OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [binutils-2.18.50/] [gas/] [config/] [tc-alpha.c] - Diff between revs 156 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 156 Rev 816
/* tc-alpha.c - Processor-specific code for the DEC Alpha AXP CPU.
/* tc-alpha.c - Processor-specific code for the DEC Alpha AXP CPU.
   Copyright 1989, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   Copyright 1989, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
   2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
   Contributed by Carnegie Mellon University, 1993.
   Contributed by Carnegie Mellon University, 1993.
   Written by Alessandro Forin, based on earlier gas-1.38 target CPU files.
   Written by Alessandro Forin, based on earlier gas-1.38 target CPU files.
   Modified by Ken Raeburn for gas-2.x and ECOFF support.
   Modified by Ken Raeburn for gas-2.x and ECOFF support.
   Modified by Richard Henderson for ELF support.
   Modified by Richard Henderson for ELF support.
   Modified by Klaus K"ampf for EVAX (OpenVMS/Alpha) support.
   Modified by Klaus K"ampf for EVAX (OpenVMS/Alpha) support.
 
 
   This file is part of GAS, the GNU Assembler.
   This file is part of GAS, the GNU Assembler.
 
 
   GAS is free software; you can redistribute it and/or modify
   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   the Free Software Foundation; either version 3, or (at your option)
   any later version.
   any later version.
 
 
   GAS is distributed in the hope that it will be useful,
   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to the Free
   along with GAS; see the file COPYING.  If not, write to the Free
   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
   02110-1301, USA.  */
   02110-1301, USA.  */
 
 
/* Mach Operating System
/* Mach Operating System
   Copyright (c) 1993 Carnegie Mellon University
   Copyright (c) 1993 Carnegie Mellon University
   All Rights Reserved.
   All Rights Reserved.
 
 
   Permission to use, copy, modify and distribute this software and its
   Permission to use, copy, modify and distribute this software and its
   documentation is hereby granted, provided that both the copyright
   documentation is hereby granted, provided that both the copyright
   notice and this permission notice appear in all copies of the
   notice and this permission notice appear in all copies of the
   software, derivative works or modified versions, and any portions
   software, derivative works or modified versions, and any portions
   thereof, and that both notices appear in supporting documentation.
   thereof, and that both notices appear in supporting documentation.
 
 
   CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS
   CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS
   CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
   CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
   ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
   ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 
 
   Carnegie Mellon requests users of this software to return to
   Carnegie Mellon requests users of this software to return to
 
 
    Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
    Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
    School of Computer Science
    School of Computer Science
    Carnegie Mellon University
    Carnegie Mellon University
    Pittsburgh PA 15213-3890
    Pittsburgh PA 15213-3890
 
 
   any improvements or extensions that they make and grant Carnegie the
   any improvements or extensions that they make and grant Carnegie the
   rights to redistribute these changes.  */
   rights to redistribute these changes.  */
 
 
#include "as.h"
#include "as.h"
#include "subsegs.h"
#include "subsegs.h"
#include "struc-symbol.h"
#include "struc-symbol.h"
#include "ecoff.h"
#include "ecoff.h"
 
 
#include "opcode/alpha.h"
#include "opcode/alpha.h"
 
 
#ifdef OBJ_ELF
#ifdef OBJ_ELF
#include "elf/alpha.h"
#include "elf/alpha.h"
#include "dwarf2dbg.h"
#include "dwarf2dbg.h"
#endif
#endif
 
 
#include "dw2gencfi.h"
#include "dw2gencfi.h"
#include "safe-ctype.h"
#include "safe-ctype.h"


/* Local types.  */
/* Local types.  */
 
 
#define TOKENIZE_ERROR          -1
#define TOKENIZE_ERROR          -1
#define TOKENIZE_ERROR_REPORT   -2
#define TOKENIZE_ERROR_REPORT   -2
#define MAX_INSN_FIXUPS          2
#define MAX_INSN_FIXUPS          2
#define MAX_INSN_ARGS            5
#define MAX_INSN_ARGS            5
 
 
struct alpha_fixup
struct alpha_fixup
{
{
  expressionS exp;
  expressionS exp;
  bfd_reloc_code_real_type reloc;
  bfd_reloc_code_real_type reloc;
};
};
 
 
struct alpha_insn
struct alpha_insn
{
{
  unsigned insn;
  unsigned insn;
  int nfixups;
  int nfixups;
  struct alpha_fixup fixups[MAX_INSN_FIXUPS];
  struct alpha_fixup fixups[MAX_INSN_FIXUPS];
  long sequence;
  long sequence;
};
};
 
 
enum alpha_macro_arg
enum alpha_macro_arg
  {
  {
    MACRO_EOA = 1,
    MACRO_EOA = 1,
    MACRO_IR,
    MACRO_IR,
    MACRO_PIR,
    MACRO_PIR,
    MACRO_OPIR,
    MACRO_OPIR,
    MACRO_CPIR,
    MACRO_CPIR,
    MACRO_FPR,
    MACRO_FPR,
    MACRO_EXP,
    MACRO_EXP,
  };
  };
 
 
struct alpha_macro
struct alpha_macro
{
{
  const char *name;
  const char *name;
  void (*emit) (const expressionS *, int, const void *);
  void (*emit) (const expressionS *, int, const void *);
  const void * arg;
  const void * arg;
  enum alpha_macro_arg argsets[16];
  enum alpha_macro_arg argsets[16];
};
};
 
 
/* Extra expression types.  */
/* Extra expression types.  */
 
 
#define O_pregister     O_md1   /* O_register, in parentheses.  */
#define O_pregister     O_md1   /* O_register, in parentheses.  */
#define O_cpregister    O_md2   /* + a leading comma.  */
#define O_cpregister    O_md2   /* + a leading comma.  */
 
 
/* The alpha_reloc_op table below depends on the ordering of these.  */
/* The alpha_reloc_op table below depends on the ordering of these.  */
#define O_literal       O_md3           /* !literal relocation.  */
#define O_literal       O_md3           /* !literal relocation.  */
#define O_lituse_addr   O_md4           /* !lituse_addr relocation.  */
#define O_lituse_addr   O_md4           /* !lituse_addr relocation.  */
#define O_lituse_base   O_md5           /* !lituse_base relocation.  */
#define O_lituse_base   O_md5           /* !lituse_base relocation.  */
#define O_lituse_bytoff O_md6           /* !lituse_bytoff relocation.  */
#define O_lituse_bytoff O_md6           /* !lituse_bytoff relocation.  */
#define O_lituse_jsr    O_md7           /* !lituse_jsr relocation.  */
#define O_lituse_jsr    O_md7           /* !lituse_jsr relocation.  */
#define O_lituse_tlsgd  O_md8           /* !lituse_tlsgd relocation.  */
#define O_lituse_tlsgd  O_md8           /* !lituse_tlsgd relocation.  */
#define O_lituse_tlsldm O_md9           /* !lituse_tlsldm relocation.  */
#define O_lituse_tlsldm O_md9           /* !lituse_tlsldm relocation.  */
#define O_lituse_jsrdirect O_md10       /* !lituse_jsrdirect relocation.  */
#define O_lituse_jsrdirect O_md10       /* !lituse_jsrdirect relocation.  */
#define O_gpdisp        O_md11          /* !gpdisp relocation.  */
#define O_gpdisp        O_md11          /* !gpdisp relocation.  */
#define O_gprelhigh     O_md12          /* !gprelhigh relocation.  */
#define O_gprelhigh     O_md12          /* !gprelhigh relocation.  */
#define O_gprellow      O_md13          /* !gprellow relocation.  */
#define O_gprellow      O_md13          /* !gprellow relocation.  */
#define O_gprel         O_md14          /* !gprel relocation.  */
#define O_gprel         O_md14          /* !gprel relocation.  */
#define O_samegp        O_md15          /* !samegp relocation.  */
#define O_samegp        O_md15          /* !samegp relocation.  */
#define O_tlsgd         O_md16          /* !tlsgd relocation.  */
#define O_tlsgd         O_md16          /* !tlsgd relocation.  */
#define O_tlsldm        O_md17          /* !tlsldm relocation.  */
#define O_tlsldm        O_md17          /* !tlsldm relocation.  */
#define O_gotdtprel     O_md18          /* !gotdtprel relocation.  */
#define O_gotdtprel     O_md18          /* !gotdtprel relocation.  */
#define O_dtprelhi      O_md19          /* !dtprelhi relocation.  */
#define O_dtprelhi      O_md19          /* !dtprelhi relocation.  */
#define O_dtprello      O_md20          /* !dtprello relocation.  */
#define O_dtprello      O_md20          /* !dtprello relocation.  */
#define O_dtprel        O_md21          /* !dtprel relocation.  */
#define O_dtprel        O_md21          /* !dtprel relocation.  */
#define O_gottprel      O_md22          /* !gottprel relocation.  */
#define O_gottprel      O_md22          /* !gottprel relocation.  */
#define O_tprelhi       O_md23          /* !tprelhi relocation.  */
#define O_tprelhi       O_md23          /* !tprelhi relocation.  */
#define O_tprello       O_md24          /* !tprello relocation.  */
#define O_tprello       O_md24          /* !tprello relocation.  */
#define O_tprel         O_md25          /* !tprel relocation.  */
#define O_tprel         O_md25          /* !tprel relocation.  */
 
 
#define DUMMY_RELOC_LITUSE_ADDR         (BFD_RELOC_UNUSED + 1)
#define DUMMY_RELOC_LITUSE_ADDR         (BFD_RELOC_UNUSED + 1)
#define DUMMY_RELOC_LITUSE_BASE         (BFD_RELOC_UNUSED + 2)
#define DUMMY_RELOC_LITUSE_BASE         (BFD_RELOC_UNUSED + 2)
#define DUMMY_RELOC_LITUSE_BYTOFF       (BFD_RELOC_UNUSED + 3)
#define DUMMY_RELOC_LITUSE_BYTOFF       (BFD_RELOC_UNUSED + 3)
#define DUMMY_RELOC_LITUSE_JSR          (BFD_RELOC_UNUSED + 4)
#define DUMMY_RELOC_LITUSE_JSR          (BFD_RELOC_UNUSED + 4)
#define DUMMY_RELOC_LITUSE_TLSGD        (BFD_RELOC_UNUSED + 5)
#define DUMMY_RELOC_LITUSE_TLSGD        (BFD_RELOC_UNUSED + 5)
#define DUMMY_RELOC_LITUSE_TLSLDM       (BFD_RELOC_UNUSED + 6)
#define DUMMY_RELOC_LITUSE_TLSLDM       (BFD_RELOC_UNUSED + 6)
#define DUMMY_RELOC_LITUSE_JSRDIRECT    (BFD_RELOC_UNUSED + 7)
#define DUMMY_RELOC_LITUSE_JSRDIRECT    (BFD_RELOC_UNUSED + 7)
 
 
#define USER_RELOC_P(R) ((R) >= O_literal && (R) <= O_tprel)
#define USER_RELOC_P(R) ((R) >= O_literal && (R) <= O_tprel)
 
 
/* Macros for extracting the type and number of encoded register tokens.  */
/* Macros for extracting the type and number of encoded register tokens.  */
 
 
#define is_ir_num(x)            (((x) & 32) == 0)
#define is_ir_num(x)            (((x) & 32) == 0)
#define is_fpr_num(x)           (((x) & 32) != 0)
#define is_fpr_num(x)           (((x) & 32) != 0)
#define regno(x)                ((x) & 31)
#define regno(x)                ((x) & 31)
 
 
/* Something odd inherited from the old assembler.  */
/* Something odd inherited from the old assembler.  */
 
 
#define note_gpreg(R)           (alpha_gprmask |= (1 << (R)))
#define note_gpreg(R)           (alpha_gprmask |= (1 << (R)))
#define note_fpreg(R)           (alpha_fprmask |= (1 << (R)))
#define note_fpreg(R)           (alpha_fprmask |= (1 << (R)))
 
 
/* Predicates for 16- and 32-bit ranges */
/* Predicates for 16- and 32-bit ranges */
/* XXX: The non-shift version appears to trigger a compiler bug when
/* XXX: The non-shift version appears to trigger a compiler bug when
   cross-assembling from x86 w/ gcc 2.7.2.  */
   cross-assembling from x86 w/ gcc 2.7.2.  */
 
 
#if 1
#if 1
#define range_signed_16(x) \
#define range_signed_16(x) \
        (((offsetT) (x) >> 15) == 0 || ((offsetT) (x) >> 15) == -1)
        (((offsetT) (x) >> 15) == 0 || ((offsetT) (x) >> 15) == -1)
#define range_signed_32(x) \
#define range_signed_32(x) \
        (((offsetT) (x) >> 31) == 0 || ((offsetT) (x) >> 31) == -1)
        (((offsetT) (x) >> 31) == 0 || ((offsetT) (x) >> 31) == -1)
#else
#else
#define range_signed_16(x)      ((offsetT) (x) >= -(offsetT) 0x8000 &&  \
#define range_signed_16(x)      ((offsetT) (x) >= -(offsetT) 0x8000 &&  \
                                 (offsetT) (x) <=  (offsetT) 0x7FFF)
                                 (offsetT) (x) <=  (offsetT) 0x7FFF)
#define range_signed_32(x)      ((offsetT) (x) >= -(offsetT) 0x80000000 && \
#define range_signed_32(x)      ((offsetT) (x) >= -(offsetT) 0x80000000 && \
                                 (offsetT) (x) <=  (offsetT) 0x7FFFFFFF)
                                 (offsetT) (x) <=  (offsetT) 0x7FFFFFFF)
#endif
#endif
 
 
/* Macros for sign extending from 16- and 32-bits.  */
/* Macros for sign extending from 16- and 32-bits.  */
/* XXX: The cast macros will work on all the systems that I care about,
/* XXX: The cast macros will work on all the systems that I care about,
   but really a predicate should be found to use the non-cast forms.  */
   but really a predicate should be found to use the non-cast forms.  */
 
 
#if 1
#if 1
#define sign_extend_16(x)       ((short) (x))
#define sign_extend_16(x)       ((short) (x))
#define sign_extend_32(x)       ((int) (x))
#define sign_extend_32(x)       ((int) (x))
#else
#else
#define sign_extend_16(x)       ((offsetT) (((x) & 0xFFFF) ^ 0x8000) - 0x8000)
#define sign_extend_16(x)       ((offsetT) (((x) & 0xFFFF) ^ 0x8000) - 0x8000)
#define sign_extend_32(x)       ((offsetT) (((x) & 0xFFFFFFFF) \
#define sign_extend_32(x)       ((offsetT) (((x) & 0xFFFFFFFF) \
                                           ^ 0x80000000) - 0x80000000)
                                           ^ 0x80000000) - 0x80000000)
#endif
#endif
 
 
/* Macros to build tokens.  */
/* Macros to build tokens.  */
 
 
#define set_tok_reg(t, r)       (memset (&(t), 0, sizeof (t)),          \
#define set_tok_reg(t, r)       (memset (&(t), 0, sizeof (t)),          \
                                 (t).X_op = O_register,                 \
                                 (t).X_op = O_register,                 \
                                 (t).X_add_number = (r))
                                 (t).X_add_number = (r))
#define set_tok_preg(t, r)      (memset (&(t), 0, sizeof (t)),          \
#define set_tok_preg(t, r)      (memset (&(t), 0, sizeof (t)),          \
                                 (t).X_op = O_pregister,                \
                                 (t).X_op = O_pregister,                \
                                 (t).X_add_number = (r))
                                 (t).X_add_number = (r))
#define set_tok_cpreg(t, r)     (memset (&(t), 0, sizeof (t)),          \
#define set_tok_cpreg(t, r)     (memset (&(t), 0, sizeof (t)),          \
                                 (t).X_op = O_cpregister,               \
                                 (t).X_op = O_cpregister,               \
                                 (t).X_add_number = (r))
                                 (t).X_add_number = (r))
#define set_tok_freg(t, r)      (memset (&(t), 0, sizeof (t)),          \
#define set_tok_freg(t, r)      (memset (&(t), 0, sizeof (t)),          \
                                 (t).X_op = O_register,                 \
                                 (t).X_op = O_register,                 \
                                 (t).X_add_number = (r) + 32)
                                 (t).X_add_number = (r) + 32)
#define set_tok_sym(t, s, a)    (memset (&(t), 0, sizeof (t)),          \
#define set_tok_sym(t, s, a)    (memset (&(t), 0, sizeof (t)),          \
                                 (t).X_op = O_symbol,                   \
                                 (t).X_op = O_symbol,                   \
                                 (t).X_add_symbol = (s),                \
                                 (t).X_add_symbol = (s),                \
                                 (t).X_add_number = (a))
                                 (t).X_add_number = (a))
#define set_tok_const(t, n)     (memset (&(t), 0, sizeof (t)),          \
#define set_tok_const(t, n)     (memset (&(t), 0, sizeof (t)),          \
                                 (t).X_op = O_constant,                 \
                                 (t).X_op = O_constant,                 \
                                 (t).X_add_number = (n))
                                 (t).X_add_number = (n))


/* Generic assembler global variables which must be defined by all
/* Generic assembler global variables which must be defined by all
   targets.  */
   targets.  */
 
 
/* Characters which always start a comment.  */
/* Characters which always start a comment.  */
const char comment_chars[] = "#";
const char comment_chars[] = "#";
 
 
/* Characters which start a comment at the beginning of a line.  */
/* Characters which start a comment at the beginning of a line.  */
const char line_comment_chars[] = "#";
const char line_comment_chars[] = "#";
 
 
/* Characters which may be used to separate multiple commands on a
/* Characters which may be used to separate multiple commands on a
   single line.  */
   single line.  */
const char line_separator_chars[] = ";";
const char line_separator_chars[] = ";";
 
 
/* Characters which are used to indicate an exponent in a floating
/* Characters which are used to indicate an exponent in a floating
   point number.  */
   point number.  */
const char EXP_CHARS[] = "eE";
const char EXP_CHARS[] = "eE";
 
 
/* Characters which mean that a number is a floating point constant,
/* Characters which mean that a number is a floating point constant,
   as in 0d1.0.  */
   as in 0d1.0.  */
/* XXX: Do all of these really get used on the alpha??  */
/* XXX: Do all of these really get used on the alpha??  */
char FLT_CHARS[] = "rRsSfFdDxXpP";
char FLT_CHARS[] = "rRsSfFdDxXpP";
 
 
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
const char *md_shortopts = "Fm:g+1h:HG:";
const char *md_shortopts = "Fm:g+1h:HG:";
#else
#else
const char *md_shortopts = "Fm:gG:";
const char *md_shortopts = "Fm:gG:";
#endif
#endif
 
 
struct option md_longopts[] =
struct option md_longopts[] =
  {
  {
#define OPTION_32ADDR (OPTION_MD_BASE)
#define OPTION_32ADDR (OPTION_MD_BASE)
    { "32addr", no_argument, NULL, OPTION_32ADDR },
    { "32addr", no_argument, NULL, OPTION_32ADDR },
#define OPTION_RELAX (OPTION_32ADDR + 1)
#define OPTION_RELAX (OPTION_32ADDR + 1)
    { "relax", no_argument, NULL, OPTION_RELAX },
    { "relax", no_argument, NULL, OPTION_RELAX },
#ifdef OBJ_ELF
#ifdef OBJ_ELF
#define OPTION_MDEBUG (OPTION_RELAX + 1)
#define OPTION_MDEBUG (OPTION_RELAX + 1)
#define OPTION_NO_MDEBUG (OPTION_MDEBUG + 1)
#define OPTION_NO_MDEBUG (OPTION_MDEBUG + 1)
    { "mdebug", no_argument, NULL, OPTION_MDEBUG },
    { "mdebug", no_argument, NULL, OPTION_MDEBUG },
    { "no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG },
    { "no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG },
#endif
#endif
    { NULL, no_argument, NULL, 0 }
    { NULL, no_argument, NULL, 0 }
  };
  };
 
 
size_t md_longopts_size = sizeof (md_longopts);
size_t md_longopts_size = sizeof (md_longopts);


#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
#define AXP_REG_R0     0
#define AXP_REG_R0     0
#define AXP_REG_R16    16
#define AXP_REG_R16    16
#define AXP_REG_R17    17
#define AXP_REG_R17    17
#undef AXP_REG_T9
#undef AXP_REG_T9
#define AXP_REG_T9     22
#define AXP_REG_T9     22
#undef AXP_REG_T10
#undef AXP_REG_T10
#define AXP_REG_T10    23
#define AXP_REG_T10    23
#undef AXP_REG_T11
#undef AXP_REG_T11
#define AXP_REG_T11    24
#define AXP_REG_T11    24
#undef AXP_REG_T12
#undef AXP_REG_T12
#define AXP_REG_T12    25
#define AXP_REG_T12    25
#define AXP_REG_AI     25
#define AXP_REG_AI     25
#undef AXP_REG_FP
#undef AXP_REG_FP
#define AXP_REG_FP     29
#define AXP_REG_FP     29
 
 
#undef AXP_REG_GP
#undef AXP_REG_GP
#define AXP_REG_GP AXP_REG_PV
#define AXP_REG_GP AXP_REG_PV
#endif /* OBJ_EVAX  */
#endif /* OBJ_EVAX  */
 
 
/* The cpu for which we are generating code.  */
/* The cpu for which we are generating code.  */
static unsigned alpha_target = AXP_OPCODE_BASE;
static unsigned alpha_target = AXP_OPCODE_BASE;
static const char *alpha_target_name = "<all>";
static const char *alpha_target_name = "<all>";
 
 
/* The hash table of instruction opcodes.  */
/* The hash table of instruction opcodes.  */
static struct hash_control *alpha_opcode_hash;
static struct hash_control *alpha_opcode_hash;
 
 
/* The hash table of macro opcodes.  */
/* The hash table of macro opcodes.  */
static struct hash_control *alpha_macro_hash;
static struct hash_control *alpha_macro_hash;
 
 
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
/* The $gp relocation symbol.  */
/* The $gp relocation symbol.  */
static symbolS *alpha_gp_symbol;
static symbolS *alpha_gp_symbol;
 
 
/* XXX: what is this, and why is it exported? */
/* XXX: what is this, and why is it exported? */
valueT alpha_gp_value;
valueT alpha_gp_value;
#endif
#endif
 
 
/* The current $gp register.  */
/* The current $gp register.  */
static int alpha_gp_register = AXP_REG_GP;
static int alpha_gp_register = AXP_REG_GP;
 
 
/* A table of the register symbols.  */
/* A table of the register symbols.  */
static symbolS *alpha_register_table[64];
static symbolS *alpha_register_table[64];
 
 
/* Constant sections, or sections of constants.  */
/* Constant sections, or sections of constants.  */
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
static segT alpha_lita_section;
static segT alpha_lita_section;
#endif
#endif
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
static segT alpha_link_section;
static segT alpha_link_section;
static segT alpha_ctors_section;
static segT alpha_ctors_section;
static segT alpha_dtors_section;
static segT alpha_dtors_section;
#endif
#endif
static segT alpha_lit8_section;
static segT alpha_lit8_section;
 
 
/* Symbols referring to said sections.  */
/* Symbols referring to said sections.  */
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
static symbolS *alpha_lita_symbol;
static symbolS *alpha_lita_symbol;
#endif
#endif
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
static symbolS *alpha_link_symbol;
static symbolS *alpha_link_symbol;
static symbolS *alpha_ctors_symbol;
static symbolS *alpha_ctors_symbol;
static symbolS *alpha_dtors_symbol;
static symbolS *alpha_dtors_symbol;
#endif
#endif
static symbolS *alpha_lit8_symbol;
static symbolS *alpha_lit8_symbol;
 
 
/* Literal for .litX+0x8000 within .lita.  */
/* Literal for .litX+0x8000 within .lita.  */
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
static offsetT alpha_lit8_literal;
static offsetT alpha_lit8_literal;
#endif
#endif
 
 
/* Is the assembler not allowed to use $at?  */
/* Is the assembler not allowed to use $at?  */
static int alpha_noat_on = 0;
static int alpha_noat_on = 0;
 
 
/* Are macros enabled?  */
/* Are macros enabled?  */
static int alpha_macros_on = 1;
static int alpha_macros_on = 1;
 
 
/* Are floats disabled?  */
/* Are floats disabled?  */
static int alpha_nofloats_on = 0;
static int alpha_nofloats_on = 0;
 
 
/* Are addresses 32 bit?  */
/* Are addresses 32 bit?  */
static int alpha_addr32_on = 0;
static int alpha_addr32_on = 0;
 
 
/* Symbol labelling the current insn.  When the Alpha gas sees
/* Symbol labelling the current insn.  When the Alpha gas sees
     foo:
     foo:
       .quad 0
       .quad 0
   and the section happens to not be on an eight byte boundary, it
   and the section happens to not be on an eight byte boundary, it
   will align both the symbol and the .quad to an eight byte boundary.  */
   will align both the symbol and the .quad to an eight byte boundary.  */
static symbolS *alpha_insn_label;
static symbolS *alpha_insn_label;
 
 
/* Whether we should automatically align data generation pseudo-ops.
/* Whether we should automatically align data generation pseudo-ops.
   .align 0 will turn this off.  */
   .align 0 will turn this off.  */
static int alpha_auto_align_on = 1;
static int alpha_auto_align_on = 1;
 
 
/* The known current alignment of the current section.  */
/* The known current alignment of the current section.  */
static int alpha_current_align;
static int alpha_current_align;
 
 
/* These are exported to ECOFF code.  */
/* These are exported to ECOFF code.  */
unsigned long alpha_gprmask, alpha_fprmask;
unsigned long alpha_gprmask, alpha_fprmask;
 
 
/* Whether the debugging option was seen.  */
/* Whether the debugging option was seen.  */
static int alpha_debug;
static int alpha_debug;
 
 
#ifdef OBJ_ELF
#ifdef OBJ_ELF
/* Whether we are emitting an mdebug section.  */
/* Whether we are emitting an mdebug section.  */
int alpha_flag_mdebug = -1;
int alpha_flag_mdebug = -1;
#endif
#endif
 
 
/* Don't fully resolve relocations, allowing code movement in the linker.  */
/* Don't fully resolve relocations, allowing code movement in the linker.  */
static int alpha_flag_relax;
static int alpha_flag_relax;
 
 
/* What value to give to bfd_set_gp_size.  */
/* What value to give to bfd_set_gp_size.  */
static int g_switch_value = 8;
static int g_switch_value = 8;
 
 
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
/* Collect information about current procedure here.  */
/* Collect information about current procedure here.  */
static struct
static struct
{
{
  symbolS *symbol;      /* Proc pdesc symbol.  */
  symbolS *symbol;      /* Proc pdesc symbol.  */
  int pdsckind;
  int pdsckind;
  int framereg;         /* Register for frame pointer.  */
  int framereg;         /* Register for frame pointer.  */
  int framesize;        /* Size of frame.  */
  int framesize;        /* Size of frame.  */
  int rsa_offset;
  int rsa_offset;
  int ra_save;
  int ra_save;
  int fp_save;
  int fp_save;
  long imask;
  long imask;
  long fmask;
  long fmask;
  int type;
  int type;
  int prologue;
  int prologue;
} alpha_evax_proc;
} alpha_evax_proc;
 
 
static int alpha_flag_hash_long_names = 0;               /* -+ */
static int alpha_flag_hash_long_names = 0;               /* -+ */
static int alpha_flag_show_after_trunc = 0;              /* -H */
static int alpha_flag_show_after_trunc = 0;              /* -H */
 
 
/* If the -+ switch is given, then a hash is appended to any name that is
/* If the -+ switch is given, then a hash is appended to any name that is
   longer than 64 characters, else longer symbol names are truncated.  */
   longer than 64 characters, else longer symbol names are truncated.  */
 
 
#endif
#endif


#ifdef RELOC_OP_P
#ifdef RELOC_OP_P
/* A table to map the spelling of a relocation operand into an appropriate
/* A table to map the spelling of a relocation operand into an appropriate
   bfd_reloc_code_real_type type.  The table is assumed to be ordered such
   bfd_reloc_code_real_type type.  The table is assumed to be ordered such
   that op-O_literal indexes into it.  */
   that op-O_literal indexes into it.  */
 
 
#define ALPHA_RELOC_TABLE(op)                                           \
#define ALPHA_RELOC_TABLE(op)                                           \
(&alpha_reloc_op[ ((!USER_RELOC_P (op))                                 \
(&alpha_reloc_op[ ((!USER_RELOC_P (op))                                 \
                  ? (abort (), 0)                                        \
                  ? (abort (), 0)                                        \
                  : (int) (op) - (int) O_literal) ])
                  : (int) (op) - (int) O_literal) ])
 
 
#define DEF(NAME, RELOC, REQ, ALLOW) \
#define DEF(NAME, RELOC, REQ, ALLOW) \
 { #NAME, sizeof(#NAME)-1, O_##NAME, RELOC, REQ, ALLOW}
 { #NAME, sizeof(#NAME)-1, O_##NAME, RELOC, REQ, ALLOW}
 
 
static const struct alpha_reloc_op_tag
static const struct alpha_reloc_op_tag
{
{
  const char *name;                             /* String to lookup.  */
  const char *name;                             /* String to lookup.  */
  size_t length;                                /* Size of the string.  */
  size_t length;                                /* Size of the string.  */
  operatorT op;                                 /* Which operator to use.  */
  operatorT op;                                 /* Which operator to use.  */
  bfd_reloc_code_real_type reloc;               /* Relocation before frob.  */
  bfd_reloc_code_real_type reloc;               /* Relocation before frob.  */
  unsigned int require_seq : 1;                 /* Require a sequence number.  */
  unsigned int require_seq : 1;                 /* Require a sequence number.  */
  unsigned int allow_seq : 1;                   /* Allow a sequence number.  */
  unsigned int allow_seq : 1;                   /* Allow a sequence number.  */
}
}
alpha_reloc_op[] =
alpha_reloc_op[] =
{
{
  DEF (literal, BFD_RELOC_ALPHA_ELF_LITERAL, 0, 1),
  DEF (literal, BFD_RELOC_ALPHA_ELF_LITERAL, 0, 1),
  DEF (lituse_addr, DUMMY_RELOC_LITUSE_ADDR, 1, 1),
  DEF (lituse_addr, DUMMY_RELOC_LITUSE_ADDR, 1, 1),
  DEF (lituse_base, DUMMY_RELOC_LITUSE_BASE, 1, 1),
  DEF (lituse_base, DUMMY_RELOC_LITUSE_BASE, 1, 1),
  DEF (lituse_bytoff, DUMMY_RELOC_LITUSE_BYTOFF, 1, 1),
  DEF (lituse_bytoff, DUMMY_RELOC_LITUSE_BYTOFF, 1, 1),
  DEF (lituse_jsr, DUMMY_RELOC_LITUSE_JSR, 1, 1),
  DEF (lituse_jsr, DUMMY_RELOC_LITUSE_JSR, 1, 1),
  DEF (lituse_tlsgd, DUMMY_RELOC_LITUSE_TLSGD, 1, 1),
  DEF (lituse_tlsgd, DUMMY_RELOC_LITUSE_TLSGD, 1, 1),
  DEF (lituse_tlsldm, DUMMY_RELOC_LITUSE_TLSLDM, 1, 1),
  DEF (lituse_tlsldm, DUMMY_RELOC_LITUSE_TLSLDM, 1, 1),
  DEF (lituse_jsrdirect, DUMMY_RELOC_LITUSE_JSRDIRECT, 1, 1),
  DEF (lituse_jsrdirect, DUMMY_RELOC_LITUSE_JSRDIRECT, 1, 1),
  DEF (gpdisp, BFD_RELOC_ALPHA_GPDISP, 1, 1),
  DEF (gpdisp, BFD_RELOC_ALPHA_GPDISP, 1, 1),
  DEF (gprelhigh, BFD_RELOC_ALPHA_GPREL_HI16, 0, 0),
  DEF (gprelhigh, BFD_RELOC_ALPHA_GPREL_HI16, 0, 0),
  DEF (gprellow, BFD_RELOC_ALPHA_GPREL_LO16, 0, 0),
  DEF (gprellow, BFD_RELOC_ALPHA_GPREL_LO16, 0, 0),
  DEF (gprel, BFD_RELOC_GPREL16, 0, 0),
  DEF (gprel, BFD_RELOC_GPREL16, 0, 0),
  DEF (samegp, BFD_RELOC_ALPHA_BRSGP, 0, 0),
  DEF (samegp, BFD_RELOC_ALPHA_BRSGP, 0, 0),
  DEF (tlsgd, BFD_RELOC_ALPHA_TLSGD, 0, 1),
  DEF (tlsgd, BFD_RELOC_ALPHA_TLSGD, 0, 1),
  DEF (tlsldm, BFD_RELOC_ALPHA_TLSLDM, 0, 1),
  DEF (tlsldm, BFD_RELOC_ALPHA_TLSLDM, 0, 1),
  DEF (gotdtprel, BFD_RELOC_ALPHA_GOTDTPREL16, 0, 0),
  DEF (gotdtprel, BFD_RELOC_ALPHA_GOTDTPREL16, 0, 0),
  DEF (dtprelhi, BFD_RELOC_ALPHA_DTPREL_HI16, 0, 0),
  DEF (dtprelhi, BFD_RELOC_ALPHA_DTPREL_HI16, 0, 0),
  DEF (dtprello, BFD_RELOC_ALPHA_DTPREL_LO16, 0, 0),
  DEF (dtprello, BFD_RELOC_ALPHA_DTPREL_LO16, 0, 0),
  DEF (dtprel, BFD_RELOC_ALPHA_DTPREL16, 0, 0),
  DEF (dtprel, BFD_RELOC_ALPHA_DTPREL16, 0, 0),
  DEF (gottprel, BFD_RELOC_ALPHA_GOTTPREL16, 0, 0),
  DEF (gottprel, BFD_RELOC_ALPHA_GOTTPREL16, 0, 0),
  DEF (tprelhi, BFD_RELOC_ALPHA_TPREL_HI16, 0, 0),
  DEF (tprelhi, BFD_RELOC_ALPHA_TPREL_HI16, 0, 0),
  DEF (tprello, BFD_RELOC_ALPHA_TPREL_LO16, 0, 0),
  DEF (tprello, BFD_RELOC_ALPHA_TPREL_LO16, 0, 0),
  DEF (tprel, BFD_RELOC_ALPHA_TPREL16, 0, 0),
  DEF (tprel, BFD_RELOC_ALPHA_TPREL16, 0, 0),
};
};
 
 
#undef DEF
#undef DEF
 
 
static const int alpha_num_reloc_op
static const int alpha_num_reloc_op
  = sizeof (alpha_reloc_op) / sizeof (*alpha_reloc_op);
  = sizeof (alpha_reloc_op) / sizeof (*alpha_reloc_op);
#endif /* RELOC_OP_P */
#endif /* RELOC_OP_P */
 
 
/* Maximum # digits needed to hold the largest sequence #.  */
/* Maximum # digits needed to hold the largest sequence #.  */
#define ALPHA_RELOC_DIGITS 25
#define ALPHA_RELOC_DIGITS 25
 
 
/* Structure to hold explicit sequence information.  */
/* Structure to hold explicit sequence information.  */
struct alpha_reloc_tag
struct alpha_reloc_tag
{
{
  fixS *master;                 /* The literal reloc.  */
  fixS *master;                 /* The literal reloc.  */
  fixS *slaves;                 /* Head of linked list of lituses.  */
  fixS *slaves;                 /* Head of linked list of lituses.  */
  segT segment;                 /* Segment relocs are in or undefined_section.  */
  segT segment;                 /* Segment relocs are in or undefined_section.  */
  long sequence;                /* Sequence #.  */
  long sequence;                /* Sequence #.  */
  unsigned n_master;            /* # of literals.  */
  unsigned n_master;            /* # of literals.  */
  unsigned n_slaves;            /* # of lituses.  */
  unsigned n_slaves;            /* # of lituses.  */
  unsigned saw_tlsgd : 1;       /* True if ...  */
  unsigned saw_tlsgd : 1;       /* True if ...  */
  unsigned saw_tlsldm : 1;
  unsigned saw_tlsldm : 1;
  unsigned saw_lu_tlsgd : 1;
  unsigned saw_lu_tlsgd : 1;
  unsigned saw_lu_tlsldm : 1;
  unsigned saw_lu_tlsldm : 1;
  unsigned multi_section_p : 1; /* True if more than one section was used.  */
  unsigned multi_section_p : 1; /* True if more than one section was used.  */
  char string[1];               /* Printable form of sequence to hash with.  */
  char string[1];               /* Printable form of sequence to hash with.  */
};
};
 
 
/* Hash table to link up literals with the appropriate lituse.  */
/* Hash table to link up literals with the appropriate lituse.  */
static struct hash_control *alpha_literal_hash;
static struct hash_control *alpha_literal_hash;
 
 
/* Sequence numbers for internal use by macros.  */
/* Sequence numbers for internal use by macros.  */
static long next_sequence_num = -1;
static long next_sequence_num = -1;


/* A table of CPU names and opcode sets.  */
/* A table of CPU names and opcode sets.  */
 
 
static const struct cpu_type
static const struct cpu_type
{
{
  const char *name;
  const char *name;
  unsigned flags;
  unsigned flags;
}
}
cpu_types[] =
cpu_types[] =
{
{
  /* Ad hoc convention: cpu number gets palcode, process code doesn't.
  /* Ad hoc convention: cpu number gets palcode, process code doesn't.
     This supports usage under DU 4.0b that does ".arch ev4", and
     This supports usage under DU 4.0b that does ".arch ev4", and
     usage in MILO that does -m21064.  Probably something more
     usage in MILO that does -m21064.  Probably something more
     specific like -m21064-pal should be used, but oh well.  */
     specific like -m21064-pal should be used, but oh well.  */
 
 
  { "21064", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
  { "21064", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
  { "21064a", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
  { "21064a", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
  { "21066", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
  { "21066", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
  { "21068", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
  { "21068", AXP_OPCODE_BASE|AXP_OPCODE_EV4 },
  { "21164", AXP_OPCODE_BASE|AXP_OPCODE_EV5 },
  { "21164", AXP_OPCODE_BASE|AXP_OPCODE_EV5 },
  { "21164a", AXP_OPCODE_BASE|AXP_OPCODE_EV5|AXP_OPCODE_BWX },
  { "21164a", AXP_OPCODE_BASE|AXP_OPCODE_EV5|AXP_OPCODE_BWX },
  { "21164pc", (AXP_OPCODE_BASE|AXP_OPCODE_EV5|AXP_OPCODE_BWX
  { "21164pc", (AXP_OPCODE_BASE|AXP_OPCODE_EV5|AXP_OPCODE_BWX
                |AXP_OPCODE_MAX) },
                |AXP_OPCODE_MAX) },
  { "21264", (AXP_OPCODE_BASE|AXP_OPCODE_EV6|AXP_OPCODE_BWX
  { "21264", (AXP_OPCODE_BASE|AXP_OPCODE_EV6|AXP_OPCODE_BWX
              |AXP_OPCODE_MAX|AXP_OPCODE_CIX) },
              |AXP_OPCODE_MAX|AXP_OPCODE_CIX) },
  { "21264a", (AXP_OPCODE_BASE|AXP_OPCODE_EV6|AXP_OPCODE_BWX
  { "21264a", (AXP_OPCODE_BASE|AXP_OPCODE_EV6|AXP_OPCODE_BWX
              |AXP_OPCODE_MAX|AXP_OPCODE_CIX) },
              |AXP_OPCODE_MAX|AXP_OPCODE_CIX) },
  { "21264b", (AXP_OPCODE_BASE|AXP_OPCODE_EV6|AXP_OPCODE_BWX
  { "21264b", (AXP_OPCODE_BASE|AXP_OPCODE_EV6|AXP_OPCODE_BWX
              |AXP_OPCODE_MAX|AXP_OPCODE_CIX) },
              |AXP_OPCODE_MAX|AXP_OPCODE_CIX) },
 
 
  { "ev4", AXP_OPCODE_BASE },
  { "ev4", AXP_OPCODE_BASE },
  { "ev45", AXP_OPCODE_BASE },
  { "ev45", AXP_OPCODE_BASE },
  { "lca45", AXP_OPCODE_BASE },
  { "lca45", AXP_OPCODE_BASE },
  { "ev5", AXP_OPCODE_BASE },
  { "ev5", AXP_OPCODE_BASE },
  { "ev56", AXP_OPCODE_BASE|AXP_OPCODE_BWX },
  { "ev56", AXP_OPCODE_BASE|AXP_OPCODE_BWX },
  { "pca56", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_MAX },
  { "pca56", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_MAX },
  { "ev6", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_MAX|AXP_OPCODE_CIX },
  { "ev6", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_MAX|AXP_OPCODE_CIX },
  { "ev67", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_MAX|AXP_OPCODE_CIX },
  { "ev67", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_MAX|AXP_OPCODE_CIX },
  { "ev68", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_MAX|AXP_OPCODE_CIX },
  { "ev68", AXP_OPCODE_BASE|AXP_OPCODE_BWX|AXP_OPCODE_MAX|AXP_OPCODE_CIX },
 
 
  { "all", AXP_OPCODE_BASE },
  { "all", AXP_OPCODE_BASE },
  { 0, 0 }
  { 0, 0 }
};
};
 
 
/* Some instruction sets indexed by lg(size).  */
/* Some instruction sets indexed by lg(size).  */
static const char * const sextX_op[] = { "sextb", "sextw", "sextl", NULL };
static const char * const sextX_op[] = { "sextb", "sextw", "sextl", NULL };
static const char * const insXl_op[] = { "insbl", "inswl", "insll", "insql" };
static const char * const insXl_op[] = { "insbl", "inswl", "insll", "insql" };
static const char * const insXh_op[] = { NULL,    "inswh", "inslh", "insqh" };
static const char * const insXh_op[] = { NULL,    "inswh", "inslh", "insqh" };
static const char * const extXl_op[] = { "extbl", "extwl", "extll", "extql" };
static const char * const extXl_op[] = { "extbl", "extwl", "extll", "extql" };
static const char * const extXh_op[] = { NULL,    "extwh", "extlh", "extqh" };
static const char * const extXh_op[] = { NULL,    "extwh", "extlh", "extqh" };
static const char * const mskXl_op[] = { "mskbl", "mskwl", "mskll", "mskql" };
static const char * const mskXl_op[] = { "mskbl", "mskwl", "mskll", "mskql" };
static const char * const mskXh_op[] = { NULL,    "mskwh", "msklh", "mskqh" };
static const char * const mskXh_op[] = { NULL,    "mskwh", "msklh", "mskqh" };
static const char * const stX_op[] = { "stb", "stw", "stl", "stq" };
static const char * const stX_op[] = { "stb", "stw", "stl", "stq" };
static const char * const ldXu_op[] = { "ldbu", "ldwu", NULL, NULL };
static const char * const ldXu_op[] = { "ldbu", "ldwu", NULL, NULL };
 
 
static void assemble_insn (const struct alpha_opcode *, const expressionS *, int, struct alpha_insn *, bfd_reloc_code_real_type);
static void assemble_insn (const struct alpha_opcode *, const expressionS *, int, struct alpha_insn *, bfd_reloc_code_real_type);
static void emit_insn (struct alpha_insn *);
static void emit_insn (struct alpha_insn *);
static void assemble_tokens (const char *, const expressionS *, int, int);
static void assemble_tokens (const char *, const expressionS *, int, int);


static struct alpha_reloc_tag *
static struct alpha_reloc_tag *
get_alpha_reloc_tag (long sequence)
get_alpha_reloc_tag (long sequence)
{
{
  char buffer[ALPHA_RELOC_DIGITS];
  char buffer[ALPHA_RELOC_DIGITS];
  struct alpha_reloc_tag *info;
  struct alpha_reloc_tag *info;
 
 
  sprintf (buffer, "!%ld", sequence);
  sprintf (buffer, "!%ld", sequence);
 
 
  info = (struct alpha_reloc_tag *) hash_find (alpha_literal_hash, buffer);
  info = (struct alpha_reloc_tag *) hash_find (alpha_literal_hash, buffer);
  if (! info)
  if (! info)
    {
    {
      size_t len = strlen (buffer);
      size_t len = strlen (buffer);
      const char *errmsg;
      const char *errmsg;
 
 
      info = xcalloc (sizeof (struct alpha_reloc_tag) + len, 1);
      info = xcalloc (sizeof (struct alpha_reloc_tag) + len, 1);
 
 
      info->segment = now_seg;
      info->segment = now_seg;
      info->sequence = sequence;
      info->sequence = sequence;
      strcpy (info->string, buffer);
      strcpy (info->string, buffer);
      errmsg = hash_insert (alpha_literal_hash, info->string, (void *) info);
      errmsg = hash_insert (alpha_literal_hash, info->string, (void *) info);
      if (errmsg)
      if (errmsg)
        as_fatal (errmsg);
        as_fatal (errmsg);
    }
    }
 
 
  return info;
  return info;
}
}
 
 
static void
static void
alpha_adjust_relocs (bfd *abfd ATTRIBUTE_UNUSED,
alpha_adjust_relocs (bfd *abfd ATTRIBUTE_UNUSED,
                     asection *sec,
                     asection *sec,
                     void * ptr ATTRIBUTE_UNUSED)
                     void * ptr ATTRIBUTE_UNUSED)
{
{
  segment_info_type *seginfo = seg_info (sec);
  segment_info_type *seginfo = seg_info (sec);
  fixS **prevP;
  fixS **prevP;
  fixS *fixp;
  fixS *fixp;
  fixS *next;
  fixS *next;
  fixS *slave;
  fixS *slave;
 
