OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [binutils-2.18.50/] [gas/] [atof-generic.c] - Diff between revs 156 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 156 Rev 816
/* atof_generic.c - turn a string of digits into a Flonum
/* atof_generic.c - turn a string of digits into a Flonum
   Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000,
   Copyright 1987, 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2000,
   2001, 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
   2001, 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
 
 
   This file is part of GAS, the GNU Assembler.
   This file is part of GAS, the GNU Assembler.
 
 
   GAS is free software; you can redistribute it and/or modify
   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   the Free Software Foundation; either version 3, or (at your option)
   any later version.
   any later version.
 
 
   GAS is distributed in the hope that it will be useful, but WITHOUT
   GAS is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.
   License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to the Free
   along with GAS; see the file COPYING.  If not, write to the Free
   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
   02110-1301, USA.  */
   02110-1301, USA.  */
 
 
#include "as.h"
#include "as.h"
#include "safe-ctype.h"
#include "safe-ctype.h"
 
 
#ifndef FALSE
#ifndef FALSE
#define FALSE (0)
#define FALSE (0)
#endif
#endif
#ifndef TRUE
#ifndef TRUE
#define TRUE  (1)
#define TRUE  (1)
#endif
#endif
 
 
#ifdef TRACE
#ifdef TRACE
static void flonum_print (const FLONUM_TYPE *);
static void flonum_print (const FLONUM_TYPE *);
#endif
#endif
 
 
#define ASSUME_DECIMAL_MARK_IS_DOT
#define ASSUME_DECIMAL_MARK_IS_DOT
 
 
/***********************************************************************\
/***********************************************************************\
 *                                                                      *
 *                                                                      *
 *      Given a string of decimal digits , with optional decimal        *
 *      Given a string of decimal digits , with optional decimal        *
 *      mark and optional decimal exponent (place value) of the         *
 *      mark and optional decimal exponent (place value) of the         *
 *      lowest_order decimal digit: produce a floating point            *
 *      lowest_order decimal digit: produce a floating point            *
 *      number. The number is 'generic' floating point: our             *
 *      number. The number is 'generic' floating point: our             *
 *      caller will encode it for a specific machine architecture.      *
 *      caller will encode it for a specific machine architecture.      *
 *                                                                      *
 *                                                                      *
 *      Assumptions                                                     *
 *      Assumptions                                                     *
 *              uses base (radix) 2                                     *
 *              uses base (radix) 2                                     *
 *              this machine uses 2's complement binary integers        *
 *              this machine uses 2's complement binary integers        *
 *              target flonums use "      "         "       "           *
 *              target flonums use "      "         "       "           *
 *              target flonums exponents fit in a long                  *
 *              target flonums exponents fit in a long                  *
 *                                                                      *
 *                                                                      *
 \***********************************************************************/
 \***********************************************************************/
 
 
/*
/*
 
 
  Syntax:
  Syntax:
 
 
  <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
  <flonum> ::= <optional-sign> <decimal-number> <optional-exponent>
  <optional-sign> ::= '+' | '-' | {empty}
  <optional-sign> ::= '+' | '-' | {empty}
  <decimal-number> ::= <integer>
  <decimal-number> ::= <integer>
  | <integer> <radix-character>
  | <integer> <radix-character>
  | <integer> <radix-character> <integer>
  | <integer> <radix-character> <integer>
  | <radix-character> <integer>
  | <radix-character> <integer>
 
 
  <optional-exponent> ::= {empty}
  <optional-exponent> ::= {empty}
  | <exponent-character> <optional-sign> <integer>
  | <exponent-character> <optional-sign> <integer>
 
 
  <integer> ::= <digit> | <digit> <integer>
  <integer> ::= <digit> | <digit> <integer>
  <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
  <digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
  <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
  <exponent-character> ::= {one character from "string_of_decimal_exponent_marks"}
  <radix-character> ::= {one character from "string_of_decimal_marks"}
  <radix-character> ::= {one character from "string_of_decimal_marks"}
 
 
  */
  */
 
 
int
int
atof_generic (/* return pointer to just AFTER number we read.  */
atof_generic (/* return pointer to just AFTER number we read.  */
              char **address_of_string_pointer,
              char **address_of_string_pointer,
              /* At most one per number.  */
              /* At most one per number.  */
              const char *string_of_decimal_marks,
              const char *string_of_decimal_marks,
              const char *string_of_decimal_exponent_marks,
              const char *string_of_decimal_exponent_marks,
              FLONUM_TYPE *address_of_generic_floating_point_number)
              FLONUM_TYPE *address_of_generic_floating_point_number)
{
{
  int return_value;             /* 0 means OK.  */
  int return_value;             /* 0 means OK.  */
  char *first_digit;
  char *first_digit;
  unsigned int number_of_digits_before_decimal;
  unsigned int number_of_digits_before_decimal;
  unsigned int number_of_digits_after_decimal;
  unsigned int number_of_digits_after_decimal;
  long decimal_exponent;
  long decimal_exponent;
  unsigned int number_of_digits_available;
  unsigned int number_of_digits_available;
  char digits_sign_char;
  char digits_sign_char;
 
