
                  else if (sym_num < 0x10000000)
                    {
                    {
                      bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
                      bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
                      bfd_put_8 (abfd, sym_num >> 16, p + 1);
                      bfd_put_8 (abfd, sym_num >> 16, p + 1);
                      bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
                      bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
                      p = try_prev_fixup (abfd, &subspace_reloc_size,
                      p = try_prev_fixup (abfd, &subspace_reloc_size,
                                          p, 4, reloc_queue);
                                          p, 4, reloc_queue);
                    }
                    }
                  else
                  else
                    abort ();
                    abort ();
                  break;
                  break;
 
 
                case R_ENTRY:
                case R_ENTRY:
                  {
                  {
                    unsigned int tmp;
                    unsigned int tmp;
                    arelent *tmp_reloc = NULL;
                    arelent *tmp_reloc = NULL;
                    bfd_put_8 (abfd, R_ENTRY, p);
                    bfd_put_8 (abfd, R_ENTRY, p);
 
 
                    /* R_ENTRY relocations have 64 bits of associated
                    /* R_ENTRY relocations have 64 bits of associated
                       data.  Unfortunately the addend field of a bfd
                       data.  Unfortunately the addend field of a bfd
                       relocation is only 32 bits.  So, we split up
                       relocation is only 32 bits.  So, we split up
                       the 64bit unwind information and store part in
                       the 64bit unwind information and store part in
                       the R_ENTRY relocation, and the rest in the R_EXIT
                       the R_ENTRY relocation, and the rest in the R_EXIT
                       relocation.  */
                       relocation.  */
                    bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
                    bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
 
 
                    /* Find the next R_EXIT relocation.  */
                    /* Find the next R_EXIT relocation.  */
                    for (tmp = j; tmp < subsection->reloc_count; tmp++)
                    for (tmp = j; tmp < subsection->reloc_count; tmp++)
                      {
                      {
                        tmp_reloc = subsection->orelocation[tmp];
                        tmp_reloc = subsection->orelocation[tmp];
                        if (tmp_reloc->howto->type == R_EXIT)
                        if (tmp_reloc->howto->type == R_EXIT)
                          break;
                          break;
                      }
                      }
 
 
                    if (tmp == subsection->reloc_count)
                    if (tmp == subsection->reloc_count)
                      abort ();
                      abort ();
 
 
                    bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
                    bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
                    p = try_prev_fixup (abfd, &subspace_reloc_size,
                    p = try_prev_fixup (abfd, &subspace_reloc_size,
                                        p, 9, reloc_queue);
                                        p, 9, reloc_queue);
                    break;
                    break;
                  }
                  }
 
 
                case R_N_MODE:
                case R_N_MODE:
                case R_S_MODE:
                case R_S_MODE:
                case R_D_MODE:
                case R_D_MODE:
                case R_R_MODE:
                case R_R_MODE:
                  /* If this relocation requests the current rounding
                  /* If this relocation requests the current rounding
                     mode, then it is redundant.  */
                     mode, then it is redundant.  */
                  if (bfd_reloc->howto->type != current_rounding_mode)
                  if (bfd_reloc->howto->type != current_rounding_mode)
                    {
                    {
                      bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                      bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                      subspace_reloc_size += 1;
                      subspace_reloc_size += 1;
                      p += 1;
                      p += 1;
                      current_rounding_mode = bfd_reloc->howto->type;
                      current_rounding_mode = bfd_reloc->howto->type;
                    }
                    }
                  break;
                  break;
 
 
#ifndef NO_PCREL_MODES
#ifndef NO_PCREL_MODES
                case R_LONG_PCREL_MODE:
                case R_LONG_PCREL_MODE:
                case R_SHORT_PCREL_MODE:
                case R_SHORT_PCREL_MODE:
                  if (bfd_reloc->howto->type != current_call_mode)
                  if (bfd_reloc->howto->type != current_call_mode)
                    {
                    {
                      bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                      bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                      subspace_reloc_size += 1;
                      subspace_reloc_size += 1;
                      p += 1;
                      p += 1;
                      current_call_mode = bfd_reloc->howto->type;
                      current_call_mode = bfd_reloc->howto->type;
                    }
                    }
                  break;
                  break;
#endif
#endif
 
 
                case R_EXIT:
                case R_EXIT:
                case R_ALT_ENTRY:
                case R_ALT_ENTRY:
                case R_FSEL:
                case R_FSEL:
                case R_LSEL:
                case R_LSEL:
                case R_RSEL:
                case R_RSEL:
                case R_BEGIN_BRTAB:
                case R_BEGIN_BRTAB:
                case R_END_BRTAB:
                case R_END_BRTAB:
                case R_BEGIN_TRY:
                case R_BEGIN_TRY:
                case R_N0SEL:
                case R_N0SEL:
                case R_N1SEL:
                case R_N1SEL:
                  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                  subspace_reloc_size += 1;
                  subspace_reloc_size += 1;
                  p += 1;
                  p += 1;
                  break;
                  break;
 
 
                case R_END_TRY:
                case R_END_TRY:
                  /* The end of an exception handling region.  The reloc's
                  /* The end of an exception handling region.  The reloc's
                     addend contains the offset of the exception handling
                     addend contains the offset of the exception handling
                     code.  */
                     code.  */
                  if (bfd_reloc->addend == 0)
                  if (bfd_reloc->addend == 0)
                    bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                    bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                  else if (bfd_reloc->addend < 1024)
                  else if (bfd_reloc->addend < 1024)
                    {
                    {
                      bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
                      bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
                      bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
                      bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
                      p = try_prev_fixup (abfd, &subspace_reloc_size,
                      p = try_prev_fixup (abfd, &subspace_reloc_size,
                                          p, 2, reloc_queue);
                                          p, 2, reloc_queue);
                    }
                    }
                  else
                  else
                    {
                    {
                      bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
                      bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
                      bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
                      bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
                      bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
                      bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
                      p = try_prev_fixup (abfd, &subspace_reloc_size,
                      p = try_prev_fixup (abfd, &subspace_reloc_size,
                                          p, 4, reloc_queue);
                                          p, 4, reloc_queue);
                    }
                    }
                  break;
                  break;
 
 
                case R_COMP1:
                case R_COMP1:
                  /* The only time we generate R_COMP1, R_COMP2 and
                  /* The only time we generate R_COMP1, R_COMP2 and
                     R_CODE_EXPR relocs is for the difference of two
                     R_CODE_EXPR relocs is for the difference of two
                     symbols.  Hence we can cheat here.  */
                     symbols.  Hence we can cheat here.  */
                  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                  bfd_put_8 (abfd, 0x44, p + 1);
                  bfd_put_8 (abfd, 0x44, p + 1);
                  p = try_prev_fixup (abfd, &subspace_reloc_size,
                  p = try_prev_fixup (abfd, &subspace_reloc_size,
                                      p, 2, reloc_queue);
                                      p, 2, reloc_queue);
                  break;
                  break;
 
 
                case R_COMP2:
                case R_COMP2:
                  /* The only time we generate R_COMP1, R_COMP2 and
                  /* The only time we generate R_COMP1, R_COMP2 and
                     R_CODE_EXPR relocs is for the difference of two
                     R_CODE_EXPR relocs is for the difference of two
                     symbols.  Hence we can cheat here.  */
                     symbols.  Hence we can cheat here.  */
                  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                  bfd_put_8 (abfd, 0x80, p + 1);
                  bfd_put_8 (abfd, 0x80, p + 1);
                  bfd_put_8 (abfd, sym_num >> 16, p + 2);
                  bfd_put_8 (abfd, sym_num >> 16, p + 2);
                  bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
                  bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
                  p = try_prev_fixup (abfd, &subspace_reloc_size,
                  p = try_prev_fixup (abfd, &subspace_reloc_size,
                                      p, 5, reloc_queue);
                                      p, 5, reloc_queue);
                  break;
                  break;
 
 
                case R_CODE_EXPR:
                case R_CODE_EXPR:
                case R_DATA_EXPR:
                case R_DATA_EXPR:
                  /* The only time we generate R_COMP1, R_COMP2 and
                  /* The only time we generate R_COMP1, R_COMP2 and
                     R_CODE_EXPR relocs is for the difference of two
                     R_CODE_EXPR relocs is for the difference of two
                     symbols.  Hence we can cheat here.  */
                     symbols.  Hence we can cheat here.  */
                  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                  bfd_put_8 (abfd, bfd_reloc->howto->type, p);
                  subspace_reloc_size += 1;
                  subspace_reloc_size += 1;
                  p += 1;
                  p += 1;
                  break;
                  break;
 
 
                /* Put a "R_RESERVED" relocation in the stream if
                /* Put a "R_RESERVED" relocation in the stream if
                   we hit something we do not understand.  The linker
                   we hit something we do not understand.  The linker
                   will complain loudly if this ever happens.  */
                   will complain loudly if this ever happens.  */
                default:
                default:
                  bfd_put_8 (abfd, 0xff, p);
                  bfd_put_8 (abfd, 0xff, p);
                  subspace_reloc_size += 1;
                  subspace_reloc_size += 1;
                  p += 1;
                  p += 1;
                  break;
                  break;
                }
                }
            }
            }
 
 
          /* Last BFD relocation for a subspace has been processed.
          /* Last BFD relocation for a subspace has been processed.
             Map the rest of the subspace with R_NO_RELOCATION fixups.  */
             Map the rest of the subspace with R_NO_RELOCATION fixups.  */
          p = som_reloc_skip (abfd, subsection->size - reloc_offset,
          p = som_reloc_skip (abfd, subsection->size - reloc_offset,
                              p, &subspace_reloc_size, reloc_queue);
                              p, &subspace_reloc_size, reloc_queue);
 
 
          /* Scribble out the relocations.  */
          /* Scribble out the relocations.  */
          amt = p - tmp_space;
          amt = p - tmp_space;
          if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
          if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
            return FALSE;
            return FALSE;
          p = tmp_space;
          p = tmp_space;
 
 
          total_reloc_size += subspace_reloc_size;
          total_reloc_size += subspace_reloc_size;
          som_section_data (subsection)->subspace_dict->fixup_request_quantity
          som_section_data (subsection)->subspace_dict->fixup_request_quantity
            = subspace_reloc_size;
            = subspace_reloc_size;
        }
        }
      section = section->next;
      section = section->next;
    }
    }
  *total_reloc_sizep = total_reloc_size;
  *total_reloc_sizep = total_reloc_size;
  return TRUE;
  return TRUE;
}
}
 
 
/* Write out the space/subspace string table.  */
/* Write out the space/subspace string table.  */
 
 
static bfd_boolean
static bfd_boolean
som_write_space_strings (bfd *abfd,
som_write_space_strings (bfd *abfd,
                         unsigned long current_offset,
                         unsigned long current_offset,
                         unsigned int *string_sizep)
                         unsigned int *string_sizep)
{
{
  /* Chunk of memory that we can use as buffer space, then throw
  /* Chunk of memory that we can use as buffer space, then throw
     away.  */
     away.  */
  size_t tmp_space_size = SOM_TMP_BUFSIZE;
  size_t tmp_space_size = SOM_TMP_BUFSIZE;
  char *tmp_space = alloca (tmp_space_size);
  char *tmp_space = alloca (tmp_space_size);
  char *p = tmp_space;
  char *p = tmp_space;
  unsigned int strings_size = 0;
  unsigned int strings_size = 0;
  asection *section;
  asection *section;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  /* Seek to the start of the space strings in preparation for writing
  /* Seek to the start of the space strings in preparation for writing
     them out.  */
     them out.  */
  if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
  if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
    return FALSE;
    return FALSE;
 
 
  /* Walk through all the spaces and subspaces (order is not important)
  /* Walk through all the spaces and subspaces (order is not important)
     building up and writing string table entries for their names.  */
     building up and writing string table entries for their names.  */
  for (section = abfd->sections; section != NULL; section = section->next)
  for (section = abfd->sections; section != NULL; section = section->next)
    {
    {
      size_t length;
      size_t length;
 
 
      /* Only work with space/subspaces; avoid any other sections
      /* Only work with space/subspaces; avoid any other sections
         which might have been made (.text for example).  */
         which might have been made (.text for example).  */
      if (!som_is_space (section) && !som_is_subspace (section))
      if (!som_is_space (section) && !som_is_subspace (section))
        continue;
        continue;
 
 
      /* Get the length of the space/subspace name.  */
      /* Get the length of the space/subspace name.  */
      length = strlen (section->name);
      length = strlen (section->name);
 
 
      /* If there is not enough room for the next entry, then dump the
      /* If there is not enough room for the next entry, then dump the
         current buffer contents now and maybe allocate a larger
         current buffer contents now and maybe allocate a larger
         buffer.  Each entry will take 4 bytes to hold the string
         buffer.  Each entry will take 4 bytes to hold the string
         length + the string itself + null terminator.  */
         length + the string itself + null terminator.  */
      if (p - tmp_space + 5 + length > tmp_space_size)
      if (p - tmp_space + 5 + length > tmp_space_size)
        {
        {
          /* Flush buffer before refilling or reallocating.  */
          /* Flush buffer before refilling or reallocating.  */
          amt = p - tmp_space;
          amt = p - tmp_space;
          if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
          if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
            return FALSE;
            return FALSE;
 
 
          /* Reallocate if now empty buffer still too small.  */
          /* Reallocate if now empty buffer still too small.  */
          if (5 + length > tmp_space_size)
          if (5 + length > tmp_space_size)
            {
            {
              /* Ensure a minimum growth factor to avoid O(n**2) space
              /* Ensure a minimum growth factor to avoid O(n**2) space
                 consumption for n strings.  The optimal minimum
                 consumption for n strings.  The optimal minimum
                 factor seems to be 2, as no other value can guarantee
                 factor seems to be 2, as no other value can guarantee
                 wasting less than 50% space.  (Note that we cannot
                 wasting less than 50% space.  (Note that we cannot
                 deallocate space allocated by `alloca' without
                 deallocate space allocated by `alloca' without
                 returning from this function.)  The same technique is
                 returning from this function.)  The same technique is
                 used a few more times below when a buffer is
                 used a few more times below when a buffer is
                 reallocated.  */
                 reallocated.  */
              tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
              tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
              tmp_space = alloca (tmp_space_size);
              tmp_space = alloca (tmp_space_size);
            }
            }
 
 
          /* Reset to beginning of the (possibly new) buffer space.  */
          /* Reset to beginning of the (possibly new) buffer space.  */
          p = tmp_space;
          p = tmp_space;
        }
        }
 
 
      /* First element in a string table entry is the length of the
      /* First element in a string table entry is the length of the
         string.  Alignment issues are already handled.  */
         string.  Alignment issues are already handled.  */
      bfd_put_32 (abfd, (bfd_vma) length, p);
      bfd_put_32 (abfd, (bfd_vma) length, p);
      p += 4;
      p += 4;
      strings_size += 4;
      strings_size += 4;
 
 
      /* Record the index in the space/subspace records.  */
      /* Record the index in the space/subspace records.  */
      if (som_is_space (section))
      if (som_is_space (section))
        som_section_data (section)->space_dict->name.n_strx = strings_size;
        som_section_data (section)->space_dict->name.n_strx = strings_size;
      else
      else
        som_section_data (section)->subspace_dict->name.n_strx = strings_size;
        som_section_data (section)->subspace_dict->name.n_strx = strings_size;
 
 
      /* Next comes the string itself + a null terminator.  */
      /* Next comes the string itself + a null terminator.  */
      strcpy (p, section->name);
      strcpy (p, section->name);
      p += length + 1;
      p += length + 1;
      strings_size += length + 1;
      strings_size += length + 1;
 
 
      /* Always align up to the next word boundary.  */
      /* Always align up to the next word boundary.  */
      while (strings_size % 4)
      while (strings_size % 4)
        {
        {
          bfd_put_8 (abfd, 0, p);
          bfd_put_8 (abfd, 0, p);
          p++;
          p++;
          strings_size++;
          strings_size++;
        }
        }
    }
    }
 
 
  /* Done with the space/subspace strings.  Write out any information
  /* Done with the space/subspace strings.  Write out any information
     contained in a partial block.  */
     contained in a partial block.  */
  amt = p - tmp_space;
  amt = p - tmp_space;
  if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
  if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
    return FALSE;
    return FALSE;
  *string_sizep = strings_size;
  *string_sizep = strings_size;
  return TRUE;
  return TRUE;
}
}
 
 
/* Write out the symbol string table.  */
/* Write out the symbol string table.  */
 
 
static bfd_boolean
static bfd_boolean
som_write_symbol_strings (bfd *abfd,
som_write_symbol_strings (bfd *abfd,
                          unsigned long current_offset,
                          unsigned long current_offset,
                          asymbol **syms,
                          asymbol **syms,
                          unsigned int num_syms,
                          unsigned int num_syms,
                          unsigned int *string_sizep,
                          unsigned int *string_sizep,
                          COMPUNIT *compilation_unit)
                          COMPUNIT *compilation_unit)
{
{
  unsigned int i;
  unsigned int i;
 
 
  /* Chunk of memory that we can use as buffer space, then throw
  /* Chunk of memory that we can use as buffer space, then throw
     away.  */
     away.  */
  size_t tmp_space_size = SOM_TMP_BUFSIZE;
  size_t tmp_space_size = SOM_TMP_BUFSIZE;
  char *tmp_space = alloca (tmp_space_size);
  char *tmp_space = alloca (tmp_space_size);
  char *p = tmp_space;
  char *p = tmp_space;
 
 
  unsigned int strings_size = 0;
  unsigned int strings_size = 0;
  char *comp[4];
  char *comp[4];
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  /* This gets a bit gruesome because of the compilation unit.  The
  /* This gets a bit gruesome because of the compilation unit.  The
     strings within the compilation unit are part of the symbol
     strings within the compilation unit are part of the symbol
     strings, but don't have symbol_dictionary entries.  So, manually
     strings, but don't have symbol_dictionary entries.  So, manually
     write them and update the compilation unit header.  On input, the
     write them and update the compilation unit header.  On input, the
     compilation unit header contains local copies of the strings.
     compilation unit header contains local copies of the strings.
     Move them aside.  */
     Move them aside.  */
  if (compilation_unit)
  if (compilation_unit)
    {
    {
      comp[0] = compilation_unit->name.n_name;
      comp[0] = compilation_unit->name.n_name;
      comp[1] = compilation_unit->language_name.n_name;
      comp[1] = compilation_unit->language_name.n_name;
      comp[2] = compilation_unit->product_id.n_name;
      comp[2] = compilation_unit->product_id.n_name;
      comp[3] = compilation_unit->version_id.n_name;
      comp[3] = compilation_unit->version_id.n_name;
    }
    }
 
 
  /* Seek to the start of the space strings in preparation for writing
  /* Seek to the start of the space strings in preparation for writing
     them out.  */
     them out.  */
  if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
  if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
    return FALSE;
    return FALSE;
 
 
  if (compilation_unit)
  if (compilation_unit)
    {
    {
      for (i = 0; i < 4; i++)
      for (i = 0; i < 4; i++)
        {
        {
          size_t length = strlen (comp[i]);
          size_t length = strlen (comp[i]);
 
 
          /* If there is not enough room for the next entry, then dump
          /* If there is not enough room for the next entry, then dump
             the current buffer contents now and maybe allocate a
             the current buffer contents now and maybe allocate a
             larger buffer.  */
             larger buffer.  */
          if (p - tmp_space + 5 + length > tmp_space_size)
          if (p - tmp_space + 5 + length > tmp_space_size)
            {
            {
              /* Flush buffer before refilling or reallocating.  */
              /* Flush buffer before refilling or reallocating.  */
              amt = p - tmp_space;
              amt = p - tmp_space;
              if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
              if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
                return FALSE;
                return FALSE;
 
 
              /* Reallocate if now empty buffer still too small.  */
              /* Reallocate if now empty buffer still too small.  */
              if (5 + length > tmp_space_size)
              if (5 + length > tmp_space_size)
                {
                {
                  /* See alloca above for discussion of new size.  */
                  /* See alloca above for discussion of new size.  */
                  tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
                  tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
                  tmp_space = alloca (tmp_space_size);
                  tmp_space = alloca (tmp_space_size);
                }
                }
 
 
              /* Reset to beginning of the (possibly new) buffer
              /* Reset to beginning of the (possibly new) buffer
                 space.  */
                 space.  */
              p = tmp_space;
              p = tmp_space;
            }
            }
 
 
          /* First element in a string table entry is the length of
          /* First element in a string table entry is the length of
             the string.  This must always be 4 byte aligned.  This is
             the string.  This must always be 4 byte aligned.  This is
             also an appropriate time to fill in the string index
             also an appropriate time to fill in the string index
             field in the symbol table entry.  */
             field in the symbol table entry.  */
          bfd_put_32 (abfd, (bfd_vma) length, p);
          bfd_put_32 (abfd, (bfd_vma) length, p);
          strings_size += 4;
          strings_size += 4;
          p += 4;
          p += 4;
 
 
          /* Next comes the string itself + a null terminator.  */
          /* Next comes the string itself + a null terminator.  */
          strcpy (p, comp[i]);
          strcpy (p, comp[i]);
 
 
          switch (i)
          switch (i)
            {
            {
            case 0:
            case 0:
              obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
              obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
              break;
              break;
            case 1:
            case 1:
              obj_som_compilation_unit (abfd)->language_name.n_strx =
              obj_som_compilation_unit (abfd)->language_name.n_strx =
                strings_size;
                strings_size;
              break;
              break;
            case 2:
            case 2:
              obj_som_compilation_unit (abfd)->product_id.n_strx =
              obj_som_compilation_unit (abfd)->product_id.n_strx =
                strings_size;
                strings_size;
              break;
              break;
            case 3:
            case 3:
              obj_som_compilation_unit (abfd)->version_id.n_strx =
              obj_som_compilation_unit (abfd)->version_id.n_strx =
                strings_size;
                strings_size;
              break;
              break;
            }
            }
 
 
          p += length + 1;
          p += length + 1;
          strings_size += length + 1;
          strings_size += length + 1;
 
 
          /* Always align up to the next word boundary.  */
          /* Always align up to the next word boundary.  */
          while (strings_size % 4)
          while (strings_size % 4)
            {
            {
              bfd_put_8 (abfd, 0, p);
              bfd_put_8 (abfd, 0, p);
              strings_size++;
              strings_size++;
              p++;
              p++;
            }
            }
        }
        }
    }
    }
 
 
  for (i = 0; i < num_syms; i++)
  for (i = 0; i < num_syms; i++)
    {
    {
      size_t length = strlen (syms[i]->name);
      size_t length = strlen (syms[i]->name);
 
 
      /* If there is not enough room for the next entry, then dump the
      /* If there is not enough room for the next entry, then dump the
         current buffer contents now and maybe allocate a larger buffer.  */
         current buffer contents now and maybe allocate a larger buffer.  */
     if (p - tmp_space + 5 + length > tmp_space_size)
     if (p - tmp_space + 5 + length > tmp_space_size)
        {
        {
          /* Flush buffer before refilling or reallocating.  */
          /* Flush buffer before refilling or reallocating.  */
          amt = p - tmp_space;
          amt = p - tmp_space;
          if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
          if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
            return FALSE;
            return FALSE;
 
 
          /* Reallocate if now empty buffer still too small.  */
          /* Reallocate if now empty buffer still too small.  */
          if (5 + length > tmp_space_size)
          if (5 + length > tmp_space_size)
            {
            {
              /* See alloca above for discussion of new size.  */
              /* See alloca above for discussion of new size.  */
              tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
              tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
              tmp_space = alloca (tmp_space_size);
              tmp_space = alloca (tmp_space_size);
            }
            }
 
 
          /* Reset to beginning of the (possibly new) buffer space.  */
          /* Reset to beginning of the (possibly new) buffer space.  */
          p = tmp_space;
          p = tmp_space;
        }
        }
 
 
      /* First element in a string table entry is the length of the
      /* First element in a string table entry is the length of the
         string.  This must always be 4 byte aligned.  This is also
         string.  This must always be 4 byte aligned.  This is also
         an appropriate time to fill in the string index field in the
         an appropriate time to fill in the string index field in the
         symbol table entry.  */
         symbol table entry.  */
      bfd_put_32 (abfd, (bfd_vma) length, p);
      bfd_put_32 (abfd, (bfd_vma) length, p);
      strings_size += 4;
      strings_size += 4;
      p += 4;
      p += 4;
 
 
      /* Next comes the string itself + a null terminator.  */
      /* Next comes the string itself + a null terminator.  */
      strcpy (p, syms[i]->name);
      strcpy (p, syms[i]->name);
 
 
      som_symbol_data (syms[i])->stringtab_offset = strings_size;
      som_symbol_data (syms[i])->stringtab_offset = strings_size;
      p += length + 1;
      p += length + 1;
      strings_size += length + 1;
      strings_size += length + 1;
 
 
      /* Always align up to the next word boundary.  */
      /* Always align up to the next word boundary.  */
      while (strings_size % 4)
      while (strings_size % 4)
        {
        {
          bfd_put_8 (abfd, 0, p);
          bfd_put_8 (abfd, 0, p);
          strings_size++;
          strings_size++;
          p++;
          p++;
        }
        }
    }
    }
 
 
  /* Scribble out any partial block.  */
  /* Scribble out any partial block.  */
  amt = p - tmp_space;
  amt = p - tmp_space;
  if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
  if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
    return FALSE;
    return FALSE;
 
 
  *string_sizep = strings_size;
  *string_sizep = strings_size;
  return TRUE;
  return TRUE;
}
}
 
 
/* Compute variable information to be placed in the SOM headers,
/* Compute variable information to be placed in the SOM headers,
   space/subspace dictionaries, relocation streams, etc.  Begin
   space/subspace dictionaries, relocation streams, etc.  Begin
   writing parts of the object file.  */
   writing parts of the object file.  */
 
 
static bfd_boolean
static bfd_boolean
som_begin_writing (bfd *abfd)
som_begin_writing (bfd *abfd)
{
{
  unsigned long current_offset = 0;
  unsigned long current_offset = 0;
  unsigned int strings_size = 0;
  unsigned int strings_size = 0;
  unsigned long num_spaces, num_subspaces, i;
  unsigned long num_spaces, num_subspaces, i;
  asection *section;
  asection *section;
  unsigned int total_subspaces = 0;
  unsigned int total_subspaces = 0;
  struct som_exec_auxhdr *exec_header = NULL;
  struct som_exec_auxhdr *exec_header = NULL;
 
 
  /* The file header will always be first in an object file,
  /* The file header will always be first in an object file,
     everything else can be in random locations.  To keep things
     everything else can be in random locations.  To keep things
     "simple" BFD will lay out the object file in the manner suggested
     "simple" BFD will lay out the object file in the manner suggested
     by the PRO ABI for PA-RISC Systems.  */
     by the PRO ABI for PA-RISC Systems.  */
 