 
  /* If seginfo is NULL, we did not create this section; don't do
  /* If seginfo is NULL, we did not create this section; don't do
     anything with it.  By using a pointer to a pointer, we can update
     anything with it.  By using a pointer to a pointer, we can update
     the links in place.  */
     the links in place.  */
  if (seginfo == NULL)
  if (seginfo == NULL)
    return;
    return;
 
 
  /* If there are no relocations, skip the section.  */
  /* If there are no relocations, skip the section.  */
  if (! seginfo->fix_root)
  if (! seginfo->fix_root)
    return;
    return;
 
 
  /* First rebuild the fixup chain without the explicit lituse and
  /* First rebuild the fixup chain without the explicit lituse and
     gpdisp_lo16 relocs.  */
     gpdisp_lo16 relocs.  */
  prevP = &seginfo->fix_root;
  prevP = &seginfo->fix_root;
  for (fixp = seginfo->fix_root; fixp; fixp = next)
  for (fixp = seginfo->fix_root; fixp; fixp = next)
    {
    {
      next = fixp->fx_next;
      next = fixp->fx_next;
      fixp->fx_next = (fixS *) 0;
      fixp->fx_next = (fixS *) 0;
 
 
      switch (fixp->fx_r_type)
      switch (fixp->fx_r_type)
        {
        {
        case BFD_RELOC_ALPHA_LITUSE:
        case BFD_RELOC_ALPHA_LITUSE:
          if (fixp->tc_fix_data.info->n_master == 0)
          if (fixp->tc_fix_data.info->n_master == 0)
            as_bad_where (fixp->fx_file, fixp->fx_line,
            as_bad_where (fixp->fx_file, fixp->fx_line,
                          _("No !literal!%ld was found"),
                          _("No !literal!%ld was found"),
                          fixp->tc_fix_data.info->sequence);
                          fixp->tc_fix_data.info->sequence);
#ifdef RELOC_OP_P
#ifdef RELOC_OP_P
          if (fixp->fx_offset == LITUSE_ALPHA_TLSGD)
          if (fixp->fx_offset == LITUSE_ALPHA_TLSGD)
            {
            {
              if (! fixp->tc_fix_data.info->saw_tlsgd)
              if (! fixp->tc_fix_data.info->saw_tlsgd)
                as_bad_where (fixp->fx_file, fixp->fx_line,
                as_bad_where (fixp->fx_file, fixp->fx_line,
                              _("No !tlsgd!%ld was found"),
                              _("No !tlsgd!%ld was found"),
                              fixp->tc_fix_data.info->sequence);
                              fixp->tc_fix_data.info->sequence);
            }
            }
          else if (fixp->fx_offset == LITUSE_ALPHA_TLSLDM)
          else if (fixp->fx_offset == LITUSE_ALPHA_TLSLDM)
            {
            {
              if (! fixp->tc_fix_data.info->saw_tlsldm)
              if (! fixp->tc_fix_data.info->saw_tlsldm)
                as_bad_where (fixp->fx_file, fixp->fx_line,
                as_bad_where (fixp->fx_file, fixp->fx_line,
                              _("No !tlsldm!%ld was found"),
                              _("No !tlsldm!%ld was found"),
                              fixp->tc_fix_data.info->sequence);
                              fixp->tc_fix_data.info->sequence);
            }
            }
#endif
#endif
          break;
          break;
 
 
        case BFD_RELOC_ALPHA_GPDISP_LO16:
        case BFD_RELOC_ALPHA_GPDISP_LO16:
          if (fixp->tc_fix_data.info->n_master == 0)
          if (fixp->tc_fix_data.info->n_master == 0)
            as_bad_where (fixp->fx_file, fixp->fx_line,
            as_bad_where (fixp->fx_file, fixp->fx_line,
                          _("No ldah !gpdisp!%ld was found"),
                          _("No ldah !gpdisp!%ld was found"),
                          fixp->tc_fix_data.info->sequence);
                          fixp->tc_fix_data.info->sequence);
          break;
          break;
 
 
        case BFD_RELOC_ALPHA_ELF_LITERAL:
        case BFD_RELOC_ALPHA_ELF_LITERAL:
          if (fixp->tc_fix_data.info
          if (fixp->tc_fix_data.info
              && (fixp->tc_fix_data.info->saw_tlsgd
              && (fixp->tc_fix_data.info->saw_tlsgd
                  || fixp->tc_fix_data.info->saw_tlsldm))
                  || fixp->tc_fix_data.info->saw_tlsldm))
            break;
            break;
          /* FALLTHRU */
          /* FALLTHRU */
 
 
        default:
        default:
          *prevP = fixp;
          *prevP = fixp;
          prevP = &fixp->fx_next;
          prevP = &fixp->fx_next;
          break;
          break;
        }
        }
    }
    }
 
 
  /* Go back and re-chain dependent relocations.  They are currently
  /* Go back and re-chain dependent relocations.  They are currently
     linked through the next_reloc field in reverse order, so as we
     linked through the next_reloc field in reverse order, so as we
     go through the next_reloc chain, we effectively reverse the chain
     go through the next_reloc chain, we effectively reverse the chain
     once again.
     once again.
 
 
     Except if there is more than one !literal for a given sequence
     Except if there is more than one !literal for a given sequence
     number.  In that case, the programmer and/or compiler is not sure
     number.  In that case, the programmer and/or compiler is not sure
     how control flows from literal to lituse, and we can't be sure to
     how control flows from literal to lituse, and we can't be sure to
     get the relaxation correct.
     get the relaxation correct.
 
 
     ??? Well, actually we could, if there are enough lituses such that
     ??? Well, actually we could, if there are enough lituses such that
     we can make each literal have at least one of each lituse type
     we can make each literal have at least one of each lituse type
     present.  Not implemented.
     present.  Not implemented.
 
 
     Also suppress the optimization if the !literals/!lituses are spread
     Also suppress the optimization if the !literals/!lituses are spread
     in different segments.  This can happen with "intersting" uses of
     in different segments.  This can happen with "intersting" uses of
     inline assembly; examples are present in the Linux kernel semaphores.  */
     inline assembly; examples are present in the Linux kernel semaphores.  */
 
 
  for (fixp = seginfo->fix_root; fixp; fixp = next)
  for (fixp = seginfo->fix_root; fixp; fixp = next)
    {
    {
      next = fixp->fx_next;
      next = fixp->fx_next;
      switch (fixp->fx_r_type)
      switch (fixp->fx_r_type)
        {
        {
        case BFD_RELOC_ALPHA_TLSGD:
        case BFD_RELOC_ALPHA_TLSGD:
        case BFD_RELOC_ALPHA_TLSLDM:
        case BFD_RELOC_ALPHA_TLSLDM:
          if (!fixp->tc_fix_data.info)
          if (!fixp->tc_fix_data.info)
            break;
            break;
          if (fixp->tc_fix_data.info->n_master == 0)
          if (fixp->tc_fix_data.info->n_master == 0)
            break;
            break;
          else if (fixp->tc_fix_data.info->n_master > 1)
          else if (fixp->tc_fix_data.info->n_master > 1)
            {
            {
              as_bad_where (fixp->fx_file, fixp->fx_line,
              as_bad_where (fixp->fx_file, fixp->fx_line,
                            _("too many !literal!%ld for %s"),
                            _("too many !literal!%ld for %s"),
                            fixp->tc_fix_data.info->sequence,
                            fixp->tc_fix_data.info->sequence,
                            (fixp->fx_r_type == BFD_RELOC_ALPHA_TLSGD
                            (fixp->fx_r_type == BFD_RELOC_ALPHA_TLSGD
                             ? "!tlsgd" : "!tlsldm"));
                             ? "!tlsgd" : "!tlsldm"));
              break;
              break;
            }
            }
 
 
          fixp->tc_fix_data.info->master->fx_next = fixp->fx_next;
          fixp->tc_fix_data.info->master->fx_next = fixp->fx_next;
          fixp->fx_next = fixp->tc_fix_data.info->master;
          fixp->fx_next = fixp->tc_fix_data.info->master;
          fixp = fixp->fx_next;
          fixp = fixp->fx_next;
          /* Fall through.  */
          /* Fall through.  */
 
 
        case BFD_RELOC_ALPHA_ELF_LITERAL:
        case BFD_RELOC_ALPHA_ELF_LITERAL:
          if (fixp->tc_fix_data.info
          if (fixp->tc_fix_data.info
              && fixp->tc_fix_data.info->n_master == 1
              && fixp->tc_fix_data.info->n_master == 1
              && ! fixp->tc_fix_data.info->multi_section_p)
              && ! fixp->tc_fix_data.info->multi_section_p)
            {
            {
              for (slave = fixp->tc_fix_data.info->slaves;
              for (slave = fixp->tc_fix_data.info->slaves;
                   slave != (fixS *) 0;
                   slave != (fixS *) 0;
                   slave = slave->tc_fix_data.next_reloc)
                   slave = slave->tc_fix_data.next_reloc)
                {
                {
                  slave->fx_next = fixp->fx_next;
                  slave->fx_next = fixp->fx_next;
                  fixp->fx_next = slave;
                  fixp->fx_next = slave;
                }
                }
            }
            }
          break;
          break;
 
 
        case BFD_RELOC_ALPHA_GPDISP_HI16:
        case BFD_RELOC_ALPHA_GPDISP_HI16:
          if (fixp->tc_fix_data.info->n_slaves == 0)
          if (fixp->tc_fix_data.info->n_slaves == 0)
            as_bad_where (fixp->fx_file, fixp->fx_line,
            as_bad_where (fixp->fx_file, fixp->fx_line,
                          _("No lda !gpdisp!%ld was found"),
                          _("No lda !gpdisp!%ld was found"),
                          fixp->tc_fix_data.info->sequence);
                          fixp->tc_fix_data.info->sequence);
          else
          else
            {
            {
              slave = fixp->tc_fix_data.info->slaves;
              slave = fixp->tc_fix_data.info->slaves;
              slave->fx_next = next;
              slave->fx_next = next;
              fixp->fx_next = slave;
              fixp->fx_next = slave;
            }
            }
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
    }
    }
}
}
 
 
/* Before the relocations are written, reorder them, so that user
/* Before the relocations are written, reorder them, so that user
   supplied !lituse relocations follow the appropriate !literal
   supplied !lituse relocations follow the appropriate !literal
   relocations, and similarly for !gpdisp relocations.  */
   relocations, and similarly for !gpdisp relocations.  */
 
 
void
void
alpha_before_fix (void)
alpha_before_fix (void)
{
{
  if (alpha_literal_hash)
  if (alpha_literal_hash)
    bfd_map_over_sections (stdoutput, alpha_adjust_relocs, NULL);
    bfd_map_over_sections (stdoutput, alpha_adjust_relocs, NULL);
}
}


#ifdef DEBUG_ALPHA
#ifdef DEBUG_ALPHA
static void
static void
debug_exp (expressionS tok[], int ntok)
debug_exp (expressionS tok[], int ntok)
{
{
  int i;
  int i;
 
 
  fprintf (stderr, "debug_exp: %d tokens", ntok);
  fprintf (stderr, "debug_exp: %d tokens", ntok);
  for (i = 0; i < ntok; i++)
  for (i = 0; i < ntok; i++)
    {
    {
      expressionS *t = &tok[i];
      expressionS *t = &tok[i];
      const char *name;
      const char *name;
 
 
      switch (t->X_op)
      switch (t->X_op)
        {
        {
        default:                        name = "unknown";               break;
        default:                        name = "unknown";               break;
        case O_illegal:                 name = "O_illegal";             break;
        case O_illegal:                 name = "O_illegal";             break;
        case O_absent:                  name = "O_absent";              break;
        case O_absent:                  name = "O_absent";              break;
        case O_constant:                name = "O_constant";            break;
        case O_constant:                name = "O_constant";            break;
        case O_symbol:                  name = "O_symbol";              break;
        case O_symbol:                  name = "O_symbol";              break;
        case O_symbol_rva:              name = "O_symbol_rva";          break;
        case O_symbol_rva:              name = "O_symbol_rva";          break;
        case O_register:                name = "O_register";            break;
        case O_register:                name = "O_register";            break;
        case O_big:                     name = "O_big";                 break;
        case O_big:                     name = "O_big";                 break;
        case O_uminus:                  name = "O_uminus";              break;
        case O_uminus:                  name = "O_uminus";              break;
        case O_bit_not:                 name = "O_bit_not";             break;
        case O_bit_not:                 name = "O_bit_not";             break;
        case O_logical_not:             name = "O_logical_not";         break;
        case O_logical_not:             name = "O_logical_not";         break;
        case O_multiply:                name = "O_multiply";            break;
        case O_multiply:                name = "O_multiply";            break;
        case O_divide:                  name = "O_divide";              break;
        case O_divide:                  name = "O_divide";              break;
        case O_modulus:                 name = "O_modulus";             break;
        case O_modulus:                 name = "O_modulus";             break;
        case O_left_shift:              name = "O_left_shift";          break;
        case O_left_shift:              name = "O_left_shift";          break;
        case O_right_shift:             name = "O_right_shift";         break;
        case O_right_shift:             name = "O_right_shift";         break;
        case O_bit_inclusive_or:        name = "O_bit_inclusive_or";    break;
        case O_bit_inclusive_or:        name = "O_bit_inclusive_or";    break;
        case O_bit_or_not:              name = "O_bit_or_not";          break;
        case O_bit_or_not:              name = "O_bit_or_not";          break;
        case O_bit_exclusive_or:        name = "O_bit_exclusive_or";    break;
        case O_bit_exclusive_or:        name = "O_bit_exclusive_or";    break;
        case O_bit_and:                 name = "O_bit_and";             break;
        case O_bit_and:                 name = "O_bit_and";             break;
        case O_add:                     name = "O_add";                 break;
        case O_add:                     name = "O_add";                 break;
        case O_subtract:                name = "O_subtract";            break;
        case O_subtract:                name = "O_subtract";            break;
        case O_eq:                      name = "O_eq";                  break;
        case O_eq:                      name = "O_eq";                  break;
        case O_ne:                      name = "O_ne";                  break;
        case O_ne:                      name = "O_ne";                  break;
        case O_lt:                      name = "O_lt";                  break;
        case O_lt:                      name = "O_lt";                  break;
        case O_le:                      name = "O_le";                  break;
        case O_le:                      name = "O_le";                  break;
        case O_ge:                      name = "O_ge";                  break;
        case O_ge:                      name = "O_ge";                  break;
        case O_gt:                      name = "O_gt";                  break;
        case O_gt:                      name = "O_gt";                  break;
        case O_logical_and:             name = "O_logical_and";         break;
        case O_logical_and:             name = "O_logical_and";         break;
        case O_logical_or:              name = "O_logical_or";          break;
        case O_logical_or:              name = "O_logical_or";          break;
        case O_index:                   name = "O_index";               break;
        case O_index:                   name = "O_index";               break;
        case O_pregister:               name = "O_pregister";           break;
        case O_pregister:               name = "O_pregister";           break;
        case O_cpregister:              name = "O_cpregister";          break;
        case O_cpregister:              name = "O_cpregister";          break;
        case O_literal:                 name = "O_literal";             break;
        case O_literal:                 name = "O_literal";             break;
        case O_lituse_addr:             name = "O_lituse_addr";         break;
        case O_lituse_addr:             name = "O_lituse_addr";         break;
        case O_lituse_base:             name = "O_lituse_base";         break;
        case O_lituse_base:             name = "O_lituse_base";         break;
        case O_lituse_bytoff:           name = "O_lituse_bytoff";       break;
        case O_lituse_bytoff:           name = "O_lituse_bytoff";       break;
        case O_lituse_jsr:              name = "O_lituse_jsr";          break;
        case O_lituse_jsr:              name = "O_lituse_jsr";          break;
        case O_lituse_tlsgd:            name = "O_lituse_tlsgd";        break;
        case O_lituse_tlsgd:            name = "O_lituse_tlsgd";        break;
        case O_lituse_tlsldm:           name = "O_lituse_tlsldm";       break;
        case O_lituse_tlsldm:           name = "O_lituse_tlsldm";       break;
        case O_lituse_jsrdirect:        name = "O_lituse_jsrdirect";    break;
        case O_lituse_jsrdirect:        name = "O_lituse_jsrdirect";    break;
        case O_gpdisp:                  name = "O_gpdisp";              break;
        case O_gpdisp:                  name = "O_gpdisp";              break;
        case O_gprelhigh:               name = "O_gprelhigh";           break;
        case O_gprelhigh:               name = "O_gprelhigh";           break;
        case O_gprellow:                name = "O_gprellow";            break;
        case O_gprellow:                name = "O_gprellow";            break;
        case O_gprel:                   name = "O_gprel";               break;
        case O_gprel:                   name = "O_gprel";               break;
        case O_samegp:                  name = "O_samegp";              break;
        case O_samegp:                  name = "O_samegp";              break;
        case O_tlsgd:                   name = "O_tlsgd";               break;
        case O_tlsgd:                   name = "O_tlsgd";               break;
        case O_tlsldm:                  name = "O_tlsldm";              break;
        case O_tlsldm:                  name = "O_tlsldm";              break;
        case O_gotdtprel:               name = "O_gotdtprel";           break;
        case O_gotdtprel:               name = "O_gotdtprel";           break;
        case O_dtprelhi:                name = "O_dtprelhi";            break;
        case O_dtprelhi:                name = "O_dtprelhi";            break;
        case O_dtprello:                name = "O_dtprello";            break;
        case O_dtprello:                name = "O_dtprello";            break;
        case O_dtprel:                  name = "O_dtprel";              break;
        case O_dtprel:                  name = "O_dtprel";              break;
        case O_gottprel:                name = "O_gottprel";            break;
        case O_gottprel:                name = "O_gottprel";            break;
        case O_tprelhi:                 name = "O_tprelhi";             break;
        case O_tprelhi:                 name = "O_tprelhi";             break;
        case O_tprello:                 name = "O_tprello";             break;
        case O_tprello:                 name = "O_tprello";             break;
        case O_tprel:                   name = "O_tprel";               break;
        case O_tprel:                   name = "O_tprel";               break;
        }
        }
 
 
      fprintf (stderr, ", %s(%s, %s, %d)", name,
      fprintf (stderr, ", %s(%s, %s, %d)", name,
               (t->X_add_symbol) ? S_GET_NAME (t->X_add_symbol) : "--",
               (t->X_add_symbol) ? S_GET_NAME (t->X_add_symbol) : "--",
               (t->X_op_symbol) ? S_GET_NAME (t->X_op_symbol) : "--",
               (t->X_op_symbol) ? S_GET_NAME (t->X_op_symbol) : "--",
               (int) t->X_add_number);
               (int) t->X_add_number);
    }
    }
  fprintf (stderr, "\n");
  fprintf (stderr, "\n");
  fflush (stderr);
  fflush (stderr);
}
}
#endif
#endif
 
 
/* Parse the arguments to an opcode.  */
/* Parse the arguments to an opcode.  */
 
 
static int
static int
tokenize_arguments (char *str,
tokenize_arguments (char *str,
                    expressionS tok[],
                    expressionS tok[],
                    int ntok)
                    int ntok)
{
{
  expressionS *end_tok = tok + ntok;
  expressionS *end_tok = tok + ntok;
  char *old_input_line_pointer;
  char *old_input_line_pointer;
  int saw_comma = 0, saw_arg = 0;
  int saw_comma = 0, saw_arg = 0;
#ifdef DEBUG_ALPHA
#ifdef DEBUG_ALPHA
  expressionS *orig_tok = tok;
  expressionS *orig_tok = tok;
#endif
#endif
#ifdef RELOC_OP_P
#ifdef RELOC_OP_P
  char *p;
  char *p;
  const struct alpha_reloc_op_tag *r;
  const struct alpha_reloc_op_tag *r;
  int c, i;
  int c, i;
  size_t len;
  size_t len;
  int reloc_found_p = 0;
  int reloc_found_p = 0;
#endif
#endif
 
 
  memset (tok, 0, sizeof (*tok) * ntok);
  memset (tok, 0, sizeof (*tok) * ntok);
 
 
  /* Save and restore input_line_pointer around this function.  */
  /* Save and restore input_line_pointer around this function.  */
  old_input_line_pointer = input_line_pointer;
  old_input_line_pointer = input_line_pointer;
  input_line_pointer = str;
  input_line_pointer = str;
 
 
#ifdef RELOC_OP_P
#ifdef RELOC_OP_P
  /* ??? Wrest control of ! away from the regular expression parser.  */
  /* ??? Wrest control of ! away from the regular expression parser.  */
  is_end_of_line[(unsigned char) '!'] = 1;
  is_end_of_line[(unsigned char) '!'] = 1;
#endif
#endif
 
 
  while (tok < end_tok && *input_line_pointer)
  while (tok < end_tok && *input_line_pointer)
    {
    {
      SKIP_WHITESPACE ();
      SKIP_WHITESPACE ();
      switch (*input_line_pointer)
      switch (*input_line_pointer)
        {
        {
        case '\0':
        case '\0':
          goto fini;
          goto fini;
 
 
#ifdef RELOC_OP_P
#ifdef RELOC_OP_P
        case '!':
        case '!':
          /* A relocation operand can be placed after the normal operand on an
          /* A relocation operand can be placed after the normal operand on an
             assembly language statement, and has the following form:
             assembly language statement, and has the following form:
                !relocation_type!sequence_number.  */
                !relocation_type!sequence_number.  */
          if (reloc_found_p)
          if (reloc_found_p)
            {
            {
              /* Only support one relocation op per insn.  */
              /* Only support one relocation op per insn.  */
              as_bad (_("More than one relocation op per insn"));
              as_bad (_("More than one relocation op per insn"));
              goto err_report;
              goto err_report;
            }
            }
 
 
          if (!saw_arg)
          if (!saw_arg)
            goto err;
            goto err;
 
 
          ++input_line_pointer;
          ++input_line_pointer;
          SKIP_WHITESPACE ();
          SKIP_WHITESPACE ();
          p = input_line_pointer;
          p = input_line_pointer;
          c = get_symbol_end ();
          c = get_symbol_end ();
 
 
          /* Parse !relocation_type.  */
          /* Parse !relocation_type.  */
          len = input_line_pointer - p;
          len = input_line_pointer - p;
          if (len == 0)
          if (len == 0)
            {
            {
              as_bad (_("No relocation operand"));
              as_bad (_("No relocation operand"));
              goto err_report;
              goto err_report;
            }
            }
 
 
          r = &alpha_reloc_op[0];
          r = &alpha_reloc_op[0];
          for (i = alpha_num_reloc_op - 1; i >= 0; i--, r++)
          for (i = alpha_num_reloc_op - 1; i >= 0; i--, r++)
            if (len == r->length && memcmp (p, r->name, len) == 0)
            if (len == r->length && memcmp (p, r->name, len) == 0)
              break;
              break;
          if (i < 0)
          if (i < 0)
            {
            {
              as_bad (_("Unknown relocation operand: !%s"), p);
              as_bad (_("Unknown relocation operand: !%s"), p);
              goto err_report;
              goto err_report;
            }
            }
 
 
          *input_line_pointer = c;
          *input_line_pointer = c;
          SKIP_WHITESPACE ();
          SKIP_WHITESPACE ();
          if (*input_line_pointer != '!')
          if (*input_line_pointer != '!')
            {
            {
              if (r->require_seq)
              if (r->require_seq)
                {
                {
                  as_bad (_("no sequence number after !%s"), p);
                  as_bad (_("no sequence number after !%s"), p);
                  goto err_report;
                  goto err_report;
                }
                }
 
 
              tok->X_add_number = 0;
              tok->X_add_number = 0;
            }
            }
          else
          else
            {
            {
              if (! r->allow_seq)
              if (! r->allow_seq)
                {
                {
                  as_bad (_("!%s does not use a sequence number"), p);
                  as_bad (_("!%s does not use a sequence number"), p);
                  goto err_report;
                  goto err_report;
                }
                }
 
 
              input_line_pointer++;
              input_line_pointer++;
 
 
              /* Parse !sequence_number.  */
              /* Parse !sequence_number.  */
              expression (tok);
              expression (tok);
              if (tok->X_op != O_constant || tok->X_add_number <= 0)
              if (tok->X_op != O_constant || tok->X_add_number <= 0)
                {
                {
                  as_bad (_("Bad sequence number: !%s!%s"),
                  as_bad (_("Bad sequence number: !%s!%s"),
                          r->name, input_line_pointer);
                          r->name, input_line_pointer);
                  goto err_report;
                  goto err_report;
                }
                }
            }
            }
 
 
          tok->X_op = r->op;
          tok->X_op = r->op;
          reloc_found_p = 1;
          reloc_found_p = 1;
          ++tok;
          ++tok;
          break;
          break;
#endif /* RELOC_OP_P */
#endif /* RELOC_OP_P */
 
 
        case ',':
        case ',':
          ++input_line_pointer;
          ++input_line_pointer;
          if (saw_comma || !saw_arg)
          if (saw_comma || !saw_arg)
            goto err;
            goto err;
          saw_comma = 1;
          saw_comma = 1;
          break;
          break;
 
 
        case '(':
        case '(':
          {
          {
            char *hold = input_line_pointer++;
            char *hold = input_line_pointer++;
 
 
            /* First try for parenthesized register ...  */
            /* First try for parenthesized register ...  */
            expression (tok);
            expression (tok);
            if (*input_line_pointer == ')' && tok->X_op == O_register)
            if (*input_line_pointer == ')' && tok->X_op == O_register)
              {
              {
                tok->X_op = (saw_comma ? O_cpregister : O_pregister);
                tok->X_op = (saw_comma ? O_cpregister : O_pregister);
                saw_comma = 0;
                saw_comma = 0;
                saw_arg = 1;
                saw_arg = 1;
                ++input_line_pointer;
                ++input_line_pointer;
                ++tok;
                ++tok;
                break;
                break;
              }
              }
 
 
            /* ... then fall through to plain expression.  */
            /* ... then fall through to plain expression.  */
            input_line_pointer = hold;
            input_line_pointer = hold;
          }
          }
 
 
        default:
        default:
          if (saw_arg && !saw_comma)
          if (saw_arg && !saw_comma)
            goto err;
            goto err;
 
 
          expression (tok);
          expression (tok);
          if (tok->X_op == O_illegal || tok->X_op == O_absent)
          if (tok->X_op == O_illegal || tok->X_op == O_absent)
            goto err;
            goto err;
 
 
          saw_comma = 0;
          saw_comma = 0;
          saw_arg = 1;
          saw_arg = 1;
          ++tok;
          ++tok;
          break;
          break;
        }
        }
    }
    }
 
 
fini:
fini:
  if (saw_comma)
  if (saw_comma)
    goto err;
    goto err;
  input_line_pointer = old_input_line_pointer;
  input_line_pointer = old_input_line_pointer;
 
 
#ifdef DEBUG_ALPHA
#ifdef DEBUG_ALPHA
  debug_exp (orig_tok, ntok - (end_tok - tok));
  debug_exp (orig_tok, ntok - (end_tok - tok));
#endif
#endif
#ifdef RELOC_OP_P
#ifdef RELOC_OP_P
  is_end_of_line[(unsigned char) '!'] = 0;
  is_end_of_line[(unsigned char) '!'] = 0;
#endif
#endif
 
 
  return ntok - (end_tok - tok);
  return ntok - (end_tok - tok);
 
 
err:
err:
#ifdef RELOC_OP_P
#ifdef RELOC_OP_P
  is_end_of_line[(unsigned char) '!'] = 0;
  is_end_of_line[(unsigned char) '!'] = 0;
#endif
#endif
  input_line_pointer = old_input_line_pointer;
  input_line_pointer = old_input_line_pointer;
  return TOKENIZE_ERROR;
  return TOKENIZE_ERROR;
 
 
#ifdef RELOC_OP_P
#ifdef RELOC_OP_P
err_report:
err_report:
  is_end_of_line[(unsigned char) '!'] = 0;
  is_end_of_line[(unsigned char) '!'] = 0;
#endif
#endif
  input_line_pointer = old_input_line_pointer;
  input_line_pointer = old_input_line_pointer;
  return TOKENIZE_ERROR_REPORT;
  return TOKENIZE_ERROR_REPORT;
}
}
 
 
/* Search forward through all variants of an opcode looking for a
/* Search forward through all variants of an opcode looking for a
   syntax match.  */
   syntax match.  */
 
 
static const struct alpha_opcode *
static const struct alpha_opcode *
find_opcode_match (const struct alpha_opcode *first_opcode,
find_opcode_match (const struct alpha_opcode *first_opcode,
                   const expressionS *tok,
                   const expressionS *tok,
                   int *pntok,
                   int *pntok,
                   int *pcpumatch)
                   int *pcpumatch)
{
{
  const struct alpha_opcode *opcode = first_opcode;
  const struct alpha_opcode *opcode = first_opcode;
  int ntok = *pntok;
  int ntok = *pntok;
  int got_cpu_match = 0;
  int got_cpu_match = 0;
 
 
  do
  do
    {
    {
      const unsigned char *opidx;
      const unsigned char *opidx;
      int tokidx = 0;
      int tokidx = 0;
 
 
      /* Don't match opcodes that don't exist on this architecture.  */
      /* Don't match opcodes that don't exist on this architecture.  */
      if (!(opcode->flags & alpha_target))
      if (!(opcode->flags & alpha_target))
        goto match_failed;
        goto match_failed;
 
 
      got_cpu_match = 1;
      got_cpu_match = 1;
 
 
      for (opidx = opcode->operands; *opidx; ++opidx)
      for (opidx = opcode->operands; *opidx; ++opidx)
        {
        {
          const struct alpha_operand *operand = &alpha_operands[*opidx];
          const struct alpha_operand *operand = &alpha_operands[*opidx];
 
 
          /* Only take input from real operands.  */
          /* Only take input from real operands.  */
          if (operand->flags & AXP_OPERAND_FAKE)
          if (operand->flags & AXP_OPERAND_FAKE)
            continue;
            continue;
 
 
          /* When we expect input, make sure we have it.  */
          /* When we expect input, make sure we have it.  */
          if (tokidx >= ntok)
          if (tokidx >= ntok)
            {
            {
              if ((operand->flags & AXP_OPERAND_OPTIONAL_MASK) == 0)
              if ((operand->flags & AXP_OPERAND_OPTIONAL_MASK) == 0)
                goto match_failed;
                goto match_failed;
              continue;
              continue;
            }
            }
 
 
          /* Match operand type with expression type.  */
          /* Match operand type with expression type.  */
          switch (operand->flags & AXP_OPERAND_TYPECHECK_MASK)
          switch (operand->flags & AXP_OPERAND_TYPECHECK_MASK)
            {
            {
            case AXP_OPERAND_IR:
            case AXP_OPERAND_IR:
              if (tok[tokidx].X_op != O_register
              if (tok[tokidx].X_op != O_register
                  || !is_ir_num (tok[tokidx].X_add_number))
                  || !is_ir_num (tok[tokidx].X_add_number))
                goto match_failed;
                goto match_failed;
              break;
              break;
            case AXP_OPERAND_FPR:
            case AXP_OPERAND_FPR:
              if (tok[tokidx].X_op != O_register
              if (tok[tokidx].X_op != O_register
                  || !is_fpr_num (tok[tokidx].X_add_number))
                  || !is_fpr_num (tok[tokidx].X_add_number))
                goto match_failed;
                goto match_failed;
              break;
              break;
            case AXP_OPERAND_IR | AXP_OPERAND_PARENS:
            case AXP_OPERAND_IR | AXP_OPERAND_PARENS:
              if (tok[tokidx].X_op != O_pregister
              if (tok[tokidx].X_op != O_pregister
                  || !is_ir_num (tok[tokidx].X_add_number))
                  || !is_ir_num (tok[tokidx].X_add_number))
                goto match_failed;
                goto match_failed;
              break;
              break;
            case AXP_OPERAND_IR | AXP_OPERAND_PARENS | AXP_OPERAND_COMMA:
            case AXP_OPERAND_IR | AXP_OPERAND_PARENS | AXP_OPERAND_COMMA:
              if (tok[tokidx].X_op != O_cpregister
              if (tok[tokidx].X_op != O_cpregister
                  || !is_ir_num (tok[tokidx].X_add_number))
                  || !is_ir_num (tok[tokidx].X_add_number))
                goto match_failed;
                goto match_failed;
              break;
              break;
 
 
            case AXP_OPERAND_RELATIVE:
            case AXP_OPERAND_RELATIVE:
            case AXP_OPERAND_SIGNED:
            case AXP_OPERAND_SIGNED:
            case AXP_OPERAND_UNSIGNED:
            case AXP_OPERAND_UNSIGNED:
              switch (tok[tokidx].X_op)
              switch (tok[tokidx].X_op)
                {
                {
                case O_illegal:
                case O_illegal:
                case O_absent:
                case O_absent:
                case O_register:
                case O_register:
                case O_pregister:
                case O_pregister:
                case O_cpregister:
                case O_cpregister:
                  goto match_failed;
                  goto match_failed;
 
 
                default:
                default:
                  break;
                  break;
                }
                }
              break;
              break;
 
 
            default:
            default:
              /* Everything else should have been fake.  */
              /* Everything else should have been fake.  */
              abort ();
              abort ();
            }
            }
          ++tokidx;
          ++tokidx;
        }
        }
 
 
      /* Possible match -- did we use all of our input?  */
      /* Possible match -- did we use all of our input?  */
      if (tokidx == ntok)
      if (tokidx == ntok)
        {
        {
          *pntok = ntok;
          *pntok = ntok;
          return opcode;
          return opcode;
        }
        }
 
 
    match_failed:;
    match_failed:;
    }
    }
  while (++opcode - alpha_opcodes < (int) alpha_num_opcodes
  while (++opcode - alpha_opcodes < (int) alpha_num_opcodes
         && !strcmp (opcode->name, first_opcode->name));
         && !strcmp (opcode->name, first_opcode->name));
 
 
  if (*pcpumatch)
  if (*pcpumatch)
    *pcpumatch = got_cpu_match;
    *pcpumatch = got_cpu_match;
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Given an opcode name and a pre-tokenized set of arguments, assemble
/* Given an opcode name and a pre-tokenized set of arguments, assemble
   the insn, but do not emit it.
   the insn, but do not emit it.
 
 
   Note that this implies no macros allowed, since we can't store more
   Note that this implies no macros allowed, since we can't store more
   than one insn in an insn structure.  */
   than one insn in an insn structure.  */
 
 
static void
static void
assemble_tokens_to_insn (const char *opname,
assemble_tokens_to_insn (const char *opname,
                         const expressionS *tok,
                         const expressionS *tok,
                         int ntok,
                         int ntok,
                         struct alpha_insn *insn)
                         struct alpha_insn *insn)
{
{
  const struct alpha_opcode *opcode;
  const struct alpha_opcode *opcode;
 
 
  /* Search opcodes.  */
  /* Search opcodes.  */
  opcode = (const struct alpha_opcode *) hash_find (alpha_opcode_hash, opname);
  opcode = (const struct alpha_opcode *) hash_find (alpha_opcode_hash, opname);
  if (opcode)
  if (opcode)
    {
    {
      int cpumatch;
      int cpumatch;
      opcode = find_opcode_match (opcode, tok, &ntok, &cpumatch);
      opcode = find_opcode_match (opcode, tok, &ntok, &cpumatch);
      if (opcode)
      if (opcode)
        {
        {
          assemble_insn (opcode, tok, ntok, insn, BFD_RELOC_UNUSED);
          assemble_insn (opcode, tok, ntok, insn, BFD_RELOC_UNUSED);
          return;
          return;
        }
        }
      else if (cpumatch)
      else if (cpumatch)
        as_bad (_("inappropriate arguments for opcode `%s'"), opname);
        as_bad (_("inappropriate arguments for opcode `%s'"), opname);
      else
      else
        as_bad (_("opcode `%s' not supported for target %s"), opname,
        as_bad (_("opcode `%s' not supported for target %s"), opname,
                alpha_target_name);
                alpha_target_name);
    }
    }
  else
  else
    as_bad (_("unknown opcode `%s'"), opname);
    as_bad (_("unknown opcode `%s'"), opname);
}
}
 
 
/* Build a BFD section with its flags set appropriately for the .lita,
/* Build a BFD section with its flags set appropriately for the .lita,
   .lit8, or .lit4 sections.  */
   .lit8, or .lit4 sections.  */
 
 
static void
static void
create_literal_section (const char *name,
create_literal_section (const char *name,
                        segT *secp,
                        segT *secp,
                        symbolS **symp)
                        symbolS **symp)
{
{
  segT current_section = now_seg;
  segT current_section = now_seg;
  int current_subsec = now_subseg;
  int current_subsec = now_subseg;
  segT new_sec;
  segT new_sec;
 
 
  *secp = new_sec = subseg_new (name, 0);
  *secp = new_sec = subseg_new (name, 0);
  subseg_set (current_section, current_subsec);
  subseg_set (current_section, current_subsec);
  bfd_set_section_alignment (stdoutput, new_sec, 4);
  bfd_set_section_alignment (stdoutput, new_sec, 4);
  bfd_set_section_flags (stdoutput, new_sec,
  bfd_set_section_flags (stdoutput, new_sec,
                         SEC_RELOC | SEC_ALLOC | SEC_LOAD | SEC_READONLY
                         SEC_RELOC | SEC_ALLOC | SEC_LOAD | SEC_READONLY
                         | SEC_DATA);
                         | SEC_DATA);
 
 
  S_CLEAR_EXTERNAL (*symp = section_symbol (new_sec));
  S_CLEAR_EXTERNAL (*symp = section_symbol (new_sec));
}
}
 
 
/* Load a (partial) expression into a target register.
/* Load a (partial) expression into a target register.
 
 
   If poffset is not null, after the call it will either contain
   If poffset is not null, after the call it will either contain
   O_constant 0, or a 16-bit offset appropriate for any MEM format
   O_constant 0, or a 16-bit offset appropriate for any MEM format
   instruction.  In addition, pbasereg will be modified to point to
   instruction.  In addition, pbasereg will be modified to point to
   the base register to use in that MEM format instruction.
   the base register to use in that MEM format instruction.
 
 
   In any case, *pbasereg should contain a base register to add to the
   In any case, *pbasereg should contain a base register to add to the
   expression.  This will normally be either AXP_REG_ZERO or
   expression.  This will normally be either AXP_REG_ZERO or
   alpha_gp_register.  Symbol addresses will always be loaded via $gp,
   alpha_gp_register.  Symbol addresses will always be loaded via $gp,
   so "foo($0)" is interpreted as adding the address of foo to $0;
   so "foo($0)" is interpreted as adding the address of foo to $0;
   i.e. "ldq $targ, LIT($gp); addq $targ, $0, $targ".  Odd, perhaps,
   i.e. "ldq $targ, LIT($gp); addq $targ, $0, $targ".  Odd, perhaps,
   but this is what OSF/1 does.
   but this is what OSF/1 does.
 
 
   If explicit relocations of the form !literal!<number> are allowed,
   If explicit relocations of the form !literal!<number> are allowed,
   and used, then explicit_reloc with be an expression pointer.
   and used, then explicit_reloc with be an expression pointer.
 