 
  /*
  /*
   * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
   * Scan the input string, abstracting (1)digits (2)decimal mark (3) exponent.
   * It would be simpler to modify the string, but we don't; just to be nice
   * It would be simpler to modify the string, but we don't; just to be nice
   * to caller.
   * to caller.
   * We need to know how many digits we have, so we can allocate space for
   * We need to know how many digits we have, so we can allocate space for
   * the digits' value.
   * the digits' value.
   */
   */
 
 
  char *p;
  char *p;
  char c;
  char c;
  int seen_significant_digit;
  int seen_significant_digit;
 
 
#ifdef ASSUME_DECIMAL_MARK_IS_DOT
#ifdef ASSUME_DECIMAL_MARK_IS_DOT
  assert (string_of_decimal_marks[0] == '.'
  assert (string_of_decimal_marks[0] == '.'
          && string_of_decimal_marks[1] == 0);
          && string_of_decimal_marks[1] == 0);
#define IS_DECIMAL_MARK(c)      ((c) == '.')
#define IS_DECIMAL_MARK(c)      ((c) == '.')
#else
#else
#define IS_DECIMAL_MARK(c)      (0 != strchr (string_of_decimal_marks, (c)))
#define IS_DECIMAL_MARK(c)      (0 != strchr (string_of_decimal_marks, (c)))
#endif
#endif
 
 
  first_digit = *address_of_string_pointer;
  first_digit = *address_of_string_pointer;
  c = *first_digit;
  c = *first_digit;
 
 
  if (c == '-' || c == '+')
  if (c == '-' || c == '+')
    {
    {
      digits_sign_char = c;
      digits_sign_char = c;
      first_digit++;
      first_digit++;
    }
    }
  else
  else
    digits_sign_char = '+';
    digits_sign_char = '+';
 
 
  switch (first_digit[0])
  switch (first_digit[0])
    {
    {
    case 'n':
    case 'n':
    case 'N':
    case 'N':
      if (!strncasecmp ("nan", first_digit, 3))
      if (!strncasecmp ("nan", first_digit, 3))
        {
        {
          address_of_generic_floating_point_number->sign = 0;
          address_of_generic_floating_point_number->sign = 0;
          address_of_generic_floating_point_number->exponent = 0;
          address_of_generic_floating_point_number->exponent = 0;
          address_of_generic_floating_point_number->leader =
          address_of_generic_floating_point_number->leader =
            address_of_generic_floating_point_number->low;
            address_of_generic_floating_point_number->low;
          *address_of_string_pointer = first_digit + 3;
          *address_of_string_pointer = first_digit + 3;
          return 0;
          return 0;
        }
        }
      break;
      break;
 
 
    case 'i':
    case 'i':
    case 'I':
    case 'I':
      if (!strncasecmp ("inf", first_digit, 3))
      if (!strncasecmp ("inf", first_digit, 3))
        {
        {
          address_of_generic_floating_point_number->sign =
          address_of_generic_floating_point_number->sign =
            digits_sign_char == '+' ? 'P' : 'N';
            digits_sign_char == '+' ? 'P' : 'N';
          address_of_generic_floating_point_number->exponent = 0;
          address_of_generic_floating_point_number->exponent = 0;
          address_of_generic_floating_point_number->leader =
          address_of_generic_floating_point_number->leader =
            address_of_generic_floating_point_number->low;
            address_of_generic_floating_point_number->low;
 
 
          first_digit += 3;
          first_digit += 3;
          if (!strncasecmp ("inity", first_digit, 5))
          if (!strncasecmp ("inity", first_digit, 5))
            first_digit += 5;
            first_digit += 5;
 
