OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [binutils-2.18.50/] [gas/] [config/] [tc-i386.c] - Diff between revs 156 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 156 Rev 816
/* tc-i386.c -- Assemble code for the Intel 80386
/* tc-i386.c -- Assemble code for the Intel 80386
   Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
   This file is part of GAS, the GNU Assembler.
   This file is part of GAS, the GNU Assembler.
 
 
   GAS is free software; you can redistribute it and/or modify
   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   the Free Software Foundation; either version 3, or (at your option)
   any later version.
   any later version.
 
 
   GAS is distributed in the hope that it will be useful,
   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to the Free
   along with GAS; see the file COPYING.  If not, write to the Free
   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
   02110-1301, USA.  */
   02110-1301, USA.  */
 
 
/* Intel 80386 machine specific gas.
/* Intel 80386 machine specific gas.
   Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
   Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
   x86_64 support by Jan Hubicka (jh@suse.cz)
   x86_64 support by Jan Hubicka (jh@suse.cz)
   VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
   VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
   Bugs & suggestions are completely welcome.  This is free software.
   Bugs & suggestions are completely welcome.  This is free software.
   Please help us make it better.  */
   Please help us make it better.  */
 
 
#include "as.h"
#include "as.h"
#include "safe-ctype.h"
#include "safe-ctype.h"
#include "subsegs.h"
#include "subsegs.h"
#include "dwarf2dbg.h"
#include "dwarf2dbg.h"
#include "dw2gencfi.h"
#include "dw2gencfi.h"
#include "elf/x86-64.h"
#include "elf/x86-64.h"
#include "opcodes/i386-init.h"
#include "opcodes/i386-init.h"
 
 
#ifndef REGISTER_WARNINGS
#ifndef REGISTER_WARNINGS
#define REGISTER_WARNINGS 1
#define REGISTER_WARNINGS 1
#endif
#endif
 
 
#ifndef INFER_ADDR_PREFIX
#ifndef INFER_ADDR_PREFIX
#define INFER_ADDR_PREFIX 1
#define INFER_ADDR_PREFIX 1
#endif
#endif
 
 
#ifndef DEFAULT_ARCH
#ifndef DEFAULT_ARCH
#define DEFAULT_ARCH "i386"
#define DEFAULT_ARCH "i386"
#endif
#endif
 
 
#ifndef INLINE
#ifndef INLINE
#if __GNUC__ >= 2
#if __GNUC__ >= 2
#define INLINE __inline__
#define INLINE __inline__
#else
#else
#define INLINE
#define INLINE
#endif
#endif
#endif
#endif
 
 
/* Prefixes will be emitted in the order defined below.
/* Prefixes will be emitted in the order defined below.
   WAIT_PREFIX must be the first prefix since FWAIT is really is an
   WAIT_PREFIX must be the first prefix since FWAIT is really is an
   instruction, and so must come before any prefixes.
   instruction, and so must come before any prefixes.
   The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
   The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
   LOCKREP_PREFIX.  */
   LOCKREP_PREFIX.  */
#define WAIT_PREFIX     0
#define WAIT_PREFIX     0
#define SEG_PREFIX      1
#define SEG_PREFIX      1
#define ADDR_PREFIX     2
#define ADDR_PREFIX     2
#define DATA_PREFIX     3
#define DATA_PREFIX     3
#define LOCKREP_PREFIX  4
#define LOCKREP_PREFIX  4
#define REX_PREFIX      5       /* must come last.  */
#define REX_PREFIX      5       /* must come last.  */
#define MAX_PREFIXES    6       /* max prefixes per opcode */
#define MAX_PREFIXES    6       /* max prefixes per opcode */
 
 
/* we define the syntax here (modulo base,index,scale syntax) */
/* we define the syntax here (modulo base,index,scale syntax) */
#define REGISTER_PREFIX '%'
#define REGISTER_PREFIX '%'
#define IMMEDIATE_PREFIX '$'
#define IMMEDIATE_PREFIX '$'
#define ABSOLUTE_PREFIX '*'
#define ABSOLUTE_PREFIX '*'
 
 
/* these are the instruction mnemonic suffixes in AT&T syntax or
/* these are the instruction mnemonic suffixes in AT&T syntax or
   memory operand size in Intel syntax.  */
   memory operand size in Intel syntax.  */
#define WORD_MNEM_SUFFIX  'w'
#define WORD_MNEM_SUFFIX  'w'
#define BYTE_MNEM_SUFFIX  'b'
#define BYTE_MNEM_SUFFIX  'b'
#define SHORT_MNEM_SUFFIX 's'
#define SHORT_MNEM_SUFFIX 's'
#define LONG_MNEM_SUFFIX  'l'
#define LONG_MNEM_SUFFIX  'l'
#define QWORD_MNEM_SUFFIX  'q'
#define QWORD_MNEM_SUFFIX  'q'
#define XMMWORD_MNEM_SUFFIX  'x'
#define XMMWORD_MNEM_SUFFIX  'x'
#define YMMWORD_MNEM_SUFFIX 'y'
#define YMMWORD_MNEM_SUFFIX 'y'
/* Intel Syntax.  Use a non-ascii letter since since it never appears
/* Intel Syntax.  Use a non-ascii letter since since it never appears
   in instructions.  */
   in instructions.  */
#define LONG_DOUBLE_MNEM_SUFFIX '\1'
#define LONG_DOUBLE_MNEM_SUFFIX '\1'
 
 
#define END_OF_INSN '\0'
#define END_OF_INSN '\0'
 
 
/*
/*
  'templates' is for grouping together 'template' structures for opcodes
  'templates' is for grouping together 'template' structures for opcodes
  of the same name.  This is only used for storing the insns in the grand
  of the same name.  This is only used for storing the insns in the grand
  ole hash table of insns.
  ole hash table of insns.
  The templates themselves start at START and range up to (but not including)
  The templates themselves start at START and range up to (but not including)
  END.
  END.
  */
  */
typedef struct
typedef struct
{
{
  const template *start;
  const template *start;
  const template *end;
  const template *end;
}
}
templates;
templates;
 
 
/* 386 operand encoding bytes:  see 386 book for details of this.  */
/* 386 operand encoding bytes:  see 386 book for details of this.  */
typedef struct
typedef struct
{
{
  unsigned int regmem;  /* codes register or memory operand */
  unsigned int regmem;  /* codes register or memory operand */
  unsigned int reg;     /* codes register operand (or extended opcode) */
  unsigned int reg;     /* codes register operand (or extended opcode) */
  unsigned int mode;    /* how to interpret regmem & reg */
  unsigned int mode;    /* how to interpret regmem & reg */
}
}
modrm_byte;
modrm_byte;
 
 
/* x86-64 extension prefix.  */
/* x86-64 extension prefix.  */
typedef int rex_byte;
typedef int rex_byte;
 
 
/* The SSE5 instructions have a two bit instruction modifier (OC) that
/* The SSE5 instructions have a two bit instruction modifier (OC) that
   is stored in two separate bytes in the instruction.  Pick apart OC
   is stored in two separate bytes in the instruction.  Pick apart OC
   into the 2 separate bits for instruction.  */
   into the 2 separate bits for instruction.  */
#define DREX_OC0(x)     (((x) & 1) != 0)
#define DREX_OC0(x)     (((x) & 1) != 0)
#define DREX_OC1(x)     (((x) & 2) != 0)
#define DREX_OC1(x)     (((x) & 2) != 0)
 
 
#define DREX_OC0_MASK   (1 << 3)        /* set OC0 in byte 4 */
#define DREX_OC0_MASK   (1 << 3)        /* set OC0 in byte 4 */
#define DREX_OC1_MASK   (1 << 2)        /* set OC1 in byte 3 */
#define DREX_OC1_MASK   (1 << 2)        /* set OC1 in byte 3 */
 
 
/* OC mappings */
/* OC mappings */
#define DREX_XMEM_X1_X2_X2 0    /* 4 op insn, dest = src3, src1 = reg/mem */
#define DREX_XMEM_X1_X2_X2 0    /* 4 op insn, dest = src3, src1 = reg/mem */
#define DREX_X1_XMEM_X2_X2 1    /* 4 op insn, dest = src3, src2 = reg/mem */
#define DREX_X1_XMEM_X2_X2 1    /* 4 op insn, dest = src3, src2 = reg/mem */
#define DREX_X1_XMEM_X2_X1 2    /* 4 op insn, dest = src1, src2 = reg/mem */
#define DREX_X1_XMEM_X2_X1 2    /* 4 op insn, dest = src1, src2 = reg/mem */
#define DREX_X1_X2_XMEM_X1 3    /* 4 op insn, dest = src1, src3 = reg/mem */
#define DREX_X1_X2_XMEM_X1 3    /* 4 op insn, dest = src1, src3 = reg/mem */
 
 
#define DREX_XMEM_X1_X2    0    /* 3 op insn, src1 = reg/mem */
#define DREX_XMEM_X1_X2    0    /* 3 op insn, src1 = reg/mem */
#define DREX_X1_XMEM_X2    1    /* 3 op insn, src1 = reg/mem */
#define DREX_X1_XMEM_X2    1    /* 3 op insn, src1 = reg/mem */
 
 
/* Information needed to create the DREX byte in SSE5 instructions.  */
/* Information needed to create the DREX byte in SSE5 instructions.  */
typedef struct
typedef struct
{
{
  unsigned int reg;             /* register */
  unsigned int reg;             /* register */
  unsigned int rex;             /* REX flags */
  unsigned int rex;             /* REX flags */
  unsigned int modrm_reg;       /* which arg goes in the modrm.reg field */
  unsigned int modrm_reg;       /* which arg goes in the modrm.reg field */
  unsigned int modrm_regmem;    /* which arg goes in the modrm.regmem field */
  unsigned int modrm_regmem;    /* which arg goes in the modrm.regmem field */
} drex_byte;
} drex_byte;
 
 
/* 386 opcode byte to code indirect addressing.  */
/* 386 opcode byte to code indirect addressing.  */
typedef struct
typedef struct
{
{
  unsigned base;
  unsigned base;
  unsigned index;
  unsigned index;
  unsigned scale;
  unsigned scale;
}
}
sib_byte;
sib_byte;
 
 
enum processor_type
enum processor_type
{
{
  PROCESSOR_UNKNOWN,
  PROCESSOR_UNKNOWN,
  PROCESSOR_I386,
  PROCESSOR_I386,
  PROCESSOR_I486,
  PROCESSOR_I486,
  PROCESSOR_PENTIUM,
  PROCESSOR_PENTIUM,
  PROCESSOR_PENTIUMPRO,
  PROCESSOR_PENTIUMPRO,
  PROCESSOR_PENTIUM4,
  PROCESSOR_PENTIUM4,
  PROCESSOR_NOCONA,
  PROCESSOR_NOCONA,
  PROCESSOR_CORE,
  PROCESSOR_CORE,
  PROCESSOR_CORE2,
  PROCESSOR_CORE2,
  PROCESSOR_K6,
  PROCESSOR_K6,
  PROCESSOR_ATHLON,
  PROCESSOR_ATHLON,
  PROCESSOR_K8,
  PROCESSOR_K8,
  PROCESSOR_GENERIC32,
  PROCESSOR_GENERIC32,
  PROCESSOR_GENERIC64,
  PROCESSOR_GENERIC64,
  PROCESSOR_AMDFAM10
  PROCESSOR_AMDFAM10
};
};
 
 
/* x86 arch names, types and features */
/* x86 arch names, types and features */
typedef struct
typedef struct
{
{
  const char *name;             /* arch name */
  const char *name;             /* arch name */
  enum processor_type type;     /* arch type */
  enum processor_type type;     /* arch type */
  i386_cpu_flags flags;         /* cpu feature flags */
  i386_cpu_flags flags;         /* cpu feature flags */
}
}
arch_entry;
arch_entry;
 
 
static void set_code_flag (int);
static void set_code_flag (int);
static void set_16bit_gcc_code_flag (int);
static void set_16bit_gcc_code_flag (int);
static void set_intel_syntax (int);
static void set_intel_syntax (int);
static void set_intel_mnemonic (int);
static void set_intel_mnemonic (int);
static void set_allow_index_reg (int);
static void set_allow_index_reg (int);
static void set_cpu_arch (int);
static void set_cpu_arch (int);
#ifdef TE_PE
#ifdef TE_PE
static void pe_directive_secrel (int);
static void pe_directive_secrel (int);
#endif
#endif
static void signed_cons (int);
static void signed_cons (int);
static char *output_invalid (int c);
static char *output_invalid (int c);
static int i386_att_operand (char *);
static int i386_att_operand (char *);
static int i386_intel_operand (char *, int);
static int i386_intel_operand (char *, int);
static const reg_entry *parse_register (char *, char **);
static const reg_entry *parse_register (char *, char **);
static char *parse_insn (char *, char *);
static char *parse_insn (char *, char *);
static char *parse_operands (char *, const char *);
static char *parse_operands (char *, const char *);
static void swap_operands (void);
static void swap_operands (void);
static void swap_2_operands (int, int);
static void swap_2_operands (int, int);
static void optimize_imm (void);
static void optimize_imm (void);
static void optimize_disp (void);
static void optimize_disp (void);
static int match_template (void);
static int match_template (void);
static int check_string (void);
static int check_string (void);
static int process_suffix (void);
static int process_suffix (void);
static int check_byte_reg (void);
static int check_byte_reg (void);
static int check_long_reg (void);
static int check_long_reg (void);
static int check_qword_reg (void);
static int check_qword_reg (void);
static int check_word_reg (void);
static int check_word_reg (void);
static int finalize_imm (void);
static int finalize_imm (void);
static void process_drex (void);
static void process_drex (void);
static int process_operands (void);
static int process_operands (void);
static const seg_entry *build_modrm_byte (void);
static const seg_entry *build_modrm_byte (void);
static void output_insn (void);
static void output_insn (void);
static void output_imm (fragS *, offsetT);
static void output_imm (fragS *, offsetT);
static void output_disp (fragS *, offsetT);
static void output_disp (fragS *, offsetT);
#ifndef I386COFF
#ifndef I386COFF
static void s_bss (int);
static void s_bss (int);
#endif
#endif
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
static void handle_large_common (int small ATTRIBUTE_UNUSED);
static void handle_large_common (int small ATTRIBUTE_UNUSED);
#endif
#endif
 
 
static const char *default_arch = DEFAULT_ARCH;
static const char *default_arch = DEFAULT_ARCH;
 
 
/* VEX prefix.  */
/* VEX prefix.  */
typedef struct
typedef struct
{
{
  /* VEX prefix is either 2 byte or 3 byte.  */
  /* VEX prefix is either 2 byte or 3 byte.  */
  unsigned char bytes[3];
  unsigned char bytes[3];
  unsigned int length;
  unsigned int length;
  /* Destination or source register specifier.  */
  /* Destination or source register specifier.  */
  const reg_entry *register_specifier;
  const reg_entry *register_specifier;
} vex_prefix;
} vex_prefix;
 
 
/* 'md_assemble ()' gathers together information and puts it into a
/* 'md_assemble ()' gathers together information and puts it into a
   i386_insn.  */
   i386_insn.  */
 
 
union i386_op
union i386_op
  {
  {
    expressionS *disps;
    expressionS *disps;
    expressionS *imms;
    expressionS *imms;
    const reg_entry *regs;
    const reg_entry *regs;
  };
  };
 
 
struct _i386_insn
struct _i386_insn
  {
  {
    /* TM holds the template for the insn were currently assembling.  */
    /* TM holds the template for the insn were currently assembling.  */
    template tm;
    template tm;
 
 
    /* SUFFIX holds the instruction size suffix for byte, word, dword
    /* SUFFIX holds the instruction size suffix for byte, word, dword
       or qword, if given.  */
       or qword, if given.  */
    char suffix;
    char suffix;
 
 
    /* OPERANDS gives the number of given operands.  */
    /* OPERANDS gives the number of given operands.  */
    unsigned int operands;
    unsigned int operands;
 
 
    /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
    /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
       of given register, displacement, memory operands and immediate
       of given register, displacement, memory operands and immediate
       operands.  */
       operands.  */
    unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
    unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
 
 
    /* TYPES [i] is the type (see above #defines) which tells us how to
    /* TYPES [i] is the type (see above #defines) which tells us how to
       use OP[i] for the corresponding operand.  */
       use OP[i] for the corresponding operand.  */
    i386_operand_type types[MAX_OPERANDS];
    i386_operand_type types[MAX_OPERANDS];
 
 
    /* Displacement expression, immediate expression, or register for each
    /* Displacement expression, immediate expression, or register for each
       operand.  */
       operand.  */
    union i386_op op[MAX_OPERANDS];
    union i386_op op[MAX_OPERANDS];
 
 
    /* Flags for operands.  */
    /* Flags for operands.  */
    unsigned int flags[MAX_OPERANDS];
    unsigned int flags[MAX_OPERANDS];
#define Operand_PCrel 1
#define Operand_PCrel 1
 
 
    /* Relocation type for operand */
    /* Relocation type for operand */
    enum bfd_reloc_code_real reloc[MAX_OPERANDS];
    enum bfd_reloc_code_real reloc[MAX_OPERANDS];
 
 
    /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
    /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
       the base index byte below.  */
       the base index byte below.  */
    const reg_entry *base_reg;
    const reg_entry *base_reg;
    const reg_entry *index_reg;
    const reg_entry *index_reg;
    unsigned int log2_scale_factor;
    unsigned int log2_scale_factor;
 
 
    /* SEG gives the seg_entries of this insn.  They are zero unless
    /* SEG gives the seg_entries of this insn.  They are zero unless
       explicit segment overrides are given.  */
       explicit segment overrides are given.  */
    const seg_entry *seg[2];
    const seg_entry *seg[2];
 
 
    /* PREFIX holds all the given prefix opcodes (usually null).
    /* PREFIX holds all the given prefix opcodes (usually null).
       PREFIXES is the number of prefix opcodes.  */
       PREFIXES is the number of prefix opcodes.  */
    unsigned int prefixes;
    unsigned int prefixes;
    unsigned char prefix[MAX_PREFIXES];
    unsigned char prefix[MAX_PREFIXES];
 
 
    /* RM and SIB are the modrm byte and the sib byte where the
    /* RM and SIB are the modrm byte and the sib byte where the
       addressing modes of this insn are encoded.  DREX is the byte
       addressing modes of this insn are encoded.  DREX is the byte
       added by the SSE5 instructions.  */
       added by the SSE5 instructions.  */
 
 
    modrm_byte rm;
    modrm_byte rm;
    rex_byte rex;
    rex_byte rex;
    sib_byte sib;
    sib_byte sib;
    drex_byte drex;
    drex_byte drex;
    vex_prefix vex;
    vex_prefix vex;
  };
  };
 
 
typedef struct _i386_insn i386_insn;
typedef struct _i386_insn i386_insn;
 
 
/* List of chars besides those in app.c:symbol_chars that can start an
/* List of chars besides those in app.c:symbol_chars that can start an
   operand.  Used to prevent the scrubber eating vital white-space.  */
   operand.  Used to prevent the scrubber eating vital white-space.  */
const char extra_symbol_chars[] = "*%-(["
const char extra_symbol_chars[] = "*%-(["
#ifdef LEX_AT
#ifdef LEX_AT
        "@"
        "@"
#endif
#endif
#ifdef LEX_QM
#ifdef LEX_QM
        "?"
        "?"
#endif
#endif
        ;
        ;
 
 
#if (defined (TE_I386AIX)                               \
#if (defined (TE_I386AIX)                               \
     || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
     || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
         && !defined (TE_GNU)                           \
         && !defined (TE_GNU)                           \
         && !defined (TE_LINUX)                         \
         && !defined (TE_LINUX)                         \
         && !defined (TE_NETWARE)                       \
         && !defined (TE_NETWARE)                       \
         && !defined (TE_FreeBSD)                       \
         && !defined (TE_FreeBSD)                       \
         && !defined (TE_NetBSD)))
         && !defined (TE_NetBSD)))
/* This array holds the chars that always start a comment.  If the
/* This array holds the chars that always start a comment.  If the
   pre-processor is disabled, these aren't very useful.  The option
   pre-processor is disabled, these aren't very useful.  The option
   --divide will remove '/' from this list.  */
   --divide will remove '/' from this list.  */
const char *i386_comment_chars = "#/";
const char *i386_comment_chars = "#/";
#define SVR4_COMMENT_CHARS 1
#define SVR4_COMMENT_CHARS 1
#define PREFIX_SEPARATOR '\\'
#define PREFIX_SEPARATOR '\\'
 
 
#else
#else
const char *i386_comment_chars = "#";
const char *i386_comment_chars = "#";
#define PREFIX_SEPARATOR '/'
#define PREFIX_SEPARATOR '/'
#endif
#endif
 
 
/* This array holds the chars that only start a comment at the beginning of
/* This array holds the chars that only start a comment at the beginning of
   a line.  If the line seems to have the form '# 123 filename'
   a line.  If the line seems to have the form '# 123 filename'
   .line and .file directives will appear in the pre-processed output.
   .line and .file directives will appear in the pre-processed output.
   Note that input_file.c hand checks for '#' at the beginning of the
   Note that input_file.c hand checks for '#' at the beginning of the
   first line of the input file.  This is because the compiler outputs
   first line of the input file.  This is because the compiler outputs
   #NO_APP at the beginning of its output.
   #NO_APP at the beginning of its output.
   Also note that comments started like this one will always work if
   Also note that comments started like this one will always work if
   '/' isn't otherwise defined.  */
   '/' isn't otherwise defined.  */
const char line_comment_chars[] = "#/";
const char line_comment_chars[] = "#/";
 
 
const char line_separator_chars[] = ";";
const char line_separator_chars[] = ";";
 
 
/* Chars that can be used to separate mant from exp in floating point
/* Chars that can be used to separate mant from exp in floating point
   nums.  */
   nums.  */
const char EXP_CHARS[] = "eE";
const char EXP_CHARS[] = "eE";
 
 
/* Chars that mean this number is a floating point constant
/* Chars that mean this number is a floating point constant
   As in 0f12.456
   As in 0f12.456
   or    0d1.2345e12.  */
   or    0d1.2345e12.  */
const char FLT_CHARS[] = "fFdDxX";
const char FLT_CHARS[] = "fFdDxX";
 
 
/* Tables for lexical analysis.  */
/* Tables for lexical analysis.  */
static char mnemonic_chars[256];
static char mnemonic_chars[256];
static char register_chars[256];
static char register_chars[256];
static char operand_chars[256];
static char operand_chars[256];
static char identifier_chars[256];
static char identifier_chars[256];
static char digit_chars[256];
static char digit_chars[256];
 
 
/* Lexical macros.  */
/* Lexical macros.  */
#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
#define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
#define is_operand_char(x) (operand_chars[(unsigned char) x])
#define is_operand_char(x) (operand_chars[(unsigned char) x])
#define is_register_char(x) (register_chars[(unsigned char) x])
#define is_register_char(x) (register_chars[(unsigned char) x])
#define is_space_char(x) ((x) == ' ')
#define is_space_char(x) ((x) == ' ')
#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
#define is_identifier_char(x) (identifier_chars[(unsigned char) x])
#define is_digit_char(x) (digit_chars[(unsigned char) x])
#define is_digit_char(x) (digit_chars[(unsigned char) x])
 
 
/* All non-digit non-letter characters that may occur in an operand.  */
/* All non-digit non-letter characters that may occur in an operand.  */
static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
 
 
/* md_assemble() always leaves the strings it's passed unaltered.  To
/* md_assemble() always leaves the strings it's passed unaltered.  To
   effect this we maintain a stack of saved characters that we've smashed
   effect this we maintain a stack of saved characters that we've smashed
   with '\0's (indicating end of strings for various sub-fields of the
   with '\0's (indicating end of strings for various sub-fields of the
   assembler instruction).  */
   assembler instruction).  */
static char save_stack[32];
static char save_stack[32];
static char *save_stack_p;
static char *save_stack_p;
#define END_STRING_AND_SAVE(s) \
#define END_STRING_AND_SAVE(s) \
        do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
        do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
#define RESTORE_END_STRING(s) \
#define RESTORE_END_STRING(s) \
        do { *(s) = *--save_stack_p; } while (0)
        do { *(s) = *--save_stack_p; } while (0)
 
 
/* The instruction we're assembling.  */
/* The instruction we're assembling.  */
static i386_insn i;
static i386_insn i;
 
 
/* Possible templates for current insn.  */
/* Possible templates for current insn.  */
static const templates *current_templates;
static const templates *current_templates;
 
 
/* Per instruction expressionS buffers: max displacements & immediates.  */
/* Per instruction expressionS buffers: max displacements & immediates.  */
static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
 
 
/* Current operand we are working on.  */
/* Current operand we are working on.  */
static int this_operand;
static int this_operand;
 
 
/* We support four different modes.  FLAG_CODE variable is used to distinguish
/* We support four different modes.  FLAG_CODE variable is used to distinguish
   these.  */
   these.  */
 
 
enum flag_code {
enum flag_code {
        CODE_32BIT,
        CODE_32BIT,
        CODE_16BIT,
        CODE_16BIT,
        CODE_64BIT };
        CODE_64BIT };
 
 
static enum flag_code flag_code;
static enum flag_code flag_code;
static unsigned int object_64bit;
static unsigned int object_64bit;
static int use_rela_relocations = 0;
static int use_rela_relocations = 0;
 
 
/* The names used to print error messages.  */
/* The names used to print error messages.  */
static const char *flag_code_names[] =
static const char *flag_code_names[] =
  {
  {
    "32",
    "32",
    "16",
    "16",
    "64"
    "64"
  };
  };
 
 
/* 1 for intel syntax,
/* 1 for intel syntax,
   0 if att syntax.  */
   0 if att syntax.  */
static int intel_syntax = 0;
static int intel_syntax = 0;
 
 
/* 1 for intel mnemonic,
/* 1 for intel mnemonic,
   0 if att mnemonic.  */
   0 if att mnemonic.  */
static int intel_mnemonic = !SYSV386_COMPAT;
static int intel_mnemonic = !SYSV386_COMPAT;
 
 
/* 1 if support old (<= 2.8.1) versions of gcc.  */
/* 1 if support old (<= 2.8.1) versions of gcc.  */
static int old_gcc = OLDGCC_COMPAT;
static int old_gcc = OLDGCC_COMPAT;
 
 
/* 1 if pseudo registers are permitted.  */
/* 1 if pseudo registers are permitted.  */
static int allow_pseudo_reg = 0;
static int allow_pseudo_reg = 0;
 
 
/* 1 if register prefix % not required.  */
/* 1 if register prefix % not required.  */
static int allow_naked_reg = 0;
static int allow_naked_reg = 0;
 
 
/* 1 if pseudo index register, eiz/riz, is allowed .  */
/* 1 if pseudo index register, eiz/riz, is allowed .  */
static int allow_index_reg = 0;
static int allow_index_reg = 0;
 
 
static enum
static enum
  {
  {
    sse_check_none = 0,
    sse_check_none = 0,
    sse_check_warning,
    sse_check_warning,
    sse_check_error
    sse_check_error
  }
  }
sse_check;
sse_check;
 
 
/* Register prefix used for error message.  */
/* Register prefix used for error message.  */
static const char *register_prefix = "%";
static const char *register_prefix = "%";
 
 
/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
/* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
   leave, push, and pop instructions so that gcc has the same stack
   leave, push, and pop instructions so that gcc has the same stack
   frame as in 32 bit mode.  */
   frame as in 32 bit mode.  */
static char stackop_size = '\0';
static char stackop_size = '\0';
 
 
/* Non-zero to optimize code alignment.  */
/* Non-zero to optimize code alignment.  */
int optimize_align_code = 1;
int optimize_align_code = 1;
 
 
/* Non-zero to quieten some warnings.  */
/* Non-zero to quieten some warnings.  */
static int quiet_warnings = 0;
static int quiet_warnings = 0;
 
 
/* CPU name.  */
/* CPU name.  */
static const char *cpu_arch_name = NULL;
static const char *cpu_arch_name = NULL;
static char *cpu_sub_arch_name = NULL;
static char *cpu_sub_arch_name = NULL;
 
 
/* CPU feature flags.  */
/* CPU feature flags.  */
static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
 
 
/* If we have selected a cpu we are generating instructions for.  */
/* If we have selected a cpu we are generating instructions for.  */
static int cpu_arch_tune_set = 0;
static int cpu_arch_tune_set = 0;
 
 
/* Cpu we are generating instructions for.  */
/* Cpu we are generating instructions for.  */
static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
 
 
/* CPU feature flags of cpu we are generating instructions for.  */
/* CPU feature flags of cpu we are generating instructions for.  */
static i386_cpu_flags cpu_arch_tune_flags;
static i386_cpu_flags cpu_arch_tune_flags;
 
 
/* CPU instruction set architecture used.  */
/* CPU instruction set architecture used.  */
static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
 
 
/* CPU feature flags of instruction set architecture used.  */
/* CPU feature flags of instruction set architecture used.  */
static i386_cpu_flags cpu_arch_isa_flags;
static i386_cpu_flags cpu_arch_isa_flags;
 
 
/* If set, conditional jumps are not automatically promoted to handle
/* If set, conditional jumps are not automatically promoted to handle
   larger than a byte offset.  */
   larger than a byte offset.  */
static unsigned int no_cond_jump_promotion = 0;
static unsigned int no_cond_jump_promotion = 0;
 
 
/* Encode SSE instructions with VEX prefix.  */
/* Encode SSE instructions with VEX prefix.  */
static unsigned int sse2avx;
static unsigned int sse2avx;
 
 
/* Pre-defined "_GLOBAL_OFFSET_TABLE_".  */
/* Pre-defined "_GLOBAL_OFFSET_TABLE_".  */
static symbolS *GOT_symbol;
static symbolS *GOT_symbol;
 
 
/* The dwarf2 return column, adjusted for 32 or 64 bit.  */
/* The dwarf2 return column, adjusted for 32 or 64 bit.  */
unsigned int x86_dwarf2_return_column;
unsigned int x86_dwarf2_return_column;
 
 
/* The dwarf2 data alignment, adjusted for 32 or 64 bit.  */
/* The dwarf2 data alignment, adjusted for 32 or 64 bit.  */
int x86_cie_data_alignment;
int x86_cie_data_alignment;
 
 
/* Interface to relax_segment.
/* Interface to relax_segment.
   There are 3 major relax states for 386 jump insns because the
   There are 3 major relax states for 386 jump insns because the
   different types of jumps add different sizes to frags when we're
   different types of jumps add different sizes to frags when we're
   figuring out what sort of jump to choose to reach a given label.  */
   figuring out what sort of jump to choose to reach a given label.  */
 
 
/* Types.  */
/* Types.  */
#define UNCOND_JUMP 0
#define UNCOND_JUMP 0
#define COND_JUMP 1
#define COND_JUMP 1
#define COND_JUMP86 2
#define COND_JUMP86 2
 
 
/* Sizes.  */
/* Sizes.  */
#define CODE16  1
#define CODE16  1
#define SMALL   0
#define SMALL   0
#define SMALL16 (SMALL | CODE16)
#define SMALL16 (SMALL | CODE16)
#define BIG     2
#define BIG     2
#define BIG16   (BIG | CODE16)
#define BIG16   (BIG | CODE16)
 
 
#ifndef INLINE
#ifndef INLINE
#ifdef __GNUC__
#ifdef __GNUC__
#define INLINE __inline__
#define INLINE __inline__
#else
#else
#define INLINE
#define INLINE
#endif
#endif
#endif
#endif
 
 
#define ENCODE_RELAX_STATE(type, size) \
#define ENCODE_RELAX_STATE(type, size) \
  ((relax_substateT) (((type) << 2) | (size)))
  ((relax_substateT) (((type) << 2) | (size)))
#define TYPE_FROM_RELAX_STATE(s) \
#define TYPE_FROM_RELAX_STATE(s) \
  ((s) >> 2)
  ((s) >> 2)
#define DISP_SIZE_FROM_RELAX_STATE(s) \
#define DISP_SIZE_FROM_RELAX_STATE(s) \
    ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
    ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
 
 
/* This table is used by relax_frag to promote short jumps to long
/* This table is used by relax_frag to promote short jumps to long
   ones where necessary.  SMALL (short) jumps may be promoted to BIG
   ones where necessary.  SMALL (short) jumps may be promoted to BIG
   (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long).  We
   (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long).  We
   don't allow a short jump in a 32 bit code segment to be promoted to
   don't allow a short jump in a 32 bit code segment to be promoted to
   a 16 bit offset jump because it's slower (requires data size
   a 16 bit offset jump because it's slower (requires data size
   prefix), and doesn't work, unless the destination is in the bottom
   prefix), and doesn't work, unless the destination is in the bottom
   64k of the code segment (The top 16 bits of eip are zeroed).  */
   64k of the code segment (The top 16 bits of eip are zeroed).  */
 
 
const relax_typeS md_relax_table[] =
const relax_typeS md_relax_table[] =
{
{
  /* The fields are:
  /* The fields are:
     1) most positive reach of this state,
     1) most positive reach of this state,
     2) most negative reach of this state,
     2) most negative reach of this state,
     3) how many bytes this mode will have in the variable part of the frag
     3) how many bytes this mode will have in the variable part of the frag
     4) which index into the table to try if we can't fit into this one.  */
     4) which index into the table to try if we can't fit into this one.  */
 
 
  /* UNCOND_JUMP states.  */
  /* UNCOND_JUMP states.  */
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
  /* dword jmp adds 4 bytes to frag:
  /* dword jmp adds 4 bytes to frag:
     0 extra opcode bytes, 4 displacement bytes.  */
     0 extra opcode bytes, 4 displacement bytes.  */
  {0, 0, 4, 0},
  {0, 0, 4, 0},
  /* word jmp adds 2 byte2 to frag:
  /* word jmp adds 2 byte2 to frag:
     0 extra opcode bytes, 2 displacement bytes.  */
     0 extra opcode bytes, 2 displacement bytes.  */
  {0, 0, 2, 0},
  {0, 0, 2, 0},
 
 
  /* COND_JUMP states.  */
  /* COND_JUMP states.  */
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
  /* dword conditionals adds 5 bytes to frag:
  /* dword conditionals adds 5 bytes to frag:
     1 extra opcode byte, 4 displacement bytes.  */
     1 extra opcode byte, 4 displacement bytes.  */
  {0, 0, 5, 0},
  {0, 0, 5, 0},
  /* word conditionals add 3 bytes to frag:
  /* word conditionals add 3 bytes to frag:
     1 extra opcode byte, 2 displacement bytes.  */
     1 extra opcode byte, 2 displacement bytes.  */
  {0, 0, 3, 0},
  {0, 0, 3, 0},
 
 
  /* COND_JUMP86 states.  */
  /* COND_JUMP86 states.  */
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
  {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
  /* dword conditionals adds 5 bytes to frag:
  /* dword conditionals adds 5 bytes to frag:
     1 extra opcode byte, 4 displacement bytes.  */
     1 extra opcode byte, 4 displacement bytes.  */
  {0, 0, 5, 0},
  {0, 0, 5, 0},
  /* word conditionals add 4 bytes to frag:
  /* word conditionals add 4 bytes to frag:
     1 displacement byte and a 3 byte long branch insn.  */
     1 displacement byte and a 3 byte long branch insn.  */
  {0, 0, 4, 0}
  {0, 0, 4, 0}
};
};
 
 
static const arch_entry cpu_arch[] =
static const arch_entry cpu_arch[] =
{
{
  { "generic32", PROCESSOR_GENERIC32,
  { "generic32", PROCESSOR_GENERIC32,
    CPU_GENERIC32_FLAGS },
    CPU_GENERIC32_FLAGS },
  { "generic64", PROCESSOR_GENERIC64,
  { "generic64", PROCESSOR_GENERIC64,
    CPU_GENERIC64_FLAGS },
    CPU_GENERIC64_FLAGS },
  { "i8086", PROCESSOR_UNKNOWN,
  { "i8086", PROCESSOR_UNKNOWN,
    CPU_NONE_FLAGS },
    CPU_NONE_FLAGS },
  { "i186", PROCESSOR_UNKNOWN,
  { "i186", PROCESSOR_UNKNOWN,
    CPU_I186_FLAGS },
    CPU_I186_FLAGS },
  { "i286", PROCESSOR_UNKNOWN,
  { "i286", PROCESSOR_UNKNOWN,
    CPU_I286_FLAGS },
    CPU_I286_FLAGS },
  { "i386", PROCESSOR_I386,
  { "i386", PROCESSOR_I386,
    CPU_I386_FLAGS },
    CPU_I386_FLAGS },
  { "i486", PROCESSOR_I486,
  { "i486", PROCESSOR_I486,
    CPU_I486_FLAGS },
    CPU_I486_FLAGS },
  { "i586", PROCESSOR_PENTIUM,
  { "i586", PROCESSOR_PENTIUM,
    CPU_I586_FLAGS },
    CPU_I586_FLAGS },
  { "i686", PROCESSOR_PENTIUMPRO,
  { "i686", PROCESSOR_PENTIUMPRO,
    CPU_I686_FLAGS },
    CPU_I686_FLAGS },
  { "pentium", PROCESSOR_PENTIUM,
  { "pentium", PROCESSOR_PENTIUM,
    CPU_I586_FLAGS },
    CPU_I586_FLAGS },
  { "pentiumpro", PROCESSOR_PENTIUMPRO,
  { "pentiumpro", PROCESSOR_PENTIUMPRO,
    CPU_I686_FLAGS },
    CPU_I686_FLAGS },
  { "pentiumii", PROCESSOR_PENTIUMPRO,
  { "pentiumii", PROCESSOR_PENTIUMPRO,
    CPU_P2_FLAGS },
    CPU_P2_FLAGS },
  { "pentiumiii",PROCESSOR_PENTIUMPRO,
  { "pentiumiii",PROCESSOR_PENTIUMPRO,
    CPU_P3_FLAGS },
    CPU_P3_FLAGS },
  { "pentium4", PROCESSOR_PENTIUM4,
  { "pentium4", PROCESSOR_PENTIUM4,
    CPU_P4_FLAGS },
    CPU_P4_FLAGS },
  { "prescott", PROCESSOR_NOCONA,
  { "prescott", PROCESSOR_NOCONA,
    CPU_CORE_FLAGS },
    CPU_CORE_FLAGS },
  { "nocona", PROCESSOR_NOCONA,
  { "nocona", PROCESSOR_NOCONA,
    CPU_NOCONA_FLAGS },
    CPU_NOCONA_FLAGS },
  { "yonah", PROCESSOR_CORE,
  { "yonah", PROCESSOR_CORE,
    CPU_CORE_FLAGS },
    CPU_CORE_FLAGS },
  { "core", PROCESSOR_CORE,
  { "core", PROCESSOR_CORE,
    CPU_CORE_FLAGS },
    CPU_CORE_FLAGS },
  { "merom", PROCESSOR_CORE2,
  { "merom", PROCESSOR_CORE2,
    CPU_CORE2_FLAGS },
    CPU_CORE2_FLAGS },
  { "core2", PROCESSOR_CORE2,
  { "core2", PROCESSOR_CORE2,
    CPU_CORE2_FLAGS },
    CPU_CORE2_FLAGS },
  { "k6", PROCESSOR_K6,
  { "k6", PROCESSOR_K6,
    CPU_K6_FLAGS },
    CPU_K6_FLAGS },
  { "k6_2", PROCESSOR_K6,
  { "k6_2", PROCESSOR_K6,
    CPU_K6_2_FLAGS },
    CPU_K6_2_FLAGS },
  { "athlon", PROCESSOR_ATHLON,
  { "athlon", PROCESSOR_ATHLON,
    CPU_ATHLON_FLAGS },
    CPU_ATHLON_FLAGS },
  { "sledgehammer", PROCESSOR_K8,
  { "sledgehammer", PROCESSOR_K8,
    CPU_K8_FLAGS },
    CPU_K8_FLAGS },
  { "opteron", PROCESSOR_K8,
  { "opteron", PROCESSOR_K8,
    CPU_K8_FLAGS },
    CPU_K8_FLAGS },
  { "k8", PROCESSOR_K8,
  { "k8", PROCESSOR_K8,
    CPU_K8_FLAGS },
    CPU_K8_FLAGS },
  { "amdfam10", PROCESSOR_AMDFAM10,
  { "amdfam10", PROCESSOR_AMDFAM10,
    CPU_AMDFAM10_FLAGS },
    CPU_AMDFAM10_FLAGS },
  { ".mmx", PROCESSOR_UNKNOWN,
  { ".mmx", PROCESSOR_UNKNOWN,
    CPU_MMX_FLAGS },
    CPU_MMX_FLAGS },
  { ".sse", PROCESSOR_UNKNOWN,
  { ".sse", PROCESSOR_UNKNOWN,
    CPU_SSE_FLAGS },
    CPU_SSE_FLAGS },
  { ".sse2", PROCESSOR_UNKNOWN,
  { ".sse2", PROCESSOR_UNKNOWN,
    CPU_SSE2_FLAGS },
    CPU_SSE2_FLAGS },
  { ".sse3", PROCESSOR_UNKNOWN,
  { ".sse3", PROCESSOR_UNKNOWN,
    CPU_SSE3_FLAGS },
    CPU_SSE3_FLAGS },
  { ".ssse3", PROCESSOR_UNKNOWN,
  { ".ssse3", PROCESSOR_UNKNOWN,
    CPU_SSSE3_FLAGS },
    CPU_SSSE3_FLAGS },
  { ".sse4.1", PROCESSOR_UNKNOWN,
  { ".sse4.1", PROCESSOR_UNKNOWN,
    CPU_SSE4_1_FLAGS },
    CPU_SSE4_1_FLAGS },
  { ".sse4.2", PROCESSOR_UNKNOWN,
  { ".sse4.2", PROCESSOR_UNKNOWN,
    CPU_SSE4_2_FLAGS },
    CPU_SSE4_2_FLAGS },
  { ".sse4", PROCESSOR_UNKNOWN,
  { ".sse4", PROCESSOR_UNKNOWN,
    CPU_SSE4_2_FLAGS },
    CPU_SSE4_2_FLAGS },
  { ".avx", PROCESSOR_UNKNOWN,
  { ".avx", PROCESSOR_UNKNOWN,
    CPU_AVX_FLAGS },
    CPU_AVX_FLAGS },
  { ".vmx", PROCESSOR_UNKNOWN,
  { ".vmx", PROCESSOR_UNKNOWN,
    CPU_VMX_FLAGS },
    CPU_VMX_FLAGS },
  { ".smx", PROCESSOR_UNKNOWN,
  { ".smx", PROCESSOR_UNKNOWN,
    CPU_SMX_FLAGS },
    CPU_SMX_FLAGS },
  { ".xsave", PROCESSOR_UNKNOWN,
  { ".xsave", PROCESSOR_UNKNOWN,
    CPU_XSAVE_FLAGS },
    CPU_XSAVE_FLAGS },
  { ".aes", PROCESSOR_UNKNOWN,
  { ".aes", PROCESSOR_UNKNOWN,
    CPU_AES_FLAGS },
    CPU_AES_FLAGS },
  { ".pclmul", PROCESSOR_UNKNOWN,
  { ".pclmul", PROCESSOR_UNKNOWN,
    CPU_PCLMUL_FLAGS },
    CPU_PCLMUL_FLAGS },
  { ".clmul", PROCESSOR_UNKNOWN,
  { ".clmul", PROCESSOR_UNKNOWN,
    CPU_PCLMUL_FLAGS },
    CPU_PCLMUL_FLAGS },
  { ".fma", PROCESSOR_UNKNOWN,
  { ".fma", PROCESSOR_UNKNOWN,
    CPU_FMA_FLAGS },
    CPU_FMA_FLAGS },
  { ".movbe", PROCESSOR_UNKNOWN,
  { ".movbe", PROCESSOR_UNKNOWN,
    CPU_MOVBE_FLAGS },
    CPU_MOVBE_FLAGS },
  { ".ept", PROCESSOR_UNKNOWN,
  { ".ept", PROCESSOR_UNKNOWN,
    CPU_EPT_FLAGS },
    CPU_EPT_FLAGS },
  { ".3dnow", PROCESSOR_UNKNOWN,
  { ".3dnow", PROCESSOR_UNKNOWN,
    CPU_3DNOW_FLAGS },
    CPU_3DNOW_FLAGS },
  { ".3dnowa", PROCESSOR_UNKNOWN,
  { ".3dnowa", PROCESSOR_UNKNOWN,
    CPU_3DNOWA_FLAGS },
    CPU_3DNOWA_FLAGS },
  { ".padlock", PROCESSOR_UNKNOWN,
  { ".padlock", PROCESSOR_UNKNOWN,
    CPU_PADLOCK_FLAGS },
    CPU_PADLOCK_FLAGS },
  { ".pacifica", PROCESSOR_UNKNOWN,
  { ".pacifica", PROCESSOR_UNKNOWN,
    CPU_SVME_FLAGS },
    CPU_SVME_FLAGS },
  { ".svme", PROCESSOR_UNKNOWN,
  { ".svme", PROCESSOR_UNKNOWN,
    CPU_SVME_FLAGS },
    CPU_SVME_FLAGS },
  { ".sse4a", PROCESSOR_UNKNOWN,
  { ".sse4a", PROCESSOR_UNKNOWN,
    CPU_SSE4A_FLAGS },
    CPU_SSE4A_FLAGS },
  { ".abm", PROCESSOR_UNKNOWN,
  { ".abm", PROCESSOR_UNKNOWN,
    CPU_ABM_FLAGS },
    CPU_ABM_FLAGS },
  { ".sse5", PROCESSOR_UNKNOWN,
  { ".sse5", PROCESSOR_UNKNOWN,
    CPU_SSE5_FLAGS },
    CPU_SSE5_FLAGS },
};
};
 
 
const pseudo_typeS md_pseudo_table[] =
const pseudo_typeS md_pseudo_table[] =
{
{
#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
#if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
  {"align", s_align_bytes, 0},
  {"align", s_align_bytes, 0},
#else
#else
  {"align", s_align_ptwo, 0},
  {"align", s_align_ptwo, 0},
#endif
#endif
  {"arch", set_cpu_arch, 0},
  {"arch", set_cpu_arch, 0},
#ifndef I386COFF
#ifndef I386COFF
  {"bss", s_bss, 0},
  {"bss", s_bss, 0},
#endif
#endif
  {"ffloat", float_cons, 'f'},
  {"ffloat", float_cons, 'f'},
  {"dfloat", float_cons, 'd'},
  {"dfloat", float_cons, 'd'},
  {"tfloat", float_cons, 'x'},
  {"tfloat", float_cons, 'x'},
  {"value", cons, 2},
  {"value", cons, 2},
  {"slong", signed_cons, 4},
  {"slong", signed_cons, 4},
  {"noopt", s_ignore, 0},
  {"noopt", s_ignore, 0},
  {"optim", s_ignore, 0},
  {"optim", s_ignore, 0},
  {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
  {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
  {"code16", set_code_flag, CODE_16BIT},
  {"code16", set_code_flag, CODE_16BIT},
  {"code32", set_code_flag, CODE_32BIT},
  {"code32", set_code_flag, CODE_32BIT},
  {"code64", set_code_flag, CODE_64BIT},
  {"code64", set_code_flag, CODE_64BIT},
  {"intel_syntax", set_intel_syntax, 1},
  {"intel_syntax", set_intel_syntax, 1},
  {"att_syntax", set_intel_syntax, 0},
  {"att_syntax", set_intel_syntax, 0},
  {"intel_mnemonic", set_intel_mnemonic, 1},
  {"intel_mnemonic", set_intel_mnemonic, 1},
  {"att_mnemonic", set_intel_mnemonic, 0},
  {"att_mnemonic", set_intel_mnemonic, 0},
  {"allow_index_reg", set_allow_index_reg, 1},
  {"allow_index_reg", set_allow_index_reg, 1},
  {"disallow_index_reg", set_allow_index_reg, 0},
  {"disallow_index_reg", set_allow_index_reg, 0},
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
  {"largecomm", handle_large_common, 0},
  {"largecomm", handle_large_common, 0},
#else
#else
  {"file", (void (*) (int)) dwarf2_directive_file, 0},
  {"file", (void (*) (int)) dwarf2_directive_file, 0},
  {"loc", dwarf2_directive_loc, 0},
  {"loc", dwarf2_directive_loc, 0},
  {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
  {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
#endif
#endif
#ifdef TE_PE
#ifdef TE_PE
  {"secrel32", pe_directive_secrel, 0},
  {"secrel32", pe_directive_secrel, 0},
#endif
#endif
  {0, 0, 0}
  {0, 0, 0}
};
};
 