 
   Finally, the return value is nonzero if the calling macro may emit
   Finally, the return value is nonzero if the calling macro may emit
   a LITUSE reloc if otherwise appropriate; the return value is the
   a LITUSE reloc if otherwise appropriate; the return value is the
   sequence number to use.  */
   sequence number to use.  */
 
 
static long
static long
load_expression (int targreg,
load_expression (int targreg,
                 const expressionS *exp,
                 const expressionS *exp,
                 int *pbasereg,
                 int *pbasereg,
                 expressionS *poffset)
                 expressionS *poffset)
{
{
  long emit_lituse = 0;
  long emit_lituse = 0;
  offsetT addend = exp->X_add_number;
  offsetT addend = exp->X_add_number;
  int basereg = *pbasereg;
  int basereg = *pbasereg;
  struct alpha_insn insn;
  struct alpha_insn insn;
  expressionS newtok[3];
  expressionS newtok[3];
 
 
  switch (exp->X_op)
  switch (exp->X_op)
    {
    {
    case O_symbol:
    case O_symbol:
      {
      {
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
        offsetT lit;
        offsetT lit;
 
 
        /* Attempt to reduce .lit load by splitting the offset from
        /* Attempt to reduce .lit load by splitting the offset from
           its symbol when possible, but don't create a situation in
           its symbol when possible, but don't create a situation in
           which we'd fail.  */
           which we'd fail.  */
        if (!range_signed_32 (addend) &&
        if (!range_signed_32 (addend) &&
            (alpha_noat_on || targreg == AXP_REG_AT))
            (alpha_noat_on || targreg == AXP_REG_AT))
          {
          {
            lit = add_to_literal_pool (exp->X_add_symbol, addend,
            lit = add_to_literal_pool (exp->X_add_symbol, addend,
                                       alpha_lita_section, 8);
                                       alpha_lita_section, 8);
            addend = 0;
            addend = 0;
          }
          }
        else
        else
          lit = add_to_literal_pool (exp->X_add_symbol, 0,
          lit = add_to_literal_pool (exp->X_add_symbol, 0,
                                     alpha_lita_section, 8);
                                     alpha_lita_section, 8);
 
 
        if (lit >= 0x8000)
        if (lit >= 0x8000)
          as_fatal (_("overflow in literal (.lita) table"));
          as_fatal (_("overflow in literal (.lita) table"));
 
 
        /* Emit "ldq r, lit(gp)".  */
        /* Emit "ldq r, lit(gp)".  */
 
 
        if (basereg != alpha_gp_register && targreg == basereg)
        if (basereg != alpha_gp_register && targreg == basereg)
          {
          {
            if (alpha_noat_on)
            if (alpha_noat_on)
              as_bad (_("macro requires $at register while noat in effect"));
              as_bad (_("macro requires $at register while noat in effect"));
            if (targreg == AXP_REG_AT)
            if (targreg == AXP_REG_AT)
              as_bad (_("macro requires $at while $at in use"));
              as_bad (_("macro requires $at while $at in use"));
 
 
            set_tok_reg (newtok[0], AXP_REG_AT);
            set_tok_reg (newtok[0], AXP_REG_AT);
          }
          }
        else
        else
          set_tok_reg (newtok[0], targreg);
          set_tok_reg (newtok[0], targreg);
 
 
        set_tok_sym (newtok[1], alpha_lita_symbol, lit);
        set_tok_sym (newtok[1], alpha_lita_symbol, lit);
        set_tok_preg (newtok[2], alpha_gp_register);
        set_tok_preg (newtok[2], alpha_gp_register);
 
 
        assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
        assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
 
 
        assert (insn.nfixups == 1);
        assert (insn.nfixups == 1);
        insn.fixups[0].reloc = BFD_RELOC_ALPHA_LITERAL;
        insn.fixups[0].reloc = BFD_RELOC_ALPHA_LITERAL;
        insn.sequence = emit_lituse = next_sequence_num--;
        insn.sequence = emit_lituse = next_sequence_num--;
#endif /* OBJ_ECOFF */
#endif /* OBJ_ECOFF */
#ifdef OBJ_ELF
#ifdef OBJ_ELF
        /* Emit "ldq r, gotoff(gp)".  */
        /* Emit "ldq r, gotoff(gp)".  */
 
 
        if (basereg != alpha_gp_register && targreg == basereg)
        if (basereg != alpha_gp_register && targreg == basereg)
          {
          {
            if (alpha_noat_on)
            if (alpha_noat_on)
              as_bad (_("macro requires $at register while noat in effect"));
              as_bad (_("macro requires $at register while noat in effect"));
            if (targreg == AXP_REG_AT)
            if (targreg == AXP_REG_AT)
              as_bad (_("macro requires $at while $at in use"));
              as_bad (_("macro requires $at while $at in use"));
 
 
            set_tok_reg (newtok[0], AXP_REG_AT);
            set_tok_reg (newtok[0], AXP_REG_AT);
          }
          }
        else
        else
          set_tok_reg (newtok[0], targreg);
          set_tok_reg (newtok[0], targreg);
 
 
        /* XXX: Disable this .got minimizing optimization so that we can get
        /* XXX: Disable this .got minimizing optimization so that we can get
           better instruction offset knowledge in the compiler.  This happens
           better instruction offset knowledge in the compiler.  This happens
           very infrequently anyway.  */
           very infrequently anyway.  */
        if (1
        if (1
            || (!range_signed_32 (addend)
            || (!range_signed_32 (addend)
                && (alpha_noat_on || targreg == AXP_REG_AT)))
                && (alpha_noat_on || targreg == AXP_REG_AT)))
          {
          {
            newtok[1] = *exp;
            newtok[1] = *exp;
            addend = 0;
            addend = 0;
          }
          }
        else
        else
          set_tok_sym (newtok[1], exp->X_add_symbol, 0);
          set_tok_sym (newtok[1], exp->X_add_symbol, 0);
 
 
        set_tok_preg (newtok[2], alpha_gp_register);
        set_tok_preg (newtok[2], alpha_gp_register);
 
 
        assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
        assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
 
 
        assert (insn.nfixups == 1);
        assert (insn.nfixups == 1);
        insn.fixups[0].reloc = BFD_RELOC_ALPHA_ELF_LITERAL;
        insn.fixups[0].reloc = BFD_RELOC_ALPHA_ELF_LITERAL;
        insn.sequence = emit_lituse = next_sequence_num--;
        insn.sequence = emit_lituse = next_sequence_num--;
#endif /* OBJ_ELF */
#endif /* OBJ_ELF */
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
        offsetT link;
        offsetT link;
 
 
        /* Find symbol or symbol pointer in link section.  */
        /* Find symbol or symbol pointer in link section.  */
 
 
        if (exp->X_add_symbol == alpha_evax_proc.symbol)
        if (exp->X_add_symbol == alpha_evax_proc.symbol)
          {
          {
            if (range_signed_16 (addend))
            if (range_signed_16 (addend))
              {
              {
                set_tok_reg (newtok[0], targreg);
                set_tok_reg (newtok[0], targreg);
                set_tok_const (newtok[1], addend);
                set_tok_const (newtok[1], addend);
                set_tok_preg (newtok[2], basereg);
                set_tok_preg (newtok[2], basereg);
                assemble_tokens_to_insn ("lda", newtok, 3, &insn);
                assemble_tokens_to_insn ("lda", newtok, 3, &insn);
                addend = 0;
                addend = 0;
              }
              }
            else
            else
              {
              {
                set_tok_reg (newtok[0], targreg);
                set_tok_reg (newtok[0], targreg);
                set_tok_const (newtok[1], 0);
                set_tok_const (newtok[1], 0);
                set_tok_preg (newtok[2], basereg);
                set_tok_preg (newtok[2], basereg);
                assemble_tokens_to_insn ("lda", newtok, 3, &insn);
                assemble_tokens_to_insn ("lda", newtok, 3, &insn);
              }
              }
          }
          }
        else
        else
          {
          {
            if (!range_signed_32 (addend))
            if (!range_signed_32 (addend))
              {
              {
                link = add_to_link_pool (alpha_evax_proc.symbol,
                link = add_to_link_pool (alpha_evax_proc.symbol,
                                         exp->X_add_symbol, addend);
                                         exp->X_add_symbol, addend);
                addend = 0;
                addend = 0;
              }
              }
            else
            else
              link = add_to_link_pool (alpha_evax_proc.symbol,
              link = add_to_link_pool (alpha_evax_proc.symbol,
                                       exp->X_add_symbol, 0);
                                       exp->X_add_symbol, 0);
 
 
            set_tok_reg (newtok[0], targreg);
            set_tok_reg (newtok[0], targreg);
            set_tok_const (newtok[1], link);
            set_tok_const (newtok[1], link);
            set_tok_preg (newtok[2], basereg);
            set_tok_preg (newtok[2], basereg);
            assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
            assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
          }
          }
#endif /* OBJ_EVAX */
#endif /* OBJ_EVAX */
 
 
        emit_insn (&insn);
        emit_insn (&insn);
 
 
#ifndef OBJ_EVAX
#ifndef OBJ_EVAX
        if (basereg != alpha_gp_register && basereg != AXP_REG_ZERO)
        if (basereg != alpha_gp_register && basereg != AXP_REG_ZERO)
          {
          {
            /* Emit "addq r, base, r".  */
            /* Emit "addq r, base, r".  */
 
 
            set_tok_reg (newtok[1], basereg);
            set_tok_reg (newtok[1], basereg);
            set_tok_reg (newtok[2], targreg);
            set_tok_reg (newtok[2], targreg);
            assemble_tokens ("addq", newtok, 3, 0);
            assemble_tokens ("addq", newtok, 3, 0);
          }
          }
#endif
#endif
        basereg = targreg;
        basereg = targreg;
      }
      }
      break;
      break;
 
 
    case O_constant:
    case O_constant:
      break;
      break;
 
 
    case O_subtract:
    case O_subtract:
      /* Assume that this difference expression will be resolved to an
      /* Assume that this difference expression will be resolved to an
         absolute value and that that value will fit in 16 bits.  */
         absolute value and that that value will fit in 16 bits.  */
 
 
      set_tok_reg (newtok[0], targreg);
      set_tok_reg (newtok[0], targreg);
      newtok[1] = *exp;
      newtok[1] = *exp;
      set_tok_preg (newtok[2], basereg);
      set_tok_preg (newtok[2], basereg);
      assemble_tokens ("lda", newtok, 3, 0);
      assemble_tokens ("lda", newtok, 3, 0);
 
 
      if (poffset)
      if (poffset)
        set_tok_const (*poffset, 0);
        set_tok_const (*poffset, 0);
      return 0;
      return 0;
 
 
    case O_big:
    case O_big:
      if (exp->X_add_number > 0)
      if (exp->X_add_number > 0)
        as_bad (_("bignum invalid; zero assumed"));
        as_bad (_("bignum invalid; zero assumed"));
      else
      else
        as_bad (_("floating point number invalid; zero assumed"));
        as_bad (_("floating point number invalid; zero assumed"));
      addend = 0;
      addend = 0;
      break;
      break;
 
 
    default:
    default:
      as_bad (_("can't handle expression"));
      as_bad (_("can't handle expression"));
      addend = 0;
      addend = 0;
      break;
      break;
    }
    }
 
 
  if (!range_signed_32 (addend))
  if (!range_signed_32 (addend))
    {
    {
      offsetT lit;
      offsetT lit;
      long seq_num = next_sequence_num--;
      long seq_num = next_sequence_num--;
 
 
      /* For 64-bit addends, just put it in the literal pool.  */
      /* For 64-bit addends, just put it in the literal pool.  */
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
      /* Emit "ldq targreg, lit(basereg)".  */
      /* Emit "ldq targreg, lit(basereg)".  */
      lit = add_to_link_pool (alpha_evax_proc.symbol,
      lit = add_to_link_pool (alpha_evax_proc.symbol,
                              section_symbol (absolute_section), addend);
                              section_symbol (absolute_section), addend);
      set_tok_reg (newtok[0], targreg);
      set_tok_reg (newtok[0], targreg);
      set_tok_const (newtok[1], lit);
      set_tok_const (newtok[1], lit);
      set_tok_preg (newtok[2], alpha_gp_register);
      set_tok_preg (newtok[2], alpha_gp_register);
      assemble_tokens ("ldq", newtok, 3, 0);
      assemble_tokens ("ldq", newtok, 3, 0);
#else
#else
 
 
      if (alpha_lit8_section == NULL)
      if (alpha_lit8_section == NULL)
        {
        {
          create_literal_section (".lit8",
          create_literal_section (".lit8",
                                  &alpha_lit8_section,
                                  &alpha_lit8_section,
                                  &alpha_lit8_symbol);
                                  &alpha_lit8_symbol);
 
 
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
          alpha_lit8_literal = add_to_literal_pool (alpha_lit8_symbol, 0x8000,
          alpha_lit8_literal = add_to_literal_pool (alpha_lit8_symbol, 0x8000,
                                                    alpha_lita_section, 8);
                                                    alpha_lita_section, 8);
          if (alpha_lit8_literal >= 0x8000)
          if (alpha_lit8_literal >= 0x8000)
            as_fatal (_("overflow in literal (.lita) table"));
            as_fatal (_("overflow in literal (.lita) table"));
#endif
#endif
        }
        }
 
 
      lit = add_to_literal_pool (NULL, addend, alpha_lit8_section, 8) - 0x8000;
      lit = add_to_literal_pool (NULL, addend, alpha_lit8_section, 8) - 0x8000;
      if (lit >= 0x8000)
      if (lit >= 0x8000)
        as_fatal (_("overflow in literal (.lit8) table"));
        as_fatal (_("overflow in literal (.lit8) table"));
 
 
      /* Emit "lda litreg, .lit8+0x8000".  */
      /* Emit "lda litreg, .lit8+0x8000".  */
 
 
      if (targreg == basereg)
      if (targreg == basereg)
        {
        {
          if (alpha_noat_on)
          if (alpha_noat_on)
            as_bad (_("macro requires $at register while noat in effect"));
            as_bad (_("macro requires $at register while noat in effect"));
          if (targreg == AXP_REG_AT)
          if (targreg == AXP_REG_AT)
            as_bad (_("macro requires $at while $at in use"));
            as_bad (_("macro requires $at while $at in use"));
 
 
          set_tok_reg (newtok[0], AXP_REG_AT);
          set_tok_reg (newtok[0], AXP_REG_AT);
        }
        }
      else
      else
        set_tok_reg (newtok[0], targreg);
        set_tok_reg (newtok[0], targreg);
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
      set_tok_sym (newtok[1], alpha_lita_symbol, alpha_lit8_literal);
      set_tok_sym (newtok[1], alpha_lita_symbol, alpha_lit8_literal);
#endif
#endif
#ifdef OBJ_ELF
#ifdef OBJ_ELF
      set_tok_sym (newtok[1], alpha_lit8_symbol, 0x8000);
      set_tok_sym (newtok[1], alpha_lit8_symbol, 0x8000);
#endif
#endif
      set_tok_preg (newtok[2], alpha_gp_register);
      set_tok_preg (newtok[2], alpha_gp_register);
 
 
      assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
      assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
 
 
      assert (insn.nfixups == 1);
      assert (insn.nfixups == 1);
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
      insn.fixups[0].reloc = BFD_RELOC_ALPHA_LITERAL;
      insn.fixups[0].reloc = BFD_RELOC_ALPHA_LITERAL;
#endif
#endif
#ifdef OBJ_ELF
#ifdef OBJ_ELF
      insn.fixups[0].reloc = BFD_RELOC_ALPHA_ELF_LITERAL;
      insn.fixups[0].reloc = BFD_RELOC_ALPHA_ELF_LITERAL;
#endif
#endif
      insn.sequence = seq_num;
      insn.sequence = seq_num;
 
 
      emit_insn (&insn);
      emit_insn (&insn);
 
 
      /* Emit "ldq litreg, lit(litreg)".  */
      /* Emit "ldq litreg, lit(litreg)".  */
 
 
      set_tok_const (newtok[1], lit);
      set_tok_const (newtok[1], lit);
      set_tok_preg (newtok[2], newtok[0].X_add_number);
      set_tok_preg (newtok[2], newtok[0].X_add_number);
 
 
      assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
      assemble_tokens_to_insn ("ldq", newtok, 3, &insn);
 
 
      assert (insn.nfixups < MAX_INSN_FIXUPS);
      assert (insn.nfixups < MAX_INSN_FIXUPS);
      insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
      insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
      insn.fixups[insn.nfixups].exp.X_op = O_absent;
      insn.fixups[insn.nfixups].exp.X_op = O_absent;
      insn.nfixups++;
      insn.nfixups++;
      insn.sequence = seq_num;
      insn.sequence = seq_num;
      emit_lituse = 0;
      emit_lituse = 0;
 
 
      emit_insn (&insn);
      emit_insn (&insn);
 
 
      /* Emit "addq litreg, base, target".  */
      /* Emit "addq litreg, base, target".  */
 
 
      if (basereg != AXP_REG_ZERO)
      if (basereg != AXP_REG_ZERO)
        {
        {
          set_tok_reg (newtok[1], basereg);
          set_tok_reg (newtok[1], basereg);
          set_tok_reg (newtok[2], targreg);
          set_tok_reg (newtok[2], targreg);
          assemble_tokens ("addq", newtok, 3, 0);
          assemble_tokens ("addq", newtok, 3, 0);
        }
        }
#endif /* !OBJ_EVAX */
#endif /* !OBJ_EVAX */
 
 
      if (poffset)
      if (poffset)
        set_tok_const (*poffset, 0);
        set_tok_const (*poffset, 0);
      *pbasereg = targreg;
      *pbasereg = targreg;
    }
    }
  else
  else
    {
    {
      offsetT low, high, extra, tmp;
      offsetT low, high, extra, tmp;
 
 
      /* For 32-bit operands, break up the addend.  */
      /* For 32-bit operands, break up the addend.  */
 
 
      low = sign_extend_16 (addend);
      low = sign_extend_16 (addend);
      tmp = addend - low;
      tmp = addend - low;
      high = sign_extend_16 (tmp >> 16);
      high = sign_extend_16 (tmp >> 16);
 
 
      if (tmp - (high << 16))
      if (tmp - (high << 16))
        {
        {
          extra = 0x4000;
          extra = 0x4000;
          tmp -= 0x40000000;
          tmp -= 0x40000000;
          high = sign_extend_16 (tmp >> 16);
          high = sign_extend_16 (tmp >> 16);
        }
        }
      else
      else
        extra = 0;
        extra = 0;
 
 
      set_tok_reg (newtok[0], targreg);
      set_tok_reg (newtok[0], targreg);
      set_tok_preg (newtok[2], basereg);
      set_tok_preg (newtok[2], basereg);
 
 
      if (extra)
      if (extra)
        {
        {
          /* Emit "ldah r, extra(r).  */
          /* Emit "ldah r, extra(r).  */
          set_tok_const (newtok[1], extra);
          set_tok_const (newtok[1], extra);
          assemble_tokens ("ldah", newtok, 3, 0);
          assemble_tokens ("ldah", newtok, 3, 0);
          set_tok_preg (newtok[2], basereg = targreg);
          set_tok_preg (newtok[2], basereg = targreg);
        }
        }
 
 
      if (high)
      if (high)
        {
        {
          /* Emit "ldah r, high(r).  */
          /* Emit "ldah r, high(r).  */
          set_tok_const (newtok[1], high);
          set_tok_const (newtok[1], high);
          assemble_tokens ("ldah", newtok, 3, 0);
          assemble_tokens ("ldah", newtok, 3, 0);
          basereg = targreg;
          basereg = targreg;
          set_tok_preg (newtok[2], basereg);
          set_tok_preg (newtok[2], basereg);
        }
        }
 
 
      if ((low && !poffset) || (!poffset && basereg != targreg))
      if ((low && !poffset) || (!poffset && basereg != targreg))
        {
        {
          /* Emit "lda r, low(base)".  */
          /* Emit "lda r, low(base)".  */
          set_tok_const (newtok[1], low);
          set_tok_const (newtok[1], low);
          assemble_tokens ("lda", newtok, 3, 0);
          assemble_tokens ("lda", newtok, 3, 0);
          basereg = targreg;
          basereg = targreg;
          low = 0;
          low = 0;
        }
        }
 
 
      if (poffset)
      if (poffset)
        set_tok_const (*poffset, low);
        set_tok_const (*poffset, low);
      *pbasereg = basereg;
      *pbasereg = basereg;
    }
    }
 
 
  return emit_lituse;
  return emit_lituse;
}
}
 
 
/* The lda macro differs from the lda instruction in that it handles
/* The lda macro differs from the lda instruction in that it handles
   most simple expressions, particularly symbol address loads and
   most simple expressions, particularly symbol address loads and
   large constants.  */
   large constants.  */
 
 
static void
static void
emit_lda (const expressionS *tok,
emit_lda (const expressionS *tok,
          int ntok,
          int ntok,
          const void * unused ATTRIBUTE_UNUSED)
          const void * unused ATTRIBUTE_UNUSED)
{
{
  int basereg;
  int basereg;
 
 
  if (ntok == 2)
  if (ntok == 2)
    basereg = (tok[1].X_op == O_constant ? AXP_REG_ZERO : alpha_gp_register);
    basereg = (tok[1].X_op == O_constant ? AXP_REG_ZERO : alpha_gp_register);
  else
  else
    basereg = tok[2].X_add_number;
    basereg = tok[2].X_add_number;
 
 
  (void) load_expression (tok[0].X_add_number, &tok[1], &basereg, NULL);
  (void) load_expression (tok[0].X_add_number, &tok[1], &basereg, NULL);
}
}
 
 
/* The ldah macro differs from the ldah instruction in that it has $31
/* The ldah macro differs from the ldah instruction in that it has $31
   as an implied base register.  */
   as an implied base register.  */
 
 
static void
static void
emit_ldah (const expressionS *tok,
emit_ldah (const expressionS *tok,
           int ntok ATTRIBUTE_UNUSED,
           int ntok ATTRIBUTE_UNUSED,
           const void * unused ATTRIBUTE_UNUSED)
           const void * unused ATTRIBUTE_UNUSED)
{
{
  expressionS newtok[3];
  expressionS newtok[3];
 
 
  newtok[0] = tok[0];
  newtok[0] = tok[0];
  newtok[1] = tok[1];
  newtok[1] = tok[1];
  set_tok_preg (newtok[2], AXP_REG_ZERO);
  set_tok_preg (newtok[2], AXP_REG_ZERO);
 
 
  assemble_tokens ("ldah", newtok, 3, 0);
  assemble_tokens ("ldah", newtok, 3, 0);
}
}
 
 
/* Called internally to handle all alignment needs.  This takes care
/* Called internally to handle all alignment needs.  This takes care
   of eliding calls to frag_align if'n the cached current alignment
   of eliding calls to frag_align if'n the cached current alignment
   says we've already got it, as well as taking care of the auto-align
   says we've already got it, as well as taking care of the auto-align
   feature wrt labels.  */
   feature wrt labels.  */
 
 
static void
static void
alpha_align (int n,
alpha_align (int n,
             char *pfill,
             char *pfill,
             symbolS *label,
             symbolS *label,
             int force ATTRIBUTE_UNUSED)
             int force ATTRIBUTE_UNUSED)
{
{
  if (alpha_current_align >= n)
  if (alpha_current_align >= n)
    return;
    return;
 
 
  if (pfill == NULL)
  if (pfill == NULL)
    {
    {
      if (subseg_text_p (now_seg))
      if (subseg_text_p (now_seg))
        frag_align_code (n, 0);
        frag_align_code (n, 0);
      else
      else
        frag_align (n, 0, 0);
        frag_align (n, 0, 0);
    }
    }
  else
  else
    frag_align (n, *pfill, 0);
    frag_align (n, *pfill, 0);
 
 
  alpha_current_align = n;
  alpha_current_align = n;
 
 
  if (label != NULL && S_GET_SEGMENT (label) == now_seg)
  if (label != NULL && S_GET_SEGMENT (label) == now_seg)
    {
    {
      symbol_set_frag (label, frag_now);
      symbol_set_frag (label, frag_now);
      S_SET_VALUE (label, (valueT) frag_now_fix ());
      S_SET_VALUE (label, (valueT) frag_now_fix ());
    }
    }
 
 
  record_alignment (now_seg, n);
  record_alignment (now_seg, n);
 
 
  /* ??? If alpha_flag_relax && force && elf, record the requested alignment
  /* ??? If alpha_flag_relax && force && elf, record the requested alignment
     in a reloc for the linker to see.  */
     in a reloc for the linker to see.  */
}
}
 
 
/* Actually output an instruction with its fixup.  */
/* Actually output an instruction with its fixup.  */
 
 
static void
static void
emit_insn (struct alpha_insn *insn)
emit_insn (struct alpha_insn *insn)
{
{
  char *f;
  char *f;
  int i;
  int i;
 
 
  /* Take care of alignment duties.  */
  /* Take care of alignment duties.  */
  if (alpha_auto_align_on && alpha_current_align < 2)
  if (alpha_auto_align_on && alpha_current_align < 2)
    alpha_align (2, (char *) NULL, alpha_insn_label, 0);
    alpha_align (2, (char *) NULL, alpha_insn_label, 0);
  if (alpha_current_align > 2)
  if (alpha_current_align > 2)
    alpha_current_align = 2;
    alpha_current_align = 2;
  alpha_insn_label = NULL;
  alpha_insn_label = NULL;
 
 
  /* Write out the instruction.  */
  /* Write out the instruction.  */
  f = frag_more (4);
  f = frag_more (4);
  md_number_to_chars (f, insn->insn, 4);
  md_number_to_chars (f, insn->insn, 4);
 
 
#ifdef OBJ_ELF
#ifdef OBJ_ELF
  dwarf2_emit_insn (4);
  dwarf2_emit_insn (4);
#endif
#endif
 
 
  /* Apply the fixups in order.  */
  /* Apply the fixups in order.  */
  for (i = 0; i < insn->nfixups; ++i)
  for (i = 0; i < insn->nfixups; ++i)
    {
    {
      const struct alpha_operand *operand = (const struct alpha_operand *) 0;
      const struct alpha_operand *operand = (const struct alpha_operand *) 0;
      struct alpha_fixup *fixup = &insn->fixups[i];
      struct alpha_fixup *fixup = &insn->fixups[i];
      struct alpha_reloc_tag *info = NULL;
      struct alpha_reloc_tag *info = NULL;
      int size, pcrel;
      int size, pcrel;
      fixS *fixP;
      fixS *fixP;
 
 
      /* Some fixups are only used internally and so have no howto.  */
      /* Some fixups are only used internally and so have no howto.  */
      if ((int) fixup->reloc < 0)
      if ((int) fixup->reloc < 0)
        {
        {
          operand = &alpha_operands[-(int) fixup->reloc];
          operand = &alpha_operands[-(int) fixup->reloc];
          size = 4;
          size = 4;
          pcrel = ((operand->flags & AXP_OPERAND_RELATIVE) != 0);
          pcrel = ((operand->flags & AXP_OPERAND_RELATIVE) != 0);
        }
        }
      else if (fixup->reloc > BFD_RELOC_UNUSED
      else if (fixup->reloc > BFD_RELOC_UNUSED
               || fixup->reloc == BFD_RELOC_ALPHA_GPDISP_HI16
               || fixup->reloc == BFD_RELOC_ALPHA_GPDISP_HI16
               || fixup->reloc == BFD_RELOC_ALPHA_GPDISP_LO16)
               || fixup->reloc == BFD_RELOC_ALPHA_GPDISP_LO16)
        {
        {
          size = 2;
          size = 2;
          pcrel = 0;
          pcrel = 0;
        }
        }
      else
      else
        {
        {
          reloc_howto_type *reloc_howto
          reloc_howto_type *reloc_howto
            = bfd_reloc_type_lookup (stdoutput, fixup->reloc);
            = bfd_reloc_type_lookup (stdoutput, fixup->reloc);
          assert (reloc_howto);
          assert (reloc_howto);
 
 
          size = bfd_get_reloc_size (reloc_howto);
          size = bfd_get_reloc_size (reloc_howto);
          assert (size >= 1 && size <= 4);
          assert (size >= 1 && size <= 4);
 
 
          pcrel = reloc_howto->pc_relative;
          pcrel = reloc_howto->pc_relative;
        }
        }
 
 
      fixP = fix_new_exp (frag_now, f - frag_now->fr_literal, size,
      fixP = fix_new_exp (frag_now, f - frag_now->fr_literal, size,
                          &fixup->exp, pcrel, fixup->reloc);
                          &fixup->exp, pcrel, fixup->reloc);
 
 
      /* Turn off complaints that the addend is too large for some fixups,
      /* Turn off complaints that the addend is too large for some fixups,
         and copy in the sequence number for the explicit relocations.  */
         and copy in the sequence number for the explicit relocations.  */
      switch (fixup->reloc)
      switch (fixup->reloc)
        {
        {
        case BFD_RELOC_ALPHA_HINT:
        case BFD_RELOC_ALPHA_HINT:
        case BFD_RELOC_GPREL32:
        case BFD_RELOC_GPREL32:
        case BFD_RELOC_GPREL16:
        case BFD_RELOC_GPREL16:
        case BFD_RELOC_ALPHA_GPREL_HI16:
        case BFD_RELOC_ALPHA_GPREL_HI16:
        case BFD_RELOC_ALPHA_GPREL_LO16:
        case BFD_RELOC_ALPHA_GPREL_LO16:
        case BFD_RELOC_ALPHA_GOTDTPREL16:
        case BFD_RELOC_ALPHA_GOTDTPREL16:
        case BFD_RELOC_ALPHA_DTPREL_HI16:
        case BFD_RELOC_ALPHA_DTPREL_HI16:
        case BFD_RELOC_ALPHA_DTPREL_LO16:
        case BFD_RELOC_ALPHA_DTPREL_LO16:
        case BFD_RELOC_ALPHA_DTPREL16:
        case BFD_RELOC_ALPHA_DTPREL16:
        case BFD_RELOC_ALPHA_GOTTPREL16:
        case BFD_RELOC_ALPHA_GOTTPREL16:
        case BFD_RELOC_ALPHA_TPREL_HI16:
        case BFD_RELOC_ALPHA_TPREL_HI16:
        case BFD_RELOC_ALPHA_TPREL_LO16:
        case BFD_RELOC_ALPHA_TPREL_LO16:
        case BFD_RELOC_ALPHA_TPREL16:
        case BFD_RELOC_ALPHA_TPREL16:
          fixP->fx_no_overflow = 1;
          fixP->fx_no_overflow = 1;
          break;
          break;
 
 
        case BFD_RELOC_ALPHA_GPDISP_HI16:
        case BFD_RELOC_ALPHA_GPDISP_HI16:
          fixP->fx_no_overflow = 1;
          fixP->fx_no_overflow = 1;
          fixP->fx_addsy = section_symbol (now_seg);
          fixP->fx_addsy = section_symbol (now_seg);
          fixP->fx_offset = 0;
          fixP->fx_offset = 0;
 
 
          info = get_alpha_reloc_tag (insn->sequence);
          info = get_alpha_reloc_tag (insn->sequence);
          if (++info->n_master > 1)
          if (++info->n_master > 1)
            as_bad (_("too many ldah insns for !gpdisp!%ld"), insn->sequence);
            as_bad (_("too many ldah insns for !gpdisp!%ld"), insn->sequence);
          if (info->segment != now_seg)
          if (info->segment != now_seg)
            as_bad (_("both insns for !gpdisp!%ld must be in the same section"),
            as_bad (_("both insns for !gpdisp!%ld must be in the same section"),
                    insn->sequence);
                    insn->sequence);
          fixP->tc_fix_data.info = info;
          fixP->tc_fix_data.info = info;
          break;
          break;
 
 
        case BFD_RELOC_ALPHA_GPDISP_LO16:
        case BFD_RELOC_ALPHA_GPDISP_LO16:
          fixP->fx_no_overflow = 1;
          fixP->fx_no_overflow = 1;
 
 
          info = get_alpha_reloc_tag (insn->sequence);
          info = get_alpha_reloc_tag (insn->sequence);
          if (++info->n_slaves > 1)
          if (++info->n_slaves > 1)
            as_bad (_("too many lda insns for !gpdisp!%ld"), insn->sequence);
            as_bad (_("too many lda insns for !gpdisp!%ld"), insn->sequence);
          if (info->segment != now_seg)
          if (info->segment != now_seg)
            as_bad (_("both insns for !gpdisp!%ld must be in the same section"),
            as_bad (_("both insns for !gpdisp!%ld must be in the same section"),
                    insn->sequence);
                    insn->sequence);
          fixP->tc_fix_data.info = info;
          fixP->tc_fix_data.info = info;
          info->slaves = fixP;
          info->slaves = fixP;
          break;
          break;
 
 
        case BFD_RELOC_ALPHA_LITERAL:
        case BFD_RELOC_ALPHA_LITERAL:
        case BFD_RELOC_ALPHA_ELF_LITERAL:
        case BFD_RELOC_ALPHA_ELF_LITERAL:
          fixP->fx_no_overflow = 1;
          fixP->fx_no_overflow = 1;
 
 
          if (insn->sequence == 0)
          if (insn->sequence == 0)
            break;
            break;
          info = get_alpha_reloc_tag (insn->sequence);
          info = get_alpha_reloc_tag (insn->sequence);
          info->master = fixP;
          info->master = fixP;
          info->n_master++;
          info->n_master++;
          if (info->segment != now_seg)
          if (info->segment != now_seg)
            info->multi_section_p = 1;
            info->multi_section_p = 1;
          fixP->tc_fix_data.info = info;
          fixP->tc_fix_data.info = info;
          break;
          break;
 
 
#ifdef RELOC_OP_P
#ifdef RELOC_OP_P
        case DUMMY_RELOC_LITUSE_ADDR:
        case DUMMY_RELOC_LITUSE_ADDR:
          fixP->fx_offset = LITUSE_ALPHA_ADDR;
          fixP->fx_offset = LITUSE_ALPHA_ADDR;
          goto do_lituse;
          goto do_lituse;
        case DUMMY_RELOC_LITUSE_BASE:
        case DUMMY_RELOC_LITUSE_BASE:
          fixP->fx_offset = LITUSE_ALPHA_BASE;
          fixP->fx_offset = LITUSE_ALPHA_BASE;
          goto do_lituse;
          goto do_lituse;
        case DUMMY_RELOC_LITUSE_BYTOFF:
        case DUMMY_RELOC_LITUSE_BYTOFF:
          fixP->fx_offset = LITUSE_ALPHA_BYTOFF;
          fixP->fx_offset = LITUSE_ALPHA_BYTOFF;
          goto do_lituse;
          goto do_lituse;
        case DUMMY_RELOC_LITUSE_JSR:
        case DUMMY_RELOC_LITUSE_JSR:
          fixP->fx_offset = LITUSE_ALPHA_JSR;
          fixP->fx_offset = LITUSE_ALPHA_JSR;
          goto do_lituse;
          goto do_lituse;
        case DUMMY_RELOC_LITUSE_TLSGD:
        case DUMMY_RELOC_LITUSE_TLSGD:
          fixP->fx_offset = LITUSE_ALPHA_TLSGD;
          fixP->fx_offset = LITUSE_ALPHA_TLSGD;
          goto do_lituse;
          goto do_lituse;
        case DUMMY_RELOC_LITUSE_TLSLDM:
        case DUMMY_RELOC_LITUSE_TLSLDM:
          fixP->fx_offset = LITUSE_ALPHA_TLSLDM;
          fixP->fx_offset = LITUSE_ALPHA_TLSLDM;
          goto do_lituse;
          goto do_lituse;
        case DUMMY_RELOC_LITUSE_JSRDIRECT:
        case DUMMY_RELOC_LITUSE_JSRDIRECT:
          fixP->fx_offset = LITUSE_ALPHA_JSRDIRECT;
          fixP->fx_offset = LITUSE_ALPHA_JSRDIRECT;
          goto do_lituse;
          goto do_lituse;
        do_lituse:
        do_lituse:
          fixP->fx_addsy = section_symbol (now_seg);
          fixP->fx_addsy = section_symbol (now_seg);
          fixP->fx_r_type = BFD_RELOC_ALPHA_LITUSE;
          fixP->fx_r_type = BFD_RELOC_ALPHA_LITUSE;
 
 
          info = get_alpha_reloc_tag (insn->sequence);
          info = get_alpha_reloc_tag (insn->sequence);
          if (fixup->reloc == DUMMY_RELOC_LITUSE_TLSGD)
          if (fixup->reloc == DUMMY_RELOC_LITUSE_TLSGD)
            info->saw_lu_tlsgd = 1;
            info->saw_lu_tlsgd = 1;
          else if (fixup->reloc == DUMMY_RELOC_LITUSE_TLSLDM)
          else if (fixup->reloc == DUMMY_RELOC_LITUSE_TLSLDM)
            info->saw_lu_tlsldm = 1;
            info->saw_lu_tlsldm = 1;
          if (++info->n_slaves > 1)
          if (++info->n_slaves > 1)
            {
            {
              if (info->saw_lu_tlsgd)
              if (info->saw_lu_tlsgd)
                as_bad (_("too many lituse insns for !lituse_tlsgd!%ld"),
                as_bad (_("too many lituse insns for !lituse_tlsgd!%ld"),
                        insn->sequence);
                        insn->sequence);
              else if (info->saw_lu_tlsldm)
              else if (info->saw_lu_tlsldm)
                as_bad (_("too many lituse insns for !lituse_tlsldm!%ld"),
                as_bad (_("too many lituse insns for !lituse_tlsldm!%ld"),
                        insn->sequence);
                        insn->sequence);
            }
            }
          fixP->tc_fix_data.info = info;
          fixP->tc_fix_data.info = info;
          fixP->tc_fix_data.next_reloc = info->slaves;
          fixP->tc_fix_data.next_reloc = info->slaves;
          info->slaves = fixP;
          info->slaves = fixP;
          if (info->segment != now_seg)
          if (info->segment != now_seg)
            info->multi_section_p = 1;
            info->multi_section_p = 1;
          break;
          break;
 
 
        case BFD_RELOC_ALPHA_TLSGD:
        case BFD_RELOC_ALPHA_TLSGD:
          fixP->fx_no_overflow = 1;
          fixP->fx_no_overflow = 1;
 
 
          if (insn->sequence == 0)
          if (insn->sequence == 0)
            break;
            break;
          info = get_alpha_reloc_tag (insn->sequence);
          info = get_alpha_reloc_tag (insn->sequence);
          if (info->saw_tlsgd)
          if (info->saw_tlsgd)
            as_bad (_("duplicate !tlsgd!%ld"), insn->sequence);
            as_bad (_("duplicate !tlsgd!%ld"), insn->sequence);
          else if (info->saw_tlsldm)
          else if (info->saw_tlsldm)
            as_bad (_("sequence number in use for !tlsldm!%ld"),
            as_bad (_("sequence number in use for !tlsldm!%ld"),
                    insn->sequence);
                    insn->sequence);
          else
          else
            info->saw_tlsgd = 1;
            info->saw_tlsgd = 1;
          fixP->tc_fix_data.info = info;
          fixP->tc_fix_data.info = info;
          break;
          break;
 
 
        case BFD_RELOC_ALPHA_TLSLDM:
        case BFD_RELOC_ALPHA_TLSLDM:
          fixP->fx_no_overflow = 1;
          fixP->fx_no_overflow = 1;
 
 
          if (insn->sequence == 0)
          if (insn->sequence == 0)
            break;
            break;
          info = get_alpha_reloc_tag (insn->sequence);
          info = get_alpha_reloc_tag (insn->sequence);
          if (info->saw_tlsldm)
          if (info->saw_tlsldm)
            as_bad (_("duplicate !tlsldm!%ld"), insn->sequence);
            as_bad (_("duplicate !tlsldm!%ld"), insn->sequence);
          else if (info->saw_tlsgd)
          else if (info->saw_tlsgd)
            as_bad (_("sequence number in use for !tlsgd!%ld"),
            as_bad (_("sequence number in use for !tlsgd!%ld"),
                    insn->sequence);
                    insn->sequence);
          else
          else
            info->saw_tlsldm = 1;
            info->saw_tlsldm = 1;
          fixP->tc_fix_data.info = info;
          fixP->tc_fix_data.info = info;
          break;
          break;
#endif
#endif
        default:
        default:
          if ((int) fixup->reloc < 0)
          if ((int) fixup->reloc < 0)
            {
            {
              if (operand->flags & AXP_OPERAND_NOOVERFLOW)
              if (operand->flags & AXP_OPERAND_NOOVERFLOW)
                fixP->fx_no_overflow = 1;
                fixP->fx_no_overflow = 1;
            }
            }
          break;
          break;
        }
        }
    }
    }
}
}
 
 
/* Insert an operand value into an instruction.  */
/* Insert an operand value into an instruction.  */
 
 
static unsigned
static unsigned
insert_operand (unsigned insn,
insert_operand (unsigned insn,
                const struct alpha_operand *operand,
                const struct alpha_operand *operand,
                offsetT val,
                offsetT val,
                char *file,
                char *file,
                unsigned line)
                unsigned line)
{
{
  if (operand->bits != 32 && !(operand->flags & AXP_OPERAND_NOOVERFLOW))
  if (operand->bits != 32 && !(operand->flags & AXP_OPERAND_NOOVERFLOW))
    {
    {
      offsetT min, max;
      offsetT min, max;
 
 
      if (operand->flags & AXP_OPERAND_SIGNED)
      if (operand->flags & AXP_OPERAND_SIGNED)
        {
        {
          max = (1 << (operand->bits - 1)) - 1;
          max = (1 << (operand->bits - 1)) - 1;
          min = -(1 << (operand->bits - 1));
          min = -(1 << (operand->bits - 1));
        }
        }
      else
      else
        {
        {
          max = (1 << operand->bits) - 1;
          max = (1 << operand->bits) - 1;
          min = 0;
          min = 0;
        }
        }
 
 
      if (val < min || val > max)
      if (val < min || val > max)
        as_warn_value_out_of_range (_("operand"), val, min, max, file, line);
        as_warn_value_out_of_range (_("operand"), val, min, max, file, line);
    }
    }
 
 
  if (operand->insert)
  if (operand->insert)
    {
    {
      const char *errmsg = NULL;
      const char *errmsg = NULL;
 
 
      insn = (*operand->insert) (insn, val, &errmsg);
      insn = (*operand->insert) (insn, val, &errmsg);
      if (errmsg)
      if (errmsg)
        as_warn (errmsg);
        as_warn (errmsg);
    }
    }
  else
  else
    insn |= ((val & ((1 << operand->bits) - 1)) << operand->shift);
    insn |= ((val & ((1 << operand->bits) - 1)) << operand->shift);
 
 
  return insn;
  return insn;
}
}
 
 
/* Turn an opcode description and a set of arguments into
/* Turn an opcode description and a set of arguments into
   an instruction and a fixup.  */
   an instruction and a fixup.  */
 
 
static void
static void
assemble_insn (const struct alpha_opcode *opcode,
assemble_insn (const struct alpha_opcode *opcode,
               const expressionS *tok,
               const expressionS *tok,
               int ntok,
               int ntok,
               struct alpha_insn *insn,
               struct alpha_insn *insn,
               bfd_reloc_code_real_type reloc)
               bfd_reloc_code_real_type reloc)
{
{
  const struct alpha_operand *reloc_operand = NULL;
  const struct alpha_operand *reloc_operand = NULL;
  const expressionS *reloc_exp = NULL;
  const expressionS *reloc_exp = NULL;
  const unsigned char *argidx;
  const unsigned char *argidx;
  unsigned image;
  unsigned image;
  int tokidx = 0;
  int tokidx = 0;
 
 
  memset (insn, 0, sizeof (*insn));
  memset (insn, 0, sizeof (*insn));
  image = opcode->opcode;
  image = opcode->opcode;
 
 
  for (argidx = opcode->operands; *argidx; ++argidx)
  for (argidx = opcode->operands; *argidx; ++argidx)
    {
    {
      const struct alpha_operand *operand = &alpha_operands[*argidx];
      const struct alpha_operand *operand = &alpha_operands[*argidx];
      const expressionS *t = (const expressionS *) 0;
      const expressionS *t = (const expressionS *) 0;
 
 
      if (operand->flags & AXP_OPERAND_FAKE)
      if (operand->flags & AXP_OPERAND_FAKE)
        {
        {
          /* Fake operands take no value and generate no fixup.  */
          /* Fake operands take no value and generate no fixup.  */
          image = insert_operand (image, operand, 0, NULL, 0);
          image = insert_operand (image, operand, 0, NULL, 0);
          continue;
          continue;
        }
        }
 
 
      if (tokidx >= ntok)
      if (tokidx >= ntok)
        {
        {
          switch (operand->flags & AXP_OPERAND_OPTIONAL_MASK)
          switch (operand->flags & AXP_OPERAND_OPTIONAL_MASK)
            {
            {
            case AXP_OPERAND_DEFAULT_FIRST:
            case AXP_OPERAND_DEFAULT_FIRST:
              t = &tok[0];
              t = &tok[0];
              break;
              break;
            case AXP_OPERAND_DEFAULT_SECOND:
            case AXP_OPERAND_DEFAULT_SECOND:
              t = &tok[1];
              t = &tok[1];
              break;
              break;
            case AXP_OPERAND_DEFAULT_ZERO:
            case AXP_OPERAND_DEFAULT_ZERO:
              {
              {
                static expressionS zero_exp;
                static expressionS zero_exp;
                t = &zero_exp;
                t = &zero_exp;
                zero_exp.X_op = O_constant;
                zero_exp.X_op = O_constant;
                zero_exp.X_unsigned = 1;
                zero_exp.X_unsigned = 1;
              }
              }
              break;
              break;
            default:
            default:
              abort ();
              abort ();
            }
            }
        }
        }
      else
      else
        t = &tok[tokidx++];
        t = &tok[tokidx++];
 
 
      switch (t->X_op)
      switch (t->X_op)
        {
        {
        case O_register:
        case O_register:
        case O_pregister:
        case O_pregister:
        case O_cpregister:
        case O_cpregister:
          image = insert_operand (image, operand, regno (t->X_add_number),
          image = insert_operand (image, operand, regno (t->X_add_number),
                                  NULL, 0);
                                  NULL, 0);
          break;
          break;
 
 
        case O_constant:
        case O_constant:
          image = insert_operand (image, operand, t->X_add_number, NULL, 0);
          image = insert_operand (image, operand, t->X_add_number, NULL, 0);
          assert (reloc_operand == NULL);
          assert (reloc_operand == NULL);
          reloc_operand = operand;
          reloc_operand = operand;
          reloc_exp = t;
          reloc_exp = t;
          break;
          break;
 
 
        default:
        default:
          /* This is only 0 for fields that should contain registers,
          /* This is only 0 for fields that should contain registers,
             which means this pattern shouldn't have matched.  */
             which means this pattern shouldn't have matched.  */
          if (operand->default_reloc == 0)
          if (operand->default_reloc == 0)
            abort ();
            abort ();
 