 
          *address_of_string_pointer = first_digit;
          *address_of_string_pointer = first_digit;
 
 
          return 0;
          return 0;
        }
        }
      break;
      break;
    }
    }
 
 
  number_of_digits_before_decimal = 0;
  number_of_digits_before_decimal = 0;
  number_of_digits_after_decimal = 0;
  number_of_digits_after_decimal = 0;
  decimal_exponent = 0;
  decimal_exponent = 0;
  seen_significant_digit = 0;
  seen_significant_digit = 0;
  for (p = first_digit;
  for (p = first_digit;
       (((c = *p) != '\0')
       (((c = *p) != '\0')
        && (!c || !IS_DECIMAL_MARK (c))
        && (!c || !IS_DECIMAL_MARK (c))
        && (!c || !strchr (string_of_decimal_exponent_marks, c)));
        && (!c || !strchr (string_of_decimal_exponent_marks, c)));
       p++)
       p++)
    {
    {
      if (ISDIGIT (c))
      if (ISDIGIT (c))
        {
        {
          if (seen_significant_digit || c > '0')
          if (seen_significant_digit || c > '0')
            {
            {
              ++number_of_digits_before_decimal;
              ++number_of_digits_before_decimal;
              seen_significant_digit = 1;
              seen_significant_digit = 1;
            }
            }
          else
          else
            {
            {
              first_digit++;
              first_digit++;
            }
            }
        }
        }
      else
      else
        {
        {
          break;                /* p -> char after pre-decimal digits.  */
          break;                /* p -> char after pre-decimal digits.  */
        }
        }
    }                           /* For each digit before decimal mark.  */
    }                           /* For each digit before decimal mark.  */
 
 
#ifndef OLD_FLOAT_READS
#ifndef OLD_FLOAT_READS
  /* Ignore trailing 0's after the decimal point.  The original code here
  /* Ignore trailing 0's after the decimal point.  The original code here
   * (ifdef'd out) does not do this, and numbers like
   * (ifdef'd out) does not do this, and numbers like
   *    4.29496729600000000000e+09      (2**31)
   *    4.29496729600000000000e+09      (2**31)
   * come out inexact for some reason related to length of the digit
   * come out inexact for some reason related to length of the digit
   * string.
   * string.
   */
   */
  if (c && IS_DECIMAL_MARK (c))
  if (c && IS_DECIMAL_MARK (c))
    {
    {
      unsigned int zeros = 0;    /* Length of current string of zeros */
      unsigned int zeros = 0;    /* Length of current string of zeros */
 
 
      for (p++; (c = *p) && ISDIGIT (c); p++)
      for (p++; (c = *p) && ISDIGIT (c); p++)
        {
        {
          if (c == '0')
          if (c == '0')
            {
            {
              zeros++;
              zeros++;
            }
            }
          else
          else
            {
            {
              number_of_digits_after_decimal += 1 + zeros;
              number_of_digits_after_decimal += 1 + zeros;
              zeros = 0;
              zeros = 0;
            }
            }
        }
        }
    }
    }
#else
#else
  if (c && IS_DECIMAL_MARK (c))
  if (c && IS_DECIMAL_MARK (c))
    {
    {
      for (p++;
      for (p++;
           (((c = *p) != '\0')
           (((c = *p) != '\0')
            && (!c || !strchr (string_of_decimal_exponent_marks, c)));
            && (!c || !strchr (string_of_decimal_exponent_marks, c)));
           p++)
           p++)
        {
        {
          if (ISDIGIT (c))
          if (ISDIGIT (c))
            {
            {
              /* This may be retracted below.  */
              /* This may be retracted below.  */
              number_of_digits_after_decimal++;
              number_of_digits_after_decimal++;
 
 
              if ( /* seen_significant_digit || */ c > '0')
              if ( /* seen_significant_digit || */ c > '0')
                {
                {
                  seen_significant_digit = TRUE;
                  seen_significant_digit = TRUE;
                }
                }
            }
            }
          else
          else
            {
            {
              if (!seen_significant_digit)
              if (!seen_significant_digit)
                {
                {
                  number_of_digits_after_decimal = 0;
                  number_of_digits_after_decimal = 0;
                }
                }
              break;
              break;
            }
            }
        }                       /* For each digit after decimal mark.  */
        }                       /* For each digit after decimal mark.  */
    }
    }
 
 
  while (number_of_digits_after_decimal
  while (number_of_digits_after_decimal
         && first_digit[number_of_digits_before_decimal
         && first_digit[number_of_digits_before_decimal
                        + number_of_digits_after_decimal] == '0')
                        + number_of_digits_after_decimal] == '0')
    --number_of_digits_after_decimal;
    --number_of_digits_after_decimal;
#endif
#endif
 
 
  if (flag_m68k_mri)
  if (flag_m68k_mri)
    {
    {
      while (c == '_')
      while (c == '_')
        c = *++p;
        c = *++p;
    }
    }
  if (c && strchr (string_of_decimal_exponent_marks, c))
  if (c && strchr (string_of_decimal_exponent_marks, c))
    {
    {
      char digits_exponent_sign_char;
      char digits_exponent_sign_char;
 