 
  /* Before any output can really begin offsets for all the major
  /* Before any output can really begin offsets for all the major
     portions of the object file must be computed.  So, starting
     portions of the object file must be computed.  So, starting
     with the initial file header compute (and sometimes write)
     with the initial file header compute (and sometimes write)
     each portion of the object file.  */
     each portion of the object file.  */
 
 
  /* Make room for the file header, it's contents are not complete
  /* Make room for the file header, it's contents are not complete
     yet, so it can not be written at this time.  */
     yet, so it can not be written at this time.  */
  current_offset += sizeof (struct header);
  current_offset += sizeof (struct header);
 
 
  /* Any auxiliary headers will follow the file header.  Right now
  /* Any auxiliary headers will follow the file header.  Right now
     we support only the copyright and version headers.  */
     we support only the copyright and version headers.  */
  obj_som_file_hdr (abfd)->aux_header_location = current_offset;
  obj_som_file_hdr (abfd)->aux_header_location = current_offset;
  obj_som_file_hdr (abfd)->aux_header_size = 0;
  obj_som_file_hdr (abfd)->aux_header_size = 0;
  if (abfd->flags & (EXEC_P | DYNAMIC))
  if (abfd->flags & (EXEC_P | DYNAMIC))
    {
    {
      /* Parts of the exec header will be filled in later, so
      /* Parts of the exec header will be filled in later, so
         delay writing the header itself.  Fill in the defaults,
         delay writing the header itself.  Fill in the defaults,
         and write it later.  */
         and write it later.  */
      current_offset += sizeof (struct som_exec_auxhdr);
      current_offset += sizeof (struct som_exec_auxhdr);
      obj_som_file_hdr (abfd)->aux_header_size
      obj_som_file_hdr (abfd)->aux_header_size
        += sizeof (struct som_exec_auxhdr);
        += sizeof (struct som_exec_auxhdr);
      exec_header = obj_som_exec_hdr (abfd);
      exec_header = obj_som_exec_hdr (abfd);
      exec_header->som_auxhdr.type = EXEC_AUX_ID;
      exec_header->som_auxhdr.type = EXEC_AUX_ID;
      exec_header->som_auxhdr.length = 40;
      exec_header->som_auxhdr.length = 40;
    }
    }
  if (obj_som_version_hdr (abfd) != NULL)
  if (obj_som_version_hdr (abfd) != NULL)
    {
    {
      bfd_size_type len;
      bfd_size_type len;
 
 
      if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
      if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
        return FALSE;
        return FALSE;
 
 
      /* Write the aux_id structure and the string length.  */
      /* Write the aux_id structure and the string length.  */
      len = sizeof (struct aux_id) + sizeof (unsigned int);
      len = sizeof (struct aux_id) + sizeof (unsigned int);
      obj_som_file_hdr (abfd)->aux_header_size += len;
      obj_som_file_hdr (abfd)->aux_header_size += len;
      current_offset += len;
      current_offset += len;
      if (bfd_bwrite ((void *) obj_som_version_hdr (abfd), len, abfd) != len)
      if (bfd_bwrite ((void *) obj_som_version_hdr (abfd), len, abfd) != len)
        return FALSE;
        return FALSE;
 
 
      /* Write the version string.  */
      /* Write the version string.  */
      len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
      len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
      obj_som_file_hdr (abfd)->aux_header_size += len;
      obj_som_file_hdr (abfd)->aux_header_size += len;
      current_offset += len;
      current_offset += len;
      if (bfd_bwrite ((void *) obj_som_version_hdr (abfd)->user_string, len, abfd)
      if (bfd_bwrite ((void *) obj_som_version_hdr (abfd)->user_string, len, abfd)
          != len)
          != len)
        return FALSE;
        return FALSE;
    }
    }
 
 
  if (obj_som_copyright_hdr (abfd) != NULL)
  if (obj_som_copyright_hdr (abfd) != NULL)
    {
    {
      bfd_size_type len;
      bfd_size_type len;
 
 
      if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
      if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
        return FALSE;
        return FALSE;
 
 
      /* Write the aux_id structure and the string length.  */
      /* Write the aux_id structure and the string length.  */
      len = sizeof (struct aux_id) + sizeof (unsigned int);
      len = sizeof (struct aux_id) + sizeof (unsigned int);
      obj_som_file_hdr (abfd)->aux_header_size += len;
      obj_som_file_hdr (abfd)->aux_header_size += len;
      current_offset += len;
      current_offset += len;
      if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd), len, abfd) != len)
      if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd), len, abfd) != len)
        return FALSE;
        return FALSE;
 
 
      /* Write the copyright string.  */
      /* Write the copyright string.  */
      len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
      len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
      obj_som_file_hdr (abfd)->aux_header_size += len;
      obj_som_file_hdr (abfd)->aux_header_size += len;
      current_offset += len;
      current_offset += len;
      if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd)->copyright, len, abfd)
      if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd)->copyright, len, abfd)
          != len)
          != len)
        return FALSE;
        return FALSE;
    }
    }
 
 
  /* Next comes the initialization pointers; we have no initialization
  /* Next comes the initialization pointers; we have no initialization
     pointers, so current offset does not change.  */
     pointers, so current offset does not change.  */
  obj_som_file_hdr (abfd)->init_array_location = current_offset;
  obj_som_file_hdr (abfd)->init_array_location = current_offset;
  obj_som_file_hdr (abfd)->init_array_total = 0;
  obj_som_file_hdr (abfd)->init_array_total = 0;
 
 
  /* Next are the space records.  These are fixed length records.
  /* Next are the space records.  These are fixed length records.
 
 
     Count the number of spaces to determine how much room is needed
     Count the number of spaces to determine how much room is needed
     in the object file for the space records.
     in the object file for the space records.
 
 
     The names of the spaces are stored in a separate string table,
     The names of the spaces are stored in a separate string table,
     and the index for each space into the string table is computed
     and the index for each space into the string table is computed
     below.  Therefore, it is not possible to write the space headers
     below.  Therefore, it is not possible to write the space headers
     at this time.  */
     at this time.  */
  num_spaces = som_count_spaces (abfd);
  num_spaces = som_count_spaces (abfd);
  obj_som_file_hdr (abfd)->space_location = current_offset;
  obj_som_file_hdr (abfd)->space_location = current_offset;
  obj_som_file_hdr (abfd)->space_total = num_spaces;
  obj_som_file_hdr (abfd)->space_total = num_spaces;
  current_offset += num_spaces * sizeof (struct space_dictionary_record);
  current_offset += num_spaces * sizeof (struct space_dictionary_record);
 
 
  /* Next are the subspace records.  These are fixed length records.
  /* Next are the subspace records.  These are fixed length records.
 
 
     Count the number of subspaes to determine how much room is needed
     Count the number of subspaes to determine how much room is needed
     in the object file for the subspace records.
     in the object file for the subspace records.
 
 
     A variety if fields in the subspace record are still unknown at
     A variety if fields in the subspace record are still unknown at
     this time (index into string table, fixup stream location/size, etc).  */
     this time (index into string table, fixup stream location/size, etc).  */
  num_subspaces = som_count_subspaces (abfd);
  num_subspaces = som_count_subspaces (abfd);
  obj_som_file_hdr (abfd)->subspace_location = current_offset;
  obj_som_file_hdr (abfd)->subspace_location = current_offset;
  obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
  obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
  current_offset
  current_offset
    += num_subspaces * sizeof (struct som_subspace_dictionary_record);
    += num_subspaces * sizeof (struct som_subspace_dictionary_record);
 
 
  /* Next is the string table for the space/subspace names.  We will
  /* Next is the string table for the space/subspace names.  We will
     build and write the string table on the fly.  At the same time
     build and write the string table on the fly.  At the same time
     we will fill in the space/subspace name index fields.  */
     we will fill in the space/subspace name index fields.  */
 
 
  /* The string table needs to be aligned on a word boundary.  */
  /* The string table needs to be aligned on a word boundary.  */
  if (current_offset % 4)
  if (current_offset % 4)
    current_offset += (4 - (current_offset % 4));
    current_offset += (4 - (current_offset % 4));
 
 
  /* Mark the offset of the space/subspace string table in the
  /* Mark the offset of the space/subspace string table in the
     file header.  */
     file header.  */
  obj_som_file_hdr (abfd)->space_strings_location = current_offset;
  obj_som_file_hdr (abfd)->space_strings_location = current_offset;
 
 
  /* Scribble out the space strings.  */
  /* Scribble out the space strings.  */
  if (! som_write_space_strings (abfd, current_offset, &strings_size))
  if (! som_write_space_strings (abfd, current_offset, &strings_size))
    return FALSE;
    return FALSE;
 
 
  /* Record total string table size in the header and update the
  /* Record total string table size in the header and update the
     current offset.  */
     current offset.  */
  obj_som_file_hdr (abfd)->space_strings_size = strings_size;
  obj_som_file_hdr (abfd)->space_strings_size = strings_size;
  current_offset += strings_size;
  current_offset += strings_size;
 
 
  /* Next is the compilation unit.  */
  /* Next is the compilation unit.  */
  obj_som_file_hdr (abfd)->compiler_location = current_offset;
  obj_som_file_hdr (abfd)->compiler_location = current_offset;
  obj_som_file_hdr (abfd)->compiler_total = 0;
  obj_som_file_hdr (abfd)->compiler_total = 0;
  if (obj_som_compilation_unit (abfd))
  if (obj_som_compilation_unit (abfd))
    {
    {
      obj_som_file_hdr (abfd)->compiler_total = 1;
      obj_som_file_hdr (abfd)->compiler_total = 1;
      current_offset += COMPUNITSZ;
      current_offset += COMPUNITSZ;
    }
    }
 
 
  /* Now compute the file positions for the loadable subspaces, taking
  /* Now compute the file positions for the loadable subspaces, taking
     care to make sure everything stays properly aligned.  */
     care to make sure everything stays properly aligned.  */
 
 
  section = abfd->sections;
  section = abfd->sections;
  for (i = 0; i < num_spaces; i++)
  for (i = 0; i < num_spaces; i++)
    {
    {
      asection *subsection;
      asection *subsection;
      int first_subspace;
      int first_subspace;
      unsigned int subspace_offset = 0;
      unsigned int subspace_offset = 0;
 
 
      /* Find a space.  */
      /* Find a space.  */
      while (!som_is_space (section))
      while (!som_is_space (section))
        section = section->next;
        section = section->next;
 
 
      first_subspace = 1;
      first_subspace = 1;
      /* Now look for all its subspaces.  */
      /* Now look for all its subspaces.  */
      for (subsection = abfd->sections;
      for (subsection = abfd->sections;
           subsection != NULL;
           subsection != NULL;
           subsection = subsection->next)
           subsection = subsection->next)
        {
        {
 
 
          if (!som_is_subspace (subsection)
          if (!som_is_subspace (subsection)
              || !som_is_container (section, subsection)
              || !som_is_container (section, subsection)
              || (subsection->flags & SEC_ALLOC) == 0)
              || (subsection->flags & SEC_ALLOC) == 0)
            continue;
            continue;
 
 
          /* If this is the first subspace in the space, and we are
          /* If this is the first subspace in the space, and we are
             building an executable, then take care to make sure all
             building an executable, then take care to make sure all
             the alignments are correct and update the exec header.  */
             the alignments are correct and update the exec header.  */
          if (first_subspace
          if (first_subspace
              && (abfd->flags & (EXEC_P | DYNAMIC)))
              && (abfd->flags & (EXEC_P | DYNAMIC)))
            {
            {
              /* Demand paged executables have each space aligned to a
              /* Demand paged executables have each space aligned to a
                 page boundary.  Sharable executables (write-protected
                 page boundary.  Sharable executables (write-protected
                 text) have just the private (aka data & bss) space aligned
                 text) have just the private (aka data & bss) space aligned
                 to a page boundary.  Ugh.  Not true for HPUX.
                 to a page boundary.  Ugh.  Not true for HPUX.
 
 
                 The HPUX kernel requires the text to always be page aligned
                 The HPUX kernel requires the text to always be page aligned
                 within the file regardless of the executable's type.  */
                 within the file regardless of the executable's type.  */
              if (abfd->flags & (D_PAGED | DYNAMIC)
              if (abfd->flags & (D_PAGED | DYNAMIC)
                  || (subsection->flags & SEC_CODE)
                  || (subsection->flags & SEC_CODE)
                  || ((abfd->flags & WP_TEXT)
                  || ((abfd->flags & WP_TEXT)
                      && (subsection->flags & SEC_DATA)))
                      && (subsection->flags & SEC_DATA)))
                current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
                current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
 
 
              /* Update the exec header.  */
              /* Update the exec header.  */
              if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
              if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
                {
                {
                  exec_header->exec_tmem = section->vma;
                  exec_header->exec_tmem = section->vma;
                  exec_header->exec_tfile = current_offset;
                  exec_header->exec_tfile = current_offset;
                }
                }
              if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
              if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
                {
                {
                  exec_header->exec_dmem = section->vma;
                  exec_header->exec_dmem = section->vma;
                  exec_header->exec_dfile = current_offset;
                  exec_header->exec_dfile = current_offset;
                }
                }
 
 
              /* Keep track of exactly where we are within a particular
              /* Keep track of exactly where we are within a particular
                 space.  This is necessary as the braindamaged HPUX
                 space.  This is necessary as the braindamaged HPUX
                 loader will create holes between subspaces *and*
                 loader will create holes between subspaces *and*
                 subspace alignments are *NOT* preserved.  What a crock.  */
                 subspace alignments are *NOT* preserved.  What a crock.  */
              subspace_offset = subsection->vma;
              subspace_offset = subsection->vma;
 
 
              /* Only do this for the first subspace within each space.  */
              /* Only do this for the first subspace within each space.  */
              first_subspace = 0;
              first_subspace = 0;
            }
            }
          else if (abfd->flags & (EXEC_P | DYNAMIC))
          else if (abfd->flags & (EXEC_P | DYNAMIC))
            {
            {
              /* The braindamaged HPUX loader may have created a hole
              /* The braindamaged HPUX loader may have created a hole
                 between two subspaces.  It is *not* sufficient to use
                 between two subspaces.  It is *not* sufficient to use
                 the alignment specifications within the subspaces to
                 the alignment specifications within the subspaces to
                 account for these holes -- I've run into at least one
                 account for these holes -- I've run into at least one
                 case where the loader left one code subspace unaligned
                 case where the loader left one code subspace unaligned
                 in a final executable.
                 in a final executable.
 
 
                 To combat this we keep a current offset within each space,
                 To combat this we keep a current offset within each space,
                 and use the subspace vma fields to detect and preserve
                 and use the subspace vma fields to detect and preserve
                 holes.  What a crock!
                 holes.  What a crock!
 
 
                 ps.  This is not necessary for unloadable space/subspaces.  */
                 ps.  This is not necessary for unloadable space/subspaces.  */
              current_offset += subsection->vma - subspace_offset;
              current_offset += subsection->vma - subspace_offset;
              if (subsection->flags & SEC_CODE)
              if (subsection->flags & SEC_CODE)
                exec_header->exec_tsize += subsection->vma - subspace_offset;
                exec_header->exec_tsize += subsection->vma - subspace_offset;
              else
              else
                exec_header->exec_dsize += subsection->vma - subspace_offset;
                exec_header->exec_dsize += subsection->vma - subspace_offset;
              subspace_offset += subsection->vma - subspace_offset;
              subspace_offset += subsection->vma - subspace_offset;
            }
            }
 
 
          subsection->target_index = total_subspaces++;
          subsection->target_index = total_subspaces++;
          /* This is real data to be loaded from the file.  */
          /* This is real data to be loaded from the file.  */
          if (subsection->flags & SEC_LOAD)
          if (subsection->flags & SEC_LOAD)
            {
            {
              /* Update the size of the code & data.  */
              /* Update the size of the code & data.  */
              if (abfd->flags & (EXEC_P | DYNAMIC)
              if (abfd->flags & (EXEC_P | DYNAMIC)
                  && subsection->flags & SEC_CODE)
                  && subsection->flags & SEC_CODE)
                exec_header->exec_tsize += subsection->size;
                exec_header->exec_tsize += subsection->size;
              else if (abfd->flags & (EXEC_P | DYNAMIC)
              else if (abfd->flags & (EXEC_P | DYNAMIC)
                       && subsection->flags & SEC_DATA)
                       && subsection->flags & SEC_DATA)
                exec_header->exec_dsize += subsection->size;
                exec_header->exec_dsize += subsection->size;
              som_section_data (subsection)->subspace_dict->file_loc_init_value
              som_section_data (subsection)->subspace_dict->file_loc_init_value
                = current_offset;
                = current_offset;
              subsection->filepos = current_offset;
              subsection->filepos = current_offset;
              current_offset += subsection->size;
              current_offset += subsection->size;
              subspace_offset += subsection->size;
              subspace_offset += subsection->size;
            }
            }
          /* Looks like uninitialized data.  */
          /* Looks like uninitialized data.  */
          else
          else
            {
            {
              /* Update the size of the bss section.  */
              /* Update the size of the bss section.  */
              if (abfd->flags & (EXEC_P | DYNAMIC))
              if (abfd->flags & (EXEC_P | DYNAMIC))
                exec_header->exec_bsize += subsection->size;
                exec_header->exec_bsize += subsection->size;
 
 
              som_section_data (subsection)->subspace_dict->file_loc_init_value
              som_section_data (subsection)->subspace_dict->file_loc_init_value
                = 0;
                = 0;
              som_section_data (subsection)->subspace_dict->
              som_section_data (subsection)->subspace_dict->
                initialization_length = 0;
                initialization_length = 0;
            }
            }
        }
        }
      /* Goto the next section.  */
      /* Goto the next section.  */
      section = section->next;
      section = section->next;
    }
    }
 
 
  /* Finally compute the file positions for unloadable subspaces.
  /* Finally compute the file positions for unloadable subspaces.
     If building an executable, start the unloadable stuff on its
     If building an executable, start the unloadable stuff on its
     own page.  */
     own page.  */
 
 
  if (abfd->flags & (EXEC_P | DYNAMIC))
  if (abfd->flags & (EXEC_P | DYNAMIC))
    current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
    current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
 
 
  obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
  obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
  section = abfd->sections;
  section = abfd->sections;
  for (i = 0; i < num_spaces; i++)
  for (i = 0; i < num_spaces; i++)
    {
    {
      asection *subsection;
      asection *subsection;
 
 
      /* Find a space.  */
      /* Find a space.  */
      while (!som_is_space (section))
      while (!som_is_space (section))
        section = section->next;
        section = section->next;
 
 
      if (abfd->flags & (EXEC_P | DYNAMIC))
      if (abfd->flags & (EXEC_P | DYNAMIC))
        current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
        current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
 
 
      /* Now look for all its subspaces.  */
      /* Now look for all its subspaces.  */
      for (subsection = abfd->sections;
      for (subsection = abfd->sections;
           subsection != NULL;
           subsection != NULL;
           subsection = subsection->next)
           subsection = subsection->next)
        {
        {
 
 
          if (!som_is_subspace (subsection)
          if (!som_is_subspace (subsection)
              || !som_is_container (section, subsection)
              || !som_is_container (section, subsection)
              || (subsection->flags & SEC_ALLOC) != 0)
              || (subsection->flags & SEC_ALLOC) != 0)
            continue;
            continue;
 
 
          subsection->target_index = total_subspaces++;
          subsection->target_index = total_subspaces++;
          /* This is real data to be loaded from the file.  */
          /* This is real data to be loaded from the file.  */
          if ((subsection->flags & SEC_LOAD) == 0)
          if ((subsection->flags & SEC_LOAD) == 0)
            {
            {
              som_section_data (subsection)->subspace_dict->file_loc_init_value
              som_section_data (subsection)->subspace_dict->file_loc_init_value
                = current_offset;
                = current_offset;
              subsection->filepos = current_offset;
              subsection->filepos = current_offset;
              current_offset += subsection->size;
              current_offset += subsection->size;
            }
            }
          /* Looks like uninitialized data.  */
          /* Looks like uninitialized data.  */
          else
          else
            {
            {
              som_section_data (subsection)->subspace_dict->file_loc_init_value
              som_section_data (subsection)->subspace_dict->file_loc_init_value
                = 0;
                = 0;
              som_section_data (subsection)->subspace_dict->
              som_section_data (subsection)->subspace_dict->
                initialization_length = subsection->size;
                initialization_length = subsection->size;
            }
            }
        }
        }
      /* Goto the next section.  */
      /* Goto the next section.  */
      section = section->next;
      section = section->next;
    }
    }
 
 
  /* If building an executable, then make sure to seek to and write
  /* If building an executable, then make sure to seek to and write
     one byte at the end of the file to make sure any necessary
     one byte at the end of the file to make sure any necessary
     zeros are filled in.  Ugh.  */
     zeros are filled in.  Ugh.  */
  if (abfd->flags & (EXEC_P | DYNAMIC))
  if (abfd->flags & (EXEC_P | DYNAMIC))
    current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
    current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
  if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0)
  if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0)
    return FALSE;
    return FALSE;
  if (bfd_bwrite ((void *) "", (bfd_size_type) 1, abfd) != 1)
  if (bfd_bwrite ((void *) "", (bfd_size_type) 1, abfd) != 1)
    return FALSE;
    return FALSE;
 
 
  obj_som_file_hdr (abfd)->unloadable_sp_size
  obj_som_file_hdr (abfd)->unloadable_sp_size
    = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
    = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
 
 
  /* Loader fixups are not supported in any way shape or form.  */
  /* Loader fixups are not supported in any way shape or form.  */
  obj_som_file_hdr (abfd)->loader_fixup_location = 0;
  obj_som_file_hdr (abfd)->loader_fixup_location = 0;
  obj_som_file_hdr (abfd)->loader_fixup_total = 0;
  obj_som_file_hdr (abfd)->loader_fixup_total = 0;
 
 
  /* Done.  Store the total size of the SOM so far.  */
  /* Done.  Store the total size of the SOM so far.  */
  obj_som_file_hdr (abfd)->som_length = current_offset;
  obj_som_file_hdr (abfd)->som_length = current_offset;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Finally, scribble out the various headers to the disk.  */
/* Finally, scribble out the various headers to the disk.  */
 
 
static bfd_boolean
static bfd_boolean
som_finish_writing (bfd *abfd)
som_finish_writing (bfd *abfd)
{
{
  int num_spaces = som_count_spaces (abfd);
  int num_spaces = som_count_spaces (abfd);
  asymbol **syms = bfd_get_outsymbols (abfd);
  asymbol **syms = bfd_get_outsymbols (abfd);
  int i, num_syms;
  int i, num_syms;
  int subspace_index = 0;
  int subspace_index = 0;
  file_ptr location;
  file_ptr location;
  asection *section;
  asection *section;
  unsigned long current_offset;
  unsigned long current_offset;
  unsigned int strings_size, total_reloc_size;
  unsigned int strings_size, total_reloc_size;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  /* We must set up the version identifier here as objcopy/strip copy
  /* We must set up the version identifier here as objcopy/strip copy
     private BFD data too late for us to handle this in som_begin_writing.  */
     private BFD data too late for us to handle this in som_begin_writing.  */
  if (obj_som_exec_data (abfd)
  if (obj_som_exec_data (abfd)
      && obj_som_exec_data (abfd)->version_id)
      && obj_som_exec_data (abfd)->version_id)
    obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id;
    obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id;
  else
  else
    obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID;
    obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID;
 
 
  /* Next is the symbol table.  These are fixed length records.
  /* Next is the symbol table.  These are fixed length records.
 
 
     Count the number of symbols to determine how much room is needed
     Count the number of symbols to determine how much room is needed
     in the object file for the symbol table.
     in the object file for the symbol table.
 
 
     The names of the symbols are stored in a separate string table,
     The names of the symbols are stored in a separate string table,
     and the index for each symbol name into the string table is computed
     and the index for each symbol name into the string table is computed
     below.  Therefore, it is not possible to write the symbol table
     below.  Therefore, it is not possible to write the symbol table
     at this time.
     at this time.
 