 
/* For interface with expression ().  */
/* For interface with expression ().  */
extern char *input_line_pointer;
extern char *input_line_pointer;
 
 
/* Hash table for instruction mnemonic lookup.  */
/* Hash table for instruction mnemonic lookup.  */
static struct hash_control *op_hash;
static struct hash_control *op_hash;
 
 
/* Hash table for register lookup.  */
/* Hash table for register lookup.  */
static struct hash_control *reg_hash;
static struct hash_control *reg_hash;


void
void
i386_align_code (fragS *fragP, int count)
i386_align_code (fragS *fragP, int count)
{
{
  /* Various efficient no-op patterns for aligning code labels.
  /* Various efficient no-op patterns for aligning code labels.
     Note: Don't try to assemble the instructions in the comments.
     Note: Don't try to assemble the instructions in the comments.
     0L and 0w are not legal.  */
     0L and 0w are not legal.  */
  static const char f32_1[] =
  static const char f32_1[] =
    {0x90};                                     /* nop                  */
    {0x90};                                     /* nop                  */
  static const char f32_2[] =
  static const char f32_2[] =
    {0x66,0x90};                                /* xchg %ax,%ax */
    {0x66,0x90};                                /* xchg %ax,%ax */
  static const char f32_3[] =
  static const char f32_3[] =
    {0x8d,0x76,0x00};                           /* leal 0(%esi),%esi    */
    {0x8d,0x76,0x00};                           /* leal 0(%esi),%esi    */
  static const char f32_4[] =
  static const char f32_4[] =
    {0x8d,0x74,0x26,0x00};                      /* leal 0(%esi,1),%esi  */
    {0x8d,0x74,0x26,0x00};                      /* leal 0(%esi,1),%esi  */
  static const char f32_5[] =
  static const char f32_5[] =
    {0x90,                                      /* nop                  */
    {0x90,                                      /* nop                  */
     0x8d,0x74,0x26,0x00};                      /* leal 0(%esi,1),%esi  */
     0x8d,0x74,0x26,0x00};                      /* leal 0(%esi,1),%esi  */
  static const char f32_6[] =
  static const char f32_6[] =
    {0x8d,0xb6,0x00,0x00,0x00,0x00};            /* leal 0L(%esi),%esi   */
    {0x8d,0xb6,0x00,0x00,0x00,0x00};            /* leal 0L(%esi),%esi   */
  static const char f32_7[] =
  static const char f32_7[] =
    {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00};       /* leal 0L(%esi,1),%esi */
    {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00};       /* leal 0L(%esi,1),%esi */
  static const char f32_8[] =
  static const char f32_8[] =
    {0x90,                                      /* nop                  */
    {0x90,                                      /* nop                  */
     0x8d,0xb4,0x26,0x00,0x00,0x00,0x00};       /* leal 0L(%esi,1),%esi */
     0x8d,0xb4,0x26,0x00,0x00,0x00,0x00};       /* leal 0L(%esi,1),%esi */
  static const char f32_9[] =
  static const char f32_9[] =
    {0x89,0xf6,                                 /* movl %esi,%esi       */
    {0x89,0xf6,                                 /* movl %esi,%esi       */
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};       /* leal 0L(%edi,1),%edi */
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};       /* leal 0L(%edi,1),%edi */
  static const char f32_10[] =
  static const char f32_10[] =
    {0x8d,0x76,0x00,                            /* leal 0(%esi),%esi    */
    {0x8d,0x76,0x00,                            /* leal 0(%esi),%esi    */
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};       /* leal 0L(%edi,1),%edi */
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};       /* leal 0L(%edi,1),%edi */
  static const char f32_11[] =
  static const char f32_11[] =
    {0x8d,0x74,0x26,0x00,                       /* leal 0(%esi,1),%esi  */
    {0x8d,0x74,0x26,0x00,                       /* leal 0(%esi,1),%esi  */
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};       /* leal 0L(%edi,1),%edi */
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};       /* leal 0L(%edi,1),%edi */
  static const char f32_12[] =
  static const char f32_12[] =
    {0x8d,0xb6,0x00,0x00,0x00,0x00,             /* leal 0L(%esi),%esi   */
    {0x8d,0xb6,0x00,0x00,0x00,0x00,             /* leal 0L(%esi),%esi   */
     0x8d,0xbf,0x00,0x00,0x00,0x00};            /* leal 0L(%edi),%edi   */
     0x8d,0xbf,0x00,0x00,0x00,0x00};            /* leal 0L(%edi),%edi   */
  static const char f32_13[] =
  static const char f32_13[] =
    {0x8d,0xb6,0x00,0x00,0x00,0x00,             /* leal 0L(%esi),%esi   */
    {0x8d,0xb6,0x00,0x00,0x00,0x00,             /* leal 0L(%esi),%esi   */
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};       /* leal 0L(%edi,1),%edi */
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};       /* leal 0L(%edi,1),%edi */
  static const char f32_14[] =
  static const char f32_14[] =
    {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00,        /* leal 0L(%esi,1),%esi */
    {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00,        /* leal 0L(%esi,1),%esi */
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};       /* leal 0L(%edi,1),%edi */
     0x8d,0xbc,0x27,0x00,0x00,0x00,0x00};       /* leal 0L(%edi,1),%edi */
  static const char f16_3[] =
  static const char f16_3[] =
    {0x8d,0x74,0x00};                           /* lea 0(%esi),%esi     */
    {0x8d,0x74,0x00};                           /* lea 0(%esi),%esi     */
  static const char f16_4[] =
  static const char f16_4[] =
    {0x8d,0xb4,0x00,0x00};                      /* lea 0w(%si),%si      */
    {0x8d,0xb4,0x00,0x00};                      /* lea 0w(%si),%si      */
  static const char f16_5[] =
  static const char f16_5[] =
    {0x90,                                      /* nop                  */
    {0x90,                                      /* nop                  */
     0x8d,0xb4,0x00,0x00};                      /* lea 0w(%si),%si      */
     0x8d,0xb4,0x00,0x00};                      /* lea 0w(%si),%si      */
  static const char f16_6[] =
  static const char f16_6[] =
    {0x89,0xf6,                                 /* mov %si,%si          */
    {0x89,0xf6,                                 /* mov %si,%si          */
     0x8d,0xbd,0x00,0x00};                      /* lea 0w(%di),%di      */
     0x8d,0xbd,0x00,0x00};                      /* lea 0w(%di),%di      */
  static const char f16_7[] =
  static const char f16_7[] =
    {0x8d,0x74,0x00,                            /* lea 0(%si),%si       */
    {0x8d,0x74,0x00,                            /* lea 0(%si),%si       */
     0x8d,0xbd,0x00,0x00};                      /* lea 0w(%di),%di      */
     0x8d,0xbd,0x00,0x00};                      /* lea 0w(%di),%di      */
  static const char f16_8[] =
  static const char f16_8[] =
    {0x8d,0xb4,0x00,0x00,                       /* lea 0w(%si),%si      */
    {0x8d,0xb4,0x00,0x00,                       /* lea 0w(%si),%si      */
     0x8d,0xbd,0x00,0x00};                      /* lea 0w(%di),%di      */
     0x8d,0xbd,0x00,0x00};                      /* lea 0w(%di),%di      */
  static const char jump_31[] =
  static const char jump_31[] =
    {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90,        /* jmp .+31; lotsa nops */
    {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90,        /* jmp .+31; lotsa nops */
     0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
     0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
     0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
     0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
     0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
     0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
  static const char *const f32_patt[] = {
  static const char *const f32_patt[] = {
    f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
    f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
    f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
    f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
  };
  };
  static const char *const f16_patt[] = {
  static const char *const f16_patt[] = {
    f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
    f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
  };
  };
  /* nopl (%[re]ax) */
  /* nopl (%[re]ax) */
  static const char alt_3[] =
  static const char alt_3[] =
    {0x0f,0x1f,0x00};
    {0x0f,0x1f,0x00};
  /* nopl 0(%[re]ax) */
  /* nopl 0(%[re]ax) */
  static const char alt_4[] =
  static const char alt_4[] =
    {0x0f,0x1f,0x40,0x00};
    {0x0f,0x1f,0x40,0x00};
  /* nopl 0(%[re]ax,%[re]ax,1) */
  /* nopl 0(%[re]ax,%[re]ax,1) */
  static const char alt_5[] =
  static const char alt_5[] =
    {0x0f,0x1f,0x44,0x00,0x00};
    {0x0f,0x1f,0x44,0x00,0x00};
  /* nopw 0(%[re]ax,%[re]ax,1) */
  /* nopw 0(%[re]ax,%[re]ax,1) */
  static const char alt_6[] =
  static const char alt_6[] =
    {0x66,0x0f,0x1f,0x44,0x00,0x00};
    {0x66,0x0f,0x1f,0x44,0x00,0x00};
  /* nopl 0L(%[re]ax) */
  /* nopl 0L(%[re]ax) */
  static const char alt_7[] =
  static const char alt_7[] =
    {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
    {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
  /* nopl 0L(%[re]ax,%[re]ax,1) */
  /* nopl 0L(%[re]ax,%[re]ax,1) */
  static const char alt_8[] =
  static const char alt_8[] =
    {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
    {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
  /* nopw 0L(%[re]ax,%[re]ax,1) */
  /* nopw 0L(%[re]ax,%[re]ax,1) */
  static const char alt_9[] =
  static const char alt_9[] =
    {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
    {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
  /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
  /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
  static const char alt_10[] =
  static const char alt_10[] =
    {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
    {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
  /* data16
  /* data16
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
  static const char alt_long_11[] =
  static const char alt_long_11[] =
    {0x66,
    {0x66,
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
  /* data16
  /* data16
     data16
     data16
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
  static const char alt_long_12[] =
  static const char alt_long_12[] =
    {0x66,
    {0x66,
     0x66,
     0x66,
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
  /* data16
  /* data16
     data16
     data16
     data16
     data16
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
  static const char alt_long_13[] =
  static const char alt_long_13[] =
    {0x66,
    {0x66,
     0x66,
     0x66,
     0x66,
     0x66,
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
  /* data16
  /* data16
     data16
     data16
     data16
     data16
     data16
     data16
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
  static const char alt_long_14[] =
  static const char alt_long_14[] =
    {0x66,
    {0x66,
     0x66,
     0x66,
     0x66,
     0x66,
     0x66,
     0x66,
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
  /* data16
  /* data16
     data16
     data16
     data16
     data16
     data16
     data16
     data16
     data16
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
     nopw %cs:0L(%[re]ax,%[re]ax,1) */
  static const char alt_long_15[] =
  static const char alt_long_15[] =
    {0x66,
    {0x66,
     0x66,
     0x66,
     0x66,
     0x66,
     0x66,
     0x66,
     0x66,
     0x66,
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
     0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
  /* nopl 0(%[re]ax,%[re]ax,1)
  /* nopl 0(%[re]ax,%[re]ax,1)
     nopw 0(%[re]ax,%[re]ax,1) */
     nopw 0(%[re]ax,%[re]ax,1) */
  static const char alt_short_11[] =
  static const char alt_short_11[] =
    {0x0f,0x1f,0x44,0x00,0x00,
    {0x0f,0x1f,0x44,0x00,0x00,
     0x66,0x0f,0x1f,0x44,0x00,0x00};
     0x66,0x0f,0x1f,0x44,0x00,0x00};
  /* nopw 0(%[re]ax,%[re]ax,1)
  /* nopw 0(%[re]ax,%[re]ax,1)
     nopw 0(%[re]ax,%[re]ax,1) */
     nopw 0(%[re]ax,%[re]ax,1) */
  static const char alt_short_12[] =
  static const char alt_short_12[] =
    {0x66,0x0f,0x1f,0x44,0x00,0x00,
    {0x66,0x0f,0x1f,0x44,0x00,0x00,
     0x66,0x0f,0x1f,0x44,0x00,0x00};
     0x66,0x0f,0x1f,0x44,0x00,0x00};
  /* nopw 0(%[re]ax,%[re]ax,1)
  /* nopw 0(%[re]ax,%[re]ax,1)
     nopl 0L(%[re]ax) */
     nopl 0L(%[re]ax) */
  static const char alt_short_13[] =
  static const char alt_short_13[] =
    {0x66,0x0f,0x1f,0x44,0x00,0x00,
    {0x66,0x0f,0x1f,0x44,0x00,0x00,
     0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
     0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
  /* nopl 0L(%[re]ax)
  /* nopl 0L(%[re]ax)
     nopl 0L(%[re]ax) */
     nopl 0L(%[re]ax) */
  static const char alt_short_14[] =
  static const char alt_short_14[] =
    {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
    {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
     0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
     0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
  /* nopl 0L(%[re]ax)
  /* nopl 0L(%[re]ax)
     nopl 0L(%[re]ax,%[re]ax,1) */
     nopl 0L(%[re]ax,%[re]ax,1) */
  static const char alt_short_15[] =
  static const char alt_short_15[] =
    {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
    {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
     0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
     0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
  static const char *const alt_short_patt[] = {
  static const char *const alt_short_patt[] = {
    f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
    f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
    alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
    alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
    alt_short_14, alt_short_15
    alt_short_14, alt_short_15
  };
  };
  static const char *const alt_long_patt[] = {
  static const char *const alt_long_patt[] = {
    f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
    f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
    alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
    alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
    alt_long_14, alt_long_15
    alt_long_14, alt_long_15
  };
  };
 
 
  /* Only align for at least a positive non-zero boundary. */
  /* Only align for at least a positive non-zero boundary. */
  if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
  if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
    return;
    return;
 
 
  /* We need to decide which NOP sequence to use for 32bit and
  /* We need to decide which NOP sequence to use for 32bit and
     64bit. When -mtune= is used:
     64bit. When -mtune= is used:
 
 
     1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
     1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
     PROCESSOR_GENERIC32, f32_patt will be used.
     PROCESSOR_GENERIC32, f32_patt will be used.
     2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
     2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
     PROCESSOR_CORE, PROCESSOR_CORE2, and PROCESSOR_GENERIC64,
     PROCESSOR_CORE, PROCESSOR_CORE2, and PROCESSOR_GENERIC64,
     alt_long_patt will be used.
     alt_long_patt will be used.
     3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
     3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
     PROCESSOR_AMDFAM10, alt_short_patt will be used.
     PROCESSOR_AMDFAM10, alt_short_patt will be used.
 
 
     When -mtune= isn't used, alt_long_patt will be used if
     When -mtune= isn't used, alt_long_patt will be used if
     cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
     cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
     be used.
     be used.
 
 
     When -march= or .arch is used, we can't use anything beyond
     When -march= or .arch is used, we can't use anything beyond
     cpu_arch_isa_flags.   */
     cpu_arch_isa_flags.   */
 
 
  if (flag_code == CODE_16BIT)
  if (flag_code == CODE_16BIT)
    {
    {
      if (count > 8)
      if (count > 8)
        {
        {
          memcpy (fragP->fr_literal + fragP->fr_fix,
          memcpy (fragP->fr_literal + fragP->fr_fix,
                  jump_31, count);
                  jump_31, count);
          /* Adjust jump offset.  */
          /* Adjust jump offset.  */
          fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
          fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
        }
        }
      else
      else
        memcpy (fragP->fr_literal + fragP->fr_fix,
        memcpy (fragP->fr_literal + fragP->fr_fix,
                f16_patt[count - 1], count);
                f16_patt[count - 1], count);
    }
    }
  else
  else
    {
    {
      const char *const *patt = NULL;
      const char *const *patt = NULL;
 
 
      if (cpu_arch_isa == PROCESSOR_UNKNOWN)
      if (cpu_arch_isa == PROCESSOR_UNKNOWN)
        {
        {
          /* PROCESSOR_UNKNOWN means that all ISAs may be used.  */
          /* PROCESSOR_UNKNOWN means that all ISAs may be used.  */
          switch (cpu_arch_tune)
          switch (cpu_arch_tune)
            {
            {
            case PROCESSOR_UNKNOWN:
            case PROCESSOR_UNKNOWN:
              /* We use cpu_arch_isa_flags to check if we SHOULD
              /* We use cpu_arch_isa_flags to check if we SHOULD
                 optimize for Cpu686.  */
                 optimize for Cpu686.  */
              if (cpu_arch_isa_flags.bitfield.cpui686)
              if (cpu_arch_isa_flags.bitfield.cpui686)
                patt = alt_long_patt;
                patt = alt_long_patt;
              else
              else
                patt = f32_patt;
                patt = f32_patt;
              break;
              break;
            case PROCESSOR_PENTIUMPRO:
            case PROCESSOR_PENTIUMPRO:
            case PROCESSOR_PENTIUM4:
            case PROCESSOR_PENTIUM4:
            case PROCESSOR_NOCONA:
            case PROCESSOR_NOCONA:
            case PROCESSOR_CORE:
            case PROCESSOR_CORE:
            case PROCESSOR_CORE2:
            case PROCESSOR_CORE2:
            case PROCESSOR_GENERIC64:
            case PROCESSOR_GENERIC64:
              patt = alt_long_patt;
              patt = alt_long_patt;
              break;
              break;
            case PROCESSOR_K6:
            case PROCESSOR_K6:
            case PROCESSOR_ATHLON:
            case PROCESSOR_ATHLON:
            case PROCESSOR_K8:
            case PROCESSOR_K8:
            case PROCESSOR_AMDFAM10:
            case PROCESSOR_AMDFAM10:
              patt = alt_short_patt;
              patt = alt_short_patt;
              break;
              break;
            case PROCESSOR_I386:
            case PROCESSOR_I386:
            case PROCESSOR_I486:
            case PROCESSOR_I486:
            case PROCESSOR_PENTIUM:
            case PROCESSOR_PENTIUM:
            case PROCESSOR_GENERIC32:
            case PROCESSOR_GENERIC32:
              patt = f32_patt;
              patt = f32_patt;
              break;
              break;
            }
            }
        }
        }
      else
      else
        {
        {
          switch (cpu_arch_tune)
          switch (cpu_arch_tune)
            {
            {
            case PROCESSOR_UNKNOWN:
            case PROCESSOR_UNKNOWN:
              /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
              /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
                 PROCESSOR_UNKNOWN.  */
                 PROCESSOR_UNKNOWN.  */
              abort ();
              abort ();
              break;
              break;
 
 
            case PROCESSOR_I386:
            case PROCESSOR_I386:
            case PROCESSOR_I486:
            case PROCESSOR_I486:
            case PROCESSOR_PENTIUM:
            case PROCESSOR_PENTIUM:
            case PROCESSOR_K6:
            case PROCESSOR_K6:
            case PROCESSOR_ATHLON:
            case PROCESSOR_ATHLON:
            case PROCESSOR_K8:
            case PROCESSOR_K8:
            case PROCESSOR_AMDFAM10:
            case PROCESSOR_AMDFAM10:
            case PROCESSOR_GENERIC32:
            case PROCESSOR_GENERIC32:
              /* We use cpu_arch_isa_flags to check if we CAN optimize
              /* We use cpu_arch_isa_flags to check if we CAN optimize
                 for Cpu686.  */
                 for Cpu686.  */
              if (cpu_arch_isa_flags.bitfield.cpui686)
              if (cpu_arch_isa_flags.bitfield.cpui686)
                patt = alt_short_patt;
                patt = alt_short_patt;
              else
              else
                patt = f32_patt;
                patt = f32_patt;
              break;
              break;
            case PROCESSOR_PENTIUMPRO:
            case PROCESSOR_PENTIUMPRO:
            case PROCESSOR_PENTIUM4:
            case PROCESSOR_PENTIUM4:
            case PROCESSOR_NOCONA:
            case PROCESSOR_NOCONA:
            case PROCESSOR_CORE:
            case PROCESSOR_CORE:
            case PROCESSOR_CORE2:
            case PROCESSOR_CORE2:
              if (cpu_arch_isa_flags.bitfield.cpui686)
              if (cpu_arch_isa_flags.bitfield.cpui686)
                patt = alt_long_patt;
                patt = alt_long_patt;
              else
              else
                patt = f32_patt;
                patt = f32_patt;
              break;
              break;
            case PROCESSOR_GENERIC64:
            case PROCESSOR_GENERIC64:
              patt = alt_long_patt;
              patt = alt_long_patt;
              break;
              break;
            }
            }
        }
        }
 
 
      if (patt == f32_patt)
      if (patt == f32_patt)
        {
        {
          /* If the padding is less than 15 bytes, we use the normal
          /* If the padding is less than 15 bytes, we use the normal
             ones.  Otherwise, we use a jump instruction and adjust
             ones.  Otherwise, we use a jump instruction and adjust
             its offset.  */
             its offset.  */
          if (count < 15)
          if (count < 15)
            memcpy (fragP->fr_literal + fragP->fr_fix,
            memcpy (fragP->fr_literal + fragP->fr_fix,
                    patt[count - 1], count);
                    patt[count - 1], count);
          else
          else
            {
            {
              memcpy (fragP->fr_literal + fragP->fr_fix,
              memcpy (fragP->fr_literal + fragP->fr_fix,
                      jump_31, count);
                      jump_31, count);
              /* Adjust jump offset.  */
              /* Adjust jump offset.  */
              fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
              fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
            }
            }
        }
        }
      else
      else
        {
        {
          /* Maximum length of an instruction is 15 byte.  If the
          /* Maximum length of an instruction is 15 byte.  If the
             padding is greater than 15 bytes and we don't use jump,
             padding is greater than 15 bytes and we don't use jump,
             we have to break it into smaller pieces.  */
             we have to break it into smaller pieces.  */
          int padding = count;
          int padding = count;
          while (padding > 15)
          while (padding > 15)
            {
            {
              padding -= 15;
              padding -= 15;
              memcpy (fragP->fr_literal + fragP->fr_fix + padding,
              memcpy (fragP->fr_literal + fragP->fr_fix + padding,
                      patt [14], 15);
                      patt [14], 15);
            }
            }
 
 
          if (padding)
          if (padding)
            memcpy (fragP->fr_literal + fragP->fr_fix,
            memcpy (fragP->fr_literal + fragP->fr_fix,
                    patt [padding - 1], padding);
                    patt [padding - 1], padding);
        }
        }
    }
    }
  fragP->fr_var = count;
  fragP->fr_var = count;
}
}
 
 
static INLINE int
static INLINE int
operand_type_all_zero (const union i386_operand_type *x)
operand_type_all_zero (const union i386_operand_type *x)
{
{
  switch (ARRAY_SIZE(x->array))
  switch (ARRAY_SIZE(x->array))
    {
    {
    case 3:
    case 3:
      if (x->array[2])
      if (x->array[2])
        return 0;
        return 0;
    case 2:
    case 2:
      if (x->array[1])
      if (x->array[1])
        return 0;
        return 0;
    case 1:
    case 1:
      return !x->array[0];
      return !x->array[0];
    default:
    default:
      abort ();
      abort ();
    }
    }
}
}
 
 
static INLINE void
static INLINE void
operand_type_set (union i386_operand_type *x, unsigned int v)
operand_type_set (union i386_operand_type *x, unsigned int v)
{
{
  switch (ARRAY_SIZE(x->array))
  switch (ARRAY_SIZE(x->array))
    {
    {
    case 3:
    case 3:
      x->array[2] = v;
      x->array[2] = v;
    case 2:
    case 2:
      x->array[1] = v;
      x->array[1] = v;
    case 1:
    case 1:
      x->array[0] = v;
      x->array[0] = v;
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
}
}
 
 
static INLINE int
static INLINE int
operand_type_equal (const union i386_operand_type *x,
operand_type_equal (const union i386_operand_type *x,
                    const union i386_operand_type *y)
                    const union i386_operand_type *y)
{
{
  switch (ARRAY_SIZE(x->array))
  switch (ARRAY_SIZE(x->array))
    {
    {
    case 3:
    case 3:
      if (x->array[2] != y->array[2])
      if (x->array[2] != y->array[2])
        return 0;
        return 0;
    case 2:
    case 2:
      if (x->array[1] != y->array[1])
      if (x->array[1] != y->array[1])
        return 0;
        return 0;
    case 1:
    case 1:
      return x->array[0] == y->array[0];
      return x->array[0] == y->array[0];
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
}
}
 
 
static INLINE int
static INLINE int
cpu_flags_all_zero (const union i386_cpu_flags *x)
cpu_flags_all_zero (const union i386_cpu_flags *x)
{
{
  switch (ARRAY_SIZE(x->array))
  switch (ARRAY_SIZE(x->array))
    {
    {
    case 3:
    case 3:
      if (x->array[2])
      if (x->array[2])
        return 0;
        return 0;
    case 2:
    case 2:
      if (x->array[1])
      if (x->array[1])
        return 0;
        return 0;
    case 1:
    case 1:
      return !x->array[0];
      return !x->array[0];
    default:
    default:
      abort ();
      abort ();
    }
    }
}
}
 
 
static INLINE void
static INLINE void
cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
{
{
  switch (ARRAY_SIZE(x->array))
  switch (ARRAY_SIZE(x->array))
    {
    {
    case 3:
    case 3:
      x->array[2] = v;
      x->array[2] = v;
    case 2:
    case 2:
      x->array[1] = v;
      x->array[1] = v;
    case 1:
    case 1:
      x->array[0] = v;
      x->array[0] = v;
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
}
}
 
 
static INLINE int
static INLINE int
cpu_flags_equal (const union i386_cpu_flags *x,
cpu_flags_equal (const union i386_cpu_flags *x,
                 const union i386_cpu_flags *y)
                 const union i386_cpu_flags *y)
{
{
  switch (ARRAY_SIZE(x->array))
  switch (ARRAY_SIZE(x->array))
    {
    {
    case 3:
    case 3:
      if (x->array[2] != y->array[2])
      if (x->array[2] != y->array[2])
        return 0;
        return 0;
    case 2:
    case 2:
      if (x->array[1] != y->array[1])
      if (x->array[1] != y->array[1])
        return 0;
        return 0;
    case 1:
    case 1:
      return x->array[0] == y->array[0];
      return x->array[0] == y->array[0];
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
}
}
 
 
static INLINE int
static INLINE int
cpu_flags_check_cpu64 (i386_cpu_flags f)
cpu_flags_check_cpu64 (i386_cpu_flags f)
{
{
  return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
  return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
           || (flag_code != CODE_64BIT && f.bitfield.cpu64));
           || (flag_code != CODE_64BIT && f.bitfield.cpu64));
}
}
 
 
static INLINE i386_cpu_flags
static INLINE i386_cpu_flags
cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
{
{
  switch (ARRAY_SIZE (x.array))
  switch (ARRAY_SIZE (x.array))
    {
    {
    case 3:
    case 3:
      x.array [2] &= y.array [2];
      x.array [2] &= y.array [2];
    case 2:
    case 2:
      x.array [1] &= y.array [1];
      x.array [1] &= y.array [1];
    case 1:
    case 1:
      x.array [0] &= y.array [0];
      x.array [0] &= y.array [0];
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
  return x;
  return x;
}
}
 
 
static INLINE i386_cpu_flags
static INLINE i386_cpu_flags
cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
{
{
  switch (ARRAY_SIZE (x.array))
  switch (ARRAY_SIZE (x.array))
    {
    {
    case 3:
    case 3:
      x.array [2] |= y.array [2];
      x.array [2] |= y.array [2];
    case 2:
    case 2:
      x.array [1] |= y.array [1];
      x.array [1] |= y.array [1];
    case 1:
    case 1:
      x.array [0] |= y.array [0];
      x.array [0] |= y.array [0];
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
  return x;
  return x;
}
}
 
 
#define CPU_FLAGS_ARCH_MATCH            0x1
#define CPU_FLAGS_ARCH_MATCH            0x1
#define CPU_FLAGS_64BIT_MATCH           0x2
#define CPU_FLAGS_64BIT_MATCH           0x2
 
 
#define CPU_FLAGS_32BIT_MATCH           CPU_FLAGS_ARCH_MATCH 
#define CPU_FLAGS_32BIT_MATCH           CPU_FLAGS_ARCH_MATCH 
#define CPU_FLAGS_PERFECT_MATCH \
#define CPU_FLAGS_PERFECT_MATCH \
  (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
  (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
 
 
/* Return CPU flags match bits. */
/* Return CPU flags match bits. */
 
 
static int
static int
cpu_flags_match (const template *t)
cpu_flags_match (const template *t)
{
{
  i386_cpu_flags x = t->cpu_flags;
  i386_cpu_flags x = t->cpu_flags;
  int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
  int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
 
 
  x.bitfield.cpu64 = 0;
  x.bitfield.cpu64 = 0;
  x.bitfield.cpuno64 = 0;
  x.bitfield.cpuno64 = 0;
 
 
  if (cpu_flags_all_zero (&x))
  if (cpu_flags_all_zero (&x))
    {
    {
      /* This instruction is available on all archs.  */
      /* This instruction is available on all archs.  */
      match |= CPU_FLAGS_32BIT_MATCH;
      match |= CPU_FLAGS_32BIT_MATCH;
    }
    }
  else
  else
    {
    {
      /* This instruction is available only on some archs.  */
      /* This instruction is available only on some archs.  */
      i386_cpu_flags cpu = cpu_arch_flags;
      i386_cpu_flags cpu = cpu_arch_flags;
 
 
      cpu.bitfield.cpu64 = 0;
      cpu.bitfield.cpu64 = 0;
      cpu.bitfield.cpuno64 = 0;
      cpu.bitfield.cpuno64 = 0;
      cpu = cpu_flags_and (x, cpu);
      cpu = cpu_flags_and (x, cpu);
      if (!cpu_flags_all_zero (&cpu))
      if (!cpu_flags_all_zero (&cpu))
        {
        {
          /* Check SSE2AVX  */
          /* Check SSE2AVX  */
          if (!t->opcode_modifier.sse2avx || sse2avx)
          if (!t->opcode_modifier.sse2avx || sse2avx)
            match |= CPU_FLAGS_32BIT_MATCH;
            match |= CPU_FLAGS_32BIT_MATCH;
        }
        }
    }
    }
  return match;
  return match;
}
}
 
 
static INLINE i386_operand_type
static INLINE i386_operand_type
operand_type_and (i386_operand_type x, i386_operand_type y)
operand_type_and (i386_operand_type x, i386_operand_type y)
{
{
  switch (ARRAY_SIZE (x.array))
  switch (ARRAY_SIZE (x.array))
    {
    {
    case 3:
    case 3:
      x.array [2] &= y.array [2];
      x.array [2] &= y.array [2];
    case 2:
    case 2:
      x.array [1] &= y.array [1];
      x.array [1] &= y.array [1];
    case 1:
    case 1:
      x.array [0] &= y.array [0];
      x.array [0] &= y.array [0];
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
  return x;
  return x;
}
}
 
 
static INLINE i386_operand_type
static INLINE i386_operand_type
operand_type_or (i386_operand_type x, i386_operand_type y)
operand_type_or (i386_operand_type x, i386_operand_type y)
{
{
  switch (ARRAY_SIZE (x.array))
  switch (ARRAY_SIZE (x.array))
    {
    {
    case 3:
    case 3:
      x.array [2] |= y.array [2];
      x.array [2] |= y.array [2];
    case 2:
    case 2:
      x.array [1] |= y.array [1];
      x.array [1] |= y.array [1];
    case 1:
    case 1:
      x.array [0] |= y.array [0];
      x.array [0] |= y.array [0];
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
  return x;
  return x;
}
}
 
 
static INLINE i386_operand_type
static INLINE i386_operand_type
operand_type_xor (i386_operand_type x, i386_operand_type y)
operand_type_xor (i386_operand_type x, i386_operand_type y)
{
{
  switch (ARRAY_SIZE (x.array))
  switch (ARRAY_SIZE (x.array))
    {
    {
    case 3:
    case 3:
      x.array [2] ^= y.array [2];
      x.array [2] ^= y.array [2];
    case 2:
    case 2:
      x.array [1] ^= y.array [1];
      x.array [1] ^= y.array [1];
    case 1:
    case 1:
      x.array [0] ^= y.array [0];
      x.array [0] ^= y.array [0];
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
  return x;
  return x;
}
}
 
 
static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
static const i386_operand_type control = OPERAND_TYPE_CONTROL;
static const i386_operand_type control = OPERAND_TYPE_CONTROL;
static const i386_operand_type inoutportreg
static const i386_operand_type inoutportreg
  = OPERAND_TYPE_INOUTPORTREG;
  = OPERAND_TYPE_INOUTPORTREG;
static const i386_operand_type reg16_inoutportreg
static const i386_operand_type reg16_inoutportreg
  = OPERAND_TYPE_REG16_INOUTPORTREG;
  = OPERAND_TYPE_REG16_INOUTPORTREG;
static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
static const i386_operand_type anydisp
static const i386_operand_type anydisp
  = OPERAND_TYPE_ANYDISP;
  = OPERAND_TYPE_ANYDISP;
static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
static const i386_operand_type vex_imm4 = OPERAND_TYPE_VEX_IMM4;
static const i386_operand_type vex_imm4 = OPERAND_TYPE_VEX_IMM4;
 
 
enum operand_type
enum operand_type
{
{
  reg,
  reg,
  imm,
  imm,
  disp,
  disp,
  anymem
  anymem
};
};
 
 
static INLINE int
static INLINE int
operand_type_check (i386_operand_type t, enum operand_type c)
operand_type_check (i386_operand_type t, enum operand_type c)
{
{
  switch (c)
  switch (c)
    {
    {
    case reg:
    case reg:
      return (t.bitfield.reg8
      return (t.bitfield.reg8
              || t.bitfield.reg16
              || t.bitfield.reg16
              || t.bitfield.reg32
              || t.bitfield.reg32
              || t.bitfield.reg64);
              || t.bitfield.reg64);
 
 
    case imm:
    case imm:
      return (t.bitfield.imm8
      return (t.bitfield.imm8
              || t.bitfield.imm8s
              || t.bitfield.imm8s
              || t.bitfield.imm16
              || t.bitfield.imm16
              || t.bitfield.imm32
              || t.bitfield.imm32
              || t.bitfield.imm32s
              || t.bitfield.imm32s
              || t.bitfield.imm64);
              || t.bitfield.imm64);
 
 
    case disp:
    case disp:
      return (t.bitfield.disp8
      return (t.bitfield.disp8
              || t.bitfield.disp16
              || t.bitfield.disp16
              || t.bitfield.disp32
              || t.bitfield.disp32
              || t.bitfield.disp32s
              || t.bitfield.disp32s
              || t.bitfield.disp64);
              || t.bitfield.disp64);
 
 
    case anymem:
    case anymem:
      return (t.bitfield.disp8
      return (t.bitfield.disp8
              || t.bitfield.disp16
              || t.bitfield.disp16
              || t.bitfield.disp32
              || t.bitfield.disp32
              || t.bitfield.disp32s
              || t.bitfield.disp32s
              || t.bitfield.disp64
              || t.bitfield.disp64
              || t.bitfield.baseindex);
              || t.bitfield.baseindex);
 
 
    default:
    default:
      abort ();
      abort ();
    }
    }
}
}
 
 
/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
/* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
   operand J for instruction template T.  */
   operand J for instruction template T.  */
 
 
static INLINE int
static INLINE int
match_reg_size (const template *t, unsigned int j)
match_reg_size (const template *t, unsigned int j)
{
{
  return !((i.types[j].bitfield.byte
  return !((i.types[j].bitfield.byte
            && !t->operand_types[j].bitfield.byte)
            && !t->operand_types[j].bitfield.byte)
           || (i.types[j].bitfield.word
           || (i.types[j].bitfield.word
               && !t->operand_types[j].bitfield.word)
               && !t->operand_types[j].bitfield.word)
           || (i.types[j].bitfield.dword
           || (i.types[j].bitfield.dword
               && !t->operand_types[j].bitfield.dword)
               && !t->operand_types[j].bitfield.dword)
           || (i.types[j].bitfield.qword
           || (i.types[j].bitfield.qword
               && !t->operand_types[j].bitfield.qword));
               && !t->operand_types[j].bitfield.qword));
}
}
 
 
/* Return 1 if there is no conflict in any size on operand J for
/* Return 1 if there is no conflict in any size on operand J for
   instruction template T.  */
   instruction template T.  */
 
 
static INLINE int
static INLINE int
match_mem_size (const template *t, unsigned int j)
match_mem_size (const template *t, unsigned int j)
{
{
  return (match_reg_size (t, j)
  return (match_reg_size (t, j)
          && !((i.types[j].bitfield.unspecified
          && !((i.types[j].bitfield.unspecified
                && !t->operand_types[j].bitfield.unspecified)
                && !t->operand_types[j].bitfield.unspecified)
               || (i.types[j].bitfield.fword
               || (i.types[j].bitfield.fword
                   && !t->operand_types[j].bitfield.fword)
                   && !t->operand_types[j].bitfield.fword)
               || (i.types[j].bitfield.tbyte
               || (i.types[j].bitfield.tbyte
                   && !t->operand_types[j].bitfield.tbyte)
                   && !t->operand_types[j].bitfield.tbyte)
               || (i.types[j].bitfield.xmmword
               || (i.types[j].bitfield.xmmword
                   && !t->operand_types[j].bitfield.xmmword)
                   && !t->operand_types[j].bitfield.xmmword)
               || (i.types[j].bitfield.ymmword
               || (i.types[j].bitfield.ymmword
                   && !t->operand_types[j].bitfield.ymmword)));
                   && !t->operand_types[j].bitfield.ymmword)));
}
}
 
 
/* Return 1 if there is no size conflict on any operands for
/* Return 1 if there is no size conflict on any operands for
   instruction template T.  */
   instruction template T.  */
 
 
static INLINE int
static INLINE int
operand_size_match (const template *t)
operand_size_match (const template *t)
{
{
  unsigned int j;
  unsigned int j;
  int match = 1;
  int match = 1;
 
 
  /* Don't check jump instructions.  */
  /* Don't check jump instructions.  */
  if (t->opcode_modifier.jump
  if (t->opcode_modifier.jump
      || t->opcode_modifier.jumpbyte
      || t->opcode_modifier.jumpbyte
      || t->opcode_modifier.jumpdword
      || t->opcode_modifier.jumpdword
      || t->opcode_modifier.jumpintersegment)
      || t->opcode_modifier.jumpintersegment)
    return match;
    return match;
 
 
  /* Check memory and accumulator operand size.  */
  /* Check memory and accumulator operand size.  */
  for (j = 0; j < i.operands; j++)
  for (j = 0; j < i.operands; j++)
    {
    {
      if (t->operand_types[j].bitfield.anysize)
      if (t->operand_types[j].bitfield.anysize)
        continue;
        continue;
 
 
      if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
      if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
        {
        {
          match = 0;
          match = 0;
          break;
          break;
        }
        }
 
 
      if (i.types[j].bitfield.mem && !match_mem_size (t, j))
      if (i.types[j].bitfield.mem && !match_mem_size (t, j))
        {
        {
          match = 0;
          match = 0;
          break;
          break;
        }
        }
    }
    }
 
 
  if (match
  if (match
      || (!t->opcode_modifier.d && !t->opcode_modifier.floatd))
      || (!t->opcode_modifier.d && !t->opcode_modifier.floatd))
    return match;
    return match;
 
 
  /* Check reverse.  */
  /* Check reverse.  */
  assert (i.operands == 2);
  assert (i.operands == 2);
 
 
  match = 1;
  match = 1;
  for (j = 0; j < 2; j++)
  for (j = 0; j < 2; j++)
    {
    {
      if (t->operand_types[j].bitfield.acc
      if (t->operand_types[j].bitfield.acc
          && !match_reg_size (t, j ? 0 : 1))
          && !match_reg_size (t, j ? 0 : 1))
        {
        {
          match = 0;
          match = 0;
          break;
          break;
        }
        }
 
 
      if (i.types[j].bitfield.mem
      if (i.types[j].bitfield.mem
          && !match_mem_size (t, j ? 0 : 1))
          && !match_mem_size (t, j ? 0 : 1))
        {
        {
          match = 0;
          match = 0;
          break;
          break;
        }
        }
    }
    }
 
 
  return match;
  return match;
}
}
 
 
static INLINE int
static INLINE int
operand_type_match (i386_operand_type overlap,
operand_type_match (i386_operand_type overlap,
                    i386_operand_type given)
                    i386_operand_type given)
{
{
  i386_operand_type temp = overlap;
  i386_operand_type temp = overlap;
 
 
  temp.bitfield.jumpabsolute = 0;
  temp.bitfield.jumpabsolute = 0;
  temp.bitfield.unspecified = 0;
  temp.bitfield.unspecified = 0;
  temp.bitfield.byte = 0;
  temp.bitfield.byte = 0;
  temp.bitfield.word = 0;
  temp.bitfield.word = 0;
  temp.bitfield.dword = 0;
  temp.bitfield.dword = 0;
  temp.bitfield.fword = 0;
  temp.bitfield.fword = 0;
  temp.bitfield.qword = 0;
  temp.bitfield.qword = 0;
  temp.bitfield.tbyte = 0;
  temp.bitfield.tbyte = 0;
  temp.bitfield.xmmword = 0;
  temp.bitfield.xmmword = 0;
  temp.bitfield.ymmword = 0;
  temp.bitfield.ymmword = 0;
  if (operand_type_all_zero (&temp))
  if (operand_type_all_zero (&temp))
    return 0;
    return 0;
 
 
  return (given.bitfield.baseindex == overlap.bitfield.baseindex
  return (given.bitfield.baseindex == overlap.bitfield.baseindex
          && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
          && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
}
}
 