 
      c = *++p;
      c = *++p;
      if (flag_m68k_mri)
      if (flag_m68k_mri)
        {
        {
          while (c == '_')
          while (c == '_')
            c = *++p;
            c = *++p;
        }
        }
      if (c && strchr ("+-", c))
      if (c && strchr ("+-", c))
        {
        {
          digits_exponent_sign_char = c;
          digits_exponent_sign_char = c;
          c = *++p;
          c = *++p;
        }
        }
      else
      else
        {
        {
          digits_exponent_sign_char = '+';
          digits_exponent_sign_char = '+';
        }
        }
 
 
      for (; (c); c = *++p)
      for (; (c); c = *++p)
        {
        {
          if (ISDIGIT (c))
          if (ISDIGIT (c))
            {
            {
              decimal_exponent = decimal_exponent * 10 + c - '0';
              decimal_exponent = decimal_exponent * 10 + c - '0';
              /*
              /*
               * BUG! If we overflow here, we lose!
               * BUG! If we overflow here, we lose!
               */
               */
            }
            }
          else
          else
            {
            {
              break;
              break;
            }
            }
        }
        }
 
 
      if (digits_exponent_sign_char == '-')
      if (digits_exponent_sign_char == '-')
        {
        {
          decimal_exponent = -decimal_exponent;
          decimal_exponent = -decimal_exponent;
        }
        }
    }
    }
 
 
  *address_of_string_pointer = p;
  *address_of_string_pointer = p;
 
 
  number_of_digits_available =
  number_of_digits_available =
    number_of_digits_before_decimal + number_of_digits_after_decimal;
    number_of_digits_before_decimal + number_of_digits_after_decimal;
  return_value = 0;
  return_value = 0;
  if (number_of_digits_available == 0)
  if (number_of_digits_available == 0)
    {
    {
      address_of_generic_floating_point_number->exponent = 0;    /* Not strictly necessary */
      address_of_generic_floating_point_number->exponent = 0;    /* Not strictly necessary */
      address_of_generic_floating_point_number->leader
      address_of_generic_floating_point_number->leader
        = -1 + address_of_generic_floating_point_number->low;
        = -1 + address_of_generic_floating_point_number->low;
      address_of_generic_floating_point_number->sign = digits_sign_char;
      address_of_generic_floating_point_number->sign = digits_sign_char;
      /* We have just concocted (+/-)0.0E0 */
      /* We have just concocted (+/-)0.0E0 */
 
 
    }
    }
  else
  else
    {
    {
      int count;                /* Number of useful digits left to scan.  */
      int count;                /* Number of useful digits left to scan.  */
 
 
      LITTLENUM_TYPE *digits_binary_low;
      LITTLENUM_TYPE *digits_binary_low;
      unsigned int precision;
      unsigned int precision;
      unsigned int maximum_useful_digits;
      unsigned int maximum_useful_digits;
      unsigned int number_of_digits_to_use;
      unsigned int number_of_digits_to_use;
      unsigned int more_than_enough_bits_for_digits;
      unsigned int more_than_enough_bits_for_digits;
      unsigned int more_than_enough_littlenums_for_digits;
      unsigned int more_than_enough_littlenums_for_digits;
      unsigned int size_of_digits_in_littlenums;
      unsigned int size_of_digits_in_littlenums;
      unsigned int size_of_digits_in_chars;
      unsigned int size_of_digits_in_chars;
      FLONUM_TYPE power_of_10_flonum;
      FLONUM_TYPE power_of_10_flonum;
      FLONUM_TYPE digits_flonum;
      FLONUM_TYPE digits_flonum;
 
 
      precision = (address_of_generic_floating_point_number->high
      precision = (address_of_generic_floating_point_number->high
                   - address_of_generic_floating_point_number->low
                   - address_of_generic_floating_point_number->low
                   + 1);        /* Number of destination littlenums.  */
                   + 1);        /* Number of destination littlenums.  */
 
 
      /* Includes guard bits (two littlenums worth) */
      /* Includes guard bits (two littlenums worth) */
      maximum_useful_digits = (((precision - 2))
      maximum_useful_digits = (((precision - 2))
                               * ( (LITTLENUM_NUMBER_OF_BITS))
                               * ( (LITTLENUM_NUMBER_OF_BITS))
                               * 1000000 / 3321928)
                               * 1000000 / 3321928)
        + 2;                    /* 2 :: guard digits.  */
        + 2;                    /* 2 :: guard digits.  */
 
 
      if (number_of_digits_available > maximum_useful_digits)
      if (number_of_digits_available > maximum_useful_digits)
        {
        {
          number_of_digits_to_use = maximum_useful_digits;
          number_of_digits_to_use = maximum_useful_digits;
        }
        }
      else
      else
        {
        {
          number_of_digits_to_use = number_of_digits_available;
          number_of_digits_to_use = number_of_digits_available;
        }
        }
 