 
     These used to be output before the subspace contents, but they
     These used to be output before the subspace contents, but they
     were moved here to work around a stupid bug in the hpux linker
     were moved here to work around a stupid bug in the hpux linker
     (fixed in hpux10).  */
     (fixed in hpux10).  */
  current_offset = obj_som_file_hdr (abfd)->som_length;
  current_offset = obj_som_file_hdr (abfd)->som_length;
 
 
  /* Make sure we're on a word boundary.  */
  /* Make sure we're on a word boundary.  */
  if (current_offset % 4)
  if (current_offset % 4)
    current_offset += (4 - (current_offset % 4));
    current_offset += (4 - (current_offset % 4));
 
 
  num_syms = bfd_get_symcount (abfd);
  num_syms = bfd_get_symcount (abfd);
  obj_som_file_hdr (abfd)->symbol_location = current_offset;
  obj_som_file_hdr (abfd)->symbol_location = current_offset;
  obj_som_file_hdr (abfd)->symbol_total = num_syms;
  obj_som_file_hdr (abfd)->symbol_total = num_syms;
  current_offset += num_syms * sizeof (struct symbol_dictionary_record);
  current_offset += num_syms * sizeof (struct symbol_dictionary_record);
 
 
  /* Next are the symbol strings.
  /* Next are the symbol strings.
     Align them to a word boundary.  */
     Align them to a word boundary.  */
  if (current_offset % 4)
  if (current_offset % 4)
    current_offset += (4 - (current_offset % 4));
    current_offset += (4 - (current_offset % 4));
  obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
  obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
 
 
  /* Scribble out the symbol strings.  */
  /* Scribble out the symbol strings.  */
  if (! som_write_symbol_strings (abfd, current_offset, syms,
  if (! som_write_symbol_strings (abfd, current_offset, syms,
                                  num_syms, &strings_size,
                                  num_syms, &strings_size,
                                  obj_som_compilation_unit (abfd)))
                                  obj_som_compilation_unit (abfd)))
    return FALSE;
    return FALSE;
 
 
  /* Record total string table size in header and update the
  /* Record total string table size in header and update the
     current offset.  */
     current offset.  */
  obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
  obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
  current_offset += strings_size;
  current_offset += strings_size;
 
 
  /* Do prep work before handling fixups.  */
  /* Do prep work before handling fixups.  */
  som_prep_for_fixups (abfd,
  som_prep_for_fixups (abfd,
                       bfd_get_outsymbols (abfd),
                       bfd_get_outsymbols (abfd),
                       bfd_get_symcount (abfd));
                       bfd_get_symcount (abfd));
 
 
  /* At the end of the file is the fixup stream which starts on a
  /* At the end of the file is the fixup stream which starts on a
     word boundary.  */
     word boundary.  */
  if (current_offset % 4)
  if (current_offset % 4)
    current_offset += (4 - (current_offset % 4));
    current_offset += (4 - (current_offset % 4));
  obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
  obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
 
 
  /* Write the fixups and update fields in subspace headers which
  /* Write the fixups and update fields in subspace headers which
     relate to the fixup stream.  */
     relate to the fixup stream.  */
  if (! som_write_fixups (abfd, current_offset, &total_reloc_size))
  if (! som_write_fixups (abfd, current_offset, &total_reloc_size))
    return FALSE;
    return FALSE;
 
 
  /* Record the total size of the fixup stream in the file header.  */
  /* Record the total size of the fixup stream in the file header.  */
  obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
  obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
 
 
  /* Done.  Store the total size of the SOM.  */
  /* Done.  Store the total size of the SOM.  */
  obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
  obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
 
 
  /* Now that the symbol table information is complete, build and
  /* Now that the symbol table information is complete, build and
     write the symbol table.  */
     write the symbol table.  */
  if (! som_build_and_write_symbol_table (abfd))
  if (! som_build_and_write_symbol_table (abfd))
    return FALSE;
    return FALSE;
 
 
  /* Subspaces are written first so that we can set up information
  /* Subspaces are written first so that we can set up information
     about them in their containing spaces as the subspace is written.  */
     about them in their containing spaces as the subspace is written.  */
 
 
  /* Seek to the start of the subspace dictionary records.  */
  /* Seek to the start of the subspace dictionary records.  */
  location = obj_som_file_hdr (abfd)->subspace_location;
  location = obj_som_file_hdr (abfd)->subspace_location;
  if (bfd_seek (abfd, location, SEEK_SET) != 0)
  if (bfd_seek (abfd, location, SEEK_SET) != 0)
    return FALSE;
    return FALSE;
 
 
  section = abfd->sections;
  section = abfd->sections;
  /* Now for each loadable space write out records for its subspaces.  */
  /* Now for each loadable space write out records for its subspaces.  */
  for (i = 0; i < num_spaces; i++)
  for (i = 0; i < num_spaces; i++)
    {
    {
      asection *subsection;
      asection *subsection;
 
 
      /* Find a space.  */
      /* Find a space.  */
      while (!som_is_space (section))
      while (!som_is_space (section))
        section = section->next;
        section = section->next;
 
 
      /* Now look for all its subspaces.  */
      /* Now look for all its subspaces.  */
      for (subsection = abfd->sections;
      for (subsection = abfd->sections;
           subsection != NULL;
           subsection != NULL;
           subsection = subsection->next)
           subsection = subsection->next)
        {
        {
 
 
          /* Skip any section which does not correspond to a space
          /* Skip any section which does not correspond to a space
             or subspace.  Or does not have SEC_ALLOC set (and therefore
             or subspace.  Or does not have SEC_ALLOC set (and therefore
             has no real bits on the disk).  */
             has no real bits on the disk).  */
          if (!som_is_subspace (subsection)
          if (!som_is_subspace (subsection)
              || !som_is_container (section, subsection)
              || !som_is_container (section, subsection)
              || (subsection->flags & SEC_ALLOC) == 0)
              || (subsection->flags & SEC_ALLOC) == 0)
            continue;
            continue;
 
 
          /* If this is the first subspace for this space, then save
          /* If this is the first subspace for this space, then save
             the index of the subspace in its containing space.  Also
             the index of the subspace in its containing space.  Also
             set "is_loadable" in the containing space.  */
             set "is_loadable" in the containing space.  */
 
 
          if (som_section_data (section)->space_dict->subspace_quantity == 0)
          if (som_section_data (section)->space_dict->subspace_quantity == 0)
            {
            {
              som_section_data (section)->space_dict->is_loadable = 1;
              som_section_data (section)->space_dict->is_loadable = 1;
              som_section_data (section)->space_dict->subspace_index
              som_section_data (section)->space_dict->subspace_index
                = subspace_index;
                = subspace_index;
            }
            }
 
 
          /* Increment the number of subspaces seen and the number of
          /* Increment the number of subspaces seen and the number of
             subspaces contained within the current space.  */
             subspaces contained within the current space.  */
          subspace_index++;
          subspace_index++;
          som_section_data (section)->space_dict->subspace_quantity++;
          som_section_data (section)->space_dict->subspace_quantity++;
 
 
          /* Mark the index of the current space within the subspace's
          /* Mark the index of the current space within the subspace's
             dictionary record.  */
             dictionary record.  */
          som_section_data (subsection)->subspace_dict->space_index = i;
          som_section_data (subsection)->subspace_dict->space_index = i;
 
 
          /* Dump the current subspace header.  */
          /* Dump the current subspace header.  */
          amt = sizeof (struct som_subspace_dictionary_record);
          amt = sizeof (struct som_subspace_dictionary_record);
          if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
          if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
                         amt, abfd) != amt)
                         amt, abfd) != amt)
            return FALSE;
            return FALSE;
        }
        }
      /* Goto the next section.  */
      /* Goto the next section.  */
      section = section->next;
      section = section->next;
    }
    }
 
 
  /* Now repeat the process for unloadable subspaces.  */
  /* Now repeat the process for unloadable subspaces.  */
  section = abfd->sections;
  section = abfd->sections;
  /* Now for each space write out records for its subspaces.  */
  /* Now for each space write out records for its subspaces.  */
  for (i = 0; i < num_spaces; i++)
  for (i = 0; i < num_spaces; i++)
    {
    {
      asection *subsection;
      asection *subsection;
 
 
      /* Find a space.  */
      /* Find a space.  */
      while (!som_is_space (section))
      while (!som_is_space (section))
        section = section->next;
        section = section->next;
 
 
      /* Now look for all its subspaces.  */
      /* Now look for all its subspaces.  */
      for (subsection = abfd->sections;
      for (subsection = abfd->sections;
           subsection != NULL;
           subsection != NULL;
           subsection = subsection->next)
           subsection = subsection->next)
        {
        {
 
 
          /* Skip any section which does not correspond to a space or
          /* Skip any section which does not correspond to a space or
             subspace, or which SEC_ALLOC set (and therefore handled
             subspace, or which SEC_ALLOC set (and therefore handled
             in the loadable spaces/subspaces code above).  */
             in the loadable spaces/subspaces code above).  */
 
 
          if (!som_is_subspace (subsection)
          if (!som_is_subspace (subsection)
              || !som_is_container (section, subsection)
              || !som_is_container (section, subsection)
              || (subsection->flags & SEC_ALLOC) != 0)
              || (subsection->flags & SEC_ALLOC) != 0)
            continue;
            continue;
 
 
          /* If this is the first subspace for this space, then save
          /* If this is the first subspace for this space, then save
             the index of the subspace in its containing space.  Clear
             the index of the subspace in its containing space.  Clear
             "is_loadable".  */
             "is_loadable".  */
 
 
          if (som_section_data (section)->space_dict->subspace_quantity == 0)
          if (som_section_data (section)->space_dict->subspace_quantity == 0)
            {
            {
              som_section_data (section)->space_dict->is_loadable = 0;
              som_section_data (section)->space_dict->is_loadable = 0;
              som_section_data (section)->space_dict->subspace_index
              som_section_data (section)->space_dict->subspace_index
                = subspace_index;
                = subspace_index;
            }
            }
 
 
          /* Increment the number of subspaces seen and the number of
          /* Increment the number of subspaces seen and the number of
             subspaces contained within the current space.  */
             subspaces contained within the current space.  */
          som_section_data (section)->space_dict->subspace_quantity++;
          som_section_data (section)->space_dict->subspace_quantity++;
          subspace_index++;
          subspace_index++;
 
 
          /* Mark the index of the current space within the subspace's
          /* Mark the index of the current space within the subspace's
             dictionary record.  */
             dictionary record.  */
          som_section_data (subsection)->subspace_dict->space_index = i;
          som_section_data (subsection)->subspace_dict->space_index = i;
 
 
          /* Dump this subspace header.  */
          /* Dump this subspace header.  */
          amt = sizeof (struct som_subspace_dictionary_record);
          amt = sizeof (struct som_subspace_dictionary_record);
          if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
          if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
                         amt, abfd) != amt)
                         amt, abfd) != amt)
            return FALSE;
            return FALSE;
        }
        }
      /* Goto the next section.  */
      /* Goto the next section.  */
      section = section->next;
      section = section->next;
    }
    }
 
 
  /* All the subspace dictionary records are written, and all the
  /* All the subspace dictionary records are written, and all the
     fields are set up in the space dictionary records.
     fields are set up in the space dictionary records.
 
 
     Seek to the right location and start writing the space
     Seek to the right location and start writing the space
     dictionary records.  */
     dictionary records.  */
  location = obj_som_file_hdr (abfd)->space_location;
  location = obj_som_file_hdr (abfd)->space_location;
  if (bfd_seek (abfd, location, SEEK_SET) != 0)
  if (bfd_seek (abfd, location, SEEK_SET) != 0)
    return FALSE;
    return FALSE;
 
 
  section = abfd->sections;
  section = abfd->sections;
  for (i = 0; i < num_spaces; i++)
  for (i = 0; i < num_spaces; i++)
    {
    {
      /* Find a space.  */
      /* Find a space.  */
      while (!som_is_space (section))
      while (!som_is_space (section))
        section = section->next;
        section = section->next;
 
 
      /* Dump its header.  */
      /* Dump its header.  */
      amt = sizeof (struct space_dictionary_record);
      amt = sizeof (struct space_dictionary_record);
      if (bfd_bwrite ((void *) som_section_data (section)->space_dict,
      if (bfd_bwrite ((void *) som_section_data (section)->space_dict,
                     amt, abfd) != amt)
                     amt, abfd) != amt)
        return FALSE;
        return FALSE;
 
 
      /* Goto the next section.  */
      /* Goto the next section.  */
      section = section->next;
      section = section->next;
    }
    }
 
 
  /* Write the compilation unit record if there is one.  */
  /* Write the compilation unit record if there is one.  */
  if (obj_som_compilation_unit (abfd))
  if (obj_som_compilation_unit (abfd))
    {
    {
      location = obj_som_file_hdr (abfd)->compiler_location;
      location = obj_som_file_hdr (abfd)->compiler_location;
      if (bfd_seek (abfd, location, SEEK_SET) != 0)
      if (bfd_seek (abfd, location, SEEK_SET) != 0)
        return FALSE;
        return FALSE;
 
 
      amt = COMPUNITSZ;
      amt = COMPUNITSZ;
      if (bfd_bwrite ((void *) obj_som_compilation_unit (abfd), amt, abfd) != amt)
      if (bfd_bwrite ((void *) obj_som_compilation_unit (abfd), amt, abfd) != amt)
        return FALSE;
        return FALSE;
    }
    }
 
 
  /* Setting of the system_id has to happen very late now that copying of
  /* Setting of the system_id has to happen very late now that copying of
     BFD private data happens *after* section contents are set.  */
     BFD private data happens *after* section contents are set.  */
  if (abfd->flags & (EXEC_P | DYNAMIC))
  if (abfd->flags & (EXEC_P | DYNAMIC))
    obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id;
    obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id;
  else if (bfd_get_mach (abfd) == pa20)
  else if (bfd_get_mach (abfd) == pa20)
    obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0;
    obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0;
  else if (bfd_get_mach (abfd) == pa11)
  else if (bfd_get_mach (abfd) == pa11)
    obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1;
    obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1;
  else
  else
    obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0;
    obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0;
 
 
  /* Compute the checksum for the file header just before writing
  /* Compute the checksum for the file header just before writing
     the header to disk.  */
     the header to disk.  */
  obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
  obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
 
 
  /* Only thing left to do is write out the file header.  It is always
  /* Only thing left to do is write out the file header.  It is always
     at location zero.  Seek there and write it.  */
     at location zero.  Seek there and write it.  */
  if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
  if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
    return FALSE;
    return FALSE;
  amt = sizeof (struct header);
  amt = sizeof (struct header);
  if (bfd_bwrite ((void *) obj_som_file_hdr (abfd), amt, abfd) != amt)
  if (bfd_bwrite ((void *) obj_som_file_hdr (abfd), amt, abfd) != amt)
    return FALSE;
    return FALSE;
 
 
  /* Now write the exec header.  */
  /* Now write the exec header.  */
  if (abfd->flags & (EXEC_P | DYNAMIC))
  if (abfd->flags & (EXEC_P | DYNAMIC))
    {
    {
      long tmp, som_length;
      long tmp, som_length;
      struct som_exec_auxhdr *exec_header;
      struct som_exec_auxhdr *exec_header;
 
 
      exec_header = obj_som_exec_hdr (abfd);
      exec_header = obj_som_exec_hdr (abfd);
      exec_header->exec_entry = bfd_get_start_address (abfd);
      exec_header->exec_entry = bfd_get_start_address (abfd);
      exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
      exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
 
 
      /* Oh joys.  Ram some of the BSS data into the DATA section
      /* Oh joys.  Ram some of the BSS data into the DATA section
         to be compatible with how the hp linker makes objects
         to be compatible with how the hp linker makes objects
         (saves memory space).  */
         (saves memory space).  */
      tmp = exec_header->exec_dsize;
      tmp = exec_header->exec_dsize;
      tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
      tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
      exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
      exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
      if (exec_header->exec_bsize < 0)
      if (exec_header->exec_bsize < 0)
        exec_header->exec_bsize = 0;
        exec_header->exec_bsize = 0;
      exec_header->exec_dsize = tmp;
      exec_header->exec_dsize = tmp;
 
 
      /* Now perform some sanity checks.  The idea is to catch bogons now and
      /* Now perform some sanity checks.  The idea is to catch bogons now and
         inform the user, instead of silently generating a bogus file.  */
         inform the user, instead of silently generating a bogus file.  */
      som_length = obj_som_file_hdr (abfd)->som_length;
      som_length = obj_som_file_hdr (abfd)->som_length;
      if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
      if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
          || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
          || exec_header->exec_dfile + exec_header->exec_dsize > som_length)
        {
        {
          bfd_set_error (bfd_error_bad_value);
          bfd_set_error (bfd_error_bad_value);
          return FALSE;
          return FALSE;
        }
        }
 
 
      if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
      if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
                    SEEK_SET) != 0)
                    SEEK_SET) != 0)
        return FALSE;
        return FALSE;
 
 
      amt = AUX_HDR_SIZE;
      amt = AUX_HDR_SIZE;
      if (bfd_bwrite ((void *) exec_header, amt, abfd) != amt)
      if (bfd_bwrite ((void *) exec_header, amt, abfd) != amt)
        return FALSE;
        return FALSE;
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Compute and return the checksum for a SOM file header.  */
/* Compute and return the checksum for a SOM file header.  */
 
 
static unsigned long
static unsigned long
som_compute_checksum (bfd *abfd)
som_compute_checksum (bfd *abfd)
{
{
  unsigned long checksum, count, i;
  unsigned long checksum, count, i;
  unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
  unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
 
 
  checksum = 0;
  checksum = 0;
  count = sizeof (struct header) / sizeof (unsigned long);
  count = sizeof (struct header) / sizeof (unsigned long);
  for (i = 0; i < count; i++)
  for (i = 0; i < count; i++)
    checksum ^= *(buffer + i);
    checksum ^= *(buffer + i);
 
 
  return checksum;
  return checksum;
}
}
 
 
static void
static void
som_bfd_derive_misc_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
som_bfd_derive_misc_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
                                 asymbol *sym,
                                 asymbol *sym,
                                 struct som_misc_symbol_info *info)
                                 struct som_misc_symbol_info *info)
{
{
  /* Initialize.  */
  /* Initialize.  */
  memset (info, 0, sizeof (struct som_misc_symbol_info));
  memset (info, 0, sizeof (struct som_misc_symbol_info));
 
 
  /* The HP SOM linker requires detailed type information about
  /* The HP SOM linker requires detailed type information about
     all symbols (including undefined symbols!).  Unfortunately,
     all symbols (including undefined symbols!).  Unfortunately,
     the type specified in an import/export statement does not
     the type specified in an import/export statement does not
     always match what the linker wants.  Severe braindamage.  */
     always match what the linker wants.  Severe braindamage.  */
 
 
  /* Section symbols will not have a SOM symbol type assigned to
  /* Section symbols will not have a SOM symbol type assigned to
     them yet.  Assign all section symbols type ST_DATA.  */
     them yet.  Assign all section symbols type ST_DATA.  */
  if (sym->flags & BSF_SECTION_SYM)
  if (sym->flags & BSF_SECTION_SYM)
    info->symbol_type = ST_DATA;
    info->symbol_type = ST_DATA;
  else
  else
    {
    {
      /* For BFD style common, the linker will choke unless we set the
      /* For BFD style common, the linker will choke unless we set the
         type and scope to ST_STORAGE and SS_UNSAT, respectively.  */
         type and scope to ST_STORAGE and SS_UNSAT, respectively.  */
      if (bfd_is_com_section (sym->section))
      if (bfd_is_com_section (sym->section))
        {
        {
          info->symbol_type = ST_STORAGE;
          info->symbol_type = ST_STORAGE;
          info->symbol_scope = SS_UNSAT;
          info->symbol_scope = SS_UNSAT;
        }
        }
 
 
      /* It is possible to have a symbol without an associated
      /* It is possible to have a symbol without an associated
         type.  This happens if the user imported the symbol
         type.  This happens if the user imported the symbol
         without a type and the symbol was never defined
         without a type and the symbol was never defined
         locally.  If BSF_FUNCTION is set for this symbol, then
         locally.  If BSF_FUNCTION is set for this symbol, then
         assign it type ST_CODE (the HP linker requires undefined
         assign it type ST_CODE (the HP linker requires undefined
         external functions to have type ST_CODE rather than ST_ENTRY).  */
         external functions to have type ST_CODE rather than ST_ENTRY).  */
      else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
      else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
                || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
                || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
               && bfd_is_und_section (sym->section)
               && bfd_is_und_section (sym->section)
               && sym->flags & BSF_FUNCTION)
               && sym->flags & BSF_FUNCTION)
        info->symbol_type = ST_CODE;
        info->symbol_type = ST_CODE;
 
 
      /* Handle function symbols which were defined in this file.
      /* Handle function symbols which were defined in this file.
         They should have type ST_ENTRY.  Also retrieve the argument
         They should have type ST_ENTRY.  Also retrieve the argument
         relocation bits from the SOM backend information.  */
         relocation bits from the SOM backend information.  */
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
               || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
               || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
                   && (sym->flags & BSF_FUNCTION))
                   && (sym->flags & BSF_FUNCTION))
               || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
               || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
                   && (sym->flags & BSF_FUNCTION)))
                   && (sym->flags & BSF_FUNCTION)))
        {
        {
          info->symbol_type = ST_ENTRY;
          info->symbol_type = ST_ENTRY;
          info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
          info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
          info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
          info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
        }
        }
 
 
      /* For unknown symbols set the symbol's type based on the symbol's
      /* For unknown symbols set the symbol's type based on the symbol's
         section (ST_DATA for DATA sections, ST_CODE for CODE sections).  */
         section (ST_DATA for DATA sections, ST_CODE for CODE sections).  */
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
        {
        {
          if (sym->section->flags & SEC_CODE)
          if (sym->section->flags & SEC_CODE)
            info->symbol_type = ST_CODE;
            info->symbol_type = ST_CODE;
          else
          else
            info->symbol_type = ST_DATA;
            info->symbol_type = ST_DATA;
        }
        }
 
 
      /* From now on it's a very simple mapping.  */
      /* From now on it's a very simple mapping.  */
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
        info->symbol_type = ST_ABSOLUTE;
        info->symbol_type = ST_ABSOLUTE;
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
        info->symbol_type = ST_CODE;
        info->symbol_type = ST_CODE;
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
        info->symbol_type = ST_DATA;
        info->symbol_type = ST_DATA;
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
        info->symbol_type = ST_MILLICODE;
        info->symbol_type = ST_MILLICODE;
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
        info->symbol_type = ST_PLABEL;
        info->symbol_type = ST_PLABEL;
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
        info->symbol_type = ST_PRI_PROG;
        info->symbol_type = ST_PRI_PROG;
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
      else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
        info->symbol_type = ST_SEC_PROG;
        info->symbol_type = ST_SEC_PROG;
    }
    }
 
 
  /* Now handle the symbol's scope.  Exported data which is not
  /* Now handle the symbol's scope.  Exported data which is not
     in the common section has scope SS_UNIVERSAL.  Note scope
     in the common section has scope SS_UNIVERSAL.  Note scope
     of common symbols was handled earlier!  */
     of common symbols was handled earlier!  */
  if (bfd_is_com_section (sym->section))
  if (bfd_is_com_section (sym->section))
    ;
    ;
  else if (bfd_is_und_section (sym->section))
  else if (bfd_is_und_section (sym->section))
    info->symbol_scope = SS_UNSAT;
    info->symbol_scope = SS_UNSAT;
  else if (sym->flags & (BSF_EXPORT | BSF_WEAK))
  else if (sym->flags & (BSF_EXPORT | BSF_WEAK))
    info->symbol_scope = SS_UNIVERSAL;
    info->symbol_scope = SS_UNIVERSAL;
  /* Anything else which is not in the common section has scope
  /* Anything else which is not in the common section has scope
     SS_LOCAL.  */
     SS_LOCAL.  */
  else
  else
    info->symbol_scope = SS_LOCAL;
    info->symbol_scope = SS_LOCAL;
 
 
  /* Now set the symbol_info field.  It has no real meaning
  /* Now set the symbol_info field.  It has no real meaning
     for undefined or common symbols, but the HP linker will
     for undefined or common symbols, but the HP linker will
     choke if it's not set to some "reasonable" value.  We
     choke if it's not set to some "reasonable" value.  We
     use zero as a reasonable value.  */
     use zero as a reasonable value.  */
  if (bfd_is_com_section (sym->section)
  if (bfd_is_com_section (sym->section)
      || bfd_is_und_section (sym->section)
      || bfd_is_und_section (sym->section)
      || bfd_is_abs_section (sym->section))
      || bfd_is_abs_section (sym->section))
    info->symbol_info = 0;
    info->symbol_info = 0;
  /* For all other symbols, the symbol_info field contains the
  /* For all other symbols, the symbol_info field contains the
     subspace index of the space this symbol is contained in.  */
     subspace index of the space this symbol is contained in.  */
  else
  else
    info->symbol_info = sym->section->target_index;
    info->symbol_info = sym->section->target_index;
 
 
  /* Set the symbol's value.  */
  /* Set the symbol's value.  */
  info->symbol_value = sym->value + sym->section->vma;
  info->symbol_value = sym->value + sym->section->vma;
 
 
  /* The secondary_def field is for "weak" symbols.  */
  /* The secondary_def field is for "weak" symbols.  */
  if (sym->flags & BSF_WEAK)
  if (sym->flags & BSF_WEAK)
    info->secondary_def = TRUE;
    info->secondary_def = TRUE;
  else
  else
    info->secondary_def = FALSE;
    info->secondary_def = FALSE;
 
 
  /* The is_comdat, is_common and dup_common fields provide various
  /* The is_comdat, is_common and dup_common fields provide various
     flavors of common.
     flavors of common.
 
 
     For data symbols, setting IS_COMMON provides Fortran style common
     For data symbols, setting IS_COMMON provides Fortran style common
     (duplicate definitions and overlapped initialization).  Setting both
     (duplicate definitions and overlapped initialization).  Setting both
     IS_COMMON and DUP_COMMON provides Cobol style common (duplicate
     IS_COMMON and DUP_COMMON provides Cobol style common (duplicate
     definitions as long as they are all the same length).  In a shared
     definitions as long as they are all the same length).  In a shared
     link data symbols retain their IS_COMMON and DUP_COMMON flags.
     link data symbols retain their IS_COMMON and DUP_COMMON flags.
     An IS_COMDAT data symbol is similar to a IS_COMMON | DUP_COMMON
     An IS_COMDAT data symbol is similar to a IS_COMMON | DUP_COMMON
     symbol except in that it loses its IS_COMDAT flag in a shared link.
     symbol except in that it loses its IS_COMDAT flag in a shared link.
 
 
     For code symbols, IS_COMDAT and DUP_COMMON have effect.  Universal
     For code symbols, IS_COMDAT and DUP_COMMON have effect.  Universal
     DUP_COMMON code symbols are not exported from shared libraries.
     DUP_COMMON code symbols are not exported from shared libraries.
     IS_COMDAT symbols are exported but they lose their IS_COMDAT flag.
     IS_COMDAT symbols are exported but they lose their IS_COMDAT flag.
 
 
     We take a simplified approach to setting the is_comdat, is_common
     We take a simplified approach to setting the is_comdat, is_common
     and dup_common flags in symbols based on the flag settings of their
     and dup_common flags in symbols based on the flag settings of their
     subspace.  This avoids having to add directives like `.comdat' but
     subspace.  This avoids having to add directives like `.comdat' but
     the linker behavior is probably undefined if there is more than one
     the linker behavior is probably undefined if there is more than one
     universal symbol (comdat key sysmbol) in a subspace.
     universal symbol (comdat key sysmbol) in a subspace.
 