 
/* If given types g0 and g1 are registers they must be of the same type
/* If given types g0 and g1 are registers they must be of the same type
   unless the expected operand type register overlap is null.
   unless the expected operand type register overlap is null.
   Note that Acc in a template matches every size of reg.  */
   Note that Acc in a template matches every size of reg.  */
 
 
static INLINE int
static INLINE int
operand_type_register_match (i386_operand_type m0,
operand_type_register_match (i386_operand_type m0,
                             i386_operand_type g0,
                             i386_operand_type g0,
                             i386_operand_type t0,
                             i386_operand_type t0,
                             i386_operand_type m1,
                             i386_operand_type m1,
                             i386_operand_type g1,
                             i386_operand_type g1,
                             i386_operand_type t1)
                             i386_operand_type t1)
{
{
  if (!operand_type_check (g0, reg))
  if (!operand_type_check (g0, reg))
    return 1;
    return 1;
 
 
  if (!operand_type_check (g1, reg))
  if (!operand_type_check (g1, reg))
    return 1;
    return 1;
 
 
  if (g0.bitfield.reg8 == g1.bitfield.reg8
  if (g0.bitfield.reg8 == g1.bitfield.reg8
      && g0.bitfield.reg16 == g1.bitfield.reg16
      && g0.bitfield.reg16 == g1.bitfield.reg16
      && g0.bitfield.reg32 == g1.bitfield.reg32
      && g0.bitfield.reg32 == g1.bitfield.reg32
      && g0.bitfield.reg64 == g1.bitfield.reg64)
      && g0.bitfield.reg64 == g1.bitfield.reg64)
    return 1;
    return 1;
 
 
  if (m0.bitfield.acc)
  if (m0.bitfield.acc)
    {
    {
      t0.bitfield.reg8 = 1;
      t0.bitfield.reg8 = 1;
      t0.bitfield.reg16 = 1;
      t0.bitfield.reg16 = 1;
      t0.bitfield.reg32 = 1;
      t0.bitfield.reg32 = 1;
      t0.bitfield.reg64 = 1;
      t0.bitfield.reg64 = 1;
    }
    }
 
 
  if (m1.bitfield.acc)
  if (m1.bitfield.acc)
    {
    {
      t1.bitfield.reg8 = 1;
      t1.bitfield.reg8 = 1;
      t1.bitfield.reg16 = 1;
      t1.bitfield.reg16 = 1;
      t1.bitfield.reg32 = 1;
      t1.bitfield.reg32 = 1;
      t1.bitfield.reg64 = 1;
      t1.bitfield.reg64 = 1;
    }
    }
 
 
  return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
  return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
          && !(t0.bitfield.reg16 & t1.bitfield.reg16)
          && !(t0.bitfield.reg16 & t1.bitfield.reg16)
          && !(t0.bitfield.reg32 & t1.bitfield.reg32)
          && !(t0.bitfield.reg32 & t1.bitfield.reg32)
          && !(t0.bitfield.reg64 & t1.bitfield.reg64));
          && !(t0.bitfield.reg64 & t1.bitfield.reg64));
}
}
 
 
static INLINE unsigned int
static INLINE unsigned int
mode_from_disp_size (i386_operand_type t)
mode_from_disp_size (i386_operand_type t)
{
{
  if (t.bitfield.disp8)
  if (t.bitfield.disp8)
    return 1;
    return 1;
  else if (t.bitfield.disp16
  else if (t.bitfield.disp16
           || t.bitfield.disp32
           || t.bitfield.disp32
           || t.bitfield.disp32s)
           || t.bitfield.disp32s)
    return 2;
    return 2;
  else
  else
    return 0;
    return 0;
}
}
 
 
static INLINE int
static INLINE int
fits_in_signed_byte (offsetT num)
fits_in_signed_byte (offsetT num)
{
{
  return (num >= -128) && (num <= 127);
  return (num >= -128) && (num <= 127);
}
}
 
 
static INLINE int
static INLINE int
fits_in_unsigned_byte (offsetT num)
fits_in_unsigned_byte (offsetT num)
{
{
  return (num & 0xff) == num;
  return (num & 0xff) == num;
}
}
 
 
static INLINE int
static INLINE int
fits_in_unsigned_word (offsetT num)
fits_in_unsigned_word (offsetT num)
{
{
  return (num & 0xffff) == num;
  return (num & 0xffff) == num;
}
}
 
 
static INLINE int
static INLINE int
fits_in_signed_word (offsetT num)
fits_in_signed_word (offsetT num)
{
{
  return (-32768 <= num) && (num <= 32767);
  return (-32768 <= num) && (num <= 32767);
}
}
 
 
static INLINE int
static INLINE int
fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
{
{
#ifndef BFD64
#ifndef BFD64
  return 1;
  return 1;
#else
#else
  return (!(((offsetT) -1 << 31) & num)
  return (!(((offsetT) -1 << 31) & num)
          || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
          || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
#endif
#endif
}                               /* fits_in_signed_long() */
}                               /* fits_in_signed_long() */
 
 
static INLINE int
static INLINE int
fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
{
{
#ifndef BFD64
#ifndef BFD64
  return 1;
  return 1;
#else
#else
  return (num & (((offsetT) 2 << 31) - 1)) == num;
  return (num & (((offsetT) 2 << 31) - 1)) == num;
#endif
#endif
}                               /* fits_in_unsigned_long() */
}                               /* fits_in_unsigned_long() */
 
 
static INLINE int
static INLINE int
fits_in_imm4 (offsetT num)
fits_in_imm4 (offsetT num)
{
{
  return (num & 0xf) == num;
  return (num & 0xf) == num;
}
}
 
 
static i386_operand_type
static i386_operand_type
smallest_imm_type (offsetT num)
smallest_imm_type (offsetT num)
{
{
  i386_operand_type t;
  i386_operand_type t;
 
 
  operand_type_set (&t, 0);
  operand_type_set (&t, 0);
  t.bitfield.imm64 = 1;
  t.bitfield.imm64 = 1;
 
 
  if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
  if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
    {
    {
      /* This code is disabled on the 486 because all the Imm1 forms
      /* This code is disabled on the 486 because all the Imm1 forms
         in the opcode table are slower on the i486.  They're the
         in the opcode table are slower on the i486.  They're the
         versions with the implicitly specified single-position
         versions with the implicitly specified single-position
         displacement, which has another syntax if you really want to
         displacement, which has another syntax if you really want to
         use that form.  */
         use that form.  */
      t.bitfield.imm1 = 1;
      t.bitfield.imm1 = 1;
      t.bitfield.imm8 = 1;
      t.bitfield.imm8 = 1;
      t.bitfield.imm8s = 1;
      t.bitfield.imm8s = 1;
      t.bitfield.imm16 = 1;
      t.bitfield.imm16 = 1;
      t.bitfield.imm32 = 1;
      t.bitfield.imm32 = 1;
      t.bitfield.imm32s = 1;
      t.bitfield.imm32s = 1;
    }
    }
  else if (fits_in_signed_byte (num))
  else if (fits_in_signed_byte (num))
    {
    {
      t.bitfield.imm8 = 1;
      t.bitfield.imm8 = 1;
      t.bitfield.imm8s = 1;
      t.bitfield.imm8s = 1;
      t.bitfield.imm16 = 1;
      t.bitfield.imm16 = 1;
      t.bitfield.imm32 = 1;
      t.bitfield.imm32 = 1;
      t.bitfield.imm32s = 1;
      t.bitfield.imm32s = 1;
    }
    }
  else if (fits_in_unsigned_byte (num))
  else if (fits_in_unsigned_byte (num))
    {
    {
      t.bitfield.imm8 = 1;
      t.bitfield.imm8 = 1;
      t.bitfield.imm16 = 1;
      t.bitfield.imm16 = 1;
      t.bitfield.imm32 = 1;
      t.bitfield.imm32 = 1;
      t.bitfield.imm32s = 1;
      t.bitfield.imm32s = 1;
    }
    }
  else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
  else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
    {
    {
      t.bitfield.imm16 = 1;
      t.bitfield.imm16 = 1;
      t.bitfield.imm32 = 1;
      t.bitfield.imm32 = 1;
      t.bitfield.imm32s = 1;
      t.bitfield.imm32s = 1;
    }
    }
  else if (fits_in_signed_long (num))
  else if (fits_in_signed_long (num))
    {
    {
      t.bitfield.imm32 = 1;
      t.bitfield.imm32 = 1;
      t.bitfield.imm32s = 1;
      t.bitfield.imm32s = 1;
    }
    }
  else if (fits_in_unsigned_long (num))
  else if (fits_in_unsigned_long (num))
    t.bitfield.imm32 = 1;
    t.bitfield.imm32 = 1;
 
 
  return t;
  return t;
}
}
 
 
static offsetT
static offsetT
offset_in_range (offsetT val, int size)
offset_in_range (offsetT val, int size)
{
{
  addressT mask;
  addressT mask;
 
 
  switch (size)
  switch (size)
    {
    {
    case 1: mask = ((addressT) 1 <<  8) - 1; break;
    case 1: mask = ((addressT) 1 <<  8) - 1; break;
    case 2: mask = ((addressT) 1 << 16) - 1; break;
    case 2: mask = ((addressT) 1 << 16) - 1; break;
    case 4: mask = ((addressT) 2 << 31) - 1; break;
    case 4: mask = ((addressT) 2 << 31) - 1; break;
#ifdef BFD64
#ifdef BFD64
    case 8: mask = ((addressT) 2 << 63) - 1; break;
    case 8: mask = ((addressT) 2 << 63) - 1; break;
#endif
#endif
    default: abort ();
    default: abort ();
    }
    }
 
 
  /* If BFD64, sign extend val.  */
  /* If BFD64, sign extend val.  */
  if (!use_rela_relocations)
  if (!use_rela_relocations)
    if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
    if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
      val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
      val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
 
 
  if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
  if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
    {
    {
      char buf1[40], buf2[40];
      char buf1[40], buf2[40];
 
 
      sprint_value (buf1, val);
      sprint_value (buf1, val);
      sprint_value (buf2, val & mask);
      sprint_value (buf2, val & mask);
      as_warn (_("%s shortened to %s"), buf1, buf2);
      as_warn (_("%s shortened to %s"), buf1, buf2);
    }
    }
  return val & mask;
  return val & mask;
}
}
 
 
/* Returns 0 if attempting to add a prefix where one from the same
/* Returns 0 if attempting to add a prefix where one from the same
   class already exists, 1 if non rep/repne added, 2 if rep/repne
   class already exists, 1 if non rep/repne added, 2 if rep/repne
   added.  */
   added.  */
static int
static int
add_prefix (unsigned int prefix)
add_prefix (unsigned int prefix)
{
{
  int ret = 1;
  int ret = 1;
  unsigned int q;
  unsigned int q;
 
 
  if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
  if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
      && flag_code == CODE_64BIT)
      && flag_code == CODE_64BIT)
    {
    {
      if ((i.prefix[REX_PREFIX] & prefix & REX_W)
      if ((i.prefix[REX_PREFIX] & prefix & REX_W)
          || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
          || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
              && (prefix & (REX_R | REX_X | REX_B))))
              && (prefix & (REX_R | REX_X | REX_B))))
        ret = 0;
        ret = 0;
      q = REX_PREFIX;
      q = REX_PREFIX;
    }
    }
  else
  else
    {
    {
      switch (prefix)
      switch (prefix)
        {
        {
        default:
        default:
          abort ();
          abort ();
 
 
        case CS_PREFIX_OPCODE:
        case CS_PREFIX_OPCODE:
        case DS_PREFIX_OPCODE:
        case DS_PREFIX_OPCODE:
        case ES_PREFIX_OPCODE:
        case ES_PREFIX_OPCODE:
        case FS_PREFIX_OPCODE:
        case FS_PREFIX_OPCODE:
        case GS_PREFIX_OPCODE:
        case GS_PREFIX_OPCODE:
        case SS_PREFIX_OPCODE:
        case SS_PREFIX_OPCODE:
          q = SEG_PREFIX;
          q = SEG_PREFIX;
          break;
          break;
 
 
        case REPNE_PREFIX_OPCODE:
        case REPNE_PREFIX_OPCODE:
        case REPE_PREFIX_OPCODE:
        case REPE_PREFIX_OPCODE:
          ret = 2;
          ret = 2;
          /* fall thru */
          /* fall thru */
        case LOCK_PREFIX_OPCODE:
        case LOCK_PREFIX_OPCODE:
          q = LOCKREP_PREFIX;
          q = LOCKREP_PREFIX;
          break;
          break;
 
 
        case FWAIT_OPCODE:
        case FWAIT_OPCODE:
          q = WAIT_PREFIX;
          q = WAIT_PREFIX;
          break;
          break;
 
 
        case ADDR_PREFIX_OPCODE:
        case ADDR_PREFIX_OPCODE:
          q = ADDR_PREFIX;
          q = ADDR_PREFIX;
          break;
          break;
 
 
        case DATA_PREFIX_OPCODE:
        case DATA_PREFIX_OPCODE:
          q = DATA_PREFIX;
          q = DATA_PREFIX;
          break;
          break;
        }
        }
      if (i.prefix[q] != 0)
      if (i.prefix[q] != 0)
        ret = 0;
        ret = 0;
    }
    }
 
 
  if (ret)
  if (ret)
    {
    {
      if (!i.prefix[q])
      if (!i.prefix[q])
        ++i.prefixes;
        ++i.prefixes;
      i.prefix[q] |= prefix;
      i.prefix[q] |= prefix;
    }
    }
  else
  else
    as_bad (_("same type of prefix used twice"));
    as_bad (_("same type of prefix used twice"));
 
 
  return ret;
  return ret;
}
}
 
 
static void
static void
set_code_flag (int value)
set_code_flag (int value)
{
{
  flag_code = value;
  flag_code = value;
  if (flag_code == CODE_64BIT)
  if (flag_code == CODE_64BIT)
    {
    {
      cpu_arch_flags.bitfield.cpu64 = 1;
      cpu_arch_flags.bitfield.cpu64 = 1;
      cpu_arch_flags.bitfield.cpuno64 = 0;
      cpu_arch_flags.bitfield.cpuno64 = 0;
    }
    }
  else
  else
    {
    {
      cpu_arch_flags.bitfield.cpu64 = 0;
      cpu_arch_flags.bitfield.cpu64 = 0;
      cpu_arch_flags.bitfield.cpuno64 = 1;
      cpu_arch_flags.bitfield.cpuno64 = 1;
    }
    }
  if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
  if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
    {
    {
      as_bad (_("64bit mode not supported on this CPU."));
      as_bad (_("64bit mode not supported on this CPU."));
    }
    }
  if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
  if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
    {
    {
      as_bad (_("32bit mode not supported on this CPU."));
      as_bad (_("32bit mode not supported on this CPU."));
    }
    }
  stackop_size = '\0';
  stackop_size = '\0';
}
}
 
 
static void
static void
set_16bit_gcc_code_flag (int new_code_flag)
set_16bit_gcc_code_flag (int new_code_flag)
{
{
  flag_code = new_code_flag;
  flag_code = new_code_flag;
  if (flag_code != CODE_16BIT)
  if (flag_code != CODE_16BIT)
    abort ();
    abort ();
  cpu_arch_flags.bitfield.cpu64 = 0;
  cpu_arch_flags.bitfield.cpu64 = 0;
  cpu_arch_flags.bitfield.cpuno64 = 1;
  cpu_arch_flags.bitfield.cpuno64 = 1;
  stackop_size = LONG_MNEM_SUFFIX;
  stackop_size = LONG_MNEM_SUFFIX;
}
}
 
 
static void
static void
set_intel_syntax (int syntax_flag)
set_intel_syntax (int syntax_flag)
{
{
  /* Find out if register prefixing is specified.  */
  /* Find out if register prefixing is specified.  */
  int ask_naked_reg = 0;
  int ask_naked_reg = 0;
 
 
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  if (!is_end_of_line[(unsigned char) *input_line_pointer])
  if (!is_end_of_line[(unsigned char) *input_line_pointer])
    {
    {
      char *string = input_line_pointer;
      char *string = input_line_pointer;
      int e = get_symbol_end ();
      int e = get_symbol_end ();
 
 
      if (strcmp (string, "prefix") == 0)
      if (strcmp (string, "prefix") == 0)
        ask_naked_reg = 1;
        ask_naked_reg = 1;
      else if (strcmp (string, "noprefix") == 0)
      else if (strcmp (string, "noprefix") == 0)
        ask_naked_reg = -1;
        ask_naked_reg = -1;
      else
      else
        as_bad (_("bad argument to syntax directive."));
        as_bad (_("bad argument to syntax directive."));
      *input_line_pointer = e;
      *input_line_pointer = e;
    }
    }
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
 
 
  intel_syntax = syntax_flag;
  intel_syntax = syntax_flag;
 
 
  if (ask_naked_reg == 0)
  if (ask_naked_reg == 0)
    allow_naked_reg = (intel_syntax
    allow_naked_reg = (intel_syntax
                       && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
                       && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
  else
  else
    allow_naked_reg = (ask_naked_reg < 0);
    allow_naked_reg = (ask_naked_reg < 0);
 
 
  identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
  identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
  identifier_chars['$'] = intel_syntax ? '$' : 0;
  identifier_chars['$'] = intel_syntax ? '$' : 0;
  register_prefix = allow_naked_reg ? "" : "%";
  register_prefix = allow_naked_reg ? "" : "%";
}
}
 
 
static void
static void
set_intel_mnemonic (int mnemonic_flag)
set_intel_mnemonic (int mnemonic_flag)
{
{
  intel_mnemonic = mnemonic_flag;
  intel_mnemonic = mnemonic_flag;
}
}
 
 
static void
static void
set_allow_index_reg (int flag)
set_allow_index_reg (int flag)
{
{
  allow_index_reg = flag;
  allow_index_reg = flag;
}
}
 
 
static void
static void
set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
{
{
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
 
 
  if (!is_end_of_line[(unsigned char) *input_line_pointer])
  if (!is_end_of_line[(unsigned char) *input_line_pointer])
    {
    {
      char *string = input_line_pointer;
      char *string = input_line_pointer;
      int e = get_symbol_end ();
      int e = get_symbol_end ();
      unsigned int i;
      unsigned int i;
      i386_cpu_flags flags;
      i386_cpu_flags flags;
 
 
      for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
      for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
        {
        {
          if (strcmp (string, cpu_arch[i].name) == 0)
          if (strcmp (string, cpu_arch[i].name) == 0)
            {
            {
              if (*string != '.')
              if (*string != '.')
                {
                {
                  cpu_arch_name = cpu_arch[i].name;
                  cpu_arch_name = cpu_arch[i].name;
                  cpu_sub_arch_name = NULL;
                  cpu_sub_arch_name = NULL;
                  cpu_arch_flags = cpu_arch[i].flags;
                  cpu_arch_flags = cpu_arch[i].flags;
                  if (flag_code == CODE_64BIT)
                  if (flag_code == CODE_64BIT)
                    {
                    {
                      cpu_arch_flags.bitfield.cpu64 = 1;
                      cpu_arch_flags.bitfield.cpu64 = 1;
                      cpu_arch_flags.bitfield.cpuno64 = 0;
                      cpu_arch_flags.bitfield.cpuno64 = 0;
                    }
                    }
                  else
                  else
                    {
                    {
                      cpu_arch_flags.bitfield.cpu64 = 0;
                      cpu_arch_flags.bitfield.cpu64 = 0;
                      cpu_arch_flags.bitfield.cpuno64 = 1;
                      cpu_arch_flags.bitfield.cpuno64 = 1;
                    }
                    }
                  cpu_arch_isa = cpu_arch[i].type;
                  cpu_arch_isa = cpu_arch[i].type;
                  cpu_arch_isa_flags = cpu_arch[i].flags;
                  cpu_arch_isa_flags = cpu_arch[i].flags;
                  if (!cpu_arch_tune_set)
                  if (!cpu_arch_tune_set)
                    {
                    {
                      cpu_arch_tune = cpu_arch_isa;
                      cpu_arch_tune = cpu_arch_isa;
                      cpu_arch_tune_flags = cpu_arch_isa_flags;
                      cpu_arch_tune_flags = cpu_arch_isa_flags;
                    }
                    }
                  break;
                  break;
                }
                }
 
 
              flags = cpu_flags_or (cpu_arch_flags,
              flags = cpu_flags_or (cpu_arch_flags,
                                    cpu_arch[i].flags);
                                    cpu_arch[i].flags);
              if (!cpu_flags_equal (&flags, &cpu_arch_flags))
              if (!cpu_flags_equal (&flags, &cpu_arch_flags))
                {
                {
                  if (cpu_sub_arch_name)
                  if (cpu_sub_arch_name)
                    {
                    {
                      char *name = cpu_sub_arch_name;
                      char *name = cpu_sub_arch_name;
                      cpu_sub_arch_name = concat (name,
                      cpu_sub_arch_name = concat (name,
                                                  cpu_arch[i].name,
                                                  cpu_arch[i].name,
                                                  (const char *) NULL);
                                                  (const char *) NULL);
                      free (name);
                      free (name);
                    }
                    }
                  else
                  else
                    cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
                    cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
                  cpu_arch_flags = flags;
                  cpu_arch_flags = flags;
                }
                }
              *input_line_pointer = e;
              *input_line_pointer = e;
              demand_empty_rest_of_line ();
              demand_empty_rest_of_line ();
              return;
              return;
            }
            }
        }
        }
      if (i >= ARRAY_SIZE (cpu_arch))
      if (i >= ARRAY_SIZE (cpu_arch))
        as_bad (_("no such architecture: `%s'"), string);
        as_bad (_("no such architecture: `%s'"), string);
 
 
      *input_line_pointer = e;
      *input_line_pointer = e;
    }
    }
  else
  else
    as_bad (_("missing cpu architecture"));
    as_bad (_("missing cpu architecture"));
 
 
  no_cond_jump_promotion = 0;
  no_cond_jump_promotion = 0;
  if (*input_line_pointer == ','
  if (*input_line_pointer == ','
      && !is_end_of_line[(unsigned char) input_line_pointer[1]])
      && !is_end_of_line[(unsigned char) input_line_pointer[1]])
    {
    {
      char *string = ++input_line_pointer;
      char *string = ++input_line_pointer;
      int e = get_symbol_end ();
      int e = get_symbol_end ();
 
 
      if (strcmp (string, "nojumps") == 0)
      if (strcmp (string, "nojumps") == 0)
        no_cond_jump_promotion = 1;
        no_cond_jump_promotion = 1;
      else if (strcmp (string, "jumps") == 0)
      else if (strcmp (string, "jumps") == 0)
        ;
        ;
      else
      else
        as_bad (_("no such architecture modifier: `%s'"), string);
        as_bad (_("no such architecture modifier: `%s'"), string);
 
 
      *input_line_pointer = e;
      *input_line_pointer = e;
    }
    }
 
 
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
unsigned long
unsigned long
i386_mach ()
i386_mach ()
{
{
  if (!strcmp (default_arch, "x86_64"))
  if (!strcmp (default_arch, "x86_64"))
    return bfd_mach_x86_64;
    return bfd_mach_x86_64;
  else if (!strcmp (default_arch, "i386"))
  else if (!strcmp (default_arch, "i386"))
    return bfd_mach_i386_i386;
    return bfd_mach_i386_i386;
  else
  else
    as_fatal (_("Unknown architecture"));
    as_fatal (_("Unknown architecture"));
}
}


void
void
md_begin ()
md_begin ()
{
{
  const char *hash_err;
  const char *hash_err;
 
 
  /* Initialize op_hash hash table.  */
  /* Initialize op_hash hash table.  */
  op_hash = hash_new ();
  op_hash = hash_new ();
 
 
  {
  {
    const template *optab;
    const template *optab;
    templates *core_optab;
    templates *core_optab;
 
 
    /* Setup for loop.  */
    /* Setup for loop.  */
    optab = i386_optab;
    optab = i386_optab;
    core_optab = (templates *) xmalloc (sizeof (templates));
    core_optab = (templates *) xmalloc (sizeof (templates));
    core_optab->start = optab;
    core_optab->start = optab;
 
 
    while (1)
    while (1)
      {
      {
        ++optab;
        ++optab;
        if (optab->name == NULL
        if (optab->name == NULL
            || strcmp (optab->name, (optab - 1)->name) != 0)
            || strcmp (optab->name, (optab - 1)->name) != 0)
          {
          {
            /* different name --> ship out current template list;
            /* different name --> ship out current template list;
               add to hash table; & begin anew.  */
               add to hash table; & begin anew.  */
            core_optab->end = optab;
            core_optab->end = optab;
            hash_err = hash_insert (op_hash,
            hash_err = hash_insert (op_hash,
                                    (optab - 1)->name,
                                    (optab - 1)->name,
                                    (PTR) core_optab);
                                    (PTR) core_optab);
            if (hash_err)
            if (hash_err)
              {
              {
                as_fatal (_("Internal Error:  Can't hash %s: %s"),
                as_fatal (_("Internal Error:  Can't hash %s: %s"),
                          (optab - 1)->name,
                          (optab - 1)->name,
                          hash_err);
                          hash_err);
              }
              }
            if (optab->name == NULL)
            if (optab->name == NULL)
              break;
              break;
            core_optab = (templates *) xmalloc (sizeof (templates));
            core_optab = (templates *) xmalloc (sizeof (templates));
            core_optab->start = optab;
            core_optab->start = optab;
          }
          }
      }
      }
  }
  }
 
 
  /* Initialize reg_hash hash table.  */
  /* Initialize reg_hash hash table.  */
  reg_hash = hash_new ();
  reg_hash = hash_new ();
  {
  {
    const reg_entry *regtab;
    const reg_entry *regtab;
    unsigned int regtab_size = i386_regtab_size;
    unsigned int regtab_size = i386_regtab_size;
 
 
    for (regtab = i386_regtab; regtab_size--; regtab++)
    for (regtab = i386_regtab; regtab_size--; regtab++)
      {
      {
        hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
        hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
        if (hash_err)
        if (hash_err)
          as_fatal (_("Internal Error:  Can't hash %s: %s"),
          as_fatal (_("Internal Error:  Can't hash %s: %s"),
                    regtab->reg_name,
                    regtab->reg_name,
                    hash_err);
                    hash_err);
      }
      }
  }
  }
 
 
  /* Fill in lexical tables:  mnemonic_chars, operand_chars.  */
  /* Fill in lexical tables:  mnemonic_chars, operand_chars.  */
  {
  {
    int c;
    int c;
    char *p;
    char *p;
 
 
    for (c = 0; c < 256; c++)
    for (c = 0; c < 256; c++)
      {
      {
        if (ISDIGIT (c))
        if (ISDIGIT (c))
          {
          {
            digit_chars[c] = c;
            digit_chars[c] = c;
            mnemonic_chars[c] = c;
            mnemonic_chars[c] = c;
            register_chars[c] = c;
            register_chars[c] = c;
            operand_chars[c] = c;
            operand_chars[c] = c;
          }
          }
        else if (ISLOWER (c))
        else if (ISLOWER (c))
          {
          {
            mnemonic_chars[c] = c;
            mnemonic_chars[c] = c;
            register_chars[c] = c;
            register_chars[c] = c;
            operand_chars[c] = c;
            operand_chars[c] = c;
          }
          }
        else if (ISUPPER (c))
        else if (ISUPPER (c))
          {
          {
            mnemonic_chars[c] = TOLOWER (c);
            mnemonic_chars[c] = TOLOWER (c);
            register_chars[c] = mnemonic_chars[c];
            register_chars[c] = mnemonic_chars[c];
            operand_chars[c] = c;
            operand_chars[c] = c;
          }
          }
 
 
        if (ISALPHA (c) || ISDIGIT (c))
        if (ISALPHA (c) || ISDIGIT (c))
          identifier_chars[c] = c;
          identifier_chars[c] = c;
        else if (c >= 128)
        else if (c >= 128)
          {
          {
            identifier_chars[c] = c;
            identifier_chars[c] = c;
            operand_chars[c] = c;
            operand_chars[c] = c;
          }
          }
      }
      }
 
 
#ifdef LEX_AT
#ifdef LEX_AT
    identifier_chars['@'] = '@';
    identifier_chars['@'] = '@';
#endif
#endif
#ifdef LEX_QM
#ifdef LEX_QM
    identifier_chars['?'] = '?';
    identifier_chars['?'] = '?';
    operand_chars['?'] = '?';
    operand_chars['?'] = '?';
#endif
#endif
    digit_chars['-'] = '-';
    digit_chars['-'] = '-';
    mnemonic_chars['_'] = '_';
    mnemonic_chars['_'] = '_';
    mnemonic_chars['-'] = '-';
    mnemonic_chars['-'] = '-';
    mnemonic_chars['.'] = '.';
    mnemonic_chars['.'] = '.';
    identifier_chars['_'] = '_';
    identifier_chars['_'] = '_';
    identifier_chars['.'] = '.';
    identifier_chars['.'] = '.';
 
 
    for (p = operand_special_chars; *p != '\0'; p++)
    for (p = operand_special_chars; *p != '\0'; p++)
      operand_chars[(unsigned char) *p] = *p;
      operand_chars[(unsigned char) *p] = *p;
  }
  }
 
 
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
  if (IS_ELF)
  if (IS_ELF)
    {
    {
      record_alignment (text_section, 2);
      record_alignment (text_section, 2);
      record_alignment (data_section, 2);
      record_alignment (data_section, 2);
      record_alignment (bss_section, 2);
      record_alignment (bss_section, 2);
    }
    }
#endif
#endif
 
 
  if (flag_code == CODE_64BIT)
  if (flag_code == CODE_64BIT)
    {
    {
      x86_dwarf2_return_column = 16;
      x86_dwarf2_return_column = 16;
      x86_cie_data_alignment = -8;
      x86_cie_data_alignment = -8;
    }
    }
  else
  else
    {
    {
      x86_dwarf2_return_column = 8;
      x86_dwarf2_return_column = 8;
      x86_cie_data_alignment = -4;
      x86_cie_data_alignment = -4;
    }
    }
}
}
 
 
void
void
i386_print_statistics (FILE *file)
i386_print_statistics (FILE *file)
{
{
  hash_print_statistics (file, "i386 opcode", op_hash);
  hash_print_statistics (file, "i386 opcode", op_hash);
  hash_print_statistics (file, "i386 register", reg_hash);
  hash_print_statistics (file, "i386 register", reg_hash);
}
}


#ifdef DEBUG386
#ifdef DEBUG386
 
 
/* Debugging routines for md_assemble.  */
/* Debugging routines for md_assemble.  */
static void pte (template *);
static void pte (template *);
static void pt (i386_operand_type);
static void pt (i386_operand_type);
static void pe (expressionS *);
static void pe (expressionS *);
static void ps (symbolS *);
static void ps (symbolS *);
 
 
static void
static void
pi (char *line, i386_insn *x)
pi (char *line, i386_insn *x)
{
{
  unsigned int i;
  unsigned int i;
 
 
  fprintf (stdout, "%s: template ", line);
  fprintf (stdout, "%s: template ", line);
  pte (&x->tm);
  pte (&x->tm);
  fprintf (stdout, "  address: base %s  index %s  scale %x\n",
  fprintf (stdout, "  address: base %s  index %s  scale %x\n",
           x->base_reg ? x->base_reg->reg_name : "none",
           x->base_reg ? x->base_reg->reg_name : "none",
           x->index_reg ? x->index_reg->reg_name : "none",
           x->index_reg ? x->index_reg->reg_name : "none",
           x->log2_scale_factor);
           x->log2_scale_factor);
  fprintf (stdout, "  modrm:  mode %x  reg %x  reg/mem %x\n",
  fprintf (stdout, "  modrm:  mode %x  reg %x  reg/mem %x\n",
           x->rm.mode, x->rm.reg, x->rm.regmem);
           x->rm.mode, x->rm.reg, x->rm.regmem);
  fprintf (stdout, "  sib:  base %x  index %x  scale %x\n",
  fprintf (stdout, "  sib:  base %x  index %x  scale %x\n",
           x->sib.base, x->sib.index, x->sib.scale);
           x->sib.base, x->sib.index, x->sib.scale);
  fprintf (stdout, "  rex: 64bit %x  extX %x  extY %x  extZ %x\n",
  fprintf (stdout, "  rex: 64bit %x  extX %x  extY %x  extZ %x\n",
           (x->rex & REX_W) != 0,
           (x->rex & REX_W) != 0,
           (x->rex & REX_R) != 0,
           (x->rex & REX_R) != 0,
           (x->rex & REX_X) != 0,
           (x->rex & REX_X) != 0,
           (x->rex & REX_B) != 0);
           (x->rex & REX_B) != 0);
  fprintf (stdout, "  drex:  reg %d rex 0x%x\n",
  fprintf (stdout, "  drex:  reg %d rex 0x%x\n",
           x->drex.reg, x->drex.rex);
           x->drex.reg, x->drex.rex);
  for (i = 0; i < x->operands; i++)
  for (i = 0; i < x->operands; i++)
    {
    {
      fprintf (stdout, "    #%d:  ", i + 1);
      fprintf (stdout, "    #%d:  ", i + 1);
      pt (x->types[i]);
      pt (x->types[i]);
      fprintf (stdout, "\n");
      fprintf (stdout, "\n");
      if (x->types[i].bitfield.reg8
      if (x->types[i].bitfield.reg8
          || x->types[i].bitfield.reg16
          || x->types[i].bitfield.reg16
          || x->types[i].bitfield.reg32
          || x->types[i].bitfield.reg32
          || x->types[i].bitfield.reg64
          || x->types[i].bitfield.reg64
          || x->types[i].bitfield.regmmx
          || x->types[i].bitfield.regmmx
          || x->types[i].bitfield.regxmm
          || x->types[i].bitfield.regxmm
          || x->types[i].bitfield.regymm
          || x->types[i].bitfield.regymm
          || x->types[i].bitfield.sreg2
          || x->types[i].bitfield.sreg2
          || x->types[i].bitfield.sreg3
          || x->types[i].bitfield.sreg3
          || x->types[i].bitfield.control
          || x->types[i].bitfield.control
          || x->types[i].bitfield.debug
          || x->types[i].bitfield.debug
          || x->types[i].bitfield.test)
          || x->types[i].bitfield.test)
        fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
        fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
      if (operand_type_check (x->types[i], imm))
      if (operand_type_check (x->types[i], imm))
        pe (x->op[i].imms);
        pe (x->op[i].imms);
      if (operand_type_check (x->types[i], disp))
      if (operand_type_check (x->types[i], disp))
        pe (x->op[i].disps);
        pe (x->op[i].disps);
    }
    }
}
}
 
 
static void
static void
pte (template *t)
pte (template *t)
{
{
  unsigned int i;
  unsigned int i;
  fprintf (stdout, " %d operands ", t->operands);
  fprintf (stdout, " %d operands ", t->operands);
  fprintf (stdout, "opcode %x ", t->base_opcode);
  fprintf (stdout, "opcode %x ", t->base_opcode);
  if (t->extension_opcode != None)
  if (t->extension_opcode != None)
    fprintf (stdout, "ext %x ", t->extension_opcode);
    fprintf (stdout, "ext %x ", t->extension_opcode);
  if (t->opcode_modifier.d)
  if (t->opcode_modifier.d)
    fprintf (stdout, "D");
    fprintf (stdout, "D");
  if (t->opcode_modifier.w)
  if (t->opcode_modifier.w)
    fprintf (stdout, "W");
    fprintf (stdout, "W");
  fprintf (stdout, "\n");
  fprintf (stdout, "\n");
  for (i = 0; i < t->operands; i++)
  for (i = 0; i < t->operands; i++)
    {
    {
      fprintf (stdout, "    #%d type ", i + 1);
      fprintf (stdout, "    #%d type ", i + 1);
      pt (t->operand_types[i]);
      pt (t->operand_types[i]);
      fprintf (stdout, "\n");
      fprintf (stdout, "\n");
    }
    }
}
}
 
 
static void
static void
pe (expressionS *e)
pe (expressionS *e)
{
{
  fprintf (stdout, "    operation     %d\n", e->X_op);
  fprintf (stdout, "    operation     %d\n", e->X_op);
  fprintf (stdout, "    add_number    %ld (%lx)\n",
  fprintf (stdout, "    add_number    %ld (%lx)\n",
           (long) e->X_add_number, (long) e->X_add_number);
           (long) e->X_add_number, (long) e->X_add_number);
  if (e->X_add_symbol)
  if (e->X_add_symbol)
    {
    {
      fprintf (stdout, "    add_symbol    ");
      fprintf (stdout, "    add_symbol    ");
      ps (e->X_add_symbol);
      ps (e->X_add_symbol);
      fprintf (stdout, "\n");
      fprintf (stdout, "\n");
    }
    }
  if (e->X_op_symbol)
  if (e->X_op_symbol)
    {
    {
      fprintf (stdout, "    op_symbol    ");
      fprintf (stdout, "    op_symbol    ");
      ps (e->X_op_symbol);
      ps (e->X_op_symbol);
      fprintf (stdout, "\n");
      fprintf (stdout, "\n");
    }
    }
}
}
 
 
static void
static void
ps (symbolS *s)
ps (symbolS *s)
{
{
  fprintf (stdout, "%s type %s%s",
  fprintf (stdout, "%s type %s%s",
           S_GET_NAME (s),
           S_GET_NAME (s),
           S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
           S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
           segment_name (S_GET_SEGMENT (s)));
           segment_name (S_GET_SEGMENT (s)));
}
}
 
 
static struct type_name
static struct type_name
  {
  {
    i386_operand_type mask;
    i386_operand_type mask;
    const char *name;
    const char *name;
  }
  }
const type_names[] =
const type_names[] =
{
{
  { OPERAND_TYPE_REG8, "r8" },
  { OPERAND_TYPE_REG8, "r8" },
  { OPERAND_TYPE_REG16, "r16" },
  { OPERAND_TYPE_REG16, "r16" },
  { OPERAND_TYPE_REG32, "r32" },
  { OPERAND_TYPE_REG32, "r32" },
  { OPERAND_TYPE_REG64, "r64" },
  { OPERAND_TYPE_REG64, "r64" },
  { OPERAND_TYPE_IMM8, "i8" },
  { OPERAND_TYPE_IMM8, "i8" },
  { OPERAND_TYPE_IMM8, "i8s" },
  { OPERAND_TYPE_IMM8, "i8s" },
  { OPERAND_TYPE_IMM16, "i16" },
  { OPERAND_TYPE_IMM16, "i16" },
  { OPERAND_TYPE_IMM32, "i32" },
  { OPERAND_TYPE_IMM32, "i32" },
  { OPERAND_TYPE_IMM32S, "i32s" },
  { OPERAND_TYPE_IMM32S, "i32s" },
  { OPERAND_TYPE_IMM64, "i64" },
  { OPERAND_TYPE_IMM64, "i64" },
  { OPERAND_TYPE_IMM1, "i1" },
  { OPERAND_TYPE_IMM1, "i1" },
  { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
  { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
  { OPERAND_TYPE_DISP8, "d8" },
  { OPERAND_TYPE_DISP8, "d8" },
  { OPERAND_TYPE_DISP16, "d16" },
  { OPERAND_TYPE_DISP16, "d16" },
  { OPERAND_TYPE_DISP32, "d32" },
  { OPERAND_TYPE_DISP32, "d32" },
  { OPERAND_TYPE_DISP32S, "d32s" },
  { OPERAND_TYPE_DISP32S, "d32s" },
  { OPERAND_TYPE_DISP64, "d64" },
  { OPERAND_TYPE_DISP64, "d64" },
  { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
  { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
  { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
  { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
  { OPERAND_TYPE_CONTROL, "control reg" },
  { OPERAND_TYPE_CONTROL, "control reg" },
  { OPERAND_TYPE_TEST, "test reg" },
  { OPERAND_TYPE_TEST, "test reg" },
  { OPERAND_TYPE_DEBUG, "debug reg" },
  { OPERAND_TYPE_DEBUG, "debug reg" },
  { OPERAND_TYPE_FLOATREG, "FReg" },
  { OPERAND_TYPE_FLOATREG, "FReg" },
  { OPERAND_TYPE_FLOATACC, "FAcc" },
  { OPERAND_TYPE_FLOATACC, "FAcc" },
  { OPERAND_TYPE_SREG2, "SReg2" },
  { OPERAND_TYPE_SREG2, "SReg2" },
  { OPERAND_TYPE_SREG3, "SReg3" },
  { OPERAND_TYPE_SREG3, "SReg3" },
  { OPERAND_TYPE_ACC, "Acc" },
  { OPERAND_TYPE_ACC, "Acc" },
  { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
  { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
  { OPERAND_TYPE_REGMMX, "rMMX" },
  { OPERAND_TYPE_REGMMX, "rMMX" },
  { OPERAND_TYPE_REGXMM, "rXMM" },
  { OPERAND_TYPE_REGXMM, "rXMM" },
  { OPERAND_TYPE_ESSEG, "es" },
  { OPERAND_TYPE_ESSEG, "es" },
  { OPERAND_TYPE_VEX_IMM4, "VEX i4" },
  { OPERAND_TYPE_VEX_IMM4, "VEX i4" },
};
};
 
 
static void
static void
pt (i386_operand_type t)
pt (i386_operand_type t)
{
{
  unsigned int j;
  unsigned int j;
  i386_operand_type a;
  i386_operand_type a;
 
 
  for (j = 0; j < ARRAY_SIZE (type_names); j++)
  for (j = 0; j < ARRAY_SIZE (type_names); j++)
    {
    {
      a = operand_type_and (t, type_names[j].mask);
      a = operand_type_and (t, type_names[j].mask);
      if (!UINTS_ALL_ZERO (a))
      if (!UINTS_ALL_ZERO (a))
        fprintf (stdout, "%s, ",  type_names[j].name);
        fprintf (stdout, "%s, ",  type_names[j].name);
    }
    }
  fflush (stdout);
  fflush (stdout);
}
}
 
 
#endif /* DEBUG386 */
#endif /* DEBUG386 */


static bfd_reloc_code_real_type
static bfd_reloc_code_real_type
reloc (unsigned int size,
reloc (unsigned int size,
       int pcrel,
       int pcrel,
       int sign,
       int sign,
       bfd_reloc_code_real_type other)
       bfd_reloc_code_real_type other)
{
{
  if (other != NO_RELOC)
  if (other != NO_RELOC)
    {
    {
      reloc_howto_type *reloc;
      reloc_howto_type *reloc;
 
 
      if (size == 8)
      if (size == 8)
        switch (other)
        switch (other)
          {
          {
          case BFD_RELOC_X86_64_GOT32:
          case BFD_RELOC_X86_64_GOT32:
            return BFD_RELOC_X86_64_GOT64;
            return BFD_RELOC_X86_64_GOT64;
            break;
            break;
          case BFD_RELOC_X86_64_PLTOFF64:
          case BFD_RELOC_X86_64_PLTOFF64:
            return BFD_RELOC_X86_64_PLTOFF64;
            return BFD_RELOC_X86_64_PLTOFF64;
            break;
            break;
          case BFD_RELOC_X86_64_GOTPC32:
          case BFD_RELOC_X86_64_GOTPC32:
            other = BFD_RELOC_X86_64_GOTPC64;
            other = BFD_RELOC_X86_64_GOTPC64;
            break;
            break;
          case BFD_RELOC_X86_64_GOTPCREL:
          case BFD_RELOC_X86_64_GOTPCREL:
            other = BFD_RELOC_X86_64_GOTPCREL64;
            other = BFD_RELOC_X86_64_GOTPCREL64;
            break;
            break;
          case BFD_RELOC_X86_64_TPOFF32:
          case BFD_RELOC_X86_64_TPOFF32:
            other = BFD_RELOC_X86_64_TPOFF64;
            other = BFD_RELOC_X86_64_TPOFF64;
            break;
            break;
          case BFD_RELOC_X86_64_DTPOFF32:
          case BFD_RELOC_X86_64_DTPOFF32:
            other = BFD_RELOC_X86_64_DTPOFF64;
            other = BFD_RELOC_X86_64_DTPOFF64;
            break;
            break;
          default:
          default:
            break;
            break;
          }
          }
 