 
      /* Cast these to SIGNED LONG first, otherwise, on systems with
      /* Cast these to SIGNED LONG first, otherwise, on systems with
         LONG wider than INT (such as Alpha OSF/1), unsignedness may
         LONG wider than INT (such as Alpha OSF/1), unsignedness may
         cause unexpected results.  */
         cause unexpected results.  */
      decimal_exponent += ((long) number_of_digits_before_decimal
      decimal_exponent += ((long) number_of_digits_before_decimal
                           - (long) number_of_digits_to_use);
                           - (long) number_of_digits_to_use);
 
 
      more_than_enough_bits_for_digits
      more_than_enough_bits_for_digits
        = (number_of_digits_to_use * 3321928 / 1000000 + 1);
        = (number_of_digits_to_use * 3321928 / 1000000 + 1);
 
 
      more_than_enough_littlenums_for_digits
      more_than_enough_littlenums_for_digits
        = (more_than_enough_bits_for_digits
        = (more_than_enough_bits_for_digits
           / LITTLENUM_NUMBER_OF_BITS)
           / LITTLENUM_NUMBER_OF_BITS)
        + 2;
        + 2;
 
 
      /* Compute (digits) part. In "12.34E56" this is the "1234" part.
      /* Compute (digits) part. In "12.34E56" this is the "1234" part.
         Arithmetic is exact here. If no digits are supplied then this
         Arithmetic is exact here. If no digits are supplied then this
         part is a 0 valued binary integer.  Allocate room to build up
         part is a 0 valued binary integer.  Allocate room to build up
         the binary number as littlenums.  We want this memory to
         the binary number as littlenums.  We want this memory to
         disappear when we leave this function.  Assume no alignment
         disappear when we leave this function.  Assume no alignment
         problems => (room for n objects) == n * (room for 1
         problems => (room for n objects) == n * (room for 1
         object).  */
         object).  */
 
 
      size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
      size_of_digits_in_littlenums = more_than_enough_littlenums_for_digits;
      size_of_digits_in_chars = size_of_digits_in_littlenums
      size_of_digits_in_chars = size_of_digits_in_littlenums
        * sizeof (LITTLENUM_TYPE);
        * sizeof (LITTLENUM_TYPE);
 
 
      digits_binary_low = (LITTLENUM_TYPE *)
      digits_binary_low = (LITTLENUM_TYPE *)
        alloca (size_of_digits_in_chars);
        alloca (size_of_digits_in_chars);
 
 
      memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
      memset ((char *) digits_binary_low, '\0', size_of_digits_in_chars);
 
 
      /* Digits_binary_low[] is allocated and zeroed.  */
      /* Digits_binary_low[] is allocated and zeroed.  */
 
 
      /*
      /*
       * Parse the decimal digits as if * digits_low was in the units position.
       * Parse the decimal digits as if * digits_low was in the units position.
       * Emit a binary number into digits_binary_low[].
       * Emit a binary number into digits_binary_low[].
       *
       *
       * Use a large-precision version of:
       * Use a large-precision version of:
       * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
       * (((1st-digit) * 10 + 2nd-digit) * 10 + 3rd-digit ...) * 10 + last-digit
       */
       */
 
 
      for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
      for (p = first_digit, count = number_of_digits_to_use; count; p++, --count)
        {
        {
          c = *p;
          c = *p;
          if (ISDIGIT (c))
          if (ISDIGIT (c))
            {
            {
              /*
              /*
               * Multiply by 10. Assume can never overflow.
               * Multiply by 10. Assume can never overflow.
               * Add this digit to digits_binary_low[].
               * Add this digit to digits_binary_low[].
               */
               */
 
 
              long carry;
              long carry;
              LITTLENUM_TYPE *littlenum_pointer;
              LITTLENUM_TYPE *littlenum_pointer;
              LITTLENUM_TYPE *littlenum_limit;
              LITTLENUM_TYPE *littlenum_limit;
 
 
              littlenum_limit = digits_binary_low
              littlenum_limit = digits_binary_low
                + more_than_enough_littlenums_for_digits
                + more_than_enough_littlenums_for_digits
                - 1;
                - 1;
 
 
              carry = c - '0';  /* char -> binary */
              carry = c - '0';  /* char -> binary */
 
 
              for (littlenum_pointer = digits_binary_low;
              for (littlenum_pointer = digits_binary_low;
                   littlenum_pointer <= littlenum_limit;
                   littlenum_pointer <= littlenum_limit;
                   littlenum_pointer++)
                   littlenum_pointer++)
                {
                {
                  long work;
                  long work;
 