 
     The behavior of these flags is not well documentmented, so there
     The behavior of these flags is not well documentmented, so there
     may be bugs and some surprising interactions with other flags.  */
     may be bugs and some surprising interactions with other flags.  */
  if (som_section_data (sym->section)
  if (som_section_data (sym->section)
      && som_section_data (sym->section)->subspace_dict
      && som_section_data (sym->section)->subspace_dict
      && info->symbol_scope == SS_UNIVERSAL
      && info->symbol_scope == SS_UNIVERSAL
      && (info->symbol_type == ST_ENTRY
      && (info->symbol_type == ST_ENTRY
          || info->symbol_type == ST_CODE
          || info->symbol_type == ST_CODE
          || info->symbol_type == ST_DATA))
          || info->symbol_type == ST_DATA))
    {
    {
      info->is_comdat
      info->is_comdat
        = som_section_data (sym->section)->subspace_dict->is_comdat;
        = som_section_data (sym->section)->subspace_dict->is_comdat;
      info->is_common
      info->is_common
        = som_section_data (sym->section)->subspace_dict->is_common;
        = som_section_data (sym->section)->subspace_dict->is_common;
      info->dup_common
      info->dup_common
        = som_section_data (sym->section)->subspace_dict->dup_common;
        = som_section_data (sym->section)->subspace_dict->dup_common;
    }
    }
}
}
 
 
/* Build and write, in one big chunk, the entire symbol table for
/* Build and write, in one big chunk, the entire symbol table for
   this BFD.  */
   this BFD.  */
 
 
static bfd_boolean
static bfd_boolean
som_build_and_write_symbol_table (bfd *abfd)
som_build_and_write_symbol_table (bfd *abfd)
{
{
  unsigned int num_syms = bfd_get_symcount (abfd);
  unsigned int num_syms = bfd_get_symcount (abfd);
  file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
  file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
  asymbol **bfd_syms = obj_som_sorted_syms (abfd);
  asymbol **bfd_syms = obj_som_sorted_syms (abfd);
  struct symbol_dictionary_record *som_symtab = NULL;
  struct symbol_dictionary_record *som_symtab = NULL;
  unsigned int i;
  unsigned int i;
  bfd_size_type symtab_size;
  bfd_size_type symtab_size;
 
 
  /* Compute total symbol table size and allocate a chunk of memory
  /* Compute total symbol table size and allocate a chunk of memory
     to hold the symbol table as we build it.  */
     to hold the symbol table as we build it.  */
  symtab_size = num_syms;
  symtab_size = num_syms;
  symtab_size *= sizeof (struct symbol_dictionary_record);
  symtab_size *= sizeof (struct symbol_dictionary_record);
  som_symtab = bfd_zmalloc (symtab_size);
  som_symtab = bfd_zmalloc (symtab_size);
  if (som_symtab == NULL && symtab_size != 0)
  if (som_symtab == NULL && symtab_size != 0)
    goto error_return;
    goto error_return;
 
 
  /* Walk over each symbol.  */
  /* Walk over each symbol.  */
  for (i = 0; i < num_syms; i++)
  for (i = 0; i < num_syms; i++)
    {
    {
      struct som_misc_symbol_info info;
      struct som_misc_symbol_info info;
 
 
      /* This is really an index into the symbol strings table.
      /* This is really an index into the symbol strings table.
         By the time we get here, the index has already been
         By the time we get here, the index has already been
         computed and stored into the name field in the BFD symbol.  */
         computed and stored into the name field in the BFD symbol.  */
      som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
      som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
 
 
      /* Derive SOM information from the BFD symbol.  */
      /* Derive SOM information from the BFD symbol.  */
      som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
      som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
 
 
      /* Now use it.  */
      /* Now use it.  */
      som_symtab[i].symbol_type = info.symbol_type;
      som_symtab[i].symbol_type = info.symbol_type;
      som_symtab[i].symbol_scope = info.symbol_scope;
      som_symtab[i].symbol_scope = info.symbol_scope;
      som_symtab[i].arg_reloc = info.arg_reloc;
      som_symtab[i].arg_reloc = info.arg_reloc;
      som_symtab[i].symbol_info = info.symbol_info;
      som_symtab[i].symbol_info = info.symbol_info;
      som_symtab[i].xleast = 3;
      som_symtab[i].xleast = 3;
      som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
      som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
      som_symtab[i].secondary_def = info.secondary_def;
      som_symtab[i].secondary_def = info.secondary_def;
      som_symtab[i].is_comdat = info.is_comdat;
      som_symtab[i].is_comdat = info.is_comdat;
      som_symtab[i].is_common = info.is_common;
      som_symtab[i].is_common = info.is_common;
      som_symtab[i].dup_common = info.dup_common;
      som_symtab[i].dup_common = info.dup_common;
    }
    }
 
 
  /* Everything is ready, seek to the right location and
  /* Everything is ready, seek to the right location and
     scribble out the symbol table.  */
     scribble out the symbol table.  */
  if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
  if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
    return FALSE;
    return FALSE;
 
 
  if (bfd_bwrite ((void *) som_symtab, symtab_size, abfd) != symtab_size)
  if (bfd_bwrite ((void *) som_symtab, symtab_size, abfd) != symtab_size)
    goto error_return;
    goto error_return;
 
 
  if (som_symtab != NULL)
  if (som_symtab != NULL)
    free (som_symtab);
    free (som_symtab);
  return TRUE;
  return TRUE;
 error_return:
 error_return:
  if (som_symtab != NULL)
  if (som_symtab != NULL)
    free (som_symtab);
    free (som_symtab);
  return FALSE;
  return FALSE;
}
}
 
 
/* Write an object in SOM format.  */
/* Write an object in SOM format.  */
 
 
static bfd_boolean
static bfd_boolean
som_write_object_contents (bfd *abfd)
som_write_object_contents (bfd *abfd)
{
{
  if (! abfd->output_has_begun)
  if (! abfd->output_has_begun)
    {
    {
      /* Set up fixed parts of the file, space, and subspace headers.
      /* Set up fixed parts of the file, space, and subspace headers.
         Notify the world that output has begun.  */
         Notify the world that output has begun.  */
      som_prep_headers (abfd);
      som_prep_headers (abfd);
      abfd->output_has_begun = TRUE;
      abfd->output_has_begun = TRUE;
      /* Start writing the object file.  This include all the string
      /* Start writing the object file.  This include all the string
         tables, fixup streams, and other portions of the object file.  */
         tables, fixup streams, and other portions of the object file.  */
      som_begin_writing (abfd);
      som_begin_writing (abfd);
    }
    }
 
 
  return som_finish_writing (abfd);
  return som_finish_writing (abfd);
}
}


/* Read and save the string table associated with the given BFD.  */
/* Read and save the string table associated with the given BFD.  */
 
 
static bfd_boolean
static bfd_boolean
som_slurp_string_table (bfd *abfd)
som_slurp_string_table (bfd *abfd)
{
{
  char *stringtab;
  char *stringtab;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  /* Use the saved version if its available.  */
  /* Use the saved version if its available.  */
  if (obj_som_stringtab (abfd) != NULL)
  if (obj_som_stringtab (abfd) != NULL)
    return TRUE;
    return TRUE;
 
 
  /* I don't think this can currently happen, and I'm not sure it should
  /* I don't think this can currently happen, and I'm not sure it should
     really be an error, but it's better than getting unpredictable results
     really be an error, but it's better than getting unpredictable results
     from the host's malloc when passed a size of zero.  */
     from the host's malloc when passed a size of zero.  */
  if (obj_som_stringtab_size (abfd) == 0)
  if (obj_som_stringtab_size (abfd) == 0)
    {
    {
      bfd_set_error (bfd_error_no_symbols);
      bfd_set_error (bfd_error_no_symbols);
      return FALSE;
      return FALSE;
    }
    }
 
 
  /* Allocate and read in the string table.  */
  /* Allocate and read in the string table.  */
  amt = obj_som_stringtab_size (abfd);
  amt = obj_som_stringtab_size (abfd);
  stringtab = bfd_zmalloc (amt);
  stringtab = bfd_zmalloc (amt);
  if (stringtab == NULL)
  if (stringtab == NULL)
    return FALSE;
    return FALSE;
 
 
  if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0)
  if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0)
    return FALSE;
    return FALSE;
 
 
  if (bfd_bread (stringtab, amt, abfd) != amt)
  if (bfd_bread (stringtab, amt, abfd) != amt)
    return FALSE;
    return FALSE;
 
 
  /* Save our results and return success.  */
  /* Save our results and return success.  */
  obj_som_stringtab (abfd) = stringtab;
  obj_som_stringtab (abfd) = stringtab;
  return TRUE;
  return TRUE;
}
}
 
 
/* Return the amount of data (in bytes) required to hold the symbol
/* Return the amount of data (in bytes) required to hold the symbol
   table for this object.  */
   table for this object.  */
 
 
static long
static long
som_get_symtab_upper_bound (bfd *abfd)
som_get_symtab_upper_bound (bfd *abfd)
{
{
  if (!som_slurp_symbol_table (abfd))
  if (!som_slurp_symbol_table (abfd))
    return -1;
    return -1;
 
 
  return (bfd_get_symcount (abfd) + 1) * sizeof (asymbol *);
  return (bfd_get_symcount (abfd) + 1) * sizeof (asymbol *);
}
}
 
 
/* Convert from a SOM subspace index to a BFD section.  */
/* Convert from a SOM subspace index to a BFD section.  */
 
 
static asection *
static asection *
bfd_section_from_som_symbol (bfd *abfd, struct symbol_dictionary_record *symbol)
bfd_section_from_som_symbol (bfd *abfd, struct symbol_dictionary_record *symbol)
{
{
  asection *section;
  asection *section;
 
 
  /* The meaning of the symbol_info field changes for functions
  /* The meaning of the symbol_info field changes for functions
     within executables.  So only use the quick symbol_info mapping for
     within executables.  So only use the quick symbol_info mapping for
     incomplete objects and non-function symbols in executables.  */
     incomplete objects and non-function symbols in executables.  */
  if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
  if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
      || (symbol->symbol_type != ST_ENTRY
      || (symbol->symbol_type != ST_ENTRY
          && symbol->symbol_type != ST_PRI_PROG
          && symbol->symbol_type != ST_PRI_PROG
          && symbol->symbol_type != ST_SEC_PROG
          && symbol->symbol_type != ST_SEC_PROG
          && symbol->symbol_type != ST_MILLICODE))
          && symbol->symbol_type != ST_MILLICODE))
    {
    {
      int index = symbol->symbol_info;
      int index = symbol->symbol_info;
 
 
      for (section = abfd->sections; section != NULL; section = section->next)
      for (section = abfd->sections; section != NULL; section = section->next)
        if (section->target_index == index && som_is_subspace (section))
        if (section->target_index == index && som_is_subspace (section))
          return section;
          return section;
    }
    }
  else
  else
    {
    {
      unsigned int value = symbol->symbol_value;
      unsigned int value = symbol->symbol_value;
 
 
      /* For executables we will have to use the symbol's address and
      /* For executables we will have to use the symbol's address and
         find out what section would contain that address.   Yuk.  */
         find out what section would contain that address.   Yuk.  */
      for (section = abfd->sections; section; section = section->next)
      for (section = abfd->sections; section; section = section->next)
        if (value >= section->vma
        if (value >= section->vma
            && value <= section->vma + section->size
            && value <= section->vma + section->size
            && som_is_subspace (section))
            && som_is_subspace (section))
          return section;
          return section;
    }
    }
 
 
  /* Could be a symbol from an external library (such as an OMOS
  /* Could be a symbol from an external library (such as an OMOS
     shared library).  Don't abort.  */
     shared library).  Don't abort.  */
  return bfd_abs_section_ptr;
  return bfd_abs_section_ptr;
}
}
 
 
/* Read and save the symbol table associated with the given BFD.  */
/* Read and save the symbol table associated with the given BFD.  */
 
 
static unsigned int
static unsigned int
som_slurp_symbol_table (bfd *abfd)
som_slurp_symbol_table (bfd *abfd)
{
{
  int symbol_count = bfd_get_symcount (abfd);
  int symbol_count = bfd_get_symcount (abfd);
  int symsize = sizeof (struct symbol_dictionary_record);
  int symsize = sizeof (struct symbol_dictionary_record);
  char *stringtab;
  char *stringtab;
  struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
  struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
  som_symbol_type *sym, *symbase;
  som_symbol_type *sym, *symbase;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  /* Return saved value if it exists.  */
  /* Return saved value if it exists.  */
  if (obj_som_symtab (abfd) != NULL)
  if (obj_som_symtab (abfd) != NULL)
    goto successful_return;
    goto successful_return;
 
 
  /* Special case.  This is *not* an error.  */
  /* Special case.  This is *not* an error.  */
  if (symbol_count == 0)
  if (symbol_count == 0)
    goto successful_return;
    goto successful_return;
 
 
  if (!som_slurp_string_table (abfd))
  if (!som_slurp_string_table (abfd))
    goto error_return;
    goto error_return;
 
 
  stringtab = obj_som_stringtab (abfd);
  stringtab = obj_som_stringtab (abfd);
 
 
  amt = symbol_count;
  amt = symbol_count;
  amt *= sizeof (som_symbol_type);
  amt *= sizeof (som_symbol_type);
  symbase = bfd_zmalloc (amt);
  symbase = bfd_zmalloc (amt);
  if (symbase == NULL)
  if (symbase == NULL)
    goto error_return;
    goto error_return;
 
 
  /* Read in the external SOM representation.  */
  /* Read in the external SOM representation.  */
  amt = symbol_count;
  amt = symbol_count;
  amt *= symsize;
  amt *= symsize;
  buf = bfd_malloc (amt);
  buf = bfd_malloc (amt);
  if (buf == NULL && amt != 0)
  if (buf == NULL && amt != 0)
    goto error_return;
    goto error_return;
  if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0)
  if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0)
    goto error_return;
    goto error_return;
  if (bfd_bread (buf, amt, abfd) != amt)
  if (bfd_bread (buf, amt, abfd) != amt)
    goto error_return;
    goto error_return;
 
 
  /* Iterate over all the symbols and internalize them.  */
  /* Iterate over all the symbols and internalize them.  */
  endbufp = buf + symbol_count;
  endbufp = buf + symbol_count;
  for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
  for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
    {
    {
      /* I don't think we care about these.  */
      /* I don't think we care about these.  */
      if (bufp->symbol_type == ST_SYM_EXT
      if (bufp->symbol_type == ST_SYM_EXT
          || bufp->symbol_type == ST_ARG_EXT)
          || bufp->symbol_type == ST_ARG_EXT)
        continue;
        continue;
 
 
      /* Set some private data we care about.  */
      /* Set some private data we care about.  */
      if (bufp->symbol_type == ST_NULL)
      if (bufp->symbol_type == ST_NULL)
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
      else if (bufp->symbol_type == ST_ABSOLUTE)
      else if (bufp->symbol_type == ST_ABSOLUTE)
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
      else if (bufp->symbol_type == ST_DATA)
      else if (bufp->symbol_type == ST_DATA)
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
      else if (bufp->symbol_type == ST_CODE)
      else if (bufp->symbol_type == ST_CODE)
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
      else if (bufp->symbol_type == ST_PRI_PROG)
      else if (bufp->symbol_type == ST_PRI_PROG)
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
      else if (bufp->symbol_type == ST_SEC_PROG)
      else if (bufp->symbol_type == ST_SEC_PROG)
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
      else if (bufp->symbol_type == ST_ENTRY)
      else if (bufp->symbol_type == ST_ENTRY)
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
      else if (bufp->symbol_type == ST_MILLICODE)
      else if (bufp->symbol_type == ST_MILLICODE)
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
      else if (bufp->symbol_type == ST_PLABEL)
      else if (bufp->symbol_type == ST_PLABEL)
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
      else
      else
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
        som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
      som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
      som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
 
 
      /* Some reasonable defaults.  */
      /* Some reasonable defaults.  */
      sym->symbol.the_bfd = abfd;
      sym->symbol.the_bfd = abfd;
      sym->symbol.name = bufp->name.n_strx + stringtab;
      sym->symbol.name = bufp->name.n_strx + stringtab;
      sym->symbol.value = bufp->symbol_value;
      sym->symbol.value = bufp->symbol_value;
      sym->symbol.section = 0;
      sym->symbol.section = 0;
      sym->symbol.flags = 0;
      sym->symbol.flags = 0;
 
 
      switch (bufp->symbol_type)
      switch (bufp->symbol_type)
        {
        {
        case ST_ENTRY:
        case ST_ENTRY:
        case ST_MILLICODE:
        case ST_MILLICODE:
          sym->symbol.flags |= BSF_FUNCTION;
          sym->symbol.flags |= BSF_FUNCTION;
          som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
          som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
            sym->symbol.value & 0x3;
            sym->symbol.value & 0x3;
          sym->symbol.value &= ~0x3;
          sym->symbol.value &= ~0x3;
          break;
          break;
 
 
        case ST_STUB:
        case ST_STUB:
        case ST_CODE:
        case ST_CODE:
        case ST_PRI_PROG:
        case ST_PRI_PROG:
        case ST_SEC_PROG:
        case ST_SEC_PROG:
          som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
          som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
            sym->symbol.value & 0x3;
            sym->symbol.value & 0x3;
          sym->symbol.value &= ~0x3;
          sym->symbol.value &= ~0x3;
          /* If the symbol's scope is SS_UNSAT, then these are
          /* If the symbol's scope is SS_UNSAT, then these are
             undefined function symbols.  */
             undefined function symbols.  */
          if (bufp->symbol_scope == SS_UNSAT)
          if (bufp->symbol_scope == SS_UNSAT)
            sym->symbol.flags |= BSF_FUNCTION;
            sym->symbol.flags |= BSF_FUNCTION;
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
      /* Handle scoping and section information.  */
      /* Handle scoping and section information.  */
      switch (bufp->symbol_scope)
      switch (bufp->symbol_scope)
        {
        {
        /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
        /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
           so the section associated with this symbol can't be known.  */
           so the section associated with this symbol can't be known.  */
        case SS_EXTERNAL:
        case SS_EXTERNAL:
          if (bufp->symbol_type != ST_STORAGE)
          if (bufp->symbol_type != ST_STORAGE)
            sym->symbol.section = bfd_und_section_ptr;
            sym->symbol.section = bfd_und_section_ptr;
          else
          else
            sym->symbol.section = bfd_com_section_ptr;
            sym->symbol.section = bfd_com_section_ptr;
          sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
          sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
          break;
          break;
 
 
        case SS_UNSAT:
        case SS_UNSAT:
          if (bufp->symbol_type != ST_STORAGE)
          if (bufp->symbol_type != ST_STORAGE)
            sym->symbol.section = bfd_und_section_ptr;
            sym->symbol.section = bfd_und_section_ptr;
          else
          else
            sym->symbol.section = bfd_com_section_ptr;
            sym->symbol.section = bfd_com_section_ptr;
          break;
          break;
 
 
        case SS_UNIVERSAL:
        case SS_UNIVERSAL:
          sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
          sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
          sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
          sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
          sym->symbol.value -= sym->symbol.section->vma;
          sym->symbol.value -= sym->symbol.section->vma;
          break;
          break;
 
 
        case SS_LOCAL:
        case SS_LOCAL:
          sym->symbol.flags |= BSF_LOCAL;
          sym->symbol.flags |= BSF_LOCAL;
          sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
          sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
          sym->symbol.value -= sym->symbol.section->vma;
          sym->symbol.value -= sym->symbol.section->vma;
          break;
          break;
        }
        }
 
 
      /* Check for a weak symbol.  */
      /* Check for a weak symbol.  */
      if (bufp->secondary_def)
      if (bufp->secondary_def)
        sym->symbol.flags |= BSF_WEAK;
        sym->symbol.flags |= BSF_WEAK;
 
 
      /* Mark section symbols and symbols used by the debugger.
      /* Mark section symbols and symbols used by the debugger.
         Note $START$ is a magic code symbol, NOT a section symbol.  */
         Note $START$ is a magic code symbol, NOT a section symbol.  */
      if (sym->symbol.name[0] == '$'
      if (sym->symbol.name[0] == '$'
          && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
          && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
          && !strcmp (sym->symbol.name, sym->symbol.section->name))
          && !strcmp (sym->symbol.name, sym->symbol.section->name))
        sym->symbol.flags |= BSF_SECTION_SYM;
        sym->symbol.flags |= BSF_SECTION_SYM;
      else if (CONST_STRNEQ (sym->symbol.name, "L$0\002"))
      else if (CONST_STRNEQ (sym->symbol.name, "L$0\002"))
        {
        {
          sym->symbol.flags |= BSF_SECTION_SYM;
          sym->symbol.flags |= BSF_SECTION_SYM;
          sym->symbol.name = sym->symbol.section->name;
          sym->symbol.name = sym->symbol.section->name;
        }
        }
      else if (CONST_STRNEQ (sym->symbol.name, "L$0\001"))
      else if (CONST_STRNEQ (sym->symbol.name, "L$0\001"))
        sym->symbol.flags |= BSF_DEBUGGING;
        sym->symbol.flags |= BSF_DEBUGGING;
 
 
      /* Note increment at bottom of loop, since we skip some symbols
      /* Note increment at bottom of loop, since we skip some symbols
         we can not include it as part of the for statement.  */
         we can not include it as part of the for statement.  */
      sym++;
      sym++;
    }
    }
 
 
  /* We modify the symbol count to record the number of BFD symbols we
  /* We modify the symbol count to record the number of BFD symbols we
     created.  */
     created.  */
  bfd_get_symcount (abfd) = sym - symbase;
  bfd_get_symcount (abfd) = sym - symbase;
 
 
  /* Save our results and return success.  */
  /* Save our results and return success.  */
  obj_som_symtab (abfd) = symbase;
  obj_som_symtab (abfd) = symbase;
 successful_return:
 successful_return:
  if (buf != NULL)
  if (buf != NULL)
    free (buf);
    free (buf);
  return (TRUE);
  return (TRUE);
 
 
 error_return:
 error_return:
  if (buf != NULL)
  if (buf != NULL)
    free (buf);
    free (buf);
  return FALSE;
  return FALSE;
}
}
 
 
/* Canonicalize a SOM symbol table.  Return the number of entries
/* Canonicalize a SOM symbol table.  Return the number of entries
   in the symbol table.  */
   in the symbol table.  */
 
 
static long
static long
som_canonicalize_symtab (bfd *abfd, asymbol **location)
som_canonicalize_symtab (bfd *abfd, asymbol **location)
{
{
  int i;
  int i;
  som_symbol_type *symbase;
  som_symbol_type *symbase;
 
 
  if (!som_slurp_symbol_table (abfd))
  if (!som_slurp_symbol_table (abfd))
    return -1;
    return -1;
 
 
  i = bfd_get_symcount (abfd);
  i = bfd_get_symcount (abfd);
  symbase = obj_som_symtab (abfd);
  symbase = obj_som_symtab (abfd);
 
 
  for (; i > 0; i--, location++, symbase++)
  for (; i > 0; i--, location++, symbase++)
    *location = &symbase->symbol;
    *location = &symbase->symbol;
 
 
  /* Final null pointer.  */
  /* Final null pointer.  */
  *location = 0;
  *location = 0;
  return (bfd_get_symcount (abfd));
  return (bfd_get_symcount (abfd));
}
}
 
 
/* Make a SOM symbol.  There is nothing special to do here.  */
/* Make a SOM symbol.  There is nothing special to do here.  */
 
 
static asymbol *
static asymbol *
som_make_empty_symbol (bfd *abfd)
som_make_empty_symbol (bfd *abfd)
{
{
  bfd_size_type amt = sizeof (som_symbol_type);
  bfd_size_type amt = sizeof (som_symbol_type);
  som_symbol_type *new = bfd_zalloc (abfd, amt);
  som_symbol_type *new = bfd_zalloc (abfd, amt);
 
 
  if (new == NULL)
  if (new == NULL)
    return NULL;
    return NULL;
  new->symbol.the_bfd = abfd;
  new->symbol.the_bfd = abfd;
 
 
  return &new->symbol;
  return &new->symbol;
}
}
 
 
/* Print symbol information.  */
/* Print symbol information.  */
 
 
static void
static void
som_print_symbol (bfd *abfd,
som_print_symbol (bfd *abfd,
                  void *afile,
                  void *afile,
                  asymbol *symbol,
                  asymbol *symbol,
                  bfd_print_symbol_type how)
                  bfd_print_symbol_type how)
{
{
  FILE *file = (FILE *) afile;
  FILE *file = (FILE *) afile;
 
 
  switch (how)
  switch (how)
    {
    {
    case bfd_print_symbol_name:
    case bfd_print_symbol_name:
      fprintf (file, "%s", symbol->name);
      fprintf (file, "%s", symbol->name);
      break;
      break;
    case bfd_print_symbol_more:
    case bfd_print_symbol_more:
      fprintf (file, "som ");
      fprintf (file, "som ");
      fprintf_vma (file, symbol->value);
      fprintf_vma (file, symbol->value);
      fprintf (file, " %lx", (long) symbol->flags);
      fprintf (file, " %lx", (long) symbol->flags);
      break;
      break;
    case bfd_print_symbol_all:
    case bfd_print_symbol_all:
      {
      {
        const char *section_name;
        const char *section_name;
 
 
        section_name = symbol->section ? symbol->section->name : "(*none*)";
        section_name = symbol->section ? symbol->section->name : "(*none*)";
        bfd_print_symbol_vandf (abfd, (void *) file, symbol);
        bfd_print_symbol_vandf (abfd, (void *) file, symbol);
        fprintf (file, " %s\t%s", section_name, symbol->name);
        fprintf (file, " %s\t%s", section_name, symbol->name);
        break;
        break;
      }
      }
    }
    }
}
}
 
 
static bfd_boolean
static bfd_boolean
som_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
som_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
                             const char *name)
                             const char *name)
{
{
  return name[0] == 'L' && name[1] == '$';
  return name[0] == 'L' && name[1] == '$';
}
}
 
 
/* Count or process variable-length SOM fixup records.
/* Count or process variable-length SOM fixup records.
 
 
   To avoid code duplication we use this code both to compute the number
   To avoid code duplication we use this code both to compute the number
   of relocations requested by a stream, and to internalize the stream.
   of relocations requested by a stream, and to internalize the stream.
 
 
   When computing the number of relocations requested by a stream the
   When computing the number of relocations requested by a stream the
   variables rptr, section, and symbols have no meaning.
   variables rptr, section, and symbols have no meaning.
 