 
      /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless.  */
      /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless.  */
      if (size == 4 && flag_code != CODE_64BIT)
      if (size == 4 && flag_code != CODE_64BIT)
        sign = -1;
        sign = -1;
 
 
      reloc = bfd_reloc_type_lookup (stdoutput, other);
      reloc = bfd_reloc_type_lookup (stdoutput, other);
      if (!reloc)
      if (!reloc)
        as_bad (_("unknown relocation (%u)"), other);
        as_bad (_("unknown relocation (%u)"), other);
      else if (size != bfd_get_reloc_size (reloc))
      else if (size != bfd_get_reloc_size (reloc))
        as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
        as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
                bfd_get_reloc_size (reloc),
                bfd_get_reloc_size (reloc),
                size);
                size);
      else if (pcrel && !reloc->pc_relative)
      else if (pcrel && !reloc->pc_relative)
        as_bad (_("non-pc-relative relocation for pc-relative field"));
        as_bad (_("non-pc-relative relocation for pc-relative field"));
      else if ((reloc->complain_on_overflow == complain_overflow_signed
      else if ((reloc->complain_on_overflow == complain_overflow_signed
                && !sign)
                && !sign)
               || (reloc->complain_on_overflow == complain_overflow_unsigned
               || (reloc->complain_on_overflow == complain_overflow_unsigned
                   && sign > 0))
                   && sign > 0))
        as_bad (_("relocated field and relocation type differ in signedness"));
        as_bad (_("relocated field and relocation type differ in signedness"));
      else
      else
        return other;
        return other;
      return NO_RELOC;
      return NO_RELOC;
    }
    }
 
 
  if (pcrel)
  if (pcrel)
    {
    {
      if (!sign)
      if (!sign)
        as_bad (_("there are no unsigned pc-relative relocations"));
        as_bad (_("there are no unsigned pc-relative relocations"));
      switch (size)
      switch (size)
        {
        {
        case 1: return BFD_RELOC_8_PCREL;
        case 1: return BFD_RELOC_8_PCREL;
        case 2: return BFD_RELOC_16_PCREL;
        case 2: return BFD_RELOC_16_PCREL;
        case 4: return BFD_RELOC_32_PCREL;
        case 4: return BFD_RELOC_32_PCREL;
        case 8: return BFD_RELOC_64_PCREL;
        case 8: return BFD_RELOC_64_PCREL;
        }
        }
      as_bad (_("cannot do %u byte pc-relative relocation"), size);
      as_bad (_("cannot do %u byte pc-relative relocation"), size);
    }
    }
  else
  else
    {
    {
      if (sign > 0)
      if (sign > 0)
        switch (size)
        switch (size)
          {
          {
          case 4: return BFD_RELOC_X86_64_32S;
          case 4: return BFD_RELOC_X86_64_32S;
          }
          }
      else
      else
        switch (size)
        switch (size)
          {
          {
          case 1: return BFD_RELOC_8;
          case 1: return BFD_RELOC_8;
          case 2: return BFD_RELOC_16;
          case 2: return BFD_RELOC_16;
          case 4: return BFD_RELOC_32;
          case 4: return BFD_RELOC_32;
          case 8: return BFD_RELOC_64;
          case 8: return BFD_RELOC_64;
          }
          }
      as_bad (_("cannot do %s %u byte relocation"),
      as_bad (_("cannot do %s %u byte relocation"),
              sign > 0 ? "signed" : "unsigned", size);
              sign > 0 ? "signed" : "unsigned", size);
    }
    }
 
 
  abort ();
  abort ();
  return BFD_RELOC_NONE;
  return BFD_RELOC_NONE;
}
}
 
 
/* Here we decide which fixups can be adjusted to make them relative to
/* Here we decide which fixups can be adjusted to make them relative to
   the beginning of the section instead of the symbol.  Basically we need
   the beginning of the section instead of the symbol.  Basically we need
   to make sure that the dynamic relocations are done correctly, so in
   to make sure that the dynamic relocations are done correctly, so in
   some cases we force the original symbol to be used.  */
   some cases we force the original symbol to be used.  */
 
 
int
int
tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
{
{
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
  if (!IS_ELF)
  if (!IS_ELF)
    return 1;
    return 1;
 
 
  /* Don't adjust pc-relative references to merge sections in 64-bit
  /* Don't adjust pc-relative references to merge sections in 64-bit
     mode.  */
     mode.  */
  if (use_rela_relocations
  if (use_rela_relocations
      && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
      && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
      && fixP->fx_pcrel)
      && fixP->fx_pcrel)
    return 0;
    return 0;
 
 
  /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
  /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
     and changed later by validate_fix.  */
     and changed later by validate_fix.  */
  if (GOT_symbol && fixP->fx_subsy == GOT_symbol
  if (GOT_symbol && fixP->fx_subsy == GOT_symbol
      && fixP->fx_r_type == BFD_RELOC_32_PCREL)
      && fixP->fx_r_type == BFD_RELOC_32_PCREL)
    return 0;
    return 0;
 
 
  /* adjust_reloc_syms doesn't know about the GOT.  */
  /* adjust_reloc_syms doesn't know about the GOT.  */
  if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
  if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
      || fixP->fx_r_type == BFD_RELOC_386_PLT32
      || fixP->fx_r_type == BFD_RELOC_386_PLT32
      || fixP->fx_r_type == BFD_RELOC_386_GOT32
      || fixP->fx_r_type == BFD_RELOC_386_GOT32
      || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
      || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
      || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
      || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
      || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
      || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
      || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
      || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
      || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
      || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
      || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
      || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
      || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
      || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
      || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
      || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
      || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
      || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
      || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
      || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
      || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
      || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
      || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
      || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
      || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
      || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
      || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
      || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
      || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
      || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
      || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
      || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
      || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
      || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
      || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
      || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
      || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
      || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
      || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
      || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
      || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
    return 0;
    return 0;
#endif
#endif
  return 1;
  return 1;
}
}
 
 
static int
static int
intel_float_operand (const char *mnemonic)
intel_float_operand (const char *mnemonic)
{
{
  /* Note that the value returned is meaningful only for opcodes with (memory)
  /* Note that the value returned is meaningful only for opcodes with (memory)
     operands, hence the code here is free to improperly handle opcodes that
     operands, hence the code here is free to improperly handle opcodes that
     have no operands (for better performance and smaller code). */
     have no operands (for better performance and smaller code). */
 
 
  if (mnemonic[0] != 'f')
  if (mnemonic[0] != 'f')
    return 0; /* non-math */
    return 0; /* non-math */
 
 
  switch (mnemonic[1])
  switch (mnemonic[1])
    {
    {
    /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
    /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
       the fs segment override prefix not currently handled because no
       the fs segment override prefix not currently handled because no
       call path can make opcodes without operands get here */
       call path can make opcodes without operands get here */
    case 'i':
    case 'i':
      return 2 /* integer op */;
      return 2 /* integer op */;
    case 'l':
    case 'l':
      if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
      if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
        return 3; /* fldcw/fldenv */
        return 3; /* fldcw/fldenv */
      break;
      break;
    case 'n':
    case 'n':
      if (mnemonic[2] != 'o' /* fnop */)
      if (mnemonic[2] != 'o' /* fnop */)
        return 3; /* non-waiting control op */
        return 3; /* non-waiting control op */
      break;
      break;
    case 'r':
    case 'r':
      if (mnemonic[2] == 's')
      if (mnemonic[2] == 's')
        return 3; /* frstor/frstpm */
        return 3; /* frstor/frstpm */
      break;
      break;
    case 's':
    case 's':
      if (mnemonic[2] == 'a')
      if (mnemonic[2] == 'a')
        return 3; /* fsave */
        return 3; /* fsave */
      if (mnemonic[2] == 't')
      if (mnemonic[2] == 't')
        {
        {
          switch (mnemonic[3])
          switch (mnemonic[3])
            {
            {
            case 'c': /* fstcw */
            case 'c': /* fstcw */
            case 'd': /* fstdw */
            case 'd': /* fstdw */
            case 'e': /* fstenv */
            case 'e': /* fstenv */
            case 's': /* fsts[gw] */
            case 's': /* fsts[gw] */
              return 3;
              return 3;
            }
            }
        }
        }
      break;
      break;
    case 'x':
    case 'x':
      if (mnemonic[2] == 'r' || mnemonic[2] == 's')
      if (mnemonic[2] == 'r' || mnemonic[2] == 's')
        return 0; /* fxsave/fxrstor are not really math ops */
        return 0; /* fxsave/fxrstor are not really math ops */
      break;
      break;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* Build the VEX prefix.  */
/* Build the VEX prefix.  */
 
 
static void
static void
build_vex_prefix (void)
build_vex_prefix (void)
{
{
  unsigned int register_specifier;
  unsigned int register_specifier;
  unsigned int implied_prefix;
  unsigned int implied_prefix;
  unsigned int vector_length;
  unsigned int vector_length;
 
 
  /* Check register specifier.  */
  /* Check register specifier.  */
  if (i.vex.register_specifier)
  if (i.vex.register_specifier)
    {
    {
      register_specifier = i.vex.register_specifier->reg_num;
      register_specifier = i.vex.register_specifier->reg_num;
      if ((i.vex.register_specifier->reg_flags & RegRex))
      if ((i.vex.register_specifier->reg_flags & RegRex))
        register_specifier += 8;
        register_specifier += 8;
      register_specifier = ~register_specifier & 0xf;
      register_specifier = ~register_specifier & 0xf;
    }
    }
  else
  else
    register_specifier = 0xf;
    register_specifier = 0xf;
 
 
  vector_length = i.tm.opcode_modifier.vex256 ? 1 : 0;
  vector_length = i.tm.opcode_modifier.vex256 ? 1 : 0;
 
 
  switch ((i.tm.base_opcode >> 8) & 0xff)
  switch ((i.tm.base_opcode >> 8) & 0xff)
    {
    {
    case 0:
    case 0:
      implied_prefix = 0;
      implied_prefix = 0;
      break;
      break;
    case DATA_PREFIX_OPCODE:
    case DATA_PREFIX_OPCODE:
      implied_prefix = 1;
      implied_prefix = 1;
      break;
      break;
    case REPE_PREFIX_OPCODE:
    case REPE_PREFIX_OPCODE:
      implied_prefix = 2;
      implied_prefix = 2;
      break;
      break;
    case REPNE_PREFIX_OPCODE:
    case REPNE_PREFIX_OPCODE:
      implied_prefix = 3;
      implied_prefix = 3;
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
 
 
  /* Use 2-byte VEX prefix if possible.  */
  /* Use 2-byte VEX prefix if possible.  */
  if (i.tm.opcode_modifier.vex0f
  if (i.tm.opcode_modifier.vex0f
      && (i.rex & (REX_W | REX_X | REX_B)) == 0)
      && (i.rex & (REX_W | REX_X | REX_B)) == 0)
    {
    {
      /* 2-byte VEX prefix.  */
      /* 2-byte VEX prefix.  */
      unsigned int r;
      unsigned int r;
 
 
      i.vex.length = 2;
      i.vex.length = 2;
      i.vex.bytes[0] = 0xc5;
      i.vex.bytes[0] = 0xc5;
 
 
      /* Check the REX.R bit.  */
      /* Check the REX.R bit.  */
      r = (i.rex & REX_R) ? 0 : 1;
      r = (i.rex & REX_R) ? 0 : 1;
      i.vex.bytes[1] = (r << 7
      i.vex.bytes[1] = (r << 7
                        | register_specifier << 3
                        | register_specifier << 3
                        | vector_length << 2
                        | vector_length << 2
                        | implied_prefix);
                        | implied_prefix);
    }
    }
  else
  else
    {
    {
      /* 3-byte VEX prefix.  */
      /* 3-byte VEX prefix.  */
      unsigned int m, w;
      unsigned int m, w;
 
 
      if (i.tm.opcode_modifier.vex0f)
      if (i.tm.opcode_modifier.vex0f)
        m = 0x1;
        m = 0x1;
      else if (i.tm.opcode_modifier.vex0f38)
      else if (i.tm.opcode_modifier.vex0f38)
        m = 0x2;
        m = 0x2;
      else if (i.tm.opcode_modifier.vex0f3a)
      else if (i.tm.opcode_modifier.vex0f3a)
        m = 0x3;
        m = 0x3;
      else
      else
        abort ();
        abort ();
 
 
      i.vex.length = 3;
      i.vex.length = 3;
      i.vex.bytes[0] = 0xc4;
      i.vex.bytes[0] = 0xc4;
 
 
      /* The high 3 bits of the second VEX byte are 1's compliment
      /* The high 3 bits of the second VEX byte are 1's compliment
         of RXB bits from REX.  */
         of RXB bits from REX.  */
      i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
      i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
 
 
      /* Check the REX.W bit.  */
      /* Check the REX.W bit.  */
      w = (i.rex & REX_W) ? 1 : 0;
      w = (i.rex & REX_W) ? 1 : 0;
      if (i.tm.opcode_modifier.vexw0 || i.tm.opcode_modifier.vexw1)
      if (i.tm.opcode_modifier.vexw0 || i.tm.opcode_modifier.vexw1)
        {
        {
          if (w)
          if (w)
            abort ();
            abort ();
 
 
          if (i.tm.opcode_modifier.vexw1)
          if (i.tm.opcode_modifier.vexw1)
            w = 1;
            w = 1;
        }
        }
 
 
      i.vex.bytes[2] = (w << 7
      i.vex.bytes[2] = (w << 7
                        | register_specifier << 3
                        | register_specifier << 3
                        | vector_length << 2
                        | vector_length << 2
                        | implied_prefix);
                        | implied_prefix);
    }
    }
}
}
 
 
static void
static void
process_immext (void)
process_immext (void)
{
{
  expressionS *exp;
  expressionS *exp;
 
 
  if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
  if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
    {
    {
      /* SSE3 Instructions have the fixed operands with an opcode
      /* SSE3 Instructions have the fixed operands with an opcode
         suffix which is coded in the same place as an 8-bit immediate
         suffix which is coded in the same place as an 8-bit immediate
         field would be.  Here we check those operands and remove them
         field would be.  Here we check those operands and remove them
         afterwards.  */
         afterwards.  */
      unsigned int x;
      unsigned int x;
 
 
      for (x = 0; x < i.operands; x++)
      for (x = 0; x < i.operands; x++)
        if (i.op[x].regs->reg_num != x)
        if (i.op[x].regs->reg_num != x)
          as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
          as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
                  register_prefix, i.op[x].regs->reg_name, x + 1,
                  register_prefix, i.op[x].regs->reg_name, x + 1,
                  i.tm.name);
                  i.tm.name);
 
 
      i.operands = 0;
      i.operands = 0;
    }
    }
 
 
  /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
  /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
     which is coded in the same place as an 8-bit immediate field
     which is coded in the same place as an 8-bit immediate field
     would be.  Here we fake an 8-bit immediate operand from the
     would be.  Here we fake an 8-bit immediate operand from the
     opcode suffix stored in tm.extension_opcode.
     opcode suffix stored in tm.extension_opcode.
 
 
     SSE5 and AVX instructions also use this encoding, for some of
     SSE5 and AVX instructions also use this encoding, for some of
     3 argument instructions.  */
     3 argument instructions.  */
 
 
  assert (i.imm_operands == 0
  assert (i.imm_operands == 0
          && (i.operands <= 2
          && (i.operands <= 2
              || (i.tm.cpu_flags.bitfield.cpusse5
              || (i.tm.cpu_flags.bitfield.cpusse5
                  && i.operands <= 3)
                  && i.operands <= 3)
              || (i.tm.opcode_modifier.vex
              || (i.tm.opcode_modifier.vex
                  && i.operands <= 4)));
                  && i.operands <= 4)));
 
 
  exp = &im_expressions[i.imm_operands++];
  exp = &im_expressions[i.imm_operands++];
  i.op[i.operands].imms = exp;
  i.op[i.operands].imms = exp;
  i.types[i.operands] = imm8;
  i.types[i.operands] = imm8;
  i.operands++;
  i.operands++;
  exp->X_op = O_constant;
  exp->X_op = O_constant;
  exp->X_add_number = i.tm.extension_opcode;
  exp->X_add_number = i.tm.extension_opcode;
  i.tm.extension_opcode = None;
  i.tm.extension_opcode = None;
}
}
 
 
/* This is the guts of the machine-dependent assembler.  LINE points to a
/* This is the guts of the machine-dependent assembler.  LINE points to a
   machine dependent instruction.  This function is supposed to emit
   machine dependent instruction.  This function is supposed to emit
   the frags/bytes it assembles to.  */
   the frags/bytes it assembles to.  */
 
 
void
void
md_assemble (char *line)
md_assemble (char *line)
{
{
  unsigned int j;
  unsigned int j;
  char mnemonic[MAX_MNEM_SIZE];
  char mnemonic[MAX_MNEM_SIZE];
 
 
  /* Initialize globals.  */
  /* Initialize globals.  */
  memset (&i, '\0', sizeof (i));
  memset (&i, '\0', sizeof (i));
  for (j = 0; j < MAX_OPERANDS; j++)
  for (j = 0; j < MAX_OPERANDS; j++)
    i.reloc[j] = NO_RELOC;
    i.reloc[j] = NO_RELOC;
  memset (disp_expressions, '\0', sizeof (disp_expressions));
  memset (disp_expressions, '\0', sizeof (disp_expressions));
  memset (im_expressions, '\0', sizeof (im_expressions));
  memset (im_expressions, '\0', sizeof (im_expressions));
  save_stack_p = save_stack;
  save_stack_p = save_stack;
 
 
  /* First parse an instruction mnemonic & call i386_operand for the operands.
  /* First parse an instruction mnemonic & call i386_operand for the operands.
     We assume that the scrubber has arranged it so that line[0] is the valid
     We assume that the scrubber has arranged it so that line[0] is the valid
     start of a (possibly prefixed) mnemonic.  */
     start of a (possibly prefixed) mnemonic.  */
 
 
  line = parse_insn (line, mnemonic);
  line = parse_insn (line, mnemonic);
  if (line == NULL)
  if (line == NULL)
    return;
    return;
 
 
  line = parse_operands (line, mnemonic);
  line = parse_operands (line, mnemonic);
  if (line == NULL)
  if (line == NULL)
    return;
    return;
 
 
  /* Now we've parsed the mnemonic into a set of templates, and have the
  /* Now we've parsed the mnemonic into a set of templates, and have the
     operands at hand.  */
     operands at hand.  */
 
 
  /* All intel opcodes have reversed operands except for "bound" and
  /* All intel opcodes have reversed operands except for "bound" and
     "enter".  We also don't reverse intersegment "jmp" and "call"
     "enter".  We also don't reverse intersegment "jmp" and "call"
     instructions with 2 immediate operands so that the immediate segment
     instructions with 2 immediate operands so that the immediate segment
     precedes the offset, as it does when in AT&T mode. */
     precedes the offset, as it does when in AT&T mode. */
  if (intel_syntax
  if (intel_syntax
      && i.operands > 1
      && i.operands > 1
      && (strcmp (mnemonic, "bound") != 0)
      && (strcmp (mnemonic, "bound") != 0)
      && (strcmp (mnemonic, "invlpga") != 0)
      && (strcmp (mnemonic, "invlpga") != 0)
      && !(operand_type_check (i.types[0], imm)
      && !(operand_type_check (i.types[0], imm)
           && operand_type_check (i.types[1], imm)))
           && operand_type_check (i.types[1], imm)))
    swap_operands ();
    swap_operands ();
 
 
  /* The order of the immediates should be reversed
  /* The order of the immediates should be reversed
     for 2 immediates extrq and insertq instructions */
     for 2 immediates extrq and insertq instructions */
  if (i.imm_operands == 2
  if (i.imm_operands == 2
      && (strcmp (mnemonic, "extrq") == 0
      && (strcmp (mnemonic, "extrq") == 0
          || strcmp (mnemonic, "insertq") == 0))
          || strcmp (mnemonic, "insertq") == 0))
      swap_2_operands (0, 1);
      swap_2_operands (0, 1);
 
 
  if (i.imm_operands)
  if (i.imm_operands)
    optimize_imm ();
    optimize_imm ();
 
 
  /* Don't optimize displacement for movabs since it only takes 64bit
  /* Don't optimize displacement for movabs since it only takes 64bit
     displacement.  */
     displacement.  */
  if (i.disp_operands
  if (i.disp_operands
      && (flag_code != CODE_64BIT
      && (flag_code != CODE_64BIT
          || strcmp (mnemonic, "movabs") != 0))
          || strcmp (mnemonic, "movabs") != 0))
    optimize_disp ();
    optimize_disp ();
 
 
  /* Next, we find a template that matches the given insn,
  /* Next, we find a template that matches the given insn,
     making sure the overlap of the given operands types is consistent
     making sure the overlap of the given operands types is consistent
     with the template operand types.  */
     with the template operand types.  */
 
 
  if (!match_template ())
  if (!match_template ())
    return;
    return;
 
 
  if (sse_check != sse_check_none
  if (sse_check != sse_check_none
      && !i.tm.opcode_modifier.noavx
      && !i.tm.opcode_modifier.noavx
      && (i.tm.cpu_flags.bitfield.cpusse
      && (i.tm.cpu_flags.bitfield.cpusse
          || i.tm.cpu_flags.bitfield.cpusse2
          || i.tm.cpu_flags.bitfield.cpusse2
          || i.tm.cpu_flags.bitfield.cpusse3
          || i.tm.cpu_flags.bitfield.cpusse3
          || i.tm.cpu_flags.bitfield.cpussse3
          || i.tm.cpu_flags.bitfield.cpussse3
          || i.tm.cpu_flags.bitfield.cpusse4_1
          || i.tm.cpu_flags.bitfield.cpusse4_1
          || i.tm.cpu_flags.bitfield.cpusse4_2))
          || i.tm.cpu_flags.bitfield.cpusse4_2))
    {
    {
      (sse_check == sse_check_warning
      (sse_check == sse_check_warning
       ? as_warn
       ? as_warn
       : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
       : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
    }
    }
 
 
  /* Zap movzx and movsx suffix.  The suffix has been set from
  /* Zap movzx and movsx suffix.  The suffix has been set from
     "word ptr" or "byte ptr" on the source operand in Intel syntax
     "word ptr" or "byte ptr" on the source operand in Intel syntax
     or extracted from mnemonic in AT&T syntax.  But we'll use
     or extracted from mnemonic in AT&T syntax.  But we'll use
     the destination register to choose the suffix for encoding.  */
     the destination register to choose the suffix for encoding.  */
  if ((i.tm.base_opcode & ~9) == 0x0fb6)
  if ((i.tm.base_opcode & ~9) == 0x0fb6)
    {
    {
      /* In Intel syntax, there must be a suffix.  In AT&T syntax, if
      /* In Intel syntax, there must be a suffix.  In AT&T syntax, if
         there is no suffix, the default will be byte extension.  */
         there is no suffix, the default will be byte extension.  */
      if (i.reg_operands != 2
      if (i.reg_operands != 2
          && !i.suffix
          && !i.suffix
          && intel_syntax)
          && intel_syntax)
        as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
        as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
 
 
      i.suffix = 0;
      i.suffix = 0;
    }
    }
 
 
  if (i.tm.opcode_modifier.fwait)
  if (i.tm.opcode_modifier.fwait)
    if (!add_prefix (FWAIT_OPCODE))
    if (!add_prefix (FWAIT_OPCODE))
      return;
      return;
 
 
  /* Check string instruction segment overrides.  */
  /* Check string instruction segment overrides.  */
  if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
  if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
    {
    {
      if (!check_string ())
      if (!check_string ())
        return;
        return;
    }
    }
 
 
  if (!process_suffix ())
  if (!process_suffix ())
    return;
    return;
 
 
  /* Make still unresolved immediate matches conform to size of immediate
  /* Make still unresolved immediate matches conform to size of immediate
     given in i.suffix.  */
     given in i.suffix.  */
  if (!finalize_imm ())
  if (!finalize_imm ())
    return;
    return;
 
 
  if (i.types[0].bitfield.imm1)
  if (i.types[0].bitfield.imm1)
    i.imm_operands = 0;  /* kludge for shift insns.  */
    i.imm_operands = 0;  /* kludge for shift insns.  */
 
 
  for (j = 0; j < 3; j++)
  for (j = 0; j < 3; j++)
    if (i.types[j].bitfield.inoutportreg
    if (i.types[j].bitfield.inoutportreg
        || i.types[j].bitfield.shiftcount
        || i.types[j].bitfield.shiftcount
        || i.types[j].bitfield.acc
        || i.types[j].bitfield.acc
        || i.types[j].bitfield.floatacc)
        || i.types[j].bitfield.floatacc)
      i.reg_operands--;
      i.reg_operands--;
 
 
  /* ImmExt should be processed after SSE2AVX.  */
  /* ImmExt should be processed after SSE2AVX.  */
  if (!i.tm.opcode_modifier.sse2avx
  if (!i.tm.opcode_modifier.sse2avx
      && i.tm.opcode_modifier.immext)
      && i.tm.opcode_modifier.immext)
    process_immext ();
    process_immext ();
 
 
  /* For insns with operands there are more diddles to do to the opcode.  */
  /* For insns with operands there are more diddles to do to the opcode.  */
  if (i.operands)
  if (i.operands)
    {
    {
      if (!process_operands ())
      if (!process_operands ())
        return;
        return;
    }
    }
  else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
  else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
    {
    {
      /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc.  */
      /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc.  */
      as_warn (_("translating to `%sp'"), i.tm.name);
      as_warn (_("translating to `%sp'"), i.tm.name);
    }
    }
 
 
  if (i.tm.opcode_modifier.vex)
  if (i.tm.opcode_modifier.vex)
    build_vex_prefix ();
    build_vex_prefix ();
 
 
  /* Handle conversion of 'int $3' --> special int3 insn.  */
  /* Handle conversion of 'int $3' --> special int3 insn.  */
  if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
  if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
    {
    {
      i.tm.base_opcode = INT3_OPCODE;
      i.tm.base_opcode = INT3_OPCODE;
      i.imm_operands = 0;
      i.imm_operands = 0;
    }
    }
 
 
  if ((i.tm.opcode_modifier.jump
  if ((i.tm.opcode_modifier.jump
       || i.tm.opcode_modifier.jumpbyte
       || i.tm.opcode_modifier.jumpbyte
       || i.tm.opcode_modifier.jumpdword)
       || i.tm.opcode_modifier.jumpdword)
      && i.op[0].disps->X_op == O_constant)
      && i.op[0].disps->X_op == O_constant)
    {
    {
      /* Convert "jmp constant" (and "call constant") to a jump (call) to
      /* Convert "jmp constant" (and "call constant") to a jump (call) to
         the absolute address given by the constant.  Since ix86 jumps and
         the absolute address given by the constant.  Since ix86 jumps and
         calls are pc relative, we need to generate a reloc.  */
         calls are pc relative, we need to generate a reloc.  */
      i.op[0].disps->X_add_symbol = &abs_symbol;
      i.op[0].disps->X_add_symbol = &abs_symbol;
      i.op[0].disps->X_op = O_symbol;
      i.op[0].disps->X_op = O_symbol;
    }
    }
 
 
  if (i.tm.opcode_modifier.rex64)
  if (i.tm.opcode_modifier.rex64)
    i.rex |= REX_W;
    i.rex |= REX_W;
 
 
  /* For 8 bit registers we need an empty rex prefix.  Also if the
  /* For 8 bit registers we need an empty rex prefix.  Also if the
     instruction already has a prefix, we need to convert old
     instruction already has a prefix, we need to convert old
     registers to new ones.  */
     registers to new ones.  */
 
 
  if ((i.types[0].bitfield.reg8
  if ((i.types[0].bitfield.reg8
       && (i.op[0].regs->reg_flags & RegRex64) != 0)
       && (i.op[0].regs->reg_flags & RegRex64) != 0)
      || (i.types[1].bitfield.reg8
      || (i.types[1].bitfield.reg8
          && (i.op[1].regs->reg_flags & RegRex64) != 0)
          && (i.op[1].regs->reg_flags & RegRex64) != 0)
      || ((i.types[0].bitfield.reg8
      || ((i.types[0].bitfield.reg8
           || i.types[1].bitfield.reg8)
           || i.types[1].bitfield.reg8)
          && i.rex != 0))
          && i.rex != 0))
    {
    {
      int x;
      int x;
 
 
      i.rex |= REX_OPCODE;
      i.rex |= REX_OPCODE;
      for (x = 0; x < 2; x++)
      for (x = 0; x < 2; x++)
        {
        {
          /* Look for 8 bit operand that uses old registers.  */
          /* Look for 8 bit operand that uses old registers.  */
          if (i.types[x].bitfield.reg8
          if (i.types[x].bitfield.reg8
              && (i.op[x].regs->reg_flags & RegRex64) == 0)
              && (i.op[x].regs->reg_flags & RegRex64) == 0)
            {
            {
              /* In case it is "hi" register, give up.  */
              /* In case it is "hi" register, give up.  */
              if (i.op[x].regs->reg_num > 3)
              if (i.op[x].regs->reg_num > 3)
                as_bad (_("can't encode register '%s%s' in an "
                as_bad (_("can't encode register '%s%s' in an "
                          "instruction requiring REX prefix."),
                          "instruction requiring REX prefix."),
                        register_prefix, i.op[x].regs->reg_name);
                        register_prefix, i.op[x].regs->reg_name);
 
 
              /* Otherwise it is equivalent to the extended register.
              /* Otherwise it is equivalent to the extended register.
                 Since the encoding doesn't change this is merely
                 Since the encoding doesn't change this is merely
                 cosmetic cleanup for debug output.  */
                 cosmetic cleanup for debug output.  */
 
 
              i.op[x].regs = i.op[x].regs + 8;
              i.op[x].regs = i.op[x].regs + 8;
            }
            }
        }
        }
    }
    }
 
 
  /* If the instruction has the DREX attribute (aka SSE5), don't emit a
  /* If the instruction has the DREX attribute (aka SSE5), don't emit a
     REX prefix.  */
     REX prefix.  */
  if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
  if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
    {
    {
      i.drex.rex = i.rex;
      i.drex.rex = i.rex;
      i.rex = 0;
      i.rex = 0;
    }
    }
  else if (i.rex != 0)
  else if (i.rex != 0)
    add_prefix (REX_OPCODE | i.rex);
    add_prefix (REX_OPCODE | i.rex);
 
 
  /* We are ready to output the insn.  */
  /* We are ready to output the insn.  */
  output_insn ();
  output_insn ();
}
}
 
 
static char *
static char *
parse_insn (char *line, char *mnemonic)
parse_insn (char *line, char *mnemonic)
{
{
  char *l = line;
  char *l = line;
  char *token_start = l;
  char *token_start = l;
  char *mnem_p;
  char *mnem_p;
  int supported;
  int supported;
  const template *t;
  const template *t;
 
 
  /* Non-zero if we found a prefix only acceptable with string insns.  */
  /* Non-zero if we found a prefix only acceptable with string insns.  */
  const char *expecting_string_instruction = NULL;
  const char *expecting_string_instruction = NULL;
 
 
  while (1)
  while (1)
    {
    {
      mnem_p = mnemonic;
      mnem_p = mnemonic;
      while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
      while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
        {
        {
          mnem_p++;
          mnem_p++;
          if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
          if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
            {
            {
              as_bad (_("no such instruction: `%s'"), token_start);
              as_bad (_("no such instruction: `%s'"), token_start);
              return NULL;
              return NULL;
            }
            }
          l++;
          l++;
        }
        }
      if (!is_space_char (*l)
      if (!is_space_char (*l)
          && *l != END_OF_INSN
          && *l != END_OF_INSN
          && (intel_syntax
          && (intel_syntax
              || (*l != PREFIX_SEPARATOR
              || (*l != PREFIX_SEPARATOR
                  && *l != ',')))
                  && *l != ',')))
        {
        {
          as_bad (_("invalid character %s in mnemonic"),
          as_bad (_("invalid character %s in mnemonic"),
                  output_invalid (*l));
                  output_invalid (*l));
          return NULL;
          return NULL;
        }
        }
      if (token_start == l)
      if (token_start == l)
        {
        {
          if (!intel_syntax && *l == PREFIX_SEPARATOR)
          if (!intel_syntax && *l == PREFIX_SEPARATOR)
            as_bad (_("expecting prefix; got nothing"));
            as_bad (_("expecting prefix; got nothing"));
          else
          else
            as_bad (_("expecting mnemonic; got nothing"));
            as_bad (_("expecting mnemonic; got nothing"));
          return NULL;
          return NULL;
        }
        }
 
 
      /* Look up instruction (or prefix) via hash table.  */
      /* Look up instruction (or prefix) via hash table.  */
      current_templates = hash_find (op_hash, mnemonic);
      current_templates = hash_find (op_hash, mnemonic);
 
 
      if (*l != END_OF_INSN
      if (*l != END_OF_INSN
          && (!is_space_char (*l) || l[1] != END_OF_INSN)
          && (!is_space_char (*l) || l[1] != END_OF_INSN)
          && current_templates
          && current_templates
          && current_templates->start->opcode_modifier.isprefix)
          && current_templates->start->opcode_modifier.isprefix)
        {
        {
          if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
          if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
            {
            {
              as_bad ((flag_code != CODE_64BIT
              as_bad ((flag_code != CODE_64BIT
                       ? _("`%s' is only supported in 64-bit mode")
                       ? _("`%s' is only supported in 64-bit mode")
                       : _("`%s' is not supported in 64-bit mode")),
                       : _("`%s' is not supported in 64-bit mode")),
                      current_templates->start->name);
                      current_templates->start->name);
              return NULL;
              return NULL;
            }
            }
          /* If we are in 16-bit mode, do not allow addr16 or data16.
          /* If we are in 16-bit mode, do not allow addr16 or data16.
             Similarly, in 32-bit mode, do not allow addr32 or data32.  */
             Similarly, in 32-bit mode, do not allow addr32 or data32.  */
          if ((current_templates->start->opcode_modifier.size16
          if ((current_templates->start->opcode_modifier.size16
               || current_templates->start->opcode_modifier.size32)
               || current_templates->start->opcode_modifier.size32)
              && flag_code != CODE_64BIT
              && flag_code != CODE_64BIT
              && (current_templates->start->opcode_modifier.size32
              && (current_templates->start->opcode_modifier.size32
                  ^ (flag_code == CODE_16BIT)))
                  ^ (flag_code == CODE_16BIT)))
            {
            {
              as_bad (_("redundant %s prefix"),
              as_bad (_("redundant %s prefix"),
                      current_templates->start->name);
                      current_templates->start->name);
              return NULL;
              return NULL;
            }
            }
          /* Add prefix, checking for repeated prefixes.  */
          /* Add prefix, checking for repeated prefixes.  */
          switch (add_prefix (current_templates->start->base_opcode))
          switch (add_prefix (current_templates->start->base_opcode))
            {
            {
            case 0:
            case 0:
              return NULL;
              return NULL;
            case 2:
            case 2:
              expecting_string_instruction = current_templates->start->name;
              expecting_string_instruction = current_templates->start->name;
              break;
              break;
            }
            }
          /* Skip past PREFIX_SEPARATOR and reset token_start.  */
          /* Skip past PREFIX_SEPARATOR and reset token_start.  */
          token_start = ++l;
          token_start = ++l;
        }
        }
      else
      else
        break;
        break;
    }
    }
 
 
  if (!current_templates)
  if (!current_templates)
    {
    {
      /* See if we can get a match by trimming off a suffix.  */
      /* See if we can get a match by trimming off a suffix.  */
      switch (mnem_p[-1])
      switch (mnem_p[-1])
        {
        {
        case WORD_MNEM_SUFFIX:
        case WORD_MNEM_SUFFIX:
          if (intel_syntax && (intel_float_operand (mnemonic) & 2))
          if (intel_syntax && (intel_float_operand (mnemonic) & 2))
            i.suffix = SHORT_MNEM_SUFFIX;
            i.suffix = SHORT_MNEM_SUFFIX;
          else
          else
        case BYTE_MNEM_SUFFIX:
        case BYTE_MNEM_SUFFIX:
        case QWORD_MNEM_SUFFIX:
        case QWORD_MNEM_SUFFIX:
          i.suffix = mnem_p[-1];
          i.suffix = mnem_p[-1];
          mnem_p[-1] = '\0';
          mnem_p[-1] = '\0';
          current_templates = hash_find (op_hash, mnemonic);
          current_templates = hash_find (op_hash, mnemonic);
          break;
          break;
        case SHORT_MNEM_SUFFIX:
        case SHORT_MNEM_SUFFIX:
        case LONG_MNEM_SUFFIX:
        case LONG_MNEM_SUFFIX:
          if (!intel_syntax)
          if (!intel_syntax)
            {
            {
              i.suffix = mnem_p[-1];
              i.suffix = mnem_p[-1];
              mnem_p[-1] = '\0';
              mnem_p[-1] = '\0';
              current_templates = hash_find (op_hash, mnemonic);
              current_templates = hash_find (op_hash, mnemonic);
            }
            }
          break;
          break;
 
 
          /* Intel Syntax.  */
          /* Intel Syntax.  */
        case 'd':
        case 'd':
          if (intel_syntax)
          if (intel_syntax)
            {
            {
              if (intel_float_operand (mnemonic) == 1)
              if (intel_float_operand (mnemonic) == 1)
                i.suffix = SHORT_MNEM_SUFFIX;
                i.suffix = SHORT_MNEM_SUFFIX;
              else
              else
                i.suffix = LONG_MNEM_SUFFIX;
                i.suffix = LONG_MNEM_SUFFIX;
              mnem_p[-1] = '\0';
              mnem_p[-1] = '\0';
              current_templates = hash_find (op_hash, mnemonic);
              current_templates = hash_find (op_hash, mnemonic);
            }
            }
          break;
          break;
        }
        }
      if (!current_templates)
      if (!current_templates)
        {
        {
          as_bad (_("no such instruction: `%s'"), token_start);
          as_bad (_("no such instruction: `%s'"), token_start);
          return NULL;
          return NULL;
        }
        }
    }
    }
 
 
  if (current_templates->start->opcode_modifier.jump
  if (current_templates->start->opcode_modifier.jump
      || current_templates->start->opcode_modifier.jumpbyte)
      || current_templates->start->opcode_modifier.jumpbyte)
    {
    {
      /* Check for a branch hint.  We allow ",pt" and ",pn" for
      /* Check for a branch hint.  We allow ",pt" and ",pn" for
         predict taken and predict not taken respectively.
         predict taken and predict not taken respectively.
         I'm not sure that branch hints actually do anything on loop
         I'm not sure that branch hints actually do anything on loop
         and jcxz insns (JumpByte) for current Pentium4 chips.  They
         and jcxz insns (JumpByte) for current Pentium4 chips.  They
         may work in the future and it doesn't hurt to accept them
         may work in the future and it doesn't hurt to accept them
         now.  */
         now.  */
      if (l[0] == ',' && l[1] == 'p')
      if (l[0] == ',' && l[1] == 'p')
        {
        {
          if (l[2] == 't')
          if (l[2] == 't')
            {
            {
              if (!add_prefix (DS_PREFIX_OPCODE))
              if (!add_prefix (DS_PREFIX_OPCODE))
                return NULL;
                return NULL;
              l += 3;
              l += 3;
            }
            }
          else if (l[2] == 'n')
          else if (l[2] == 'n')
            {
            {
              if (!add_prefix (CS_PREFIX_OPCODE))
              if (!add_prefix (CS_PREFIX_OPCODE))
                return NULL;
                return NULL;
              l += 3;
              l += 3;
            }
            }
        }
        }
    }
    }
  /* Any other comma loses.  */
  /* Any other comma loses.  */
  if (*l == ',')
  if (*l == ',')
    {
    {
      as_bad (_("invalid character %s in mnemonic"),
      as_bad (_("invalid character %s in mnemonic"),
              output_invalid (*l));
              output_invalid (*l));
      return NULL;
      return NULL;
    }
    }
 
 
  /* Check if instruction is supported on specified architecture.  */
  /* Check if instruction is supported on specified architecture.  */
  supported = 0;
  supported = 0;
  for (t = current_templates->start; t < current_templates->end; ++t)
  for (t = current_templates->start; t < current_templates->end; ++t)
    {
    {
      supported |= cpu_flags_match (t);
      supported |= cpu_flags_match (t);
      if (supported == CPU_FLAGS_PERFECT_MATCH)
      if (supported == CPU_FLAGS_PERFECT_MATCH)
        goto skip;
        goto skip;
    }
    }
 
 
  if (!(supported & CPU_FLAGS_64BIT_MATCH))
  if (!(supported & CPU_FLAGS_64BIT_MATCH))
    {
    {
      as_bad (flag_code == CODE_64BIT
      as_bad (flag_code == CODE_64BIT
              ? _("`%s' is not supported in 64-bit mode")
              ? _("`%s' is not supported in 64-bit mode")
              : _("`%s' is only supported in 64-bit mode"),
              : _("`%s' is only supported in 64-bit mode"),
              current_templates->start->name);
              current_templates->start->name);
      return NULL;
      return NULL;
    }
    }
  if (supported != CPU_FLAGS_PERFECT_MATCH)
  if (supported != CPU_FLAGS_PERFECT_MATCH)
    {
    {
      as_bad (_("`%s' is not supported on `%s%s'"),
      as_bad (_("`%s' is not supported on `%s%s'"),
              current_templates->start->name, cpu_arch_name,
              current_templates->start->name, cpu_arch_name,
              cpu_sub_arch_name ? cpu_sub_arch_name : "");
              cpu_sub_arch_name ? cpu_sub_arch_name : "");
      return NULL;
      return NULL;
    }
    }
 
 
skip:
skip:
  if (!cpu_arch_flags.bitfield.cpui386
  if (!cpu_arch_flags.bitfield.cpui386
           && (flag_code != CODE_16BIT))
           && (flag_code != CODE_16BIT))
    {
    {
      as_warn (_("use .code16 to ensure correct addressing mode"));
      as_warn (_("use .code16 to ensure correct addressing mode"));
    }
    }
 
 
  /* Check for rep/repne without a string instruction.  */
  /* Check for rep/repne without a string instruction.  */
  if (expecting_string_instruction)
  if (expecting_string_instruction)
    {
    {
      static templates override;
      static templates override;
 
 
      for (t = current_templates->start; t < current_templates->end; ++t)
      for (t = current_templates->start; t < current_templates->end; ++t)
        if (t->opcode_modifier.isstring)
        if (t->opcode_modifier.isstring)
          break;
          break;
      if (t >= current_templates->end)
      if (t >= current_templates->end)
        {
        {
          as_bad (_("expecting string instruction after `%s'"),
          as_bad (_("expecting string instruction after `%s'"),
                  expecting_string_instruction);
                  expecting_string_instruction);
          return NULL;
          return NULL;
        }
        }
      for (override.start = t; t < current_templates->end; ++t)
      for (override.start = t; t < current_templates->end; ++t)
        if (!t->opcode_modifier.isstring)
        if (!t->opcode_modifier.isstring)
          break;
          break;
      override.end = t;
      override.end = t;
      current_templates = &override;
      current_templates = &override;
    }
    }
 
 
  return l;
  return l;
}
}
 
 
static char *
static char *
parse_operands (char *l, const char *mnemonic)
parse_operands (char *l, const char *mnemonic)
{
{
  char *token_start;
  char *token_start;
 
 
  /* 1 if operand is pending after ','.  */
  /* 1 if operand is pending after ','.  */
  unsigned int expecting_operand = 0;
  unsigned int expecting_operand = 0;
 
 
  /* Non-zero if operand parens not balanced.  */
  /* Non-zero if operand parens not balanced.  */
  unsigned int paren_not_balanced;
  unsigned int paren_not_balanced;
 
 
  while (*l != END_OF_INSN)
  while (*l != END_OF_INSN)
    {
    {
      /* Skip optional white space before operand.  */
      /* Skip optional white space before operand.  */
      if (is_space_char (*l))
      if (is_space_char (*l))
        ++l;
        ++l;
      if (!is_operand_char (*l) && *l != END_OF_INSN)
      if (!is_operand_char (*l) && *l != END_OF_INSN)
        {
        {
          as_bad (_("invalid character %s before operand %d"),
          as_bad (_("invalid character %s before operand %d"),
                  output_invalid (*l),
                  output_invalid (*l),
                  i.operands + 1);
                  i.operands + 1);
          return NULL;
          return NULL;
        }
        }
      token_start = l;  /* after white space */
      token_start = l;  /* after white space */
      paren_not_balanced = 0;
      paren_not_balanced = 0;
      while (paren_not_balanced || *l != ',')
      while (paren_not_balanced || *l != ',')
        {
        {
          if (*l == END_OF_INSN)
          if (*l == END_OF_INSN)
            {
            {
              if (paren_not_balanced)
              if (paren_not_balanced)
                {
                {
                  if (!intel_syntax)
                  if (!intel_syntax)
                    as_bad (_("unbalanced parenthesis in operand %d."),
                    as_bad (_("unbalanced parenthesis in operand %d."),
                            i.operands + 1);
                            i.operands + 1);
                  else
                  else
                    as_bad (_("unbalanced brackets in operand %d."),
                    as_bad (_("unbalanced brackets in operand %d."),
                            i.operands + 1);
                            i.operands + 1);
                  return NULL;
                  return NULL;
                }
                }
              else
              else
                break;  /* we are done */
                break;  /* we are done */
            }
            }
          else if (!is_operand_char (*l) && !is_space_char (*l))
          else if (!is_operand_char (*l) && !is_space_char (*l))
            {
            {
              as_bad (_("invalid character %s in operand %d"),
              as_bad (_("invalid character %s in operand %d"),
                      output_invalid (*l),
                      output_invalid (*l),
                      i.operands + 1);
                      i.operands + 1);
              return NULL;
              return NULL;
            }
            }
          if (!intel_syntax)
          if (!intel_syntax)
            {
            {
              if (*l == '(')
              if (*l == '(')
                ++paren_not_balanced;
                ++paren_not_balanced;
              if (*l == ')')
              if (*l == ')')
                --paren_not_balanced;
                --paren_not_balanced;
            }
            }
          else
          else
            {
            {
              if (*l == '[')
              if (*l == '[')
                ++paren_not_balanced;
                ++paren_not_balanced;
              if (*l == ']')
              if (*l == ']')
                --paren_not_balanced;
                --paren_not_balanced;
            }
            }
          l++;
          l++;
        }
        }
      if (l != token_start)
      if (l != token_start)
        {                       /* Yes, we've read in another operand.  */
        {                       /* Yes, we've read in another operand.  */
          unsigned int operand_ok;
          unsigned int operand_ok;
          this_operand = i.operands++;
          this_operand = i.operands++;
          i.types[this_operand].bitfield.unspecified = 1;
          i.types[this_operand].bitfield.unspecified = 1;
          if (i.operands > MAX_OPERANDS)
          if (i.operands > MAX_OPERANDS)
            {
            {
              as_bad (_("spurious operands; (%d operands/instruction max)"),
              as_bad (_("spurious operands; (%d operands/instruction max)"),
                      MAX_OPERANDS);
                      MAX_OPERANDS);
              return NULL;
              return NULL;
            }
            }
          /* Now parse operand adding info to 'i' as we go along.  */
          /* Now parse operand adding info to 'i' as we go along.  */
          END_STRING_AND_SAVE (l);
          END_STRING_AND_SAVE (l);
 
 
          if (intel_syntax)
          if (intel_syntax)
            operand_ok =
            operand_ok =
              i386_intel_operand (token_start,
              i386_intel_operand (token_start,
                                  intel_float_operand (mnemonic));
                                  intel_float_operand (mnemonic));
          else
          else
            operand_ok = i386_att_operand (token_start);
            operand_ok = i386_att_operand (token_start);
 