 
                  work = carry + 10 * (long) (*littlenum_pointer);
                  work = carry + 10 * (long) (*littlenum_pointer);
                  *littlenum_pointer = work & LITTLENUM_MASK;
                  *littlenum_pointer = work & LITTLENUM_MASK;
                  carry = work >> LITTLENUM_NUMBER_OF_BITS;
                  carry = work >> LITTLENUM_NUMBER_OF_BITS;
                }
                }
 
 
              if (carry != 0)
              if (carry != 0)
                {
                {
                  /*
                  /*
                   * We have a GROSS internal error.
                   * We have a GROSS internal error.
                   * This should never happen.
                   * This should never happen.
                   */
                   */
                  as_fatal (_("failed sanity check"));
                  as_fatal (_("failed sanity check"));
                }
                }
            }
            }
          else
          else
            {
            {
              ++count;          /* '.' doesn't alter digits used count.  */
              ++count;          /* '.' doesn't alter digits used count.  */
            }
            }
        }
        }
 
 
      /*
      /*
       * Digits_binary_low[] properly encodes the value of the digits.
       * Digits_binary_low[] properly encodes the value of the digits.
       * Forget about any high-order littlenums that are 0.
       * Forget about any high-order littlenums that are 0.
       */
       */
      while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
      while (digits_binary_low[size_of_digits_in_littlenums - 1] == 0
             && size_of_digits_in_littlenums >= 2)
             && size_of_digits_in_littlenums >= 2)
        size_of_digits_in_littlenums--;
        size_of_digits_in_littlenums--;
 
 
      digits_flonum.low = digits_binary_low;
      digits_flonum.low = digits_binary_low;
      digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
      digits_flonum.high = digits_binary_low + size_of_digits_in_littlenums - 1;
      digits_flonum.leader = digits_flonum.high;
      digits_flonum.leader = digits_flonum.high;
      digits_flonum.exponent = 0;
      digits_flonum.exponent = 0;
      /*
      /*
       * The value of digits_flonum . sign should not be important.
       * The value of digits_flonum . sign should not be important.
       * We have already decided the output's sign.
       * We have already decided the output's sign.
       * We trust that the sign won't influence the other parts of the number!
       * We trust that the sign won't influence the other parts of the number!
       * So we give it a value for these reasons:
       * So we give it a value for these reasons:
       * (1) courtesy to humans reading/debugging
       * (1) courtesy to humans reading/debugging
       *     these numbers so they don't get excited about strange values
       *     these numbers so they don't get excited about strange values
       * (2) in future there may be more meaning attached to sign,
       * (2) in future there may be more meaning attached to sign,
       *     and what was
       *     and what was
       *     harmless noise may become disruptive, ill-conditioned (or worse)
       *     harmless noise may become disruptive, ill-conditioned (or worse)
       *     input.
       *     input.
       */
       */
      digits_flonum.sign = '+';
      digits_flonum.sign = '+';
 
 
      {
      {
        /*
        /*
         * Compute the mantssa (& exponent) of the power of 10.
         * Compute the mantssa (& exponent) of the power of 10.
         * If successful, then multiply the power of 10 by the digits
         * If successful, then multiply the power of 10 by the digits
         * giving return_binary_mantissa and return_binary_exponent.
         * giving return_binary_mantissa and return_binary_exponent.
         */
         */
 
 
        LITTLENUM_TYPE *power_binary_low;
        LITTLENUM_TYPE *power_binary_low;
        int decimal_exponent_is_negative;
        int decimal_exponent_is_negative;
        /* This refers to the "-56" in "12.34E-56".  */
        /* This refers to the "-56" in "12.34E-56".  */
        /* FALSE: decimal_exponent is positive (or 0) */
        /* FALSE: decimal_exponent is positive (or 0) */
        /* TRUE:  decimal_exponent is negative */
        /* TRUE:  decimal_exponent is negative */
        FLONUM_TYPE temporary_flonum;
        FLONUM_TYPE temporary_flonum;
        LITTLENUM_TYPE *temporary_binary_low;
        LITTLENUM_TYPE *temporary_binary_low;
        unsigned int size_of_power_in_littlenums;
        unsigned int size_of_power_in_littlenums;
        unsigned int size_of_power_in_chars;
        unsigned int size_of_power_in_chars;
 
 
        size_of_power_in_littlenums = precision;
        size_of_power_in_littlenums = precision;
        /* Precision has a built-in fudge factor so we get a few guard bits.  */
        /* Precision has a built-in fudge factor so we get a few guard bits.  */
 
 
        decimal_exponent_is_negative = decimal_exponent < 0;
        decimal_exponent_is_negative = decimal_exponent < 0;
        if (decimal_exponent_is_negative)
        if (decimal_exponent_is_negative)
          {
          {
            decimal_exponent = -decimal_exponent;
            decimal_exponent = -decimal_exponent;
          }
          }
 