 
   Return the number of relocations requested by the fixup stream.  When
   Return the number of relocations requested by the fixup stream.  When
   not just counting
   not just counting
 
 
   This needs at least two or three more passes to get it cleaned up.  */
   This needs at least two or three more passes to get it cleaned up.  */
 
 
static unsigned int
static unsigned int
som_set_reloc_info (unsigned char *fixup,
som_set_reloc_info (unsigned char *fixup,
                    unsigned int end,
                    unsigned int end,
                    arelent *internal_relocs,
                    arelent *internal_relocs,
                    asection *section,
                    asection *section,
                    asymbol **symbols,
                    asymbol **symbols,
                    bfd_boolean just_count)
                    bfd_boolean just_count)
{
{
  unsigned int op, varname, deallocate_contents = 0;
  unsigned int op, varname, deallocate_contents = 0;
  unsigned char *end_fixups = &fixup[end];
  unsigned char *end_fixups = &fixup[end];
  const struct fixup_format *fp;
  const struct fixup_format *fp;
  const char *cp;
  const char *cp;
  unsigned char *save_fixup;
  unsigned char *save_fixup;
  int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
  int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
  const int *subop;
  const int *subop;
  arelent *rptr = internal_relocs;
  arelent *rptr = internal_relocs;
  unsigned int offset = 0;
  unsigned int offset = 0;
 
 
#define var(c)          variables[(c) - 'A']
#define var(c)          variables[(c) - 'A']
#define push(v)         (*sp++ = (v))
#define push(v)         (*sp++ = (v))
#define pop()           (*--sp)
#define pop()           (*--sp)
#define emptystack()    (sp == stack)
#define emptystack()    (sp == stack)
 
 
  som_initialize_reloc_queue (reloc_queue);
  som_initialize_reloc_queue (reloc_queue);
  memset (variables, 0, sizeof (variables));
  memset (variables, 0, sizeof (variables));
  memset (stack, 0, sizeof (stack));
  memset (stack, 0, sizeof (stack));
  count = 0;
  count = 0;
  prev_fixup = 0;
  prev_fixup = 0;
  saved_unwind_bits = 0;
  saved_unwind_bits = 0;
  sp = stack;
  sp = stack;
 
 
  while (fixup < end_fixups)
  while (fixup < end_fixups)
    {
    {
      /* Save pointer to the start of this fixup.  We'll use
      /* Save pointer to the start of this fixup.  We'll use
         it later to determine if it is necessary to put this fixup
         it later to determine if it is necessary to put this fixup
         on the queue.  */
         on the queue.  */
      save_fixup = fixup;
      save_fixup = fixup;
 
 
      /* Get the fixup code and its associated format.  */
      /* Get the fixup code and its associated format.  */
      op = *fixup++;
      op = *fixup++;
      fp = &som_fixup_formats[op];
      fp = &som_fixup_formats[op];
 
 
      /* Handle a request for a previous fixup.  */
      /* Handle a request for a previous fixup.  */
      if (*fp->format == 'P')
      if (*fp->format == 'P')
        {
        {
          /* Get pointer to the beginning of the prev fixup, move
          /* Get pointer to the beginning of the prev fixup, move
             the repeated fixup to the head of the queue.  */
             the repeated fixup to the head of the queue.  */
          fixup = reloc_queue[fp->D].reloc;
          fixup = reloc_queue[fp->D].reloc;
          som_reloc_queue_fix (reloc_queue, fp->D);
          som_reloc_queue_fix (reloc_queue, fp->D);
          prev_fixup = 1;
          prev_fixup = 1;
 
 
          /* Get the fixup code and its associated format.  */
          /* Get the fixup code and its associated format.  */
          op = *fixup++;
          op = *fixup++;
          fp = &som_fixup_formats[op];
          fp = &som_fixup_formats[op];
        }
        }
 
 
      /* If this fixup will be passed to BFD, set some reasonable defaults.  */
      /* If this fixup will be passed to BFD, set some reasonable defaults.  */
      if (! just_count
      if (! just_count
          && som_hppa_howto_table[op].type != R_NO_RELOCATION
          && som_hppa_howto_table[op].type != R_NO_RELOCATION
          && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
          && som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
        {
        {
          rptr->address = offset;
          rptr->address = offset;
          rptr->howto = &som_hppa_howto_table[op];
          rptr->howto = &som_hppa_howto_table[op];
          rptr->addend = 0;
          rptr->addend = 0;
          rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
          rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
        }
        }
 
 
      /* Set default input length to 0.  Get the opcode class index
      /* Set default input length to 0.  Get the opcode class index
         into D.  */
         into D.  */
      var ('L') = 0;
      var ('L') = 0;
      var ('D') = fp->D;
      var ('D') = fp->D;
      var ('U') = saved_unwind_bits;
      var ('U') = saved_unwind_bits;
 
 
      /* Get the opcode format.  */
      /* Get the opcode format.  */
      cp = fp->format;
      cp = fp->format;
 
 
      /* Process the format string.  Parsing happens in two phases,
      /* Process the format string.  Parsing happens in two phases,
         parse RHS, then assign to LHS.  Repeat until no more
         parse RHS, then assign to LHS.  Repeat until no more
         characters in the format string.  */
         characters in the format string.  */
      while (*cp)
      while (*cp)
        {
        {
          /* The variable this pass is going to compute a value for.  */
          /* The variable this pass is going to compute a value for.  */
          varname = *cp++;
          varname = *cp++;
 
 
          /* Start processing RHS.  Continue until a NULL or '=' is found.  */
          /* Start processing RHS.  Continue until a NULL or '=' is found.  */
          do
          do
            {
            {
              c = *cp++;
              c = *cp++;
 
 
              /* If this is a variable, push it on the stack.  */
              /* If this is a variable, push it on the stack.  */
              if (ISUPPER (c))
              if (ISUPPER (c))
                push (var (c));
                push (var (c));
 
 
              /* If this is a lower case letter, then it represents
              /* If this is a lower case letter, then it represents
                 additional data from the fixup stream to be pushed onto
                 additional data from the fixup stream to be pushed onto
                 the stack.  */
                 the stack.  */
              else if (ISLOWER (c))
              else if (ISLOWER (c))
                {
                {
                  int bits = (c - 'a') * 8;
                  int bits = (c - 'a') * 8;
                  for (v = 0; c > 'a'; --c)
                  for (v = 0; c > 'a'; --c)
                    v = (v << 8) | *fixup++;
                    v = (v << 8) | *fixup++;
                  if (varname == 'V')
                  if (varname == 'V')
                    v = sign_extend (v, bits);
                    v = sign_extend (v, bits);
                  push (v);
                  push (v);
                }
                }
 
 
              /* A decimal constant.  Push it on the stack.  */
              /* A decimal constant.  Push it on the stack.  */
              else if (ISDIGIT (c))
              else if (ISDIGIT (c))
                {
                {
                  v = c - '0';
                  v = c - '0';
                  while (ISDIGIT (*cp))
                  while (ISDIGIT (*cp))
                    v = (v * 10) + (*cp++ - '0');
                    v = (v * 10) + (*cp++ - '0');
                  push (v);
                  push (v);
                }
                }
              else
              else
                /* An operator.  Pop two two values from the stack and
                /* An operator.  Pop two two values from the stack and
                   use them as operands to the given operation.  Push
                   use them as operands to the given operation.  Push
                   the result of the operation back on the stack.  */
                   the result of the operation back on the stack.  */
                switch (c)
                switch (c)
                  {
                  {
                  case '+':
                  case '+':
                    v = pop ();
                    v = pop ();
                    v += pop ();
                    v += pop ();
                    push (v);
                    push (v);
                    break;
                    break;
                  case '*':
                  case '*':
                    v = pop ();
                    v = pop ();
                    v *= pop ();
                    v *= pop ();
                    push (v);
                    push (v);
                    break;
                    break;
                  case '<':
                  case '<':
                    v = pop ();
                    v = pop ();
                    v = pop () << v;
                    v = pop () << v;
                    push (v);
                    push (v);
                    break;
                    break;
                  default:
                  default:
                    abort ();
                    abort ();
                  }
                  }
            }
            }
          while (*cp && *cp != '=');
          while (*cp && *cp != '=');
 
 
          /* Move over the equal operator.  */
          /* Move over the equal operator.  */
          cp++;
          cp++;
 
 
          /* Pop the RHS off the stack.  */
          /* Pop the RHS off the stack.  */
          c = pop ();
          c = pop ();
 
 
          /* Perform the assignment.  */
          /* Perform the assignment.  */
          var (varname) = c;
          var (varname) = c;
 
 
          /* Handle side effects. and special 'O' stack cases.  */
          /* Handle side effects. and special 'O' stack cases.  */
          switch (varname)
          switch (varname)
            {
            {
            /* Consume some bytes from the input space.  */
            /* Consume some bytes from the input space.  */
            case 'L':
            case 'L':
              offset += c;
              offset += c;
              break;
              break;
            /* A symbol to use in the relocation.  Make a note
            /* A symbol to use in the relocation.  Make a note
               of this if we are not just counting.  */
               of this if we are not just counting.  */
            case 'S':
            case 'S':
              if (! just_count)
              if (! just_count)
                rptr->sym_ptr_ptr = &symbols[c];
                rptr->sym_ptr_ptr = &symbols[c];
              break;
              break;
            /* Argument relocation bits for a function call.  */
            /* Argument relocation bits for a function call.  */
            case 'R':
            case 'R':
              if (! just_count)
              if (! just_count)
                {
                {
                  unsigned int tmp = var ('R');
                  unsigned int tmp = var ('R');
                  rptr->addend = 0;
                  rptr->addend = 0;
 
 
                  if ((som_hppa_howto_table[op].type == R_PCREL_CALL
                  if ((som_hppa_howto_table[op].type == R_PCREL_CALL
                       && R_PCREL_CALL + 10 > op)
                       && R_PCREL_CALL + 10 > op)
                      || (som_hppa_howto_table[op].type == R_ABS_CALL
                      || (som_hppa_howto_table[op].type == R_ABS_CALL
                          && R_ABS_CALL + 10 > op))
                          && R_ABS_CALL + 10 > op))
                    {
                    {
                      /* Simple encoding.  */
                      /* Simple encoding.  */
                      if (tmp > 4)
                      if (tmp > 4)
                        {
                        {
                          tmp -= 5;
                          tmp -= 5;
                          rptr->addend |= 1;
                          rptr->addend |= 1;
                        }
                        }
                      if (tmp == 4)
                      if (tmp == 4)
                        rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
                        rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
                      else if (tmp == 3)
                      else if (tmp == 3)
                        rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
                        rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
                      else if (tmp == 2)
                      else if (tmp == 2)
                        rptr->addend |= 1 << 8 | 1 << 6;
                        rptr->addend |= 1 << 8 | 1 << 6;
                      else if (tmp == 1)
                      else if (tmp == 1)
                        rptr->addend |= 1 << 8;
                        rptr->addend |= 1 << 8;
                    }
                    }
                  else
                  else
                    {
                    {
                      unsigned int tmp1, tmp2;
                      unsigned int tmp1, tmp2;
 
 
                      /* First part is easy -- low order two bits are
                      /* First part is easy -- low order two bits are
                         directly copied, then shifted away.  */
                         directly copied, then shifted away.  */
                      rptr->addend = tmp & 0x3;
                      rptr->addend = tmp & 0x3;
                      tmp >>= 2;
                      tmp >>= 2;
 
 
                      /* Diving the result by 10 gives us the second
                      /* Diving the result by 10 gives us the second
                         part.  If it is 9, then the first two words
                         part.  If it is 9, then the first two words
                         are a double precision paramater, else it is
                         are a double precision paramater, else it is
                         3 * the first arg bits + the 2nd arg bits.  */
                         3 * the first arg bits + the 2nd arg bits.  */
                      tmp1 = tmp / 10;
                      tmp1 = tmp / 10;
                      tmp -= tmp1 * 10;
                      tmp -= tmp1 * 10;
                      if (tmp1 == 9)
                      if (tmp1 == 9)
                        rptr->addend += (0xe << 6);
                        rptr->addend += (0xe << 6);
                      else
                      else
                        {
                        {
                          /* Get the two pieces.  */
                          /* Get the two pieces.  */
                          tmp2 = tmp1 / 3;
                          tmp2 = tmp1 / 3;
                          tmp1 -= tmp2 * 3;
                          tmp1 -= tmp2 * 3;
                          /* Put them in the addend.  */
                          /* Put them in the addend.  */
                          rptr->addend += (tmp2 << 8) + (tmp1 << 6);
                          rptr->addend += (tmp2 << 8) + (tmp1 << 6);
                        }
                        }
 
 
                      /* What's left is the third part.  It's unpacked
                      /* What's left is the third part.  It's unpacked
                         just like the second.  */
                         just like the second.  */
                      if (tmp == 9)
                      if (tmp == 9)
                        rptr->addend += (0xe << 2);
                        rptr->addend += (0xe << 2);
                      else
                      else
                        {
                        {
                          tmp2 = tmp / 3;
                          tmp2 = tmp / 3;
                          tmp -= tmp2 * 3;
                          tmp -= tmp2 * 3;
                          rptr->addend += (tmp2 << 4) + (tmp << 2);
                          rptr->addend += (tmp2 << 4) + (tmp << 2);
                        }
                        }
                    }
                    }
                  rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
                  rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
                }
                }
              break;
              break;
            /* Handle the linker expression stack.  */
            /* Handle the linker expression stack.  */
            case 'O':
            case 'O':
              switch (op)
              switch (op)
                {
                {
                case R_COMP1:
                case R_COMP1:
                  subop = comp1_opcodes;
                  subop = comp1_opcodes;
                  break;
                  break;
                case R_COMP2:
                case R_COMP2:
                  subop = comp2_opcodes;
                  subop = comp2_opcodes;
                  break;
                  break;
                case R_COMP3:
                case R_COMP3:
                  subop = comp3_opcodes;
                  subop = comp3_opcodes;
                  break;
                  break;
                default:
                default:
                  abort ();
                  abort ();
                }
                }
              while (*subop <= (unsigned char) c)
              while (*subop <= (unsigned char) c)
                ++subop;
                ++subop;
              --subop;
              --subop;
              break;
              break;
            /* The lower 32unwind bits must be persistent.  */
            /* The lower 32unwind bits must be persistent.  */
            case 'U':
            case 'U':
              saved_unwind_bits = var ('U');
              saved_unwind_bits = var ('U');
              break;
              break;
 
 
            default:
            default:
              break;
              break;
            }
            }
        }
        }
 
 
      /* If we used a previous fixup, clean up after it.  */
      /* If we used a previous fixup, clean up after it.  */
      if (prev_fixup)
      if (prev_fixup)
        {
        {
          fixup = save_fixup + 1;
          fixup = save_fixup + 1;
          prev_fixup = 0;
          prev_fixup = 0;
        }
        }
      /* Queue it.  */
      /* Queue it.  */
      else if (fixup > save_fixup + 1)
      else if (fixup > save_fixup + 1)
        som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
        som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
 
 
      /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
      /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
         fixups to BFD.  */
         fixups to BFD.  */
      if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
      if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
          && som_hppa_howto_table[op].type != R_NO_RELOCATION)
          && som_hppa_howto_table[op].type != R_NO_RELOCATION)
        {
        {
          /* Done with a single reloction. Loop back to the top.  */
          /* Done with a single reloction. Loop back to the top.  */
          if (! just_count)
          if (! just_count)
            {
            {
              if (som_hppa_howto_table[op].type == R_ENTRY)
              if (som_hppa_howto_table[op].type == R_ENTRY)
                rptr->addend = var ('T');
                rptr->addend = var ('T');
              else if (som_hppa_howto_table[op].type == R_EXIT)
              else if (som_hppa_howto_table[op].type == R_EXIT)
                rptr->addend = var ('U');
                rptr->addend = var ('U');
              else if (som_hppa_howto_table[op].type == R_PCREL_CALL
              else if (som_hppa_howto_table[op].type == R_PCREL_CALL
                       || som_hppa_howto_table[op].type == R_ABS_CALL)
                       || som_hppa_howto_table[op].type == R_ABS_CALL)
                ;
                ;
              else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
              else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
                {
                {
                  /* Try what was specified in R_DATA_OVERRIDE first
                  /* Try what was specified in R_DATA_OVERRIDE first
                     (if anything).  Then the hard way using the
                     (if anything).  Then the hard way using the
                     section contents.  */
                     section contents.  */
                  rptr->addend = var ('V');
                  rptr->addend = var ('V');
 
 
                  if (rptr->addend == 0 && !section->contents)
                  if (rptr->addend == 0 && !section->contents)
                    {
                    {
                      /* Got to read the damn contents first.  We don't
                      /* Got to read the damn contents first.  We don't
                         bother saving the contents (yet).  Add it one
                         bother saving the contents (yet).  Add it one
                         day if the need arises.  */
                         day if the need arises.  */
                      bfd_byte *contents;
                      bfd_byte *contents;
                      if (!bfd_malloc_and_get_section (section->owner, section,
                      if (!bfd_malloc_and_get_section (section->owner, section,
                                                       &contents))
                                                       &contents))
                        {
                        {
                          if (contents != NULL)
                          if (contents != NULL)
                            free (contents);
                            free (contents);
                          return (unsigned) -1;
                          return (unsigned) -1;
                        }
                        }
                      section->contents = contents;
                      section->contents = contents;
                      deallocate_contents = 1;
                      deallocate_contents = 1;
                    }
                    }
                  else if (rptr->addend == 0)
                  else if (rptr->addend == 0)
                    rptr->addend = bfd_get_32 (section->owner,
                    rptr->addend = bfd_get_32 (section->owner,
                                               (section->contents
                                               (section->contents
                                                + offset - var ('L')));
                                                + offset - var ('L')));
 
 
                }
                }
              else
              else
                rptr->addend = var ('V');
                rptr->addend = var ('V');
              rptr++;
              rptr++;
            }
            }
          count++;
          count++;
          /* Now that we've handled a "full" relocation, reset
          /* Now that we've handled a "full" relocation, reset
             some state.  */
             some state.  */
          memset (variables, 0, sizeof (variables));
          memset (variables, 0, sizeof (variables));
          memset (stack, 0, sizeof (stack));
          memset (stack, 0, sizeof (stack));
        }
        }
    }
    }
  if (deallocate_contents)
  if (deallocate_contents)
    free (section->contents);
    free (section->contents);
 
 
  return count;
  return count;
 
 
#undef var
#undef var
#undef push
#undef push
#undef pop
#undef pop
#undef emptystack
#undef emptystack
}
}
 
 
/* Read in the relocs (aka fixups in SOM terms) for a section.
/* Read in the relocs (aka fixups in SOM terms) for a section.
 
 
   som_get_reloc_upper_bound calls this routine with JUST_COUNT
   som_get_reloc_upper_bound calls this routine with JUST_COUNT
   set to TRUE to indicate it only needs a count of the number
   set to TRUE to indicate it only needs a count of the number
   of actual relocations.  */
   of actual relocations.  */
 
 
static bfd_boolean
static bfd_boolean
som_slurp_reloc_table (bfd *abfd,
som_slurp_reloc_table (bfd *abfd,
                       asection *section,
                       asection *section,
                       asymbol **symbols,
                       asymbol **symbols,
                       bfd_boolean just_count)
                       bfd_boolean just_count)
{
{
  unsigned char *external_relocs;
  unsigned char *external_relocs;
  unsigned int fixup_stream_size;
  unsigned int fixup_stream_size;
  arelent *internal_relocs;
  arelent *internal_relocs;
  unsigned int num_relocs;
  unsigned int num_relocs;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  fixup_stream_size = som_section_data (section)->reloc_size;
  fixup_stream_size = som_section_data (section)->reloc_size;
  /* If there were no relocations, then there is nothing to do.  */
  /* If there were no relocations, then there is nothing to do.  */
  if (section->reloc_count == 0)
  if (section->reloc_count == 0)
    return TRUE;
    return TRUE;
 
 
  /* If reloc_count is -1, then the relocation stream has not been
  /* If reloc_count is -1, then the relocation stream has not been
     parsed.  We must do so now to know how many relocations exist.  */
     parsed.  We must do so now to know how many relocations exist.  */
  if (section->reloc_count == (unsigned) -1)
  if (section->reloc_count == (unsigned) -1)
    {
    {
      amt = fixup_stream_size;
      amt = fixup_stream_size;
      external_relocs = bfd_malloc (amt);
      external_relocs = bfd_malloc (amt);
      if (external_relocs == NULL)
      if (external_relocs == NULL)
        return FALSE;
        return FALSE;
      /* Read in the external forms.  */
      /* Read in the external forms.  */
      if (bfd_seek (abfd,
      if (bfd_seek (abfd,
                    obj_som_reloc_filepos (abfd) + section->rel_filepos,
                    obj_som_reloc_filepos (abfd) + section->rel_filepos,
                    SEEK_SET)
                    SEEK_SET)
          != 0)
          != 0)
        return FALSE;
        return FALSE;
      if (bfd_bread (external_relocs, amt, abfd) != amt)
      if (bfd_bread (external_relocs, amt, abfd) != amt)
        return FALSE;
        return FALSE;
 
 
      /* Let callers know how many relocations found.
      /* Let callers know how many relocations found.
         also save the relocation stream as we will
         also save the relocation stream as we will
         need it again.  */
         need it again.  */
      section->reloc_count = som_set_reloc_info (external_relocs,
      section->reloc_count = som_set_reloc_info (external_relocs,
                                                 fixup_stream_size,
                                                 fixup_stream_size,
                                                 NULL, NULL, NULL, TRUE);
                                                 NULL, NULL, NULL, TRUE);
 
 
      som_section_data (section)->reloc_stream = external_relocs;
      som_section_data (section)->reloc_stream = external_relocs;
    }
    }
 
 
  /* If the caller only wanted a count, then return now.  */
  /* If the caller only wanted a count, then return now.  */
  if (just_count)
  if (just_count)
    return TRUE;
    return TRUE;
 
 
  num_relocs = section->reloc_count;
  num_relocs = section->reloc_count;
  external_relocs = som_section_data (section)->reloc_stream;
  external_relocs = som_section_data (section)->reloc_stream;
  /* Return saved information about the relocations if it is available.  */
  /* Return saved information about the relocations if it is available.  */
  if (section->relocation != NULL)
  if (section->relocation != NULL)
    return TRUE;
    return TRUE;
 
 
  amt = num_relocs;
  amt = num_relocs;
  amt *= sizeof (arelent);
  amt *= sizeof (arelent);
  internal_relocs = bfd_zalloc (abfd, (amt));
  internal_relocs = bfd_zalloc (abfd, (amt));
  if (internal_relocs == NULL)
  if (internal_relocs == NULL)
    return FALSE;
    return FALSE;
 
 
  /* Process and internalize the relocations.  */
  /* Process and internalize the relocations.  */
  som_set_reloc_info (external_relocs, fixup_stream_size,
  som_set_reloc_info (external_relocs, fixup_stream_size,
                      internal_relocs, section, symbols, FALSE);
                      internal_relocs, section, symbols, FALSE);
 
 
  /* We're done with the external relocations.  Free them.  */
  /* We're done with the external relocations.  Free them.  */
  free (external_relocs);
  free (external_relocs);
  som_section_data (section)->reloc_stream = NULL;
  som_section_data (section)->reloc_stream = NULL;
 
 
  /* Save our results and return success.  */
  /* Save our results and return success.  */
  section->relocation = internal_relocs;
  section->relocation = internal_relocs;
  return TRUE;
  return TRUE;
}
}
 
 
/* Return the number of bytes required to store the relocation
/* Return the number of bytes required to store the relocation
   information associated with the given section.  */
   information associated with the given section.  */
 
 
static long
static long
som_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
som_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
{
{
  /* If section has relocations, then read in the relocation stream
  /* If section has relocations, then read in the relocation stream
     and parse it to determine how many relocations exist.  */
     and parse it to determine how many relocations exist.  */
  if (asect->flags & SEC_RELOC)
  if (asect->flags & SEC_RELOC)
    {
    {
      if (! som_slurp_reloc_table (abfd, asect, NULL, TRUE))
      if (! som_slurp_reloc_table (abfd, asect, NULL, TRUE))
        return -1;
        return -1;
      return (asect->reloc_count + 1) * sizeof (arelent *);
      return (asect->reloc_count + 1) * sizeof (arelent *);
    }
    }
 
 
  /* There are no relocations.  Return enough space to hold the
  /* There are no relocations.  Return enough space to hold the
     NULL pointer which will be installed if som_canonicalize_reloc
     NULL pointer which will be installed if som_canonicalize_reloc
     is called.  */
     is called.  */
  return sizeof (arelent *);
  return sizeof (arelent *);
}
}
 
 
/* Convert relocations from SOM (external) form into BFD internal
/* Convert relocations from SOM (external) form into BFD internal
   form.  Return the number of relocations.  */
   form.  Return the number of relocations.  */
 
 
static long
static long
som_canonicalize_reloc (bfd *abfd,
som_canonicalize_reloc (bfd *abfd,
                        sec_ptr section,
                        sec_ptr section,
                        arelent **relptr,
                        arelent **relptr,
                        asymbol **symbols)
                        asymbol **symbols)
{
{
  arelent *tblptr;
  arelent *tblptr;
  int count;
  int count;
 
 
  if (! som_slurp_reloc_table (abfd, section, symbols, FALSE))
  if (! som_slurp_reloc_table (abfd, section, symbols, FALSE))
    return -1;
    return -1;
 
 
  count = section->reloc_count;
  count = section->reloc_count;
  tblptr = section->relocation;
  tblptr = section->relocation;
 
 
  while (count--)
  while (count--)
    *relptr++ = tblptr++;
    *relptr++ = tblptr++;
 
 
  *relptr = NULL;
  *relptr = NULL;
  return section->reloc_count;
  return section->reloc_count;
}
}
 
 
extern const bfd_target som_vec;
extern const bfd_target som_vec;
 
 
/* A hook to set up object file dependent section information.  */
/* A hook to set up object file dependent section information.  */
 
 
static bfd_boolean
static bfd_boolean
som_new_section_hook (bfd *abfd, asection *newsect)
som_new_section_hook (bfd *abfd, asection *newsect)
{
{
  if (!newsect->used_by_bfd)
  if (!newsect->used_by_bfd)
    {
    {
      bfd_size_type amt = sizeof (struct som_section_data_struct);
      bfd_size_type amt = sizeof (struct som_section_data_struct);
 
 
      newsect->used_by_bfd = bfd_zalloc (abfd, amt);
      newsect->used_by_bfd = bfd_zalloc (abfd, amt);
      if (!newsect->used_by_bfd)
      if (!newsect->used_by_bfd)
        return FALSE;
        return FALSE;
    }
    }
  newsect->alignment_power = 3;
  newsect->alignment_power = 3;
 
 
  /* We allow more than three sections internally.  */
  /* We allow more than three sections internally.  */
  return _bfd_generic_new_section_hook (abfd, newsect);
  return _bfd_generic_new_section_hook (abfd, newsect);
}
}
 
 
/* Copy any private info we understand from the input symbol
/* Copy any private info we understand from the input symbol
   to the output symbol.  */
   to the output symbol.  */
 
 
static bfd_boolean
static bfd_boolean
som_bfd_copy_private_symbol_data (bfd *ibfd,
som_bfd_copy_private_symbol_data (bfd *ibfd,
                                  asymbol *isymbol,
                                  asymbol *isymbol,
                                  bfd *obfd,
                                  bfd *obfd,
                                  asymbol *osymbol)
                                  asymbol *osymbol)
{
{
  struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
  struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
  struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
  struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
 
 
  /* One day we may try to grok other private data.  */
  /* One day we may try to grok other private data.  */
  if (ibfd->xvec->flavour != bfd_target_som_flavour
  if (ibfd->xvec->flavour != bfd_target_som_flavour
      || obfd->xvec->flavour != bfd_target_som_flavour)
      || obfd->xvec->flavour != bfd_target_som_flavour)
    return FALSE;
    return FALSE;
 
 
  /* The only private information we need to copy is the argument relocation
  /* The only private information we need to copy is the argument relocation
     bits.  */
     bits.  */
  output_symbol->tc_data.ap.hppa_arg_reloc =
  output_symbol->tc_data.ap.hppa_arg_reloc =
    input_symbol->tc_data.ap.hppa_arg_reloc;
    input_symbol->tc_data.ap.hppa_arg_reloc;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Copy any private info we understand from the input section
/* Copy any private info we understand from the input section
   to the output section.  */
   to the output section.  */
 
 
static bfd_boolean
static bfd_boolean
som_bfd_copy_private_section_data (bfd *ibfd,
som_bfd_copy_private_section_data (bfd *ibfd,
                                   asection *isection,
                                   asection *isection,
                                   bfd *obfd,
                                   bfd *obfd,
                                   asection *osection)
                                   asection *osection)
{
{
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  /* One day we may try to grok other private data.  */
  /* One day we may try to grok other private data.  */
  if (ibfd->xvec->flavour != bfd_target_som_flavour
  if (ibfd->xvec->flavour != bfd_target_som_flavour
      || obfd->xvec->flavour != bfd_target_som_flavour
      || obfd->xvec->flavour != bfd_target_som_flavour
      || (!som_is_space (isection) && !som_is_subspace (isection)))
      || (!som_is_space (isection) && !som_is_subspace (isection)))
    return TRUE;
    return TRUE;
 
 
  amt = sizeof (struct som_copyable_section_data_struct);
  amt = sizeof (struct som_copyable_section_data_struct);
  som_section_data (osection)->copy_data = bfd_zalloc (obfd, amt);
  som_section_data (osection)->copy_data = bfd_zalloc (obfd, amt);
  if (som_section_data (osection)->copy_data == NULL)
  if (som_section_data (osection)->copy_data == NULL)
    return FALSE;
    return FALSE;
 
 
  memcpy (som_section_data (osection)->copy_data,
  memcpy (som_section_data (osection)->copy_data,
          som_section_data (isection)->copy_data,
          som_section_data (isection)->copy_data,
          sizeof (struct som_copyable_section_data_struct));
          sizeof (struct som_copyable_section_data_struct));
 