 
          RESTORE_END_STRING (l);
          RESTORE_END_STRING (l);
          if (!operand_ok)
          if (!operand_ok)
            return NULL;
            return NULL;
        }
        }
      else
      else
        {
        {
          if (expecting_operand)
          if (expecting_operand)
            {
            {
            expecting_operand_after_comma:
            expecting_operand_after_comma:
              as_bad (_("expecting operand after ','; got nothing"));
              as_bad (_("expecting operand after ','; got nothing"));
              return NULL;
              return NULL;
            }
            }
          if (*l == ',')
          if (*l == ',')
            {
            {
              as_bad (_("expecting operand before ','; got nothing"));
              as_bad (_("expecting operand before ','; got nothing"));
              return NULL;
              return NULL;
            }
            }
        }
        }
 
 
      /* Now *l must be either ',' or END_OF_INSN.  */
      /* Now *l must be either ',' or END_OF_INSN.  */
      if (*l == ',')
      if (*l == ',')
        {
        {
          if (*++l == END_OF_INSN)
          if (*++l == END_OF_INSN)
            {
            {
              /* Just skip it, if it's \n complain.  */
              /* Just skip it, if it's \n complain.  */
              goto expecting_operand_after_comma;
              goto expecting_operand_after_comma;
            }
            }
          expecting_operand = 1;
          expecting_operand = 1;
        }
        }
    }
    }
  return l;
  return l;
}
}
 
 
static void
static void
swap_2_operands (int xchg1, int xchg2)
swap_2_operands (int xchg1, int xchg2)
{
{
  union i386_op temp_op;
  union i386_op temp_op;
  i386_operand_type temp_type;
  i386_operand_type temp_type;
  enum bfd_reloc_code_real temp_reloc;
  enum bfd_reloc_code_real temp_reloc;
 
 
  temp_type = i.types[xchg2];
  temp_type = i.types[xchg2];
  i.types[xchg2] = i.types[xchg1];
  i.types[xchg2] = i.types[xchg1];
  i.types[xchg1] = temp_type;
  i.types[xchg1] = temp_type;
  temp_op = i.op[xchg2];
  temp_op = i.op[xchg2];
  i.op[xchg2] = i.op[xchg1];
  i.op[xchg2] = i.op[xchg1];
  i.op[xchg1] = temp_op;
  i.op[xchg1] = temp_op;
  temp_reloc = i.reloc[xchg2];
  temp_reloc = i.reloc[xchg2];
  i.reloc[xchg2] = i.reloc[xchg1];
  i.reloc[xchg2] = i.reloc[xchg1];
  i.reloc[xchg1] = temp_reloc;
  i.reloc[xchg1] = temp_reloc;
}
}
 
 
static void
static void
swap_operands (void)
swap_operands (void)
{
{
  switch (i.operands)
  switch (i.operands)
    {
    {
    case 5:
    case 5:
    case 4:
    case 4:
      swap_2_operands (1, i.operands - 2);
      swap_2_operands (1, i.operands - 2);
    case 3:
    case 3:
    case 2:
    case 2:
      swap_2_operands (0, i.operands - 1);
      swap_2_operands (0, i.operands - 1);
      break;
      break;
    default:
    default:
      abort ();
      abort ();
    }
    }
 
 
  if (i.mem_operands == 2)
  if (i.mem_operands == 2)
    {
    {
      const seg_entry *temp_seg;
      const seg_entry *temp_seg;
      temp_seg = i.seg[0];
      temp_seg = i.seg[0];
      i.seg[0] = i.seg[1];
      i.seg[0] = i.seg[1];
      i.seg[1] = temp_seg;
      i.seg[1] = temp_seg;
    }
    }
}
}
 
 
/* Try to ensure constant immediates are represented in the smallest
/* Try to ensure constant immediates are represented in the smallest
   opcode possible.  */
   opcode possible.  */
static void
static void
optimize_imm (void)
optimize_imm (void)
{
{
  char guess_suffix = 0;
  char guess_suffix = 0;
  int op;
  int op;
 
 
  if (i.suffix)
  if (i.suffix)
    guess_suffix = i.suffix;
    guess_suffix = i.suffix;
  else if (i.reg_operands)
  else if (i.reg_operands)
    {
    {
      /* Figure out a suffix from the last register operand specified.
      /* Figure out a suffix from the last register operand specified.
         We can't do this properly yet, ie. excluding InOutPortReg,
         We can't do this properly yet, ie. excluding InOutPortReg,
         but the following works for instructions with immediates.
         but the following works for instructions with immediates.
         In any case, we can't set i.suffix yet.  */
         In any case, we can't set i.suffix yet.  */
      for (op = i.operands; --op >= 0;)
      for (op = i.operands; --op >= 0;)
        if (i.types[op].bitfield.reg8)
        if (i.types[op].bitfield.reg8)
          {
          {
            guess_suffix = BYTE_MNEM_SUFFIX;
            guess_suffix = BYTE_MNEM_SUFFIX;
            break;
            break;
          }
          }
        else if (i.types[op].bitfield.reg16)
        else if (i.types[op].bitfield.reg16)
          {
          {
            guess_suffix = WORD_MNEM_SUFFIX;
            guess_suffix = WORD_MNEM_SUFFIX;
            break;
            break;
          }
          }
        else if (i.types[op].bitfield.reg32)
        else if (i.types[op].bitfield.reg32)
          {
          {
            guess_suffix = LONG_MNEM_SUFFIX;
            guess_suffix = LONG_MNEM_SUFFIX;
            break;
            break;
          }
          }
        else if (i.types[op].bitfield.reg64)
        else if (i.types[op].bitfield.reg64)
          {
          {
            guess_suffix = QWORD_MNEM_SUFFIX;
            guess_suffix = QWORD_MNEM_SUFFIX;
            break;
            break;
          }
          }
    }
    }
  else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
  else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
    guess_suffix = WORD_MNEM_SUFFIX;
    guess_suffix = WORD_MNEM_SUFFIX;
 
 
  for (op = i.operands; --op >= 0;)
  for (op = i.operands; --op >= 0;)
    if (operand_type_check (i.types[op], imm))
    if (operand_type_check (i.types[op], imm))
      {
      {
        switch (i.op[op].imms->X_op)
        switch (i.op[op].imms->X_op)
          {
          {
          case O_constant:
          case O_constant:
            /* If a suffix is given, this operand may be shortened.  */
            /* If a suffix is given, this operand may be shortened.  */
            switch (guess_suffix)
            switch (guess_suffix)
              {
              {
              case LONG_MNEM_SUFFIX:
              case LONG_MNEM_SUFFIX:
                i.types[op].bitfield.imm32 = 1;
                i.types[op].bitfield.imm32 = 1;
                i.types[op].bitfield.imm64 = 1;
                i.types[op].bitfield.imm64 = 1;
                break;
                break;
              case WORD_MNEM_SUFFIX:
              case WORD_MNEM_SUFFIX:
                i.types[op].bitfield.imm16 = 1;
                i.types[op].bitfield.imm16 = 1;
                i.types[op].bitfield.imm32 = 1;
                i.types[op].bitfield.imm32 = 1;
                i.types[op].bitfield.imm32s = 1;
                i.types[op].bitfield.imm32s = 1;
                i.types[op].bitfield.imm64 = 1;
                i.types[op].bitfield.imm64 = 1;
                break;
                break;
              case BYTE_MNEM_SUFFIX:
              case BYTE_MNEM_SUFFIX:
                i.types[op].bitfield.imm8 = 1;
                i.types[op].bitfield.imm8 = 1;
                i.types[op].bitfield.imm8s = 1;
                i.types[op].bitfield.imm8s = 1;
                i.types[op].bitfield.imm16 = 1;
                i.types[op].bitfield.imm16 = 1;
                i.types[op].bitfield.imm32 = 1;
                i.types[op].bitfield.imm32 = 1;
                i.types[op].bitfield.imm32s = 1;
                i.types[op].bitfield.imm32s = 1;
                i.types[op].bitfield.imm64 = 1;
                i.types[op].bitfield.imm64 = 1;
                break;
                break;
              }
              }
 
 
            /* If this operand is at most 16 bits, convert it
            /* If this operand is at most 16 bits, convert it
               to a signed 16 bit number before trying to see
               to a signed 16 bit number before trying to see
               whether it will fit in an even smaller size.
               whether it will fit in an even smaller size.
               This allows a 16-bit operand such as $0xffe0 to
               This allows a 16-bit operand such as $0xffe0 to
               be recognised as within Imm8S range.  */
               be recognised as within Imm8S range.  */
            if ((i.types[op].bitfield.imm16)
            if ((i.types[op].bitfield.imm16)
                && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
                && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
              {
              {
                i.op[op].imms->X_add_number =
                i.op[op].imms->X_add_number =
                  (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
                  (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
              }
              }
            if ((i.types[op].bitfield.imm32)
            if ((i.types[op].bitfield.imm32)
                && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
                && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
                    == 0))
                    == 0))
              {
              {
                i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
                i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
                                                ^ ((offsetT) 1 << 31))
                                                ^ ((offsetT) 1 << 31))
                                               - ((offsetT) 1 << 31));
                                               - ((offsetT) 1 << 31));
              }
              }
            i.types[op]
            i.types[op]
              = operand_type_or (i.types[op],
              = operand_type_or (i.types[op],
                                 smallest_imm_type (i.op[op].imms->X_add_number));
                                 smallest_imm_type (i.op[op].imms->X_add_number));
 
 
            /* We must avoid matching of Imm32 templates when 64bit
            /* We must avoid matching of Imm32 templates when 64bit
               only immediate is available.  */
               only immediate is available.  */
            if (guess_suffix == QWORD_MNEM_SUFFIX)
            if (guess_suffix == QWORD_MNEM_SUFFIX)
              i.types[op].bitfield.imm32 = 0;
              i.types[op].bitfield.imm32 = 0;
            break;
            break;
 
 
          case O_absent:
          case O_absent:
          case O_register:
          case O_register:
            abort ();
            abort ();
 
 
            /* Symbols and expressions.  */
            /* Symbols and expressions.  */
          default:
          default:
            /* Convert symbolic operand to proper sizes for matching, but don't
            /* Convert symbolic operand to proper sizes for matching, but don't
               prevent matching a set of insns that only supports sizes other
               prevent matching a set of insns that only supports sizes other
               than those matching the insn suffix.  */
               than those matching the insn suffix.  */
            {
            {
              i386_operand_type mask, allowed;
              i386_operand_type mask, allowed;
              const template *t;
              const template *t;
 
 
              operand_type_set (&mask, 0);
              operand_type_set (&mask, 0);
              operand_type_set (&allowed, 0);
              operand_type_set (&allowed, 0);
 
 
              for (t = current_templates->start;
              for (t = current_templates->start;
                   t < current_templates->end;
                   t < current_templates->end;
                   ++t)
                   ++t)
                allowed = operand_type_or (allowed,
                allowed = operand_type_or (allowed,
                                           t->operand_types[op]);
                                           t->operand_types[op]);
              switch (guess_suffix)
              switch (guess_suffix)
                {
                {
                case QWORD_MNEM_SUFFIX:
                case QWORD_MNEM_SUFFIX:
                  mask.bitfield.imm64 = 1;
                  mask.bitfield.imm64 = 1;
                  mask.bitfield.imm32s = 1;
                  mask.bitfield.imm32s = 1;
                  break;
                  break;
                case LONG_MNEM_SUFFIX:
                case LONG_MNEM_SUFFIX:
                  mask.bitfield.imm32 = 1;
                  mask.bitfield.imm32 = 1;
                  break;
                  break;
                case WORD_MNEM_SUFFIX:
                case WORD_MNEM_SUFFIX:
                  mask.bitfield.imm16 = 1;
                  mask.bitfield.imm16 = 1;
                  break;
                  break;
                case BYTE_MNEM_SUFFIX:
                case BYTE_MNEM_SUFFIX:
                  mask.bitfield.imm8 = 1;
                  mask.bitfield.imm8 = 1;
                  break;
                  break;
                default:
                default:
                  break;
                  break;
                }
                }
              allowed = operand_type_and (mask, allowed);
              allowed = operand_type_and (mask, allowed);
              if (!operand_type_all_zero (&allowed))
              if (!operand_type_all_zero (&allowed))
                i.types[op] = operand_type_and (i.types[op], mask);
                i.types[op] = operand_type_and (i.types[op], mask);
            }
            }
            break;
            break;
          }
          }
      }
      }
}
}
 
 
/* Try to use the smallest displacement type too.  */
/* Try to use the smallest displacement type too.  */
static void
static void
optimize_disp (void)
optimize_disp (void)
{
{
  int op;
  int op;
 
 
  for (op = i.operands; --op >= 0;)
  for (op = i.operands; --op >= 0;)
    if (operand_type_check (i.types[op], disp))
    if (operand_type_check (i.types[op], disp))
      {
      {
        if (i.op[op].disps->X_op == O_constant)
        if (i.op[op].disps->X_op == O_constant)
          {
          {
            offsetT disp = i.op[op].disps->X_add_number;
            offsetT disp = i.op[op].disps->X_add_number;
 
 
            if (i.types[op].bitfield.disp16
            if (i.types[op].bitfield.disp16
                && (disp & ~(offsetT) 0xffff) == 0)
                && (disp & ~(offsetT) 0xffff) == 0)
              {
              {
                /* If this operand is at most 16 bits, convert
                /* If this operand is at most 16 bits, convert
                   to a signed 16 bit number and don't use 64bit
                   to a signed 16 bit number and don't use 64bit
                   displacement.  */
                   displacement.  */
                disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
                disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
                i.types[op].bitfield.disp64 = 0;
                i.types[op].bitfield.disp64 = 0;
              }
              }
            if (i.types[op].bitfield.disp32
            if (i.types[op].bitfield.disp32
                && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
                && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
              {
              {
                /* If this operand is at most 32 bits, convert
                /* If this operand is at most 32 bits, convert
                   to a signed 32 bit number and don't use 64bit
                   to a signed 32 bit number and don't use 64bit
                   displacement.  */
                   displacement.  */
                disp &= (((offsetT) 2 << 31) - 1);
                disp &= (((offsetT) 2 << 31) - 1);
                disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
                disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
                i.types[op].bitfield.disp64 = 0;
                i.types[op].bitfield.disp64 = 0;
              }
              }
            if (!disp && i.types[op].bitfield.baseindex)
            if (!disp && i.types[op].bitfield.baseindex)
              {
              {
                i.types[op].bitfield.disp8 = 0;
                i.types[op].bitfield.disp8 = 0;
                i.types[op].bitfield.disp16 = 0;
                i.types[op].bitfield.disp16 = 0;
                i.types[op].bitfield.disp32 = 0;
                i.types[op].bitfield.disp32 = 0;
                i.types[op].bitfield.disp32s = 0;
                i.types[op].bitfield.disp32s = 0;
                i.types[op].bitfield.disp64 = 0;
                i.types[op].bitfield.disp64 = 0;
                i.op[op].disps = 0;
                i.op[op].disps = 0;
                i.disp_operands--;
                i.disp_operands--;
              }
              }
            else if (flag_code == CODE_64BIT)
            else if (flag_code == CODE_64BIT)
              {
              {
                if (fits_in_signed_long (disp))
                if (fits_in_signed_long (disp))
                  {
                  {
                    i.types[op].bitfield.disp64 = 0;
                    i.types[op].bitfield.disp64 = 0;
                    i.types[op].bitfield.disp32s = 1;
                    i.types[op].bitfield.disp32s = 1;
                  }
                  }
                if (fits_in_unsigned_long (disp))
                if (fits_in_unsigned_long (disp))
                  i.types[op].bitfield.disp32 = 1;
                  i.types[op].bitfield.disp32 = 1;
              }
              }
            if ((i.types[op].bitfield.disp32
            if ((i.types[op].bitfield.disp32
                 || i.types[op].bitfield.disp32s
                 || i.types[op].bitfield.disp32s
                 || i.types[op].bitfield.disp16)
                 || i.types[op].bitfield.disp16)
                && fits_in_signed_byte (disp))
                && fits_in_signed_byte (disp))
              i.types[op].bitfield.disp8 = 1;
              i.types[op].bitfield.disp8 = 1;
          }
          }
        else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
        else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
                 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
                 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
          {
          {
            fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
            fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
                         i.op[op].disps, 0, i.reloc[op]);
                         i.op[op].disps, 0, i.reloc[op]);
            i.types[op].bitfield.disp8 = 0;
            i.types[op].bitfield.disp8 = 0;
            i.types[op].bitfield.disp16 = 0;
            i.types[op].bitfield.disp16 = 0;
            i.types[op].bitfield.disp32 = 0;
            i.types[op].bitfield.disp32 = 0;
            i.types[op].bitfield.disp32s = 0;
            i.types[op].bitfield.disp32s = 0;
            i.types[op].bitfield.disp64 = 0;
            i.types[op].bitfield.disp64 = 0;
          }
          }
        else
        else
          /* We only support 64bit displacement on constants.  */
          /* We only support 64bit displacement on constants.  */
          i.types[op].bitfield.disp64 = 0;
          i.types[op].bitfield.disp64 = 0;
      }
      }
}
}
 
 
/* Check if operands are valid for the instrucrtion.  Update VEX
/* Check if operands are valid for the instrucrtion.  Update VEX
   operand types.  */
   operand types.  */
 
 
static int
static int
VEX_check_operands (const template *t)
VEX_check_operands (const template *t)
{
{
  if (!t->opcode_modifier.vex)
  if (!t->opcode_modifier.vex)
    return 0;
    return 0;
 
 
  /* Only check VEX_Imm4, which must be the first operand.  */
  /* Only check VEX_Imm4, which must be the first operand.  */
  if (t->operand_types[0].bitfield.vex_imm4)
  if (t->operand_types[0].bitfield.vex_imm4)
    {
    {
      if (i.op[0].imms->X_op != O_constant
      if (i.op[0].imms->X_op != O_constant
          || !fits_in_imm4 (i.op[0].imms->X_add_number))
          || !fits_in_imm4 (i.op[0].imms->X_add_number))
        return 1;
        return 1;
 
 
      /* Turn off Imm8 so that update_imm won't complain.  */
      /* Turn off Imm8 so that update_imm won't complain.  */
      i.types[0] = vex_imm4;
      i.types[0] = vex_imm4;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
static int
static int
match_template (void)
match_template (void)
{
{
  /* Points to template once we've found it.  */
  /* Points to template once we've found it.  */
  const template *t;
  const template *t;
  i386_operand_type overlap0, overlap1, overlap2, overlap3;
  i386_operand_type overlap0, overlap1, overlap2, overlap3;
  i386_operand_type overlap4;
  i386_operand_type overlap4;
  unsigned int found_reverse_match;
  unsigned int found_reverse_match;
  i386_opcode_modifier suffix_check;
  i386_opcode_modifier suffix_check;
  i386_operand_type operand_types [MAX_OPERANDS];
  i386_operand_type operand_types [MAX_OPERANDS];
  int addr_prefix_disp;
  int addr_prefix_disp;
  unsigned int j;
  unsigned int j;
  unsigned int found_cpu_match;
  unsigned int found_cpu_match;
  unsigned int check_register;
  unsigned int check_register;
 
 
#if MAX_OPERANDS != 5
#if MAX_OPERANDS != 5
# error "MAX_OPERANDS must be 5."
# error "MAX_OPERANDS must be 5."
#endif
#endif
 
 
  found_reverse_match = 0;
  found_reverse_match = 0;
  addr_prefix_disp = -1;
  addr_prefix_disp = -1;
 
 
  memset (&suffix_check, 0, sizeof (suffix_check));
  memset (&suffix_check, 0, sizeof (suffix_check));
  if (i.suffix == BYTE_MNEM_SUFFIX)
  if (i.suffix == BYTE_MNEM_SUFFIX)
    suffix_check.no_bsuf = 1;
    suffix_check.no_bsuf = 1;
  else if (i.suffix == WORD_MNEM_SUFFIX)
  else if (i.suffix == WORD_MNEM_SUFFIX)
    suffix_check.no_wsuf = 1;
    suffix_check.no_wsuf = 1;
  else if (i.suffix == SHORT_MNEM_SUFFIX)
  else if (i.suffix == SHORT_MNEM_SUFFIX)
    suffix_check.no_ssuf = 1;
    suffix_check.no_ssuf = 1;
  else if (i.suffix == LONG_MNEM_SUFFIX)
  else if (i.suffix == LONG_MNEM_SUFFIX)
    suffix_check.no_lsuf = 1;
    suffix_check.no_lsuf = 1;
  else if (i.suffix == QWORD_MNEM_SUFFIX)
  else if (i.suffix == QWORD_MNEM_SUFFIX)
    suffix_check.no_qsuf = 1;
    suffix_check.no_qsuf = 1;
  else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
  else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
    suffix_check.no_ldsuf = 1;
    suffix_check.no_ldsuf = 1;
 
 
  for (t = current_templates->start; t < current_templates->end; t++)
  for (t = current_templates->start; t < current_templates->end; t++)
    {
    {
      addr_prefix_disp = -1;
      addr_prefix_disp = -1;
 
 
      /* Must have right number of operands.  */
      /* Must have right number of operands.  */
      if (i.operands != t->operands)
      if (i.operands != t->operands)
        continue;
        continue;
 
 
      /* Check processor support.  */
      /* Check processor support.  */
      found_cpu_match = (cpu_flags_match (t)
      found_cpu_match = (cpu_flags_match (t)
                         == CPU_FLAGS_PERFECT_MATCH);
                         == CPU_FLAGS_PERFECT_MATCH);
      if (!found_cpu_match)
      if (!found_cpu_match)
        continue;
        continue;
 
 
      /* Check old gcc support. */
      /* Check old gcc support. */
      if (!old_gcc && t->opcode_modifier.oldgcc)
      if (!old_gcc && t->opcode_modifier.oldgcc)
        continue;
        continue;
 
 
      /* Check AT&T mnemonic.   */
      /* Check AT&T mnemonic.   */
      if (intel_mnemonic && t->opcode_modifier.attmnemonic)
      if (intel_mnemonic && t->opcode_modifier.attmnemonic)
        continue;
        continue;
 
 
      /* Check AT&T syntax Intel syntax.   */
      /* Check AT&T syntax Intel syntax.   */
      if ((intel_syntax && t->opcode_modifier.attsyntax)
      if ((intel_syntax && t->opcode_modifier.attsyntax)
          || (!intel_syntax && t->opcode_modifier.intelsyntax))
          || (!intel_syntax && t->opcode_modifier.intelsyntax))
        continue;
        continue;
 
 
      /* Check the suffix, except for some instructions in intel mode.  */
      /* Check the suffix, except for some instructions in intel mode.  */
      if ((!intel_syntax || !t->opcode_modifier.ignoresize)
      if ((!intel_syntax || !t->opcode_modifier.ignoresize)
          && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
          && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
              || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
              || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
              || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
              || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
              || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
              || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
              || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
              || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
              || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
              || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
        continue;
        continue;
 
 
      if (!operand_size_match (t))
      if (!operand_size_match (t))
        continue;
        continue;
 
 
      for (j = 0; j < MAX_OPERANDS; j++)
      for (j = 0; j < MAX_OPERANDS; j++)
        operand_types[j] = t->operand_types[j];
        operand_types[j] = t->operand_types[j];
 
 
      /* In general, don't allow 64-bit operands in 32-bit mode.  */
      /* In general, don't allow 64-bit operands in 32-bit mode.  */
      if (i.suffix == QWORD_MNEM_SUFFIX
      if (i.suffix == QWORD_MNEM_SUFFIX
          && flag_code != CODE_64BIT
          && flag_code != CODE_64BIT
          && (intel_syntax
          && (intel_syntax
              ? (!t->opcode_modifier.ignoresize
              ? (!t->opcode_modifier.ignoresize
                 && !intel_float_operand (t->name))
                 && !intel_float_operand (t->name))
              : intel_float_operand (t->name) != 2)
              : intel_float_operand (t->name) != 2)
          && ((!operand_types[0].bitfield.regmmx
          && ((!operand_types[0].bitfield.regmmx
               && !operand_types[0].bitfield.regxmm
               && !operand_types[0].bitfield.regxmm
               && !operand_types[0].bitfield.regymm)
               && !operand_types[0].bitfield.regymm)
              || (!operand_types[t->operands > 1].bitfield.regmmx
              || (!operand_types[t->operands > 1].bitfield.regmmx
                  && !!operand_types[t->operands > 1].bitfield.regxmm
                  && !!operand_types[t->operands > 1].bitfield.regxmm
                  && !!operand_types[t->operands > 1].bitfield.regymm))
                  && !!operand_types[t->operands > 1].bitfield.regymm))
          && (t->base_opcode != 0x0fc7
          && (t->base_opcode != 0x0fc7
              || t->extension_opcode != 1 /* cmpxchg8b */))
              || t->extension_opcode != 1 /* cmpxchg8b */))
        continue;
        continue;
 
 
      /* In general, don't allow 32-bit operands on pre-386.  */
      /* In general, don't allow 32-bit operands on pre-386.  */
      else if (i.suffix == LONG_MNEM_SUFFIX
      else if (i.suffix == LONG_MNEM_SUFFIX
               && !cpu_arch_flags.bitfield.cpui386
               && !cpu_arch_flags.bitfield.cpui386
               && (intel_syntax
               && (intel_syntax
                   ? (!t->opcode_modifier.ignoresize
                   ? (!t->opcode_modifier.ignoresize
                      && !intel_float_operand (t->name))
                      && !intel_float_operand (t->name))
                   : intel_float_operand (t->name) != 2)
                   : intel_float_operand (t->name) != 2)
               && ((!operand_types[0].bitfield.regmmx
               && ((!operand_types[0].bitfield.regmmx
                    && !operand_types[0].bitfield.regxmm)
                    && !operand_types[0].bitfield.regxmm)
                   || (!operand_types[t->operands > 1].bitfield.regmmx
                   || (!operand_types[t->operands > 1].bitfield.regmmx
                       && !!operand_types[t->operands > 1].bitfield.regxmm)))
                       && !!operand_types[t->operands > 1].bitfield.regxmm)))
        continue;
        continue;
 
 
      /* Do not verify operands when there are none.  */
      /* Do not verify operands when there are none.  */
      else
      else
        {
        {
          if (!t->operands)
          if (!t->operands)
            /* We've found a match; break out of loop.  */
            /* We've found a match; break out of loop.  */
            break;
            break;
        }
        }
 
 
      /* Address size prefix will turn Disp64/Disp32/Disp16 operand
      /* Address size prefix will turn Disp64/Disp32/Disp16 operand
         into Disp32/Disp16/Disp32 operand.  */
         into Disp32/Disp16/Disp32 operand.  */
      if (i.prefix[ADDR_PREFIX] != 0)
      if (i.prefix[ADDR_PREFIX] != 0)
          {
          {
            /* There should be only one Disp operand.  */
            /* There should be only one Disp operand.  */
            switch (flag_code)
            switch (flag_code)
            {
            {
            case CODE_16BIT:
            case CODE_16BIT:
              for (j = 0; j < MAX_OPERANDS; j++)
              for (j = 0; j < MAX_OPERANDS; j++)
                {
                {
                  if (operand_types[j].bitfield.disp16)
                  if (operand_types[j].bitfield.disp16)
                    {
                    {
                      addr_prefix_disp = j;
                      addr_prefix_disp = j;
                      operand_types[j].bitfield.disp32 = 1;
                      operand_types[j].bitfield.disp32 = 1;
                      operand_types[j].bitfield.disp16 = 0;
                      operand_types[j].bitfield.disp16 = 0;
                      break;
                      break;
                    }
                    }
                }
                }
              break;
              break;
            case CODE_32BIT:
            case CODE_32BIT:
              for (j = 0; j < MAX_OPERANDS; j++)
              for (j = 0; j < MAX_OPERANDS; j++)
                {
                {
                  if (operand_types[j].bitfield.disp32)
                  if (operand_types[j].bitfield.disp32)
                    {
                    {
                      addr_prefix_disp = j;
                      addr_prefix_disp = j;
                      operand_types[j].bitfield.disp32 = 0;
                      operand_types[j].bitfield.disp32 = 0;
                      operand_types[j].bitfield.disp16 = 1;
                      operand_types[j].bitfield.disp16 = 1;
                      break;
                      break;
                    }
                    }
                }
                }
              break;
              break;
            case CODE_64BIT:
            case CODE_64BIT:
              for (j = 0; j < MAX_OPERANDS; j++)
              for (j = 0; j < MAX_OPERANDS; j++)
                {
                {
                  if (operand_types[j].bitfield.disp64)
                  if (operand_types[j].bitfield.disp64)
                    {
                    {
                      addr_prefix_disp = j;
                      addr_prefix_disp = j;
                      operand_types[j].bitfield.disp64 = 0;
                      operand_types[j].bitfield.disp64 = 0;
                      operand_types[j].bitfield.disp32 = 1;
                      operand_types[j].bitfield.disp32 = 1;
                      break;
                      break;
                    }
                    }
                }
                }
              break;
              break;
            }
            }
          }
          }
 
 
      /* We check register size only if size of operands can be
      /* We check register size only if size of operands can be
         encoded the canonical way.  */
         encoded the canonical way.  */
      check_register = t->opcode_modifier.w;
      check_register = t->opcode_modifier.w;
      overlap0 = operand_type_and (i.types[0], operand_types[0]);
      overlap0 = operand_type_and (i.types[0], operand_types[0]);
      switch (t->operands)
      switch (t->operands)
        {
        {
        case 1:
        case 1:
          if (!operand_type_match (overlap0, i.types[0]))
          if (!operand_type_match (overlap0, i.types[0]))
            continue;
            continue;
          break;
          break;
        case 2:
        case 2:
          /* xchg %eax, %eax is a special case. It is an aliase for nop
          /* xchg %eax, %eax is a special case. It is an aliase for nop
             only in 32bit mode and we can use opcode 0x90.  In 64bit
             only in 32bit mode and we can use opcode 0x90.  In 64bit
             mode, we can't use 0x90 for xchg %eax, %eax since it should
             mode, we can't use 0x90 for xchg %eax, %eax since it should
             zero-extend %eax to %rax.  */
             zero-extend %eax to %rax.  */
          if (flag_code == CODE_64BIT
          if (flag_code == CODE_64BIT
              && t->base_opcode == 0x90
              && t->base_opcode == 0x90
              && operand_type_equal (&i.types [0], &acc32)
              && operand_type_equal (&i.types [0], &acc32)
              && operand_type_equal (&i.types [1], &acc32))
              && operand_type_equal (&i.types [1], &acc32))
            continue;
            continue;
        case 3:
        case 3:
        case 4:
        case 4:
        case 5:
        case 5:
          overlap1 = operand_type_and (i.types[1], operand_types[1]);
          overlap1 = operand_type_and (i.types[1], operand_types[1]);
          if (!operand_type_match (overlap0, i.types[0])
          if (!operand_type_match (overlap0, i.types[0])
              || !operand_type_match (overlap1, i.types[1])
              || !operand_type_match (overlap1, i.types[1])
              || (check_register
              || (check_register
                  && !operand_type_register_match (overlap0, i.types[0],
                  && !operand_type_register_match (overlap0, i.types[0],
                                                   operand_types[0],
                                                   operand_types[0],
                                                   overlap1, i.types[1],
                                                   overlap1, i.types[1],
                                                   operand_types[1])))
                                                   operand_types[1])))
            {
            {
              /* Check if other direction is valid ...  */
              /* Check if other direction is valid ...  */
              if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
              if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
                continue;
                continue;
 
 
              /* Try reversing direction of operands.  */
              /* Try reversing direction of operands.  */
              overlap0 = operand_type_and (i.types[0], operand_types[1]);
              overlap0 = operand_type_and (i.types[0], operand_types[1]);
              overlap1 = operand_type_and (i.types[1], operand_types[0]);
              overlap1 = operand_type_and (i.types[1], operand_types[0]);
              if (!operand_type_match (overlap0, i.types[0])
              if (!operand_type_match (overlap0, i.types[0])
                  || !operand_type_match (overlap1, i.types[1])
                  || !operand_type_match (overlap1, i.types[1])
                  || (check_register
                  || (check_register
                      && !operand_type_register_match (overlap0,
                      && !operand_type_register_match (overlap0,
                                                       i.types[0],
                                                       i.types[0],
                                                       operand_types[1],
                                                       operand_types[1],
                                                       overlap1,
                                                       overlap1,
                                                       i.types[1],
                                                       i.types[1],
                                                       operand_types[0])))
                                                       operand_types[0])))
                {
                {
                  /* Does not match either direction.  */
                  /* Does not match either direction.  */
                  continue;
                  continue;
                }
                }
              /* found_reverse_match holds which of D or FloatDR
              /* found_reverse_match holds which of D or FloatDR
                 we've found.  */
                 we've found.  */
              if (t->opcode_modifier.d)
              if (t->opcode_modifier.d)
                found_reverse_match = Opcode_D;
                found_reverse_match = Opcode_D;
              else if (t->opcode_modifier.floatd)
              else if (t->opcode_modifier.floatd)
                found_reverse_match = Opcode_FloatD;
                found_reverse_match = Opcode_FloatD;
              else
              else
                found_reverse_match = 0;
                found_reverse_match = 0;
              if (t->opcode_modifier.floatr)
              if (t->opcode_modifier.floatr)
                found_reverse_match |= Opcode_FloatR;
                found_reverse_match |= Opcode_FloatR;
            }
            }
          else
          else
            {
            {
              /* Found a forward 2 operand match here.  */
              /* Found a forward 2 operand match here.  */
              switch (t->operands)
              switch (t->operands)
                {
                {
                case 5:
                case 5:
                  overlap4 = operand_type_and (i.types[4],
                  overlap4 = operand_type_and (i.types[4],
                                               operand_types[4]);
                                               operand_types[4]);
                case 4:
                case 4:
                  overlap3 = operand_type_and (i.types[3],
                  overlap3 = operand_type_and (i.types[3],
                                               operand_types[3]);
                                               operand_types[3]);
                case 3:
                case 3:
                  overlap2 = operand_type_and (i.types[2],
                  overlap2 = operand_type_and (i.types[2],
                                               operand_types[2]);
                                               operand_types[2]);
                  break;
                  break;
                }
                }
 
 
              switch (t->operands)
              switch (t->operands)
                {
                {
                case 5:
                case 5:
                  if (!operand_type_match (overlap4, i.types[4])
                  if (!operand_type_match (overlap4, i.types[4])
                      || !operand_type_register_match (overlap3,
                      || !operand_type_register_match (overlap3,
                                                       i.types[3],
                                                       i.types[3],
                                                       operand_types[3],
                                                       operand_types[3],
                                                       overlap4,
                                                       overlap4,
                                                       i.types[4],
                                                       i.types[4],
                                                       operand_types[4]))
                                                       operand_types[4]))
                    continue;
                    continue;
                case 4:
                case 4:
                  if (!operand_type_match (overlap3, i.types[3])
                  if (!operand_type_match (overlap3, i.types[3])
                      || (check_register
                      || (check_register
                          && !operand_type_register_match (overlap2,
                          && !operand_type_register_match (overlap2,
                                                           i.types[2],
                                                           i.types[2],
                                                           operand_types[2],
                                                           operand_types[2],
                                                           overlap3,
                                                           overlap3,
                                                           i.types[3],
                                                           i.types[3],
                                                           operand_types[3])))
                                                           operand_types[3])))
                    continue;
                    continue;
                case 3:
                case 3:
                  /* Here we make use of the fact that there are no
                  /* Here we make use of the fact that there are no
                     reverse match 3 operand instructions, and all 3
                     reverse match 3 operand instructions, and all 3
                     operand instructions only need to be checked for
                     operand instructions only need to be checked for
                     register consistency between operands 2 and 3.  */
                     register consistency between operands 2 and 3.  */
                  if (!operand_type_match (overlap2, i.types[2])
                  if (!operand_type_match (overlap2, i.types[2])
                      || (check_register
                      || (check_register
                          && !operand_type_register_match (overlap1,
                          && !operand_type_register_match (overlap1,
                                                           i.types[1],
                                                           i.types[1],
                                                           operand_types[1],
                                                           operand_types[1],
                                                           overlap2,
                                                           overlap2,
                                                           i.types[2],
                                                           i.types[2],
                                                           operand_types[2])))
                                                           operand_types[2])))
                    continue;
                    continue;
                  break;
                  break;
                }
                }
            }
            }
          /* Found either forward/reverse 2, 3 or 4 operand match here:
          /* Found either forward/reverse 2, 3 or 4 operand match here:
             slip through to break.  */
             slip through to break.  */
        }
        }
      if (!found_cpu_match)
      if (!found_cpu_match)
        {
        {
          found_reverse_match = 0;
          found_reverse_match = 0;
          continue;
          continue;
        }
        }
 
 
      /* Check if VEX operands are valid.  */
      /* Check if VEX operands are valid.  */
      if (VEX_check_operands (t))
      if (VEX_check_operands (t))
        continue;
        continue;
 
 
      /* We've found a match; break out of loop.  */
      /* We've found a match; break out of loop.  */
      break;
      break;
    }
    }
 
 
  if (t == current_templates->end)
  if (t == current_templates->end)
    {
    {
      /* We found no match.  */
      /* We found no match.  */
      as_bad (_("suffix or operands invalid for `%s'"),
      as_bad (_("suffix or operands invalid for `%s'"),
              current_templates->start->name);
              current_templates->start->name);
      return 0;
      return 0;
    }
    }
 
 
  if (!quiet_warnings)
  if (!quiet_warnings)
    {
    {
      if (!intel_syntax
      if (!intel_syntax
          && (i.types[0].bitfield.jumpabsolute
          && (i.types[0].bitfield.jumpabsolute
              != operand_types[0].bitfield.jumpabsolute))
              != operand_types[0].bitfield.jumpabsolute))
        {
        {
          as_warn (_("indirect %s without `*'"), t->name);
          as_warn (_("indirect %s without `*'"), t->name);
        }
        }
 
 
      if (t->opcode_modifier.isprefix
      if (t->opcode_modifier.isprefix
          && t->opcode_modifier.ignoresize)
          && t->opcode_modifier.ignoresize)
        {
        {
          /* Warn them that a data or address size prefix doesn't
          /* Warn them that a data or address size prefix doesn't
             affect assembly of the next line of code.  */
             affect assembly of the next line of code.  */
          as_warn (_("stand-alone `%s' prefix"), t->name);
          as_warn (_("stand-alone `%s' prefix"), t->name);
        }
        }
    }
    }
 