 
          /* There is one special case for which an insn receives two
          /* There is one special case for which an insn receives two
             relocations, and thus the user-supplied reloc does not
             relocations, and thus the user-supplied reloc does not
             override the operand reloc.  */
             override the operand reloc.  */
          if (operand->default_reloc == BFD_RELOC_ALPHA_HINT)
          if (operand->default_reloc == BFD_RELOC_ALPHA_HINT)
            {
            {
              struct alpha_fixup *fixup;
              struct alpha_fixup *fixup;
 
 
              if (insn->nfixups >= MAX_INSN_FIXUPS)
              if (insn->nfixups >= MAX_INSN_FIXUPS)
                as_fatal (_("too many fixups"));
                as_fatal (_("too many fixups"));
 
 
              fixup = &insn->fixups[insn->nfixups++];
              fixup = &insn->fixups[insn->nfixups++];
              fixup->exp = *t;
              fixup->exp = *t;
              fixup->reloc = BFD_RELOC_ALPHA_HINT;
              fixup->reloc = BFD_RELOC_ALPHA_HINT;
            }
            }
          else
          else
            {
            {
              if (reloc == BFD_RELOC_UNUSED)
              if (reloc == BFD_RELOC_UNUSED)
                reloc = operand->default_reloc;
                reloc = operand->default_reloc;
 
 
              assert (reloc_operand == NULL);
              assert (reloc_operand == NULL);
              reloc_operand = operand;
              reloc_operand = operand;
              reloc_exp = t;
              reloc_exp = t;
            }
            }
          break;
          break;
        }
        }
    }
    }
 
 
  if (reloc != BFD_RELOC_UNUSED)
  if (reloc != BFD_RELOC_UNUSED)
    {
    {
      struct alpha_fixup *fixup;
      struct alpha_fixup *fixup;
 
 
      if (insn->nfixups >= MAX_INSN_FIXUPS)
      if (insn->nfixups >= MAX_INSN_FIXUPS)
        as_fatal (_("too many fixups"));
        as_fatal (_("too many fixups"));
 
 
      /* ??? My but this is hacky.  But the OSF/1 assembler uses the same
      /* ??? My but this is hacky.  But the OSF/1 assembler uses the same
         relocation tag for both ldah and lda with gpdisp.  Choose the
         relocation tag for both ldah and lda with gpdisp.  Choose the
         correct internal relocation based on the opcode.  */
         correct internal relocation based on the opcode.  */
      if (reloc == BFD_RELOC_ALPHA_GPDISP)
      if (reloc == BFD_RELOC_ALPHA_GPDISP)
        {
        {
          if (strcmp (opcode->name, "ldah") == 0)
          if (strcmp (opcode->name, "ldah") == 0)
            reloc = BFD_RELOC_ALPHA_GPDISP_HI16;
            reloc = BFD_RELOC_ALPHA_GPDISP_HI16;
          else if (strcmp (opcode->name, "lda") == 0)
          else if (strcmp (opcode->name, "lda") == 0)
            reloc = BFD_RELOC_ALPHA_GPDISP_LO16;
            reloc = BFD_RELOC_ALPHA_GPDISP_LO16;
          else
          else
            as_bad (_("invalid relocation for instruction"));
            as_bad (_("invalid relocation for instruction"));
        }
        }
 
 
      /* If this is a real relocation (as opposed to a lituse hint), then
      /* If this is a real relocation (as opposed to a lituse hint), then
         the relocation width should match the operand width.  */
         the relocation width should match the operand width.  */
      else if (reloc < BFD_RELOC_UNUSED)
      else if (reloc < BFD_RELOC_UNUSED)
        {
        {
          reloc_howto_type *reloc_howto
          reloc_howto_type *reloc_howto
            = bfd_reloc_type_lookup (stdoutput, reloc);
            = bfd_reloc_type_lookup (stdoutput, reloc);
          if (reloc_operand == NULL
          if (reloc_operand == NULL
              || reloc_howto->bitsize != reloc_operand->bits)
              || reloc_howto->bitsize != reloc_operand->bits)
            {
            {
              as_bad (_("invalid relocation for field"));
              as_bad (_("invalid relocation for field"));
              return;
              return;
            }
            }
        }
        }
 
 
      fixup = &insn->fixups[insn->nfixups++];
      fixup = &insn->fixups[insn->nfixups++];
      if (reloc_exp)
      if (reloc_exp)
        fixup->exp = *reloc_exp;
        fixup->exp = *reloc_exp;
      else
      else
        fixup->exp.X_op = O_absent;
        fixup->exp.X_op = O_absent;
      fixup->reloc = reloc;
      fixup->reloc = reloc;
    }
    }
 
 
  insn->insn = image;
  insn->insn = image;
}
}
 
 
/* Handle all "simple" integer register loads -- ldq, ldq_l, ldq_u,
/* Handle all "simple" integer register loads -- ldq, ldq_l, ldq_u,
   etc.  They differ from the real instructions in that they do simple
   etc.  They differ from the real instructions in that they do simple
   expressions like the lda macro.  */
   expressions like the lda macro.  */
 
 
static void
static void
emit_ir_load (const expressionS *tok,
emit_ir_load (const expressionS *tok,
              int ntok,
              int ntok,
              const void * opname)
              const void * opname)
{
{
  int basereg;
  int basereg;
  long lituse;
  long lituse;
  expressionS newtok[3];
  expressionS newtok[3];
  struct alpha_insn insn;
  struct alpha_insn insn;
 
 
  if (ntok == 2)
  if (ntok == 2)
    basereg = (tok[1].X_op == O_constant ? AXP_REG_ZERO : alpha_gp_register);
    basereg = (tok[1].X_op == O_constant ? AXP_REG_ZERO : alpha_gp_register);
  else
  else
    basereg = tok[2].X_add_number;
    basereg = tok[2].X_add_number;
 
 
  lituse = load_expression (tok[0].X_add_number, &tok[1], &basereg,
  lituse = load_expression (tok[0].X_add_number, &tok[1], &basereg,
                            &newtok[1]);
                            &newtok[1]);
 
 
  newtok[0] = tok[0];
  newtok[0] = tok[0];
  set_tok_preg (newtok[2], basereg);
  set_tok_preg (newtok[2], basereg);
 
 
  assemble_tokens_to_insn ((const char *) opname, newtok, 3, &insn);
  assemble_tokens_to_insn ((const char *) opname, newtok, 3, &insn);
 
 
  if (lituse)
  if (lituse)
    {
    {
      assert (insn.nfixups < MAX_INSN_FIXUPS);
      assert (insn.nfixups < MAX_INSN_FIXUPS);
      insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
      insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
      insn.fixups[insn.nfixups].exp.X_op = O_absent;
      insn.fixups[insn.nfixups].exp.X_op = O_absent;
      insn.nfixups++;
      insn.nfixups++;
      insn.sequence = lituse;
      insn.sequence = lituse;
    }
    }
 
 
  emit_insn (&insn);
  emit_insn (&insn);
}
}
 
 
/* Handle fp register loads, and both integer and fp register stores.
/* Handle fp register loads, and both integer and fp register stores.
   Again, we handle simple expressions.  */
   Again, we handle simple expressions.  */
 
 
static void
static void
emit_loadstore (const expressionS *tok,
emit_loadstore (const expressionS *tok,
                int ntok,
                int ntok,
                const void * opname)
                const void * opname)
{
{
  int basereg;
  int basereg;
  long lituse;
  long lituse;
  expressionS newtok[3];
  expressionS newtok[3];
  struct alpha_insn insn;
  struct alpha_insn insn;
 
 
  if (ntok == 2)
  if (ntok == 2)
    basereg = (tok[1].X_op == O_constant ? AXP_REG_ZERO : alpha_gp_register);
    basereg = (tok[1].X_op == O_constant ? AXP_REG_ZERO : alpha_gp_register);
  else
  else
    basereg = tok[2].X_add_number;
    basereg = tok[2].X_add_number;
 
 
  if (tok[1].X_op != O_constant || !range_signed_16 (tok[1].X_add_number))
  if (tok[1].X_op != O_constant || !range_signed_16 (tok[1].X_add_number))
    {
    {
      if (alpha_noat_on)
      if (alpha_noat_on)
        as_bad (_("macro requires $at register while noat in effect"));
        as_bad (_("macro requires $at register while noat in effect"));
 
 
      lituse = load_expression (AXP_REG_AT, &tok[1], &basereg, &newtok[1]);
      lituse = load_expression (AXP_REG_AT, &tok[1], &basereg, &newtok[1]);
    }
    }
  else
  else
    {
    {
      newtok[1] = tok[1];
      newtok[1] = tok[1];
      lituse = 0;
      lituse = 0;
    }
    }
 
 
  newtok[0] = tok[0];
  newtok[0] = tok[0];
  set_tok_preg (newtok[2], basereg);
  set_tok_preg (newtok[2], basereg);
 
 
  assemble_tokens_to_insn ((const char *) opname, newtok, 3, &insn);
  assemble_tokens_to_insn ((const char *) opname, newtok, 3, &insn);
 
 
  if (lituse)
  if (lituse)
    {
    {
      assert (insn.nfixups < MAX_INSN_FIXUPS);
      assert (insn.nfixups < MAX_INSN_FIXUPS);
      insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
      insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
      insn.fixups[insn.nfixups].exp.X_op = O_absent;
      insn.fixups[insn.nfixups].exp.X_op = O_absent;
      insn.nfixups++;
      insn.nfixups++;
      insn.sequence = lituse;
      insn.sequence = lituse;
    }
    }
 
 
  emit_insn (&insn);
  emit_insn (&insn);
}
}
 
 
/* Load a half-word or byte as an unsigned value.  */
/* Load a half-word or byte as an unsigned value.  */
 
 
static void
static void
emit_ldXu (const expressionS *tok,
emit_ldXu (const expressionS *tok,
           int ntok,
           int ntok,
           const void * vlgsize)
           const void * vlgsize)
{
{
  if (alpha_target & AXP_OPCODE_BWX)
  if (alpha_target & AXP_OPCODE_BWX)
    emit_ir_load (tok, ntok, ldXu_op[(long) vlgsize]);
    emit_ir_load (tok, ntok, ldXu_op[(long) vlgsize]);
  else
  else
    {
    {
      expressionS newtok[3];
      expressionS newtok[3];
      struct alpha_insn insn;
      struct alpha_insn insn;
      int basereg;
      int basereg;
      long lituse;
      long lituse;
 
 
      if (alpha_noat_on)
      if (alpha_noat_on)
        as_bad (_("macro requires $at register while noat in effect"));
        as_bad (_("macro requires $at register while noat in effect"));
 
 
      if (ntok == 2)
      if (ntok == 2)
        basereg = (tok[1].X_op == O_constant
        basereg = (tok[1].X_op == O_constant
                   ? AXP_REG_ZERO : alpha_gp_register);
                   ? AXP_REG_ZERO : alpha_gp_register);
      else
      else
        basereg = tok[2].X_add_number;
        basereg = tok[2].X_add_number;
 
 
      /* Emit "lda $at, exp".  */
      /* Emit "lda $at, exp".  */
      lituse = load_expression (AXP_REG_AT, &tok[1], &basereg, NULL);
      lituse = load_expression (AXP_REG_AT, &tok[1], &basereg, NULL);
 
 
      /* Emit "ldq_u targ, 0($at)".  */
      /* Emit "ldq_u targ, 0($at)".  */
      newtok[0] = tok[0];
      newtok[0] = tok[0];
      set_tok_const (newtok[1], 0);
      set_tok_const (newtok[1], 0);
      set_tok_preg (newtok[2], basereg);
      set_tok_preg (newtok[2], basereg);
      assemble_tokens_to_insn ("ldq_u", newtok, 3, &insn);
      assemble_tokens_to_insn ("ldq_u", newtok, 3, &insn);
 
 
      if (lituse)
      if (lituse)
        {
        {
          assert (insn.nfixups < MAX_INSN_FIXUPS);
          assert (insn.nfixups < MAX_INSN_FIXUPS);
          insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
          insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
          insn.fixups[insn.nfixups].exp.X_op = O_absent;
          insn.fixups[insn.nfixups].exp.X_op = O_absent;
          insn.nfixups++;
          insn.nfixups++;
          insn.sequence = lituse;
          insn.sequence = lituse;
        }
        }
 
 
      emit_insn (&insn);
      emit_insn (&insn);
 
 
      /* Emit "extXl targ, $at, targ".  */
      /* Emit "extXl targ, $at, targ".  */
      set_tok_reg (newtok[1], basereg);
      set_tok_reg (newtok[1], basereg);
      newtok[2] = newtok[0];
      newtok[2] = newtok[0];
      assemble_tokens_to_insn (extXl_op[(long) vlgsize], newtok, 3, &insn);
      assemble_tokens_to_insn (extXl_op[(long) vlgsize], newtok, 3, &insn);
 
 
      if (lituse)
      if (lituse)
        {
        {
          assert (insn.nfixups < MAX_INSN_FIXUPS);
          assert (insn.nfixups < MAX_INSN_FIXUPS);
          insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BYTOFF;
          insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BYTOFF;
          insn.fixups[insn.nfixups].exp.X_op = O_absent;
          insn.fixups[insn.nfixups].exp.X_op = O_absent;
          insn.nfixups++;
          insn.nfixups++;
          insn.sequence = lituse;
          insn.sequence = lituse;
        }
        }
 
 
      emit_insn (&insn);
      emit_insn (&insn);
    }
    }
}
}
 
 
/* Load a half-word or byte as a signed value.  */
/* Load a half-word or byte as a signed value.  */
 
 
static void
static void
emit_ldX (const expressionS *tok,
emit_ldX (const expressionS *tok,
          int ntok,
          int ntok,
          const void * vlgsize)
          const void * vlgsize)
{
{
  emit_ldXu (tok, ntok, vlgsize);
  emit_ldXu (tok, ntok, vlgsize);
  assemble_tokens (sextX_op[(long) vlgsize], tok, 1, 1);
  assemble_tokens (sextX_op[(long) vlgsize], tok, 1, 1);
}
}
 
 
/* Load an integral value from an unaligned address as an unsigned
/* Load an integral value from an unaligned address as an unsigned
   value.  */
   value.  */
 
 
static void
static void
emit_uldXu (const expressionS *tok,
emit_uldXu (const expressionS *tok,
            int ntok,
            int ntok,
            const void * vlgsize)
            const void * vlgsize)
{
{
  long lgsize = (long) vlgsize;
  long lgsize = (long) vlgsize;
  expressionS newtok[3];
  expressionS newtok[3];
 
 
  if (alpha_noat_on)
  if (alpha_noat_on)
    as_bad (_("macro requires $at register while noat in effect"));
    as_bad (_("macro requires $at register while noat in effect"));
 
 
  /* Emit "lda $at, exp".  */
  /* Emit "lda $at, exp".  */
  memcpy (newtok, tok, sizeof (expressionS) * ntok);
  memcpy (newtok, tok, sizeof (expressionS) * ntok);
  newtok[0].X_add_number = AXP_REG_AT;
  newtok[0].X_add_number = AXP_REG_AT;
  assemble_tokens ("lda", newtok, ntok, 1);
  assemble_tokens ("lda", newtok, ntok, 1);
 
 
  /* Emit "ldq_u $t9, 0($at)".  */
  /* Emit "ldq_u $t9, 0($at)".  */
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_const (newtok[1], 0);
  set_tok_const (newtok[1], 0);
  set_tok_preg (newtok[2], AXP_REG_AT);
  set_tok_preg (newtok[2], AXP_REG_AT);
  assemble_tokens ("ldq_u", newtok, 3, 1);
  assemble_tokens ("ldq_u", newtok, 3, 1);
 
 
  /* Emit "ldq_u $t10, size-1($at)".  */
  /* Emit "ldq_u $t10, size-1($at)".  */
  set_tok_reg (newtok[0], AXP_REG_T10);
  set_tok_reg (newtok[0], AXP_REG_T10);
  set_tok_const (newtok[1], (1 << lgsize) - 1);
  set_tok_const (newtok[1], (1 << lgsize) - 1);
  assemble_tokens ("ldq_u", newtok, 3, 1);
  assemble_tokens ("ldq_u", newtok, 3, 1);
 
 
  /* Emit "extXl $t9, $at, $t9".  */
  /* Emit "extXl $t9, $at, $t9".  */
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_reg (newtok[1], AXP_REG_AT);
  set_tok_reg (newtok[1], AXP_REG_AT);
  set_tok_reg (newtok[2], AXP_REG_T9);
  set_tok_reg (newtok[2], AXP_REG_T9);
  assemble_tokens (extXl_op[lgsize], newtok, 3, 1);
  assemble_tokens (extXl_op[lgsize], newtok, 3, 1);
 
 
  /* Emit "extXh $t10, $at, $t10".  */
  /* Emit "extXh $t10, $at, $t10".  */
  set_tok_reg (newtok[0], AXP_REG_T10);
  set_tok_reg (newtok[0], AXP_REG_T10);
  set_tok_reg (newtok[2], AXP_REG_T10);
  set_tok_reg (newtok[2], AXP_REG_T10);
  assemble_tokens (extXh_op[lgsize], newtok, 3, 1);
  assemble_tokens (extXh_op[lgsize], newtok, 3, 1);
 
 
  /* Emit "or $t9, $t10, targ".  */
  /* Emit "or $t9, $t10, targ".  */
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_reg (newtok[1], AXP_REG_T10);
  set_tok_reg (newtok[1], AXP_REG_T10);
  newtok[2] = tok[0];
  newtok[2] = tok[0];
  assemble_tokens ("or", newtok, 3, 1);
  assemble_tokens ("or", newtok, 3, 1);
}
}
 
 
/* Load an integral value from an unaligned address as a signed value.
/* Load an integral value from an unaligned address as a signed value.
   Note that quads should get funneled to the unsigned load since we
   Note that quads should get funneled to the unsigned load since we
   don't have to do the sign extension.  */
   don't have to do the sign extension.  */
 
 
static void
static void
emit_uldX (const expressionS *tok,
emit_uldX (const expressionS *tok,
           int ntok,
           int ntok,
           const void * vlgsize)
           const void * vlgsize)
{
{
  emit_uldXu (tok, ntok, vlgsize);
  emit_uldXu (tok, ntok, vlgsize);
  assemble_tokens (sextX_op[(long) vlgsize], tok, 1, 1);
  assemble_tokens (sextX_op[(long) vlgsize], tok, 1, 1);
}
}
 
 
/* Implement the ldil macro.  */
/* Implement the ldil macro.  */
 
 
static void
static void
emit_ldil (const expressionS *tok,
emit_ldil (const expressionS *tok,
           int ntok,
           int ntok,
           const void * unused ATTRIBUTE_UNUSED)
           const void * unused ATTRIBUTE_UNUSED)
{
{
  expressionS newtok[2];
  expressionS newtok[2];
 
 
  memcpy (newtok, tok, sizeof (newtok));
  memcpy (newtok, tok, sizeof (newtok));
  newtok[1].X_add_number = sign_extend_32 (tok[1].X_add_number);
  newtok[1].X_add_number = sign_extend_32 (tok[1].X_add_number);
 
 
  assemble_tokens ("lda", newtok, ntok, 1);
  assemble_tokens ("lda", newtok, ntok, 1);
}
}
 
 
/* Store a half-word or byte.  */
/* Store a half-word or byte.  */
 
 
static void
static void
emit_stX (const expressionS *tok,
emit_stX (const expressionS *tok,
          int ntok,
          int ntok,
          const void * vlgsize)
          const void * vlgsize)
{
{
  int lgsize = (int) (long) vlgsize;
  int lgsize = (int) (long) vlgsize;
 
 
  if (alpha_target & AXP_OPCODE_BWX)
  if (alpha_target & AXP_OPCODE_BWX)
    emit_loadstore (tok, ntok, stX_op[lgsize]);
    emit_loadstore (tok, ntok, stX_op[lgsize]);
  else
  else
    {
    {
      expressionS newtok[3];
      expressionS newtok[3];
      struct alpha_insn insn;
      struct alpha_insn insn;
      int basereg;
      int basereg;
      long lituse;
      long lituse;
 
 
      if (alpha_noat_on)
      if (alpha_noat_on)
        as_bad (_("macro requires $at register while noat in effect"));
        as_bad (_("macro requires $at register while noat in effect"));
 
 
      if (ntok == 2)
      if (ntok == 2)
        basereg = (tok[1].X_op == O_constant
        basereg = (tok[1].X_op == O_constant
                   ? AXP_REG_ZERO : alpha_gp_register);
                   ? AXP_REG_ZERO : alpha_gp_register);
      else
      else
        basereg = tok[2].X_add_number;
        basereg = tok[2].X_add_number;
 
 
      /* Emit "lda $at, exp".  */
      /* Emit "lda $at, exp".  */
      lituse = load_expression (AXP_REG_AT, &tok[1], &basereg, NULL);
      lituse = load_expression (AXP_REG_AT, &tok[1], &basereg, NULL);
 
 
      /* Emit "ldq_u $t9, 0($at)".  */
      /* Emit "ldq_u $t9, 0($at)".  */
      set_tok_reg (newtok[0], AXP_REG_T9);
      set_tok_reg (newtok[0], AXP_REG_T9);
      set_tok_const (newtok[1], 0);
      set_tok_const (newtok[1], 0);
      set_tok_preg (newtok[2], basereg);
      set_tok_preg (newtok[2], basereg);
      assemble_tokens_to_insn ("ldq_u", newtok, 3, &insn);
      assemble_tokens_to_insn ("ldq_u", newtok, 3, &insn);
 
 
      if (lituse)
      if (lituse)
        {
        {
          assert (insn.nfixups < MAX_INSN_FIXUPS);
          assert (insn.nfixups < MAX_INSN_FIXUPS);
          insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
          insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
          insn.fixups[insn.nfixups].exp.X_op = O_absent;
          insn.fixups[insn.nfixups].exp.X_op = O_absent;
          insn.nfixups++;
          insn.nfixups++;
          insn.sequence = lituse;
          insn.sequence = lituse;
        }
        }
 
 
      emit_insn (&insn);
      emit_insn (&insn);
 
 
      /* Emit "insXl src, $at, $t10".  */
      /* Emit "insXl src, $at, $t10".  */
      newtok[0] = tok[0];
      newtok[0] = tok[0];
      set_tok_reg (newtok[1], basereg);
      set_tok_reg (newtok[1], basereg);
      set_tok_reg (newtok[2], AXP_REG_T10);
      set_tok_reg (newtok[2], AXP_REG_T10);
      assemble_tokens_to_insn (insXl_op[lgsize], newtok, 3, &insn);
      assemble_tokens_to_insn (insXl_op[lgsize], newtok, 3, &insn);
 
 
      if (lituse)
      if (lituse)
        {
        {
          assert (insn.nfixups < MAX_INSN_FIXUPS);
          assert (insn.nfixups < MAX_INSN_FIXUPS);
          insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BYTOFF;
          insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BYTOFF;
          insn.fixups[insn.nfixups].exp.X_op = O_absent;
          insn.fixups[insn.nfixups].exp.X_op = O_absent;
          insn.nfixups++;
          insn.nfixups++;
          insn.sequence = lituse;
          insn.sequence = lituse;
        }
        }
 
 
      emit_insn (&insn);
      emit_insn (&insn);
 
 
      /* Emit "mskXl $t9, $at, $t9".  */
      /* Emit "mskXl $t9, $at, $t9".  */
      set_tok_reg (newtok[0], AXP_REG_T9);
      set_tok_reg (newtok[0], AXP_REG_T9);
      newtok[2] = newtok[0];
      newtok[2] = newtok[0];
      assemble_tokens_to_insn (mskXl_op[lgsize], newtok, 3, &insn);
      assemble_tokens_to_insn (mskXl_op[lgsize], newtok, 3, &insn);
 
 
      if (lituse)
      if (lituse)
        {
        {
          assert (insn.nfixups < MAX_INSN_FIXUPS);
          assert (insn.nfixups < MAX_INSN_FIXUPS);
          insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BYTOFF;
          insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BYTOFF;
          insn.fixups[insn.nfixups].exp.X_op = O_absent;
          insn.fixups[insn.nfixups].exp.X_op = O_absent;
          insn.nfixups++;
          insn.nfixups++;
          insn.sequence = lituse;
          insn.sequence = lituse;
        }
        }
 
 
      emit_insn (&insn);
      emit_insn (&insn);
 
 
      /* Emit "or $t9, $t10, $t9".  */
      /* Emit "or $t9, $t10, $t9".  */
      set_tok_reg (newtok[1], AXP_REG_T10);
      set_tok_reg (newtok[1], AXP_REG_T10);
      assemble_tokens ("or", newtok, 3, 1);
      assemble_tokens ("or", newtok, 3, 1);
 
 
      /* Emit "stq_u $t9, 0($at).  */
      /* Emit "stq_u $t9, 0($at).  */
      set_tok_const(newtok[1], 0);
      set_tok_const(newtok[1], 0);
      set_tok_preg (newtok[2], AXP_REG_AT);
      set_tok_preg (newtok[2], AXP_REG_AT);
      assemble_tokens_to_insn ("stq_u", newtok, 3, &insn);
      assemble_tokens_to_insn ("stq_u", newtok, 3, &insn);
 
 
      if (lituse)
      if (lituse)
        {
        {
          assert (insn.nfixups < MAX_INSN_FIXUPS);
          assert (insn.nfixups < MAX_INSN_FIXUPS);
          insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
          insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_BASE;
          insn.fixups[insn.nfixups].exp.X_op = O_absent;
          insn.fixups[insn.nfixups].exp.X_op = O_absent;
          insn.nfixups++;
          insn.nfixups++;
          insn.sequence = lituse;
          insn.sequence = lituse;
        }
        }
 
 
      emit_insn (&insn);
      emit_insn (&insn);
    }
    }
}
}
 
 
/* Store an integer to an unaligned address.  */
/* Store an integer to an unaligned address.  */
 
 
static void
static void
emit_ustX (const expressionS *tok,
emit_ustX (const expressionS *tok,
           int ntok,
           int ntok,
           const void * vlgsize)
           const void * vlgsize)
{
{
  int lgsize = (int) (long) vlgsize;
  int lgsize = (int) (long) vlgsize;
  expressionS newtok[3];
  expressionS newtok[3];
 
 
  /* Emit "lda $at, exp".  */
  /* Emit "lda $at, exp".  */
  memcpy (newtok, tok, sizeof (expressionS) * ntok);
  memcpy (newtok, tok, sizeof (expressionS) * ntok);
  newtok[0].X_add_number = AXP_REG_AT;
  newtok[0].X_add_number = AXP_REG_AT;
  assemble_tokens ("lda", newtok, ntok, 1);
  assemble_tokens ("lda", newtok, ntok, 1);
 
 
  /* Emit "ldq_u $9, 0($at)".  */
  /* Emit "ldq_u $9, 0($at)".  */
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_const (newtok[1], 0);
  set_tok_const (newtok[1], 0);
  set_tok_preg (newtok[2], AXP_REG_AT);
  set_tok_preg (newtok[2], AXP_REG_AT);
  assemble_tokens ("ldq_u", newtok, 3, 1);
  assemble_tokens ("ldq_u", newtok, 3, 1);
 
 
  /* Emit "ldq_u $10, size-1($at)".  */
  /* Emit "ldq_u $10, size-1($at)".  */
  set_tok_reg (newtok[0], AXP_REG_T10);
  set_tok_reg (newtok[0], AXP_REG_T10);
  set_tok_const (newtok[1], (1 << lgsize) - 1);
  set_tok_const (newtok[1], (1 << lgsize) - 1);
  assemble_tokens ("ldq_u", newtok, 3, 1);
  assemble_tokens ("ldq_u", newtok, 3, 1);
 
 
  /* Emit "insXl src, $at, $t11".  */
  /* Emit "insXl src, $at, $t11".  */
  newtok[0] = tok[0];
  newtok[0] = tok[0];
  set_tok_reg (newtok[1], AXP_REG_AT);
  set_tok_reg (newtok[1], AXP_REG_AT);
  set_tok_reg (newtok[2], AXP_REG_T11);
  set_tok_reg (newtok[2], AXP_REG_T11);
  assemble_tokens (insXl_op[lgsize], newtok, 3, 1);
  assemble_tokens (insXl_op[lgsize], newtok, 3, 1);
 
 
  /* Emit "insXh src, $at, $t12".  */
  /* Emit "insXh src, $at, $t12".  */
  set_tok_reg (newtok[2], AXP_REG_T12);
  set_tok_reg (newtok[2], AXP_REG_T12);
  assemble_tokens (insXh_op[lgsize], newtok, 3, 1);
  assemble_tokens (insXh_op[lgsize], newtok, 3, 1);
 
 
  /* Emit "mskXl $t9, $at, $t9".  */
  /* Emit "mskXl $t9, $at, $t9".  */
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_reg (newtok[0], AXP_REG_T9);
  newtok[2] = newtok[0];
  newtok[2] = newtok[0];
  assemble_tokens (mskXl_op[lgsize], newtok, 3, 1);
  assemble_tokens (mskXl_op[lgsize], newtok, 3, 1);
 
 
  /* Emit "mskXh $t10, $at, $t10".  */
  /* Emit "mskXh $t10, $at, $t10".  */
  set_tok_reg (newtok[0], AXP_REG_T10);
  set_tok_reg (newtok[0], AXP_REG_T10);
  newtok[2] = newtok[0];
  newtok[2] = newtok[0];
  assemble_tokens (mskXh_op[lgsize], newtok, 3, 1);
  assemble_tokens (mskXh_op[lgsize], newtok, 3, 1);
 
 
  /* Emit "or $t9, $t11, $t9".  */
  /* Emit "or $t9, $t11, $t9".  */
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_reg (newtok[1], AXP_REG_T11);
  set_tok_reg (newtok[1], AXP_REG_T11);
  newtok[2] = newtok[0];
  newtok[2] = newtok[0];
  assemble_tokens ("or", newtok, 3, 1);
  assemble_tokens ("or", newtok, 3, 1);
 
 
  /* Emit "or $t10, $t12, $t10".  */
  /* Emit "or $t10, $t12, $t10".  */
  set_tok_reg (newtok[0], AXP_REG_T10);
  set_tok_reg (newtok[0], AXP_REG_T10);
  set_tok_reg (newtok[1], AXP_REG_T12);
  set_tok_reg (newtok[1], AXP_REG_T12);
  newtok[2] = newtok[0];
  newtok[2] = newtok[0];
  assemble_tokens ("or", newtok, 3, 1);
  assemble_tokens ("or", newtok, 3, 1);
 
 
  /* Emit "stq_u $t10, size-1($at)".  */
  /* Emit "stq_u $t10, size-1($at)".  */
  set_tok_reg (newtok[0], AXP_REG_T10);
  set_tok_reg (newtok[0], AXP_REG_T10);
  set_tok_const (newtok[1], (1 << lgsize) - 1);
  set_tok_const (newtok[1], (1 << lgsize) - 1);
  set_tok_preg (newtok[2], AXP_REG_AT);
  set_tok_preg (newtok[2], AXP_REG_AT);
  assemble_tokens ("stq_u", newtok, 3, 1);
  assemble_tokens ("stq_u", newtok, 3, 1);
 
 
  /* Emit "stq_u $t9, 0($at)".  */
  /* Emit "stq_u $t9, 0($at)".  */
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_const (newtok[1], 0);
  set_tok_const (newtok[1], 0);
  assemble_tokens ("stq_u", newtok, 3, 1);
  assemble_tokens ("stq_u", newtok, 3, 1);
}
}
 
 
/* Sign extend a half-word or byte.  The 32-bit sign extend is
/* Sign extend a half-word or byte.  The 32-bit sign extend is
   implemented as "addl $31, $r, $t" in the opcode table.  */
   implemented as "addl $31, $r, $t" in the opcode table.  */
 
 
static void
static void
emit_sextX (const expressionS *tok,
emit_sextX (const expressionS *tok,
            int ntok,
            int ntok,
            const void * vlgsize)
            const void * vlgsize)
{
{
  long lgsize = (long) vlgsize;
  long lgsize = (long) vlgsize;
 
 
  if (alpha_target & AXP_OPCODE_BWX)
  if (alpha_target & AXP_OPCODE_BWX)
    assemble_tokens (sextX_op[lgsize], tok, ntok, 0);
    assemble_tokens (sextX_op[lgsize], tok, ntok, 0);
  else
  else
    {
    {
      int bitshift = 64 - 8 * (1 << lgsize);
      int bitshift = 64 - 8 * (1 << lgsize);
      expressionS newtok[3];
      expressionS newtok[3];
 
 
      /* Emit "sll src,bits,dst".  */
      /* Emit "sll src,bits,dst".  */
      newtok[0] = tok[0];
      newtok[0] = tok[0];
      set_tok_const (newtok[1], bitshift);
      set_tok_const (newtok[1], bitshift);
      newtok[2] = tok[ntok - 1];
      newtok[2] = tok[ntok - 1];
      assemble_tokens ("sll", newtok, 3, 1);
      assemble_tokens ("sll", newtok, 3, 1);
 
 
      /* Emit "sra dst,bits,dst".  */
      /* Emit "sra dst,bits,dst".  */
      newtok[0] = newtok[2];
      newtok[0] = newtok[2];
      assemble_tokens ("sra", newtok, 3, 1);
      assemble_tokens ("sra", newtok, 3, 1);
    }
    }
}
}
 
 
/* Implement the division and modulus macros.  */
/* Implement the division and modulus macros.  */
 
 
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
 
 
/* Make register usage like in normal procedure call.
/* Make register usage like in normal procedure call.
   Don't clobber PV and RA.  */
   Don't clobber PV and RA.  */
 
 
static void
static void
emit_division (const expressionS *tok,
emit_division (const expressionS *tok,
               int ntok,
               int ntok,
               const void * symname)
               const void * symname)
{
{
  /* DIVISION and MODULUS. Yech.
  /* DIVISION and MODULUS. Yech.
 
 
     Convert
     Convert
        OP x,y,result
        OP x,y,result
     to
     to
        mov x,R16       # if x != R16
        mov x,R16       # if x != R16
        mov y,R17       # if y != R17
        mov y,R17       # if y != R17
        lda AT,__OP
        lda AT,__OP
        jsr AT,(AT),0
        jsr AT,(AT),0
        mov R0,result
        mov R0,result
 
 
     with appropriate optimizations if R0,R16,R17 are the registers
     with appropriate optimizations if R0,R16,R17 are the registers
     specified by the compiler.  */
     specified by the compiler.  */
 
 
  int xr, yr, rr;
  int xr, yr, rr;
  symbolS *sym;
  symbolS *sym;
  expressionS newtok[3];
  expressionS newtok[3];
 
 
  xr = regno (tok[0].X_add_number);
  xr = regno (tok[0].X_add_number);
  yr = regno (tok[1].X_add_number);
  yr = regno (tok[1].X_add_number);
 
 
  if (ntok < 3)
  if (ntok < 3)
    rr = xr;
    rr = xr;
  else
  else
    rr = regno (tok[2].X_add_number);
    rr = regno (tok[2].X_add_number);
 
 
  /* Move the operands into the right place.  */
  /* Move the operands into the right place.  */
  if (yr == AXP_REG_R16 && xr == AXP_REG_R17)
  if (yr == AXP_REG_R16 && xr == AXP_REG_R17)
    {
    {
      /* They are in exactly the wrong order -- swap through AT.  */
      /* They are in exactly the wrong order -- swap through AT.  */
      if (alpha_noat_on)
      if (alpha_noat_on)
        as_bad (_("macro requires $at register while noat in effect"));
        as_bad (_("macro requires $at register while noat in effect"));
 
 
      set_tok_reg (newtok[0], AXP_REG_R16);
      set_tok_reg (newtok[0], AXP_REG_R16);
      set_tok_reg (newtok[1], AXP_REG_AT);
      set_tok_reg (newtok[1], AXP_REG_AT);
      assemble_tokens ("mov", newtok, 2, 1);
      assemble_tokens ("mov", newtok, 2, 1);
 
 
      set_tok_reg (newtok[0], AXP_REG_R17);
      set_tok_reg (newtok[0], AXP_REG_R17);
      set_tok_reg (newtok[1], AXP_REG_R16);
      set_tok_reg (newtok[1], AXP_REG_R16);
      assemble_tokens ("mov", newtok, 2, 1);
      assemble_tokens ("mov", newtok, 2, 1);
 
 
      set_tok_reg (newtok[0], AXP_REG_AT);
      set_tok_reg (newtok[0], AXP_REG_AT);
      set_tok_reg (newtok[1], AXP_REG_R17);
      set_tok_reg (newtok[1], AXP_REG_R17);
      assemble_tokens ("mov", newtok, 2, 1);
      assemble_tokens ("mov", newtok, 2, 1);
    }
    }
  else
  else
    {
    {
      if (yr == AXP_REG_R16)
      if (yr == AXP_REG_R16)
        {
        {
          set_tok_reg (newtok[0], AXP_REG_R16);
          set_tok_reg (newtok[0], AXP_REG_R16);
          set_tok_reg (newtok[1], AXP_REG_R17);
          set_tok_reg (newtok[1], AXP_REG_R17);
          assemble_tokens ("mov", newtok, 2, 1);
          assemble_tokens ("mov", newtok, 2, 1);
        }
        }
 
 
      if (xr != AXP_REG_R16)
      if (xr != AXP_REG_R16)
        {
        {
          set_tok_reg (newtok[0], xr);
          set_tok_reg (newtok[0], xr);
          set_tok_reg (newtok[1], AXP_REG_R16);
          set_tok_reg (newtok[1], AXP_REG_R16);
          assemble_tokens ("mov", newtok, 2, 1);
          assemble_tokens ("mov", newtok, 2, 1);
        }
        }
 
 
      if (yr != AXP_REG_R16 && yr != AXP_REG_R17)
      if (yr != AXP_REG_R16 && yr != AXP_REG_R17)
        {
        {
          set_tok_reg (newtok[0], yr);
          set_tok_reg (newtok[0], yr);
          set_tok_reg (newtok[1], AXP_REG_R17);
          set_tok_reg (newtok[1], AXP_REG_R17);
          assemble_tokens ("mov", newtok, 2, 1);
          assemble_tokens ("mov", newtok, 2, 1);
        }
        }
    }
    }
 
 
  sym = symbol_find_or_make ((const char *) symname);
  sym = symbol_find_or_make ((const char *) symname);
 
 
  set_tok_reg (newtok[0], AXP_REG_AT);
  set_tok_reg (newtok[0], AXP_REG_AT);
  set_tok_sym (newtok[1], sym, 0);
  set_tok_sym (newtok[1], sym, 0);
  assemble_tokens ("lda", newtok, 2, 1);
  assemble_tokens ("lda", newtok, 2, 1);
 
 
  /* Call the division routine.  */
  /* Call the division routine.  */
  set_tok_reg (newtok[0], AXP_REG_AT);
  set_tok_reg (newtok[0], AXP_REG_AT);
  set_tok_cpreg (newtok[1], AXP_REG_AT);
  set_tok_cpreg (newtok[1], AXP_REG_AT);
  set_tok_const (newtok[2], 0);
  set_tok_const (newtok[2], 0);
  assemble_tokens ("jsr", newtok, 3, 1);
  assemble_tokens ("jsr", newtok, 3, 1);
 
 
  /* Move the result to the right place.  */
  /* Move the result to the right place.  */
  if (rr != AXP_REG_R0)
  if (rr != AXP_REG_R0)
    {
    {
      set_tok_reg (newtok[0], AXP_REG_R0);
      set_tok_reg (newtok[0], AXP_REG_R0);
      set_tok_reg (newtok[1], rr);
      set_tok_reg (newtok[1], rr);
      assemble_tokens ("mov", newtok, 2, 1);
      assemble_tokens ("mov", newtok, 2, 1);
    }
    }
}
}
 
 
#else /* !OBJ_EVAX */
#else /* !OBJ_EVAX */
 
 
static void
static void
emit_division (const expressionS *tok,
emit_division (const expressionS *tok,
               int ntok,
               int ntok,
               const void * symname)
               const void * symname)
{
{
  /* DIVISION and MODULUS. Yech.
  /* DIVISION and MODULUS. Yech.
     Convert
     Convert
        OP x,y,result
        OP x,y,result
     to
     to
        lda pv,__OP
        lda pv,__OP
        mov x,t10
        mov x,t10
        mov y,t11
        mov y,t11
        jsr t9,(pv),__OP
        jsr t9,(pv),__OP
        mov t12,result
        mov t12,result
 
 
     with appropriate optimizations if t10,t11,t12 are the registers
     with appropriate optimizations if t10,t11,t12 are the registers
     specified by the compiler.  */
     specified by the compiler.  */
 
 
  int xr, yr, rr;
  int xr, yr, rr;
  symbolS *sym;
  symbolS *sym;
  expressionS newtok[3];
  expressionS newtok[3];
 
 
  xr = regno (tok[0].X_add_number);
  xr = regno (tok[0].X_add_number);
  yr = regno (tok[1].X_add_number);
  yr = regno (tok[1].X_add_number);
 
 
  if (ntok < 3)
  if (ntok < 3)
    rr = xr;
    rr = xr;
  else
  else
    rr = regno (tok[2].X_add_number);
    rr = regno (tok[2].X_add_number);
 
 
  sym = symbol_find_or_make ((const char *) symname);
  sym = symbol_find_or_make ((const char *) symname);
 