 
        /* From now on: the decimal exponent is > 0. Its sign is separate.  */
        /* From now on: the decimal exponent is > 0. Its sign is separate.  */
 
 
        size_of_power_in_chars = size_of_power_in_littlenums
        size_of_power_in_chars = size_of_power_in_littlenums
          * sizeof (LITTLENUM_TYPE) + 2;
          * sizeof (LITTLENUM_TYPE) + 2;
 
 
        power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
        power_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
        temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
        temporary_binary_low = (LITTLENUM_TYPE *) alloca (size_of_power_in_chars);
        memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
        memset ((char *) power_binary_low, '\0', size_of_power_in_chars);
        *power_binary_low = 1;
        *power_binary_low = 1;
        power_of_10_flonum.exponent = 0;
        power_of_10_flonum.exponent = 0;
        power_of_10_flonum.low = power_binary_low;
        power_of_10_flonum.low = power_binary_low;
        power_of_10_flonum.leader = power_binary_low;
        power_of_10_flonum.leader = power_binary_low;
        power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
        power_of_10_flonum.high = power_binary_low + size_of_power_in_littlenums - 1;
        power_of_10_flonum.sign = '+';
        power_of_10_flonum.sign = '+';
        temporary_flonum.low = temporary_binary_low;
        temporary_flonum.low = temporary_binary_low;
        temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
        temporary_flonum.high = temporary_binary_low + size_of_power_in_littlenums - 1;
        /*
        /*
         * (power) == 1.
         * (power) == 1.
         * Space for temporary_flonum allocated.
         * Space for temporary_flonum allocated.
         */
         */
 
 
        /*
        /*
         * ...
         * ...
         *
         *
         * WHILE        more bits
         * WHILE        more bits
         * DO   find next bit (with place value)
         * DO   find next bit (with place value)
         *      multiply into power mantissa
         *      multiply into power mantissa
         * OD
         * OD
         */
         */
        {
        {
          int place_number_limit;
          int place_number_limit;
          /* Any 10^(2^n) whose "n" exceeds this */
          /* Any 10^(2^n) whose "n" exceeds this */
          /* value will fall off the end of */
          /* value will fall off the end of */
          /* flonum_XXXX_powers_of_ten[].  */
          /* flonum_XXXX_powers_of_ten[].  */
          int place_number;
          int place_number;
          const FLONUM_TYPE *multiplicand;      /* -> 10^(2^n) */
          const FLONUM_TYPE *multiplicand;      /* -> 10^(2^n) */
 
 
          place_number_limit = table_size_of_flonum_powers_of_ten;
          place_number_limit = table_size_of_flonum_powers_of_ten;
 
 
          multiplicand = (decimal_exponent_is_negative
          multiplicand = (decimal_exponent_is_negative
                          ? flonum_negative_powers_of_ten
                          ? flonum_negative_powers_of_ten
                          : flonum_positive_powers_of_ten);
                          : flonum_positive_powers_of_ten);
 
 
          for (place_number = 1;/* Place value of this bit of exponent.  */
          for (place_number = 1;/* Place value of this bit of exponent.  */
               decimal_exponent;/* Quit when no more 1 bits in exponent.  */
               decimal_exponent;/* Quit when no more 1 bits in exponent.  */
               decimal_exponent >>= 1, place_number++)
               decimal_exponent >>= 1, place_number++)
            {
            {
              if (decimal_exponent & 1)
              if (decimal_exponent & 1)
                {
                {
                  if (place_number > place_number_limit)
                  if (place_number > place_number_limit)
                    {
                    {
                      /* The decimal exponent has a magnitude so great
                      /* The decimal exponent has a magnitude so great
                         that our tables can't help us fragment it.
                         that our tables can't help us fragment it.
                         Although this routine is in error because it
                         Although this routine is in error because it
                         can't imagine a number that big, signal an
                         can't imagine a number that big, signal an
                         error as if it is the user's fault for
                         error as if it is the user's fault for
                         presenting such a big number.  */
                         presenting such a big number.  */
                      return_value = ERROR_EXPONENT_OVERFLOW;
                      return_value = ERROR_EXPONENT_OVERFLOW;
                      /* quit out of loop gracefully */
                      /* quit out of loop gracefully */
                      decimal_exponent = 0;
                      decimal_exponent = 0;
                    }
                    }
                  else
                  else
                    {
                    {
#ifdef TRACE
#ifdef TRACE
                      printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
                      printf ("before multiply, place_number = %d., power_of_10_flonum:\n",
                              place_number);
                              place_number);
 