 
  /* Copy the template we found.  */
  /* Copy the template we found.  */
  i.tm = *t;
  i.tm = *t;
 
 
  if (addr_prefix_disp != -1)
  if (addr_prefix_disp != -1)
    i.tm.operand_types[addr_prefix_disp]
    i.tm.operand_types[addr_prefix_disp]
      = operand_types[addr_prefix_disp];
      = operand_types[addr_prefix_disp];
 
 
  if (found_reverse_match)
  if (found_reverse_match)
    {
    {
      /* If we found a reverse match we must alter the opcode
      /* If we found a reverse match we must alter the opcode
         direction bit.  found_reverse_match holds bits to change
         direction bit.  found_reverse_match holds bits to change
         (different for int & float insns).  */
         (different for int & float insns).  */
 
 
      i.tm.base_opcode ^= found_reverse_match;
      i.tm.base_opcode ^= found_reverse_match;
 
 
      i.tm.operand_types[0] = operand_types[1];
      i.tm.operand_types[0] = operand_types[1];
      i.tm.operand_types[1] = operand_types[0];
      i.tm.operand_types[1] = operand_types[0];
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
static int
static int
check_string (void)
check_string (void)
{
{
  int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
  int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
  if (i.tm.operand_types[mem_op].bitfield.esseg)
  if (i.tm.operand_types[mem_op].bitfield.esseg)
    {
    {
      if (i.seg[0] != NULL && i.seg[0] != &es)
      if (i.seg[0] != NULL && i.seg[0] != &es)
        {
        {
          as_bad (_("`%s' operand %d must use `%%es' segment"),
          as_bad (_("`%s' operand %d must use `%%es' segment"),
                  i.tm.name,
                  i.tm.name,
                  mem_op + 1);
                  mem_op + 1);
          return 0;
          return 0;
        }
        }
      /* There's only ever one segment override allowed per instruction.
      /* There's only ever one segment override allowed per instruction.
         This instruction possibly has a legal segment override on the
         This instruction possibly has a legal segment override on the
         second operand, so copy the segment to where non-string
         second operand, so copy the segment to where non-string
         instructions store it, allowing common code.  */
         instructions store it, allowing common code.  */
      i.seg[0] = i.seg[1];
      i.seg[0] = i.seg[1];
    }
    }
  else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
  else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
    {
    {
      if (i.seg[1] != NULL && i.seg[1] != &es)
      if (i.seg[1] != NULL && i.seg[1] != &es)
        {
        {
          as_bad (_("`%s' operand %d must use `%%es' segment"),
          as_bad (_("`%s' operand %d must use `%%es' segment"),
                  i.tm.name,
                  i.tm.name,
                  mem_op + 2);
                  mem_op + 2);
          return 0;
          return 0;
        }
        }
    }
    }
  return 1;
  return 1;
}
}
 
 
static int
static int
process_suffix (void)
process_suffix (void)
{
{
  /* If matched instruction specifies an explicit instruction mnemonic
  /* If matched instruction specifies an explicit instruction mnemonic
     suffix, use it.  */
     suffix, use it.  */
  if (i.tm.opcode_modifier.size16)
  if (i.tm.opcode_modifier.size16)
    i.suffix = WORD_MNEM_SUFFIX;
    i.suffix = WORD_MNEM_SUFFIX;
  else if (i.tm.opcode_modifier.size32)
  else if (i.tm.opcode_modifier.size32)
    i.suffix = LONG_MNEM_SUFFIX;
    i.suffix = LONG_MNEM_SUFFIX;
  else if (i.tm.opcode_modifier.size64)
  else if (i.tm.opcode_modifier.size64)
    i.suffix = QWORD_MNEM_SUFFIX;
    i.suffix = QWORD_MNEM_SUFFIX;
  else if (i.reg_operands)
  else if (i.reg_operands)
    {
    {
      /* If there's no instruction mnemonic suffix we try to invent one
      /* If there's no instruction mnemonic suffix we try to invent one
         based on register operands.  */
         based on register operands.  */
      if (!i.suffix)
      if (!i.suffix)
        {
        {
          /* We take i.suffix from the last register operand specified,
          /* We take i.suffix from the last register operand specified,
             Destination register type is more significant than source
             Destination register type is more significant than source
             register type.  crc32 in SSE4.2 prefers source register
             register type.  crc32 in SSE4.2 prefers source register
             type. */
             type. */
          if (i.tm.base_opcode == 0xf20f38f1)
          if (i.tm.base_opcode == 0xf20f38f1)
            {
            {
              if (i.types[0].bitfield.reg16)
              if (i.types[0].bitfield.reg16)
                i.suffix = WORD_MNEM_SUFFIX;
                i.suffix = WORD_MNEM_SUFFIX;
              else if (i.types[0].bitfield.reg32)
              else if (i.types[0].bitfield.reg32)
                i.suffix = LONG_MNEM_SUFFIX;
                i.suffix = LONG_MNEM_SUFFIX;
              else if (i.types[0].bitfield.reg64)
              else if (i.types[0].bitfield.reg64)
                i.suffix = QWORD_MNEM_SUFFIX;
                i.suffix = QWORD_MNEM_SUFFIX;
            }
            }
          else if (i.tm.base_opcode == 0xf20f38f0)
          else if (i.tm.base_opcode == 0xf20f38f0)
            {
            {
              if (i.types[0].bitfield.reg8)
              if (i.types[0].bitfield.reg8)
                i.suffix = BYTE_MNEM_SUFFIX;
                i.suffix = BYTE_MNEM_SUFFIX;
            }
            }
 
 
          if (!i.suffix)
          if (!i.suffix)
            {
            {
              int op;
              int op;
 
 
              if (i.tm.base_opcode == 0xf20f38f1
              if (i.tm.base_opcode == 0xf20f38f1
                  || i.tm.base_opcode == 0xf20f38f0)
                  || i.tm.base_opcode == 0xf20f38f0)
                {
                {
                  /* We have to know the operand size for crc32.  */
                  /* We have to know the operand size for crc32.  */
                  as_bad (_("ambiguous memory operand size for `%s`"),
                  as_bad (_("ambiguous memory operand size for `%s`"),
                          i.tm.name);
                          i.tm.name);
                  return 0;
                  return 0;
                }
                }
 
 
              for (op = i.operands; --op >= 0;)
              for (op = i.operands; --op >= 0;)
                if (!i.tm.operand_types[op].bitfield.inoutportreg)
                if (!i.tm.operand_types[op].bitfield.inoutportreg)
                  {
                  {
                    if (i.types[op].bitfield.reg8)
                    if (i.types[op].bitfield.reg8)
                      {
                      {
                        i.suffix = BYTE_MNEM_SUFFIX;
                        i.suffix = BYTE_MNEM_SUFFIX;
                        break;
                        break;
                      }
                      }
                    else if (i.types[op].bitfield.reg16)
                    else if (i.types[op].bitfield.reg16)
                      {
                      {
                        i.suffix = WORD_MNEM_SUFFIX;
                        i.suffix = WORD_MNEM_SUFFIX;
                        break;
                        break;
                      }
                      }
                    else if (i.types[op].bitfield.reg32)
                    else if (i.types[op].bitfield.reg32)
                      {
                      {
                        i.suffix = LONG_MNEM_SUFFIX;
                        i.suffix = LONG_MNEM_SUFFIX;
                        break;
                        break;
                      }
                      }
                    else if (i.types[op].bitfield.reg64)
                    else if (i.types[op].bitfield.reg64)
                      {
                      {
                        i.suffix = QWORD_MNEM_SUFFIX;
                        i.suffix = QWORD_MNEM_SUFFIX;
                        break;
                        break;
                      }
                      }
                  }
                  }
            }
            }
        }
        }
      else if (i.suffix == BYTE_MNEM_SUFFIX)
      else if (i.suffix == BYTE_MNEM_SUFFIX)
        {
        {
          if (!check_byte_reg ())
          if (!check_byte_reg ())
            return 0;
            return 0;
        }
        }
      else if (i.suffix == LONG_MNEM_SUFFIX)
      else if (i.suffix == LONG_MNEM_SUFFIX)
        {
        {
          if (!check_long_reg ())
          if (!check_long_reg ())
            return 0;
            return 0;
        }
        }
      else if (i.suffix == QWORD_MNEM_SUFFIX)
      else if (i.suffix == QWORD_MNEM_SUFFIX)
        {
        {
          if (intel_syntax
          if (intel_syntax
              && i.tm.opcode_modifier.ignoresize
              && i.tm.opcode_modifier.ignoresize
              && i.tm.opcode_modifier.no_qsuf)
              && i.tm.opcode_modifier.no_qsuf)
            i.suffix = 0;
            i.suffix = 0;
          else if (!check_qword_reg ())
          else if (!check_qword_reg ())
            return 0;
            return 0;
        }
        }
      else if (i.suffix == WORD_MNEM_SUFFIX)
      else if (i.suffix == WORD_MNEM_SUFFIX)
        {
        {
          if (!check_word_reg ())
          if (!check_word_reg ())
            return 0;
            return 0;
        }
        }
      else if (i.suffix == XMMWORD_MNEM_SUFFIX
      else if (i.suffix == XMMWORD_MNEM_SUFFIX
               || i.suffix == YMMWORD_MNEM_SUFFIX)
               || i.suffix == YMMWORD_MNEM_SUFFIX)
        {
        {
          /* Skip if the instruction has x/y suffix.  match_template
          /* Skip if the instruction has x/y suffix.  match_template
             should check if it is a valid suffix.  */
             should check if it is a valid suffix.  */
        }
        }
      else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
      else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
        /* Do nothing if the instruction is going to ignore the prefix.  */
        /* Do nothing if the instruction is going to ignore the prefix.  */
        ;
        ;
      else
      else
        abort ();
        abort ();
    }
    }
  else if (i.tm.opcode_modifier.defaultsize
  else if (i.tm.opcode_modifier.defaultsize
           && !i.suffix
           && !i.suffix
           /* exclude fldenv/frstor/fsave/fstenv */
           /* exclude fldenv/frstor/fsave/fstenv */
           && i.tm.opcode_modifier.no_ssuf)
           && i.tm.opcode_modifier.no_ssuf)
    {
    {
      i.suffix = stackop_size;
      i.suffix = stackop_size;
    }
    }
  else if (intel_syntax
  else if (intel_syntax
           && !i.suffix
           && !i.suffix
           && (i.tm.operand_types[0].bitfield.jumpabsolute
           && (i.tm.operand_types[0].bitfield.jumpabsolute
               || i.tm.opcode_modifier.jumpbyte
               || i.tm.opcode_modifier.jumpbyte
               || i.tm.opcode_modifier.jumpintersegment
               || i.tm.opcode_modifier.jumpintersegment
               || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
               || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
                   && i.tm.extension_opcode <= 3)))
                   && i.tm.extension_opcode <= 3)))
    {
    {
      switch (flag_code)
      switch (flag_code)
        {
        {
        case CODE_64BIT:
        case CODE_64BIT:
          if (!i.tm.opcode_modifier.no_qsuf)
          if (!i.tm.opcode_modifier.no_qsuf)
            {
            {
              i.suffix = QWORD_MNEM_SUFFIX;
              i.suffix = QWORD_MNEM_SUFFIX;
              break;
              break;
            }
            }
        case CODE_32BIT:
        case CODE_32BIT:
          if (!i.tm.opcode_modifier.no_lsuf)
          if (!i.tm.opcode_modifier.no_lsuf)
            i.suffix = LONG_MNEM_SUFFIX;
            i.suffix = LONG_MNEM_SUFFIX;
          break;
          break;
        case CODE_16BIT:
        case CODE_16BIT:
          if (!i.tm.opcode_modifier.no_wsuf)
          if (!i.tm.opcode_modifier.no_wsuf)
            i.suffix = WORD_MNEM_SUFFIX;
            i.suffix = WORD_MNEM_SUFFIX;
          break;
          break;
        }
        }
    }
    }
 
 
  if (!i.suffix)
  if (!i.suffix)
    {
    {
      if (!intel_syntax)
      if (!intel_syntax)
        {
        {
          if (i.tm.opcode_modifier.w)
          if (i.tm.opcode_modifier.w)
            {
            {
              as_bad (_("no instruction mnemonic suffix given and "
              as_bad (_("no instruction mnemonic suffix given and "
                        "no register operands; can't size instruction"));
                        "no register operands; can't size instruction"));
              return 0;
              return 0;
            }
            }
        }
        }
      else
      else
        {
        {
          unsigned int suffixes;
          unsigned int suffixes;
 
 
          suffixes = !i.tm.opcode_modifier.no_bsuf;
          suffixes = !i.tm.opcode_modifier.no_bsuf;
          if (!i.tm.opcode_modifier.no_wsuf)
          if (!i.tm.opcode_modifier.no_wsuf)
            suffixes |= 1 << 1;
            suffixes |= 1 << 1;
          if (!i.tm.opcode_modifier.no_lsuf)
          if (!i.tm.opcode_modifier.no_lsuf)
            suffixes |= 1 << 2;
            suffixes |= 1 << 2;
          if (!i.tm.opcode_modifier.no_ldsuf)
          if (!i.tm.opcode_modifier.no_ldsuf)
            suffixes |= 1 << 3;
            suffixes |= 1 << 3;
          if (!i.tm.opcode_modifier.no_ssuf)
          if (!i.tm.opcode_modifier.no_ssuf)
            suffixes |= 1 << 4;
            suffixes |= 1 << 4;
          if (!i.tm.opcode_modifier.no_qsuf)
          if (!i.tm.opcode_modifier.no_qsuf)
            suffixes |= 1 << 5;
            suffixes |= 1 << 5;
 
 
          /* There are more than suffix matches.  */
          /* There are more than suffix matches.  */
          if (i.tm.opcode_modifier.w
          if (i.tm.opcode_modifier.w
              || ((suffixes & (suffixes - 1))
              || ((suffixes & (suffixes - 1))
                  && !i.tm.opcode_modifier.defaultsize
                  && !i.tm.opcode_modifier.defaultsize
                  && !i.tm.opcode_modifier.ignoresize))
                  && !i.tm.opcode_modifier.ignoresize))
            {
            {
              as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
              as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
              return 0;
              return 0;
            }
            }
        }
        }
    }
    }
 
 
  /* Change the opcode based on the operand size given by i.suffix;
  /* Change the opcode based on the operand size given by i.suffix;
     We don't need to change things for byte insns.  */
     We don't need to change things for byte insns.  */
 
 
  if (i.suffix
  if (i.suffix
      && i.suffix != BYTE_MNEM_SUFFIX
      && i.suffix != BYTE_MNEM_SUFFIX
      && i.suffix != XMMWORD_MNEM_SUFFIX
      && i.suffix != XMMWORD_MNEM_SUFFIX
      && i.suffix != YMMWORD_MNEM_SUFFIX)
      && i.suffix != YMMWORD_MNEM_SUFFIX)
    {
    {
      /* It's not a byte, select word/dword operation.  */
      /* It's not a byte, select word/dword operation.  */
      if (i.tm.opcode_modifier.w)
      if (i.tm.opcode_modifier.w)
        {
        {
          if (i.tm.opcode_modifier.shortform)
          if (i.tm.opcode_modifier.shortform)
            i.tm.base_opcode |= 8;
            i.tm.base_opcode |= 8;
          else
          else
            i.tm.base_opcode |= 1;
            i.tm.base_opcode |= 1;
        }
        }
 
 
      /* Now select between word & dword operations via the operand
      /* Now select between word & dword operations via the operand
         size prefix, except for instructions that will ignore this
         size prefix, except for instructions that will ignore this
         prefix anyway.  */
         prefix anyway.  */
      if (i.tm.opcode_modifier.addrprefixop0)
      if (i.tm.opcode_modifier.addrprefixop0)
        {
        {
          /* The address size override prefix changes the size of the
          /* The address size override prefix changes the size of the
             first operand.  */
             first operand.  */
          if ((flag_code == CODE_32BIT
          if ((flag_code == CODE_32BIT
               && i.op->regs[0].reg_type.bitfield.reg16)
               && i.op->regs[0].reg_type.bitfield.reg16)
              || (flag_code != CODE_32BIT
              || (flag_code != CODE_32BIT
                  && i.op->regs[0].reg_type.bitfield.reg32))
                  && i.op->regs[0].reg_type.bitfield.reg32))
            if (!add_prefix (ADDR_PREFIX_OPCODE))
            if (!add_prefix (ADDR_PREFIX_OPCODE))
              return 0;
              return 0;
        }
        }
      else if (i.suffix != QWORD_MNEM_SUFFIX
      else if (i.suffix != QWORD_MNEM_SUFFIX
               && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
               && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
               && !i.tm.opcode_modifier.ignoresize
               && !i.tm.opcode_modifier.ignoresize
               && !i.tm.opcode_modifier.floatmf
               && !i.tm.opcode_modifier.floatmf
               && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
               && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
                   || (flag_code == CODE_64BIT
                   || (flag_code == CODE_64BIT
                       && i.tm.opcode_modifier.jumpbyte)))
                       && i.tm.opcode_modifier.jumpbyte)))
        {
        {
          unsigned int prefix = DATA_PREFIX_OPCODE;
          unsigned int prefix = DATA_PREFIX_OPCODE;
 
 
          if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
          if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
            prefix = ADDR_PREFIX_OPCODE;
            prefix = ADDR_PREFIX_OPCODE;
 
 
          if (!add_prefix (prefix))
          if (!add_prefix (prefix))
            return 0;
            return 0;
        }
        }
 
 
      /* Set mode64 for an operand.  */
      /* Set mode64 for an operand.  */
      if (i.suffix == QWORD_MNEM_SUFFIX
      if (i.suffix == QWORD_MNEM_SUFFIX
          && flag_code == CODE_64BIT
          && flag_code == CODE_64BIT
          && !i.tm.opcode_modifier.norex64)
          && !i.tm.opcode_modifier.norex64)
        {
        {
          /* Special case for xchg %rax,%rax.  It is NOP and doesn't
          /* Special case for xchg %rax,%rax.  It is NOP and doesn't
             need rex64.  cmpxchg8b is also a special case. */
             need rex64.  cmpxchg8b is also a special case. */
          if (! (i.operands == 2
          if (! (i.operands == 2
                 && i.tm.base_opcode == 0x90
                 && i.tm.base_opcode == 0x90
                 && i.tm.extension_opcode == None
                 && i.tm.extension_opcode == None
                 && operand_type_equal (&i.types [0], &acc64)
                 && operand_type_equal (&i.types [0], &acc64)
                 && operand_type_equal (&i.types [1], &acc64))
                 && operand_type_equal (&i.types [1], &acc64))
              && ! (i.operands == 1
              && ! (i.operands == 1
                    && i.tm.base_opcode == 0xfc7
                    && i.tm.base_opcode == 0xfc7
                    && i.tm.extension_opcode == 1
                    && i.tm.extension_opcode == 1
                    && !operand_type_check (i.types [0], reg)
                    && !operand_type_check (i.types [0], reg)
                    && operand_type_check (i.types [0], anymem)))
                    && operand_type_check (i.types [0], anymem)))
            i.rex |= REX_W;
            i.rex |= REX_W;
        }
        }
 
 
      /* Size floating point instruction.  */
      /* Size floating point instruction.  */
      if (i.suffix == LONG_MNEM_SUFFIX)
      if (i.suffix == LONG_MNEM_SUFFIX)
        if (i.tm.opcode_modifier.floatmf)
        if (i.tm.opcode_modifier.floatmf)
          i.tm.base_opcode ^= 4;
          i.tm.base_opcode ^= 4;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
static int
static int
check_byte_reg (void)
check_byte_reg (void)
{
{
  int op;
  int op;
 
 
  for (op = i.operands; --op >= 0;)
  for (op = i.operands; --op >= 0;)
    {
    {
      /* If this is an eight bit register, it's OK.  If it's the 16 or
      /* If this is an eight bit register, it's OK.  If it's the 16 or
         32 bit version of an eight bit register, we will just use the
         32 bit version of an eight bit register, we will just use the
         low portion, and that's OK too.  */
         low portion, and that's OK too.  */
      if (i.types[op].bitfield.reg8)
      if (i.types[op].bitfield.reg8)
        continue;
        continue;
 
 
      /* Don't generate this warning if not needed.  */
      /* Don't generate this warning if not needed.  */
      if (intel_syntax && i.tm.opcode_modifier.byteokintel)
      if (intel_syntax && i.tm.opcode_modifier.byteokintel)
        continue;
        continue;
 
 
      /* crc32 doesn't generate this warning.  */
      /* crc32 doesn't generate this warning.  */
      if (i.tm.base_opcode == 0xf20f38f0)
      if (i.tm.base_opcode == 0xf20f38f0)
        continue;
        continue;
 
 
      if ((i.types[op].bitfield.reg16
      if ((i.types[op].bitfield.reg16
           || i.types[op].bitfield.reg32
           || i.types[op].bitfield.reg32
           || i.types[op].bitfield.reg64)
           || i.types[op].bitfield.reg64)
          && i.op[op].regs->reg_num < 4)
          && i.op[op].regs->reg_num < 4)
        {
        {
          /* Prohibit these changes in the 64bit mode, since the
          /* Prohibit these changes in the 64bit mode, since the
             lowering is more complicated.  */
             lowering is more complicated.  */
          if (flag_code == CODE_64BIT
          if (flag_code == CODE_64BIT
              && !i.tm.operand_types[op].bitfield.inoutportreg)
              && !i.tm.operand_types[op].bitfield.inoutportreg)
            {
            {
              as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
              as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
                      register_prefix, i.op[op].regs->reg_name,
                      register_prefix, i.op[op].regs->reg_name,
                      i.suffix);
                      i.suffix);
              return 0;
              return 0;
            }
            }
#if REGISTER_WARNINGS
#if REGISTER_WARNINGS
          if (!quiet_warnings
          if (!quiet_warnings
              && !i.tm.operand_types[op].bitfield.inoutportreg)
              && !i.tm.operand_types[op].bitfield.inoutportreg)
            as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
            as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
                     register_prefix,
                     register_prefix,
                     (i.op[op].regs + (i.types[op].bitfield.reg16
                     (i.op[op].regs + (i.types[op].bitfield.reg16
                                       ? REGNAM_AL - REGNAM_AX
                                       ? REGNAM_AL - REGNAM_AX
                                       : REGNAM_AL - REGNAM_EAX))->reg_name,
                                       : REGNAM_AL - REGNAM_EAX))->reg_name,
                     register_prefix,
                     register_prefix,
                     i.op[op].regs->reg_name,
                     i.op[op].regs->reg_name,
                     i.suffix);
                     i.suffix);
#endif
#endif
          continue;
          continue;
        }
        }
      /* Any other register is bad.  */
      /* Any other register is bad.  */
      if (i.types[op].bitfield.reg16
      if (i.types[op].bitfield.reg16
          || i.types[op].bitfield.reg32
          || i.types[op].bitfield.reg32
          || i.types[op].bitfield.reg64
          || i.types[op].bitfield.reg64
          || i.types[op].bitfield.regmmx
          || i.types[op].bitfield.regmmx
          || i.types[op].bitfield.regxmm
          || i.types[op].bitfield.regxmm
          || i.types[op].bitfield.regymm
          || i.types[op].bitfield.regymm
          || i.types[op].bitfield.sreg2
          || i.types[op].bitfield.sreg2
          || i.types[op].bitfield.sreg3
          || i.types[op].bitfield.sreg3
          || i.types[op].bitfield.control
          || i.types[op].bitfield.control
          || i.types[op].bitfield.debug
          || i.types[op].bitfield.debug
          || i.types[op].bitfield.test
          || i.types[op].bitfield.test
          || i.types[op].bitfield.floatreg
          || i.types[op].bitfield.floatreg
          || i.types[op].bitfield.floatacc)
          || i.types[op].bitfield.floatacc)
        {
        {
          as_bad (_("`%s%s' not allowed with `%s%c'"),
          as_bad (_("`%s%s' not allowed with `%s%c'"),
                  register_prefix,
                  register_prefix,
                  i.op[op].regs->reg_name,
                  i.op[op].regs->reg_name,
                  i.tm.name,
                  i.tm.name,
                  i.suffix);
                  i.suffix);
          return 0;
          return 0;
        }
        }
    }
    }
  return 1;
  return 1;
}
}
 
 
static int
static int
check_long_reg (void)
check_long_reg (void)
{
{
  int op;
  int op;
 
 
  for (op = i.operands; --op >= 0;)
  for (op = i.operands; --op >= 0;)
    /* Reject eight bit registers, except where the template requires
    /* Reject eight bit registers, except where the template requires
       them. (eg. movzb)  */
       them. (eg. movzb)  */
    if (i.types[op].bitfield.reg8
    if (i.types[op].bitfield.reg8
        && (i.tm.operand_types[op].bitfield.reg16
        && (i.tm.operand_types[op].bitfield.reg16
            || i.tm.operand_types[op].bitfield.reg32
            || i.tm.operand_types[op].bitfield.reg32
            || i.tm.operand_types[op].bitfield.acc))
            || i.tm.operand_types[op].bitfield.acc))
      {
      {
        as_bad (_("`%s%s' not allowed with `%s%c'"),
        as_bad (_("`%s%s' not allowed with `%s%c'"),
                register_prefix,
                register_prefix,
                i.op[op].regs->reg_name,
                i.op[op].regs->reg_name,
                i.tm.name,
                i.tm.name,
                i.suffix);
                i.suffix);
        return 0;
        return 0;
      }
      }
  /* Warn if the e prefix on a general reg is missing.  */
  /* Warn if the e prefix on a general reg is missing.  */
    else if ((!quiet_warnings || flag_code == CODE_64BIT)
    else if ((!quiet_warnings || flag_code == CODE_64BIT)
             && i.types[op].bitfield.reg16
             && i.types[op].bitfield.reg16
             && (i.tm.operand_types[op].bitfield.reg32
             && (i.tm.operand_types[op].bitfield.reg32
                 || i.tm.operand_types[op].bitfield.acc))
                 || i.tm.operand_types[op].bitfield.acc))
      {
      {
        /* Prohibit these changes in the 64bit mode, since the
        /* Prohibit these changes in the 64bit mode, since the
           lowering is more complicated.  */
           lowering is more complicated.  */
        if (flag_code == CODE_64BIT)
        if (flag_code == CODE_64BIT)
          {
          {
            as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
            as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
                    register_prefix, i.op[op].regs->reg_name,
                    register_prefix, i.op[op].regs->reg_name,
                    i.suffix);
                    i.suffix);
            return 0;
            return 0;
          }
          }
#if REGISTER_WARNINGS
#if REGISTER_WARNINGS
        else
        else
          as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
          as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
                   register_prefix,
                   register_prefix,
                   (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
                   (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
                   register_prefix,
                   register_prefix,
                   i.op[op].regs->reg_name,
                   i.op[op].regs->reg_name,
                   i.suffix);
                   i.suffix);
#endif
#endif
      }
      }
  /* Warn if the r prefix on a general reg is missing.  */
  /* Warn if the r prefix on a general reg is missing.  */
    else if (i.types[op].bitfield.reg64
    else if (i.types[op].bitfield.reg64
             && (i.tm.operand_types[op].bitfield.reg32
             && (i.tm.operand_types[op].bitfield.reg32
                 || i.tm.operand_types[op].bitfield.acc))
                 || i.tm.operand_types[op].bitfield.acc))
      {
      {
        if (intel_syntax
        if (intel_syntax
            && i.tm.opcode_modifier.toqword
            && i.tm.opcode_modifier.toqword
            && !i.types[0].bitfield.regxmm)
            && !i.types[0].bitfield.regxmm)
          {
          {
            /* Convert to QWORD.  We want REX byte. */
            /* Convert to QWORD.  We want REX byte. */
            i.suffix = QWORD_MNEM_SUFFIX;
            i.suffix = QWORD_MNEM_SUFFIX;
          }
          }
        else
        else
          {
          {
            as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
            as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
                    register_prefix, i.op[op].regs->reg_name,
                    register_prefix, i.op[op].regs->reg_name,
                    i.suffix);
                    i.suffix);
            return 0;
            return 0;
          }
          }
      }
      }
  return 1;
  return 1;
}
}
 
 
static int
static int
check_qword_reg (void)
check_qword_reg (void)
{
{
  int op;
  int op;
 
 
  for (op = i.operands; --op >= 0; )
  for (op = i.operands; --op >= 0; )
    /* Reject eight bit registers, except where the template requires
    /* Reject eight bit registers, except where the template requires
       them. (eg. movzb)  */
       them. (eg. movzb)  */
    if (i.types[op].bitfield.reg8
    if (i.types[op].bitfield.reg8
        && (i.tm.operand_types[op].bitfield.reg16
        && (i.tm.operand_types[op].bitfield.reg16
            || i.tm.operand_types[op].bitfield.reg32
            || i.tm.operand_types[op].bitfield.reg32
            || i.tm.operand_types[op].bitfield.acc))
            || i.tm.operand_types[op].bitfield.acc))
      {
      {
        as_bad (_("`%s%s' not allowed with `%s%c'"),
        as_bad (_("`%s%s' not allowed with `%s%c'"),
                register_prefix,
                register_prefix,
                i.op[op].regs->reg_name,
                i.op[op].regs->reg_name,
                i.tm.name,
                i.tm.name,
                i.suffix);
                i.suffix);
        return 0;
        return 0;
      }
      }
  /* Warn if the e prefix on a general reg is missing.  */
  /* Warn if the e prefix on a general reg is missing.  */
    else if ((i.types[op].bitfield.reg16
    else if ((i.types[op].bitfield.reg16
              || i.types[op].bitfield.reg32)
              || i.types[op].bitfield.reg32)
             && (i.tm.operand_types[op].bitfield.reg32
             && (i.tm.operand_types[op].bitfield.reg32
                 || i.tm.operand_types[op].bitfield.acc))
                 || i.tm.operand_types[op].bitfield.acc))
      {
      {
        /* Prohibit these changes in the 64bit mode, since the
        /* Prohibit these changes in the 64bit mode, since the
           lowering is more complicated.  */
           lowering is more complicated.  */
        if (intel_syntax
        if (intel_syntax
            && i.tm.opcode_modifier.todword
            && i.tm.opcode_modifier.todword
            && !i.types[0].bitfield.regxmm)
            && !i.types[0].bitfield.regxmm)
          {
          {
            /* Convert to DWORD.  We don't want REX byte. */
            /* Convert to DWORD.  We don't want REX byte. */
            i.suffix = LONG_MNEM_SUFFIX;
            i.suffix = LONG_MNEM_SUFFIX;
          }
          }
        else
        else
          {
          {
            as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
            as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
                    register_prefix, i.op[op].regs->reg_name,
                    register_prefix, i.op[op].regs->reg_name,
                    i.suffix);
                    i.suffix);
            return 0;
            return 0;
          }
          }
      }
      }
  return 1;
  return 1;
}
}
 
 
static int
static int
check_word_reg (void)
check_word_reg (void)
{
{
  int op;
  int op;
  for (op = i.operands; --op >= 0;)
  for (op = i.operands; --op >= 0;)
    /* Reject eight bit registers, except where the template requires
    /* Reject eight bit registers, except where the template requires
       them. (eg. movzb)  */
       them. (eg. movzb)  */
    if (i.types[op].bitfield.reg8
    if (i.types[op].bitfield.reg8
        && (i.tm.operand_types[op].bitfield.reg16
        && (i.tm.operand_types[op].bitfield.reg16
            || i.tm.operand_types[op].bitfield.reg32
            || i.tm.operand_types[op].bitfield.reg32
            || i.tm.operand_types[op].bitfield.acc))
            || i.tm.operand_types[op].bitfield.acc))
      {
      {
        as_bad (_("`%s%s' not allowed with `%s%c'"),
        as_bad (_("`%s%s' not allowed with `%s%c'"),
                register_prefix,
                register_prefix,
                i.op[op].regs->reg_name,
                i.op[op].regs->reg_name,
                i.tm.name,
                i.tm.name,
                i.suffix);
                i.suffix);
        return 0;
        return 0;
      }
      }
  /* Warn if the e prefix on a general reg is present.  */
  /* Warn if the e prefix on a general reg is present.  */
    else if ((!quiet_warnings || flag_code == CODE_64BIT)
    else if ((!quiet_warnings || flag_code == CODE_64BIT)
             && i.types[op].bitfield.reg32
             && i.types[op].bitfield.reg32
             && (i.tm.operand_types[op].bitfield.reg16
             && (i.tm.operand_types[op].bitfield.reg16
                 || i.tm.operand_types[op].bitfield.acc))
                 || i.tm.operand_types[op].bitfield.acc))
      {
      {
        /* Prohibit these changes in the 64bit mode, since the
        /* Prohibit these changes in the 64bit mode, since the
           lowering is more complicated.  */
           lowering is more complicated.  */
        if (flag_code == CODE_64BIT)
        if (flag_code == CODE_64BIT)
          {
          {
            as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
            as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
                    register_prefix, i.op[op].regs->reg_name,
                    register_prefix, i.op[op].regs->reg_name,
                    i.suffix);
                    i.suffix);
            return 0;
            return 0;
          }
          }
        else
        else
#if REGISTER_WARNINGS
#if REGISTER_WARNINGS
          as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
          as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
                   register_prefix,
                   register_prefix,
                   (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
                   (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
                   register_prefix,
                   register_prefix,
                   i.op[op].regs->reg_name,
                   i.op[op].regs->reg_name,
                   i.suffix);
                   i.suffix);
#endif
#endif
      }
      }
  return 1;
  return 1;
}
}
 
 
static int
static int
update_imm (unsigned int j)
update_imm (unsigned int j)
{
{
  i386_operand_type overlap;
  i386_operand_type overlap;
 
 
  overlap = operand_type_and (i.types[j], i.tm.operand_types[j]);
  overlap = operand_type_and (i.types[j], i.tm.operand_types[j]);
  if ((overlap.bitfield.imm8
  if ((overlap.bitfield.imm8
       || overlap.bitfield.imm8s
       || overlap.bitfield.imm8s
       || overlap.bitfield.imm16
       || overlap.bitfield.imm16
       || overlap.bitfield.imm32
       || overlap.bitfield.imm32
       || overlap.bitfield.imm32s
       || overlap.bitfield.imm32s
       || overlap.bitfield.imm64)
       || overlap.bitfield.imm64)
      && !operand_type_equal (&overlap, &imm8)
      && !operand_type_equal (&overlap, &imm8)
      && !operand_type_equal (&overlap, &imm8s)
      && !operand_type_equal (&overlap, &imm8s)
      && !operand_type_equal (&overlap, &imm16)
      && !operand_type_equal (&overlap, &imm16)
      && !operand_type_equal (&overlap, &imm32)
      && !operand_type_equal (&overlap, &imm32)
      && !operand_type_equal (&overlap, &imm32s)
      && !operand_type_equal (&overlap, &imm32s)
      && !operand_type_equal (&overlap, &imm64))
      && !operand_type_equal (&overlap, &imm64))
    {
    {
      if (i.suffix)
      if (i.suffix)
        {
        {
          i386_operand_type temp;
          i386_operand_type temp;
 
 
          operand_type_set (&temp, 0);
          operand_type_set (&temp, 0);
          if (i.suffix == BYTE_MNEM_SUFFIX)
          if (i.suffix == BYTE_MNEM_SUFFIX)
            {
            {
              temp.bitfield.imm8 = overlap.bitfield.imm8;
              temp.bitfield.imm8 = overlap.bitfield.imm8;
              temp.bitfield.imm8s = overlap.bitfield.imm8s;
              temp.bitfield.imm8s = overlap.bitfield.imm8s;
            }
            }
          else if (i.suffix == WORD_MNEM_SUFFIX)
          else if (i.suffix == WORD_MNEM_SUFFIX)
            temp.bitfield.imm16 = overlap.bitfield.imm16;
            temp.bitfield.imm16 = overlap.bitfield.imm16;
          else if (i.suffix == QWORD_MNEM_SUFFIX)
          else if (i.suffix == QWORD_MNEM_SUFFIX)
            {
            {
              temp.bitfield.imm64 = overlap.bitfield.imm64;
              temp.bitfield.imm64 = overlap.bitfield.imm64;
              temp.bitfield.imm32s = overlap.bitfield.imm32s;
              temp.bitfield.imm32s = overlap.bitfield.imm32s;
            }
            }
          else
          else
            temp.bitfield.imm32 = overlap.bitfield.imm32;
            temp.bitfield.imm32 = overlap.bitfield.imm32;
          overlap = temp;
          overlap = temp;
        }
        }
      else if (operand_type_equal (&overlap, &imm16_32_32s)
      else if (operand_type_equal (&overlap, &imm16_32_32s)
               || operand_type_equal (&overlap, &imm16_32)
               || operand_type_equal (&overlap, &imm16_32)
               || operand_type_equal (&overlap, &imm16_32s))
               || operand_type_equal (&overlap, &imm16_32s))
        {
        {
          if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
          if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
            overlap = imm16;
            overlap = imm16;
          else
          else
            overlap = imm32s;
            overlap = imm32s;
        }
        }
      if (!operand_type_equal (&overlap, &imm8)
      if (!operand_type_equal (&overlap, &imm8)
          && !operand_type_equal (&overlap, &imm8s)
          && !operand_type_equal (&overlap, &imm8s)
          && !operand_type_equal (&overlap, &imm16)
          && !operand_type_equal (&overlap, &imm16)
          && !operand_type_equal (&overlap, &imm32)
          && !operand_type_equal (&overlap, &imm32)
          && !operand_type_equal (&overlap, &imm32s)
          && !operand_type_equal (&overlap, &imm32s)
          && !operand_type_equal (&overlap, &imm64))
          && !operand_type_equal (&overlap, &imm64))
        {
        {
          as_bad (_("no instruction mnemonic suffix given; "
          as_bad (_("no instruction mnemonic suffix given; "
                    "can't determine immediate size"));
                    "can't determine immediate size"));
          return 0;
          return 0;
        }
        }
    }
    }
  i.types[j] = overlap;
  i.types[j] = overlap;
 
 
  return 1;
  return 1;
}
}
 
 
static int
static int
finalize_imm (void)
finalize_imm (void)
{
{
  unsigned int j;
  unsigned int j;
 
 
  for (j = 0; j < 2; j++)
  for (j = 0; j < 2; j++)
    if (update_imm (j) == 0)
    if (update_imm (j) == 0)
      return 0;
      return 0;
 
 
  i.types[2] = operand_type_and (i.types[2], i.tm.operand_types[2]);
  i.types[2] = operand_type_and (i.types[2], i.tm.operand_types[2]);
  assert (operand_type_check (i.types[2], imm) == 0);
  assert (operand_type_check (i.types[2], imm) == 0);
 
 
  return 1;
  return 1;
}
}
 
 
static void
static void
process_drex (void)
process_drex (void)
{
{
  i.drex.modrm_reg = 0;
  i.drex.modrm_reg = 0;
  i.drex.modrm_regmem = 0;
  i.drex.modrm_regmem = 0;
 
 
  /* SSE5 4 operand instructions must have the destination the same as
  /* SSE5 4 operand instructions must have the destination the same as
     one of the inputs.  Figure out the destination register and cache
     one of the inputs.  Figure out the destination register and cache
     it away in the drex field, and remember which fields to use for
     it away in the drex field, and remember which fields to use for
     the modrm byte.  */
     the modrm byte.  */
  if (i.tm.opcode_modifier.drex
  if (i.tm.opcode_modifier.drex
      && i.tm.opcode_modifier.drexv
      && i.tm.opcode_modifier.drexv
      && i.operands == 4)
      && i.operands == 4)
    {
    {
      i.tm.extension_opcode = None;
      i.tm.extension_opcode = None;
 
 
      /* Case 1: 4 operand insn, dest = src1, src3 = register.  */
      /* Case 1: 4 operand insn, dest = src1, src3 = register.  */
      if (i.types[0].bitfield.regxmm != 0
      if (i.types[0].bitfield.regxmm != 0
          && i.types[1].bitfield.regxmm != 0
          && i.types[1].bitfield.regxmm != 0
          && i.types[2].bitfield.regxmm != 0
          && i.types[2].bitfield.regxmm != 0
          && i.types[3].bitfield.regxmm != 0
          && i.types[3].bitfield.regxmm != 0
          && i.op[0].regs->reg_num == i.op[3].regs->reg_num
          && i.op[0].regs->reg_num == i.op[3].regs->reg_num
          && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
          && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
        {
        {
          /* Clear the arguments that are stored in drex.  */
          /* Clear the arguments that are stored in drex.  */
          operand_type_set (&i.types[0], 0);
          operand_type_set (&i.types[0], 0);
          operand_type_set (&i.types[3], 0);
          operand_type_set (&i.types[3], 0);
          i.reg_operands -= 2;
          i.reg_operands -= 2;
 
 
          /* There are two different ways to encode a 4 operand
          /* There are two different ways to encode a 4 operand
             instruction with all registers that uses OC1 set to
             instruction with all registers that uses OC1 set to
             0 or 1.  Favor setting OC1 to 0 since this mimics the
             0 or 1.  Favor setting OC1 to 0 since this mimics the
             actions of other SSE5 assemblers.  Use modrm encoding 2
             actions of other SSE5 assemblers.  Use modrm encoding 2
             for register/register.  Include the high order bit that
             for register/register.  Include the high order bit that
             is normally stored in the REX byte in the register
             is normally stored in the REX byte in the register
             field.  */
             field.  */
          i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
          i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
          i.drex.modrm_reg = 2;
          i.drex.modrm_reg = 2;
          i.drex.modrm_regmem = 1;
          i.drex.modrm_regmem = 1;
          i.drex.reg = (i.op[3].regs->reg_num
          i.drex.reg = (i.op[3].regs->reg_num
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
        }
        }
 
 
      /* Case 2: 4 operand insn, dest = src1, src3 = memory.  */
      /* Case 2: 4 operand insn, dest = src1, src3 = memory.  */
      else if (i.types[0].bitfield.regxmm != 0
      else if (i.types[0].bitfield.regxmm != 0
               && i.types[1].bitfield.regxmm != 0
               && i.types[1].bitfield.regxmm != 0
               && (i.types[2].bitfield.regxmm
               && (i.types[2].bitfield.regxmm
                   || operand_type_check (i.types[2], anymem))
                   || operand_type_check (i.types[2], anymem))
               && i.types[3].bitfield.regxmm != 0
               && i.types[3].bitfield.regxmm != 0
               && i.op[0].regs->reg_num == i.op[3].regs->reg_num
               && i.op[0].regs->reg_num == i.op[3].regs->reg_num
               && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
               && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
        {
        {
          /* clear the arguments that are stored in drex */
          /* clear the arguments that are stored in drex */
          operand_type_set (&i.types[0], 0);
          operand_type_set (&i.types[0], 0);
          operand_type_set (&i.types[3], 0);
          operand_type_set (&i.types[3], 0);
          i.reg_operands -= 2;
          i.reg_operands -= 2;
 
 
          /* Specify the modrm encoding for memory addressing.  Include
          /* Specify the modrm encoding for memory addressing.  Include
             the high order bit that is normally stored in the REX byte
             the high order bit that is normally stored in the REX byte
             in the register field.  */
             in the register field.  */
          i.tm.extension_opcode = DREX_X1_X2_XMEM_X1;
          i.tm.extension_opcode = DREX_X1_X2_XMEM_X1;
          i.drex.modrm_reg = 1;
          i.drex.modrm_reg = 1;
          i.drex.modrm_regmem = 2;
          i.drex.modrm_regmem = 2;
          i.drex.reg = (i.op[3].regs->reg_num
          i.drex.reg = (i.op[3].regs->reg_num
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
        }
        }
 
 
      /* Case 3: 4 operand insn, dest = src1, src2 = memory.  */
      /* Case 3: 4 operand insn, dest = src1, src2 = memory.  */
      else if (i.types[0].bitfield.regxmm != 0
      else if (i.types[0].bitfield.regxmm != 0
               && operand_type_check (i.types[1], anymem) != 0
               && operand_type_check (i.types[1], anymem) != 0
               && i.types[2].bitfield.regxmm != 0
               && i.types[2].bitfield.regxmm != 0
               && i.types[3].bitfield.regxmm != 0
               && i.types[3].bitfield.regxmm != 0
               && i.op[0].regs->reg_num == i.op[3].regs->reg_num
               && i.op[0].regs->reg_num == i.op[3].regs->reg_num
               && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
               && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
        {
        {
          /* Clear the arguments that are stored in drex.  */
          /* Clear the arguments that are stored in drex.  */
          operand_type_set (&i.types[0], 0);
          operand_type_set (&i.types[0], 0);
          operand_type_set (&i.types[3], 0);
          operand_type_set (&i.types[3], 0);
          i.reg_operands -= 2;
          i.reg_operands -= 2;
 
 
          /* Specify the modrm encoding for memory addressing.  Include
          /* Specify the modrm encoding for memory addressing.  Include
             the high order bit that is normally stored in the REX byte
             the high order bit that is normally stored in the REX byte
             in the register field.  */
             in the register field.  */
          i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
          i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
          i.drex.modrm_reg = 2;
          i.drex.modrm_reg = 2;
          i.drex.modrm_regmem = 1;
          i.drex.modrm_regmem = 1;
          i.drex.reg = (i.op[3].regs->reg_num
          i.drex.reg = (i.op[3].regs->reg_num
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
        }
        }
 
 
      /* Case 4: 4 operand insn, dest = src3, src2 = register. */
      /* Case 4: 4 operand insn, dest = src3, src2 = register. */
      else if (i.types[0].bitfield.regxmm != 0
      else if (i.types[0].bitfield.regxmm != 0
               && i.types[1].bitfield.regxmm != 0
               && i.types[1].bitfield.regxmm != 0
               && i.types[2].bitfield.regxmm != 0
               && i.types[2].bitfield.regxmm != 0
               && i.types[3].bitfield.regxmm != 0
               && i.types[3].bitfield.regxmm != 0
               && i.op[2].regs->reg_num == i.op[3].regs->reg_num
               && i.op[2].regs->reg_num == i.op[3].regs->reg_num
               && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
               && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
        {
        {
          /* clear the arguments that are stored in drex */
          /* clear the arguments that are stored in drex */
          operand_type_set (&i.types[2], 0);
          operand_type_set (&i.types[2], 0);
          operand_type_set (&i.types[3], 0);
          operand_type_set (&i.types[3], 0);
          i.reg_operands -= 2;
          i.reg_operands -= 2;
 
 
          /* There are two different ways to encode a 4 operand
          /* There are two different ways to encode a 4 operand
             instruction with all registers that uses OC1 set to
             instruction with all registers that uses OC1 set to
             0 or 1.  Favor setting OC1 to 0 since this mimics the
             0 or 1.  Favor setting OC1 to 0 since this mimics the
             actions of other SSE5 assemblers.  Use modrm encoding
             actions of other SSE5 assemblers.  Use modrm encoding
             2 for register/register.  Include the high order bit that
             2 for register/register.  Include the high order bit that
             is normally stored in the REX byte in the register
             is normally stored in the REX byte in the register
             field.  */
             field.  */
          i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
          i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
          i.drex.modrm_reg = 1;
          i.drex.modrm_reg = 1;
          i.drex.modrm_regmem = 0;
          i.drex.modrm_regmem = 0;
 
 
          /* Remember the register, including the upper bits */
          /* Remember the register, including the upper bits */
          i.drex.reg = (i.op[3].regs->reg_num
          i.drex.reg = (i.op[3].regs->reg_num
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
        }
        }
 
 
      /* Case 5: 4 operand insn, dest = src3, src2 = memory.  */
      /* Case 5: 4 operand insn, dest = src3, src2 = memory.  */
      else if (i.types[0].bitfield.regxmm != 0
      else if (i.types[0].bitfield.regxmm != 0
               && (i.types[1].bitfield.regxmm
               && (i.types[1].bitfield.regxmm
                   || operand_type_check (i.types[1], anymem))
                   || operand_type_check (i.types[1], anymem))
               && i.types[2].bitfield.regxmm != 0
               && i.types[2].bitfield.regxmm != 0
               && i.types[3].bitfield.regxmm != 0
               && i.types[3].bitfield.regxmm != 0
               && i.op[2].regs->reg_num == i.op[3].regs->reg_num
               && i.op[2].regs->reg_num == i.op[3].regs->reg_num
               && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
               && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
        {
        {
          /* Clear the arguments that are stored in drex.  */
          /* Clear the arguments that are stored in drex.  */
          operand_type_set (&i.types[2], 0);
          operand_type_set (&i.types[2], 0);
          operand_type_set (&i.types[3], 0);
          operand_type_set (&i.types[3], 0);
          i.reg_operands -= 2;
          i.reg_operands -= 2;
 
 
          /* Specify the modrm encoding and remember the register
          /* Specify the modrm encoding and remember the register
             including the bits normally stored in the REX byte. */
             including the bits normally stored in the REX byte. */
          i.tm.extension_opcode = DREX_X1_XMEM_X2_X2;
          i.tm.extension_opcode = DREX_X1_XMEM_X2_X2;
          i.drex.modrm_reg = 0;
          i.drex.modrm_reg = 0;
          i.drex.modrm_regmem = 1;
          i.drex.modrm_regmem = 1;
          i.drex.reg = (i.op[3].regs->reg_num
          i.drex.reg = (i.op[3].regs->reg_num
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
        }
        }
 