 
  /* Move the operands into the right place.  */
  /* Move the operands into the right place.  */
  if (yr == AXP_REG_T10 && xr == AXP_REG_T11)
  if (yr == AXP_REG_T10 && xr == AXP_REG_T11)
    {
    {
      /* They are in exactly the wrong order -- swap through AT.  */
      /* They are in exactly the wrong order -- swap through AT.  */
      if (alpha_noat_on)
      if (alpha_noat_on)
        as_bad (_("macro requires $at register while noat in effect"));
        as_bad (_("macro requires $at register while noat in effect"));
 
 
      set_tok_reg (newtok[0], AXP_REG_T10);
      set_tok_reg (newtok[0], AXP_REG_T10);
      set_tok_reg (newtok[1], AXP_REG_AT);
      set_tok_reg (newtok[1], AXP_REG_AT);
      assemble_tokens ("mov", newtok, 2, 1);
      assemble_tokens ("mov", newtok, 2, 1);
 
 
      set_tok_reg (newtok[0], AXP_REG_T11);
      set_tok_reg (newtok[0], AXP_REG_T11);
      set_tok_reg (newtok[1], AXP_REG_T10);
      set_tok_reg (newtok[1], AXP_REG_T10);
      assemble_tokens ("mov", newtok, 2, 1);
      assemble_tokens ("mov", newtok, 2, 1);
 
 
      set_tok_reg (newtok[0], AXP_REG_AT);
      set_tok_reg (newtok[0], AXP_REG_AT);
      set_tok_reg (newtok[1], AXP_REG_T11);
      set_tok_reg (newtok[1], AXP_REG_T11);
      assemble_tokens ("mov", newtok, 2, 1);
      assemble_tokens ("mov", newtok, 2, 1);
    }
    }
  else
  else
    {
    {
      if (yr == AXP_REG_T10)
      if (yr == AXP_REG_T10)
        {
        {
          set_tok_reg (newtok[0], AXP_REG_T10);
          set_tok_reg (newtok[0], AXP_REG_T10);
          set_tok_reg (newtok[1], AXP_REG_T11);
          set_tok_reg (newtok[1], AXP_REG_T11);
          assemble_tokens ("mov", newtok, 2, 1);
          assemble_tokens ("mov", newtok, 2, 1);
        }
        }
 
 
      if (xr != AXP_REG_T10)
      if (xr != AXP_REG_T10)
        {
        {
          set_tok_reg (newtok[0], xr);
          set_tok_reg (newtok[0], xr);
          set_tok_reg (newtok[1], AXP_REG_T10);
          set_tok_reg (newtok[1], AXP_REG_T10);
          assemble_tokens ("mov", newtok, 2, 1);
          assemble_tokens ("mov", newtok, 2, 1);
        }
        }
 
 
      if (yr != AXP_REG_T10 && yr != AXP_REG_T11)
      if (yr != AXP_REG_T10 && yr != AXP_REG_T11)
        {
        {
          set_tok_reg (newtok[0], yr);
          set_tok_reg (newtok[0], yr);
          set_tok_reg (newtok[1], AXP_REG_T11);
          set_tok_reg (newtok[1], AXP_REG_T11);
          assemble_tokens ("mov", newtok, 2, 1);
          assemble_tokens ("mov", newtok, 2, 1);
        }
        }
    }
    }
 
 
  /* Call the division routine.  */
  /* Call the division routine.  */
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_reg (newtok[0], AXP_REG_T9);
  set_tok_sym (newtok[1], sym, 0);
  set_tok_sym (newtok[1], sym, 0);
  assemble_tokens ("jsr", newtok, 2, 1);
  assemble_tokens ("jsr", newtok, 2, 1);
 
 
  /* Reload the GP register.  */
  /* Reload the GP register.  */
#ifdef OBJ_AOUT
#ifdef OBJ_AOUT
FIXME
FIXME
#endif
#endif
#if defined(OBJ_ECOFF) || defined(OBJ_ELF)
#if defined(OBJ_ECOFF) || defined(OBJ_ELF)
  set_tok_reg (newtok[0], alpha_gp_register);
  set_tok_reg (newtok[0], alpha_gp_register);
  set_tok_const (newtok[1], 0);
  set_tok_const (newtok[1], 0);
  set_tok_preg (newtok[2], AXP_REG_T9);
  set_tok_preg (newtok[2], AXP_REG_T9);
  assemble_tokens ("ldgp", newtok, 3, 1);
  assemble_tokens ("ldgp", newtok, 3, 1);
#endif
#endif
 
 
  /* Move the result to the right place.  */
  /* Move the result to the right place.  */
  if (rr != AXP_REG_T12)
  if (rr != AXP_REG_T12)
    {
    {
      set_tok_reg (newtok[0], AXP_REG_T12);
      set_tok_reg (newtok[0], AXP_REG_T12);
      set_tok_reg (newtok[1], rr);
      set_tok_reg (newtok[1], rr);
      assemble_tokens ("mov", newtok, 2, 1);
      assemble_tokens ("mov", newtok, 2, 1);
    }
    }
}
}
 
 
#endif /* !OBJ_EVAX */
#endif /* !OBJ_EVAX */
 
 
/* The jsr and jmp macros differ from their instruction counterparts
/* The jsr and jmp macros differ from their instruction counterparts
   in that they can load the target address and default most
   in that they can load the target address and default most
   everything.  */
   everything.  */
 
 
static void
static void
emit_jsrjmp (const expressionS *tok,
emit_jsrjmp (const expressionS *tok,
             int ntok,
             int ntok,
             const void * vopname)
             const void * vopname)
{
{
  const char *opname = (const char *) vopname;
  const char *opname = (const char *) vopname;
  struct alpha_insn insn;
  struct alpha_insn insn;
  expressionS newtok[3];
  expressionS newtok[3];
  int r, tokidx = 0;
  int r, tokidx = 0;
  long lituse = 0;
  long lituse = 0;
 
 
  if (tokidx < ntok && tok[tokidx].X_op == O_register)
  if (tokidx < ntok && tok[tokidx].X_op == O_register)
    r = regno (tok[tokidx++].X_add_number);
    r = regno (tok[tokidx++].X_add_number);
  else
  else
    r = strcmp (opname, "jmp") == 0 ? AXP_REG_ZERO : AXP_REG_RA;
    r = strcmp (opname, "jmp") == 0 ? AXP_REG_ZERO : AXP_REG_RA;
 
 
  set_tok_reg (newtok[0], r);
  set_tok_reg (newtok[0], r);
 
 
  if (tokidx < ntok &&
  if (tokidx < ntok &&
      (tok[tokidx].X_op == O_pregister || tok[tokidx].X_op == O_cpregister))
      (tok[tokidx].X_op == O_pregister || tok[tokidx].X_op == O_cpregister))
    r = regno (tok[tokidx++].X_add_number);
    r = regno (tok[tokidx++].X_add_number);
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
  /* Keep register if jsr $n.<sym>.  */
  /* Keep register if jsr $n.<sym>.  */
#else
#else
  else
  else
    {
    {
      int basereg = alpha_gp_register;
      int basereg = alpha_gp_register;
      lituse = load_expression (r = AXP_REG_PV, &tok[tokidx], &basereg, NULL);
      lituse = load_expression (r = AXP_REG_PV, &tok[tokidx], &basereg, NULL);
    }
    }
#endif
#endif
 
 
  set_tok_cpreg (newtok[1], r);
  set_tok_cpreg (newtok[1], r);
 
 
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
  /* FIXME: Add hint relocs to BFD for evax.  */
  /* FIXME: Add hint relocs to BFD for evax.  */
#else
#else
  if (tokidx < ntok)
  if (tokidx < ntok)
    newtok[2] = tok[tokidx];
    newtok[2] = tok[tokidx];
  else
  else
#endif
#endif
    set_tok_const (newtok[2], 0);
    set_tok_const (newtok[2], 0);
 
 
  assemble_tokens_to_insn (opname, newtok, 3, &insn);
  assemble_tokens_to_insn (opname, newtok, 3, &insn);
 
 
  if (lituse)
  if (lituse)
    {
    {
      assert (insn.nfixups < MAX_INSN_FIXUPS);
      assert (insn.nfixups < MAX_INSN_FIXUPS);
      insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_JSR;
      insn.fixups[insn.nfixups].reloc = DUMMY_RELOC_LITUSE_JSR;
      insn.fixups[insn.nfixups].exp.X_op = O_absent;
      insn.fixups[insn.nfixups].exp.X_op = O_absent;
      insn.nfixups++;
      insn.nfixups++;
      insn.sequence = lituse;
      insn.sequence = lituse;
    }
    }
 
 
  emit_insn (&insn);
  emit_insn (&insn);
}
}
 
 
/* The ret and jcr instructions differ from their instruction
/* The ret and jcr instructions differ from their instruction
   counterparts in that everything can be defaulted.  */
   counterparts in that everything can be defaulted.  */
 
 
static void
static void
emit_retjcr (const expressionS *tok,
emit_retjcr (const expressionS *tok,
             int ntok,
             int ntok,
             const void * vopname)
             const void * vopname)
{
{
  const char *opname = (const char *) vopname;
  const char *opname = (const char *) vopname;
  expressionS newtok[3];
  expressionS newtok[3];
  int r, tokidx = 0;
  int r, tokidx = 0;
 
 
  if (tokidx < ntok && tok[tokidx].X_op == O_register)
  if (tokidx < ntok && tok[tokidx].X_op == O_register)
    r = regno (tok[tokidx++].X_add_number);
    r = regno (tok[tokidx++].X_add_number);
  else
  else
    r = AXP_REG_ZERO;
    r = AXP_REG_ZERO;
 
 
  set_tok_reg (newtok[0], r);
  set_tok_reg (newtok[0], r);
 
 
  if (tokidx < ntok &&
  if (tokidx < ntok &&
      (tok[tokidx].X_op == O_pregister || tok[tokidx].X_op == O_cpregister))
      (tok[tokidx].X_op == O_pregister || tok[tokidx].X_op == O_cpregister))
    r = regno (tok[tokidx++].X_add_number);
    r = regno (tok[tokidx++].X_add_number);
  else
  else
    r = AXP_REG_RA;
    r = AXP_REG_RA;
 
 
  set_tok_cpreg (newtok[1], r);
  set_tok_cpreg (newtok[1], r);
 
 
  if (tokidx < ntok)
  if (tokidx < ntok)
    newtok[2] = tok[tokidx];
    newtok[2] = tok[tokidx];
  else
  else
    set_tok_const (newtok[2], strcmp (opname, "ret") == 0);
    set_tok_const (newtok[2], strcmp (opname, "ret") == 0);
 
 
  assemble_tokens (opname, newtok, 3, 0);
  assemble_tokens (opname, newtok, 3, 0);
}
}
 
 
/* Implement the ldgp macro.  */
/* Implement the ldgp macro.  */
 
 
static void
static void
emit_ldgp (const expressionS *tok,
emit_ldgp (const expressionS *tok,
           int ntok ATTRIBUTE_UNUSED,
           int ntok ATTRIBUTE_UNUSED,
           const void * unused ATTRIBUTE_UNUSED)
           const void * unused ATTRIBUTE_UNUSED)
{
{
#ifdef OBJ_AOUT
#ifdef OBJ_AOUT
FIXME
FIXME
#endif
#endif
#if defined(OBJ_ECOFF) || defined(OBJ_ELF)
#if defined(OBJ_ECOFF) || defined(OBJ_ELF)
  /* from "ldgp r1,n(r2)", generate "ldah r1,X(R2); lda r1,Y(r1)"
  /* from "ldgp r1,n(r2)", generate "ldah r1,X(R2); lda r1,Y(r1)"
     with appropriate constants and relocations.  */
     with appropriate constants and relocations.  */
  struct alpha_insn insn;
  struct alpha_insn insn;
  expressionS newtok[3];
  expressionS newtok[3];
  expressionS addend;
  expressionS addend;
 
 
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
  if (regno (tok[2].X_add_number) == AXP_REG_PV)
  if (regno (tok[2].X_add_number) == AXP_REG_PV)
    ecoff_set_gp_prolog_size (0);
    ecoff_set_gp_prolog_size (0);
#endif
#endif
 
 
  newtok[0] = tok[0];
  newtok[0] = tok[0];
  set_tok_const (newtok[1], 0);
  set_tok_const (newtok[1], 0);
  newtok[2] = tok[2];
  newtok[2] = tok[2];
 
 
  assemble_tokens_to_insn ("ldah", newtok, 3, &insn);
  assemble_tokens_to_insn ("ldah", newtok, 3, &insn);
 
 
  addend = tok[1];
  addend = tok[1];
 
 
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
  if (addend.X_op != O_constant)
  if (addend.X_op != O_constant)
    as_bad (_("can not resolve expression"));
    as_bad (_("can not resolve expression"));
  addend.X_op = O_symbol;
  addend.X_op = O_symbol;
  addend.X_add_symbol = alpha_gp_symbol;
  addend.X_add_symbol = alpha_gp_symbol;
#endif
#endif
 
 
  insn.nfixups = 1;
  insn.nfixups = 1;
  insn.fixups[0].exp = addend;
  insn.fixups[0].exp = addend;
  insn.fixups[0].reloc = BFD_RELOC_ALPHA_GPDISP_HI16;
  insn.fixups[0].reloc = BFD_RELOC_ALPHA_GPDISP_HI16;
  insn.sequence = next_sequence_num;
  insn.sequence = next_sequence_num;
 
 
  emit_insn (&insn);
  emit_insn (&insn);
 
 
  set_tok_preg (newtok[2], tok[0].X_add_number);
  set_tok_preg (newtok[2], tok[0].X_add_number);
 
 
  assemble_tokens_to_insn ("lda", newtok, 3, &insn);
  assemble_tokens_to_insn ("lda", newtok, 3, &insn);
 
 
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
  addend.X_add_number += 4;
  addend.X_add_number += 4;
#endif
#endif
 
 
  insn.nfixups = 1;
  insn.nfixups = 1;
  insn.fixups[0].exp = addend;
  insn.fixups[0].exp = addend;
  insn.fixups[0].reloc = BFD_RELOC_ALPHA_GPDISP_LO16;
  insn.fixups[0].reloc = BFD_RELOC_ALPHA_GPDISP_LO16;
  insn.sequence = next_sequence_num--;
  insn.sequence = next_sequence_num--;
 
 
  emit_insn (&insn);
  emit_insn (&insn);
#endif /* OBJ_ECOFF || OBJ_ELF */
#endif /* OBJ_ECOFF || OBJ_ELF */
}
}
 
 
/* The macro table.  */
/* The macro table.  */
 
 
static const struct alpha_macro alpha_macros[] =
static const struct alpha_macro alpha_macros[] =
{
{
/* Load/Store macros.  */
/* Load/Store macros.  */
  { "lda",      emit_lda, NULL,
  { "lda",      emit_lda, NULL,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ldah",     emit_ldah, NULL,
  { "ldah",     emit_ldah, NULL,
    { MACRO_IR, MACRO_EXP, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_EOA } },
 
 
  { "ldl",      emit_ir_load, "ldl",
  { "ldl",      emit_ir_load, "ldl",
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ldl_l",    emit_ir_load, "ldl_l",
  { "ldl_l",    emit_ir_load, "ldl_l",
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ldq",      emit_ir_load, "ldq",
  { "ldq",      emit_ir_load, "ldq",
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ldq_l",    emit_ir_load, "ldq_l",
  { "ldq_l",    emit_ir_load, "ldq_l",
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ldq_u",    emit_ir_load, "ldq_u",
  { "ldq_u",    emit_ir_load, "ldq_u",
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ldf",      emit_loadstore, "ldf",
  { "ldf",      emit_loadstore, "ldf",
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ldg",      emit_loadstore, "ldg",
  { "ldg",      emit_loadstore, "ldg",
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "lds",      emit_loadstore, "lds",
  { "lds",      emit_loadstore, "lds",
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ldt",      emit_loadstore, "ldt",
  { "ldt",      emit_loadstore, "ldt",
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
 
 
  { "ldb",      emit_ldX, (void *) 0,
  { "ldb",      emit_ldX, (void *) 0,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ldbu",     emit_ldXu, (void *) 0,
  { "ldbu",     emit_ldXu, (void *) 0,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ldw",      emit_ldX, (void *) 1,
  { "ldw",      emit_ldX, (void *) 1,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ldwu",     emit_ldXu, (void *) 1,
  { "ldwu",     emit_ldXu, (void *) 1,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
 
 
  { "uldw",     emit_uldX, (void *) 1,
  { "uldw",     emit_uldX, (void *) 1,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "uldwu",    emit_uldXu, (void *) 1,
  { "uldwu",    emit_uldXu, (void *) 1,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "uldl",     emit_uldX, (void *) 2,
  { "uldl",     emit_uldX, (void *) 2,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "uldlu",    emit_uldXu, (void *) 2,
  { "uldlu",    emit_uldXu, (void *) 2,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "uldq",     emit_uldXu, (void *) 3,
  { "uldq",     emit_uldXu, (void *) 3,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
 
 
  { "ldgp",     emit_ldgp, NULL,
  { "ldgp",     emit_ldgp, NULL,
    { MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_PIR, MACRO_EOA } },
 
 
  { "ldi",      emit_lda, NULL,
  { "ldi",      emit_lda, NULL,
    { MACRO_IR, MACRO_EXP, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_EOA } },
  { "ldil",     emit_ldil, NULL,
  { "ldil",     emit_ldil, NULL,
    { MACRO_IR, MACRO_EXP, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_EOA } },
  { "ldiq",     emit_lda, NULL,
  { "ldiq",     emit_lda, NULL,
    { MACRO_IR, MACRO_EXP, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_EOA } },
 
 
  { "stl",      emit_loadstore, "stl",
  { "stl",      emit_loadstore, "stl",
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "stl_c",    emit_loadstore, "stl_c",
  { "stl_c",    emit_loadstore, "stl_c",
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "stq",      emit_loadstore, "stq",
  { "stq",      emit_loadstore, "stq",
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "stq_c",    emit_loadstore, "stq_c",
  { "stq_c",    emit_loadstore, "stq_c",
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "stq_u",    emit_loadstore, "stq_u",
  { "stq_u",    emit_loadstore, "stq_u",
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "stf",      emit_loadstore, "stf",
  { "stf",      emit_loadstore, "stf",
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "stg",      emit_loadstore, "stg",
  { "stg",      emit_loadstore, "stg",
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "sts",      emit_loadstore, "sts",
  { "sts",      emit_loadstore, "sts",
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "stt",      emit_loadstore, "stt",
  { "stt",      emit_loadstore, "stt",
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_FPR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
 
 
  { "stb",      emit_stX, (void *) 0,
  { "stb",      emit_stX, (void *) 0,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "stw",      emit_stX, (void *) 1,
  { "stw",      emit_stX, (void *) 1,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ustw",     emit_ustX, (void *) 1,
  { "ustw",     emit_ustX, (void *) 1,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ustl",     emit_ustX, (void *) 2,
  { "ustl",     emit_ustX, (void *) 2,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
  { "ustq",     emit_ustX, (void *) 3,
  { "ustq",     emit_ustX, (void *) 3,
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
    { MACRO_IR, MACRO_EXP, MACRO_OPIR, MACRO_EOA } },
 
 
/* Arithmetic macros.  */
/* Arithmetic macros.  */
 
 
  { "sextb",    emit_sextX, (void *) 0,
  { "sextb",    emit_sextX, (void *) 0,
    { MACRO_IR, MACRO_IR, MACRO_EOA,
    { MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_EOA,
      /* MACRO_EXP, MACRO_IR, MACRO_EOA */ } },
      /* MACRO_EXP, MACRO_IR, MACRO_EOA */ } },
  { "sextw",    emit_sextX, (void *) 1,
  { "sextw",    emit_sextX, (void *) 1,
    { MACRO_IR, MACRO_IR, MACRO_EOA,
    { MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_EOA,
      /* MACRO_EXP, MACRO_IR, MACRO_EOA */ } },
      /* MACRO_EXP, MACRO_IR, MACRO_EOA */ } },
 
 
  { "divl",     emit_division, "__divl",
  { "divl",     emit_division, "__divl",
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
  { "divlu",    emit_division, "__divlu",
  { "divlu",    emit_division, "__divlu",
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
  { "divq",     emit_division, "__divq",
  { "divq",     emit_division, "__divq",
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
  { "divqu",    emit_division, "__divqu",
  { "divqu",    emit_division, "__divqu",
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
  { "reml",     emit_division, "__reml",
  { "reml",     emit_division, "__reml",
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
  { "remlu",    emit_division, "__remlu",
  { "remlu",    emit_division, "__remlu",
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
  { "remq",     emit_division, "__remq",
  { "remq",     emit_division, "__remq",
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
  { "remqu",    emit_division, "__remqu",
  { "remqu",    emit_division, "__remqu",
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
    { MACRO_IR, MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      /* MACRO_IR, MACRO_EXP, MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
      MACRO_IR, MACRO_EXP, MACRO_EOA */ } },
 
 
  { "jsr",      emit_jsrjmp, "jsr",
  { "jsr",      emit_jsrjmp, "jsr",
    { MACRO_PIR, MACRO_EXP, MACRO_EOA,
    { MACRO_PIR, MACRO_EXP, MACRO_EOA,
      MACRO_PIR, MACRO_EOA,
      MACRO_PIR, MACRO_EOA,
      MACRO_IR,  MACRO_EXP, MACRO_EOA,
      MACRO_IR,  MACRO_EXP, MACRO_EOA,
      MACRO_EXP, MACRO_EOA } },
      MACRO_EXP, MACRO_EOA } },
  { "jmp",      emit_jsrjmp, "jmp",
  { "jmp",      emit_jsrjmp, "jmp",
    { MACRO_PIR, MACRO_EXP, MACRO_EOA,
    { MACRO_PIR, MACRO_EXP, MACRO_EOA,
      MACRO_PIR, MACRO_EOA,
      MACRO_PIR, MACRO_EOA,
      MACRO_IR,  MACRO_EXP, MACRO_EOA,
      MACRO_IR,  MACRO_EXP, MACRO_EOA,
      MACRO_EXP, MACRO_EOA } },
      MACRO_EXP, MACRO_EOA } },
  { "ret",      emit_retjcr, "ret",
  { "ret",      emit_retjcr, "ret",
    { MACRO_IR, MACRO_EXP, MACRO_EOA,
    { MACRO_IR, MACRO_EXP, MACRO_EOA,
      MACRO_IR, MACRO_EOA,
      MACRO_IR, MACRO_EOA,
      MACRO_PIR, MACRO_EXP, MACRO_EOA,
      MACRO_PIR, MACRO_EXP, MACRO_EOA,
      MACRO_PIR, MACRO_EOA,
      MACRO_PIR, MACRO_EOA,
      MACRO_EXP, MACRO_EOA,
      MACRO_EXP, MACRO_EOA,
      MACRO_EOA } },
      MACRO_EOA } },
  { "jcr",      emit_retjcr, "jcr",
  { "jcr",      emit_retjcr, "jcr",
    { MACRO_IR,  MACRO_EXP, MACRO_EOA,
    { MACRO_IR,  MACRO_EXP, MACRO_EOA,
      MACRO_IR,  MACRO_EOA,
      MACRO_IR,  MACRO_EOA,
      MACRO_PIR, MACRO_EXP, MACRO_EOA,
      MACRO_PIR, MACRO_EXP, MACRO_EOA,
      MACRO_PIR, MACRO_EOA,
      MACRO_PIR, MACRO_EOA,
      MACRO_EXP, MACRO_EOA,
      MACRO_EXP, MACRO_EOA,
      MACRO_EOA } },
      MACRO_EOA } },
  { "jsr_coroutine",    emit_retjcr, "jcr",
  { "jsr_coroutine",    emit_retjcr, "jcr",
    { MACRO_IR,  MACRO_EXP, MACRO_EOA,
    { MACRO_IR,  MACRO_EXP, MACRO_EOA,
      MACRO_IR,  MACRO_EOA,
      MACRO_IR,  MACRO_EOA,
      MACRO_PIR, MACRO_EXP, MACRO_EOA,
      MACRO_PIR, MACRO_EXP, MACRO_EOA,
      MACRO_PIR, MACRO_EOA,
      MACRO_PIR, MACRO_EOA,
      MACRO_EXP, MACRO_EOA,
      MACRO_EXP, MACRO_EOA,
      MACRO_EOA } },
      MACRO_EOA } },
};
};
 
 
static const unsigned int alpha_num_macros
static const unsigned int alpha_num_macros
  = sizeof (alpha_macros) / sizeof (*alpha_macros);
  = sizeof (alpha_macros) / sizeof (*alpha_macros);
 
 
/* Search forward through all variants of a macro looking for a syntax
/* Search forward through all variants of a macro looking for a syntax
   match.  */
   match.  */
 
 
static const struct alpha_macro *
static const struct alpha_macro *
find_macro_match (const struct alpha_macro *first_macro,
find_macro_match (const struct alpha_macro *first_macro,
                  const expressionS *tok,
                  const expressionS *tok,
                  int *pntok)
                  int *pntok)
 
 
{
{
  const struct alpha_macro *macro = first_macro;
  const struct alpha_macro *macro = first_macro;
  int ntok = *pntok;
  int ntok = *pntok;
 
 
  do
  do
    {
    {
      const enum alpha_macro_arg *arg = macro->argsets;
      const enum alpha_macro_arg *arg = macro->argsets;
      int tokidx = 0;
      int tokidx = 0;
 
 
      while (*arg)
      while (*arg)
        {
        {
          switch (*arg)
          switch (*arg)
            {
            {
            case MACRO_EOA:
            case MACRO_EOA:
              if (tokidx == ntok)
              if (tokidx == ntok)
                return macro;
                return macro;
              else
              else
                tokidx = 0;
                tokidx = 0;
              break;
              break;
 
 
              /* Index register.  */
              /* Index register.  */
            case MACRO_IR:
            case MACRO_IR:
              if (tokidx >= ntok || tok[tokidx].X_op != O_register
              if (tokidx >= ntok || tok[tokidx].X_op != O_register
                  || !is_ir_num (tok[tokidx].X_add_number))
                  || !is_ir_num (tok[tokidx].X_add_number))
                goto match_failed;
                goto match_failed;
              ++tokidx;
              ++tokidx;
              break;
              break;
 
 
              /* Parenthesized index register.  */
              /* Parenthesized index register.  */
            case MACRO_PIR:
            case MACRO_PIR:
              if (tokidx >= ntok || tok[tokidx].X_op != O_pregister
              if (tokidx >= ntok || tok[tokidx].X_op != O_pregister
                  || !is_ir_num (tok[tokidx].X_add_number))
                  || !is_ir_num (tok[tokidx].X_add_number))
                goto match_failed;
                goto match_failed;
              ++tokidx;
              ++tokidx;
              break;
              break;
 
 
              /* Optional parenthesized index register.  */
              /* Optional parenthesized index register.  */
            case MACRO_OPIR:
            case MACRO_OPIR:
              if (tokidx < ntok && tok[tokidx].X_op == O_pregister
              if (tokidx < ntok && tok[tokidx].X_op == O_pregister
                  && is_ir_num (tok[tokidx].X_add_number))
                  && is_ir_num (tok[tokidx].X_add_number))
                ++tokidx;
                ++tokidx;
              break;
              break;
 
 
              /* Leading comma with a parenthesized index register.  */
              /* Leading comma with a parenthesized index register.  */
            case MACRO_CPIR:
            case MACRO_CPIR:
              if (tokidx >= ntok || tok[tokidx].X_op != O_cpregister
              if (tokidx >= ntok || tok[tokidx].X_op != O_cpregister
                  || !is_ir_num (tok[tokidx].X_add_number))
                  || !is_ir_num (tok[tokidx].X_add_number))
                goto match_failed;
                goto match_failed;
              ++tokidx;
              ++tokidx;
              break;
              break;
 
 
              /* Floating point register.  */
              /* Floating point register.  */
            case MACRO_FPR:
            case MACRO_FPR:
              if (tokidx >= ntok || tok[tokidx].X_op != O_register
              if (tokidx >= ntok || tok[tokidx].X_op != O_register
                  || !is_fpr_num (tok[tokidx].X_add_number))
                  || !is_fpr_num (tok[tokidx].X_add_number))
                goto match_failed;
                goto match_failed;
              ++tokidx;
              ++tokidx;
              break;
              break;
 
 
              /* Normal expression.  */
              /* Normal expression.  */
            case MACRO_EXP:
            case MACRO_EXP:
              if (tokidx >= ntok)
              if (tokidx >= ntok)
                goto match_failed;
                goto match_failed;
              switch (tok[tokidx].X_op)
              switch (tok[tokidx].X_op)
                {
                {
                case O_illegal:
                case O_illegal:
                case O_absent:
                case O_absent:
                case O_register:
                case O_register:
                case O_pregister:
                case O_pregister:
                case O_cpregister:
                case O_cpregister:
                case O_literal:
                case O_literal:
                case O_lituse_base:
                case O_lituse_base:
                case O_lituse_bytoff:
                case O_lituse_bytoff:
                case O_lituse_jsr:
                case O_lituse_jsr:
                case O_gpdisp:
                case O_gpdisp:
                case O_gprelhigh:
                case O_gprelhigh:
                case O_gprellow:
                case O_gprellow:
                case O_gprel:
                case O_gprel:
                case O_samegp:
                case O_samegp:
                  goto match_failed;
                  goto match_failed;
 
 
                default:
                default:
                  break;
                  break;
                }
                }
              ++tokidx;
              ++tokidx;
              break;
              break;
 
 
            match_failed:
            match_failed:
              while (*arg != MACRO_EOA)
              while (*arg != MACRO_EOA)
                ++arg;
                ++arg;
              tokidx = 0;
              tokidx = 0;
              break;
              break;
            }
            }
          ++arg;
          ++arg;
        }
        }
    }
    }
  while (++macro - alpha_macros < (int) alpha_num_macros
  while (++macro - alpha_macros < (int) alpha_num_macros
         && !strcmp (macro->name, first_macro->name));
         && !strcmp (macro->name, first_macro->name));
 
 
  return NULL;
  return NULL;
}
}
 
 
/* Given an opcode name and a pre-tokenized set of arguments, take the
/* Given an opcode name and a pre-tokenized set of arguments, take the
   opcode all the way through emission.  */
   opcode all the way through emission.  */
 
 
static void
static void
assemble_tokens (const char *opname,
assemble_tokens (const char *opname,
                 const expressionS *tok,
                 const expressionS *tok,
                 int ntok,
                 int ntok,
                 int local_macros_on)
                 int local_macros_on)
{
{
  int found_something = 0;
  int found_something = 0;
  const struct alpha_opcode *opcode;
  const struct alpha_opcode *opcode;
  const struct alpha_macro *macro;
  const struct alpha_macro *macro;
  int cpumatch = 1;
  int cpumatch = 1;
  bfd_reloc_code_real_type reloc = BFD_RELOC_UNUSED;
  bfd_reloc_code_real_type reloc = BFD_RELOC_UNUSED;
 
 
#ifdef RELOC_OP_P
#ifdef RELOC_OP_P
  /* If a user-specified relocation is present, this is not a macro.  */
  /* If a user-specified relocation is present, this is not a macro.  */
  if (ntok && USER_RELOC_P (tok[ntok - 1].X_op))
  if (ntok && USER_RELOC_P (tok[ntok - 1].X_op))
    {
    {
      reloc = ALPHA_RELOC_TABLE (tok[ntok - 1].X_op)->reloc;
      reloc = ALPHA_RELOC_TABLE (tok[ntok - 1].X_op)->reloc;
      ntok--;
      ntok--;
    }
    }
  else
  else
#endif
#endif
  if (local_macros_on)
  if (local_macros_on)
    {
    {
      macro = ((const struct alpha_macro *)
      macro = ((const struct alpha_macro *)
               hash_find (alpha_macro_hash, opname));
               hash_find (alpha_macro_hash, opname));
      if (macro)
      if (macro)
        {
        {
          found_something = 1;
          found_something = 1;
          macro = find_macro_match (macro, tok, &ntok);
          macro = find_macro_match (macro, tok, &ntok);
          if (macro)
          if (macro)
            {
            {
              (*macro->emit) (tok, ntok, macro->arg);
              (*macro->emit) (tok, ntok, macro->arg);
              return;
              return;
            }
            }
        }
        }
    }
    }
 
 
  /* Search opcodes.  */
  /* Search opcodes.  */
  opcode = (const struct alpha_opcode *) hash_find (alpha_opcode_hash, opname);
  opcode = (const struct alpha_opcode *) hash_find (alpha_opcode_hash, opname);
  if (opcode)
  if (opcode)
    {
    {
      found_something = 1;
      found_something = 1;
      opcode = find_opcode_match (opcode, tok, &ntok, &cpumatch);
      opcode = find_opcode_match (opcode, tok, &ntok, &cpumatch);
      if (opcode)
      if (opcode)
        {
        {
          struct alpha_insn insn;
          struct alpha_insn insn;
          assemble_insn (opcode, tok, ntok, &insn, reloc);
          assemble_insn (opcode, tok, ntok, &insn, reloc);
 
 
          /* Copy the sequence number for the reloc from the reloc token.  */
          /* Copy the sequence number for the reloc from the reloc token.  */
          if (reloc != BFD_RELOC_UNUSED)
          if (reloc != BFD_RELOC_UNUSED)
            insn.sequence = tok[ntok].X_add_number;
            insn.sequence = tok[ntok].X_add_number;
 
 
          emit_insn (&insn);
          emit_insn (&insn);
          return;
          return;
        }
        }
    }
    }
 
 
  if (found_something)
  if (found_something)
    {
    {
      if (cpumatch)
      if (cpumatch)
        as_bad (_("inappropriate arguments for opcode `%s'"), opname);
        as_bad (_("inappropriate arguments for opcode `%s'"), opname);
      else
      else
        as_bad (_("opcode `%s' not supported for target %s"), opname,
        as_bad (_("opcode `%s' not supported for target %s"), opname,
                alpha_target_name);
                alpha_target_name);
    }
    }
  else
  else
    as_bad (_("unknown opcode `%s'"), opname);
    as_bad (_("unknown opcode `%s'"), opname);
}
}


#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
 
 
/* Add symbol+addend to link pool.
/* Add symbol+addend to link pool.
   Return offset from basesym to entry in link pool.
   Return offset from basesym to entry in link pool.
 
 
   Add new fixup only if offset isn't 16bit.  */
   Add new fixup only if offset isn't 16bit.  */
 
 
valueT
valueT
add_to_link_pool (symbolS *basesym,
add_to_link_pool (symbolS *basesym,
                  symbolS *sym,
                  symbolS *sym,
                  offsetT addend)
                  offsetT addend)
{
{
  segT current_section = now_seg;
  segT current_section = now_seg;
  int current_subsec = now_subseg;
  int current_subsec = now_subseg;
  valueT offset;
  valueT offset;
  bfd_reloc_code_real_type reloc_type;
  bfd_reloc_code_real_type reloc_type;
  char *p;
  char *p;
  segment_info_type *seginfo = seg_info (alpha_link_section);
  segment_info_type *seginfo = seg_info (alpha_link_section);
  fixS *fixp;
  fixS *fixp;
 
 
  offset = - *symbol_get_obj (basesym);
  offset = - *symbol_get_obj (basesym);
 
 
  /* @@ This assumes all entries in a given section will be of the same
  /* @@ This assumes all entries in a given section will be of the same
     size...  Probably correct, but unwise to rely on.  */
     size...  Probably correct, but unwise to rely on.  */
  /* This must always be called with the same subsegment.  */
  /* This must always be called with the same subsegment.  */
 
 
  if (seginfo->frchainP)
  if (seginfo->frchainP)
    for (fixp = seginfo->frchainP->fix_root;
    for (fixp = seginfo->frchainP->fix_root;
         fixp != (fixS *) NULL;
         fixp != (fixS *) NULL;
         fixp = fixp->fx_next, offset += 8)
         fixp = fixp->fx_next, offset += 8)
      {
      {
        if (fixp->fx_addsy == sym && fixp->fx_offset == addend)
        if (fixp->fx_addsy == sym && fixp->fx_offset == addend)
          {
          {
            if (range_signed_16 (offset))
            if (range_signed_16 (offset))
              {
              {
                return offset;
                return offset;
              }
              }
          }
          }
      }
      }
 
 
  /* Not found in 16bit signed range.  */
  /* Not found in 16bit signed range.  */
 
 
  subseg_set (alpha_link_section, 0);
  subseg_set (alpha_link_section, 0);
  p = frag_more (8);
  p = frag_more (8);
  memset (p, 0, 8);
  memset (p, 0, 8);
 
 
  fix_new (frag_now, p - frag_now->fr_literal, 8, sym, addend, 0,
  fix_new (frag_now, p - frag_now->fr_literal, 8, sym, addend, 0,
           BFD_RELOC_64);
           BFD_RELOC_64);
 
 
  subseg_set (current_section, current_subsec);
  subseg_set (current_section, current_subsec);
  seginfo->literal_pool_size += 8;
  seginfo->literal_pool_size += 8;
  return offset;
  return offset;
}
}
 
 
#endif /* OBJ_EVAX */
#endif /* OBJ_EVAX */


/* Assembler directives.  */
/* Assembler directives.  */
 
 
/* Handle the .text pseudo-op.  This is like the usual one, but it
/* Handle the .text pseudo-op.  This is like the usual one, but it
   clears alpha_insn_label and restores auto alignment.  */
   clears alpha_insn_label and restores auto alignment.  */
 
 
static void
static void
s_alpha_text (int i)
s_alpha_text (int i)
 
 
{
{
#ifdef OBJ_ELF
#ifdef OBJ_ELF
  obj_elf_text (i);
  obj_elf_text (i);
#else
#else
  s_text (i);
  s_text (i);
#endif
#endif
  alpha_insn_label = NULL;
  alpha_insn_label = NULL;
  alpha_auto_align_on = 1;
  alpha_auto_align_on = 1;
  alpha_current_align = 0;
  alpha_current_align = 0;
}
}
 
 
/* Handle the .data pseudo-op.  This is like the usual one, but it
/* Handle the .data pseudo-op.  This is like the usual one, but it
   clears alpha_insn_label and restores auto alignment.  */
   clears alpha_insn_label and restores auto alignment.  */
 
 
static void
static void
s_alpha_data (int i)
s_alpha_data (int i)
{
{
#ifdef OBJ_ELF
#ifdef OBJ_ELF
  obj_elf_data (i);
  obj_elf_data (i);
#else
#else
  s_data (i);
  s_data (i);
#endif
#endif
  alpha_insn_label = NULL;
  alpha_insn_label = NULL;
  alpha_auto_align_on = 1;
  alpha_auto_align_on = 1;
  alpha_current_align = 0;
  alpha_current_align = 0;
}
}
 
 
#if defined (OBJ_ECOFF) || defined (OBJ_EVAX)
#if defined (OBJ_ECOFF) || defined (OBJ_EVAX)
 
 
/* Handle the OSF/1 and openVMS .comm pseudo quirks.
/* Handle the OSF/1 and openVMS .comm pseudo quirks.
   openVMS constructs a section for every common symbol.  */
   openVMS constructs a section for every common symbol.  */
 
 
static void
static void
s_alpha_comm (int ignore ATTRIBUTE_UNUSED)
s_alpha_comm (int ignore ATTRIBUTE_UNUSED)
{
{
  char *name;
  char *name;
  char c;
  char c;
  char *p;
  char *p;
  offsetT temp;
  offsetT temp;
  symbolS *symbolP;
  symbolS *symbolP;
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
  segT current_section = now_seg;
  segT current_section = now_seg;
  int current_subsec = now_subseg;
  int current_subsec = now_subseg;
  segT new_seg;
  segT new_seg;
#endif
#endif
 
 
  name = input_line_pointer;
  name = input_line_pointer;
  c = get_symbol_end ();
  c = get_symbol_end ();
 
 
  /* Just after name is now '\0'.  */
  /* Just after name is now '\0'.  */
  p = input_line_pointer;
  p = input_line_pointer;
  *p = c;
  *p = c;
 
 
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
 
 
  /* Alpha OSF/1 compiler doesn't provide the comma, gcc does.  */
  /* Alpha OSF/1 compiler doesn't provide the comma, gcc does.  */
  if (*input_line_pointer == ',')
  if (*input_line_pointer == ',')
    {
    {
      input_line_pointer++;
      input_line_pointer++;
      SKIP_WHITESPACE ();
      SKIP_WHITESPACE ();
    }
    }
  if ((temp = get_absolute_expression ()) < 0)
  if ((temp = get_absolute_expression ()) < 0)
    {
    {
      as_warn (_(".COMMon length (%ld.) <0! Ignored."), (long) temp);
      as_warn (_(".COMMon length (%ld.) <0! Ignored."), (long) temp);
      ignore_rest_of_line ();
      ignore_rest_of_line ();
      return;
      return;
    }
    }
 
 
  *p = 0;
  *p = 0;
  symbolP = symbol_find_or_make (name);
  symbolP = symbol_find_or_make (name);
 
 
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
  /* Make a section for the common symbol.  */
  /* Make a section for the common symbol.  */
  new_seg = subseg_new (xstrdup (name), 0);
  new_seg = subseg_new (xstrdup (name), 0);
#endif
#endif
 
 
  *p = c;
  *p = c;
 
 
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
  /* Alignment might follow.  */
  /* Alignment might follow.  */
  if (*input_line_pointer == ',')
  if (*input_line_pointer == ',')
    {
    {
      offsetT align;
      offsetT align;
 
 
      input_line_pointer++;
      input_line_pointer++;
      align = get_absolute_expression ();
      align = get_absolute_expression ();
      bfd_set_section_alignment (stdoutput, new_seg, align);
      bfd_set_section_alignment (stdoutput, new_seg, align);
    }
    }
#endif
#endif
 
 
  if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP))
  if (S_IS_DEFINED (symbolP) && ! S_IS_COMMON (symbolP))
    {
    {
      as_bad (_("Ignoring attempt to re-define symbol"));
      as_bad (_("Ignoring attempt to re-define symbol"));
      ignore_rest_of_line ();
      ignore_rest_of_line ();
      return;
      return;
    }
    }
 
 
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
  if (bfd_section_size (stdoutput, new_seg) > 0)
  if (bfd_section_size (stdoutput, new_seg) > 0)
    {
    {
      if (bfd_section_size (stdoutput, new_seg) != temp)
      if (bfd_section_size (stdoutput, new_seg) != temp)
        as_bad (_("Length of .comm \"%s\" is already %ld. Not changed to %ld."),
        as_bad (_("Length of .comm \"%s\" is already %ld. Not changed to %ld."),
                S_GET_NAME (symbolP),
                S_GET_NAME (symbolP),
                (long) bfd_section_size (stdoutput, new_seg),
                (long) bfd_section_size (stdoutput, new_seg),
                (long) temp);
                (long) temp);
    }
    }
#else
#else
  if (S_GET_VALUE (symbolP))
  if (S_GET_VALUE (symbolP))
    {
    {
      if (S_GET_VALUE (symbolP) != (valueT) temp)
      if (S_GET_VALUE (symbolP) != (valueT) temp)
        as_bad (_("Length of .comm \"%s\" is already %ld. Not changed to %ld."),
        as_bad (_("Length of .comm \"%s\" is already %ld. Not changed to %ld."),
                S_GET_NAME (symbolP),
                S_GET_NAME (symbolP),
                (long) S_GET_VALUE (symbolP),
                (long) S_GET_VALUE (symbolP),
                (long) temp);
                (long) temp);
    }
    }
#endif
#endif
  else
  else
    {
    {
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
      subseg_set (new_seg, 0);
      subseg_set (new_seg, 0);
      p = frag_more (temp);
      p = frag_more (temp);
      new_seg->flags |= SEC_IS_COMMON;
      new_seg->flags |= SEC_IS_COMMON;
      S_SET_SEGMENT (symbolP, new_seg);
      S_SET_SEGMENT (symbolP, new_seg);
#else
#else
      S_SET_VALUE (symbolP, (valueT) temp);
      S_SET_VALUE (symbolP, (valueT) temp);
      S_SET_SEGMENT (symbolP, bfd_com_section_ptr);
      S_SET_SEGMENT (symbolP, bfd_com_section_ptr);
#endif
#endif
      S_SET_EXTERNAL (symbolP);
      S_SET_EXTERNAL (symbolP);
    }
    }
 
 
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
  subseg_set (current_section, current_subsec);
  subseg_set (current_section, current_subsec);
#endif
#endif
 
 
  know (symbol_get_frag (symbolP) == &zero_address_frag);
  know (symbol_get_frag (symbolP) == &zero_address_frag);
 
 
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
#endif /* ! OBJ_ELF */
#endif /* ! OBJ_ELF */
 