 
                      flonum_print (&power_of_10_flonum);
                      flonum_print (&power_of_10_flonum);
                      (void) putchar ('\n');
                      (void) putchar ('\n');
#endif
#endif
#ifdef TRACE
#ifdef TRACE
                      printf ("multiplier:\n");
                      printf ("multiplier:\n");
                      flonum_print (multiplicand + place_number);
                      flonum_print (multiplicand + place_number);
                      (void) putchar ('\n');
                      (void) putchar ('\n');
#endif
#endif
                      flonum_multip (multiplicand + place_number,
                      flonum_multip (multiplicand + place_number,
                                     &power_of_10_flonum, &temporary_flonum);
                                     &power_of_10_flonum, &temporary_flonum);
#ifdef TRACE
#ifdef TRACE
                      printf ("after multiply:\n");
                      printf ("after multiply:\n");
                      flonum_print (&temporary_flonum);
                      flonum_print (&temporary_flonum);
                      (void) putchar ('\n');
                      (void) putchar ('\n');
#endif
#endif
                      flonum_copy (&temporary_flonum, &power_of_10_flonum);
                      flonum_copy (&temporary_flonum, &power_of_10_flonum);
#ifdef TRACE
#ifdef TRACE
                      printf ("after copy:\n");
                      printf ("after copy:\n");
                      flonum_print (&power_of_10_flonum);
                      flonum_print (&power_of_10_flonum);
                      (void) putchar ('\n');
                      (void) putchar ('\n');
#endif
#endif
                    } /* If this bit of decimal_exponent was computable.*/
                    } /* If this bit of decimal_exponent was computable.*/
                } /* If this bit of decimal_exponent was set.  */
                } /* If this bit of decimal_exponent was set.  */
            } /* For each bit of binary representation of exponent */
            } /* For each bit of binary representation of exponent */
#ifdef TRACE
#ifdef TRACE
          printf ("after computing power_of_10_flonum:\n");
          printf ("after computing power_of_10_flonum:\n");
          flonum_print (&power_of_10_flonum);
          flonum_print (&power_of_10_flonum);
          (void) putchar ('\n');
          (void) putchar ('\n');
#endif
#endif
        }
        }
 
 
      }
      }
 
 
      /*
      /*
       * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
       * power_of_10_flonum is power of ten in binary (mantissa) , (exponent).
       * It may be the number 1, in which case we don't NEED to multiply.
       * It may be the number 1, in which case we don't NEED to multiply.
       *
       *
       * Multiply (decimal digits) by power_of_10_flonum.
       * Multiply (decimal digits) by power_of_10_flonum.
       */
       */
 
 
      flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
      flonum_multip (&power_of_10_flonum, &digits_flonum, address_of_generic_floating_point_number);
      /* Assert sign of the number we made is '+'.  */
      /* Assert sign of the number we made is '+'.  */
      address_of_generic_floating_point_number->sign = digits_sign_char;
      address_of_generic_floating_point_number->sign = digits_sign_char;
 
 
    }
    }
  return return_value;
  return return_value;
}
}
 
 
#ifdef TRACE
#ifdef TRACE
static void
static void
flonum_print (f)
flonum_print (f)
     const FLONUM_TYPE *f;
     const FLONUM_TYPE *f;
{
{
  LITTLENUM_TYPE *lp;
  LITTLENUM_TYPE *lp;
  char littlenum_format[10];
  char littlenum_format[10];
  sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
  sprintf (littlenum_format, " %%0%dx", sizeof (LITTLENUM_TYPE) * 2);
#define print_littlenum(LP)     (printf (littlenum_format, LP))
#define print_littlenum(LP)     (printf (littlenum_format, LP))
  printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
  printf ("flonum @%p %c e%ld", f, f->sign, f->exponent);
  if (f->low < f->high)
  if (f->low < f->high)
    for (lp = f->high; lp >= f->low; lp--)
    for (lp = f->high; lp >= f->low; lp--)
      print_littlenum (*lp);
      print_littlenum (*lp);
  else
  else
    for (lp = f->low; lp <= f->high; lp++)
    for (lp = f->low; lp <= f->high; lp++)
      print_littlenum (*lp);
      print_littlenum (*lp);
  printf ("\n");
  printf ("\n");
  fflush (stdout);
  fflush (stdout);
}
}
#endif
#endif
 
 
/* end of atof_generic.c */
/* end of atof_generic.c */
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.