 
      /* Case 6: 4 operand insn, dest = src3, src1 = memory.  */
      /* Case 6: 4 operand insn, dest = src3, src1 = memory.  */
      else if (operand_type_check (i.types[0], anymem) != 0
      else if (operand_type_check (i.types[0], anymem) != 0
               && i.types[1].bitfield.regxmm != 0
               && i.types[1].bitfield.regxmm != 0
               && i.types[2].bitfield.regxmm != 0
               && i.types[2].bitfield.regxmm != 0
               && i.types[3].bitfield.regxmm != 0
               && i.types[3].bitfield.regxmm != 0
               && i.op[2].regs->reg_num == i.op[3].regs->reg_num
               && i.op[2].regs->reg_num == i.op[3].regs->reg_num
               && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
               && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
        {
        {
          /* clear the arguments that are stored in drex */
          /* clear the arguments that are stored in drex */
          operand_type_set (&i.types[2], 0);
          operand_type_set (&i.types[2], 0);
          operand_type_set (&i.types[3], 0);
          operand_type_set (&i.types[3], 0);
          i.reg_operands -= 2;
          i.reg_operands -= 2;
 
 
          /* Specify the modrm encoding and remember the register
          /* Specify the modrm encoding and remember the register
             including the bits normally stored in the REX byte. */
             including the bits normally stored in the REX byte. */
          i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
          i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
          i.drex.modrm_reg = 1;
          i.drex.modrm_reg = 1;
          i.drex.modrm_regmem = 0;
          i.drex.modrm_regmem = 0;
          i.drex.reg = (i.op[3].regs->reg_num
          i.drex.reg = (i.op[3].regs->reg_num
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
        }
        }
 
 
      else
      else
        as_bad (_("Incorrect operands for the '%s' instruction"),
        as_bad (_("Incorrect operands for the '%s' instruction"),
                i.tm.name);
                i.tm.name);
    }
    }
 
 
  /* SSE5 instructions with the DREX byte where the only memory operand
  /* SSE5 instructions with the DREX byte where the only memory operand
     is in the 2nd argument, and the first and last xmm register must
     is in the 2nd argument, and the first and last xmm register must
     match, and is encoded in the DREX byte. */
     match, and is encoded in the DREX byte. */
  else if (i.tm.opcode_modifier.drex
  else if (i.tm.opcode_modifier.drex
           && !i.tm.opcode_modifier.drexv
           && !i.tm.opcode_modifier.drexv
           && i.operands == 4)
           && i.operands == 4)
    {
    {
      /* Case 1: 4 operand insn, dest = src1, src3 = reg/mem.  */
      /* Case 1: 4 operand insn, dest = src1, src3 = reg/mem.  */
      if (i.types[0].bitfield.regxmm != 0
      if (i.types[0].bitfield.regxmm != 0
          && (i.types[1].bitfield.regxmm
          && (i.types[1].bitfield.regxmm
              || operand_type_check(i.types[1], anymem))
              || operand_type_check(i.types[1], anymem))
          && i.types[2].bitfield.regxmm != 0
          && i.types[2].bitfield.regxmm != 0
          && i.types[3].bitfield.regxmm != 0
          && i.types[3].bitfield.regxmm != 0
          && i.op[0].regs->reg_num == i.op[3].regs->reg_num
          && i.op[0].regs->reg_num == i.op[3].regs->reg_num
          && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
          && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
        {
        {
          /* clear the arguments that are stored in drex */
          /* clear the arguments that are stored in drex */
          operand_type_set (&i.types[0], 0);
          operand_type_set (&i.types[0], 0);
          operand_type_set (&i.types[3], 0);
          operand_type_set (&i.types[3], 0);
          i.reg_operands -= 2;
          i.reg_operands -= 2;
 
 
          /* Specify the modrm encoding and remember the register
          /* Specify the modrm encoding and remember the register
             including the high bit normally stored in the REX
             including the high bit normally stored in the REX
             byte.  */
             byte.  */
          i.drex.modrm_reg = 2;
          i.drex.modrm_reg = 2;
          i.drex.modrm_regmem = 1;
          i.drex.modrm_regmem = 1;
          i.drex.reg = (i.op[3].regs->reg_num
          i.drex.reg = (i.op[3].regs->reg_num
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
        }
        }
 
 
      else
      else
        as_bad (_("Incorrect operands for the '%s' instruction"),
        as_bad (_("Incorrect operands for the '%s' instruction"),
                i.tm.name);
                i.tm.name);
    }
    }
 
 
  /* SSE5 3 operand instructions that the result is a register, being
  /* SSE5 3 operand instructions that the result is a register, being
     either operand can be a memory operand, using OC0 to note which
     either operand can be a memory operand, using OC0 to note which
     one is the memory.  */
     one is the memory.  */
  else if (i.tm.opcode_modifier.drex
  else if (i.tm.opcode_modifier.drex
           && i.tm.opcode_modifier.drexv
           && i.tm.opcode_modifier.drexv
           && i.operands == 3)
           && i.operands == 3)
    {
    {
      i.tm.extension_opcode = None;
      i.tm.extension_opcode = None;
 
 
      /* Case 1: 3 operand insn, src1 = register.  */
      /* Case 1: 3 operand insn, src1 = register.  */
      if (i.types[0].bitfield.regxmm != 0
      if (i.types[0].bitfield.regxmm != 0
          && i.types[1].bitfield.regxmm != 0
          && i.types[1].bitfield.regxmm != 0
          && i.types[2].bitfield.regxmm != 0)
          && i.types[2].bitfield.regxmm != 0)
        {
        {
          /* Clear the arguments that are stored in drex.  */
          /* Clear the arguments that are stored in drex.  */
          operand_type_set (&i.types[2], 0);
          operand_type_set (&i.types[2], 0);
          i.reg_operands--;
          i.reg_operands--;
 
 
          /* Specify the modrm encoding and remember the register
          /* Specify the modrm encoding and remember the register
             including the high bit normally stored in the REX byte.  */
             including the high bit normally stored in the REX byte.  */
          i.tm.extension_opcode = DREX_XMEM_X1_X2;
          i.tm.extension_opcode = DREX_XMEM_X1_X2;
          i.drex.modrm_reg = 1;
          i.drex.modrm_reg = 1;
          i.drex.modrm_regmem = 0;
          i.drex.modrm_regmem = 0;
          i.drex.reg = (i.op[2].regs->reg_num
          i.drex.reg = (i.op[2].regs->reg_num
                        + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
                        + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
        }
        }
 
 
      /* Case 2: 3 operand insn, src1 = memory.  */
      /* Case 2: 3 operand insn, src1 = memory.  */
      else if (operand_type_check (i.types[0], anymem) != 0
      else if (operand_type_check (i.types[0], anymem) != 0
               && i.types[1].bitfield.regxmm != 0
               && i.types[1].bitfield.regxmm != 0
               && i.types[2].bitfield.regxmm != 0)
               && i.types[2].bitfield.regxmm != 0)
        {
        {
          /* Clear the arguments that are stored in drex.  */
          /* Clear the arguments that are stored in drex.  */
          operand_type_set (&i.types[2], 0);
          operand_type_set (&i.types[2], 0);
          i.reg_operands--;
          i.reg_operands--;
 
 
          /* Specify the modrm encoding and remember the register
          /* Specify the modrm encoding and remember the register
             including the high bit normally stored in the REX
             including the high bit normally stored in the REX
             byte.  */
             byte.  */
          i.tm.extension_opcode = DREX_XMEM_X1_X2;
          i.tm.extension_opcode = DREX_XMEM_X1_X2;
          i.drex.modrm_reg = 1;
          i.drex.modrm_reg = 1;
          i.drex.modrm_regmem = 0;
          i.drex.modrm_regmem = 0;
          i.drex.reg = (i.op[2].regs->reg_num
          i.drex.reg = (i.op[2].regs->reg_num
                        + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
                        + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
        }
        }
 
 
      /* Case 3: 3 operand insn, src2 = memory.  */
      /* Case 3: 3 operand insn, src2 = memory.  */
      else if (i.types[0].bitfield.regxmm != 0
      else if (i.types[0].bitfield.regxmm != 0
               && operand_type_check (i.types[1], anymem) != 0
               && operand_type_check (i.types[1], anymem) != 0
               && i.types[2].bitfield.regxmm != 0)
               && i.types[2].bitfield.regxmm != 0)
        {
        {
          /* Clear the arguments that are stored in drex.  */
          /* Clear the arguments that are stored in drex.  */
          operand_type_set (&i.types[2], 0);
          operand_type_set (&i.types[2], 0);
          i.reg_operands--;
          i.reg_operands--;
 
 
          /* Specify the modrm encoding and remember the register
          /* Specify the modrm encoding and remember the register
             including the high bit normally stored in the REX byte.  */
             including the high bit normally stored in the REX byte.  */
          i.tm.extension_opcode = DREX_X1_XMEM_X2;
          i.tm.extension_opcode = DREX_X1_XMEM_X2;
          i.drex.modrm_reg = 0;
          i.drex.modrm_reg = 0;
          i.drex.modrm_regmem = 1;
          i.drex.modrm_regmem = 1;
          i.drex.reg = (i.op[2].regs->reg_num
          i.drex.reg = (i.op[2].regs->reg_num
                        + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
                        + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
        }
        }
 
 
      else
      else
        as_bad (_("Incorrect operands for the '%s' instruction"),
        as_bad (_("Incorrect operands for the '%s' instruction"),
                i.tm.name);
                i.tm.name);
    }
    }
 
 
  /* SSE5 4 operand instructions that are the comparison instructions
  /* SSE5 4 operand instructions that are the comparison instructions
     where the first operand is the immediate value of the comparison
     where the first operand is the immediate value of the comparison
     to be done.  */
     to be done.  */
  else if (i.tm.opcode_modifier.drexc != 0 && i.operands == 4)
  else if (i.tm.opcode_modifier.drexc != 0 && i.operands == 4)
    {
    {
      /* Case 1: 4 operand insn, src1 = reg/memory. */
      /* Case 1: 4 operand insn, src1 = reg/memory. */
      if (operand_type_check (i.types[0], imm) != 0
      if (operand_type_check (i.types[0], imm) != 0
          && (i.types[1].bitfield.regxmm
          && (i.types[1].bitfield.regxmm
              || operand_type_check (i.types[1], anymem))
              || operand_type_check (i.types[1], anymem))
          && i.types[2].bitfield.regxmm != 0
          && i.types[2].bitfield.regxmm != 0
          && i.types[3].bitfield.regxmm != 0)
          && i.types[3].bitfield.regxmm != 0)
        {
        {
          /* clear the arguments that are stored in drex */
          /* clear the arguments that are stored in drex */
          operand_type_set (&i.types[3], 0);
          operand_type_set (&i.types[3], 0);
          i.reg_operands--;
          i.reg_operands--;
 
 
          /* Specify the modrm encoding and remember the register
          /* Specify the modrm encoding and remember the register
             including the high bit normally stored in the REX byte.  */
             including the high bit normally stored in the REX byte.  */
          i.drex.modrm_reg = 2;
          i.drex.modrm_reg = 2;
          i.drex.modrm_regmem = 1;
          i.drex.modrm_regmem = 1;
          i.drex.reg = (i.op[3].regs->reg_num
          i.drex.reg = (i.op[3].regs->reg_num
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
                        + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
        }
        }
 
 
      /* Case 2: 3 operand insn with ImmExt that places the
      /* Case 2: 3 operand insn with ImmExt that places the
         opcode_extension as an immediate argument.  This is used for
         opcode_extension as an immediate argument.  This is used for
         all of the varients of comparison that supplies the appropriate
         all of the varients of comparison that supplies the appropriate
         value as part of the instruction.  */
         value as part of the instruction.  */
      else if ((i.types[0].bitfield.regxmm
      else if ((i.types[0].bitfield.regxmm
                || operand_type_check (i.types[0], anymem))
                || operand_type_check (i.types[0], anymem))
               && i.types[1].bitfield.regxmm != 0
               && i.types[1].bitfield.regxmm != 0
               && i.types[2].bitfield.regxmm != 0
               && i.types[2].bitfield.regxmm != 0
               && operand_type_check (i.types[3], imm) != 0)
               && operand_type_check (i.types[3], imm) != 0)
        {
        {
          /* clear the arguments that are stored in drex */
          /* clear the arguments that are stored in drex */
          operand_type_set (&i.types[2], 0);
          operand_type_set (&i.types[2], 0);
          i.reg_operands--;
          i.reg_operands--;
 
 
          /* Specify the modrm encoding and remember the register
          /* Specify the modrm encoding and remember the register
             including the high bit normally stored in the REX byte.  */
             including the high bit normally stored in the REX byte.  */
          i.drex.modrm_reg = 1;
          i.drex.modrm_reg = 1;
          i.drex.modrm_regmem = 0;
          i.drex.modrm_regmem = 0;
          i.drex.reg = (i.op[2].regs->reg_num
          i.drex.reg = (i.op[2].regs->reg_num
                        + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
                        + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
        }
        }
 
 
      else
      else
        as_bad (_("Incorrect operands for the '%s' instruction"),
        as_bad (_("Incorrect operands for the '%s' instruction"),
                i.tm.name);
                i.tm.name);
    }
    }
 
 
  else if (i.tm.opcode_modifier.drex
  else if (i.tm.opcode_modifier.drex
           || i.tm.opcode_modifier.drexv
           || i.tm.opcode_modifier.drexv
           || i.tm.opcode_modifier.drexc)
           || i.tm.opcode_modifier.drexc)
    as_bad (_("Internal error for the '%s' instruction"), i.tm.name);
    as_bad (_("Internal error for the '%s' instruction"), i.tm.name);
}
}
 
 
static int
static int
bad_implicit_operand (int xmm)
bad_implicit_operand (int xmm)
{
{
  const char *reg = xmm ? "xmm0" : "ymm0";
  const char *reg = xmm ? "xmm0" : "ymm0";
  if (intel_syntax)
  if (intel_syntax)
    as_bad (_("the last operand of `%s' must be `%s%s'"),
    as_bad (_("the last operand of `%s' must be `%s%s'"),
            i.tm.name, register_prefix, reg);
            i.tm.name, register_prefix, reg);
  else
  else
    as_bad (_("the first operand of `%s' must be `%s%s'"),
    as_bad (_("the first operand of `%s' must be `%s%s'"),
            i.tm.name, register_prefix, reg);
            i.tm.name, register_prefix, reg);
  return 0;
  return 0;
}
}
 
 
static int
static int
process_operands (void)
process_operands (void)
{
{
  /* Default segment register this instruction will use for memory
  /* Default segment register this instruction will use for memory
     accesses.  0 means unknown.  This is only for optimizing out
     accesses.  0 means unknown.  This is only for optimizing out
     unnecessary segment overrides.  */
     unnecessary segment overrides.  */
  const seg_entry *default_seg = 0;
  const seg_entry *default_seg = 0;
 
 
  /* Handle all of the DREX munging that SSE5 needs.  */
  /* Handle all of the DREX munging that SSE5 needs.  */
  if (i.tm.opcode_modifier.drex
  if (i.tm.opcode_modifier.drex
      || i.tm.opcode_modifier.drexv
      || i.tm.opcode_modifier.drexv
      || i.tm.opcode_modifier.drexc)
      || i.tm.opcode_modifier.drexc)
    process_drex ();
    process_drex ();
 
 
  if (i.tm.opcode_modifier.sse2avx
  if (i.tm.opcode_modifier.sse2avx
      && (i.tm.opcode_modifier.vexnds
      && (i.tm.opcode_modifier.vexnds
          || i.tm.opcode_modifier.vexndd))
          || i.tm.opcode_modifier.vexndd))
    {
    {
      unsigned int dup = i.operands;
      unsigned int dup = i.operands;
      unsigned int dest = dup - 1;
      unsigned int dest = dup - 1;
      unsigned int j;
      unsigned int j;
 
 
      /* The destination must be an xmm register.  */
      /* The destination must be an xmm register.  */
      assert (i.reg_operands
      assert (i.reg_operands
              && MAX_OPERANDS > dup
              && MAX_OPERANDS > dup
              && operand_type_equal (&i.types[dest], &regxmm));
              && operand_type_equal (&i.types[dest], &regxmm));
 
 
      if (i.tm.opcode_modifier.firstxmm0)
      if (i.tm.opcode_modifier.firstxmm0)
        {
        {
          /* The first operand is implicit and must be xmm0.  */
          /* The first operand is implicit and must be xmm0.  */
          assert (operand_type_equal (&i.types[0], &regxmm));
          assert (operand_type_equal (&i.types[0], &regxmm));
          if (i.op[0].regs->reg_num != 0)
          if (i.op[0].regs->reg_num != 0)
            return bad_implicit_operand (1);
            return bad_implicit_operand (1);
 
 
          if (i.tm.opcode_modifier.vex3sources)
          if (i.tm.opcode_modifier.vex3sources)
            {
            {
              /* Keep xmm0 for instructions with VEX prefix and 3
              /* Keep xmm0 for instructions with VEX prefix and 3
                 sources.  */
                 sources.  */
              goto duplicate;
              goto duplicate;
            }
            }
          else
          else
            {
            {
              /* We remove the first xmm0 and keep the number of
              /* We remove the first xmm0 and keep the number of
                 operands unchanged, which in fact duplicates the
                 operands unchanged, which in fact duplicates the
                 destination.  */
                 destination.  */
              for (j = 1; j < i.operands; j++)
              for (j = 1; j < i.operands; j++)
                {
                {
                  i.op[j - 1] = i.op[j];
                  i.op[j - 1] = i.op[j];
                  i.types[j - 1] = i.types[j];
                  i.types[j - 1] = i.types[j];
                  i.tm.operand_types[j - 1] = i.tm.operand_types[j];
                  i.tm.operand_types[j - 1] = i.tm.operand_types[j];
                }
                }
            }
            }
        }
        }
      else if (i.tm.opcode_modifier.implicit1stxmm0)
      else if (i.tm.opcode_modifier.implicit1stxmm0)
        {
        {
          assert ((MAX_OPERANDS - 1) > dup
          assert ((MAX_OPERANDS - 1) > dup
                  && i.tm.opcode_modifier.vex3sources);
                  && i.tm.opcode_modifier.vex3sources);
 
 
          /* Add the implicit xmm0 for instructions with VEX prefix
          /* Add the implicit xmm0 for instructions with VEX prefix
             and 3 sources.  */
             and 3 sources.  */
          for (j = i.operands; j > 0; j--)
          for (j = i.operands; j > 0; j--)
            {
            {
              i.op[j] = i.op[j - 1];
              i.op[j] = i.op[j - 1];
              i.types[j] = i.types[j - 1];
              i.types[j] = i.types[j - 1];
              i.tm.operand_types[j] = i.tm.operand_types[j - 1];
              i.tm.operand_types[j] = i.tm.operand_types[j - 1];
            }
            }
          i.op[0].regs
          i.op[0].regs
            = (const reg_entry *) hash_find (reg_hash, "xmm0");
            = (const reg_entry *) hash_find (reg_hash, "xmm0");
          i.types[0] = regxmm;
          i.types[0] = regxmm;
          i.tm.operand_types[0] = regxmm;
          i.tm.operand_types[0] = regxmm;
 
 
          i.operands += 2;
          i.operands += 2;
          i.reg_operands += 2;
          i.reg_operands += 2;
          i.tm.operands += 2;
          i.tm.operands += 2;
 
 
          dup++;
          dup++;
          dest++;
          dest++;
          i.op[dup] = i.op[dest];
          i.op[dup] = i.op[dest];
          i.types[dup] = i.types[dest];
          i.types[dup] = i.types[dest];
          i.tm.operand_types[dup] = i.tm.operand_types[dest];
          i.tm.operand_types[dup] = i.tm.operand_types[dest];
        }
        }
      else
      else
        {
        {
duplicate:
duplicate:
          i.operands++;
          i.operands++;
          i.reg_operands++;
          i.reg_operands++;
          i.tm.operands++;
          i.tm.operands++;
 
 
          i.op[dup] = i.op[dest];
          i.op[dup] = i.op[dest];
          i.types[dup] = i.types[dest];
          i.types[dup] = i.types[dest];
          i.tm.operand_types[dup] = i.tm.operand_types[dest];
          i.tm.operand_types[dup] = i.tm.operand_types[dest];
        }
        }
 
 
       if (i.tm.opcode_modifier.immext)
       if (i.tm.opcode_modifier.immext)
         process_immext ();
         process_immext ();
    }
    }
  else if (i.tm.opcode_modifier.firstxmm0)
  else if (i.tm.opcode_modifier.firstxmm0)
    {
    {
      unsigned int j;
      unsigned int j;
 
 
      /* The first operand is implicit and must be xmm0/ymm0.  */
      /* The first operand is implicit and must be xmm0/ymm0.  */
      assert (i.reg_operands
      assert (i.reg_operands
              && (operand_type_equal (&i.types[0], &regxmm)
              && (operand_type_equal (&i.types[0], &regxmm)
                  || operand_type_equal (&i.types[0], &regymm)));
                  || operand_type_equal (&i.types[0], &regymm)));
      if (i.op[0].regs->reg_num != 0)
      if (i.op[0].regs->reg_num != 0)
        return bad_implicit_operand (i.types[0].bitfield.regxmm);
        return bad_implicit_operand (i.types[0].bitfield.regxmm);
 
 
      for (j = 1; j < i.operands; j++)
      for (j = 1; j < i.operands; j++)
        {
        {
          i.op[j - 1] = i.op[j];
          i.op[j - 1] = i.op[j];
          i.types[j - 1] = i.types[j];
          i.types[j - 1] = i.types[j];
 
 
          /* We need to adjust fields in i.tm since they are used by
          /* We need to adjust fields in i.tm since they are used by
             build_modrm_byte.  */
             build_modrm_byte.  */
          i.tm.operand_types [j - 1] = i.tm.operand_types [j];
          i.tm.operand_types [j - 1] = i.tm.operand_types [j];
        }
        }
 
 
      i.operands--;
      i.operands--;
      i.reg_operands--;
      i.reg_operands--;
      i.tm.operands--;
      i.tm.operands--;
    }
    }
  else if (i.tm.opcode_modifier.regkludge)
  else if (i.tm.opcode_modifier.regkludge)
    {
    {
      /* The imul $imm, %reg instruction is converted into
      /* The imul $imm, %reg instruction is converted into
         imul $imm, %reg, %reg, and the clr %reg instruction
         imul $imm, %reg, %reg, and the clr %reg instruction
         is converted into xor %reg, %reg.  */
         is converted into xor %reg, %reg.  */
 
 
      unsigned int first_reg_op;
      unsigned int first_reg_op;
 
 
      if (operand_type_check (i.types[0], reg))
      if (operand_type_check (i.types[0], reg))
        first_reg_op = 0;
        first_reg_op = 0;
      else
      else
        first_reg_op = 1;
        first_reg_op = 1;
      /* Pretend we saw the extra register operand.  */
      /* Pretend we saw the extra register operand.  */
      assert (i.reg_operands == 1
      assert (i.reg_operands == 1
              && i.op[first_reg_op + 1].regs == 0);
              && i.op[first_reg_op + 1].regs == 0);
      i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
      i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
      i.types[first_reg_op + 1] = i.types[first_reg_op];
      i.types[first_reg_op + 1] = i.types[first_reg_op];
      i.operands++;
      i.operands++;
      i.reg_operands++;
      i.reg_operands++;
    }
    }
 
 
  if (i.tm.opcode_modifier.shortform)
  if (i.tm.opcode_modifier.shortform)
    {
    {
      if (i.types[0].bitfield.sreg2
      if (i.types[0].bitfield.sreg2
          || i.types[0].bitfield.sreg3)
          || i.types[0].bitfield.sreg3)
        {
        {
          if (i.tm.base_opcode == POP_SEG_SHORT
          if (i.tm.base_opcode == POP_SEG_SHORT
              && i.op[0].regs->reg_num == 1)
              && i.op[0].regs->reg_num == 1)
            {
            {
              as_bad (_("you can't `pop %%cs'"));
              as_bad (_("you can't `pop %%cs'"));
              return 0;
              return 0;
            }
            }
          i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
          i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
          if ((i.op[0].regs->reg_flags & RegRex) != 0)
          if ((i.op[0].regs->reg_flags & RegRex) != 0)
            i.rex |= REX_B;
            i.rex |= REX_B;
        }
        }
      else
      else
        {
        {
          /* The register or float register operand is in operand
          /* The register or float register operand is in operand
             0 or 1.  */
             0 or 1.  */
          unsigned int op;
          unsigned int op;
 
 
           if (i.types[0].bitfield.floatreg
           if (i.types[0].bitfield.floatreg
               || operand_type_check (i.types[0], reg))
               || operand_type_check (i.types[0], reg))
             op = 0;
             op = 0;
           else
           else
             op = 1;
             op = 1;
          /* Register goes in low 3 bits of opcode.  */
          /* Register goes in low 3 bits of opcode.  */
          i.tm.base_opcode |= i.op[op].regs->reg_num;
          i.tm.base_opcode |= i.op[op].regs->reg_num;
          if ((i.op[op].regs->reg_flags & RegRex) != 0)
          if ((i.op[op].regs->reg_flags & RegRex) != 0)
            i.rex |= REX_B;
            i.rex |= REX_B;
          if (!quiet_warnings && i.tm.opcode_modifier.ugh)
          if (!quiet_warnings && i.tm.opcode_modifier.ugh)
            {
            {
              /* Warn about some common errors, but press on regardless.
              /* Warn about some common errors, but press on regardless.
                 The first case can be generated by gcc (<= 2.8.1).  */
                 The first case can be generated by gcc (<= 2.8.1).  */
              if (i.operands == 2)
              if (i.operands == 2)
                {
                {
                  /* Reversed arguments on faddp, fsubp, etc.  */
                  /* Reversed arguments on faddp, fsubp, etc.  */
                  as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
                  as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
                           register_prefix, i.op[1].regs->reg_name,
                           register_prefix, i.op[1].regs->reg_name,
                           register_prefix, i.op[0].regs->reg_name);
                           register_prefix, i.op[0].regs->reg_name);
                }
                }
              else
              else
                {
                {
                  /* Extraneous `l' suffix on fp insn.  */
                  /* Extraneous `l' suffix on fp insn.  */
                  as_warn (_("translating to `%s %s%s'"), i.tm.name,
                  as_warn (_("translating to `%s %s%s'"), i.tm.name,
                           register_prefix, i.op[0].regs->reg_name);
                           register_prefix, i.op[0].regs->reg_name);
                }
                }
            }
            }
        }
        }
    }
    }
  else if (i.tm.opcode_modifier.modrm)
  else if (i.tm.opcode_modifier.modrm)
    {
    {
      /* The opcode is completed (modulo i.tm.extension_opcode which
      /* The opcode is completed (modulo i.tm.extension_opcode which
         must be put into the modrm byte).  Now, we make the modrm and
         must be put into the modrm byte).  Now, we make the modrm and
         index base bytes based on all the info we've collected.  */
         index base bytes based on all the info we've collected.  */
 
 
      default_seg = build_modrm_byte ();
      default_seg = build_modrm_byte ();
    }
    }
  else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
  else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
    {
    {
      default_seg = &ds;
      default_seg = &ds;
    }
    }
  else if (i.tm.opcode_modifier.isstring)
  else if (i.tm.opcode_modifier.isstring)
    {
    {
      /* For the string instructions that allow a segment override
      /* For the string instructions that allow a segment override
         on one of their operands, the default segment is ds.  */
         on one of their operands, the default segment is ds.  */
      default_seg = &ds;
      default_seg = &ds;
    }
    }
 
 
  if (i.tm.base_opcode == 0x8d /* lea */
  if (i.tm.base_opcode == 0x8d /* lea */
      && i.seg[0]
      && i.seg[0]
      && !quiet_warnings)
      && !quiet_warnings)
    as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
    as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
 
 
  /* If a segment was explicitly specified, and the specified segment
  /* If a segment was explicitly specified, and the specified segment
     is not the default, use an opcode prefix to select it.  If we
     is not the default, use an opcode prefix to select it.  If we
     never figured out what the default segment is, then default_seg
     never figured out what the default segment is, then default_seg
     will be zero at this point, and the specified segment prefix will
     will be zero at this point, and the specified segment prefix will
     always be used.  */
     always be used.  */
  if ((i.seg[0]) && (i.seg[0] != default_seg))
  if ((i.seg[0]) && (i.seg[0] != default_seg))
    {
    {
      if (!add_prefix (i.seg[0]->seg_prefix))
      if (!add_prefix (i.seg[0]->seg_prefix))
        return 0;
        return 0;
    }
    }
  return 1;
  return 1;
}
}
 
 
static const seg_entry *
static const seg_entry *
build_modrm_byte (void)
build_modrm_byte (void)
{
{
  const seg_entry *default_seg = 0;
  const seg_entry *default_seg = 0;
  unsigned int source, dest;
  unsigned int source, dest;
  int vex_3_sources;
  int vex_3_sources;
 
 
  /* The first operand of instructions with VEX prefix and 3 sources
  /* The first operand of instructions with VEX prefix and 3 sources
     must be VEX_Imm4.  */
     must be VEX_Imm4.  */
  vex_3_sources = i.tm.opcode_modifier.vex3sources;
  vex_3_sources = i.tm.opcode_modifier.vex3sources;
  if (vex_3_sources)
  if (vex_3_sources)
    {
    {
      unsigned int nds, reg;
      unsigned int nds, reg;
 
 
      if (i.tm.opcode_modifier.veximmext
      if (i.tm.opcode_modifier.veximmext
          && i.tm.opcode_modifier.immext)
          && i.tm.opcode_modifier.immext)
        {
        {
          dest = i.operands - 2;
          dest = i.operands - 2;
          assert (dest == 3);
          assert (dest == 3);
        }
        }
      else
      else
        dest = i.operands - 1;
        dest = i.operands - 1;
      nds = dest - 1;
      nds = dest - 1;
 
 
      /* There are 2 kinds of instructions:
      /* There are 2 kinds of instructions:
            1. 5 operands: one immediate operand and 4 register
            1. 5 operands: one immediate operand and 4 register
            operands or 3 register operands plus 1 memory operand.
            operands or 3 register operands plus 1 memory operand.
            It must have VexNDS and VexW0 or VexW1.  The destination
            It must have VexNDS and VexW0 or VexW1.  The destination
            must be either XMM or YMM register.
            must be either XMM or YMM register.
            2. 4 operands: 4 register operands or 3 register operands
            2. 4 operands: 4 register operands or 3 register operands
            plus 1 memory operand.  It must have VexNDS and VexImmExt.  */
            plus 1 memory operand.  It must have VexNDS and VexImmExt.  */
      if (!((i.reg_operands == 4
      if (!((i.reg_operands == 4
             || (i.reg_operands == 3 && i.mem_operands == 1))
             || (i.reg_operands == 3 && i.mem_operands == 1))
            && i.tm.opcode_modifier.vexnds
            && i.tm.opcode_modifier.vexnds
            && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
            && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
                || operand_type_equal (&i.tm.operand_types[dest], &regymm))
                || operand_type_equal (&i.tm.operand_types[dest], &regymm))
            && ((dest == 4
            && ((dest == 4
                 && i.imm_operands == 1
                 && i.imm_operands == 1
                 && i.types[0].bitfield.vex_imm4
                 && i.types[0].bitfield.vex_imm4
                 && (i.tm.opcode_modifier.vexw0
                 && (i.tm.opcode_modifier.vexw0
                     || i.tm.opcode_modifier.vexw1))
                     || i.tm.opcode_modifier.vexw1))
                || (dest == 3
                || (dest == 3
                    && (i.imm_operands == 0
                    && (i.imm_operands == 0
                        || (i.imm_operands == 1
                        || (i.imm_operands == 1
                            && i.tm.opcode_modifier.immext))
                            && i.tm.opcode_modifier.immext))
                    && i.tm.opcode_modifier.veximmext))))
                    && i.tm.opcode_modifier.veximmext))))
        abort ();
        abort ();
 
 
      if (i.imm_operands == 0)
      if (i.imm_operands == 0)
        {
        {
          /* When there is no immediate operand, generate an 8bit
          /* When there is no immediate operand, generate an 8bit
             immediate operand to encode the first operand.  */
             immediate operand to encode the first operand.  */
          expressionS *exp = &im_expressions[i.imm_operands++];
          expressionS *exp = &im_expressions[i.imm_operands++];
          i.op[i.operands].imms = exp;
          i.op[i.operands].imms = exp;
          i.types[i.operands] = imm8;
          i.types[i.operands] = imm8;
          i.operands++;
          i.operands++;
          /* If VexW1 is set, the first operand is the source and
          /* If VexW1 is set, the first operand is the source and
             the second operand is encoded in the immediate operand.  */
             the second operand is encoded in the immediate operand.  */
          if (i.tm.opcode_modifier.vexw1)
          if (i.tm.opcode_modifier.vexw1)
            {
            {
              source = 0;
              source = 0;
              reg = 1;
              reg = 1;
            }
            }
          else
          else
            {
            {
              source = 1;
              source = 1;
              reg = 0;
              reg = 0;
            }
            }
 
 
          /* FMA swaps REG and NDS.  */
          /* FMA swaps REG and NDS.  */
          if (i.tm.cpu_flags.bitfield.cpufma)
          if (i.tm.cpu_flags.bitfield.cpufma)
            {
            {
              unsigned int tmp;
              unsigned int tmp;
              tmp = reg;
              tmp = reg;
              reg = nds;
              reg = nds;
              nds = tmp;
              nds = tmp;
            }
            }
 
 
          assert (operand_type_equal (&i.tm.operand_types[reg], &regxmm)
          assert (operand_type_equal (&i.tm.operand_types[reg], &regxmm)
                  || operand_type_equal (&i.tm.operand_types[reg],
                  || operand_type_equal (&i.tm.operand_types[reg],
                                         &regymm));
                                         &regymm));
          exp->X_op = O_constant;
          exp->X_op = O_constant;
          exp->X_add_number
          exp->X_add_number
            = ((i.op[reg].regs->reg_num
            = ((i.op[reg].regs->reg_num
                + ((i.op[reg].regs->reg_flags & RegRex) ? 8 : 0)) << 4);
                + ((i.op[reg].regs->reg_flags & RegRex) ? 8 : 0)) << 4);
        }
        }
      else
      else
        {
        {
          unsigned int imm;
          unsigned int imm;
 
 
          if (i.tm.opcode_modifier.vexw0)
          if (i.tm.opcode_modifier.vexw0)
            {
            {
              /* If VexW0 is set, the third operand is the source and
              /* If VexW0 is set, the third operand is the source and
                 the second operand is encoded in the immediate
                 the second operand is encoded in the immediate
                 operand.  */
                 operand.  */
              source = 2;
              source = 2;
              reg = 1;
              reg = 1;
            }
            }
          else
          else
            {
            {
              /* VexW1 is set, the second operand is the source and
              /* VexW1 is set, the second operand is the source and
                 the third operand is encoded in the immediate
                 the third operand is encoded in the immediate
                 operand.  */
                 operand.  */
              source = 1;
              source = 1;
              reg = 2;
              reg = 2;
            }
            }
 
 
          if (i.tm.opcode_modifier.immext)
          if (i.tm.opcode_modifier.immext)
            {
            {
              /* When ImmExt is set, the immdiate byte is the last
              /* When ImmExt is set, the immdiate byte is the last
                 operand.  */
                 operand.  */
              imm = i.operands - 1;
              imm = i.operands - 1;
              source--;
              source--;
              reg--;
              reg--;
            }
            }
          else
          else
            {
            {
              imm = 0;
              imm = 0;
 
 
              /* Turn on Imm8 so that output_imm will generate it.  */
              /* Turn on Imm8 so that output_imm will generate it.  */
              i.types[imm].bitfield.imm8 = 1;
              i.types[imm].bitfield.imm8 = 1;
            }
            }
 
 
          assert (operand_type_equal (&i.tm.operand_types[reg], &regxmm)
          assert (operand_type_equal (&i.tm.operand_types[reg], &regxmm)
                  || operand_type_equal (&i.tm.operand_types[reg],
                  || operand_type_equal (&i.tm.operand_types[reg],
                                         &regymm));
                                         &regymm));
          i.op[imm].imms->X_add_number
          i.op[imm].imms->X_add_number
            |= ((i.op[reg].regs->reg_num
            |= ((i.op[reg].regs->reg_num
                 + ((i.op[reg].regs->reg_flags & RegRex) ? 8 : 0)) << 4);
                 + ((i.op[reg].regs->reg_flags & RegRex) ? 8 : 0)) << 4);
        }
        }
 
 
      assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
      assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
              || operand_type_equal (&i.tm.operand_types[nds], &regymm));
              || operand_type_equal (&i.tm.operand_types[nds], &regymm));
      i.vex.register_specifier = i.op[nds].regs;
      i.vex.register_specifier = i.op[nds].regs;
 
 
    }
    }
  else
  else
    source = dest = 0;
    source = dest = 0;
 
 
  /* SSE5 4 operand instructions are encoded in such a way that one of
  /* SSE5 4 operand instructions are encoded in such a way that one of
     the inputs must match the destination register.  Process_drex hides
     the inputs must match the destination register.  Process_drex hides
     the 3rd argument in the drex field, so that by the time we get
     the 3rd argument in the drex field, so that by the time we get
     here, it looks to GAS as if this is a 2 operand instruction.  */
     here, it looks to GAS as if this is a 2 operand instruction.  */
  if ((i.tm.opcode_modifier.drex
  if ((i.tm.opcode_modifier.drex
       || i.tm.opcode_modifier.drexv
       || i.tm.opcode_modifier.drexv
       || i.tm.opcode_modifier.drexc)
       || i.tm.opcode_modifier.drexc)
      && i.reg_operands == 2)
      && i.reg_operands == 2)
    {
    {
      const reg_entry *reg = i.op[i.drex.modrm_reg].regs;
      const reg_entry *reg = i.op[i.drex.modrm_reg].regs;
      const reg_entry *regmem = i.op[i.drex.modrm_regmem].regs;
      const reg_entry *regmem = i.op[i.drex.modrm_regmem].regs;
 
 
      i.rm.reg = reg->reg_num;
      i.rm.reg = reg->reg_num;
      i.rm.regmem = regmem->reg_num;
      i.rm.regmem = regmem->reg_num;
      i.rm.mode = 3;
      i.rm.mode = 3;
      if ((reg->reg_flags & RegRex) != 0)
      if ((reg->reg_flags & RegRex) != 0)
        i.rex |= REX_R;
        i.rex |= REX_R;
      if ((regmem->reg_flags & RegRex) != 0)
      if ((regmem->reg_flags & RegRex) != 0)
        i.rex |= REX_B;
        i.rex |= REX_B;
    }
    }
 
 
  /* i.reg_operands MUST be the number of real register operands;
  /* i.reg_operands MUST be the number of real register operands;
     implicit registers do not count.  If there are 3 register
     implicit registers do not count.  If there are 3 register
     operands, it must be a instruction with VexNDS.  For a
     operands, it must be a instruction with VexNDS.  For a
     instruction with VexNDD, the destination register is encoded
     instruction with VexNDD, the destination register is encoded
     in VEX prefix.  If there are 4 register operands, it must be
     in VEX prefix.  If there are 4 register operands, it must be
     a instruction with VEX prefix and 3 sources.  */
     a instruction with VEX prefix and 3 sources.  */
  else if (i.mem_operands == 0
  else if (i.mem_operands == 0
           && ((i.reg_operands == 2
           && ((i.reg_operands == 2
                && !i.tm.opcode_modifier.vexndd)
                && !i.tm.opcode_modifier.vexndd)
               || (i.reg_operands == 3
               || (i.reg_operands == 3
                   && i.tm.opcode_modifier.vexnds)
                   && i.tm.opcode_modifier.vexnds)
               || (i.reg_operands == 4 && vex_3_sources)))
               || (i.reg_operands == 4 && vex_3_sources)))
    {
    {
      switch (i.operands)
      switch (i.operands)
        {
        {
        case 2:
        case 2:
          source = 0;
          source = 0;
          break;
          break;
        case 3:
        case 3:
          /* When there are 3 operands, one of them may be immediate,
          /* When there are 3 operands, one of them may be immediate,
             which may be the first or the last operand.  Otherwise,
             which may be the first or the last operand.  Otherwise,
             the first operand must be shift count register (cl) or it
             the first operand must be shift count register (cl) or it
             is an instruction with VexNDS. */
             is an instruction with VexNDS. */
          assert (i.imm_operands == 1
          assert (i.imm_operands == 1
                  || (i.imm_operands == 0
                  || (i.imm_operands == 0
                      && (i.tm.opcode_modifier.vexnds
                      && (i.tm.opcode_modifier.vexnds
                          || i.types[0].bitfield.shiftcount)));
                          || i.types[0].bitfield.shiftcount)));
          if (operand_type_check (i.types[0], imm)
          if (operand_type_check (i.types[0], imm)
              || i.types[0].bitfield.shiftcount)
              || i.types[0].bitfield.shiftcount)
            source = 1;
            source = 1;
          else
          else
            source = 0;
            source = 0;
          break;
          break;
        case 4:
        case 4:
          /* When there are 4 operands, the first two must be 8bit
          /* When there are 4 operands, the first two must be 8bit
             immediate operands. The source operand will be the 3rd
             immediate operands. The source operand will be the 3rd
             one.
             one.
 