 
  /* Reparent if necessary.  */
  /* Reparent if necessary.  */
  if (som_section_data (osection)->copy_data->container)
  if (som_section_data (osection)->copy_data->container)
    som_section_data (osection)->copy_data->container =
    som_section_data (osection)->copy_data->container =
      som_section_data (osection)->copy_data->container->output_section;
      som_section_data (osection)->copy_data->container->output_section;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Copy any private info we understand from the input bfd
/* Copy any private info we understand from the input bfd
   to the output bfd.  */
   to the output bfd.  */
 
 
static bfd_boolean
static bfd_boolean
som_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
som_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
{
{
  /* One day we may try to grok other private data.  */
  /* One day we may try to grok other private data.  */
  if (ibfd->xvec->flavour != bfd_target_som_flavour
  if (ibfd->xvec->flavour != bfd_target_som_flavour
      || obfd->xvec->flavour != bfd_target_som_flavour)
      || obfd->xvec->flavour != bfd_target_som_flavour)
    return TRUE;
    return TRUE;
 
 
  /* Allocate some memory to hold the data we need.  */
  /* Allocate some memory to hold the data we need.  */
  obj_som_exec_data (obfd) = bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data));
  obj_som_exec_data (obfd) = bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data));
  if (obj_som_exec_data (obfd) == NULL)
  if (obj_som_exec_data (obfd) == NULL)
    return FALSE;
    return FALSE;
 
 
  /* Now copy the data.  */
  /* Now copy the data.  */
  memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
  memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
          sizeof (struct som_exec_data));
          sizeof (struct som_exec_data));
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Display the SOM header.  */
/* Display the SOM header.  */
 
 
static bfd_boolean
static bfd_boolean
som_bfd_print_private_bfd_data (bfd *abfd, void *farg)
som_bfd_print_private_bfd_data (bfd *abfd, void *farg)
{
{
  struct som_exec_auxhdr *exec_header;
  struct som_exec_auxhdr *exec_header;
  struct aux_id* auxhdr;
  struct aux_id* auxhdr;
  FILE *f;
  FILE *f;
 
 
  f = (FILE *) farg;
  f = (FILE *) farg;
 
 
  exec_header = obj_som_exec_hdr (abfd);
  exec_header = obj_som_exec_hdr (abfd);
  if (exec_header)
  if (exec_header)
    {
    {
      fprintf (f, _("\nExec Auxiliary Header\n"));
      fprintf (f, _("\nExec Auxiliary Header\n"));
      fprintf (f, "  flags              ");
      fprintf (f, "  flags              ");
      auxhdr = &exec_header->som_auxhdr;
      auxhdr = &exec_header->som_auxhdr;
      if (auxhdr->mandatory)
      if (auxhdr->mandatory)
        fprintf (f, "mandatory ");
        fprintf (f, "mandatory ");
      if (auxhdr->copy)
      if (auxhdr->copy)
        fprintf (f, "copy ");
        fprintf (f, "copy ");
      if (auxhdr->append)
      if (auxhdr->append)
        fprintf (f, "append ");
        fprintf (f, "append ");
      if (auxhdr->ignore)
      if (auxhdr->ignore)
        fprintf (f, "ignore ");
        fprintf (f, "ignore ");
      fprintf (f, "\n");
      fprintf (f, "\n");
      fprintf (f, "  type               %#x\n", auxhdr->type);
      fprintf (f, "  type               %#x\n", auxhdr->type);
      fprintf (f, "  length             %#x\n", auxhdr->length);
      fprintf (f, "  length             %#x\n", auxhdr->length);
 
 
      /* Note that, depending on the HP-UX version, the following fields can be
      /* Note that, depending on the HP-UX version, the following fields can be
         either ints, or longs.  */
         either ints, or longs.  */
 
 
      fprintf (f, "  text size          %#lx\n", (long) exec_header->exec_tsize);
      fprintf (f, "  text size          %#lx\n", (long) exec_header->exec_tsize);
      fprintf (f, "  text memory offset %#lx\n", (long) exec_header->exec_tmem);
      fprintf (f, "  text memory offset %#lx\n", (long) exec_header->exec_tmem);
      fprintf (f, "  text file offset   %#lx\n", (long) exec_header->exec_tfile);
      fprintf (f, "  text file offset   %#lx\n", (long) exec_header->exec_tfile);
      fprintf (f, "  data size          %#lx\n", (long) exec_header->exec_dsize);
      fprintf (f, "  data size          %#lx\n", (long) exec_header->exec_dsize);
      fprintf (f, "  data memory offset %#lx\n", (long) exec_header->exec_dmem);
      fprintf (f, "  data memory offset %#lx\n", (long) exec_header->exec_dmem);
      fprintf (f, "  data file offset   %#lx\n", (long) exec_header->exec_dfile);
      fprintf (f, "  data file offset   %#lx\n", (long) exec_header->exec_dfile);
      fprintf (f, "  bss size           %#lx\n", (long) exec_header->exec_bsize);
      fprintf (f, "  bss size           %#lx\n", (long) exec_header->exec_bsize);
      fprintf (f, "  entry point        %#lx\n", (long) exec_header->exec_entry);
      fprintf (f, "  entry point        %#lx\n", (long) exec_header->exec_entry);
      fprintf (f, "  loader flags       %#lx\n", (long) exec_header->exec_flags);
      fprintf (f, "  loader flags       %#lx\n", (long) exec_header->exec_flags);
      fprintf (f, "  bss initializer    %#lx\n", (long) exec_header->exec_bfill);
      fprintf (f, "  bss initializer    %#lx\n", (long) exec_header->exec_bfill);
    }
    }
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Set backend info for sections which can not be described
/* Set backend info for sections which can not be described
   in the BFD data structures.  */
   in the BFD data structures.  */
 
 
bfd_boolean
bfd_boolean
bfd_som_set_section_attributes (asection *section,
bfd_som_set_section_attributes (asection *section,
                                int defined,
                                int defined,
                                int private,
                                int private,
                                unsigned int sort_key,
                                unsigned int sort_key,
                                int spnum)
                                int spnum)
{
{
  /* Allocate memory to hold the magic information.  */
  /* Allocate memory to hold the magic information.  */
  if (som_section_data (section)->copy_data == NULL)
  if (som_section_data (section)->copy_data == NULL)
    {
    {
      bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
      bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
 
 
      som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
      som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
      if (som_section_data (section)->copy_data == NULL)
      if (som_section_data (section)->copy_data == NULL)
        return FALSE;
        return FALSE;
    }
    }
  som_section_data (section)->copy_data->sort_key = sort_key;
  som_section_data (section)->copy_data->sort_key = sort_key;
  som_section_data (section)->copy_data->is_defined = defined;
  som_section_data (section)->copy_data->is_defined = defined;
  som_section_data (section)->copy_data->is_private = private;
  som_section_data (section)->copy_data->is_private = private;
  som_section_data (section)->copy_data->container = section;
  som_section_data (section)->copy_data->container = section;
  som_section_data (section)->copy_data->space_number = spnum;
  som_section_data (section)->copy_data->space_number = spnum;
  return TRUE;
  return TRUE;
}
}
 
 
/* Set backend info for subsections which can not be described
/* Set backend info for subsections which can not be described
   in the BFD data structures.  */
   in the BFD data structures.  */
 
 
bfd_boolean
bfd_boolean
bfd_som_set_subsection_attributes (asection *section,
bfd_som_set_subsection_attributes (asection *section,
                                   asection *container,
                                   asection *container,
                                   int access,
                                   int access,
                                   unsigned int sort_key,
                                   unsigned int sort_key,
                                   int quadrant,
                                   int quadrant,
                                   int comdat,
                                   int comdat,
                                   int common,
                                   int common,
                                   int dup_common)
                                   int dup_common)
{
{
  /* Allocate memory to hold the magic information.  */
  /* Allocate memory to hold the magic information.  */
  if (som_section_data (section)->copy_data == NULL)
  if (som_section_data (section)->copy_data == NULL)
    {
    {
      bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
      bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
 
 
      som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
      som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
      if (som_section_data (section)->copy_data == NULL)
      if (som_section_data (section)->copy_data == NULL)
        return FALSE;
        return FALSE;
    }
    }
  som_section_data (section)->copy_data->sort_key = sort_key;
  som_section_data (section)->copy_data->sort_key = sort_key;
  som_section_data (section)->copy_data->access_control_bits = access;
  som_section_data (section)->copy_data->access_control_bits = access;
  som_section_data (section)->copy_data->quadrant = quadrant;
  som_section_data (section)->copy_data->quadrant = quadrant;
  som_section_data (section)->copy_data->container = container;
  som_section_data (section)->copy_data->container = container;
  som_section_data (section)->copy_data->is_comdat = comdat;
  som_section_data (section)->copy_data->is_comdat = comdat;
  som_section_data (section)->copy_data->is_common = common;
  som_section_data (section)->copy_data->is_common = common;
  som_section_data (section)->copy_data->dup_common = dup_common;
  som_section_data (section)->copy_data->dup_common = dup_common;
  return TRUE;
  return TRUE;
}
}
 
 
/* Set the full SOM symbol type.  SOM needs far more symbol information
/* Set the full SOM symbol type.  SOM needs far more symbol information
   than any other object file format I'm aware of.  It is mandatory
   than any other object file format I'm aware of.  It is mandatory
   to be able to know if a symbol is an entry point, millicode, data,
   to be able to know if a symbol is an entry point, millicode, data,
   code, absolute, storage request, or procedure label.  If you get
   code, absolute, storage request, or procedure label.  If you get
   the symbol type wrong your program will not link.  */
   the symbol type wrong your program will not link.  */
 
 
void
void
bfd_som_set_symbol_type (asymbol *symbol, unsigned int type)
bfd_som_set_symbol_type (asymbol *symbol, unsigned int type)
{
{
  som_symbol_data (symbol)->som_type = type;
  som_symbol_data (symbol)->som_type = type;
}
}
 
 
/* Attach an auxiliary header to the BFD backend so that it may be
/* Attach an auxiliary header to the BFD backend so that it may be
   written into the object file.  */
   written into the object file.  */
 
 
bfd_boolean
bfd_boolean
bfd_som_attach_aux_hdr (bfd *abfd, int type, char *string)
bfd_som_attach_aux_hdr (bfd *abfd, int type, char *string)
{
{
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  if (type == VERSION_AUX_ID)
  if (type == VERSION_AUX_ID)
    {
    {
      size_t len = strlen (string);
      size_t len = strlen (string);
      int pad = 0;
      int pad = 0;
 
 
      if (len % 4)
      if (len % 4)
        pad = (4 - (len % 4));
        pad = (4 - (len % 4));
      amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
      amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
      obj_som_version_hdr (abfd) = bfd_zalloc (abfd, amt);
      obj_som_version_hdr (abfd) = bfd_zalloc (abfd, amt);
      if (!obj_som_version_hdr (abfd))
      if (!obj_som_version_hdr (abfd))
        return FALSE;
        return FALSE;
      obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
      obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
      obj_som_version_hdr (abfd)->header_id.length = len + pad;
      obj_som_version_hdr (abfd)->header_id.length = len + pad;
      obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
      obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
      obj_som_version_hdr (abfd)->string_length = len;
      obj_som_version_hdr (abfd)->string_length = len;
      strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
      strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
    }
    }
  else if (type == COPYRIGHT_AUX_ID)
  else if (type == COPYRIGHT_AUX_ID)
    {
    {
      int len = strlen (string);
      int len = strlen (string);
      int pad = 0;
      int pad = 0;
 
 
      if (len % 4)
      if (len % 4)
        pad = (4 - (len % 4));
        pad = (4 - (len % 4));
      amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
      amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
      obj_som_copyright_hdr (abfd) = bfd_zalloc (abfd, amt);
      obj_som_copyright_hdr (abfd) = bfd_zalloc (abfd, amt);
      if (!obj_som_copyright_hdr (abfd))
      if (!obj_som_copyright_hdr (abfd))
        return FALSE;
        return FALSE;
      obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
      obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
      obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
      obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
      obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
      obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
      obj_som_copyright_hdr (abfd)->string_length = len;
      obj_som_copyright_hdr (abfd)->string_length = len;
      strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
      strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Attach a compilation unit header to the BFD backend so that it may be
/* Attach a compilation unit header to the BFD backend so that it may be
   written into the object file.  */
   written into the object file.  */
 
 
bfd_boolean
bfd_boolean
bfd_som_attach_compilation_unit (bfd *abfd,
bfd_som_attach_compilation_unit (bfd *abfd,
                                 const char *name,
                                 const char *name,
                                 const char *language_name,
                                 const char *language_name,
                                 const char *product_id,
                                 const char *product_id,
                                 const char *version_id)
                                 const char *version_id)
{
{
  COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ);
  COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ);
 
 
  if (n == NULL)
  if (n == NULL)
    return FALSE;
    return FALSE;
 
 
#define STRDUP(f) \
#define STRDUP(f) \
  if (f != NULL) \
  if (f != NULL) \
    { \
    { \
      n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \
      n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \
      if (n->f.n_name == NULL) \
      if (n->f.n_name == NULL) \
        return FALSE; \
        return FALSE; \
      strcpy (n->f.n_name, f); \
      strcpy (n->f.n_name, f); \
    }
    }
 
 
  STRDUP (name);
  STRDUP (name);
  STRDUP (language_name);
  STRDUP (language_name);
  STRDUP (product_id);
  STRDUP (product_id);
  STRDUP (version_id);
  STRDUP (version_id);
 
 
#undef STRDUP
#undef STRDUP
 
 
  obj_som_compilation_unit (abfd) = n;
  obj_som_compilation_unit (abfd) = n;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
som_get_section_contents (bfd *abfd,
som_get_section_contents (bfd *abfd,
                          sec_ptr section,
                          sec_ptr section,
                          void *location,
                          void *location,
                          file_ptr offset,
                          file_ptr offset,
                          bfd_size_type count)
                          bfd_size_type count)
{
{
  if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
  if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
    return TRUE;
    return TRUE;
  if ((bfd_size_type) (offset+count) > section->size
  if ((bfd_size_type) (offset+count) > section->size
      || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0
      || bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0
      || bfd_bread (location, count, abfd) != count)
      || bfd_bread (location, count, abfd) != count)
    return FALSE; /* On error.  */
    return FALSE; /* On error.  */
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
som_set_section_contents (bfd *abfd,
som_set_section_contents (bfd *abfd,
                          sec_ptr section,
                          sec_ptr section,
                          const void *location,
                          const void *location,
                          file_ptr offset,
                          file_ptr offset,
                          bfd_size_type count)
                          bfd_size_type count)
{
{
  if (! abfd->output_has_begun)
  if (! abfd->output_has_begun)
    {
    {
      /* Set up fixed parts of the file, space, and subspace headers.
      /* Set up fixed parts of the file, space, and subspace headers.
         Notify the world that output has begun.  */
         Notify the world that output has begun.  */
      som_prep_headers (abfd);
      som_prep_headers (abfd);
      abfd->output_has_begun = TRUE;
      abfd->output_has_begun = TRUE;
      /* Start writing the object file.  This include all the string
      /* Start writing the object file.  This include all the string
         tables, fixup streams, and other portions of the object file.  */
         tables, fixup streams, and other portions of the object file.  */
      som_begin_writing (abfd);
      som_begin_writing (abfd);
    }
    }
 
 
  /* Only write subspaces which have "real" contents (eg. the contents
  /* Only write subspaces which have "real" contents (eg. the contents
     are not generated at run time by the OS).  */
     are not generated at run time by the OS).  */
  if (!som_is_subspace (section)
  if (!som_is_subspace (section)
      || ((section->flags & SEC_HAS_CONTENTS) == 0))
      || ((section->flags & SEC_HAS_CONTENTS) == 0))
    return TRUE;
    return TRUE;
 
 
  /* Seek to the proper offset within the object file and write the
  /* Seek to the proper offset within the object file and write the
     data.  */
     data.  */
  offset += som_section_data (section)->subspace_dict->file_loc_init_value;
  offset += som_section_data (section)->subspace_dict->file_loc_init_value;
  if (bfd_seek (abfd, offset, SEEK_SET) != 0)
  if (bfd_seek (abfd, offset, SEEK_SET) != 0)
    return FALSE;
    return FALSE;
 
 
  if (bfd_bwrite (location, count, abfd) != count)
  if (bfd_bwrite (location, count, abfd) != count)
    return FALSE;
    return FALSE;
  return TRUE;
  return TRUE;
}
}
 
 
static bfd_boolean
static bfd_boolean
som_set_arch_mach (bfd *abfd,
som_set_arch_mach (bfd *abfd,
                   enum bfd_architecture arch,
                   enum bfd_architecture arch,
                   unsigned long machine)
                   unsigned long machine)
{
{
  /* Allow any architecture to be supported by the SOM backend.  */
  /* Allow any architecture to be supported by the SOM backend.  */
  return bfd_default_set_arch_mach (abfd, arch, machine);
  return bfd_default_set_arch_mach (abfd, arch, machine);
}
}
 
 
static bfd_boolean
static bfd_boolean
som_find_nearest_line (bfd *abfd,
som_find_nearest_line (bfd *abfd,
                       asection *section,
                       asection *section,
                       asymbol **symbols,
                       asymbol **symbols,
                       bfd_vma offset,
                       bfd_vma offset,
                       const char **filename_ptr,
                       const char **filename_ptr,
                       const char **functionname_ptr,
                       const char **functionname_ptr,
                       unsigned int *line_ptr)
                       unsigned int *line_ptr)
{
{
  bfd_boolean found;
  bfd_boolean found;
  asymbol *func;
  asymbol *func;
  bfd_vma low_func;
  bfd_vma low_func;
  asymbol **p;
  asymbol **p;
 
 
  if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
  if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
                                             & found, filename_ptr,
                                             & found, filename_ptr,
                                             functionname_ptr, line_ptr,
                                             functionname_ptr, line_ptr,
                                             & somdata (abfd).line_info))
                                             & somdata (abfd).line_info))
    return FALSE;
    return FALSE;
 
 
  if (found)
  if (found)
    return TRUE;
    return TRUE;
 
 
  if (symbols == NULL)
  if (symbols == NULL)
    return FALSE;
    return FALSE;
 
 
  /* Fallback: find function name from symbols table.  */
  /* Fallback: find function name from symbols table.  */
  func = NULL;
  func = NULL;
  low_func = 0;
  low_func = 0;
 
 
  for (p = symbols; *p != NULL; p++)
  for (p = symbols; *p != NULL; p++)
    {
    {
      som_symbol_type *q = (som_symbol_type *) *p;
      som_symbol_type *q = (som_symbol_type *) *p;
 
 
      if (q->som_type == SYMBOL_TYPE_ENTRY
      if (q->som_type == SYMBOL_TYPE_ENTRY
          && q->symbol.section == section
          && q->symbol.section == section
          && q->symbol.value >= low_func
          && q->symbol.value >= low_func
          && q->symbol.value <= offset)
          && q->symbol.value <= offset)
        {
        {
          func = (asymbol *) q;
          func = (asymbol *) q;
          low_func = q->symbol.value;
          low_func = q->symbol.value;
        }
        }
    }
    }
 
 
  if (func == NULL)
  if (func == NULL)
    return FALSE;
    return FALSE;
 
 
  *filename_ptr = NULL;
  *filename_ptr = NULL;
  *functionname_ptr = bfd_asymbol_name (func);
  *functionname_ptr = bfd_asymbol_name (func);
  *line_ptr = 0;
  *line_ptr = 0;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static int
static int
som_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
som_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
                    struct bfd_link_info *info ATTRIBUTE_UNUSED)
                    struct bfd_link_info *info ATTRIBUTE_UNUSED)
{
{
  (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
  (*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
  fflush (stderr);
  fflush (stderr);
  abort ();
  abort ();
  return 0;
  return 0;
}
}
 
 
/* Return the single-character symbol type corresponding to
/* Return the single-character symbol type corresponding to
   SOM section S, or '?' for an unknown SOM section.  */
   SOM section S, or '?' for an unknown SOM section.  */
 
 
static char
static char
som_section_type (const char *s)
som_section_type (const char *s)
{
{
  const struct section_to_type *t;
  const struct section_to_type *t;
 
 
  for (t = &stt[0]; t->section; t++)
  for (t = &stt[0]; t->section; t++)
    if (!strcmp (s, t->section))
    if (!strcmp (s, t->section))
      return t->type;
      return t->type;
  return '?';
  return '?';
}
}
 
 
static int
static int
som_decode_symclass (asymbol *symbol)
som_decode_symclass (asymbol *symbol)
{
{
  char c;
  char c;
 
 
  if (bfd_is_com_section (symbol->section))
  if (bfd_is_com_section (symbol->section))
    return 'C';
    return 'C';
  if (bfd_is_und_section (symbol->section))
  if (bfd_is_und_section (symbol->section))
    {
    {
      if (symbol->flags & BSF_WEAK)
      if (symbol->flags & BSF_WEAK)
        {
        {
          /* If weak, determine if it's specifically an object
          /* If weak, determine if it's specifically an object
             or non-object weak.  */
             or non-object weak.  */
          if (symbol->flags & BSF_OBJECT)
          if (symbol->flags & BSF_OBJECT)
            return 'v';
            return 'v';
          else
          else
            return 'w';
            return 'w';
        }
        }
      else
      else
         return 'U';
         return 'U';
    }
    }
  if (bfd_is_ind_section (symbol->section))
  if (bfd_is_ind_section (symbol->section))
    return 'I';
    return 'I';
  if (symbol->flags & BSF_WEAK)
  if (symbol->flags & BSF_WEAK)
    {
    {
      /* If weak, determine if it's specifically an object
      /* If weak, determine if it's specifically an object
         or non-object weak.  */
         or non-object weak.  */
      if (symbol->flags & BSF_OBJECT)
      if (symbol->flags & BSF_OBJECT)
        return 'V';
        return 'V';
      else
      else
        return 'W';
        return 'W';
    }
    }
  if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
  if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
    return '?';
    return '?';
 
 
  if (bfd_is_abs_section (symbol->section)
  if (bfd_is_abs_section (symbol->section)
      || (som_symbol_data (symbol) != NULL
      || (som_symbol_data (symbol) != NULL
          && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
          && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
    c = 'a';
    c = 'a';
  else if (symbol->section)
  else if (symbol->section)
    c = som_section_type (symbol->section->name);
    c = som_section_type (symbol->section->name);
  else
  else
    return '?';
    return '?';
  if (symbol->flags & BSF_GLOBAL)
  if (symbol->flags & BSF_GLOBAL)
    c = TOUPPER (c);
    c = TOUPPER (c);
  return c;
  return c;
}
}
 
 
/* Return information about SOM symbol SYMBOL in RET.  */
/* Return information about SOM symbol SYMBOL in RET.  */
 
 
static void
static void
som_get_symbol_info (bfd *ignore_abfd ATTRIBUTE_UNUSED,
som_get_symbol_info (bfd *ignore_abfd ATTRIBUTE_UNUSED,
                     asymbol *symbol,
                     asymbol *symbol,
                     symbol_info *ret)
                     symbol_info *ret)
{
{
  ret->type = som_decode_symclass (symbol);
  ret->type = som_decode_symclass (symbol);
  if (ret->type != 'U')
  if (ret->type != 'U')
    ret->value = symbol->value + symbol->section->vma;
    ret->value = symbol->value + symbol->section->vma;
  else
  else
    ret->value = 0;
    ret->value = 0;
  ret->name = symbol->name;
  ret->name = symbol->name;
}
}
 
 
/* Count the number of symbols in the archive symbol table.  Necessary
/* Count the number of symbols in the archive symbol table.  Necessary
   so that we can allocate space for all the carsyms at once.  */
   so that we can allocate space for all the carsyms at once.  */
 
 
static bfd_boolean
static bfd_boolean
som_bfd_count_ar_symbols (bfd *abfd,
som_bfd_count_ar_symbols (bfd *abfd,
                          struct lst_header *lst_header,
                          struct lst_header *lst_header,
                          symindex *count)
                          symindex *count)
{
{
  unsigned int i;
  unsigned int i;
  unsigned int *hash_table = NULL;
  unsigned int *hash_table = NULL;
  bfd_size_type amt;
  bfd_size_type amt;
  file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
  file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
 
 
  amt = lst_header->hash_size;
  amt = lst_header->hash_size;
  amt *= sizeof (unsigned int);
  amt *= sizeof (unsigned int);
  hash_table = bfd_malloc (amt);
  hash_table = bfd_malloc (amt);
  if (hash_table == NULL && lst_header->hash_size != 0)
  if (hash_table == NULL && lst_header->hash_size != 0)
    goto error_return;
    goto error_return;
 
 
  /* Don't forget to initialize the counter!  */
  /* Don't forget to initialize the counter!  */
  *count = 0;
  *count = 0;
 
 
  /* Read in the hash table.  The has table is an array of 32bit file offsets
  /* Read in the hash table.  The has table is an array of 32bit file offsets
     which point to the hash chains.  */
     which point to the hash chains.  */
  if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
  if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
    goto error_return;
    goto error_return;
 
 
  /* Walk each chain counting the number of symbols found on that particular
  /* Walk each chain counting the number of symbols found on that particular
     chain.  */
     chain.  */
  for (i = 0; i < lst_header->hash_size; i++)
  for (i = 0; i < lst_header->hash_size; i++)
    {
    {
      struct lst_symbol_record lst_symbol;
      struct lst_symbol_record lst_symbol;
 
 
      /* An empty chain has zero as it's file offset.  */
      /* An empty chain has zero as it's file offset.  */
      if (hash_table[i] == 0)
      if (hash_table[i] == 0)
        continue;
        continue;
 
 
      /* Seek to the first symbol in this hash chain.  */
      /* Seek to the first symbol in this hash chain.  */
      if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
      if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
        goto error_return;
        goto error_return;
 
 
      /* Read in this symbol and update the counter.  */
      /* Read in this symbol and update the counter.  */
      amt = sizeof (lst_symbol);
      amt = sizeof (lst_symbol);
      if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
      if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
        goto error_return;
        goto error_return;
 
 
      (*count)++;
      (*count)++;
 
 
      /* Now iterate through the rest of the symbols on this chain.  */
      /* Now iterate through the rest of the symbols on this chain.  */
      while (lst_symbol.next_entry)
      while (lst_symbol.next_entry)
        {
        {
 