 
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
 
 
/* Handle the .rdata pseudo-op.  This is like the usual one, but it
/* Handle the .rdata pseudo-op.  This is like the usual one, but it
   clears alpha_insn_label and restores auto alignment.  */
   clears alpha_insn_label and restores auto alignment.  */
 
 
static void
static void
s_alpha_rdata (int ignore ATTRIBUTE_UNUSED)
s_alpha_rdata (int ignore ATTRIBUTE_UNUSED)
{
{
  int temp;
  int temp;
 
 
  temp = get_absolute_expression ();
  temp = get_absolute_expression ();
  subseg_new (".rdata", 0);
  subseg_new (".rdata", 0);
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
  alpha_insn_label = NULL;
  alpha_insn_label = NULL;
  alpha_auto_align_on = 1;
  alpha_auto_align_on = 1;
  alpha_current_align = 0;
  alpha_current_align = 0;
}
}
 
 
#endif
#endif
 
 
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
 
 
/* Handle the .sdata pseudo-op.  This is like the usual one, but it
/* Handle the .sdata pseudo-op.  This is like the usual one, but it
   clears alpha_insn_label and restores auto alignment.  */
   clears alpha_insn_label and restores auto alignment.  */
 
 
static void
static void
s_alpha_sdata (int ignore ATTRIBUTE_UNUSED)
s_alpha_sdata (int ignore ATTRIBUTE_UNUSED)
{
{
  int temp;
  int temp;
 
 
  temp = get_absolute_expression ();
  temp = get_absolute_expression ();
  subseg_new (".sdata", 0);
  subseg_new (".sdata", 0);
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
  alpha_insn_label = NULL;
  alpha_insn_label = NULL;
  alpha_auto_align_on = 1;
  alpha_auto_align_on = 1;
  alpha_current_align = 0;
  alpha_current_align = 0;
}
}
#endif
#endif
 
 
#ifdef OBJ_ELF
#ifdef OBJ_ELF
struct alpha_elf_frame_data
struct alpha_elf_frame_data
{
{
  symbolS *func_sym;
  symbolS *func_sym;
  symbolS *func_end_sym;
  symbolS *func_end_sym;
  symbolS *prologue_sym;
  symbolS *prologue_sym;
  unsigned int mask;
  unsigned int mask;
  unsigned int fmask;
  unsigned int fmask;
  int fp_regno;
  int fp_regno;
  int ra_regno;
  int ra_regno;
  offsetT frame_size;
  offsetT frame_size;
  offsetT mask_offset;
  offsetT mask_offset;
  offsetT fmask_offset;
  offsetT fmask_offset;
 
 
  struct alpha_elf_frame_data *next;
  struct alpha_elf_frame_data *next;
};
};
 
 
static struct alpha_elf_frame_data *all_frame_data;
static struct alpha_elf_frame_data *all_frame_data;
static struct alpha_elf_frame_data **plast_frame_data = &all_frame_data;
static struct alpha_elf_frame_data **plast_frame_data = &all_frame_data;
static struct alpha_elf_frame_data *cur_frame_data;
static struct alpha_elf_frame_data *cur_frame_data;
 
 
/* Handle the .section pseudo-op.  This is like the usual one, but it
/* Handle the .section pseudo-op.  This is like the usual one, but it
   clears alpha_insn_label and restores auto alignment.  */
   clears alpha_insn_label and restores auto alignment.  */
 
 
static void
static void
s_alpha_section (int ignore ATTRIBUTE_UNUSED)
s_alpha_section (int ignore ATTRIBUTE_UNUSED)
{
{
  obj_elf_section (ignore);
  obj_elf_section (ignore);
 
 
  alpha_insn_label = NULL;
  alpha_insn_label = NULL;
  alpha_auto_align_on = 1;
  alpha_auto_align_on = 1;
  alpha_current_align = 0;
  alpha_current_align = 0;
}
}
 
 
static void
static void
s_alpha_ent (int dummy ATTRIBUTE_UNUSED)
s_alpha_ent (int dummy ATTRIBUTE_UNUSED)
{
{
  if (ECOFF_DEBUGGING)
  if (ECOFF_DEBUGGING)
    ecoff_directive_ent (0);
    ecoff_directive_ent (0);
  else
  else
    {
    {
      char *name, name_end;
      char *name, name_end;
      name = input_line_pointer;
      name = input_line_pointer;
      name_end = get_symbol_end ();
      name_end = get_symbol_end ();
 
 
      if (! is_name_beginner (*name))
      if (! is_name_beginner (*name))
        {
        {
          as_warn (_(".ent directive has no name"));
          as_warn (_(".ent directive has no name"));
          *input_line_pointer = name_end;
          *input_line_pointer = name_end;
        }
        }
      else
      else
        {
        {
          symbolS *sym;
          symbolS *sym;
 
 
          if (cur_frame_data)
          if (cur_frame_data)
            as_warn (_("nested .ent directives"));
            as_warn (_("nested .ent directives"));
 
 
          sym = symbol_find_or_make (name);
          sym = symbol_find_or_make (name);
          symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
          symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
 
 
          cur_frame_data = calloc (1, sizeof (*cur_frame_data));
          cur_frame_data = calloc (1, sizeof (*cur_frame_data));
          cur_frame_data->func_sym = sym;
          cur_frame_data->func_sym = sym;
 
 
          /* Provide sensible defaults.  */
          /* Provide sensible defaults.  */
          cur_frame_data->fp_regno = 30;        /* sp */
          cur_frame_data->fp_regno = 30;        /* sp */
          cur_frame_data->ra_regno = 26;        /* ra */
          cur_frame_data->ra_regno = 26;        /* ra */
 
 
          *plast_frame_data = cur_frame_data;
          *plast_frame_data = cur_frame_data;
          plast_frame_data = &cur_frame_data->next;
          plast_frame_data = &cur_frame_data->next;
 
 
          /* The .ent directive is sometimes followed by a number.  Not sure
          /* The .ent directive is sometimes followed by a number.  Not sure
             what it really means, but ignore it.  */
             what it really means, but ignore it.  */
          *input_line_pointer = name_end;
          *input_line_pointer = name_end;
          SKIP_WHITESPACE ();
          SKIP_WHITESPACE ();
          if (*input_line_pointer == ',')
          if (*input_line_pointer == ',')
            {
            {
              input_line_pointer++;
              input_line_pointer++;
              SKIP_WHITESPACE ();
              SKIP_WHITESPACE ();
            }
            }
          if (ISDIGIT (*input_line_pointer) || *input_line_pointer == '-')
          if (ISDIGIT (*input_line_pointer) || *input_line_pointer == '-')
            (void) get_absolute_expression ();
            (void) get_absolute_expression ();
        }
        }
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
    }
    }
}
}
 
 
static void
static void
s_alpha_end (int dummy ATTRIBUTE_UNUSED)
s_alpha_end (int dummy ATTRIBUTE_UNUSED)
{
{
  if (ECOFF_DEBUGGING)
  if (ECOFF_DEBUGGING)
    ecoff_directive_end (0);
    ecoff_directive_end (0);
  else
  else
    {
    {
      char *name, name_end;
      char *name, name_end;
      name = input_line_pointer;
      name = input_line_pointer;
      name_end = get_symbol_end ();
      name_end = get_symbol_end ();
 
 
      if (! is_name_beginner (*name))
      if (! is_name_beginner (*name))
        {
        {
          as_warn (_(".end directive has no name"));
          as_warn (_(".end directive has no name"));
          *input_line_pointer = name_end;
          *input_line_pointer = name_end;
        }
        }
      else
      else
        {
        {
          symbolS *sym;
          symbolS *sym;
 
 
          sym = symbol_find (name);
          sym = symbol_find (name);
          if (!cur_frame_data)
          if (!cur_frame_data)
            as_warn (_(".end directive without matching .ent"));
            as_warn (_(".end directive without matching .ent"));
          else if (sym != cur_frame_data->func_sym)
          else if (sym != cur_frame_data->func_sym)
            as_warn (_(".end directive names different symbol than .ent"));
            as_warn (_(".end directive names different symbol than .ent"));
 
 
          /* Create an expression to calculate the size of the function.  */
          /* Create an expression to calculate the size of the function.  */
          if (sym && cur_frame_data)
          if (sym && cur_frame_data)
            {
            {
              OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (sym);
              OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (sym);
              expressionS *exp = xmalloc (sizeof (expressionS));
              expressionS *exp = xmalloc (sizeof (expressionS));
 
 
              obj->size = exp;
              obj->size = exp;
              exp->X_op = O_subtract;
              exp->X_op = O_subtract;
              exp->X_add_symbol = symbol_temp_new_now ();
              exp->X_add_symbol = symbol_temp_new_now ();
              exp->X_op_symbol = sym;
              exp->X_op_symbol = sym;
              exp->X_add_number = 0;
              exp->X_add_number = 0;
 
 
              cur_frame_data->func_end_sym = exp->X_add_symbol;
              cur_frame_data->func_end_sym = exp->X_add_symbol;
            }
            }
 
 
          cur_frame_data = NULL;
          cur_frame_data = NULL;
 
 
          *input_line_pointer = name_end;
          *input_line_pointer = name_end;
        }
        }
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
    }
    }
}
}
 
 
static void
static void
s_alpha_mask (int fp)
s_alpha_mask (int fp)
{
{
  if (ECOFF_DEBUGGING)
  if (ECOFF_DEBUGGING)
    {
    {
      if (fp)
      if (fp)
        ecoff_directive_fmask (0);
        ecoff_directive_fmask (0);
      else
      else
        ecoff_directive_mask (0);
        ecoff_directive_mask (0);
    }
    }
  else
  else
    {
    {
      long val;
      long val;
      offsetT offset;
      offsetT offset;
 
 
      if (!cur_frame_data)
      if (!cur_frame_data)
        {
        {
          if (fp)
          if (fp)
            as_warn (_(".fmask outside of .ent"));
            as_warn (_(".fmask outside of .ent"));
          else
          else
            as_warn (_(".mask outside of .ent"));
            as_warn (_(".mask outside of .ent"));
          discard_rest_of_line ();
          discard_rest_of_line ();
          return;
          return;
        }
        }
 
 
      if (get_absolute_expression_and_terminator (&val) != ',')
      if (get_absolute_expression_and_terminator (&val) != ',')
        {
        {
          if (fp)
          if (fp)
            as_warn (_("bad .fmask directive"));
            as_warn (_("bad .fmask directive"));
          else
          else
            as_warn (_("bad .mask directive"));
            as_warn (_("bad .mask directive"));
          --input_line_pointer;
          --input_line_pointer;
          discard_rest_of_line ();
          discard_rest_of_line ();
          return;
          return;
        }
        }
 
 
      offset = get_absolute_expression ();
      offset = get_absolute_expression ();
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
 
 
      if (fp)
      if (fp)
        {
        {
          cur_frame_data->fmask = val;
          cur_frame_data->fmask = val;
          cur_frame_data->fmask_offset = offset;
          cur_frame_data->fmask_offset = offset;
        }
        }
      else
      else
        {
        {
          cur_frame_data->mask = val;
          cur_frame_data->mask = val;
          cur_frame_data->mask_offset = offset;
          cur_frame_data->mask_offset = offset;
        }
        }
    }
    }
}
}
 
 
static void
static void
s_alpha_frame (int dummy ATTRIBUTE_UNUSED)
s_alpha_frame (int dummy ATTRIBUTE_UNUSED)
{
{
  if (ECOFF_DEBUGGING)
  if (ECOFF_DEBUGGING)
    ecoff_directive_frame (0);
    ecoff_directive_frame (0);
  else
  else
    {
    {
      long val;
      long val;
 
 
      if (!cur_frame_data)
      if (!cur_frame_data)
        {
        {
          as_warn (_(".frame outside of .ent"));
          as_warn (_(".frame outside of .ent"));
          discard_rest_of_line ();
          discard_rest_of_line ();
          return;
          return;
        }
        }
 
 
      cur_frame_data->fp_regno = tc_get_register (1);
      cur_frame_data->fp_regno = tc_get_register (1);
 
 
      SKIP_WHITESPACE ();
      SKIP_WHITESPACE ();
      if (*input_line_pointer++ != ','
      if (*input_line_pointer++ != ','
          || get_absolute_expression_and_terminator (&val) != ',')
          || get_absolute_expression_and_terminator (&val) != ',')
        {
        {
          as_warn (_("bad .frame directive"));
          as_warn (_("bad .frame directive"));
          --input_line_pointer;
          --input_line_pointer;
          discard_rest_of_line ();
          discard_rest_of_line ();
          return;
          return;
        }
        }
      cur_frame_data->frame_size = val;
      cur_frame_data->frame_size = val;
 
 
      cur_frame_data->ra_regno = tc_get_register (0);
      cur_frame_data->ra_regno = tc_get_register (0);
 
 
      /* Next comes the "offset of saved $a0 from $sp".  In gcc terms
      /* Next comes the "offset of saved $a0 from $sp".  In gcc terms
         this is current_function_pretend_args_size.  There's no place
         this is current_function_pretend_args_size.  There's no place
         to put this value, so ignore it.  */
         to put this value, so ignore it.  */
      s_ignore (42);
      s_ignore (42);
    }
    }
}
}
 
 
static void
static void
s_alpha_prologue (int ignore ATTRIBUTE_UNUSED)
s_alpha_prologue (int ignore ATTRIBUTE_UNUSED)
{
{
  symbolS *sym;
  symbolS *sym;
  int arg;
  int arg;
 
 
  arg = get_absolute_expression ();
  arg = get_absolute_expression ();
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
 
 
  if (ECOFF_DEBUGGING)
  if (ECOFF_DEBUGGING)
    sym = ecoff_get_cur_proc_sym ();
    sym = ecoff_get_cur_proc_sym ();
  else
  else
    sym = cur_frame_data ? cur_frame_data->func_sym : NULL;
    sym = cur_frame_data ? cur_frame_data->func_sym : NULL;
 
 
  if (sym == NULL)
  if (sym == NULL)
    {
    {
      as_bad (_(".prologue directive without a preceding .ent directive"));
      as_bad (_(".prologue directive without a preceding .ent directive"));
      return;
      return;
    }
    }
 
 
  switch (arg)
  switch (arg)
    {
    {
    case 0: /* No PV required.  */
    case 0: /* No PV required.  */
      S_SET_OTHER (sym, STO_ALPHA_NOPV
      S_SET_OTHER (sym, STO_ALPHA_NOPV
                   | (S_GET_OTHER (sym) & ~STO_ALPHA_STD_GPLOAD));
                   | (S_GET_OTHER (sym) & ~STO_ALPHA_STD_GPLOAD));
      break;
      break;
    case 1: /* Std GP load.  */
    case 1: /* Std GP load.  */
      S_SET_OTHER (sym, STO_ALPHA_STD_GPLOAD
      S_SET_OTHER (sym, STO_ALPHA_STD_GPLOAD
                   | (S_GET_OTHER (sym) & ~STO_ALPHA_STD_GPLOAD));
                   | (S_GET_OTHER (sym) & ~STO_ALPHA_STD_GPLOAD));
      break;
      break;
    case 2: /* Non-std use of PV.  */
    case 2: /* Non-std use of PV.  */
      break;
      break;
 
 
    default:
    default:
      as_bad (_("Invalid argument %d to .prologue."), arg);
      as_bad (_("Invalid argument %d to .prologue."), arg);
      break;
      break;
    }
    }
 
 
  if (cur_frame_data)
  if (cur_frame_data)
    cur_frame_data->prologue_sym = symbol_temp_new_now ();
    cur_frame_data->prologue_sym = symbol_temp_new_now ();
}
}
 
 
static char *first_file_directive;
static char *first_file_directive;
 
 
static void
static void
s_alpha_file (int ignore ATTRIBUTE_UNUSED)
s_alpha_file (int ignore ATTRIBUTE_UNUSED)
{
{
  /* Save the first .file directive we see, so that we can change our
  /* Save the first .file directive we see, so that we can change our
     minds about whether ecoff debugging should or shouldn't be enabled.  */
     minds about whether ecoff debugging should or shouldn't be enabled.  */
  if (alpha_flag_mdebug < 0 && ! first_file_directive)
  if (alpha_flag_mdebug < 0 && ! first_file_directive)
    {
    {
      char *start = input_line_pointer;
      char *start = input_line_pointer;
      size_t len;
      size_t len;
 
 
      discard_rest_of_line ();
      discard_rest_of_line ();
 
 
      len = input_line_pointer - start;
      len = input_line_pointer - start;
      first_file_directive = xmalloc (len + 1);
      first_file_directive = xmalloc (len + 1);
      memcpy (first_file_directive, start, len);
      memcpy (first_file_directive, start, len);
      first_file_directive[len] = '\0';
      first_file_directive[len] = '\0';
 
 
      input_line_pointer = start;
      input_line_pointer = start;
    }
    }
 
 
  if (ECOFF_DEBUGGING)
  if (ECOFF_DEBUGGING)
    ecoff_directive_file (0);
    ecoff_directive_file (0);
  else
  else
    dwarf2_directive_file (0);
    dwarf2_directive_file (0);
}
}
 
 
static void
static void
s_alpha_loc (int ignore ATTRIBUTE_UNUSED)
s_alpha_loc (int ignore ATTRIBUTE_UNUSED)
{
{
  if (ECOFF_DEBUGGING)
  if (ECOFF_DEBUGGING)
    ecoff_directive_loc (0);
    ecoff_directive_loc (0);
  else
  else
    dwarf2_directive_loc (0);
    dwarf2_directive_loc (0);
}
}
 
 
static void
static void
s_alpha_stab (int n)
s_alpha_stab (int n)
{
{
  /* If we've been undecided about mdebug, make up our minds in favour.  */
  /* If we've been undecided about mdebug, make up our minds in favour.  */
  if (alpha_flag_mdebug < 0)
  if (alpha_flag_mdebug < 0)
    {
    {
      segT sec = subseg_new (".mdebug", 0);
      segT sec = subseg_new (".mdebug", 0);
      bfd_set_section_flags (stdoutput, sec, SEC_HAS_CONTENTS | SEC_READONLY);
      bfd_set_section_flags (stdoutput, sec, SEC_HAS_CONTENTS | SEC_READONLY);
      bfd_set_section_alignment (stdoutput, sec, 3);
      bfd_set_section_alignment (stdoutput, sec, 3);
 
 
      ecoff_read_begin_hook ();
      ecoff_read_begin_hook ();
 
 
      if (first_file_directive)
      if (first_file_directive)
        {
        {
          char *save_ilp = input_line_pointer;
          char *save_ilp = input_line_pointer;
          input_line_pointer = first_file_directive;
          input_line_pointer = first_file_directive;
          ecoff_directive_file (0);
          ecoff_directive_file (0);
          input_line_pointer = save_ilp;
          input_line_pointer = save_ilp;
          free (first_file_directive);
          free (first_file_directive);
        }
        }
 
 
      alpha_flag_mdebug = 1;
      alpha_flag_mdebug = 1;
    }
    }
  s_stab (n);
  s_stab (n);
}
}
 
 
static void
static void
s_alpha_coff_wrapper (int which)
s_alpha_coff_wrapper (int which)
{
{
  static void (* const fns[]) PARAMS ((int)) = {
  static void (* const fns[]) PARAMS ((int)) = {
    ecoff_directive_begin,
    ecoff_directive_begin,
    ecoff_directive_bend,
    ecoff_directive_bend,
    ecoff_directive_def,
    ecoff_directive_def,
    ecoff_directive_dim,
    ecoff_directive_dim,
    ecoff_directive_endef,
    ecoff_directive_endef,
    ecoff_directive_scl,
    ecoff_directive_scl,
    ecoff_directive_tag,
    ecoff_directive_tag,
    ecoff_directive_val,
    ecoff_directive_val,
  };
  };
 
 
  assert (which >= 0 && which < (int) (sizeof (fns)/sizeof (*fns)));
  assert (which >= 0 && which < (int) (sizeof (fns)/sizeof (*fns)));
 
 
  if (ECOFF_DEBUGGING)
  if (ECOFF_DEBUGGING)
    (*fns[which]) (0);
    (*fns[which]) (0);
  else
  else
    {
    {
      as_bad (_("ECOFF debugging is disabled."));
      as_bad (_("ECOFF debugging is disabled."));
      ignore_rest_of_line ();
      ignore_rest_of_line ();
    }
    }
}
}
 
 
/* Called at the end of assembly.  Here we emit unwind info for frames
/* Called at the end of assembly.  Here we emit unwind info for frames
   unless the compiler has done it for us.  */
   unless the compiler has done it for us.  */
 
 
void
void
alpha_elf_md_end (void)
alpha_elf_md_end (void)
{
{
  struct alpha_elf_frame_data *p;
  struct alpha_elf_frame_data *p;
 
 
  if (cur_frame_data)
  if (cur_frame_data)
    as_warn (_(".ent directive without matching .end"));
    as_warn (_(".ent directive without matching .end"));
 
 
  /* If someone has generated the unwind info themselves, great.  */
  /* If someone has generated the unwind info themselves, great.  */
  if (bfd_get_section_by_name (stdoutput, ".eh_frame") != NULL)
  if (bfd_get_section_by_name (stdoutput, ".eh_frame") != NULL)
    return;
    return;
 
 
  /* Generate .eh_frame data for the unwind directives specified.  */
  /* Generate .eh_frame data for the unwind directives specified.  */
  for (p = all_frame_data; p ; p = p->next)
  for (p = all_frame_data; p ; p = p->next)
    if (p->prologue_sym)
    if (p->prologue_sym)
      {
      {
        /* Create a temporary symbol at the same location as our
        /* Create a temporary symbol at the same location as our
           function symbol.  This prevents problems with globals.  */
           function symbol.  This prevents problems with globals.  */
        cfi_new_fde (symbol_temp_new (S_GET_SEGMENT (p->func_sym),
        cfi_new_fde (symbol_temp_new (S_GET_SEGMENT (p->func_sym),
                                      S_GET_VALUE (p->func_sym),
                                      S_GET_VALUE (p->func_sym),
                                      symbol_get_frag (p->func_sym)));
                                      symbol_get_frag (p->func_sym)));
 
 
        cfi_set_return_column (p->ra_regno);
        cfi_set_return_column (p->ra_regno);
        cfi_add_CFA_def_cfa_register (30);
        cfi_add_CFA_def_cfa_register (30);
        if (p->fp_regno != 30 || p->mask || p->fmask || p->frame_size)
        if (p->fp_regno != 30 || p->mask || p->fmask || p->frame_size)
          {
          {
            unsigned int mask;
            unsigned int mask;
            offsetT offset;
            offsetT offset;
 
 
            cfi_add_advance_loc (p->prologue_sym);
            cfi_add_advance_loc (p->prologue_sym);
 
 
            if (p->fp_regno != 30)
            if (p->fp_regno != 30)
              if (p->frame_size != 0)
              if (p->frame_size != 0)
                cfi_add_CFA_def_cfa (p->fp_regno, p->frame_size);
                cfi_add_CFA_def_cfa (p->fp_regno, p->frame_size);
              else
              else
                cfi_add_CFA_def_cfa_register (p->fp_regno);
                cfi_add_CFA_def_cfa_register (p->fp_regno);
            else if (p->frame_size != 0)
            else if (p->frame_size != 0)
              cfi_add_CFA_def_cfa_offset (p->frame_size);
              cfi_add_CFA_def_cfa_offset (p->frame_size);
 
 
            mask = p->mask;
            mask = p->mask;
            offset = p->mask_offset;
            offset = p->mask_offset;
 
 
            /* Recall that $26 is special-cased and stored first.  */
            /* Recall that $26 is special-cased and stored first.  */
            if ((mask >> 26) & 1)
            if ((mask >> 26) & 1)
              {
              {
                cfi_add_CFA_offset (26, offset);
                cfi_add_CFA_offset (26, offset);
                offset += 8;
                offset += 8;
                mask &= ~(1 << 26);
                mask &= ~(1 << 26);
              }
              }
            while (mask)
            while (mask)
              {
              {
                unsigned int i;
                unsigned int i;
                i = mask & -mask;
                i = mask & -mask;
                mask ^= i;
                mask ^= i;
                i = ffs (i) - 1;
                i = ffs (i) - 1;
 
 
                cfi_add_CFA_offset (i, offset);
                cfi_add_CFA_offset (i, offset);
                offset += 8;
                offset += 8;
              }
              }
 
 
            mask = p->fmask;
            mask = p->fmask;
            offset = p->fmask_offset;
            offset = p->fmask_offset;
            while (mask)
            while (mask)
              {
              {
                unsigned int i;
                unsigned int i;
                i = mask & -mask;
                i = mask & -mask;
                mask ^= i;
                mask ^= i;
                i = ffs (i) - 1;
                i = ffs (i) - 1;
 
 
                cfi_add_CFA_offset (i + 32, offset);
                cfi_add_CFA_offset (i + 32, offset);
                offset += 8;
                offset += 8;
              }
              }
          }
          }
 
 
        cfi_end_fde (p->func_end_sym);
        cfi_end_fde (p->func_end_sym);
      }
      }
}
}
 
 
static void
static void
s_alpha_usepv (int unused ATTRIBUTE_UNUSED)
s_alpha_usepv (int unused ATTRIBUTE_UNUSED)
{
{
  char *name, name_end;
  char *name, name_end;
  char *which, which_end;
  char *which, which_end;
  symbolS *sym;
  symbolS *sym;
  int other;
  int other;
 
 
  name = input_line_pointer;
  name = input_line_pointer;
  name_end = get_symbol_end ();
  name_end = get_symbol_end ();
 
 
  if (! is_name_beginner (*name))
  if (! is_name_beginner (*name))
    {
    {
      as_bad (_(".usepv directive has no name"));
      as_bad (_(".usepv directive has no name"));
      *input_line_pointer = name_end;
      *input_line_pointer = name_end;
      ignore_rest_of_line ();
      ignore_rest_of_line ();
      return;
      return;
    }
    }
 
 
  sym = symbol_find_or_make (name);
  sym = symbol_find_or_make (name);
  *input_line_pointer++ = name_end;
  *input_line_pointer++ = name_end;
 
 
  if (name_end != ',')
  if (name_end != ',')
    {
    {
      as_bad (_(".usepv directive has no type"));
      as_bad (_(".usepv directive has no type"));
      ignore_rest_of_line ();
      ignore_rest_of_line ();
      return;
      return;
    }
    }
 
 
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  which = input_line_pointer;
  which = input_line_pointer;
  which_end = get_symbol_end ();
  which_end = get_symbol_end ();
 
 
  if (strcmp (which, "no") == 0)
  if (strcmp (which, "no") == 0)
    other = STO_ALPHA_NOPV;
    other = STO_ALPHA_NOPV;
  else if (strcmp (which, "std") == 0)
  else if (strcmp (which, "std") == 0)
    other = STO_ALPHA_STD_GPLOAD;
    other = STO_ALPHA_STD_GPLOAD;
  else
  else
    {
    {
      as_bad (_("unknown argument for .usepv"));
      as_bad (_("unknown argument for .usepv"));
      other = 0;
      other = 0;
    }
    }
 
 
  *input_line_pointer = which_end;
  *input_line_pointer = which_end;
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
 
 
  S_SET_OTHER (sym, other | (S_GET_OTHER (sym) & ~STO_ALPHA_STD_GPLOAD));
  S_SET_OTHER (sym, other | (S_GET_OTHER (sym) & ~STO_ALPHA_STD_GPLOAD));
}
}
#endif /* OBJ_ELF */
#endif /* OBJ_ELF */
 
 
/* Standard calling conventions leaves the CFA at $30 on entry.  */
/* Standard calling conventions leaves the CFA at $30 on entry.  */
 
 
void
void
alpha_cfi_frame_initial_instructions (void)
alpha_cfi_frame_initial_instructions (void)
{
{
  cfi_add_CFA_def_cfa_register (30);
  cfi_add_CFA_def_cfa_register (30);
}
}
 
 
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
 
 
/* Handle the section specific pseudo-op.  */
/* Handle the section specific pseudo-op.  */
 
 
static void
static void
s_alpha_section (int secid)
s_alpha_section (int secid)
{
{
  int temp;
  int temp;
#define EVAX_SECTION_COUNT 5
#define EVAX_SECTION_COUNT 5
  static char *section_name[EVAX_SECTION_COUNT + 1] =
  static char *section_name[EVAX_SECTION_COUNT + 1] =
    { "NULL", ".rdata", ".comm", ".link", ".ctors", ".dtors" };
    { "NULL", ".rdata", ".comm", ".link", ".ctors", ".dtors" };
 
 
  if ((secid <= 0) || (secid > EVAX_SECTION_COUNT))
  if ((secid <= 0) || (secid > EVAX_SECTION_COUNT))
    {
    {
      as_fatal (_("Unknown section directive"));
      as_fatal (_("Unknown section directive"));
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
      return;
      return;
    }
    }
  temp = get_absolute_expression ();
  temp = get_absolute_expression ();
  subseg_new (section_name[secid], 0);
  subseg_new (section_name[secid], 0);
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
  alpha_insn_label = NULL;
  alpha_insn_label = NULL;
  alpha_auto_align_on = 1;
  alpha_auto_align_on = 1;
  alpha_current_align = 0;
  alpha_current_align = 0;
}
}
 
 
/* Parse .ent directives.  */
/* Parse .ent directives.  */
 
 
static void
static void
s_alpha_ent (int ignore ATTRIBUTE_UNUSED)
s_alpha_ent (int ignore ATTRIBUTE_UNUSED)
{
{
  symbolS *symbol;
  symbolS *symbol;
  expressionS symexpr;
  expressionS symexpr;
 
 
  alpha_evax_proc.pdsckind = 0;
  alpha_evax_proc.pdsckind = 0;
  alpha_evax_proc.framereg = -1;
  alpha_evax_proc.framereg = -1;
  alpha_evax_proc.framesize = 0;
  alpha_evax_proc.framesize = 0;
  alpha_evax_proc.rsa_offset = 0;
  alpha_evax_proc.rsa_offset = 0;
  alpha_evax_proc.ra_save = AXP_REG_RA;
  alpha_evax_proc.ra_save = AXP_REG_RA;
  alpha_evax_proc.fp_save = -1;
  alpha_evax_proc.fp_save = -1;
  alpha_evax_proc.imask = 0;
  alpha_evax_proc.imask = 0;
  alpha_evax_proc.fmask = 0;
  alpha_evax_proc.fmask = 0;
  alpha_evax_proc.prologue = 0;
  alpha_evax_proc.prologue = 0;
  alpha_evax_proc.type = 0;
  alpha_evax_proc.type = 0;
 
 
  expression (&symexpr);
  expression (&symexpr);
 
 
  if (symexpr.X_op != O_symbol)
  if (symexpr.X_op != O_symbol)
    {
    {
      as_fatal (_(".ent directive has no symbol"));
      as_fatal (_(".ent directive has no symbol"));
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
      return;
      return;
    }
    }
 
 
  symbol = make_expr_symbol (&symexpr);
  symbol = make_expr_symbol (&symexpr);
  symbol_get_bfdsym (symbol)->flags |= BSF_FUNCTION;
  symbol_get_bfdsym (symbol)->flags |= BSF_FUNCTION;
  alpha_evax_proc.symbol = symbol;
  alpha_evax_proc.symbol = symbol;
 
 
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
/* Parse .frame <framreg>,<framesize>,RA,<rsa_offset> directives.  */
/* Parse .frame <framreg>,<framesize>,RA,<rsa_offset> directives.  */
 
 
static void
static void
s_alpha_frame (int ignore ATTRIBUTE_UNUSED)
s_alpha_frame (int ignore ATTRIBUTE_UNUSED)
{
{
  long val;
  long val;
 
 
  alpha_evax_proc.framereg = tc_get_register (1);
  alpha_evax_proc.framereg = tc_get_register (1);
 
 
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  if (*input_line_pointer++ != ','
  if (*input_line_pointer++ != ','
      || get_absolute_expression_and_terminator (&val) != ',')
      || get_absolute_expression_and_terminator (&val) != ',')
    {
    {
      as_warn (_("Bad .frame directive 1./2. param"));
      as_warn (_("Bad .frame directive 1./2. param"));
      --input_line_pointer;
      --input_line_pointer;
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
      return;
      return;
    }
    }
 
 
  alpha_evax_proc.framesize = val;
  alpha_evax_proc.framesize = val;
 
 
  (void) tc_get_register (1);
  (void) tc_get_register (1);
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  if (*input_line_pointer++ != ',')
  if (*input_line_pointer++ != ',')
    {
    {
      as_warn (_("Bad .frame directive 3./4. param"));
      as_warn (_("Bad .frame directive 3./4. param"));
      --input_line_pointer;
      --input_line_pointer;
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
      return;
      return;
    }
    }
  alpha_evax_proc.rsa_offset = get_absolute_expression ();
  alpha_evax_proc.rsa_offset = get_absolute_expression ();
}
}
 
 
static void
static void
s_alpha_pdesc (int ignore ATTRIBUTE_UNUSED)
s_alpha_pdesc (int ignore ATTRIBUTE_UNUSED)
{
{
  char *name;
  char *name;
  char name_end;
  char name_end;
  long val;
  long val;
  register char *p;
  register char *p;
  expressionS exp;
  expressionS exp;
  symbolS *entry_sym;
  symbolS *entry_sym;
  fixS *fixp;
  fixS *fixp;
  segment_info_type *seginfo = seg_info (alpha_link_section);
  segment_info_type *seginfo = seg_info (alpha_link_section);
 
 
  if (now_seg != alpha_link_section)
  if (now_seg != alpha_link_section)
    {
    {
      as_bad (_(".pdesc directive not in link (.link) section"));
      as_bad (_(".pdesc directive not in link (.link) section"));
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
      return;
      return;
    }
    }
 
 
  if ((alpha_evax_proc.symbol == 0)
  if ((alpha_evax_proc.symbol == 0)
      || (!S_IS_DEFINED (alpha_evax_proc.symbol)))
      || (!S_IS_DEFINED (alpha_evax_proc.symbol)))
    {
    {
      as_fatal (_(".pdesc has no matching .ent"));
      as_fatal (_(".pdesc has no matching .ent"));
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
      return;
      return;
    }
    }
 
 
  *symbol_get_obj (alpha_evax_proc.symbol) =
  *symbol_get_obj (alpha_evax_proc.symbol) =
    (valueT) seginfo->literal_pool_size;
    (valueT) seginfo->literal_pool_size;
 
 
  expression (&exp);
  expression (&exp);
  if (exp.X_op != O_symbol)
  if (exp.X_op != O_symbol)
    {
    {
      as_warn (_(".pdesc directive has no entry symbol"));
      as_warn (_(".pdesc directive has no entry symbol"));
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
      return;
      return;
    }
    }
 
 
  entry_sym = make_expr_symbol (&exp);
  entry_sym = make_expr_symbol (&exp);
  /* Save bfd symbol of proc desc in function symbol.  */
  /* Save bfd symbol of proc desc in function symbol.  */
  symbol_get_bfdsym (alpha_evax_proc.symbol)->udata.p
  symbol_get_bfdsym (alpha_evax_proc.symbol)->udata.p
    = symbol_get_bfdsym (entry_sym);
    = symbol_get_bfdsym (entry_sym);
 
 
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  if (*input_line_pointer++ != ',')
  if (*input_line_pointer++ != ',')
    {
    {
      as_warn (_("No comma after .pdesc <entryname>"));
      as_warn (_("No comma after .pdesc <entryname>"));
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
      return;
      return;
    }
    }
 
 
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  name = input_line_pointer;
  name = input_line_pointer;
  name_end = get_symbol_end ();
  name_end = get_symbol_end ();
 
 
  if (strncmp (name, "stack", 5) == 0)
  if (strncmp (name, "stack", 5) == 0)
    alpha_evax_proc.pdsckind = PDSC_S_K_KIND_FP_STACK;
    alpha_evax_proc.pdsckind = PDSC_S_K_KIND_FP_STACK;
 
 
  else if (strncmp (name, "reg", 3) == 0)
  else if (strncmp (name, "reg", 3) == 0)
    alpha_evax_proc.pdsckind = PDSC_S_K_KIND_FP_REGISTER;
    alpha_evax_proc.pdsckind = PDSC_S_K_KIND_FP_REGISTER;
 
 
  else if (strncmp (name, "null", 4) == 0)
  else if (strncmp (name, "null", 4) == 0)
    alpha_evax_proc.pdsckind = PDSC_S_K_KIND_NULL;
    alpha_evax_proc.pdsckind = PDSC_S_K_KIND_NULL;
 
 
  else
  else
    {
    {
      as_fatal (_("unknown procedure kind"));
      as_fatal (_("unknown procedure kind"));
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
      return;
      return;
    }
    }
 
 
  *input_line_pointer = name_end;
  *input_line_pointer = name_end;
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
 
 
#ifdef md_flush_pending_output
#ifdef md_flush_pending_output
  md_flush_pending_output ();
  md_flush_pending_output ();
#endif
#endif
 
 
  frag_align (3, 0, 0);
  frag_align (3, 0, 0);
  p = frag_more (16);
  p = frag_more (16);
  fixp = fix_new (frag_now, p - frag_now->fr_literal, 8, 0, 0, 0, 0);
  fixp = fix_new (frag_now, p - frag_now->fr_literal, 8, 0, 0, 0, 0);
  fixp->fx_done = 1;
  fixp->fx_done = 1;
  seginfo->literal_pool_size += 16;
  seginfo->literal_pool_size += 16;
 
 
  *p = alpha_evax_proc.pdsckind
  *p = alpha_evax_proc.pdsckind
    | ((alpha_evax_proc.framereg == 29) ? PDSC_S_M_BASE_REG_IS_FP : 0);
    | ((alpha_evax_proc.framereg == 29) ? PDSC_S_M_BASE_REG_IS_FP : 0);
  *(p + 1) = PDSC_S_M_NATIVE | PDSC_S_M_NO_JACKET;
  *(p + 1) = PDSC_S_M_NATIVE | PDSC_S_M_NO_JACKET;
 
 
  switch (alpha_evax_proc.pdsckind)
  switch (alpha_evax_proc.pdsckind)
    {
    {
    case PDSC_S_K_KIND_NULL:
    case PDSC_S_K_KIND_NULL:
      *(p + 2) = 0;
      *(p + 2) = 0;
      *(p + 3) = 0;
      *(p + 3) = 0;
      break;
      break;
    case PDSC_S_K_KIND_FP_REGISTER:
    case PDSC_S_K_KIND_FP_REGISTER:
      *(p + 2) = alpha_evax_proc.fp_save;
      *(p + 2) = alpha_evax_proc.fp_save;
      *(p + 3) = alpha_evax_proc.ra_save;
      *(p + 3) = alpha_evax_proc.ra_save;
      break;
      break;
    case PDSC_S_K_KIND_FP_STACK:
    case PDSC_S_K_KIND_FP_STACK:
      md_number_to_chars (p + 2, (valueT) alpha_evax_proc.rsa_offset, 2);
      md_number_to_chars (p + 2, (valueT) alpha_evax_proc.rsa_offset, 2);
      break;
      break;
    default:            /* impossible */
    default:            /* impossible */
      break;
      break;
    }
    }
 
 
  *(p + 4) = 0;
  *(p + 4) = 0;
  *(p + 5) = alpha_evax_proc.type & 0x0f;
  *(p + 5) = alpha_evax_proc.type & 0x0f;
 
 
  /* Signature offset.  */
  /* Signature offset.  */
  md_number_to_chars (p + 6, (valueT) 0, 2);
  md_number_to_chars (p + 6, (valueT) 0, 2);
 
 
  fix_new_exp (frag_now, p - frag_now->fr_literal+8, 8, &exp, 0, BFD_RELOC_64);
  fix_new_exp (frag_now, p - frag_now->fr_literal+8, 8, &exp, 0, BFD_RELOC_64);
 
 
  if (alpha_evax_proc.pdsckind == PDSC_S_K_KIND_NULL)
  if (alpha_evax_proc.pdsckind == PDSC_S_K_KIND_NULL)
    return;
    return;
 
 
  /* Add dummy fix to make add_to_link_pool work.  */
  /* Add dummy fix to make add_to_link_pool work.  */
  p = frag_more (8);
  p = frag_more (8);
  fixp = fix_new (frag_now, p - frag_now->fr_literal, 8, 0, 0, 0, 0);
  fixp = fix_new (frag_now, p - frag_now->fr_literal, 8, 0, 0, 0, 0);
  fixp->fx_done = 1;
  fixp->fx_done = 1;
  seginfo->literal_pool_size += 8;
  seginfo->literal_pool_size += 8;
 
 
  /* pdesc+16: Size.  */
  /* pdesc+16: Size.  */
  md_number_to_chars (p, (valueT) alpha_evax_proc.framesize, 4);
  md_number_to_chars (p, (valueT) alpha_evax_proc.framesize, 4);
 
 
  md_number_to_chars (p + 4, (valueT) 0, 2);
  md_number_to_chars (p + 4, (valueT) 0, 2);
 
 
  /* Entry length.  */
  /* Entry length.  */
  md_number_to_chars (p + 6, alpha_evax_proc.prologue, 2);
  md_number_to_chars (p + 6, alpha_evax_proc.prologue, 2);
 
 
  if (alpha_evax_proc.pdsckind == PDSC_S_K_KIND_FP_REGISTER)
  if (alpha_evax_proc.pdsckind == PDSC_S_K_KIND_FP_REGISTER)
    return;
    return;
 
 
  /* Add dummy fix to make add_to_link_pool work.  */
  /* Add dummy fix to make add_to_link_pool work.  */
  p = frag_more (8);
  p = frag_more (8);
  fixp = fix_new (frag_now, p - frag_now->fr_literal, 8, 0, 0, 0, 0);
  fixp = fix_new (frag_now, p - frag_now->fr_literal, 8, 0, 0, 0, 0);
  fixp->fx_done = 1;
  fixp->fx_done = 1;
  seginfo->literal_pool_size += 8;
  seginfo->literal_pool_size += 8;
 
 
  /* pdesc+24: register masks.  */
  /* pdesc+24: register masks.  */
 
 
  md_number_to_chars (p, alpha_evax_proc.imask, 4);
  md_number_to_chars (p, alpha_evax_proc.imask, 4);
  md_number_to_chars (p + 4, alpha_evax_proc.fmask, 4);
  md_number_to_chars (p + 4, alpha_evax_proc.fmask, 4);
}
}
 
 
/* Support for crash debug on vms.  */
/* Support for crash debug on vms.  */
 
 
static void
static void
s_alpha_name (int ignore ATTRIBUTE_UNUSED)
s_alpha_name (int ignore ATTRIBUTE_UNUSED)
{
{
  char *p;
  char *p;
  expressionS exp;
  expressionS exp;
  segment_info_type *seginfo = seg_info (alpha_link_section);
  segment_info_type *seginfo = seg_info (alpha_link_section);
 
 
  if (now_seg != alpha_link_section)
  if (now_seg != alpha_link_section)
    {
    {
      as_bad (_(".name directive not in link (.link) section"));
      as_bad (_(".name directive not in link (.link) section"));
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
      return;
      return;
    }
    }
 
 
  expression (&exp);
  expression (&exp);
  if (exp.X_op != O_symbol)
  if (exp.X_op != O_symbol)
    {
    {
      as_warn (_(".name directive has no symbol"));
      as_warn (_(".name directive has no symbol"));
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
      return;
      return;
    }
    }
 
 
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
 
 
#ifdef md_flush_pending_output
#ifdef md_flush_pending_output
  md_flush_pending_output ();
  md_flush_pending_output ();
#endif
#endif
 
 
  frag_align (3, 0, 0);
  frag_align (3, 0, 0);
  p = frag_more (8);
  p = frag_more (8);
  seginfo->literal_pool_size += 8;
  seginfo->literal_pool_size += 8;
 
 
  fix_new_exp (frag_now, p - frag_now->fr_literal, 8, &exp, 0, BFD_RELOC_64);
  fix_new_exp (frag_now, p - frag_now->fr_literal, 8, &exp, 0, BFD_RELOC_64);
}
}
 
 
static void
static void
s_alpha_linkage (int ignore ATTRIBUTE_UNUSED)
s_alpha_linkage (int ignore ATTRIBUTE_UNUSED)
{
{
  expressionS exp;
  expressionS exp;
  char *p;
  char *p;
 
 
#ifdef md_flush_pending_output
#ifdef md_flush_pending_output
  md_flush_pending_output ();
  md_flush_pending_output ();
#endif
#endif
 
 
  expression (&exp);
  expression (&exp);
  if (exp.X_op != O_symbol)
  if (exp.X_op != O_symbol)
    {
    {
      as_fatal (_("No symbol after .linkage"));
      as_fatal (_("No symbol after .linkage"));
    }
    }
  else
  else
    {
    {
      p = frag_more (LKP_S_K_SIZE);
      p = frag_more (LKP_S_K_SIZE);
      memset (p, 0, LKP_S_K_SIZE);
      memset (p, 0, LKP_S_K_SIZE);
      fix_new_exp (frag_now, p - frag_now->fr_literal, LKP_S_K_SIZE, &exp, 0,\
      fix_new_exp (frag_now, p - frag_now->fr_literal, LKP_S_K_SIZE, &exp, 0,\
                   BFD_RELOC_ALPHA_LINKAGE);
                   BFD_RELOC_ALPHA_LINKAGE);
    }
    }
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
static void
static void
s_alpha_code_address (int ignore ATTRIBUTE_UNUSED)
s_alpha_code_address (int ignore ATTRIBUTE_UNUSED)
{
{
  expressionS exp;
  expressionS exp;
  char *p;
  char *p;
 
 
#ifdef md_flush_pending_output
#ifdef md_flush_pending_output
  md_flush_pending_output ();
  md_flush_pending_output ();
#endif
#endif
 
 
  expression (&exp);
  expression (&exp);
  if (exp.X_op != O_symbol)
  if (exp.X_op != O_symbol)
    as_fatal (_("No symbol after .code_address"));
    as_fatal (_("No symbol after .code_address"));
  else
  else
    {
    {
      p = frag_more (8);
      p = frag_more (8);
      memset (p, 0, 8);
      memset (p, 0, 8);
      fix_new_exp (frag_now, p - frag_now->fr_literal, 8, &exp, 0,\
      fix_new_exp (frag_now, p - frag_now->fr_literal, 8, &exp, 0,\
                   BFD_RELOC_ALPHA_CODEADDR);
                   BFD_RELOC_ALPHA_CODEADDR);
    }
    }
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
static void
static void
s_alpha_fp_save (int ignore ATTRIBUTE_UNUSED)
s_alpha_fp_save (int ignore ATTRIBUTE_UNUSED)
{
{
 
 
  alpha_evax_proc.fp_save = tc_get_register (1);
  alpha_evax_proc.fp_save = tc_get_register (1);
 
 
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
static void
static void
s_alpha_mask (int ignore ATTRIBUTE_UNUSED)
s_alpha_mask (int ignore ATTRIBUTE_UNUSED)
{
{
  long val;
  long val;
 
 
  if (get_absolute_expression_and_terminator (&val) != ',')
  if (get_absolute_expression_and_terminator (&val) != ',')
    {
    {
      as_warn (_("Bad .mask directive"));
      as_warn (_("Bad .mask directive"));
      --input_line_pointer;
      --input_line_pointer;
    }
    }
  else
  else
    {
    {
      alpha_evax_proc.imask = val;
      alpha_evax_proc.imask = val;
      (void) get_absolute_expression ();
      (void) get_absolute_expression ();
    }
    }
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
static void
static void
s_alpha_fmask (int ignore ATTRIBUTE_UNUSED)
s_alpha_fmask (int ignore ATTRIBUTE_UNUSED)
{
{
  long val;
  long val;
 
 
  if (get_absolute_expression_and_terminator (&val) != ',')
  if (get_absolute_expression_and_terminator (&val) != ',')
    {
    {
      as_warn (_("Bad .fmask directive"));
      as_warn (_("Bad .fmask directive"));
      --input_line_pointer;
      --input_line_pointer;
    }
    }
  else
  else
    {
    {
      alpha_evax_proc.fmask = val;
      alpha_evax_proc.fmask = val;
      (void) get_absolute_expression ();
      (void) get_absolute_expression ();
    }
    }
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
static void
static void
s_alpha_end (int ignore ATTRIBUTE_UNUSED)
s_alpha_end (int ignore ATTRIBUTE_UNUSED)
{
{
  char c;
  char c;
 
 
  c = get_symbol_end ();
  c = get_symbol_end ();
  *input_line_pointer = c;
  *input_line_pointer = c;
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
  alpha_evax_proc.symbol = 0;
  alpha_evax_proc.symbol = 0;
}
}
 
 
static void
static void
s_alpha_file (int ignore ATTRIBUTE_UNUSED)
s_alpha_file (int ignore ATTRIBUTE_UNUSED)
{
{
  symbolS *s;
  symbolS *s;
  int length;
  int length;
  static char case_hack[32];
  static char case_hack[32];
 
 
  sprintf (case_hack, "<CASE:%01d%01d>",
  sprintf (case_hack, "<CASE:%01d%01d>",
           alpha_flag_hash_long_names, alpha_flag_show_after_trunc);
           alpha_flag_hash_long_names, alpha_flag_show_after_trunc);
 
 
  s = symbol_find_or_make (case_hack);
  s = symbol_find_or_make (case_hack);
  symbol_get_bfdsym (s)->flags |= BSF_FILE;
  symbol_get_bfdsym (s)->flags |= BSF_FILE;
 
 
  get_absolute_expression ();
  get_absolute_expression ();
  s = symbol_find_or_make (demand_copy_string (&length));
  s = symbol_find_or_make (demand_copy_string (&length));
  symbol_get_bfdsym (s)->flags |= BSF_FILE;
  symbol_get_bfdsym (s)->flags |= BSF_FILE;
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
#endif /* OBJ_EVAX  */
#endif /* OBJ_EVAX  */
 
 
/* Handle the .gprel32 pseudo op.  */
/* Handle the .gprel32 pseudo op.  */
 
 
static void
static void
s_alpha_gprel32 (int ignore ATTRIBUTE_UNUSED)
s_alpha_gprel32 (int ignore ATTRIBUTE_UNUSED)
{
{
  expressionS e;
  expressionS e;
  char *p;
  char *p;
 
 
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  expression (&e);
  expression (&e);
 
 
#ifdef OBJ_ELF
#ifdef OBJ_ELF
  switch (e.X_op)
  switch (e.X_op)
    {
    {
    case O_constant:
    case O_constant:
      e.X_add_symbol = section_symbol (absolute_section);
      e.X_add_symbol = section_symbol (absolute_section);
      e.X_op = O_symbol;
      e.X_op = O_symbol;
      /* FALLTHRU */
      /* FALLTHRU */
    case O_symbol:
    case O_symbol:
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
#else
#else
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
  switch (e.X_op)
  switch (e.X_op)
    {
    {
    case O_constant:
    case O_constant:
      e.X_add_symbol = section_symbol (absolute_section);
      e.X_add_symbol = section_symbol (absolute_section);
      /* fall through */
      /* fall through */
    case O_symbol:
    case O_symbol:
      e.X_op = O_subtract;
      e.X_op = O_subtract;
      e.X_op_symbol = alpha_gp_symbol;
      e.X_op_symbol = alpha_gp_symbol;
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
#endif
#endif
#endif
#endif
 
 
  if (alpha_auto_align_on && alpha_current_align < 2)
  if (alpha_auto_align_on && alpha_current_align < 2)
    alpha_align (2, (char *) NULL, alpha_insn_label, 0);
    alpha_align (2, (char *) NULL, alpha_insn_label, 0);
  if (alpha_current_align > 2)
  if (alpha_current_align > 2)
    alpha_current_align = 2;
    alpha_current_align = 2;
  alpha_insn_label = NULL;
  alpha_insn_label = NULL;
 
 
  p = frag_more (4);
  p = frag_more (4);
  memset (p, 0, 4);
  memset (p, 0, 4);
  fix_new_exp (frag_now, p - frag_now->fr_literal, 4,
  fix_new_exp (frag_now, p - frag_now->fr_literal, 4,
               &e, 0, BFD_RELOC_GPREL32);
               &e, 0, BFD_RELOC_GPREL32);
}
}
 
 
/* Handle floating point allocation pseudo-ops.  This is like the
/* Handle floating point allocation pseudo-ops.  This is like the
   generic vresion, but it makes sure the current label, if any, is
   generic vresion, but it makes sure the current label, if any, is
   correctly aligned.  */
   correctly aligned.  */
 
 
static void
static void
s_alpha_float_cons (int type)
s_alpha_float_cons (int type)
{
{
  int log_size;
  int log_size;
 
 
  switch (type)
  switch (type)
    {
    {
    default:
    default:
    case 'f':
    case 'f':
    case 'F':
    case 'F':
      log_size = 2;
      log_size = 2;
      break;
      break;
 
 
    case 'd':
    case 'd':
    case 'D':
    case 'D':
    case 'G':
    case 'G':
      log_size = 3;
      log_size = 3;
      break;
      break;
 
 
    case 'x':
    case 'x':
    case 'X':
    case 'X':
    case 'p':
    case 'p':
    case 'P':
    case 'P':
      log_size = 4;
      log_size = 4;
      break;
      break;
    }
    }
 
 
  if (alpha_auto_align_on && alpha_current_align < log_size)
  if (alpha_auto_align_on && alpha_current_align < log_size)
    alpha_align (log_size, (char *) NULL, alpha_insn_label, 0);
    alpha_align (log_size, (char *) NULL, alpha_insn_label, 0);
  if (alpha_current_align > log_size)
  if (alpha_current_align > log_size)
    alpha_current_align = log_size;
    alpha_current_align = log_size;
  alpha_insn_label = NULL;
  alpha_insn_label = NULL;
 
 
  float_cons (type);
  float_cons (type);
}
}
 
 
/* Handle the .proc pseudo op.  We don't really do much with it except
/* Handle the .proc pseudo op.  We don't really do much with it except
   parse it.  */
   parse it.  */
 
 
static void
static void
s_alpha_proc (int is_static ATTRIBUTE_UNUSED)
s_alpha_proc (int is_static ATTRIBUTE_UNUSED)
{
{
  char *name;
  char *name;
  char c;
  char c;
  char *p;
  char *p;
  symbolS *symbolP;
  symbolS *symbolP;
  int temp;
  int temp;
 
 
  /* Takes ".proc name,nargs".  */
  /* Takes ".proc name,nargs".  */
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  name = input_line_pointer;
  name = input_line_pointer;
  c = get_symbol_end ();
  c = get_symbol_end ();
  p = input_line_pointer;
  p = input_line_pointer;
  symbolP = symbol_find_or_make (name);
  symbolP = symbol_find_or_make (name);
  *p = c;
  *p = c;
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  if (*input_line_pointer != ',')
  if (*input_line_pointer != ',')
    {
    {
      *p = 0;
      *p = 0;
      as_warn (_("Expected comma after name \"%s\""), name);
      as_warn (_("Expected comma after name \"%s\""), name);
      *p = c;
      *p = c;
      temp = 0;
      temp = 0;
      ignore_rest_of_line ();
      ignore_rest_of_line ();
    }
    }
  else
  else
    {
    {
      input_line_pointer++;
      input_line_pointer++;
      temp = get_absolute_expression ();
      temp = get_absolute_expression ();
    }
    }
  /*  *symbol_get_obj (symbolP) = (signed char) temp; */
  /*  *symbol_get_obj (symbolP) = (signed char) temp; */
  as_warn (_("unhandled: .proc %s,%d"), name, temp);
  as_warn (_("unhandled: .proc %s,%d"), name, temp);
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
/* Handle the .set pseudo op.  This is used to turn on and off most of
/* Handle the .set pseudo op.  This is used to turn on and off most of
   the assembler features.  */
   the assembler features.  */
 
 
static void
static void
s_alpha_set (int x ATTRIBUTE_UNUSED)
s_alpha_set (int x ATTRIBUTE_UNUSED)
{
{
  char *name, ch, *s;
  char *name, ch, *s;
  int yesno = 1;
  int yesno = 1;
 
 
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  name = input_line_pointer;
  name = input_line_pointer;
  ch = get_symbol_end ();
  ch = get_symbol_end ();
 
 
  s = name;
  s = name;
  if (s[0] == 'n' && s[1] == 'o')
  if (s[0] == 'n' && s[1] == 'o')
    {
    {
      yesno = 0;
      yesno = 0;
      s += 2;
      s += 2;
    }
    }
  if (!strcmp ("reorder", s))
  if (!strcmp ("reorder", s))
    /* ignore */ ;
    /* ignore */ ;
  else if (!strcmp ("at", s))
  else if (!strcmp ("at", s))
    alpha_noat_on = !yesno;
    alpha_noat_on = !yesno;
  else if (!strcmp ("macro", s))
  else if (!strcmp ("macro", s))
    alpha_macros_on = yesno;
    alpha_macros_on = yesno;
  else if (!strcmp ("move", s))
  else if (!strcmp ("move", s))
    /* ignore */ ;
    /* ignore */ ;
  else if (!strcmp ("volatile", s))
  else if (!strcmp ("volatile", s))
    /* ignore */ ;
    /* ignore */ ;
  else
  else
    as_warn (_("Tried to .set unrecognized mode `%s'"), name);
    as_warn (_("Tried to .set unrecognized mode `%s'"), name);
 
 
  *input_line_pointer = ch;
  *input_line_pointer = ch;
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
/* Handle the .base pseudo op.  This changes the assembler's notion of
/* Handle the .base pseudo op.  This changes the assembler's notion of
   the $gp register.  */
   the $gp register.  */
 
 
static void
static void
s_alpha_base (int ignore ATTRIBUTE_UNUSED)
s_alpha_base (int ignore ATTRIBUTE_UNUSED)
{
{
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
 
 
  if (*input_line_pointer == '$')
  if (*input_line_pointer == '$')
    {
    {
      /* $rNN form.  */
      /* $rNN form.  */
      input_line_pointer++;
      input_line_pointer++;
      if (*input_line_pointer == 'r')
      if (*input_line_pointer == 'r')
        input_line_pointer++;
        input_line_pointer++;
    }
    }
 
 
  alpha_gp_register = get_absolute_expression ();
  alpha_gp_register = get_absolute_expression ();
  if (alpha_gp_register < 0 || alpha_gp_register > 31)
  if (alpha_gp_register < 0 || alpha_gp_register > 31)
    {
    {
      alpha_gp_register = AXP_REG_GP;
      alpha_gp_register = AXP_REG_GP;
      as_warn (_("Bad base register, using $%d."), alpha_gp_register);
      as_warn (_("Bad base register, using $%d."), alpha_gp_register);
    }
    }
 
 
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
/* Handle the .align pseudo-op.  This aligns to a power of two.  It
/* Handle the .align pseudo-op.  This aligns to a power of two.  It
   also adjusts any current instruction label.  We treat this the same
   also adjusts any current instruction label.  We treat this the same
   way the MIPS port does: .align 0 turns off auto alignment.  */
   way the MIPS port does: .align 0 turns off auto alignment.  */
 
 
static void
static void
s_alpha_align (int ignore ATTRIBUTE_UNUSED)
s_alpha_align (int ignore ATTRIBUTE_UNUSED)
{
{
  int align;
  int align;
  char fill, *pfill;
  char fill, *pfill;
  long max_alignment = 15;
  long max_alignment = 15;
 
 
  align = get_absolute_expression ();
  align = get_absolute_expression ();
  if (align > max_alignment)
  if (align > max_alignment)
    {
    {
      align = max_alignment;
      align = max_alignment;
      as_bad (_("Alignment too large: %d. assumed"), align);
      as_bad (_("Alignment too large: %d. assumed"), align);
    }
    }
  else if (align < 0)
  else if (align < 0)
    {
    {
      as_warn (_("Alignment negative: 0 assumed"));
      as_warn (_("Alignment negative: 0 assumed"));
      align = 0;
      align = 0;
    }
    }
 
 
  if (*input_line_pointer == ',')
  if (*input_line_pointer == ',')
    {
    {
      input_line_pointer++;
      input_line_pointer++;
      fill = get_absolute_expression ();
      fill = get_absolute_expression ();
      pfill = &fill;
      pfill = &fill;
    }
    }
  else
  else
    pfill = NULL;
    pfill = NULL;
 
 
  if (align != 0)
  if (align != 0)
    {
    {
      alpha_auto_align_on = 1;
      alpha_auto_align_on = 1;
      alpha_align (align, pfill, alpha_insn_label, 1);
      alpha_align (align, pfill, alpha_insn_label, 1);
    }
    }
  else
  else
    {
    {
      alpha_auto_align_on = 0;
      alpha_auto_align_on = 0;
    }
    }
 
 
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
/* Hook the normal string processor to reset known alignment.  */
/* Hook the normal string processor to reset known alignment.  */
 
 
static void
static void
s_alpha_stringer (int terminate)
s_alpha_stringer (int terminate)
{
{
  alpha_current_align = 0;
  alpha_current_align = 0;
  alpha_insn_label = NULL;
  alpha_insn_label = NULL;
  stringer (8 + terminate);
  stringer (8 + terminate);
}
}
 
 
/* Hook the normal space processing to reset known alignment.  */
/* Hook the normal space processing to reset known alignment.  */
 
 
static void
static void
s_alpha_space (int ignore)
s_alpha_space (int ignore)
{
{
  alpha_current_align = 0;
  alpha_current_align = 0;
  alpha_insn_label = NULL;
  alpha_insn_label = NULL;
  s_space (ignore);
  s_space (ignore);
}
}
 
 
/* Hook into cons for auto-alignment.  */
/* Hook into cons for auto-alignment.  */
 
 
void
void
alpha_cons_align (int size)
alpha_cons_align (int size)
{
{
  int log_size;
  int log_size;
 
 
  log_size = 0;
  log_size = 0;
  while ((size >>= 1) != 0)
  while ((size >>= 1) != 0)
    ++log_size;
    ++log_size;
 
 
  if (alpha_auto_align_on && alpha_current_align < log_size)
  if (alpha_auto_align_on && alpha_current_align < log_size)
    alpha_align (log_size, (char *) NULL, alpha_insn_label, 0);
    alpha_align (log_size, (char *) NULL, alpha_insn_label, 0);
  if (alpha_current_align > log_size)
  if (alpha_current_align > log_size)
    alpha_current_align = log_size;
    alpha_current_align = log_size;
  alpha_insn_label = NULL;
  alpha_insn_label = NULL;
}
}
 
 
/* Here come the .uword, .ulong, and .uquad explicitly unaligned
/* Here come the .uword, .ulong, and .uquad explicitly unaligned
   pseudos.  We just turn off auto-alignment and call down to cons.  */
   pseudos.  We just turn off auto-alignment and call down to cons.  */
 
 
static void
static void
s_alpha_ucons (int bytes)
s_alpha_ucons (int bytes)
{
{
  int hold = alpha_auto_align_on;
  int hold = alpha_auto_align_on;
  alpha_auto_align_on = 0;
  alpha_auto_align_on = 0;
  cons (bytes);
  cons (bytes);
  alpha_auto_align_on = hold;
  alpha_auto_align_on = hold;
}
}
 
 
/* Switch the working cpu type.  */
/* Switch the working cpu type.  */
 
 
static void
static void
s_alpha_arch (int ignored ATTRIBUTE_UNUSED)
s_alpha_arch (int ignored ATTRIBUTE_UNUSED)
{
{
  char *name, ch;
  char *name, ch;
  const struct cpu_type *p;
  const struct cpu_type *p;
 
 
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  name = input_line_pointer;
  name = input_line_pointer;
  ch = get_symbol_end ();
  ch = get_symbol_end ();
 
 
  for (p = cpu_types; p->name; ++p)
  for (p = cpu_types; p->name; ++p)
    if (strcmp (name, p->name) == 0)
    if (strcmp (name, p->name) == 0)
      {
      {
        alpha_target_name = p->name, alpha_target = p->flags;
        alpha_target_name = p->name, alpha_target = p->flags;
        goto found;
        goto found;
      }
      }
  as_warn ("Unknown CPU identifier `%s'", name);
  as_warn ("Unknown CPU identifier `%s'", name);
 
 
found:
found:
  *input_line_pointer = ch;
  *input_line_pointer = ch;
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}


#ifdef DEBUG1
#ifdef DEBUG1
/* print token expression with alpha specific extension.  */
/* print token expression with alpha specific extension.  */
 
 
static void
static void
alpha_print_token (FILE *f, const expressionS *exp)
alpha_print_token (FILE *f, const expressionS *exp)
{
{
  switch (exp->X_op)
  switch (exp->X_op)
    {
    {
    case O_cpregister:
    case O_cpregister:
      putc (',', f);
      putc (',', f);
      /* FALLTHRU */
      /* FALLTHRU */
    case O_pregister:
    case O_pregister:
      putc ('(', f);
      putc ('(', f);
      {
      {
        expressionS nexp = *exp;
        expressionS nexp = *exp;
        nexp.X_op = O_register;
        nexp.X_op = O_register;
        print_expr (f, &nexp);
        print_expr (f, &nexp);
      }
      }
      putc (')', f);
      putc (')', f);
      break;
      break;
    default:
    default:
      print_expr (f, exp);
      print_expr (f, exp);
      break;
      break;
    }
    }
}
}
#endif
#endif


/* The target specific pseudo-ops which we support.  */
/* The target specific pseudo-ops which we support.  */
 
 
const pseudo_typeS md_pseudo_table[] =
const pseudo_typeS md_pseudo_table[] =
{
{
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
  {"comm", s_alpha_comm, 0},     /* OSF1 compiler does this.  */
  {"comm", s_alpha_comm, 0},     /* OSF1 compiler does this.  */
  {"rdata", s_alpha_rdata, 0},
  {"rdata", s_alpha_rdata, 0},
#endif
#endif
  {"text", s_alpha_text, 0},
  {"text", s_alpha_text, 0},
  {"data", s_alpha_data, 0},
  {"data", s_alpha_data, 0},
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
  {"sdata", s_alpha_sdata, 0},
  {"sdata", s_alpha_sdata, 0},
#endif
#endif
#ifdef OBJ_ELF
#ifdef OBJ_ELF
  {"section", s_alpha_section, 0},
  {"section", s_alpha_section, 0},
  {"section.s", s_alpha_section, 0},
  {"section.s", s_alpha_section, 0},
  {"sect", s_alpha_section, 0},
  {"sect", s_alpha_section, 0},
  {"sect.s", s_alpha_section, 0},
  {"sect.s", s_alpha_section, 0},
#endif
#endif
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
  { "pdesc", s_alpha_pdesc, 0},
  { "pdesc", s_alpha_pdesc, 0},
  { "name", s_alpha_name, 0},
  { "name", s_alpha_name, 0},
  { "linkage", s_alpha_linkage, 0},
  { "linkage", s_alpha_linkage, 0},
  { "code_address", s_alpha_code_address, 0},
  { "code_address", s_alpha_code_address, 0},
  { "ent", s_alpha_ent, 0},
  { "ent", s_alpha_ent, 0},
  { "frame", s_alpha_frame, 0},
  { "frame", s_alpha_frame, 0},
  { "fp_save", s_alpha_fp_save, 0},
  { "fp_save", s_alpha_fp_save, 0},
  { "mask", s_alpha_mask, 0},
  { "mask", s_alpha_mask, 0},
  { "fmask", s_alpha_fmask, 0},
  { "fmask", s_alpha_fmask, 0},
  { "end", s_alpha_end, 0},
  { "end", s_alpha_end, 0},
  { "file", s_alpha_file, 0},
  { "file", s_alpha_file, 0},
  { "rdata", s_alpha_section, 1},
  { "rdata", s_alpha_section, 1},
  { "comm", s_alpha_comm, 0},
  { "comm", s_alpha_comm, 0},
  { "link", s_alpha_section, 3},
  { "link", s_alpha_section, 3},
  { "ctors", s_alpha_section, 4},
  { "ctors", s_alpha_section, 4},
  { "dtors", s_alpha_section, 5},
  { "dtors", s_alpha_section, 5},
#endif
#endif
#ifdef OBJ_ELF
#ifdef OBJ_ELF
  /* Frame related pseudos.  */
  /* Frame related pseudos.  */
  {"ent", s_alpha_ent, 0},
  {"ent", s_alpha_ent, 0},
  {"end", s_alpha_end, 0},
  {"end", s_alpha_end, 0},
  {"mask", s_alpha_mask, 0},
  {"mask", s_alpha_mask, 0},
  {"fmask", s_alpha_mask, 1},
  {"fmask", s_alpha_mask, 1},
  {"frame", s_alpha_frame, 0},
  {"frame", s_alpha_frame, 0},
  {"prologue", s_alpha_prologue, 0},
  {"prologue", s_alpha_prologue, 0},
  {"file", s_alpha_file, 5},
  {"file", s_alpha_file, 5},
  {"loc", s_alpha_loc, 9},
  {"loc", s_alpha_loc, 9},
  {"stabs", s_alpha_stab, 's'},
  {"stabs", s_alpha_stab, 's'},
  {"stabn", s_alpha_stab, 'n'},
  {"stabn", s_alpha_stab, 'n'},
  {"usepv", s_alpha_usepv, 0},
  {"usepv", s_alpha_usepv, 0},
  /* COFF debugging related pseudos.  */
  /* COFF debugging related pseudos.  */
  {"begin", s_alpha_coff_wrapper, 0},
  {"begin", s_alpha_coff_wrapper, 0},
  {"bend", s_alpha_coff_wrapper, 1},
  {"bend", s_alpha_coff_wrapper, 1},
  {"def", s_alpha_coff_wrapper, 2},
  {"def", s_alpha_coff_wrapper, 2},
  {"dim", s_alpha_coff_wrapper, 3},
  {"dim", s_alpha_coff_wrapper, 3},
  {"endef", s_alpha_coff_wrapper, 4},
  {"endef", s_alpha_coff_wrapper, 4},
  {"scl", s_alpha_coff_wrapper, 5},
  {"scl", s_alpha_coff_wrapper, 5},
  {"tag", s_alpha_coff_wrapper, 6},
  {"tag", s_alpha_coff_wrapper, 6},
  {"val", s_alpha_coff_wrapper, 7},
  {"val", s_alpha_coff_wrapper, 7},
#else
#else
  {"prologue", s_ignore, 0},
  {"prologue", s_ignore, 0},
#endif
#endif
  {"gprel32", s_alpha_gprel32, 0},
  {"gprel32", s_alpha_gprel32, 0},
  {"t_floating", s_alpha_float_cons, 'd'},
  {"t_floating", s_alpha_float_cons, 'd'},
  {"s_floating", s_alpha_float_cons, 'f'},
  {"s_floating", s_alpha_float_cons, 'f'},
  {"f_floating", s_alpha_float_cons, 'F'},
  {"f_floating", s_alpha_float_cons, 'F'},
  {"g_floating", s_alpha_float_cons, 'G'},
  {"g_floating", s_alpha_float_cons, 'G'},
  {"d_floating", s_alpha_float_cons, 'D'},
  {"d_floating", s_alpha_float_cons, 'D'},
 
 
  {"proc", s_alpha_proc, 0},
  {"proc", s_alpha_proc, 0},
  {"aproc", s_alpha_proc, 1},
  {"aproc", s_alpha_proc, 1},
  {"set", s_alpha_set, 0},
  {"set", s_alpha_set, 0},
  {"reguse", s_ignore, 0},
  {"reguse", s_ignore, 0},
  {"livereg", s_ignore, 0},
  {"livereg", s_ignore, 0},
  {"base", s_alpha_base, 0},             /*??*/
  {"base", s_alpha_base, 0},             /*??*/
  {"option", s_ignore, 0},
  {"option", s_ignore, 0},
  {"aent", s_ignore, 0},
  {"aent", s_ignore, 0},
  {"ugen", s_ignore, 0},
  {"ugen", s_ignore, 0},
  {"eflag", s_ignore, 0},
  {"eflag", s_ignore, 0},
 
 
  {"align", s_alpha_align, 0},
  {"align", s_alpha_align, 0},
  {"double", s_alpha_float_cons, 'd'},
  {"double", s_alpha_float_cons, 'd'},
  {"float", s_alpha_float_cons, 'f'},
  {"float", s_alpha_float_cons, 'f'},
  {"single", s_alpha_float_cons, 'f'},
  {"single", s_alpha_float_cons, 'f'},
  {"ascii", s_alpha_stringer, 0},
  {"ascii", s_alpha_stringer, 0},
  {"asciz", s_alpha_stringer, 1},
  {"asciz", s_alpha_stringer, 1},
  {"string", s_alpha_stringer, 1},
  {"string", s_alpha_stringer, 1},
  {"space", s_alpha_space, 0},
  {"space", s_alpha_space, 0},
  {"skip", s_alpha_space, 0},
  {"skip", s_alpha_space, 0},
  {"zero", s_alpha_space, 0},
  {"zero", s_alpha_space, 0},
 
 
/* Unaligned data pseudos.  */
/* Unaligned data pseudos.  */
  {"uword", s_alpha_ucons, 2},
  {"uword", s_alpha_ucons, 2},
  {"ulong", s_alpha_ucons, 4},
  {"ulong", s_alpha_ucons, 4},
  {"uquad", s_alpha_ucons, 8},
  {"uquad", s_alpha_ucons, 8},
 
 
#ifdef OBJ_ELF
#ifdef OBJ_ELF
/* Dwarf wants these versions of unaligned.  */
/* Dwarf wants these versions of unaligned.  */
  {"2byte", s_alpha_ucons, 2},
  {"2byte", s_alpha_ucons, 2},
  {"4byte", s_alpha_ucons, 4},
  {"4byte", s_alpha_ucons, 4},
  {"8byte", s_alpha_ucons, 8},
  {"8byte", s_alpha_ucons, 8},
#endif
#endif
 
 
/* We don't do any optimizing, so we can safely ignore these.  */
/* We don't do any optimizing, so we can safely ignore these.  */
  {"noalias", s_ignore, 0},
  {"noalias", s_ignore, 0},
  {"alias", s_ignore, 0},
  {"alias", s_ignore, 0},
 
 
  {"arch", s_alpha_arch, 0},
  {"arch", s_alpha_arch, 0},
 
 
  {NULL, 0, 0},
  {NULL, 0, 0},
};
};


#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
 
 
/* @@@ GP selection voodoo.  All of this seems overly complicated and
/* @@@ GP selection voodoo.  All of this seems overly complicated and
   unnecessary; which is the primary reason it's for ECOFF only.  */
   unnecessary; which is the primary reason it's for ECOFF only.  */
static inline void maybe_set_gp PARAMS ((asection *));
static inline void maybe_set_gp PARAMS ((asection *));
 
 
static inline void
static inline void
maybe_set_gp (asection *sec)
maybe_set_gp (asection *sec)
{
{
  bfd_vma vma;
  bfd_vma vma;
 
 
  if (!sec)
  if (!sec)
    return;
    return;
  vma = bfd_get_section_vma (foo, sec);
  vma = bfd_get_section_vma (foo, sec);
  if (vma && vma < alpha_gp_value)
  if (vma && vma < alpha_gp_value)
    alpha_gp_value = vma;
    alpha_gp_value = vma;
}
}
 
 
static void
static void
select_gp_value (void)
select_gp_value (void)
{
{
  assert (alpha_gp_value == 0);
  assert (alpha_gp_value == 0);
 
 
  /* Get minus-one in whatever width...  */
  /* Get minus-one in whatever width...  */
  alpha_gp_value = 0;
  alpha_gp_value = 0;
  alpha_gp_value--;
  alpha_gp_value--;
 
 
  /* Select the smallest VMA of these existing sections.  */
  /* Select the smallest VMA of these existing sections.  */
  maybe_set_gp (alpha_lita_section);
  maybe_set_gp (alpha_lita_section);
 
 
/* @@ Will a simple 0x8000 work here?  If not, why not?  */
/* @@ Will a simple 0x8000 work here?  If not, why not?  */
#define GP_ADJUSTMENT   (0x8000 - 0x10)
#define GP_ADJUSTMENT   (0x8000 - 0x10)
 
 
  alpha_gp_value += GP_ADJUSTMENT;
  alpha_gp_value += GP_ADJUSTMENT;
 
 
  S_SET_VALUE (alpha_gp_symbol, alpha_gp_value);
  S_SET_VALUE (alpha_gp_symbol, alpha_gp_value);
 
 
#ifdef DEBUG1
#ifdef DEBUG1
  printf (_("Chose GP value of %lx\n"), alpha_gp_value);
  printf (_("Chose GP value of %lx\n"), alpha_gp_value);
#endif
#endif
}
}
#endif /* OBJ_ECOFF */
#endif /* OBJ_ECOFF */
 
 
#ifdef OBJ_ELF
#ifdef OBJ_ELF
/* Map 's' to SHF_ALPHA_GPREL.  */
/* Map 's' to SHF_ALPHA_GPREL.  */
 
 
int
int
alpha_elf_section_letter (int letter, char **ptr_msg)
alpha_elf_section_letter (int letter, char **ptr_msg)
{
{
  if (letter == 's')
  if (letter == 's')
    return SHF_ALPHA_GPREL;
    return SHF_ALPHA_GPREL;
 
 
  *ptr_msg = _("Bad .section directive: want a,s,w,x,M,S,G,T in string");
  *ptr_msg = _("Bad .section directive: want a,s,w,x,M,S,G,T in string");
  return -1;
  return -1;
}
}
 
 
/* Map SHF_ALPHA_GPREL to SEC_SMALL_DATA.  */
/* Map SHF_ALPHA_GPREL to SEC_SMALL_DATA.  */
 
 
flagword
flagword
alpha_elf_section_flags (flagword flags, int attr, int type ATTRIBUTE_UNUSED)
alpha_elf_section_flags (flagword flags, int attr, int type ATTRIBUTE_UNUSED)
{
{
  if (attr & SHF_ALPHA_GPREL)
  if (attr & SHF_ALPHA_GPREL)
    flags |= SEC_SMALL_DATA;
    flags |= SEC_SMALL_DATA;
  return flags;
  return flags;
}
}
#endif /* OBJ_ELF */
#endif /* OBJ_ELF */
 
 
/* This is called from HANDLE_ALIGN in write.c.  Fill in the contents
/* This is called from HANDLE_ALIGN in write.c.  Fill in the contents
   of an rs_align_code fragment.  */
   of an rs_align_code fragment.  */
 
 
void
void
alpha_handle_align (fragS *fragp)
alpha_handle_align (fragS *fragp)
{
{
  static char const unop[4] = { 0x00, 0x00, 0xfe, 0x2f };
  static char const unop[4] = { 0x00, 0x00, 0xfe, 0x2f };
  static char const nopunop[8] =
  static char const nopunop[8] =
  {
  {
    0x1f, 0x04, 0xff, 0x47,
    0x1f, 0x04, 0xff, 0x47,
    0x00, 0x00, 0xfe, 0x2f
    0x00, 0x00, 0xfe, 0x2f
  };
  };
 
 
  int bytes, fix;
  int bytes, fix;
  char *p;
  char *p;
 
 
  if (fragp->fr_type != rs_align_code)
  if (fragp->fr_type != rs_align_code)
    return;
    return;
 
 
  bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
  bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
  p = fragp->fr_literal + fragp->fr_fix;
  p = fragp->fr_literal + fragp->fr_fix;
  fix = 0;
  fix = 0;
 
 
  if (bytes & 3)
  if (bytes & 3)
    {
    {
      fix = bytes & 3;
      fix = bytes & 3;
      memset (p, 0, fix);
      memset (p, 0, fix);
      p += fix;
      p += fix;
      bytes -= fix;
      bytes -= fix;
    }
    }
 
 
  if (bytes & 4)
  if (bytes & 4)
    {
    {
      memcpy (p, unop, 4);
      memcpy (p, unop, 4);
      p += 4;
      p += 4;
      bytes -= 4;
      bytes -= 4;
      fix += 4;
      fix += 4;
    }
    }
 
 
  memcpy (p, nopunop, 8);
  memcpy (p, nopunop, 8);
 
 
  fragp->fr_fix += fix;
  fragp->fr_fix += fix;
  fragp->fr_var = 8;
  fragp->fr_var = 8;
}
}


/* Public interface functions.  */
/* Public interface functions.  */
 
 
/* This function is called once, at assembler startup time.  It sets
/* This function is called once, at assembler startup time.  It sets
   up all the tables, etc. that the MD part of the assembler will
   up all the tables, etc. that the MD part of the assembler will
   need, that can be determined before arguments are parsed.  */
   need, that can be determined before arguments are parsed.  */
 
 
void
void
md_begin (void)
md_begin (void)
{
{
  unsigned int i;
  unsigned int i;
 
 
  /* Verify that X_op field is wide enough.  */
  /* Verify that X_op field is wide enough.  */
  {
  {
    expressionS e;
    expressionS e;
 
 
    e.X_op = O_max;
    e.X_op = O_max;
    assert (e.X_op == O_max);
    assert (e.X_op == O_max);
  }
  }
 
 
  /* Create the opcode hash table.  */
  /* Create the opcode hash table.  */
  alpha_opcode_hash = hash_new ();
  alpha_opcode_hash = hash_new ();
 
 
  for (i = 0; i < alpha_num_opcodes;)
  for (i = 0; i < alpha_num_opcodes;)
    {
    {
      const char *name, *retval, *slash;
      const char *name, *retval, *slash;
 
 
      name = alpha_opcodes[i].name;
      name = alpha_opcodes[i].name;
      retval = hash_insert (alpha_opcode_hash, name, (void *) &alpha_opcodes[i]);
      retval = hash_insert (alpha_opcode_hash, name, (void *) &alpha_opcodes[i]);
      if (retval)
      if (retval)
        as_fatal (_("internal error: can't hash opcode `%s': %s"),
        as_fatal (_("internal error: can't hash opcode `%s': %s"),
                  name, retval);
                  name, retval);
 
 
      /* Some opcodes include modifiers of various sorts with a "/mod"
      /* Some opcodes include modifiers of various sorts with a "/mod"
         syntax, like the architecture manual suggests.  However, for
         syntax, like the architecture manual suggests.  However, for
         use with gcc at least, we also need access to those same opcodes
         use with gcc at least, we also need access to those same opcodes
         without the "/".  */
         without the "/".  */
 
 
      if ((slash = strchr (name, '/')) != NULL)
      if ((slash = strchr (name, '/')) != NULL)
        {
        {
          char *p = xmalloc (strlen (name));
          char *p = xmalloc (strlen (name));
 
 
          memcpy (p, name, slash - name);
          memcpy (p, name, slash - name);
          strcpy (p + (slash - name), slash + 1);
          strcpy (p + (slash - name), slash + 1);
 
 
          (void) hash_insert (alpha_opcode_hash, p, (void *) &alpha_opcodes[i]);
          (void) hash_insert (alpha_opcode_hash, p, (void *) &alpha_opcodes[i]);
          /* Ignore failures -- the opcode table does duplicate some
          /* Ignore failures -- the opcode table does duplicate some
             variants in different forms, like "hw_stq" and "hw_st/q".  */
             variants in different forms, like "hw_stq" and "hw_st/q".  */
        }
        }
 
 
      while (++i < alpha_num_opcodes
      while (++i < alpha_num_opcodes
             && (alpha_opcodes[i].name == name
             && (alpha_opcodes[i].name == name
                 || !strcmp (alpha_opcodes[i].name, name)))
                 || !strcmp (alpha_opcodes[i].name, name)))
        continue;
        continue;
    }
    }
 
 
  /* Create the macro hash table.  */
  /* Create the macro hash table.  */
  alpha_macro_hash = hash_new ();
  alpha_macro_hash = hash_new ();
 
 
  for (i = 0; i < alpha_num_macros;)
  for (i = 0; i < alpha_num_macros;)
    {
    {
      const char *name, *retval;
      const char *name, *retval;
 
 
      name = alpha_macros[i].name;
      name = alpha_macros[i].name;
      retval = hash_insert (alpha_macro_hash, name, (void *) &alpha_macros[i]);
      retval = hash_insert (alpha_macro_hash, name, (void *) &alpha_macros[i]);
      if (retval)
      if (retval)
        as_fatal (_("internal error: can't hash macro `%s': %s"),
        as_fatal (_("internal error: can't hash macro `%s': %s"),
                  name, retval);
                  name, retval);
 
 
      while (++i < alpha_num_macros
      while (++i < alpha_num_macros
             && (alpha_macros[i].name == name
             && (alpha_macros[i].name == name
                 || !strcmp (alpha_macros[i].name, name)))
                 || !strcmp (alpha_macros[i].name, name)))
        continue;
        continue;
    }
    }
 
 
  /* Construct symbols for each of the registers.  */
  /* Construct symbols for each of the registers.  */
  for (i = 0; i < 32; ++i)
  for (i = 0; i < 32; ++i)
    {
    {
      char name[4];
      char name[4];
 
 
      sprintf (name, "$%d", i);
      sprintf (name, "$%d", i);
      alpha_register_table[i] = symbol_create (name, reg_section, i,
      alpha_register_table[i] = symbol_create (name, reg_section, i,
                                               &zero_address_frag);
                                               &zero_address_frag);
    }
    }
 
 
  for (; i < 64; ++i)
  for (; i < 64; ++i)
    {
    {
      char name[5];
      char name[5];
 
 
      sprintf (name, "$f%d", i - 32);
      sprintf (name, "$f%d", i - 32);
      alpha_register_table[i] = symbol_create (name, reg_section, i,
      alpha_register_table[i] = symbol_create (name, reg_section, i,
                                               &zero_address_frag);
                                               &zero_address_frag);
    }
    }
 
 
  /* Create the special symbols and sections we'll be using.  */
  /* Create the special symbols and sections we'll be using.  */
 
 
  /* So .sbss will get used for tiny objects.  */
  /* So .sbss will get used for tiny objects.  */
  bfd_set_gp_size (stdoutput, g_switch_value);
  bfd_set_gp_size (stdoutput, g_switch_value);
 
 
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
  create_literal_section (".lita", &alpha_lita_section, &alpha_lita_symbol);
  create_literal_section (".lita", &alpha_lita_section, &alpha_lita_symbol);
 
 
  /* For handling the GP, create a symbol that won't be output in the
  /* For handling the GP, create a symbol that won't be output in the
     symbol table.  We'll edit it out of relocs later.  */
     symbol table.  We'll edit it out of relocs later.  */
  alpha_gp_symbol = symbol_create ("<GP value>", alpha_lita_section, 0x8000,
  alpha_gp_symbol = symbol_create ("<GP value>", alpha_lita_section, 0x8000,
                                   &zero_address_frag);
                                   &zero_address_frag);
#endif
#endif
 
 
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
  create_literal_section (".link", &alpha_link_section, &alpha_link_symbol);
  create_literal_section (".link", &alpha_link_section, &alpha_link_symbol);
#endif
#endif
 
 
#ifdef OBJ_ELF
#ifdef OBJ_ELF
  if (ECOFF_DEBUGGING)
  if (ECOFF_DEBUGGING)
    {
    {
      segT sec = subseg_new (".mdebug", (subsegT) 0);
      segT sec = subseg_new (".mdebug", (subsegT) 0);
      bfd_set_section_flags (stdoutput, sec, SEC_HAS_CONTENTS | SEC_READONLY);
      bfd_set_section_flags (stdoutput, sec, SEC_HAS_CONTENTS | SEC_READONLY);
      bfd_set_section_alignment (stdoutput, sec, 3);
      bfd_set_section_alignment (stdoutput, sec, 3);
    }
    }
#endif
#endif
 