 
          /* Seek to the next symbol.  */
          /* Seek to the next symbol.  */
          if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
          if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
              != 0)
              != 0)
            goto error_return;
            goto error_return;
 
 
          /* Read the symbol in and update the counter.  */
          /* Read the symbol in and update the counter.  */
          amt = sizeof (lst_symbol);
          amt = sizeof (lst_symbol);
          if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
          if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
            goto error_return;
            goto error_return;
 
 
          (*count)++;
          (*count)++;
        }
        }
    }
    }
  if (hash_table != NULL)
  if (hash_table != NULL)
    free (hash_table);
    free (hash_table);
  return TRUE;
  return TRUE;
 
 
 error_return:
 error_return:
  if (hash_table != NULL)
  if (hash_table != NULL)
    free (hash_table);
    free (hash_table);
  return FALSE;
  return FALSE;
}
}
 
 
/* Fill in the canonical archive symbols (SYMS) from the archive described
/* Fill in the canonical archive symbols (SYMS) from the archive described
   by ABFD and LST_HEADER.  */
   by ABFD and LST_HEADER.  */
 
 
static bfd_boolean
static bfd_boolean
som_bfd_fill_in_ar_symbols (bfd *abfd,
som_bfd_fill_in_ar_symbols (bfd *abfd,
                            struct lst_header *lst_header,
                            struct lst_header *lst_header,
                            carsym **syms)
                            carsym **syms)
{
{
  unsigned int i, len;
  unsigned int i, len;
  carsym *set = syms[0];
  carsym *set = syms[0];
  unsigned int *hash_table = NULL;
  unsigned int *hash_table = NULL;
  struct som_entry *som_dict = NULL;
  struct som_entry *som_dict = NULL;
  bfd_size_type amt;
  bfd_size_type amt;
  file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
  file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
 
 
  amt = lst_header->hash_size;
  amt = lst_header->hash_size;
  amt *= sizeof (unsigned int);
  amt *= sizeof (unsigned int);
  hash_table = bfd_malloc (amt);
  hash_table = bfd_malloc (amt);
  if (hash_table == NULL && lst_header->hash_size != 0)
  if (hash_table == NULL && lst_header->hash_size != 0)
    goto error_return;
    goto error_return;
 
 
  /* Read in the hash table.  The has table is an array of 32bit file offsets
  /* Read in the hash table.  The has table is an array of 32bit file offsets
     which point to the hash chains.  */
     which point to the hash chains.  */
  if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
  if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
    goto error_return;
    goto error_return;
 
 
  /* Seek to and read in the SOM dictionary.  We will need this to fill
  /* Seek to and read in the SOM dictionary.  We will need this to fill
     in the carsym's filepos field.  */
     in the carsym's filepos field.  */
  if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0)
  if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0)
    goto error_return;
    goto error_return;
 
 
  amt = lst_header->module_count;
  amt = lst_header->module_count;
  amt *= sizeof (struct som_entry);
  amt *= sizeof (struct som_entry);
  som_dict = bfd_malloc (amt);
  som_dict = bfd_malloc (amt);
  if (som_dict == NULL && lst_header->module_count != 0)
  if (som_dict == NULL && lst_header->module_count != 0)
    goto error_return;
    goto error_return;
 
 
  if (bfd_bread ((void *) som_dict, amt, abfd) != amt)
  if (bfd_bread ((void *) som_dict, amt, abfd) != amt)
    goto error_return;
    goto error_return;
 
 
  /* Walk each chain filling in the carsyms as we go along.  */
  /* Walk each chain filling in the carsyms as we go along.  */
  for (i = 0; i < lst_header->hash_size; i++)
  for (i = 0; i < lst_header->hash_size; i++)
    {
    {
      struct lst_symbol_record lst_symbol;
      struct lst_symbol_record lst_symbol;
 
 
      /* An empty chain has zero as it's file offset.  */
      /* An empty chain has zero as it's file offset.  */
      if (hash_table[i] == 0)
      if (hash_table[i] == 0)
        continue;
        continue;
 
 
      /* Seek to and read the first symbol on the chain.  */
      /* Seek to and read the first symbol on the chain.  */
      if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
      if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
        goto error_return;
        goto error_return;
 
 
      amt = sizeof (lst_symbol);
      amt = sizeof (lst_symbol);
      if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
      if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
        goto error_return;
        goto error_return;
 
 
      /* Get the name of the symbol, first get the length which is stored
      /* Get the name of the symbol, first get the length which is stored
         as a 32bit integer just before the symbol.
         as a 32bit integer just before the symbol.
 
 
         One might ask why we don't just read in the entire string table
         One might ask why we don't just read in the entire string table
         and index into it.  Well, according to the SOM ABI the string
         and index into it.  Well, according to the SOM ABI the string
         index can point *anywhere* in the archive to save space, so just
         index can point *anywhere* in the archive to save space, so just
         using the string table would not be safe.  */
         using the string table would not be safe.  */
      if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
      if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
                            + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
                            + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
        goto error_return;
        goto error_return;
 
 
      if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
      if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
        goto error_return;
        goto error_return;
 
 
      /* Allocate space for the name and null terminate it too.  */
      /* Allocate space for the name and null terminate it too.  */
      set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
      set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
      if (!set->name)
      if (!set->name)
        goto error_return;
        goto error_return;
      if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
      if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
        goto error_return;
        goto error_return;
 
 
      set->name[len] = 0;
      set->name[len] = 0;
 
 
      /* Fill in the file offset.  Note that the "location" field points
      /* Fill in the file offset.  Note that the "location" field points
         to the SOM itself, not the ar_hdr in front of it.  */
         to the SOM itself, not the ar_hdr in front of it.  */
      set->file_offset = som_dict[lst_symbol.som_index].location
      set->file_offset = som_dict[lst_symbol.som_index].location
                          - sizeof (struct ar_hdr);
                          - sizeof (struct ar_hdr);
 
 
      /* Go to the next symbol.  */
      /* Go to the next symbol.  */
      set++;
      set++;
 
 
      /* Iterate through the rest of the chain.  */
      /* Iterate through the rest of the chain.  */
      while (lst_symbol.next_entry)
      while (lst_symbol.next_entry)
        {
        {
          /* Seek to the next symbol and read it in.  */
          /* Seek to the next symbol and read it in.  */
          if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
          if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
              != 0)
              != 0)
            goto error_return;
            goto error_return;
 
 
          amt = sizeof (lst_symbol);
          amt = sizeof (lst_symbol);
          if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
          if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
            goto error_return;
            goto error_return;
 
 
          /* Seek to the name length & string and read them in.  */
          /* Seek to the name length & string and read them in.  */
          if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
          if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
                                + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
                                + lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
            goto error_return;
            goto error_return;
 
 
          if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
          if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
            goto error_return;
            goto error_return;
 
 
          /* Allocate space for the name and null terminate it too.  */
          /* Allocate space for the name and null terminate it too.  */
          set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
          set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
          if (!set->name)
          if (!set->name)
            goto error_return;
            goto error_return;
 
 
          if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
          if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
            goto error_return;
            goto error_return;
          set->name[len] = 0;
          set->name[len] = 0;
 
 
          /* Fill in the file offset.  Note that the "location" field points
          /* Fill in the file offset.  Note that the "location" field points
             to the SOM itself, not the ar_hdr in front of it.  */
             to the SOM itself, not the ar_hdr in front of it.  */
          set->file_offset = som_dict[lst_symbol.som_index].location
          set->file_offset = som_dict[lst_symbol.som_index].location
                               - sizeof (struct ar_hdr);
                               - sizeof (struct ar_hdr);
 
 
          /* Go on to the next symbol.  */
          /* Go on to the next symbol.  */
          set++;
          set++;
        }
        }
    }
    }
  /* If we haven't died by now, then we successfully read the entire
  /* If we haven't died by now, then we successfully read the entire
     archive symbol table.  */
     archive symbol table.  */
  if (hash_table != NULL)
  if (hash_table != NULL)
    free (hash_table);
    free (hash_table);
  if (som_dict != NULL)
  if (som_dict != NULL)
    free (som_dict);
    free (som_dict);
  return TRUE;
  return TRUE;
 
 
 error_return:
 error_return:
  if (hash_table != NULL)
  if (hash_table != NULL)
    free (hash_table);
    free (hash_table);
  if (som_dict != NULL)
  if (som_dict != NULL)
    free (som_dict);
    free (som_dict);
  return FALSE;
  return FALSE;
}
}
 
 
/* Read in the LST from the archive.  */
/* Read in the LST from the archive.  */
 
 
static bfd_boolean
static bfd_boolean
som_slurp_armap (bfd *abfd)
som_slurp_armap (bfd *abfd)
{
{
  struct lst_header lst_header;
  struct lst_header lst_header;
  struct ar_hdr ar_header;
  struct ar_hdr ar_header;
  unsigned int parsed_size;
  unsigned int parsed_size;
  struct artdata *ardata = bfd_ardata (abfd);
  struct artdata *ardata = bfd_ardata (abfd);
  char nextname[17];
  char nextname[17];
  bfd_size_type amt = 16;
  bfd_size_type amt = 16;
  int i = bfd_bread ((void *) nextname, amt, abfd);
  int i = bfd_bread ((void *) nextname, amt, abfd);
 
 
  /* Special cases.  */
  /* Special cases.  */
  if (i == 0)
  if (i == 0)
    return TRUE;
    return TRUE;
  if (i != 16)
  if (i != 16)
    return FALSE;
    return FALSE;
 
 
  if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0)
  if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0)
    return FALSE;
    return FALSE;
 
 
  /* For archives without .o files there is no symbol table.  */
  /* For archives without .o files there is no symbol table.  */
  if (! CONST_STRNEQ (nextname, "/               "))
  if (! CONST_STRNEQ (nextname, "/               "))
    {
    {
      bfd_has_map (abfd) = FALSE;
      bfd_has_map (abfd) = FALSE;
      return TRUE;
      return TRUE;
    }
    }
 
 
  /* Read in and sanity check the archive header.  */
  /* Read in and sanity check the archive header.  */
  amt = sizeof (struct ar_hdr);
  amt = sizeof (struct ar_hdr);
  if (bfd_bread ((void *) &ar_header, amt, abfd) != amt)
  if (bfd_bread ((void *) &ar_header, amt, abfd) != amt)
    return FALSE;
    return FALSE;
 
 
  if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
  if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
    {
    {
      bfd_set_error (bfd_error_malformed_archive);
      bfd_set_error (bfd_error_malformed_archive);
      return FALSE;
      return FALSE;
    }
    }
 
 
  /* How big is the archive symbol table entry?  */
  /* How big is the archive symbol table entry?  */
  errno = 0;
  errno = 0;
  parsed_size = strtol (ar_header.ar_size, NULL, 10);
  parsed_size = strtol (ar_header.ar_size, NULL, 10);
  if (errno != 0)
  if (errno != 0)
    {
    {
      bfd_set_error (bfd_error_malformed_archive);
      bfd_set_error (bfd_error_malformed_archive);
      return FALSE;
      return FALSE;
    }
    }
 
 
  /* Save off the file offset of the first real user data.  */
  /* Save off the file offset of the first real user data.  */
  ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
  ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
 
 
  /* Read in the library symbol table.  We'll make heavy use of this
  /* Read in the library symbol table.  We'll make heavy use of this
     in just a minute.  */
     in just a minute.  */
  amt = sizeof (struct lst_header);
  amt = sizeof (struct lst_header);
  if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
  if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
    return FALSE;
    return FALSE;
 
 
  /* Sanity check.  */
  /* Sanity check.  */
  if (lst_header.a_magic != LIBMAGIC)
  if (lst_header.a_magic != LIBMAGIC)
    {
    {
      bfd_set_error (bfd_error_malformed_archive);
      bfd_set_error (bfd_error_malformed_archive);
      return FALSE;
      return FALSE;
    }
    }
 
 
  /* Count the number of symbols in the library symbol table.  */
  /* Count the number of symbols in the library symbol table.  */
  if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count))
  if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count))
    return FALSE;
    return FALSE;
 
 
  /* Get back to the start of the library symbol table.  */
  /* Get back to the start of the library symbol table.  */
  if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size
  if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size
                       + sizeof (struct lst_header)), SEEK_SET) != 0)
                       + sizeof (struct lst_header)), SEEK_SET) != 0)
    return FALSE;
    return FALSE;
 
 
  /* Initialize the cache and allocate space for the library symbols.  */
  /* Initialize the cache and allocate space for the library symbols.  */
  ardata->cache = 0;
  ardata->cache = 0;
  amt = ardata->symdef_count;
  amt = ardata->symdef_count;
  amt *= sizeof (carsym);
  amt *= sizeof (carsym);
  ardata->symdefs = bfd_alloc (abfd, amt);
  ardata->symdefs = bfd_alloc (abfd, amt);
  if (!ardata->symdefs)
  if (!ardata->symdefs)
    return FALSE;
    return FALSE;
 
 
  /* Now fill in the canonical archive symbols.  */
  /* Now fill in the canonical archive symbols.  */
  if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs))
  if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs))
    return FALSE;
    return FALSE;
 
 
  /* Seek back to the "first" file in the archive.  Note the "first"
  /* Seek back to the "first" file in the archive.  Note the "first"
     file may be the extended name table.  */
     file may be the extended name table.  */
  if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0)
  if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0)
    return FALSE;
    return FALSE;
 
 
  /* Notify the generic archive code that we have a symbol map.  */
  /* Notify the generic archive code that we have a symbol map.  */
  bfd_has_map (abfd) = TRUE;
  bfd_has_map (abfd) = TRUE;
  return TRUE;
  return TRUE;
}
}
 
 
/* Begin preparing to write a SOM library symbol table.
/* Begin preparing to write a SOM library symbol table.
 
 
   As part of the prep work we need to determine the number of symbols
   As part of the prep work we need to determine the number of symbols
   and the size of the associated string section.  */
   and the size of the associated string section.  */
 
 
static bfd_boolean
static bfd_boolean
som_bfd_prep_for_ar_write (bfd *abfd,
som_bfd_prep_for_ar_write (bfd *abfd,
                           unsigned int *num_syms,
                           unsigned int *num_syms,
                           unsigned int *stringsize)
                           unsigned int *stringsize)
{
{
  bfd *curr_bfd = abfd->archive_head;
  bfd *curr_bfd = abfd->archive_head;
 
 
  /* Some initialization.  */
  /* Some initialization.  */
  *num_syms = 0;
  *num_syms = 0;
  *stringsize = 0;
  *stringsize = 0;
 
 
  /* Iterate over each BFD within this archive.  */
  /* Iterate over each BFD within this archive.  */
  while (curr_bfd != NULL)
  while (curr_bfd != NULL)
    {
    {
      unsigned int curr_count, i;
      unsigned int curr_count, i;
      som_symbol_type *sym;
      som_symbol_type *sym;
 
 
      /* Don't bother for non-SOM objects.  */
      /* Don't bother for non-SOM objects.  */
      if (curr_bfd->format != bfd_object
      if (curr_bfd->format != bfd_object
          || curr_bfd->xvec->flavour != bfd_target_som_flavour)
          || curr_bfd->xvec->flavour != bfd_target_som_flavour)
        {
        {
          curr_bfd = curr_bfd->archive_next;
          curr_bfd = curr_bfd->archive_next;
          continue;
          continue;
        }
        }
 
 
      /* Make sure the symbol table has been read, then snag a pointer
      /* Make sure the symbol table has been read, then snag a pointer
         to it.  It's a little slimey to grab the symbols via obj_som_symtab,
         to it.  It's a little slimey to grab the symbols via obj_som_symtab,
         but doing so avoids allocating lots of extra memory.  */
         but doing so avoids allocating lots of extra memory.  */
      if (! som_slurp_symbol_table (curr_bfd))
      if (! som_slurp_symbol_table (curr_bfd))
        return FALSE;
        return FALSE;
 
 
      sym = obj_som_symtab (curr_bfd);
      sym = obj_som_symtab (curr_bfd);
      curr_count = bfd_get_symcount (curr_bfd);
      curr_count = bfd_get_symcount (curr_bfd);
 
 
      /* Examine each symbol to determine if it belongs in the
      /* Examine each symbol to determine if it belongs in the
         library symbol table.  */
         library symbol table.  */
      for (i = 0; i < curr_count; i++, sym++)
      for (i = 0; i < curr_count; i++, sym++)
        {
        {
          struct som_misc_symbol_info info;
          struct som_misc_symbol_info info;
 
 
          /* Derive SOM information from the BFD symbol.  */
          /* Derive SOM information from the BFD symbol.  */
          som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
          som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
 
 
          /* Should we include this symbol?  */
          /* Should we include this symbol?  */
          if (info.symbol_type == ST_NULL
          if (info.symbol_type == ST_NULL
              || info.symbol_type == ST_SYM_EXT
              || info.symbol_type == ST_SYM_EXT
              || info.symbol_type == ST_ARG_EXT)
              || info.symbol_type == ST_ARG_EXT)
            continue;
            continue;
 
 
          /* Only global symbols and unsatisfied commons.  */
          /* Only global symbols and unsatisfied commons.  */
          if (info.symbol_scope != SS_UNIVERSAL
          if (info.symbol_scope != SS_UNIVERSAL
              && info.symbol_type != ST_STORAGE)
              && info.symbol_type != ST_STORAGE)
            continue;
            continue;
 
 
          /* Do no include undefined symbols.  */
          /* Do no include undefined symbols.  */
          if (bfd_is_und_section (sym->symbol.section))
          if (bfd_is_und_section (sym->symbol.section))
            continue;
            continue;
 
 
          /* Bump the various counters, being careful to honor
          /* Bump the various counters, being careful to honor
             alignment considerations in the string table.  */
             alignment considerations in the string table.  */
          (*num_syms)++;
          (*num_syms)++;
          *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
          *stringsize = *stringsize + strlen (sym->symbol.name) + 5;
          while (*stringsize % 4)
          while (*stringsize % 4)
            (*stringsize)++;
            (*stringsize)++;
        }
        }
 
 
      curr_bfd = curr_bfd->archive_next;
      curr_bfd = curr_bfd->archive_next;
    }
    }
  return TRUE;
  return TRUE;
}
}
 
 
/* Hash a symbol name based on the hashing algorithm presented in the
/* Hash a symbol name based on the hashing algorithm presented in the
   SOM ABI.  */
   SOM ABI.  */
 
 
static unsigned int
static unsigned int
som_bfd_ar_symbol_hash (asymbol *symbol)
som_bfd_ar_symbol_hash (asymbol *symbol)
{
{
  unsigned int len = strlen (symbol->name);
  unsigned int len = strlen (symbol->name);
 
 
  /* Names with length 1 are special.  */
  /* Names with length 1 are special.  */
  if (len == 1)
  if (len == 1)
    return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
    return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
 
 
  return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
  return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
          | (symbol->name[len - 2] << 8) | symbol->name[len - 1];
          | (symbol->name[len - 2] << 8) | symbol->name[len - 1];
}
}
 
 
/* Do the bulk of the work required to write the SOM library
/* Do the bulk of the work required to write the SOM library
   symbol table.  */
   symbol table.  */
 
 
static bfd_boolean
static bfd_boolean
som_bfd_ar_write_symbol_stuff (bfd *abfd,
som_bfd_ar_write_symbol_stuff (bfd *abfd,
                               unsigned int nsyms,
                               unsigned int nsyms,
                               unsigned int string_size,
                               unsigned int string_size,
                               struct lst_header lst,
                               struct lst_header lst,
                               unsigned elength)
                               unsigned elength)
{
{
  file_ptr lst_filepos;
  file_ptr lst_filepos;
  char *strings = NULL, *p;
  char *strings = NULL, *p;
  struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
  struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
  bfd *curr_bfd;
  bfd *curr_bfd;
  unsigned int *hash_table = NULL;
  unsigned int *hash_table = NULL;
  struct som_entry *som_dict = NULL;
  struct som_entry *som_dict = NULL;
  struct lst_symbol_record **last_hash_entry = NULL;
  struct lst_symbol_record **last_hash_entry = NULL;
  unsigned int curr_som_offset, som_index = 0;
  unsigned int curr_som_offset, som_index = 0;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  amt = lst.hash_size;
  amt = lst.hash_size;
  amt *= sizeof (unsigned int);
  amt *= sizeof (unsigned int);
  hash_table = bfd_zmalloc (amt);
  hash_table = bfd_zmalloc (amt);
  if (hash_table == NULL && lst.hash_size != 0)
  if (hash_table == NULL && lst.hash_size != 0)
    goto error_return;
    goto error_return;
 
 
  amt = lst.module_count;
  amt = lst.module_count;
  amt *= sizeof (struct som_entry);
  amt *= sizeof (struct som_entry);
  som_dict = bfd_zmalloc (amt);
  som_dict = bfd_zmalloc (amt);
  if (som_dict == NULL && lst.module_count != 0)
  if (som_dict == NULL && lst.module_count != 0)
    goto error_return;
    goto error_return;
 
 
  amt = lst.hash_size;
  amt = lst.hash_size;
  amt *= sizeof (struct lst_symbol_record *);
  amt *= sizeof (struct lst_symbol_record *);
  last_hash_entry = bfd_zmalloc (amt);
  last_hash_entry = bfd_zmalloc (amt);
  if (last_hash_entry == NULL && lst.hash_size != 0)
  if (last_hash_entry == NULL && lst.hash_size != 0)
    goto error_return;
    goto error_return;
 
 
  /* Lots of fields are file positions relative to the start
  /* Lots of fields are file positions relative to the start
     of the lst record.  So save its location.  */
     of the lst record.  So save its location.  */
  lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
  lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
 
 
  /* Symbols have som_index fields, so we have to keep track of the
  /* Symbols have som_index fields, so we have to keep track of the
     index of each SOM in the archive.
     index of each SOM in the archive.
 
 
     The SOM dictionary has (among other things) the absolute file
     The SOM dictionary has (among other things) the absolute file
     position for the SOM which a particular dictionary entry
     position for the SOM which a particular dictionary entry
     describes.  We have to compute that information as we iterate
     describes.  We have to compute that information as we iterate
     through the SOMs/symbols.  */
     through the SOMs/symbols.  */
  som_index = 0;
  som_index = 0;
 
 
  /* We add in the size of the archive header twice as the location
  /* We add in the size of the archive header twice as the location
     in the SOM dictionary is the actual offset of the SOM, not the
     in the SOM dictionary is the actual offset of the SOM, not the
     archive header before the SOM.  */
     archive header before the SOM.  */
  curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
  curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
 
 
  /* Make room for the archive header and the contents of the
  /* Make room for the archive header and the contents of the
     extended string table.  Note that elength includes the size
     extended string table.  Note that elength includes the size
     of the archive header for the extended name table!  */
     of the archive header for the extended name table!  */
  if (elength)
  if (elength)
    curr_som_offset += elength;
    curr_som_offset += elength;
 
 
  /* Make sure we're properly aligned.  */
  /* Make sure we're properly aligned.  */
  curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
  curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
 
 
  /* FIXME should be done with buffers just like everything else...  */
  /* FIXME should be done with buffers just like everything else...  */
  amt = nsyms;
  amt = nsyms;
  amt *= sizeof (struct lst_symbol_record);
  amt *= sizeof (struct lst_symbol_record);
  lst_syms = bfd_malloc (amt);
  lst_syms = bfd_malloc (amt);
  if (lst_syms == NULL && nsyms != 0)
  if (lst_syms == NULL && nsyms != 0)
    goto error_return;
    goto error_return;
  strings = bfd_malloc ((bfd_size_type) string_size);
  strings = bfd_malloc ((bfd_size_type) string_size);
  if (strings == NULL && string_size != 0)
  if (strings == NULL && string_size != 0)
    goto error_return;
    goto error_return;
 
 
  p = strings;
  p = strings;
  curr_lst_sym = lst_syms;
  curr_lst_sym = lst_syms;
 
 
  curr_bfd = abfd->archive_head;
  curr_bfd = abfd->archive_head;
  while (curr_bfd != NULL)
  while (curr_bfd != NULL)
    {
    {
      unsigned int curr_count, i;
      unsigned int curr_count, i;
      som_symbol_type *sym;
      som_symbol_type *sym;
 
 
      /* Don't bother for non-SOM objects.  */
      /* Don't bother for non-SOM objects.  */
      if (curr_bfd->format != bfd_object
      if (curr_bfd->format != bfd_object
          || curr_bfd->xvec->flavour != bfd_target_som_flavour)
          || curr_bfd->xvec->flavour != bfd_target_som_flavour)
        {
        {
          curr_bfd = curr_bfd->archive_next;
          curr_bfd = curr_bfd->archive_next;
          continue;
          continue;
        }
        }
 
 
      /* Make sure the symbol table has been read, then snag a pointer
      /* Make sure the symbol table has been read, then snag a pointer
         to it.  It's a little slimey to grab the symbols via obj_som_symtab,
         to it.  It's a little slimey to grab the symbols via obj_som_symtab,
         but doing so avoids allocating lots of extra memory.  */
         but doing so avoids allocating lots of extra memory.  */
      if (! som_slurp_symbol_table (curr_bfd))
      if (! som_slurp_symbol_table (curr_bfd))
        goto error_return;
        goto error_return;
 
 
      sym = obj_som_symtab (curr_bfd);
      sym = obj_som_symtab (curr_bfd);
      curr_count = bfd_get_symcount (curr_bfd);
      curr_count = bfd_get_symcount (curr_bfd);
 
 
      for (i = 0; i < curr_count; i++, sym++)
      for (i = 0; i < curr_count; i++, sym++)
        {
        {
          struct som_misc_symbol_info info;
          struct som_misc_symbol_info info;
 
 
          /* Derive SOM information from the BFD symbol.  */
          /* Derive SOM information from the BFD symbol.  */
          som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
          som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
 
 
          /* Should we include this symbol?  */
          /* Should we include this symbol?  */
          if (info.symbol_type == ST_NULL
          if (info.symbol_type == ST_NULL
              || info.symbol_type == ST_SYM_EXT
              || info.symbol_type == ST_SYM_EXT
              || info.symbol_type == ST_ARG_EXT)
              || info.symbol_type == ST_ARG_EXT)
            continue;
            continue;
 
 
          /* Only global symbols and unsatisfied commons.  */
          /* Only global symbols and unsatisfied commons.  */
          if (info.symbol_scope != SS_UNIVERSAL
          if (info.symbol_scope != SS_UNIVERSAL
              && info.symbol_type != ST_STORAGE)
              && info.symbol_type != ST_STORAGE)
            continue;
            continue;
 
 
          /* Do no include undefined symbols.  */
          /* Do no include undefined symbols.  */
          if (bfd_is_und_section (sym->symbol.section))
          if (bfd_is_und_section (sym->symbol.section))
            continue;
            continue;
 