 
  /* Create literal lookup hash table.  */
  /* Create literal lookup hash table.  */
  alpha_literal_hash = hash_new ();
  alpha_literal_hash = hash_new ();
 
 
  subseg_set (text_section, 0);
  subseg_set (text_section, 0);
}
}
 
 
/* The public interface to the instruction assembler.  */
/* The public interface to the instruction assembler.  */
 
 
void
void
md_assemble (char *str)
md_assemble (char *str)
{
{
  /* Current maximum is 13.  */
  /* Current maximum is 13.  */
  char opname[32];
  char opname[32];
  expressionS tok[MAX_INSN_ARGS];
  expressionS tok[MAX_INSN_ARGS];
  int ntok, trunclen;
  int ntok, trunclen;
  size_t opnamelen;
  size_t opnamelen;
 
 
  /* Split off the opcode.  */
  /* Split off the opcode.  */
  opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/46819");
  opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/46819");
  trunclen = (opnamelen < sizeof (opname) - 1
  trunclen = (opnamelen < sizeof (opname) - 1
              ? opnamelen
              ? opnamelen
              : sizeof (opname) - 1);
              : sizeof (opname) - 1);
  memcpy (opname, str, trunclen);
  memcpy (opname, str, trunclen);
  opname[trunclen] = '\0';
  opname[trunclen] = '\0';
 
 
  /* Tokenize the rest of the line.  */
  /* Tokenize the rest of the line.  */
  if ((ntok = tokenize_arguments (str + opnamelen, tok, MAX_INSN_ARGS)) < 0)
  if ((ntok = tokenize_arguments (str + opnamelen, tok, MAX_INSN_ARGS)) < 0)
    {
    {
      if (ntok != TOKENIZE_ERROR_REPORT)
      if (ntok != TOKENIZE_ERROR_REPORT)
        as_bad (_("syntax error"));
        as_bad (_("syntax error"));
 
 
      return;
      return;
    }
    }
 
 
  /* Finish it off.  */
  /* Finish it off.  */
  assemble_tokens (opname, tok, ntok, alpha_macros_on);
  assemble_tokens (opname, tok, ntok, alpha_macros_on);
}
}
 
 
/* Round up a section's size to the appropriate boundary.  */
/* Round up a section's size to the appropriate boundary.  */
 
 
valueT
valueT
md_section_align (segT seg, valueT size)
md_section_align (segT seg, valueT size)
{
{
  int align = bfd_get_section_alignment (stdoutput, seg);
  int align = bfd_get_section_alignment (stdoutput, seg);
  valueT mask = ((valueT) 1 << align) - 1;
  valueT mask = ((valueT) 1 << align) - 1;
 
 
  return (size + mask) & ~mask;
  return (size + mask) & ~mask;
}
}
 
 
/* Turn a string in input_line_pointer into a floating point constant
/* Turn a string in input_line_pointer into a floating point constant
   of type TYPE, and store the appropriate bytes in *LITP.  The number
   of type TYPE, and store the appropriate bytes in *LITP.  The number
   of LITTLENUMS emitted is stored in *SIZEP.  An error message is
   of LITTLENUMS emitted is stored in *SIZEP.  An error message is
   returned, or NULL on OK.  */
   returned, or NULL on OK.  */
 
 
char *
char *
md_atof (int type, char *litP, int *sizeP)
md_atof (int type, char *litP, int *sizeP)
{
{
  extern char *vax_md_atof (int, char *, int *);
  extern char *vax_md_atof (int, char *, int *);
 
 
  switch (type)
  switch (type)
    {
    {
      /* VAX floats.  */
      /* VAX floats.  */
    case 'G':
    case 'G':
      /* vax_md_atof() doesn't like "G" for some reason.  */
      /* vax_md_atof() doesn't like "G" for some reason.  */
      type = 'g';
      type = 'g';
    case 'F':
    case 'F':
    case 'D':
    case 'D':
      return vax_md_atof (type, litP, sizeP);
      return vax_md_atof (type, litP, sizeP);
 
 
    default:
    default:
      return ieee_md_atof (type, litP, sizeP, FALSE);
      return ieee_md_atof (type, litP, sizeP, FALSE);
    }
    }
}
}
 
 
/* Take care of the target-specific command-line options.  */
/* Take care of the target-specific command-line options.  */
 
 
int
int
md_parse_option (int c, char *arg)
md_parse_option (int c, char *arg)
{
{
  switch (c)
  switch (c)
    {
    {
    case 'F':
    case 'F':
      alpha_nofloats_on = 1;
      alpha_nofloats_on = 1;
      break;
      break;
 
 
    case OPTION_32ADDR:
    case OPTION_32ADDR:
      alpha_addr32_on = 1;
      alpha_addr32_on = 1;
      break;
      break;
 
 
    case 'g':
    case 'g':
      alpha_debug = 1;
      alpha_debug = 1;
      break;
      break;
 
 
    case 'G':
    case 'G':
      g_switch_value = atoi (arg);
      g_switch_value = atoi (arg);
      break;
      break;
 
 
    case 'm':
    case 'm':
      {
      {
        const struct cpu_type *p;
        const struct cpu_type *p;
 
 
        for (p = cpu_types; p->name; ++p)
        for (p = cpu_types; p->name; ++p)
          if (strcmp (arg, p->name) == 0)
          if (strcmp (arg, p->name) == 0)
            {
            {
              alpha_target_name = p->name, alpha_target = p->flags;
              alpha_target_name = p->name, alpha_target = p->flags;
              goto found;
              goto found;
            }
            }
        as_warn (_("Unknown CPU identifier `%s'"), arg);
        as_warn (_("Unknown CPU identifier `%s'"), arg);
      found:;
      found:;
      }
      }
      break;
      break;
 
 
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
    case '+':                   /* For g++.  Hash any name > 63 chars long.  */
    case '+':                   /* For g++.  Hash any name > 63 chars long.  */
      alpha_flag_hash_long_names = 1;
      alpha_flag_hash_long_names = 1;
      break;
      break;
 
 
    case 'H':                   /* Show new symbol after hash truncation.  */
    case 'H':                   /* Show new symbol after hash truncation.  */
      alpha_flag_show_after_trunc = 1;
      alpha_flag_show_after_trunc = 1;
      break;
      break;
 
 
    case 'h':                   /* For gnu-c/vax compatibility.  */
    case 'h':                   /* For gnu-c/vax compatibility.  */
      break;
      break;
#endif
#endif
 
 
    case OPTION_RELAX:
    case OPTION_RELAX:
      alpha_flag_relax = 1;
      alpha_flag_relax = 1;
      break;
      break;
 
 
#ifdef OBJ_ELF
#ifdef OBJ_ELF
    case OPTION_MDEBUG:
    case OPTION_MDEBUG:
      alpha_flag_mdebug = 1;
      alpha_flag_mdebug = 1;
      break;
      break;
    case OPTION_NO_MDEBUG:
    case OPTION_NO_MDEBUG:
      alpha_flag_mdebug = 0;
      alpha_flag_mdebug = 0;
      break;
      break;
#endif
#endif
 
 
    default:
    default:
      return 0;
      return 0;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Print a description of the command-line options that we accept.  */
/* Print a description of the command-line options that we accept.  */
 
 
void
void
md_show_usage (FILE *stream)
md_show_usage (FILE *stream)
{
{
  fputs (_("\
  fputs (_("\
Alpha options:\n\
Alpha options:\n\
-32addr                 treat addresses as 32-bit values\n\
-32addr                 treat addresses as 32-bit values\n\
-F                      lack floating point instructions support\n\
-F                      lack floating point instructions support\n\
-mev4 | -mev45 | -mev5 | -mev56 | -mpca56 | -mev6 | -mev67 | -mev68 | -mall\n\
-mev4 | -mev45 | -mev5 | -mev56 | -mpca56 | -mev6 | -mev67 | -mev68 | -mall\n\
                        specify variant of Alpha architecture\n\
                        specify variant of Alpha architecture\n\
-m21064 | -m21066 | -m21164 | -m21164a | -m21164pc | -m21264 | -m21264a | -m21264b\n\
-m21064 | -m21066 | -m21164 | -m21164a | -m21164pc | -m21264 | -m21264a | -m21264b\n\
                        these variants include PALcode opcodes\n"),
                        these variants include PALcode opcodes\n"),
        stream);
        stream);
#ifdef OBJ_EVAX
#ifdef OBJ_EVAX
  fputs (_("\
  fputs (_("\
VMS options:\n\
VMS options:\n\
-+                      hash encode (don't truncate) names longer than 64 characters\n\
-+                      hash encode (don't truncate) names longer than 64 characters\n\
-H                      show new symbol after hash truncation\n"),
-H                      show new symbol after hash truncation\n"),
        stream);
        stream);
#endif
#endif
}
}
 
 
/* Decide from what point a pc-relative relocation is relative to,
/* Decide from what point a pc-relative relocation is relative to,
   relative to the pc-relative fixup.  Er, relatively speaking.  */
   relative to the pc-relative fixup.  Er, relatively speaking.  */
 
 
long
long
md_pcrel_from (fixS *fixP)
md_pcrel_from (fixS *fixP)
{
{
  valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
  valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
 
 
  switch (fixP->fx_r_type)
  switch (fixP->fx_r_type)
    {
    {
    case BFD_RELOC_23_PCREL_S2:
    case BFD_RELOC_23_PCREL_S2:
    case BFD_RELOC_ALPHA_HINT:
    case BFD_RELOC_ALPHA_HINT:
    case BFD_RELOC_ALPHA_BRSGP:
    case BFD_RELOC_ALPHA_BRSGP:
      return addr + 4;
      return addr + 4;
    default:
    default:
      return addr;
      return addr;
    }
    }
}
}
 
 
/* Attempt to simplify or even eliminate a fixup.  The return value is
/* Attempt to simplify or even eliminate a fixup.  The return value is
   ignored; perhaps it was once meaningful, but now it is historical.
   ignored; perhaps it was once meaningful, but now it is historical.
   To indicate that a fixup has been eliminated, set fixP->fx_done.
   To indicate that a fixup has been eliminated, set fixP->fx_done.
 
 
   For ELF, here it is that we transform the GPDISP_HI16 reloc we used
   For ELF, here it is that we transform the GPDISP_HI16 reloc we used
   internally into the GPDISP reloc used externally.  We had to do
   internally into the GPDISP reloc used externally.  We had to do
   this so that we'd have the GPDISP_LO16 reloc as a tag to compute
   this so that we'd have the GPDISP_LO16 reloc as a tag to compute
   the distance to the "lda" instruction for setting the addend to
   the distance to the "lda" instruction for setting the addend to
   GPDISP.  */
   GPDISP.  */
 
 
void
void
md_apply_fix (fixS *fixP, valueT * valP, segT seg)
md_apply_fix (fixS *fixP, valueT * valP, segT seg)
{
{
  char * const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
  char * const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where;
  valueT value = * valP;
  valueT value = * valP;
  unsigned image, size;
  unsigned image, size;
 
 
  switch (fixP->fx_r_type)
  switch (fixP->fx_r_type)
    {
    {
      /* The GPDISP relocations are processed internally with a symbol
      /* The GPDISP relocations are processed internally with a symbol
         referring to the current function's section;  we need to drop
         referring to the current function's section;  we need to drop
         in a value which, when added to the address of the start of
         in a value which, when added to the address of the start of
         the function, gives the desired GP.  */
         the function, gives the desired GP.  */
    case BFD_RELOC_ALPHA_GPDISP_HI16:
    case BFD_RELOC_ALPHA_GPDISP_HI16:
      {
      {
        fixS *next = fixP->fx_next;
        fixS *next = fixP->fx_next;
 
 
        /* With user-specified !gpdisp relocations, we can be missing
        /* With user-specified !gpdisp relocations, we can be missing
           the matching LO16 reloc.  We will have already issued an
           the matching LO16 reloc.  We will have already issued an
           error message.  */
           error message.  */
        if (next)
        if (next)
          fixP->fx_offset = (next->fx_frag->fr_address + next->fx_where
          fixP->fx_offset = (next->fx_frag->fr_address + next->fx_where
                             - fixP->fx_frag->fr_address - fixP->fx_where);
                             - fixP->fx_frag->fr_address - fixP->fx_where);
 
 
        value = (value - sign_extend_16 (value)) >> 16;
        value = (value - sign_extend_16 (value)) >> 16;
      }
      }
#ifdef OBJ_ELF
#ifdef OBJ_ELF
      fixP->fx_r_type = BFD_RELOC_ALPHA_GPDISP;
      fixP->fx_r_type = BFD_RELOC_ALPHA_GPDISP;
#endif
#endif
      goto do_reloc_gp;
      goto do_reloc_gp;
 
 
    case BFD_RELOC_ALPHA_GPDISP_LO16:
    case BFD_RELOC_ALPHA_GPDISP_LO16:
      value = sign_extend_16 (value);
      value = sign_extend_16 (value);
      fixP->fx_offset = 0;
      fixP->fx_offset = 0;
#ifdef OBJ_ELF
#ifdef OBJ_ELF
      fixP->fx_done = 1;
      fixP->fx_done = 1;
#endif
#endif
 
 
    do_reloc_gp:
    do_reloc_gp:
      fixP->fx_addsy = section_symbol (seg);
      fixP->fx_addsy = section_symbol (seg);
      md_number_to_chars (fixpos, value, 2);
      md_number_to_chars (fixpos, value, 2);
      break;
      break;
 
 
    case BFD_RELOC_16:
    case BFD_RELOC_16:
      if (fixP->fx_pcrel)
      if (fixP->fx_pcrel)
        fixP->fx_r_type = BFD_RELOC_16_PCREL;
        fixP->fx_r_type = BFD_RELOC_16_PCREL;
      size = 2;
      size = 2;
      goto do_reloc_xx;
      goto do_reloc_xx;
 
 
    case BFD_RELOC_32:
    case BFD_RELOC_32:
      if (fixP->fx_pcrel)
      if (fixP->fx_pcrel)
        fixP->fx_r_type = BFD_RELOC_32_PCREL;
        fixP->fx_r_type = BFD_RELOC_32_PCREL;
      size = 4;
      size = 4;
      goto do_reloc_xx;
      goto do_reloc_xx;
 
 
    case BFD_RELOC_64:
    case BFD_RELOC_64:
      if (fixP->fx_pcrel)
      if (fixP->fx_pcrel)
        fixP->fx_r_type = BFD_RELOC_64_PCREL;
        fixP->fx_r_type = BFD_RELOC_64_PCREL;
      size = 8;
      size = 8;
 
 
    do_reloc_xx:
    do_reloc_xx:
      if (fixP->fx_pcrel == 0 && fixP->fx_addsy == 0)
      if (fixP->fx_pcrel == 0 && fixP->fx_addsy == 0)
        {
        {
          md_number_to_chars (fixpos, value, size);
          md_number_to_chars (fixpos, value, size);
          goto done;
          goto done;
        }
        }
      return;
      return;
 
 
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
    case BFD_RELOC_GPREL32:
    case BFD_RELOC_GPREL32:
      assert (fixP->fx_subsy == alpha_gp_symbol);
      assert (fixP->fx_subsy == alpha_gp_symbol);
      fixP->fx_subsy = 0;
      fixP->fx_subsy = 0;
      /* FIXME: inherited this obliviousness of `value' -- why?  */
      /* FIXME: inherited this obliviousness of `value' -- why?  */
      md_number_to_chars (fixpos, -alpha_gp_value, 4);
      md_number_to_chars (fixpos, -alpha_gp_value, 4);
      break;
      break;
#else
#else
    case BFD_RELOC_GPREL32:
    case BFD_RELOC_GPREL32:
#endif
#endif
    case BFD_RELOC_GPREL16:
    case BFD_RELOC_GPREL16:
    case BFD_RELOC_ALPHA_GPREL_HI16:
    case BFD_RELOC_ALPHA_GPREL_HI16:
    case BFD_RELOC_ALPHA_GPREL_LO16:
    case BFD_RELOC_ALPHA_GPREL_LO16:
      return;
      return;
 
 
    case BFD_RELOC_23_PCREL_S2:
    case BFD_RELOC_23_PCREL_S2:
      if (fixP->fx_pcrel == 0 && fixP->fx_addsy == 0)
      if (fixP->fx_pcrel == 0 && fixP->fx_addsy == 0)
        {
        {
          image = bfd_getl32 (fixpos);
          image = bfd_getl32 (fixpos);
          image = (image & ~0x1FFFFF) | ((value >> 2) & 0x1FFFFF);
          image = (image & ~0x1FFFFF) | ((value >> 2) & 0x1FFFFF);
          goto write_done;
          goto write_done;
        }
        }
      return;
      return;
 
 
    case BFD_RELOC_ALPHA_HINT:
    case BFD_RELOC_ALPHA_HINT:
      if (fixP->fx_pcrel == 0 && fixP->fx_addsy == 0)
      if (fixP->fx_pcrel == 0 && fixP->fx_addsy == 0)
        {
        {
          image = bfd_getl32 (fixpos);
          image = bfd_getl32 (fixpos);
          image = (image & ~0x3FFF) | ((value >> 2) & 0x3FFF);
          image = (image & ~0x3FFF) | ((value >> 2) & 0x3FFF);
          goto write_done;
          goto write_done;
        }
        }
      return;
      return;
 
 
#ifdef OBJ_ELF
#ifdef OBJ_ELF
    case BFD_RELOC_ALPHA_BRSGP:
    case BFD_RELOC_ALPHA_BRSGP:
      return;
      return;
 
 
    case BFD_RELOC_ALPHA_TLSGD:
    case BFD_RELOC_ALPHA_TLSGD:
    case BFD_RELOC_ALPHA_TLSLDM:
    case BFD_RELOC_ALPHA_TLSLDM:
    case BFD_RELOC_ALPHA_GOTDTPREL16:
    case BFD_RELOC_ALPHA_GOTDTPREL16:
    case BFD_RELOC_ALPHA_DTPREL_HI16:
    case BFD_RELOC_ALPHA_DTPREL_HI16:
    case BFD_RELOC_ALPHA_DTPREL_LO16:
    case BFD_RELOC_ALPHA_DTPREL_LO16:
    case BFD_RELOC_ALPHA_DTPREL16:
    case BFD_RELOC_ALPHA_DTPREL16:
    case BFD_RELOC_ALPHA_GOTTPREL16:
    case BFD_RELOC_ALPHA_GOTTPREL16:
    case BFD_RELOC_ALPHA_TPREL_HI16:
    case BFD_RELOC_ALPHA_TPREL_HI16:
    case BFD_RELOC_ALPHA_TPREL_LO16:
    case BFD_RELOC_ALPHA_TPREL_LO16:
    case BFD_RELOC_ALPHA_TPREL16:
    case BFD_RELOC_ALPHA_TPREL16:
      if (fixP->fx_addsy)
      if (fixP->fx_addsy)
        S_SET_THREAD_LOCAL (fixP->fx_addsy);
        S_SET_THREAD_LOCAL (fixP->fx_addsy);
      return;
      return;
#endif
#endif
 
 
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
    case BFD_RELOC_ALPHA_LITERAL:
    case BFD_RELOC_ALPHA_LITERAL:
      md_number_to_chars (fixpos, value, 2);
      md_number_to_chars (fixpos, value, 2);
      return;
      return;
#endif
#endif
    case BFD_RELOC_ALPHA_ELF_LITERAL:
    case BFD_RELOC_ALPHA_ELF_LITERAL:
    case BFD_RELOC_ALPHA_LITUSE:
    case BFD_RELOC_ALPHA_LITUSE:
    case BFD_RELOC_ALPHA_LINKAGE:
    case BFD_RELOC_ALPHA_LINKAGE:
    case BFD_RELOC_ALPHA_CODEADDR:
    case BFD_RELOC_ALPHA_CODEADDR:
      return;
      return;
 
 
    case BFD_RELOC_VTABLE_INHERIT:
    case BFD_RELOC_VTABLE_INHERIT:
    case BFD_RELOC_VTABLE_ENTRY:
    case BFD_RELOC_VTABLE_ENTRY:
      return;
      return;
 
 
    default:
    default:
      {
      {
        const struct alpha_operand *operand;
        const struct alpha_operand *operand;
 
 
        if ((int) fixP->fx_r_type >= 0)
        if ((int) fixP->fx_r_type >= 0)
          as_fatal (_("unhandled relocation type %s"),
          as_fatal (_("unhandled relocation type %s"),
                    bfd_get_reloc_code_name (fixP->fx_r_type));
                    bfd_get_reloc_code_name (fixP->fx_r_type));
 
 
        assert (-(int) fixP->fx_r_type < (int) alpha_num_operands);
        assert (-(int) fixP->fx_r_type < (int) alpha_num_operands);
        operand = &alpha_operands[-(int) fixP->fx_r_type];
        operand = &alpha_operands[-(int) fixP->fx_r_type];
 
 
        /* The rest of these fixups only exist internally during symbol
        /* The rest of these fixups only exist internally during symbol
           resolution and have no representation in the object file.
           resolution and have no representation in the object file.
           Therefore they must be completely resolved as constants.  */
           Therefore they must be completely resolved as constants.  */
 
 
        if (fixP->fx_addsy != 0
        if (fixP->fx_addsy != 0
            && S_GET_SEGMENT (fixP->fx_addsy) != absolute_section)
            && S_GET_SEGMENT (fixP->fx_addsy) != absolute_section)
          as_bad_where (fixP->fx_file, fixP->fx_line,
          as_bad_where (fixP->fx_file, fixP->fx_line,
                        _("non-absolute expression in constant field"));
                        _("non-absolute expression in constant field"));
 
 
        image = bfd_getl32 (fixpos);
        image = bfd_getl32 (fixpos);
        image = insert_operand (image, operand, (offsetT) value,
        image = insert_operand (image, operand, (offsetT) value,
                                fixP->fx_file, fixP->fx_line);
                                fixP->fx_file, fixP->fx_line);
      }
      }
      goto write_done;
      goto write_done;
    }
    }
 
 
  if (fixP->fx_addsy != 0 || fixP->fx_pcrel != 0)
  if (fixP->fx_addsy != 0 || fixP->fx_pcrel != 0)
    return;
    return;
  else
  else
    {
    {
      as_warn_where (fixP->fx_file, fixP->fx_line,
      as_warn_where (fixP->fx_file, fixP->fx_line,
                     _("type %d reloc done?\n"), (int) fixP->fx_r_type);
                     _("type %d reloc done?\n"), (int) fixP->fx_r_type);
      goto done;
      goto done;
    }
    }
 
 
write_done:
write_done:
  md_number_to_chars (fixpos, image, 4);
  md_number_to_chars (fixpos, image, 4);
 
 
done:
done:
  fixP->fx_done = 1;
  fixP->fx_done = 1;
}
}
 
 
/* Look for a register name in the given symbol.  */
/* Look for a register name in the given symbol.  */
 
 
symbolS *
symbolS *
md_undefined_symbol (char *name)
md_undefined_symbol (char *name)
{
{
  if (*name == '$')
  if (*name == '$')
    {
    {
      int is_float = 0, num;
      int is_float = 0, num;
 
 
      switch (*++name)
      switch (*++name)
        {
        {
        case 'f':
        case 'f':
          if (name[1] == 'p' && name[2] == '\0')
          if (name[1] == 'p' && name[2] == '\0')
            return alpha_register_table[AXP_REG_FP];
            return alpha_register_table[AXP_REG_FP];
          is_float = 32;
          is_float = 32;
          /* Fall through.  */
          /* Fall through.  */
 
 
        case 'r':
        case 'r':
          if (!ISDIGIT (*++name))
          if (!ISDIGIT (*++name))
            break;
            break;
          /* Fall through.  */
          /* Fall through.  */
 
 
        case '0': case '1': case '2': case '3': case '4':
        case '0': case '1': case '2': case '3': case '4':
        case '5': case '6': case '7': case '8': case '9':
        case '5': case '6': case '7': case '8': case '9':
          if (name[1] == '\0')
          if (name[1] == '\0')
            num = name[0] - '0';
            num = name[0] - '0';
          else if (name[0] != '0' && ISDIGIT (name[1]) && name[2] == '\0')
          else if (name[0] != '0' && ISDIGIT (name[1]) && name[2] == '\0')
            {
            {
              num = (name[0] - '0') * 10 + name[1] - '0';
              num = (name[0] - '0') * 10 + name[1] - '0';
              if (num >= 32)
              if (num >= 32)
                break;
                break;
            }
            }
          else
          else
            break;
            break;
 
 
          if (!alpha_noat_on && (num + is_float) == AXP_REG_AT)
          if (!alpha_noat_on && (num + is_float) == AXP_REG_AT)
            as_warn (_("Used $at without \".set noat\""));
            as_warn (_("Used $at without \".set noat\""));
          return alpha_register_table[num + is_float];
          return alpha_register_table[num + is_float];
 
 
        case 'a':
        case 'a':
          if (name[1] == 't' && name[2] == '\0')
          if (name[1] == 't' && name[2] == '\0')
            {
            {
              if (!alpha_noat_on)
              if (!alpha_noat_on)
                as_warn (_("Used $at without \".set noat\""));
                as_warn (_("Used $at without \".set noat\""));
              return alpha_register_table[AXP_REG_AT];
              return alpha_register_table[AXP_REG_AT];
            }
            }
          break;
          break;
 
 
        case 'g':
        case 'g':
          if (name[1] == 'p' && name[2] == '\0')
          if (name[1] == 'p' && name[2] == '\0')
            return alpha_register_table[alpha_gp_register];
            return alpha_register_table[alpha_gp_register];
          break;
          break;
 
 
        case 's':
        case 's':
          if (name[1] == 'p' && name[2] == '\0')
          if (name[1] == 'p' && name[2] == '\0')
            return alpha_register_table[AXP_REG_SP];
            return alpha_register_table[AXP_REG_SP];
          break;
          break;
        }
        }
    }
    }
  return NULL;
  return NULL;
}
}
 
 
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
/* @@@ Magic ECOFF bits.  */
/* @@@ Magic ECOFF bits.  */
 
 
void
void
alpha_frob_ecoff_data (void)
alpha_frob_ecoff_data (void)
{
{
  select_gp_value ();
  select_gp_value ();
  /* $zero and $f31 are read-only.  */
  /* $zero and $f31 are read-only.  */
  alpha_gprmask &= ~1;
  alpha_gprmask &= ~1;
  alpha_fprmask &= ~1;
  alpha_fprmask &= ~1;
}
}
#endif
#endif
 
 
/* Hook to remember a recently defined label so that the auto-align
/* Hook to remember a recently defined label so that the auto-align
   code can adjust the symbol after we know what alignment will be
   code can adjust the symbol after we know what alignment will be
   required.  */
   required.  */
 
 
void
void
alpha_define_label (symbolS *sym)
alpha_define_label (symbolS *sym)
{
{
  alpha_insn_label = sym;
  alpha_insn_label = sym;
#ifdef OBJ_ELF
#ifdef OBJ_ELF
  dwarf2_emit_label (sym);
  dwarf2_emit_label (sym);
#endif
#endif
}
}
 
 
/* Return true if we must always emit a reloc for a type and false if
/* Return true if we must always emit a reloc for a type and false if
   there is some hope of resolving it at assembly time.  */
   there is some hope of resolving it at assembly time.  */
 
 
int
int
alpha_force_relocation (fixS *f)
alpha_force_relocation (fixS *f)
{
{
  if (alpha_flag_relax)
  if (alpha_flag_relax)
    return 1;
    return 1;
 
 
  switch (f->fx_r_type)
  switch (f->fx_r_type)
    {
    {
    case BFD_RELOC_ALPHA_GPDISP_HI16:
    case BFD_RELOC_ALPHA_GPDISP_HI16:
    case BFD_RELOC_ALPHA_GPDISP_LO16:
    case BFD_RELOC_ALPHA_GPDISP_LO16:
    case BFD_RELOC_ALPHA_GPDISP:
    case BFD_RELOC_ALPHA_GPDISP:
    case BFD_RELOC_ALPHA_LITERAL:
    case BFD_RELOC_ALPHA_LITERAL:
    case BFD_RELOC_ALPHA_ELF_LITERAL:
    case BFD_RELOC_ALPHA_ELF_LITERAL:
    case BFD_RELOC_ALPHA_LITUSE:
    case BFD_RELOC_ALPHA_LITUSE:
    case BFD_RELOC_GPREL16:
    case BFD_RELOC_GPREL16:
    case BFD_RELOC_GPREL32:
    case BFD_RELOC_GPREL32:
    case BFD_RELOC_ALPHA_GPREL_HI16:
    case BFD_RELOC_ALPHA_GPREL_HI16:
    case BFD_RELOC_ALPHA_GPREL_LO16:
    case BFD_RELOC_ALPHA_GPREL_LO16:
    case BFD_RELOC_ALPHA_LINKAGE:
    case BFD_RELOC_ALPHA_LINKAGE:
    case BFD_RELOC_ALPHA_CODEADDR:
    case BFD_RELOC_ALPHA_CODEADDR:
    case BFD_RELOC_ALPHA_BRSGP:
    case BFD_RELOC_ALPHA_BRSGP:
    case BFD_RELOC_ALPHA_TLSGD:
    case BFD_RELOC_ALPHA_TLSGD:
    case BFD_RELOC_ALPHA_TLSLDM:
    case BFD_RELOC_ALPHA_TLSLDM:
    case BFD_RELOC_ALPHA_GOTDTPREL16:
    case BFD_RELOC_ALPHA_GOTDTPREL16:
    case BFD_RELOC_ALPHA_DTPREL_HI16:
    case BFD_RELOC_ALPHA_DTPREL_HI16:
    case BFD_RELOC_ALPHA_DTPREL_LO16:
    case BFD_RELOC_ALPHA_DTPREL_LO16:
    case BFD_RELOC_ALPHA_DTPREL16:
    case BFD_RELOC_ALPHA_DTPREL16:
    case BFD_RELOC_ALPHA_GOTTPREL16:
    case BFD_RELOC_ALPHA_GOTTPREL16:
    case BFD_RELOC_ALPHA_TPREL_HI16:
    case BFD_RELOC_ALPHA_TPREL_HI16:
    case BFD_RELOC_ALPHA_TPREL_LO16:
    case BFD_RELOC_ALPHA_TPREL_LO16:
    case BFD_RELOC_ALPHA_TPREL16:
    case BFD_RELOC_ALPHA_TPREL16:
      return 1;
      return 1;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return generic_force_reloc (f);
  return generic_force_reloc (f);
}
}
 
 
/* Return true if we can partially resolve a relocation now.  */
/* Return true if we can partially resolve a relocation now.  */
 
 
int
int
alpha_fix_adjustable (fixS *f)
alpha_fix_adjustable (fixS *f)
{
{
  /* Are there any relocation types for which we must generate a
  /* Are there any relocation types for which we must generate a
     reloc but we can adjust the values contained within it?   */
     reloc but we can adjust the values contained within it?   */
  switch (f->fx_r_type)
  switch (f->fx_r_type)
    {
    {
    case BFD_RELOC_ALPHA_GPDISP_HI16:
    case BFD_RELOC_ALPHA_GPDISP_HI16:
    case BFD_RELOC_ALPHA_GPDISP_LO16:
    case BFD_RELOC_ALPHA_GPDISP_LO16:
    case BFD_RELOC_ALPHA_GPDISP:
    case BFD_RELOC_ALPHA_GPDISP:
      return 0;
      return 0;
 
 
    case BFD_RELOC_ALPHA_LITERAL:
    case BFD_RELOC_ALPHA_LITERAL:
    case BFD_RELOC_ALPHA_ELF_LITERAL:
    case BFD_RELOC_ALPHA_ELF_LITERAL:
    case BFD_RELOC_ALPHA_LITUSE:
    case BFD_RELOC_ALPHA_LITUSE:
    case BFD_RELOC_ALPHA_LINKAGE:
    case BFD_RELOC_ALPHA_LINKAGE:
    case BFD_RELOC_ALPHA_CODEADDR:
    case BFD_RELOC_ALPHA_CODEADDR:
      return 1;
      return 1;
 
 
    case BFD_RELOC_VTABLE_ENTRY:
    case BFD_RELOC_VTABLE_ENTRY:
    case BFD_RELOC_VTABLE_INHERIT:
    case BFD_RELOC_VTABLE_INHERIT:
      return 0;
      return 0;
 
 
    case BFD_RELOC_GPREL16:
    case BFD_RELOC_GPREL16:
    case BFD_RELOC_GPREL32:
    case BFD_RELOC_GPREL32:
    case BFD_RELOC_ALPHA_GPREL_HI16:
    case BFD_RELOC_ALPHA_GPREL_HI16:
    case BFD_RELOC_ALPHA_GPREL_LO16:
    case BFD_RELOC_ALPHA_GPREL_LO16:
    case BFD_RELOC_23_PCREL_S2:
    case BFD_RELOC_23_PCREL_S2:
    case BFD_RELOC_32:
    case BFD_RELOC_32:
    case BFD_RELOC_64:
    case BFD_RELOC_64:
    case BFD_RELOC_ALPHA_HINT:
    case BFD_RELOC_ALPHA_HINT:
      return 1;
      return 1;
 
 
    case BFD_RELOC_ALPHA_TLSGD:
    case BFD_RELOC_ALPHA_TLSGD:
    case BFD_RELOC_ALPHA_TLSLDM:
    case BFD_RELOC_ALPHA_TLSLDM:
    case BFD_RELOC_ALPHA_GOTDTPREL16:
    case BFD_RELOC_ALPHA_GOTDTPREL16:
    case BFD_RELOC_ALPHA_DTPREL_HI16:
    case BFD_RELOC_ALPHA_DTPREL_HI16:
    case BFD_RELOC_ALPHA_DTPREL_LO16:
    case BFD_RELOC_ALPHA_DTPREL_LO16:
    case BFD_RELOC_ALPHA_DTPREL16:
    case BFD_RELOC_ALPHA_DTPREL16:
    case BFD_RELOC_ALPHA_GOTTPREL16:
    case BFD_RELOC_ALPHA_GOTTPREL16:
    case BFD_RELOC_ALPHA_TPREL_HI16:
    case BFD_RELOC_ALPHA_TPREL_HI16:
    case BFD_RELOC_ALPHA_TPREL_LO16:
    case BFD_RELOC_ALPHA_TPREL_LO16:
    case BFD_RELOC_ALPHA_TPREL16:
    case BFD_RELOC_ALPHA_TPREL16:
      /* ??? No idea why we can't return a reference to .tbss+10, but
      /* ??? No idea why we can't return a reference to .tbss+10, but
         we're preventing this in the other assemblers.  Follow for now.  */
         we're preventing this in the other assemblers.  Follow for now.  */
      return 0;
      return 0;
 
 
#ifdef OBJ_ELF
#ifdef OBJ_ELF
    case BFD_RELOC_ALPHA_BRSGP:
    case BFD_RELOC_ALPHA_BRSGP:
      /* If we have a BRSGP reloc to a local symbol, adjust it to BRADDR and
      /* If we have a BRSGP reloc to a local symbol, adjust it to BRADDR and
         let it get resolved at assembly time.  */
         let it get resolved at assembly time.  */
      {
      {
        symbolS *sym = f->fx_addsy;
        symbolS *sym = f->fx_addsy;
        const char *name;
        const char *name;
        int offset = 0;
        int offset = 0;
 
 
        if (generic_force_reloc (f))
        if (generic_force_reloc (f))
          return 0;
          return 0;
 
 
        switch (S_GET_OTHER (sym) & STO_ALPHA_STD_GPLOAD)
        switch (S_GET_OTHER (sym) & STO_ALPHA_STD_GPLOAD)
          {
          {
          case STO_ALPHA_NOPV:
          case STO_ALPHA_NOPV:
            break;
            break;
          case STO_ALPHA_STD_GPLOAD:
          case STO_ALPHA_STD_GPLOAD:
            offset = 8;
            offset = 8;
            break;
            break;
          default:
          default:
            if (S_IS_LOCAL (sym))
            if (S_IS_LOCAL (sym))
              name = "<local>";
              name = "<local>";
            else
            else
              name = S_GET_NAME (sym);
              name = S_GET_NAME (sym);
            as_bad_where (f->fx_file, f->fx_line,
            as_bad_where (f->fx_file, f->fx_line,
                _("!samegp reloc against symbol without .prologue: %s"),
                _("!samegp reloc against symbol without .prologue: %s"),
                name);
                name);
            break;
            break;
          }
          }
        f->fx_r_type = BFD_RELOC_23_PCREL_S2;
        f->fx_r_type = BFD_RELOC_23_PCREL_S2;
        f->fx_offset += offset;
        f->fx_offset += offset;
        return 1;
        return 1;
      }
      }
#endif
#endif
 
 
    default:
    default:
      return 1;
      return 1;
    }
    }
}
}
 
 
/* Generate the BFD reloc to be stuck in the object file from the
/* Generate the BFD reloc to be stuck in the object file from the
   fixup used internally in the assembler.  */
   fixup used internally in the assembler.  */
 
 
arelent *
arelent *
tc_gen_reloc (asection *sec ATTRIBUTE_UNUSED,
tc_gen_reloc (asection *sec ATTRIBUTE_UNUSED,
              fixS *fixp)
              fixS *fixp)
{
{
  arelent *reloc;
  arelent *reloc;
 
 
  reloc = xmalloc (sizeof (* reloc));
  reloc = xmalloc (sizeof (* reloc));
  reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
  reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *));
  *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
  *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
  reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
  reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
 
 
  /* Make sure none of our internal relocations make it this far.
  /* Make sure none of our internal relocations make it this far.
     They'd better have been fully resolved by this point.  */
     They'd better have been fully resolved by this point.  */
  assert ((int) fixp->fx_r_type > 0);
  assert ((int) fixp->fx_r_type > 0);
 
 
  reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
  reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
  if (reloc->howto == NULL)
  if (reloc->howto == NULL)
    {
    {
      as_bad_where (fixp->fx_file, fixp->fx_line,
      as_bad_where (fixp->fx_file, fixp->fx_line,
                    _("cannot represent `%s' relocation in object file"),
                    _("cannot represent `%s' relocation in object file"),
                    bfd_get_reloc_code_name (fixp->fx_r_type));
                    bfd_get_reloc_code_name (fixp->fx_r_type));
      return NULL;
      return NULL;
    }
    }
 
 
  if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
  if (!fixp->fx_pcrel != !reloc->howto->pc_relative)
    as_fatal (_("internal error? cannot generate `%s' relocation"),
    as_fatal (_("internal error? cannot generate `%s' relocation"),
              bfd_get_reloc_code_name (fixp->fx_r_type));
              bfd_get_reloc_code_name (fixp->fx_r_type));
 
 
  assert (!fixp->fx_pcrel == !reloc->howto->pc_relative);
  assert (!fixp->fx_pcrel == !reloc->howto->pc_relative);
 
 
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
  if (fixp->fx_r_type == BFD_RELOC_ALPHA_LITERAL)
  if (fixp->fx_r_type == BFD_RELOC_ALPHA_LITERAL)
    /* Fake out bfd_perform_relocation. sigh.  */
    /* Fake out bfd_perform_relocation. sigh.  */
    reloc->addend = -alpha_gp_value;
    reloc->addend = -alpha_gp_value;
  else
  else
#endif
#endif
    {
    {
      reloc->addend = fixp->fx_offset;
      reloc->addend = fixp->fx_offset;
#ifdef OBJ_ELF
#ifdef OBJ_ELF
      /* Ohhh, this is ugly.  The problem is that if this is a local global
      /* Ohhh, this is ugly.  The problem is that if this is a local global
         symbol, the relocation will entirely be performed at link time, not
         symbol, the relocation will entirely be performed at link time, not
         at assembly time.  bfd_perform_reloc doesn't know about this sort
         at assembly time.  bfd_perform_reloc doesn't know about this sort
         of thing, and as a result we need to fake it out here.  */
         of thing, and as a result we need to fake it out here.  */
      if ((S_IS_EXTERNAL (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy)
      if ((S_IS_EXTERNAL (fixp->fx_addsy) || S_IS_WEAK (fixp->fx_addsy)
           || (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE)
           || (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE)
           || (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_THREAD_LOCAL))
           || (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_THREAD_LOCAL))
          && !S_IS_COMMON (fixp->fx_addsy))
          && !S_IS_COMMON (fixp->fx_addsy))
        reloc->addend -= symbol_get_bfdsym (fixp->fx_addsy)->value;
        reloc->addend -= symbol_get_bfdsym (fixp->fx_addsy)->value;
#endif
#endif
    }
    }
 
 
  return reloc;
  return reloc;
}
}
 
 
/* Parse a register name off of the input_line and return a register
/* Parse a register name off of the input_line and return a register
   number.  Gets md_undefined_symbol above to do the register name
   number.  Gets md_undefined_symbol above to do the register name
   matching for us.
   matching for us.
 
 
   Only called as a part of processing the ECOFF .frame directive.  */
   Only called as a part of processing the ECOFF .frame directive.  */
 
 
int
int
tc_get_register (int frame ATTRIBUTE_UNUSED)
tc_get_register (int frame ATTRIBUTE_UNUSED)
{
{
  int framereg = AXP_REG_SP;
  int framereg = AXP_REG_SP;
 
 
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  if (*input_line_pointer == '$')
  if (*input_line_pointer == '$')
    {
    {
      char *s = input_line_pointer;
      char *s = input_line_pointer;
      char c = get_symbol_end ();
      char c = get_symbol_end ();
      symbolS *sym = md_undefined_symbol (s);
      symbolS *sym = md_undefined_symbol (s);
 
 
      *strchr (s, '\0') = c;
      *strchr (s, '\0') = c;
      if (sym && (framereg = S_GET_VALUE (sym)) <= 31)
      if (sym && (framereg = S_GET_VALUE (sym)) <= 31)
        goto found;
        goto found;
    }
    }
  as_warn (_("frame reg expected, using $%d."), framereg);
  as_warn (_("frame reg expected, using $%d."), framereg);
 
 
found:
found:
  note_gpreg (framereg);
  note_gpreg (framereg);
  return framereg;
  return framereg;
}
}
 
 
/* This is called before the symbol table is processed.  In order to
/* This is called before the symbol table is processed.  In order to
   work with gcc when using mips-tfile, we must keep all local labels.
   work with gcc when using mips-tfile, we must keep all local labels.
   However, in other cases, we want to discard them.  If we were
   However, in other cases, we want to discard them.  If we were
   called with -g, but we didn't see any debugging information, it may
   called with -g, but we didn't see any debugging information, it may
   mean that gcc is smuggling debugging information through to
   mean that gcc is smuggling debugging information through to
   mips-tfile, in which case we must generate all local labels.  */
   mips-tfile, in which case we must generate all local labels.  */
 
 
#ifdef OBJ_ECOFF
#ifdef OBJ_ECOFF
 
 
void
void
alpha_frob_file_before_adjust (void)
alpha_frob_file_before_adjust (void)
{
{
  if (alpha_debug != 0
  if (alpha_debug != 0
      && ! ecoff_debugging_seen)
      && ! ecoff_debugging_seen)
    flag_keep_locals = 1;
    flag_keep_locals = 1;
}
}
 
 
#endif /* OBJ_ECOFF */
#endif /* OBJ_ECOFF */
 
 
/* The Alpha has support for some VAX floating point types, as well as for
/* The Alpha has support for some VAX floating point types, as well as for
   IEEE floating point.  We consider IEEE to be the primary floating point
   IEEE floating point.  We consider IEEE to be the primary floating point
   format, and sneak in the VAX floating point support here.  */
   format, and sneak in the VAX floating point support here.  */
#include "config/atof-vax.c"
#include "config/atof-vax.c"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.