 
          /* If this is the first symbol from this SOM, then update
          /* If this is the first symbol from this SOM, then update
             the SOM dictionary too.  */
             the SOM dictionary too.  */
          if (som_dict[som_index].location == 0)
          if (som_dict[som_index].location == 0)
            {
            {
              som_dict[som_index].location = curr_som_offset;
              som_dict[som_index].location = curr_som_offset;
              som_dict[som_index].length = arelt_size (curr_bfd);
              som_dict[som_index].length = arelt_size (curr_bfd);
            }
            }
 
 
          /* Fill in the lst symbol record.  */
          /* Fill in the lst symbol record.  */
          curr_lst_sym->hidden = 0;
          curr_lst_sym->hidden = 0;
          curr_lst_sym->secondary_def = info.secondary_def;
          curr_lst_sym->secondary_def = info.secondary_def;
          curr_lst_sym->symbol_type = info.symbol_type;
          curr_lst_sym->symbol_type = info.symbol_type;
          curr_lst_sym->symbol_scope = info.symbol_scope;
          curr_lst_sym->symbol_scope = info.symbol_scope;
          curr_lst_sym->check_level = 0;
          curr_lst_sym->check_level = 0;
          curr_lst_sym->must_qualify = 0;
          curr_lst_sym->must_qualify = 0;
          curr_lst_sym->initially_frozen = 0;
          curr_lst_sym->initially_frozen = 0;
          curr_lst_sym->memory_resident = 0;
          curr_lst_sym->memory_resident = 0;
          curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
          curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
          curr_lst_sym->dup_common = info.dup_common;
          curr_lst_sym->dup_common = info.dup_common;
          curr_lst_sym->xleast = 3;
          curr_lst_sym->xleast = 3;
          curr_lst_sym->arg_reloc = info.arg_reloc;
          curr_lst_sym->arg_reloc = info.arg_reloc;
          curr_lst_sym->name.n_strx = p - strings + 4;
          curr_lst_sym->name.n_strx = p - strings + 4;
          curr_lst_sym->qualifier_name.n_strx = 0;
          curr_lst_sym->qualifier_name.n_strx = 0;
          curr_lst_sym->symbol_info = info.symbol_info;
          curr_lst_sym->symbol_info = info.symbol_info;
          curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
          curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
          curr_lst_sym->symbol_descriptor = 0;
          curr_lst_sym->symbol_descriptor = 0;
          curr_lst_sym->reserved = 0;
          curr_lst_sym->reserved = 0;
          curr_lst_sym->som_index = som_index;
          curr_lst_sym->som_index = som_index;
          curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
          curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
          curr_lst_sym->next_entry = 0;
          curr_lst_sym->next_entry = 0;
 
 
          /* Insert into the hash table.  */
          /* Insert into the hash table.  */
          if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
          if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
            {
            {
              struct lst_symbol_record *tmp;
              struct lst_symbol_record *tmp;
 
 
              /* There is already something at the head of this hash chain,
              /* There is already something at the head of this hash chain,
                 so tack this symbol onto the end of the chain.  */
                 so tack this symbol onto the end of the chain.  */
              tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
              tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
              tmp->next_entry
              tmp->next_entry
                = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
                = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
                  + lst.hash_size * 4
                  + lst.hash_size * 4
                  + lst.module_count * sizeof (struct som_entry)
                  + lst.module_count * sizeof (struct som_entry)
                  + sizeof (struct lst_header);
                  + sizeof (struct lst_header);
            }
            }
          else
          else
            /* First entry in this hash chain.  */
            /* First entry in this hash chain.  */
            hash_table[curr_lst_sym->symbol_key % lst.hash_size]
            hash_table[curr_lst_sym->symbol_key % lst.hash_size]
              = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
              = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
              + lst.hash_size * 4
              + lst.hash_size * 4
              + lst.module_count * sizeof (struct som_entry)
              + lst.module_count * sizeof (struct som_entry)
              + sizeof (struct lst_header);
              + sizeof (struct lst_header);
 
 
          /* Keep track of the last symbol we added to this chain so we can
          /* Keep track of the last symbol we added to this chain so we can
             easily update its next_entry pointer.  */
             easily update its next_entry pointer.  */
          last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
          last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
            = curr_lst_sym;
            = curr_lst_sym;
 
 
          /* Update the string table.  */
          /* Update the string table.  */
          bfd_put_32 (abfd, strlen (sym->symbol.name), p);
          bfd_put_32 (abfd, strlen (sym->symbol.name), p);
          p += 4;
          p += 4;
          strcpy (p, sym->symbol.name);
          strcpy (p, sym->symbol.name);
          p += strlen (sym->symbol.name) + 1;
          p += strlen (sym->symbol.name) + 1;
          while ((int) p % 4)
          while ((int) p % 4)
            {
            {
              bfd_put_8 (abfd, 0, p);
              bfd_put_8 (abfd, 0, p);
              p++;
              p++;
            }
            }
 
 
          /* Head to the next symbol.  */
          /* Head to the next symbol.  */
          curr_lst_sym++;
          curr_lst_sym++;
        }
        }
 
 
      /* Keep track of where each SOM will finally reside; then look
      /* Keep track of where each SOM will finally reside; then look
         at the next BFD.  */
         at the next BFD.  */
      curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
      curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
 
 
      /* A particular object in the archive may have an odd length; the
      /* A particular object in the archive may have an odd length; the
         linker requires objects begin on an even boundary.  So round
         linker requires objects begin on an even boundary.  So round
         up the current offset as necessary.  */
         up the current offset as necessary.  */
      curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1;
      curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1;
      curr_bfd = curr_bfd->archive_next;
      curr_bfd = curr_bfd->archive_next;
      som_index++;
      som_index++;
    }
    }
 
 
  /* Now scribble out the hash table.  */
  /* Now scribble out the hash table.  */
  amt = lst.hash_size * 4;
  amt = lst.hash_size * 4;
  if (bfd_bwrite ((void *) hash_table, amt, abfd) != amt)
  if (bfd_bwrite ((void *) hash_table, amt, abfd) != amt)
    goto error_return;
    goto error_return;
 
 
  /* Then the SOM dictionary.  */
  /* Then the SOM dictionary.  */
  amt = lst.module_count * sizeof (struct som_entry);
  amt = lst.module_count * sizeof (struct som_entry);
  if (bfd_bwrite ((void *) som_dict, amt, abfd) != amt)
  if (bfd_bwrite ((void *) som_dict, amt, abfd) != amt)
    goto error_return;
    goto error_return;
 
 
  /* The library symbols.  */
  /* The library symbols.  */
  amt = nsyms * sizeof (struct lst_symbol_record);
  amt = nsyms * sizeof (struct lst_symbol_record);
  if (bfd_bwrite ((void *) lst_syms, amt, abfd) != amt)
  if (bfd_bwrite ((void *) lst_syms, amt, abfd) != amt)
    goto error_return;
    goto error_return;
 
 
  /* And finally the strings.  */
  /* And finally the strings.  */
  amt = string_size;
  amt = string_size;
  if (bfd_bwrite ((void *) strings, amt, abfd) != amt)
  if (bfd_bwrite ((void *) strings, amt, abfd) != amt)
    goto error_return;
    goto error_return;
 
 
  if (hash_table != NULL)
  if (hash_table != NULL)
    free (hash_table);
    free (hash_table);
  if (som_dict != NULL)
  if (som_dict != NULL)
    free (som_dict);
    free (som_dict);
  if (last_hash_entry != NULL)
  if (last_hash_entry != NULL)
    free (last_hash_entry);
    free (last_hash_entry);
  if (lst_syms != NULL)
  if (lst_syms != NULL)
    free (lst_syms);
    free (lst_syms);
  if (strings != NULL)
  if (strings != NULL)
    free (strings);
    free (strings);
  return TRUE;
  return TRUE;
 
 
 error_return:
 error_return:
  if (hash_table != NULL)
  if (hash_table != NULL)
    free (hash_table);
    free (hash_table);
  if (som_dict != NULL)
  if (som_dict != NULL)
    free (som_dict);
    free (som_dict);
  if (last_hash_entry != NULL)
  if (last_hash_entry != NULL)
    free (last_hash_entry);
    free (last_hash_entry);
  if (lst_syms != NULL)
  if (lst_syms != NULL)
    free (lst_syms);
    free (lst_syms);
  if (strings != NULL)
  if (strings != NULL)
    free (strings);
    free (strings);
 
 
  return FALSE;
  return FALSE;
}
}
 
 
/* Write out the LST for the archive.
/* Write out the LST for the archive.
 
 
   You'll never believe this is really how armaps are handled in SOM...  */
   You'll never believe this is really how armaps are handled in SOM...  */
 
 
static bfd_boolean
static bfd_boolean
som_write_armap (bfd *abfd,
som_write_armap (bfd *abfd,
                 unsigned int elength,
                 unsigned int elength,
                 struct orl *map ATTRIBUTE_UNUSED,
                 struct orl *map ATTRIBUTE_UNUSED,
                 unsigned int orl_count ATTRIBUTE_UNUSED,
                 unsigned int orl_count ATTRIBUTE_UNUSED,
                 int stridx ATTRIBUTE_UNUSED)
                 int stridx ATTRIBUTE_UNUSED)
{
{
  bfd *curr_bfd;
  bfd *curr_bfd;
  struct stat statbuf;
  struct stat statbuf;
  unsigned int i, lst_size, nsyms, stringsize;
  unsigned int i, lst_size, nsyms, stringsize;
  struct ar_hdr hdr;
  struct ar_hdr hdr;
  struct lst_header lst;
  struct lst_header lst;
  int *p;
  int *p;
  bfd_size_type amt;
  bfd_size_type amt;
 
 
  /* We'll use this for the archive's date and mode later.  */
  /* We'll use this for the archive's date and mode later.  */
  if (stat (abfd->filename, &statbuf) != 0)
  if (stat (abfd->filename, &statbuf) != 0)
    {
    {
      bfd_set_error (bfd_error_system_call);
      bfd_set_error (bfd_error_system_call);
      return FALSE;
      return FALSE;
    }
    }
  /* Fudge factor.  */
  /* Fudge factor.  */
  bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
  bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
 
 
  /* Account for the lst header first.  */
  /* Account for the lst header first.  */
  lst_size = sizeof (struct lst_header);
  lst_size = sizeof (struct lst_header);
 
 
  /* Start building the LST header.  */
  /* Start building the LST header.  */
  /* FIXME:  Do we need to examine each element to determine the
  /* FIXME:  Do we need to examine each element to determine the
     largest id number?  */
     largest id number?  */
  lst.system_id = CPU_PA_RISC1_0;
  lst.system_id = CPU_PA_RISC1_0;
  lst.a_magic = LIBMAGIC;
  lst.a_magic = LIBMAGIC;
  lst.version_id = VERSION_ID;
  lst.version_id = VERSION_ID;
  lst.file_time.secs = 0;
  lst.file_time.secs = 0;
  lst.file_time.nanosecs = 0;
  lst.file_time.nanosecs = 0;
 
 
  lst.hash_loc = lst_size;
  lst.hash_loc = lst_size;
  lst.hash_size = SOM_LST_HASH_SIZE;
  lst.hash_size = SOM_LST_HASH_SIZE;
 
 
  /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets.  */
  /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets.  */
  lst_size += 4 * SOM_LST_HASH_SIZE;
  lst_size += 4 * SOM_LST_HASH_SIZE;
 
 
  /* We need to count the number of SOMs in this archive.  */
  /* We need to count the number of SOMs in this archive.  */
  curr_bfd = abfd->archive_head;
  curr_bfd = abfd->archive_head;
  lst.module_count = 0;
  lst.module_count = 0;
  while (curr_bfd != NULL)
  while (curr_bfd != NULL)
    {
    {
      /* Only true SOM objects count.  */
      /* Only true SOM objects count.  */
      if (curr_bfd->format == bfd_object
      if (curr_bfd->format == bfd_object
          && curr_bfd->xvec->flavour == bfd_target_som_flavour)
          && curr_bfd->xvec->flavour == bfd_target_som_flavour)
        lst.module_count++;
        lst.module_count++;
      curr_bfd = curr_bfd->archive_next;
      curr_bfd = curr_bfd->archive_next;
    }
    }
  lst.module_limit = lst.module_count;
  lst.module_limit = lst.module_count;
  lst.dir_loc = lst_size;
  lst.dir_loc = lst_size;
  lst_size += sizeof (struct som_entry) * lst.module_count;
  lst_size += sizeof (struct som_entry) * lst.module_count;
 
 
  /* We don't support import/export tables, auxiliary headers,
  /* We don't support import/export tables, auxiliary headers,
     or free lists yet.  Make the linker work a little harder
     or free lists yet.  Make the linker work a little harder
     to make our life easier.  */
     to make our life easier.  */
 
 
  lst.export_loc = 0;
  lst.export_loc = 0;
  lst.export_count = 0;
  lst.export_count = 0;
  lst.import_loc = 0;
  lst.import_loc = 0;
  lst.aux_loc = 0;
  lst.aux_loc = 0;
  lst.aux_size = 0;
  lst.aux_size = 0;
 
 
  /* Count how many symbols we will have on the hash chains and the
  /* Count how many symbols we will have on the hash chains and the
     size of the associated string table.  */
     size of the associated string table.  */
  if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize))
  if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize))
    return FALSE;
    return FALSE;
 
 
  lst_size += sizeof (struct lst_symbol_record) * nsyms;
  lst_size += sizeof (struct lst_symbol_record) * nsyms;
 
 
  /* For the string table.  One day we might actually use this info
  /* For the string table.  One day we might actually use this info
     to avoid small seeks/reads when reading archives.  */
     to avoid small seeks/reads when reading archives.  */
  lst.string_loc = lst_size;
  lst.string_loc = lst_size;
  lst.string_size = stringsize;
  lst.string_size = stringsize;
  lst_size += stringsize;
  lst_size += stringsize;
 
 
  /* SOM ABI says this must be zero.  */
  /* SOM ABI says this must be zero.  */
  lst.free_list = 0;
  lst.free_list = 0;
  lst.file_end = lst_size;
  lst.file_end = lst_size;
 
 
  /* Compute the checksum.  Must happen after the entire lst header
  /* Compute the checksum.  Must happen after the entire lst header
     has filled in.  */
     has filled in.  */
  p = (int *) &lst;
  p = (int *) &lst;
  lst.checksum = 0;
  lst.checksum = 0;
  for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++)
  for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++)
    lst.checksum ^= *p++;
    lst.checksum ^= *p++;
 
 
  sprintf (hdr.ar_name, "/               ");
  sprintf (hdr.ar_name, "/               ");
  sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
  sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
  sprintf (hdr.ar_uid, "%ld", (long) getuid ());
  sprintf (hdr.ar_uid, "%ld", (long) getuid ());
  sprintf (hdr.ar_gid, "%ld", (long) getgid ());
  sprintf (hdr.ar_gid, "%ld", (long) getgid ());
  sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
  sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
  sprintf (hdr.ar_size, "%-10d", (int) lst_size);
  sprintf (hdr.ar_size, "%-10d", (int) lst_size);
  hdr.ar_fmag[0] = '`';
  hdr.ar_fmag[0] = '`';
  hdr.ar_fmag[1] = '\012';
  hdr.ar_fmag[1] = '\012';
 
 
  /* Turn any nulls into spaces.  */
  /* Turn any nulls into spaces.  */
  for (i = 0; i < sizeof (struct ar_hdr); i++)
  for (i = 0; i < sizeof (struct ar_hdr); i++)
    if (((char *) (&hdr))[i] == '\0')
    if (((char *) (&hdr))[i] == '\0')
      (((char *) (&hdr))[i]) = ' ';
      (((char *) (&hdr))[i]) = ' ';
 
 
  /* Scribble out the ar header.  */
  /* Scribble out the ar header.  */
  amt = sizeof (struct ar_hdr);
  amt = sizeof (struct ar_hdr);
  if (bfd_bwrite ((void *) &hdr, amt, abfd) != amt)
  if (bfd_bwrite ((void *) &hdr, amt, abfd) != amt)
    return FALSE;
    return FALSE;
 
 
  /* Now scribble out the lst header.  */
  /* Now scribble out the lst header.  */
  amt = sizeof (struct lst_header);
  amt = sizeof (struct lst_header);
  if (bfd_bwrite ((void *) &lst, amt, abfd) != amt)
  if (bfd_bwrite ((void *) &lst, amt, abfd) != amt)
    return FALSE;
    return FALSE;
 
 
  /* Build and write the armap.  */
  /* Build and write the armap.  */
  if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength))
  if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength))
    return FALSE;
    return FALSE;
 
 
  /* Done.  */
  /* Done.  */
  return TRUE;
  return TRUE;
}
}
 
 
/* Free all information we have cached for this BFD.  We can always
/* Free all information we have cached for this BFD.  We can always
   read it again later if we need it.  */
   read it again later if we need it.  */
 
 
static bfd_boolean
static bfd_boolean
som_bfd_free_cached_info (bfd *abfd)
som_bfd_free_cached_info (bfd *abfd)
{
{
  asection *o;
  asection *o;
 
 
  if (bfd_get_format (abfd) != bfd_object)
  if (bfd_get_format (abfd) != bfd_object)
    return TRUE;
    return TRUE;
 
 
#define FREE(x) if (x != NULL) { free (x); x = NULL; }
#define FREE(x) if (x != NULL) { free (x); x = NULL; }
  /* Free the native string and symbol tables.  */
  /* Free the native string and symbol tables.  */
  FREE (obj_som_symtab (abfd));
  FREE (obj_som_symtab (abfd));
  FREE (obj_som_stringtab (abfd));
  FREE (obj_som_stringtab (abfd));
  for (o = abfd->sections; o != NULL; o = o->next)
  for (o = abfd->sections; o != NULL; o = o->next)
    {
    {
      /* Free the native relocations.  */
      /* Free the native relocations.  */
      o->reloc_count = (unsigned) -1;
      o->reloc_count = (unsigned) -1;
      FREE (som_section_data (o)->reloc_stream);
      FREE (som_section_data (o)->reloc_stream);
      /* Free the generic relocations.  */
      /* Free the generic relocations.  */
      FREE (o->relocation);
      FREE (o->relocation);
    }
    }
#undef FREE
#undef FREE
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* End of miscellaneous support functions.  */
/* End of miscellaneous support functions.  */
 
 
/* Linker support functions.  */
/* Linker support functions.  */
 
 
static bfd_boolean
static bfd_boolean
som_bfd_link_split_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
som_bfd_link_split_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
{
{
  return som_is_subspace (sec) && sec->size > 240000;
  return som_is_subspace (sec) && sec->size > 240000;
}
}
 
 
#define som_close_and_cleanup                   som_bfd_free_cached_info
#define som_close_and_cleanup                   som_bfd_free_cached_info
#define som_read_ar_hdr                         _bfd_generic_read_ar_hdr
#define som_read_ar_hdr                         _bfd_generic_read_ar_hdr
#define som_openr_next_archived_file            bfd_generic_openr_next_archived_file
#define som_openr_next_archived_file            bfd_generic_openr_next_archived_file
#define som_get_elt_at_index                    _bfd_generic_get_elt_at_index
#define som_get_elt_at_index                    _bfd_generic_get_elt_at_index
#define som_generic_stat_arch_elt               bfd_generic_stat_arch_elt
#define som_generic_stat_arch_elt               bfd_generic_stat_arch_elt
#define som_truncate_arname                     bfd_bsd_truncate_arname
#define som_truncate_arname                     bfd_bsd_truncate_arname
#define som_slurp_extended_name_table           _bfd_slurp_extended_name_table
#define som_slurp_extended_name_table           _bfd_slurp_extended_name_table
#define som_construct_extended_name_table       _bfd_archive_coff_construct_extended_name_table
#define som_construct_extended_name_table       _bfd_archive_coff_construct_extended_name_table
#define som_update_armap_timestamp              bfd_true
#define som_update_armap_timestamp              bfd_true
#define som_bfd_is_target_special_symbol   ((bfd_boolean (*) (bfd *, asymbol *)) bfd_false)
#define som_bfd_is_target_special_symbol   ((bfd_boolean (*) (bfd *, asymbol *)) bfd_false)
#define som_get_lineno                          _bfd_nosymbols_get_lineno
#define som_get_lineno                          _bfd_nosymbols_get_lineno
#define som_bfd_make_debug_symbol               _bfd_nosymbols_bfd_make_debug_symbol
#define som_bfd_make_debug_symbol               _bfd_nosymbols_bfd_make_debug_symbol
#define som_read_minisymbols                    _bfd_generic_read_minisymbols
#define som_read_minisymbols                    _bfd_generic_read_minisymbols
#define som_minisymbol_to_symbol                _bfd_generic_minisymbol_to_symbol
#define som_minisymbol_to_symbol                _bfd_generic_minisymbol_to_symbol
#define som_get_section_contents_in_window      _bfd_generic_get_section_contents_in_window
#define som_get_section_contents_in_window      _bfd_generic_get_section_contents_in_window
#define som_bfd_get_relocated_section_contents  bfd_generic_get_relocated_section_contents
#define som_bfd_get_relocated_section_contents  bfd_generic_get_relocated_section_contents
#define som_bfd_relax_section                   bfd_generic_relax_section
#define som_bfd_relax_section                   bfd_generic_relax_section
#define som_bfd_link_hash_table_create          _bfd_generic_link_hash_table_create
#define som_bfd_link_hash_table_create          _bfd_generic_link_hash_table_create
#define som_bfd_link_hash_table_free            _bfd_generic_link_hash_table_free
#define som_bfd_link_hash_table_free            _bfd_generic_link_hash_table_free
#define som_bfd_link_add_symbols                _bfd_generic_link_add_symbols
#define som_bfd_link_add_symbols                _bfd_generic_link_add_symbols
#define som_bfd_link_just_syms                  _bfd_generic_link_just_syms
#define som_bfd_link_just_syms                  _bfd_generic_link_just_syms
#define som_bfd_final_link                      _bfd_generic_final_link
#define som_bfd_final_link                      _bfd_generic_final_link
#define som_bfd_gc_sections                     bfd_generic_gc_sections
#define som_bfd_gc_sections                     bfd_generic_gc_sections
#define som_bfd_merge_sections                  bfd_generic_merge_sections
#define som_bfd_merge_sections                  bfd_generic_merge_sections
#define som_bfd_is_group_section                bfd_generic_is_group_section
#define som_bfd_is_group_section                bfd_generic_is_group_section
#define som_bfd_discard_group                   bfd_generic_discard_group
#define som_bfd_discard_group                   bfd_generic_discard_group
#define som_section_already_linked              _bfd_generic_section_already_linked
#define som_section_already_linked              _bfd_generic_section_already_linked
#define som_bfd_merge_private_bfd_data          _bfd_generic_bfd_merge_private_bfd_data
#define som_bfd_merge_private_bfd_data          _bfd_generic_bfd_merge_private_bfd_data
#define som_bfd_copy_private_header_data        _bfd_generic_bfd_copy_private_header_data
#define som_bfd_copy_private_header_data        _bfd_generic_bfd_copy_private_header_data
#define som_bfd_set_private_flags               _bfd_generic_bfd_set_private_flags
#define som_bfd_set_private_flags               _bfd_generic_bfd_set_private_flags
#define som_find_inliner_info                   _bfd_nosymbols_find_inliner_info
#define som_find_inliner_info                   _bfd_nosymbols_find_inliner_info
 
 
const bfd_target som_vec =
const bfd_target som_vec =
{
{
  "som",                        /* Name.  */
  "som",                        /* Name.  */
  bfd_target_som_flavour,
  bfd_target_som_flavour,
  BFD_ENDIAN_BIG,               /* Target byte order.  */
  BFD_ENDIAN_BIG,               /* Target byte order.  */
  BFD_ENDIAN_BIG,               /* Target headers byte order.  */
  BFD_ENDIAN_BIG,               /* Target headers byte order.  */
  (HAS_RELOC | EXEC_P |         /* Object flags.  */
  (HAS_RELOC | EXEC_P |         /* Object flags.  */
   HAS_LINENO | HAS_DEBUG |
   HAS_LINENO | HAS_DEBUG |
   HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
   HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
  (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_LINK_ONCE
  (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_LINK_ONCE
   | SEC_ALLOC | SEC_LOAD | SEC_RELOC),         /* Section flags.  */
   | SEC_ALLOC | SEC_LOAD | SEC_RELOC),         /* Section flags.  */
 
 
  /* Leading_symbol_char: is the first char of a user symbol
  /* Leading_symbol_char: is the first char of a user symbol
     predictable, and if so what is it.  */
     predictable, and if so what is it.  */
  0,
  0,
  '/',                          /* AR_pad_char.  */
  '/',                          /* AR_pad_char.  */
  14,                           /* AR_max_namelen.  */
  14,                           /* AR_max_namelen.  */
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
  bfd_getb16, bfd_getb_signed_16, bfd_putb16,   /* Data.  */
  bfd_getb16, bfd_getb_signed_16, bfd_putb16,   /* Data.  */
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
  bfd_getb64, bfd_getb_signed_64, bfd_putb64,
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
  bfd_getb32, bfd_getb_signed_32, bfd_putb32,
  bfd_getb16, bfd_getb_signed_16, bfd_putb16,   /* Headers.  */
  bfd_getb16, bfd_getb_signed_16, bfd_putb16,   /* Headers.  */
  {_bfd_dummy_target,
  {_bfd_dummy_target,
   som_object_p,                /* bfd_check_format.  */
   som_object_p,                /* bfd_check_format.  */
   bfd_generic_archive_p,
   bfd_generic_archive_p,
   _bfd_dummy_target
   _bfd_dummy_target
  },
  },
  {
  {
    bfd_false,
    bfd_false,
    som_mkobject,
    som_mkobject,
    _bfd_generic_mkarchive,
    _bfd_generic_mkarchive,
    bfd_false
    bfd_false
  },
  },
  {
  {
    bfd_false,
    bfd_false,
    som_write_object_contents,
    som_write_object_contents,
    _bfd_write_archive_contents,
    _bfd_write_archive_contents,
    bfd_false,
    bfd_false,
  },
  },
#undef som
#undef som
 
 
  BFD_JUMP_TABLE_GENERIC (som),
  BFD_JUMP_TABLE_GENERIC (som),
  BFD_JUMP_TABLE_COPY (som),
  BFD_JUMP_TABLE_COPY (som),
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
  BFD_JUMP_TABLE_CORE (_bfd_nocore),
  BFD_JUMP_TABLE_ARCHIVE (som),
  BFD_JUMP_TABLE_ARCHIVE (som),
  BFD_JUMP_TABLE_SYMBOLS (som),
  BFD_JUMP_TABLE_SYMBOLS (som),
  BFD_JUMP_TABLE_RELOCS (som),
  BFD_JUMP_TABLE_RELOCS (som),
  BFD_JUMP_TABLE_WRITE (som),
  BFD_JUMP_TABLE_WRITE (som),
  BFD_JUMP_TABLE_LINK (som),
  BFD_JUMP_TABLE_LINK (som),
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
  BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
 
 
  NULL,
  NULL,
 
 
  NULL
  NULL
};
};
 
 
#endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
#endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.