 
             For instructions with VexNDS, if the first operand
             For instructions with VexNDS, if the first operand
             an imm8, the source operand is the 2nd one.  If the last
             an imm8, the source operand is the 2nd one.  If the last
             operand is imm8, the source operand is the first one.  */
             operand is imm8, the source operand is the first one.  */
          assert ((i.imm_operands == 2
          assert ((i.imm_operands == 2
                   && i.types[0].bitfield.imm8
                   && i.types[0].bitfield.imm8
                   && i.types[1].bitfield.imm8)
                   && i.types[1].bitfield.imm8)
                  || (i.tm.opcode_modifier.vexnds
                  || (i.tm.opcode_modifier.vexnds
                      && i.imm_operands == 1
                      && i.imm_operands == 1
                      && (i.types[0].bitfield.imm8
                      && (i.types[0].bitfield.imm8
                          || i.types[i.operands - 1].bitfield.imm8)));
                          || i.types[i.operands - 1].bitfield.imm8)));
          if (i.tm.opcode_modifier.vexnds)
          if (i.tm.opcode_modifier.vexnds)
            {
            {
              if (i.types[0].bitfield.imm8)
              if (i.types[0].bitfield.imm8)
                source = 1;
                source = 1;
              else
              else
                source = 0;
                source = 0;
            }
            }
          else
          else
            source = 2;
            source = 2;
          break;
          break;
        case 5:
        case 5:
          break;
          break;
        default:
        default:
          abort ();
          abort ();
        }
        }
 
 
      if (!vex_3_sources)
      if (!vex_3_sources)
        {
        {
          dest = source + 1;
          dest = source + 1;
 
 
          if (i.tm.opcode_modifier.vexnds)
          if (i.tm.opcode_modifier.vexnds)
            {
            {
              /* For instructions with VexNDS, the register-only
              /* For instructions with VexNDS, the register-only
                 source operand must be XMM or YMM register. It is
                 source operand must be XMM or YMM register. It is
                 encoded in VEX prefix.  */
                 encoded in VEX prefix.  */
              if ((dest + 1) >= i.operands
              if ((dest + 1) >= i.operands
                  || (!operand_type_equal (&i.tm.operand_types[dest],
                  || (!operand_type_equal (&i.tm.operand_types[dest],
                                           &regxmm)
                                           &regxmm)
                      && !operand_type_equal (&i.tm.operand_types[dest],
                      && !operand_type_equal (&i.tm.operand_types[dest],
                                              &regymm)))
                                              &regymm)))
                abort ();
                abort ();
              i.vex.register_specifier = i.op[dest].regs;
              i.vex.register_specifier = i.op[dest].regs;
              dest++;
              dest++;
            }
            }
        }
        }
 
 
      i.rm.mode = 3;
      i.rm.mode = 3;
      /* One of the register operands will be encoded in the i.tm.reg
      /* One of the register operands will be encoded in the i.tm.reg
         field, the other in the combined i.tm.mode and i.tm.regmem
         field, the other in the combined i.tm.mode and i.tm.regmem
         fields.  If no form of this instruction supports a memory
         fields.  If no form of this instruction supports a memory
         destination operand, then we assume the source operand may
         destination operand, then we assume the source operand may
         sometimes be a memory operand and so we need to store the
         sometimes be a memory operand and so we need to store the
         destination in the i.rm.reg field.  */
         destination in the i.rm.reg field.  */
      if (!i.tm.operand_types[dest].bitfield.regmem
      if (!i.tm.operand_types[dest].bitfield.regmem
          && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
          && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
        {
        {
          i.rm.reg = i.op[dest].regs->reg_num;
          i.rm.reg = i.op[dest].regs->reg_num;
          i.rm.regmem = i.op[source].regs->reg_num;
          i.rm.regmem = i.op[source].regs->reg_num;
          if ((i.op[dest].regs->reg_flags & RegRex) != 0)
          if ((i.op[dest].regs->reg_flags & RegRex) != 0)
            i.rex |= REX_R;
            i.rex |= REX_R;
          if ((i.op[source].regs->reg_flags & RegRex) != 0)
          if ((i.op[source].regs->reg_flags & RegRex) != 0)
            i.rex |= REX_B;
            i.rex |= REX_B;
        }
        }
      else
      else
        {
        {
          i.rm.reg = i.op[source].regs->reg_num;
          i.rm.reg = i.op[source].regs->reg_num;
          i.rm.regmem = i.op[dest].regs->reg_num;
          i.rm.regmem = i.op[dest].regs->reg_num;
          if ((i.op[dest].regs->reg_flags & RegRex) != 0)
          if ((i.op[dest].regs->reg_flags & RegRex) != 0)
            i.rex |= REX_B;
            i.rex |= REX_B;
          if ((i.op[source].regs->reg_flags & RegRex) != 0)
          if ((i.op[source].regs->reg_flags & RegRex) != 0)
            i.rex |= REX_R;
            i.rex |= REX_R;
        }
        }
      if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
      if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
        {
        {
          if (!i.types[0].bitfield.control
          if (!i.types[0].bitfield.control
              && !i.types[1].bitfield.control)
              && !i.types[1].bitfield.control)
            abort ();
            abort ();
          i.rex &= ~(REX_R | REX_B);
          i.rex &= ~(REX_R | REX_B);
          add_prefix (LOCK_PREFIX_OPCODE);
          add_prefix (LOCK_PREFIX_OPCODE);
        }
        }
    }
    }
  else
  else
    {                   /* If it's not 2 reg operands...  */
    {                   /* If it's not 2 reg operands...  */
      unsigned int mem;
      unsigned int mem;
 
 
      if (i.mem_operands)
      if (i.mem_operands)
        {
        {
          unsigned int fake_zero_displacement = 0;
          unsigned int fake_zero_displacement = 0;
          unsigned int op;
          unsigned int op;
 
 
          /* This has been precalculated for SSE5 instructions
          /* This has been precalculated for SSE5 instructions
             that have a DREX field earlier in process_drex.  */
             that have a DREX field earlier in process_drex.  */
          if (i.tm.opcode_modifier.drex
          if (i.tm.opcode_modifier.drex
              || i.tm.opcode_modifier.drexv
              || i.tm.opcode_modifier.drexv
              || i.tm.opcode_modifier.drexc)
              || i.tm.opcode_modifier.drexc)
            op = i.drex.modrm_regmem;
            op = i.drex.modrm_regmem;
          else
          else
            {
            {
              for (op = 0; op < i.operands; op++)
              for (op = 0; op < i.operands; op++)
                if (operand_type_check (i.types[op], anymem))
                if (operand_type_check (i.types[op], anymem))
                  break;
                  break;
              assert (op < i.operands);
              assert (op < i.operands);
            }
            }
 
 
          default_seg = &ds;
          default_seg = &ds;
 
 
          if (i.base_reg == 0)
          if (i.base_reg == 0)
            {
            {
              i.rm.mode = 0;
              i.rm.mode = 0;
              if (!i.disp_operands)
              if (!i.disp_operands)
                fake_zero_displacement = 1;
                fake_zero_displacement = 1;
              if (i.index_reg == 0)
              if (i.index_reg == 0)
                {
                {
                  /* Operand is just <disp>  */
                  /* Operand is just <disp>  */
                  if (flag_code == CODE_64BIT)
                  if (flag_code == CODE_64BIT)
                    {
                    {
                      /* 64bit mode overwrites the 32bit absolute
                      /* 64bit mode overwrites the 32bit absolute
                         addressing by RIP relative addressing and
                         addressing by RIP relative addressing and
                         absolute addressing is encoded by one of the
                         absolute addressing is encoded by one of the
                         redundant SIB forms.  */
                         redundant SIB forms.  */
                      i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
                      i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
                      i.sib.base = NO_BASE_REGISTER;
                      i.sib.base = NO_BASE_REGISTER;
                      i.sib.index = NO_INDEX_REGISTER;
                      i.sib.index = NO_INDEX_REGISTER;
                      i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
                      i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
                                     ? disp32s : disp32);
                                     ? disp32s : disp32);
                    }
                    }
                  else if ((flag_code == CODE_16BIT)
                  else if ((flag_code == CODE_16BIT)
                           ^ (i.prefix[ADDR_PREFIX] != 0))
                           ^ (i.prefix[ADDR_PREFIX] != 0))
                    {
                    {
                      i.rm.regmem = NO_BASE_REGISTER_16;
                      i.rm.regmem = NO_BASE_REGISTER_16;
                      i.types[op] = disp16;
                      i.types[op] = disp16;
                    }
                    }
                  else
                  else
                    {
                    {
                      i.rm.regmem = NO_BASE_REGISTER;
                      i.rm.regmem = NO_BASE_REGISTER;
                      i.types[op] = disp32;
                      i.types[op] = disp32;
                    }
                    }
                }
                }
              else /* !i.base_reg && i.index_reg  */
              else /* !i.base_reg && i.index_reg  */
                {
                {
                  if (i.index_reg->reg_num == RegEiz
                  if (i.index_reg->reg_num == RegEiz
                      || i.index_reg->reg_num == RegRiz)
                      || i.index_reg->reg_num == RegRiz)
                    i.sib.index = NO_INDEX_REGISTER;
                    i.sib.index = NO_INDEX_REGISTER;
                  else
                  else
                    i.sib.index = i.index_reg->reg_num;
                    i.sib.index = i.index_reg->reg_num;
                  i.sib.base = NO_BASE_REGISTER;
                  i.sib.base = NO_BASE_REGISTER;
                  i.sib.scale = i.log2_scale_factor;
                  i.sib.scale = i.log2_scale_factor;
                  i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
                  i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
                  i.types[op].bitfield.disp8 = 0;
                  i.types[op].bitfield.disp8 = 0;
                  i.types[op].bitfield.disp16 = 0;
                  i.types[op].bitfield.disp16 = 0;
                  i.types[op].bitfield.disp64 = 0;
                  i.types[op].bitfield.disp64 = 0;
                  if (flag_code != CODE_64BIT)
                  if (flag_code != CODE_64BIT)
                    {
                    {
                      /* Must be 32 bit */
                      /* Must be 32 bit */
                      i.types[op].bitfield.disp32 = 1;
                      i.types[op].bitfield.disp32 = 1;
                      i.types[op].bitfield.disp32s = 0;
                      i.types[op].bitfield.disp32s = 0;
                    }
                    }
                  else
                  else
                    {
                    {
                      i.types[op].bitfield.disp32 = 0;
                      i.types[op].bitfield.disp32 = 0;
                      i.types[op].bitfield.disp32s = 1;
                      i.types[op].bitfield.disp32s = 1;
                    }
                    }
                  if ((i.index_reg->reg_flags & RegRex) != 0)
                  if ((i.index_reg->reg_flags & RegRex) != 0)
                    i.rex |= REX_X;
                    i.rex |= REX_X;
                }
                }
            }
            }
          /* RIP addressing for 64bit mode.  */
          /* RIP addressing for 64bit mode.  */
          else if (i.base_reg->reg_num == RegRip ||
          else if (i.base_reg->reg_num == RegRip ||
                   i.base_reg->reg_num == RegEip)
                   i.base_reg->reg_num == RegEip)
            {
            {
              i.rm.regmem = NO_BASE_REGISTER;
              i.rm.regmem = NO_BASE_REGISTER;
              i.types[op].bitfield.disp8 = 0;
              i.types[op].bitfield.disp8 = 0;
              i.types[op].bitfield.disp16 = 0;
              i.types[op].bitfield.disp16 = 0;
              i.types[op].bitfield.disp32 = 0;
              i.types[op].bitfield.disp32 = 0;
              i.types[op].bitfield.disp32s = 1;
              i.types[op].bitfield.disp32s = 1;
              i.types[op].bitfield.disp64 = 0;
              i.types[op].bitfield.disp64 = 0;
              i.flags[op] |= Operand_PCrel;
              i.flags[op] |= Operand_PCrel;
              if (! i.disp_operands)
              if (! i.disp_operands)
                fake_zero_displacement = 1;
                fake_zero_displacement = 1;
            }
            }
          else if (i.base_reg->reg_type.bitfield.reg16)
          else if (i.base_reg->reg_type.bitfield.reg16)
            {
            {
              switch (i.base_reg->reg_num)
              switch (i.base_reg->reg_num)
                {
                {
                case 3: /* (%bx)  */
                case 3: /* (%bx)  */
                  if (i.index_reg == 0)
                  if (i.index_reg == 0)
                    i.rm.regmem = 7;
                    i.rm.regmem = 7;
                  else /* (%bx,%si) -> 0, or (%bx,%di) -> 1  */
                  else /* (%bx,%si) -> 0, or (%bx,%di) -> 1  */
                    i.rm.regmem = i.index_reg->reg_num - 6;
                    i.rm.regmem = i.index_reg->reg_num - 6;
                  break;
                  break;
                case 5: /* (%bp)  */
                case 5: /* (%bp)  */
                  default_seg = &ss;
                  default_seg = &ss;
                  if (i.index_reg == 0)
                  if (i.index_reg == 0)
                    {
                    {
                      i.rm.regmem = 6;
                      i.rm.regmem = 6;
                      if (operand_type_check (i.types[op], disp) == 0)
                      if (operand_type_check (i.types[op], disp) == 0)
                        {
                        {
                          /* fake (%bp) into 0(%bp)  */
                          /* fake (%bp) into 0(%bp)  */
                          i.types[op].bitfield.disp8 = 1;
                          i.types[op].bitfield.disp8 = 1;
                          fake_zero_displacement = 1;
                          fake_zero_displacement = 1;
                        }
                        }
                    }
                    }
                  else /* (%bp,%si) -> 2, or (%bp,%di) -> 3  */
                  else /* (%bp,%si) -> 2, or (%bp,%di) -> 3  */
                    i.rm.regmem = i.index_reg->reg_num - 6 + 2;
                    i.rm.regmem = i.index_reg->reg_num - 6 + 2;
                  break;
                  break;
                default: /* (%si) -> 4 or (%di) -> 5  */
                default: /* (%si) -> 4 or (%di) -> 5  */
                  i.rm.regmem = i.base_reg->reg_num - 6 + 4;
                  i.rm.regmem = i.base_reg->reg_num - 6 + 4;
                }
                }
              i.rm.mode = mode_from_disp_size (i.types[op]);
              i.rm.mode = mode_from_disp_size (i.types[op]);
            }
            }
          else /* i.base_reg and 32/64 bit mode  */
          else /* i.base_reg and 32/64 bit mode  */
            {
            {
              if (flag_code == CODE_64BIT
              if (flag_code == CODE_64BIT
                  && operand_type_check (i.types[op], disp))
                  && operand_type_check (i.types[op], disp))
                {
                {
                  i386_operand_type temp;
                  i386_operand_type temp;
                  operand_type_set (&temp, 0);
                  operand_type_set (&temp, 0);
                  temp.bitfield.disp8 = i.types[op].bitfield.disp8;
                  temp.bitfield.disp8 = i.types[op].bitfield.disp8;
                  i.types[op] = temp;
                  i.types[op] = temp;
                  if (i.prefix[ADDR_PREFIX] == 0)
                  if (i.prefix[ADDR_PREFIX] == 0)
                    i.types[op].bitfield.disp32s = 1;
                    i.types[op].bitfield.disp32s = 1;
                  else
                  else
                    i.types[op].bitfield.disp32 = 1;
                    i.types[op].bitfield.disp32 = 1;
                }
                }
 
 
              i.rm.regmem = i.base_reg->reg_num;
              i.rm.regmem = i.base_reg->reg_num;
              if ((i.base_reg->reg_flags & RegRex) != 0)
              if ((i.base_reg->reg_flags & RegRex) != 0)
                i.rex |= REX_B;
                i.rex |= REX_B;
              i.sib.base = i.base_reg->reg_num;
              i.sib.base = i.base_reg->reg_num;
              /* x86-64 ignores REX prefix bit here to avoid decoder
              /* x86-64 ignores REX prefix bit here to avoid decoder
                 complications.  */
                 complications.  */
              if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
              if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
                {
                {
                  default_seg = &ss;
                  default_seg = &ss;
                  if (i.disp_operands == 0)
                  if (i.disp_operands == 0)
                    {
                    {
                      fake_zero_displacement = 1;
                      fake_zero_displacement = 1;
                      i.types[op].bitfield.disp8 = 1;
                      i.types[op].bitfield.disp8 = 1;
                    }
                    }
                }
                }
              else if (i.base_reg->reg_num == ESP_REG_NUM)
              else if (i.base_reg->reg_num == ESP_REG_NUM)
                {
                {
                  default_seg = &ss;
                  default_seg = &ss;
                }
                }
              i.sib.scale = i.log2_scale_factor;
              i.sib.scale = i.log2_scale_factor;
              if (i.index_reg == 0)
              if (i.index_reg == 0)
                {
                {
                  /* <disp>(%esp) becomes two byte modrm with no index
                  /* <disp>(%esp) becomes two byte modrm with no index
                     register.  We've already stored the code for esp
                     register.  We've already stored the code for esp
                     in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
                     in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
                     Any base register besides %esp will not use the
                     Any base register besides %esp will not use the
                     extra modrm byte.  */
                     extra modrm byte.  */
                  i.sib.index = NO_INDEX_REGISTER;
                  i.sib.index = NO_INDEX_REGISTER;
                }
                }
              else
              else
                {
                {
                  if (i.index_reg->reg_num == RegEiz
                  if (i.index_reg->reg_num == RegEiz
                      || i.index_reg->reg_num == RegRiz)
                      || i.index_reg->reg_num == RegRiz)
                    i.sib.index = NO_INDEX_REGISTER;
                    i.sib.index = NO_INDEX_REGISTER;
                  else
                  else
                    i.sib.index = i.index_reg->reg_num;
                    i.sib.index = i.index_reg->reg_num;
                  i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
                  i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
                  if ((i.index_reg->reg_flags & RegRex) != 0)
                  if ((i.index_reg->reg_flags & RegRex) != 0)
                    i.rex |= REX_X;
                    i.rex |= REX_X;
                }
                }
 
 
              if (i.disp_operands
              if (i.disp_operands
                  && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
                  && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
                      || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
                      || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
                i.rm.mode = 0;
                i.rm.mode = 0;
              else
              else
                i.rm.mode = mode_from_disp_size (i.types[op]);
                i.rm.mode = mode_from_disp_size (i.types[op]);
            }
            }
 
 
          if (fake_zero_displacement)
          if (fake_zero_displacement)
            {
            {
              /* Fakes a zero displacement assuming that i.types[op]
              /* Fakes a zero displacement assuming that i.types[op]
                 holds the correct displacement size.  */
                 holds the correct displacement size.  */
              expressionS *exp;
              expressionS *exp;
 
 
              assert (i.op[op].disps == 0);
              assert (i.op[op].disps == 0);
              exp = &disp_expressions[i.disp_operands++];
              exp = &disp_expressions[i.disp_operands++];
              i.op[op].disps = exp;
              i.op[op].disps = exp;
              exp->X_op = O_constant;
              exp->X_op = O_constant;
              exp->X_add_number = 0;
              exp->X_add_number = 0;
              exp->X_add_symbol = (symbolS *) 0;
              exp->X_add_symbol = (symbolS *) 0;
              exp->X_op_symbol = (symbolS *) 0;
              exp->X_op_symbol = (symbolS *) 0;
            }
            }
 
 
          mem = op;
          mem = op;
        }
        }
      else
      else
        mem = ~0;
        mem = ~0;
 
 
      /* Fill in i.rm.reg or i.rm.regmem field with register operand
      /* Fill in i.rm.reg or i.rm.regmem field with register operand
         (if any) based on i.tm.extension_opcode.  Again, we must be
         (if any) based on i.tm.extension_opcode.  Again, we must be
         careful to make sure that segment/control/debug/test/MMX
         careful to make sure that segment/control/debug/test/MMX
         registers are coded into the i.rm.reg field.  */
         registers are coded into the i.rm.reg field.  */
      if (i.reg_operands)
      if (i.reg_operands)
        {
        {
          unsigned int op;
          unsigned int op;
 
 
          /* This has been precalculated for SSE5 instructions
          /* This has been precalculated for SSE5 instructions
             that have a DREX field earlier in process_drex.  */
             that have a DREX field earlier in process_drex.  */
          if (i.tm.opcode_modifier.drex
          if (i.tm.opcode_modifier.drex
              || i.tm.opcode_modifier.drexv
              || i.tm.opcode_modifier.drexv
              || i.tm.opcode_modifier.drexc)
              || i.tm.opcode_modifier.drexc)
            {
            {
              op = i.drex.modrm_reg;
              op = i.drex.modrm_reg;
              i.rm.reg = i.op[op].regs->reg_num;
              i.rm.reg = i.op[op].regs->reg_num;
              if ((i.op[op].regs->reg_flags & RegRex) != 0)
              if ((i.op[op].regs->reg_flags & RegRex) != 0)
                i.rex |= REX_R;
                i.rex |= REX_R;
            }
            }
          else
          else
            {
            {
              unsigned int vex_reg = ~0;
              unsigned int vex_reg = ~0;
 
 
              for (op = 0; op < i.operands; op++)
              for (op = 0; op < i.operands; op++)
                if (i.types[op].bitfield.reg8
                if (i.types[op].bitfield.reg8
                    || i.types[op].bitfield.reg16
                    || i.types[op].bitfield.reg16
                    || i.types[op].bitfield.reg32
                    || i.types[op].bitfield.reg32
                    || i.types[op].bitfield.reg64
                    || i.types[op].bitfield.reg64
                    || i.types[op].bitfield.regmmx
                    || i.types[op].bitfield.regmmx
                    || i.types[op].bitfield.regxmm
                    || i.types[op].bitfield.regxmm
                    || i.types[op].bitfield.regymm
                    || i.types[op].bitfield.regymm
                    || i.types[op].bitfield.sreg2
                    || i.types[op].bitfield.sreg2
                    || i.types[op].bitfield.sreg3
                    || i.types[op].bitfield.sreg3
                    || i.types[op].bitfield.control
                    || i.types[op].bitfield.control
                    || i.types[op].bitfield.debug
                    || i.types[op].bitfield.debug
                    || i.types[op].bitfield.test)
                    || i.types[op].bitfield.test)
                  break;
                  break;
 
 
              if (vex_3_sources)
              if (vex_3_sources)
                op = dest;
                op = dest;
              else if (i.tm.opcode_modifier.vexnds)
              else if (i.tm.opcode_modifier.vexnds)
                {
                {
                  /* For instructions with VexNDS, the register-only
                  /* For instructions with VexNDS, the register-only
                     source operand is encoded in VEX prefix. */
                     source operand is encoded in VEX prefix. */
                  assert (mem != (unsigned int) ~0);
                  assert (mem != (unsigned int) ~0);
 
 
                  if (op > mem)
                  if (op > mem)
                    {
                    {
                      vex_reg = op++;
                      vex_reg = op++;
                      assert (op < i.operands);
                      assert (op < i.operands);
                    }
                    }
                  else
                  else
                    {
                    {
                      vex_reg = op + 1;
                      vex_reg = op + 1;
                      assert (vex_reg < i.operands);
                      assert (vex_reg < i.operands);
                    }
                    }
                }
                }
              else if (i.tm.opcode_modifier.vexndd)
              else if (i.tm.opcode_modifier.vexndd)
                {
                {
                  /* For instructions with VexNDD, there should be
                  /* For instructions with VexNDD, there should be
                     no memory operand and the register destination
                     no memory operand and the register destination
                     is encoded in VEX prefix.  */
                     is encoded in VEX prefix.  */
                  assert (i.mem_operands == 0
                  assert (i.mem_operands == 0
                          && (op + 2) == i.operands);
                          && (op + 2) == i.operands);
                  vex_reg = op + 1;
                  vex_reg = op + 1;
                }
                }
              else
              else
                assert (op < i.operands);
                assert (op < i.operands);
 
 
              if (vex_reg != (unsigned int) ~0)
              if (vex_reg != (unsigned int) ~0)
                {
                {
                  assert (i.reg_operands == 2);
                  assert (i.reg_operands == 2);
 
 
                  if (!operand_type_equal (&i.tm.operand_types[vex_reg],
                  if (!operand_type_equal (&i.tm.operand_types[vex_reg],
                                           & regxmm)
                                           & regxmm)
                      && !operand_type_equal (&i.tm.operand_types[vex_reg],
                      && !operand_type_equal (&i.tm.operand_types[vex_reg],
                                              &regymm))
                                              &regymm))
                    abort ();
                    abort ();
                  i.vex.register_specifier = i.op[vex_reg].regs;
                  i.vex.register_specifier = i.op[vex_reg].regs;
                }
                }
 
 
              /* If there is an extension opcode to put here, the
              /* If there is an extension opcode to put here, the
                 register number must be put into the regmem field.  */
                 register number must be put into the regmem field.  */
              if (i.tm.extension_opcode != None)
              if (i.tm.extension_opcode != None)
                {
                {
                  i.rm.regmem = i.op[op].regs->reg_num;
                  i.rm.regmem = i.op[op].regs->reg_num;
                  if ((i.op[op].regs->reg_flags & RegRex) != 0)
                  if ((i.op[op].regs->reg_flags & RegRex) != 0)
                    i.rex |= REX_B;
                    i.rex |= REX_B;
                }
                }
              else
              else
                {
                {
                  i.rm.reg = i.op[op].regs->reg_num;
                  i.rm.reg = i.op[op].regs->reg_num;
                  if ((i.op[op].regs->reg_flags & RegRex) != 0)
                  if ((i.op[op].regs->reg_flags & RegRex) != 0)
                    i.rex |= REX_R;
                    i.rex |= REX_R;
                }
                }
            }
            }
 
 
          /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
          /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
             must set it to 3 to indicate this is a register operand
             must set it to 3 to indicate this is a register operand
             in the regmem field.  */
             in the regmem field.  */
          if (!i.mem_operands)
          if (!i.mem_operands)
            i.rm.mode = 3;
            i.rm.mode = 3;
        }
        }
 
 
      /* Fill in i.rm.reg field with extension opcode (if any).  */
      /* Fill in i.rm.reg field with extension opcode (if any).  */
      if (i.tm.extension_opcode != None
      if (i.tm.extension_opcode != None
          && !(i.tm.opcode_modifier.drex
          && !(i.tm.opcode_modifier.drex
              || i.tm.opcode_modifier.drexv
              || i.tm.opcode_modifier.drexv
              || i.tm.opcode_modifier.drexc))
              || i.tm.opcode_modifier.drexc))
        i.rm.reg = i.tm.extension_opcode;
        i.rm.reg = i.tm.extension_opcode;
    }
    }
  return default_seg;
  return default_seg;
}
}
 
 
static void
static void
output_branch (void)
output_branch (void)
{
{
  char *p;
  char *p;
  int code16;
  int code16;
  int prefix;
  int prefix;
  relax_substateT subtype;
  relax_substateT subtype;
  symbolS *sym;
  symbolS *sym;
  offsetT off;
  offsetT off;
 
 
  code16 = 0;
  code16 = 0;
  if (flag_code == CODE_16BIT)
  if (flag_code == CODE_16BIT)
    code16 = CODE16;
    code16 = CODE16;
 
 
  prefix = 0;
  prefix = 0;
  if (i.prefix[DATA_PREFIX] != 0)
  if (i.prefix[DATA_PREFIX] != 0)
    {
    {
      prefix = 1;
      prefix = 1;
      i.prefixes -= 1;
      i.prefixes -= 1;
      code16 ^= CODE16;
      code16 ^= CODE16;
    }
    }
  /* Pentium4 branch hints.  */
  /* Pentium4 branch hints.  */
  if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
  if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
      || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
      || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
    {
    {
      prefix++;
      prefix++;
      i.prefixes--;
      i.prefixes--;
    }
    }
  if (i.prefix[REX_PREFIX] != 0)
  if (i.prefix[REX_PREFIX] != 0)
    {
    {
      prefix++;
      prefix++;
      i.prefixes--;
      i.prefixes--;
    }
    }
 
 
  if (i.prefixes != 0 && !intel_syntax)
  if (i.prefixes != 0 && !intel_syntax)
    as_warn (_("skipping prefixes on this instruction"));
    as_warn (_("skipping prefixes on this instruction"));
 
 
  /* It's always a symbol;  End frag & setup for relax.
  /* It's always a symbol;  End frag & setup for relax.
     Make sure there is enough room in this frag for the largest
     Make sure there is enough room in this frag for the largest
     instruction we may generate in md_convert_frag.  This is 2
     instruction we may generate in md_convert_frag.  This is 2
     bytes for the opcode and room for the prefix and largest
     bytes for the opcode and room for the prefix and largest
     displacement.  */
     displacement.  */
  frag_grow (prefix + 2 + 4);
  frag_grow (prefix + 2 + 4);
  /* Prefix and 1 opcode byte go in fr_fix.  */
  /* Prefix and 1 opcode byte go in fr_fix.  */
  p = frag_more (prefix + 1);
  p = frag_more (prefix + 1);
  if (i.prefix[DATA_PREFIX] != 0)
  if (i.prefix[DATA_PREFIX] != 0)
    *p++ = DATA_PREFIX_OPCODE;
    *p++ = DATA_PREFIX_OPCODE;
  if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
  if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
      || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
      || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
    *p++ = i.prefix[SEG_PREFIX];
    *p++ = i.prefix[SEG_PREFIX];
  if (i.prefix[REX_PREFIX] != 0)
  if (i.prefix[REX_PREFIX] != 0)
    *p++ = i.prefix[REX_PREFIX];
    *p++ = i.prefix[REX_PREFIX];
  *p = i.tm.base_opcode;
  *p = i.tm.base_opcode;
 
 
  if ((unsigned char) *p == JUMP_PC_RELATIVE)
  if ((unsigned char) *p == JUMP_PC_RELATIVE)
    subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
    subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
  else if (cpu_arch_flags.bitfield.cpui386)
  else if (cpu_arch_flags.bitfield.cpui386)
    subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
    subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
  else
  else
    subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
    subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
  subtype |= code16;
  subtype |= code16;
 
 
  sym = i.op[0].disps->X_add_symbol;
  sym = i.op[0].disps->X_add_symbol;
  off = i.op[0].disps->X_add_number;
  off = i.op[0].disps->X_add_number;
 
 
  if (i.op[0].disps->X_op != O_constant
  if (i.op[0].disps->X_op != O_constant
      && i.op[0].disps->X_op != O_symbol)
      && i.op[0].disps->X_op != O_symbol)
    {
    {
      /* Handle complex expressions.  */
      /* Handle complex expressions.  */
      sym = make_expr_symbol (i.op[0].disps);
      sym = make_expr_symbol (i.op[0].disps);
      off = 0;
      off = 0;
    }
    }
 
 
  /* 1 possible extra opcode + 4 byte displacement go in var part.
  /* 1 possible extra opcode + 4 byte displacement go in var part.
     Pass reloc in fr_var.  */
     Pass reloc in fr_var.  */
  frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
  frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
}
}
 
 
static void
static void
output_jump (void)
output_jump (void)
{
{
  char *p;
  char *p;
  int size;
  int size;
  fixS *fixP;
  fixS *fixP;
 
 
  if (i.tm.opcode_modifier.jumpbyte)
  if (i.tm.opcode_modifier.jumpbyte)
    {
    {
      /* This is a loop or jecxz type instruction.  */
      /* This is a loop or jecxz type instruction.  */
      size = 1;
      size = 1;
      if (i.prefix[ADDR_PREFIX] != 0)
      if (i.prefix[ADDR_PREFIX] != 0)
        {
        {
          FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
          FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
          i.prefixes -= 1;
          i.prefixes -= 1;
        }
        }
      /* Pentium4 branch hints.  */
      /* Pentium4 branch hints.  */
      if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
      if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
          || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
          || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
        {
        {
          FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
          FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
          i.prefixes--;
          i.prefixes--;
        }
        }
    }
    }
  else
  else
    {
    {
      int code16;
      int code16;
 
 
      code16 = 0;
      code16 = 0;
      if (flag_code == CODE_16BIT)
      if (flag_code == CODE_16BIT)
        code16 = CODE16;
        code16 = CODE16;
 
 
      if (i.prefix[DATA_PREFIX] != 0)
      if (i.prefix[DATA_PREFIX] != 0)
        {
        {
          FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
          FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
          i.prefixes -= 1;
          i.prefixes -= 1;
          code16 ^= CODE16;
          code16 ^= CODE16;
        }
        }
 
 
      size = 4;
      size = 4;
      if (code16)
      if (code16)
        size = 2;
        size = 2;
    }
    }
 
 
  if (i.prefix[REX_PREFIX] != 0)
  if (i.prefix[REX_PREFIX] != 0)
    {
    {
      FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
      FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
      i.prefixes -= 1;
      i.prefixes -= 1;
    }
    }
 
 
  if (i.prefixes != 0 && !intel_syntax)
  if (i.prefixes != 0 && !intel_syntax)
    as_warn (_("skipping prefixes on this instruction"));
    as_warn (_("skipping prefixes on this instruction"));
 
 
  p = frag_more (1 + size);
  p = frag_more (1 + size);
  *p++ = i.tm.base_opcode;
  *p++ = i.tm.base_opcode;
 
 
  fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
  fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
                      i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
                      i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
 
 
  /* All jumps handled here are signed, but don't use a signed limit
  /* All jumps handled here are signed, but don't use a signed limit
     check for 32 and 16 bit jumps as we want to allow wrap around at
     check for 32 and 16 bit jumps as we want to allow wrap around at
     4G and 64k respectively.  */
     4G and 64k respectively.  */
  if (size == 1)
  if (size == 1)
    fixP->fx_signed = 1;
    fixP->fx_signed = 1;
}
}
 
 
static void
static void
output_interseg_jump (void)
output_interseg_jump (void)
{
{
  char *p;
  char *p;
  int size;
  int size;
  int prefix;
  int prefix;
  int code16;
  int code16;
 
 
  code16 = 0;
  code16 = 0;
  if (flag_code == CODE_16BIT)
  if (flag_code == CODE_16BIT)
    code16 = CODE16;
    code16 = CODE16;
 
 
  prefix = 0;
  prefix = 0;
  if (i.prefix[DATA_PREFIX] != 0)
  if (i.prefix[DATA_PREFIX] != 0)
    {
    {
      prefix = 1;
      prefix = 1;
      i.prefixes -= 1;
      i.prefixes -= 1;
      code16 ^= CODE16;
      code16 ^= CODE16;
    }
    }
  if (i.prefix[REX_PREFIX] != 0)
  if (i.prefix[REX_PREFIX] != 0)
    {
    {
      prefix++;
      prefix++;
      i.prefixes -= 1;
      i.prefixes -= 1;
    }
    }
 
 
  size = 4;
  size = 4;
  if (code16)
  if (code16)
    size = 2;
    size = 2;
 
 
  if (i.prefixes != 0 && !intel_syntax)
  if (i.prefixes != 0 && !intel_syntax)
    as_warn (_("skipping prefixes on this instruction"));
    as_warn (_("skipping prefixes on this instruction"));
 
 
  /* 1 opcode; 2 segment; offset  */
  /* 1 opcode; 2 segment; offset  */
  p = frag_more (prefix + 1 + 2 + size);
  p = frag_more (prefix + 1 + 2 + size);
 
 
  if (i.prefix[DATA_PREFIX] != 0)
  if (i.prefix[DATA_PREFIX] != 0)
    *p++ = DATA_PREFIX_OPCODE;
    *p++ = DATA_PREFIX_OPCODE;
 
 
  if (i.prefix[REX_PREFIX] != 0)
  if (i.prefix[REX_PREFIX] != 0)
    *p++ = i.prefix[REX_PREFIX];
    *p++ = i.prefix[REX_PREFIX];
 
 
  *p++ = i.tm.base_opcode;
  *p++ = i.tm.base_opcode;
  if (i.op[1].imms->X_op == O_constant)
  if (i.op[1].imms->X_op == O_constant)
    {
    {
      offsetT n = i.op[1].imms->X_add_number;
      offsetT n = i.op[1].imms->X_add_number;
 
 
      if (size == 2
      if (size == 2
          && !fits_in_unsigned_word (n)
          && !fits_in_unsigned_word (n)
          && !fits_in_signed_word (n))
          && !fits_in_signed_word (n))
        {
        {
          as_bad (_("16-bit jump out of range"));
          as_bad (_("16-bit jump out of range"));
          return;
          return;
        }
        }
      md_number_to_chars (p, n, size);
      md_number_to_chars (p, n, size);
    }
    }
  else
  else
    fix_new_exp (frag_now, p - frag_now->fr_literal, size,
    fix_new_exp (frag_now, p - frag_now->fr_literal, size,
                 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
                 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
  if (i.op[0].imms->X_op != O_constant)
  if (i.op[0].imms->X_op != O_constant)
    as_bad (_("can't handle non absolute segment in `%s'"),
    as_bad (_("can't handle non absolute segment in `%s'"),
            i.tm.name);
            i.tm.name);
  md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
  md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
}
}
 
 
static void
static void
output_insn (void)
output_insn (void)
{
{
  fragS *insn_start_frag;
  fragS *insn_start_frag;
  offsetT insn_start_off;
  offsetT insn_start_off;
 
 
  /* Tie dwarf2 debug info to the address at the start of the insn.
  /* Tie dwarf2 debug info to the address at the start of the insn.
     We can't do this after the insn has been output as the current
     We can't do this after the insn has been output as the current
     frag may have been closed off.  eg. by frag_var.  */
     frag may have been closed off.  eg. by frag_var.  */
  dwarf2_emit_insn (0);
  dwarf2_emit_insn (0);
 
 
  insn_start_frag = frag_now;
  insn_start_frag = frag_now;
  insn_start_off = frag_now_fix ();
  insn_start_off = frag_now_fix ();
 
 
  /* Output jumps.  */
  /* Output jumps.  */
  if (i.tm.opcode_modifier.jump)
  if (i.tm.opcode_modifier.jump)
    output_branch ();
    output_branch ();
  else if (i.tm.opcode_modifier.jumpbyte
  else if (i.tm.opcode_modifier.jumpbyte
           || i.tm.opcode_modifier.jumpdword)
           || i.tm.opcode_modifier.jumpdword)
    output_jump ();
    output_jump ();
  else if (i.tm.opcode_modifier.jumpintersegment)
  else if (i.tm.opcode_modifier.jumpintersegment)
    output_interseg_jump ();
    output_interseg_jump ();
  else
  else
    {
    {
      /* Output normal instructions here.  */
      /* Output normal instructions here.  */
      char *p;
      char *p;
      unsigned char *q;
      unsigned char *q;
      unsigned int j;
      unsigned int j;
      unsigned int prefix;
      unsigned int prefix;
 
 
      /* Since the VEX prefix contains the implicit prefix, we don't
      /* Since the VEX prefix contains the implicit prefix, we don't
          need the explicit prefix.  */
          need the explicit prefix.  */
      if (!i.tm.opcode_modifier.vex)
      if (!i.tm.opcode_modifier.vex)
        {
        {
          switch (i.tm.opcode_length)
          switch (i.tm.opcode_length)
            {
            {
            case 3:
            case 3:
              if (i.tm.base_opcode & 0xff000000)
              if (i.tm.base_opcode & 0xff000000)
                {
                {
                  prefix = (i.tm.base_opcode >> 24) & 0xff;
                  prefix = (i.tm.base_opcode >> 24) & 0xff;
                  goto check_prefix;
                  goto check_prefix;
                }
                }
              break;
              break;
            case 2:
            case 2:
              if ((i.tm.base_opcode & 0xff0000) != 0)
              if ((i.tm.base_opcode & 0xff0000) != 0)
                {
                {
                  prefix = (i.tm.base_opcode >> 16) & 0xff;
                  prefix = (i.tm.base_opcode >> 16) & 0xff;
                  if (i.tm.cpu_flags.bitfield.cpupadlock)
                  if (i.tm.cpu_flags.bitfield.cpupadlock)
                    {
                    {
check_prefix:
check_prefix:
                      if (prefix != REPE_PREFIX_OPCODE
                      if (prefix != REPE_PREFIX_OPCODE
                          || (i.prefix[LOCKREP_PREFIX]
                          || (i.prefix[LOCKREP_PREFIX]
                              != REPE_PREFIX_OPCODE))
                              != REPE_PREFIX_OPCODE))
                        add_prefix (prefix);
                        add_prefix (prefix);
                    }
                    }
                  else
                  else
                    add_prefix (prefix);
                    add_prefix (prefix);
                }
                }
              break;
              break;
            case 1:
            case 1:
              break;
              break;
            default:
            default:
              abort ();
              abort ();
            }
            }
 
 
          /* The prefix bytes.  */
          /* The prefix bytes.  */
          for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
          for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
            if (*q)
            if (*q)
              FRAG_APPEND_1_CHAR (*q);
              FRAG_APPEND_1_CHAR (*q);
        }
        }
 
 
      if (i.tm.opcode_modifier.vex)
      if (i.tm.opcode_modifier.vex)
        {
        {
          for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
          for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
            if (*q)
            if (*q)
              switch (j)
              switch (j)
                {
                {
                case REX_PREFIX:
                case REX_PREFIX:
                  /* REX byte is encoded in VEX prefix.  */
                  /* REX byte is encoded in VEX prefix.  */
                  break;
                  break;
                case SEG_PREFIX:
                case SEG_PREFIX:
                case ADDR_PREFIX:
                case ADDR_PREFIX:
                  FRAG_APPEND_1_CHAR (*q);
                  FRAG_APPEND_1_CHAR (*q);
                  break;
                  break;
                default:
                default:
                  /* There should be no other prefixes for instructions
                  /* There should be no other prefixes for instructions
                     with VEX prefix.  */
                     with VEX prefix.  */
                  abort ();
                  abort ();
                }
                }
 
 
          /* Now the VEX prefix.  */
          /* Now the VEX prefix.  */
          p = frag_more (i.vex.length);
          p = frag_more (i.vex.length);
          for (j = 0; j < i.vex.length; j++)
          for (j = 0; j < i.vex.length; j++)
            p[j] = i.vex.bytes[j];
            p[j] = i.vex.bytes[j];
        }
        }
 
 
      /* Now the opcode; be careful about word order here!  */
      /* Now the opcode; be careful about word order here!  */
      if (i.tm.opcode_length == 1)
      if (i.tm.opcode_length == 1)
        {
        {
          FRAG_APPEND_1_CHAR (i.tm.base_opcode);
          FRAG_APPEND_1_CHAR (i.tm.base_opcode);
        }
        }
      else
      else
        {
        {
          switch (i.tm.opcode_length)
          switch (i.tm.opcode_length)
            {
            {
            case 3:
            case 3:
              p = frag_more (3);
              p = frag_more (3);
              *p++ = (i.tm.base_opcode >> 16) & 0xff;
              *p++ = (i.tm.base_opcode >> 16) & 0xff;
              break;
              break;
            case 2:
            case 2:
              p = frag_more (2);
              p = frag_more (2);
              break;
              break;
            default:
            default:
              abort ();
              abort ();
              break;
              break;
            }
            }
 
 
          /* Put out high byte first: can't use md_number_to_chars!  */
          /* Put out high byte first: can't use md_number_to_chars!  */
          *p++ = (i.tm.base_opcode >> 8) & 0xff;
          *p++ = (i.tm.base_opcode >> 8) & 0xff;
          *p = i.tm.base_opcode & 0xff;
          *p = i.tm.base_opcode & 0xff;
 
 
          /* On SSE5, encode the OC1 bit in the DREX field if this
          /* On SSE5, encode the OC1 bit in the DREX field if this
             encoding has multiple formats.  */
             encoding has multiple formats.  */
          if (i.tm.opcode_modifier.drex
          if (i.tm.opcode_modifier.drex
              && i.tm.opcode_modifier.drexv
              && i.tm.opcode_modifier.drexv
              && DREX_OC1 (i.tm.extension_opcode))
              && DREX_OC1 (i.tm.extension_opcode))
            *p |= DREX_OC1_MASK;
            *p |= DREX_OC1_MASK;
        }
        }
 
 
      /* Now the modrm byte and sib byte (if present).  */
      /* Now the modrm byte and sib byte (if present).  */
      if (i.tm.opcode_modifier.modrm)
      if (i.tm.opcode_modifier.modrm)
        {
        {
          FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
          FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
                               | i.rm.reg << 3
                               | i.rm.reg << 3
                               | i.rm.mode << 6));
                               | i.rm.mode << 6));
          /* If i.rm.regmem == ESP (4)
          /* If i.rm.regmem == ESP (4)
             && i.rm.mode != (Register mode)
             && i.rm.mode != (Register mode)
             && not 16 bit
             && not 16 bit
             ==> need second modrm byte.  */
             ==> need second modrm byte.  */
          if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
          if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
              && i.rm.mode != 3
              && i.rm.mode != 3
              && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
              && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
            FRAG_APPEND_1_CHAR ((i.sib.base << 0
            FRAG_APPEND_1_CHAR ((i.sib.base << 0
                                 | i.sib.index << 3
                                 | i.sib.index << 3
                                 | i.sib.scale << 6));
                                 | i.sib.scale << 6));
        }
        }
 
 
      /* Write the DREX byte if needed.  */
      /* Write the DREX byte if needed.  */
      if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
      if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
        {
        {
          p = frag_more (1);
          p = frag_more (1);
          *p = (((i.drex.reg & 0xf) << 4) | (i.drex.rex & 0x7));
          *p = (((i.drex.reg & 0xf) << 4) | (i.drex.rex & 0x7));
 
 
          /* Encode the OC0 bit if this encoding has multiple
          /* Encode the OC0 bit if this encoding has multiple
             formats.  */
             formats.  */
          if ((i.tm.opcode_modifier.drex
          if ((i.tm.opcode_modifier.drex
               || i.tm.opcode_modifier.drexv)
               || i.tm.opcode_modifier.drexv)
              && DREX_OC0 (i.tm.extension_opcode))
              && DREX_OC0 (i.tm.extension_opcode))
            *p |= DREX_OC0_MASK;
            *p |= DREX_OC0_MASK;
        }
        }
 
 
      if (i.disp_operands)
      if (i.disp_operands)
        output_disp (insn_start_frag, insn_start_off);
        output_disp (insn_start_frag, insn_start_off);
 
 
      if (i.imm_operands)
      if (i.imm_operands)
        output_imm (insn_start_frag, insn_start_off);
        output_imm (insn_start_frag, insn_start_off);
    }
    }
 
 
#ifdef DEBUG386
#ifdef DEBUG386
  if (flag_debug)
  if (flag_debug)
    {
    {
      pi ("" /*line*/, &i);
      pi ("" /*line*/, &i);
    }
    }
#endif /* DEBUG386  */
#endif /* DEBUG386  */
}
}
 
 
/* Return the size of the displacement operand N.  */
/* Return the size of the displacement operand N.  */
 
 
static int
static int
disp_size (unsigned int n)
disp_size (unsigned int n)
{
{
  int size = 4;
  int size = 4;
  if (i.types[n].bitfield.disp64)
  if (i.types[n].bitfield.disp64)
    size = 8;
    size = 8;
  else if (i.types[n].bitfield.disp8)
  else if (i.types[n].bitfield.disp8)
    size = 1;
    size = 1;
  else if (i.types[n].bitfield.disp16)
  else if (i.types[n].bitfield.disp16)
    size = 2;
    size = 2;
  return size;
  return size;
}
}
 
 
/* Return the size of the immediate operand N.  */
/* Return the size of the immediate operand N.  */
 
 
static int
static int
imm_size (unsigned int n)
imm_size (unsigned int n)
{
{
  int size = 4;
  int size = 4;
  if (i.types[n].bitfield.imm64)
  if (i.types[n].bitfield.imm64)
    size = 8;
    size = 8;
  else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
  else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
    size = 1;
    size = 1;
  else if (i.types[n].bitfield.imm16)
  else if (i.types[n].bitfield.imm16)
    size = 2;
    size = 2;
  return size;
  return size;
}
}
 
 
static void
static void
output_disp (fragS *insn_start_frag, offsetT insn_start_off)
output_disp (fragS *insn_start_frag, offsetT insn_start_off)
{
{
  char *p;
  char *p;
  unsigned int n;
  unsigned int n;
 
 
  for (n = 0; n < i.operands; n++)
  for (n = 0; n < i.operands; n++)
    {
    {
      if (operand_type_check (i.types[n], disp))
      if (operand_type_check (i.types[n], disp))
        {
        {
          if (i.op[n].disps->X_op == O_constant)
          if (i.op[n].disps->X_op == O_constant)
            {
            {
              int size = disp_size (n);
              int size = disp_size (n);
              offsetT val;
              offsetT val;
 
 
              val = offset_in_range (i.op[n].disps->X_add_number,
              val = offset_in_range (i.op[n].disps->X_add_number,
                                     size);
                                     size);
              p = frag_more (size);
              p = frag_more (size);
              md_number_to_chars (p, val, size);
              md_number_to_chars (p, val, size);
            }
            }
          else
          else
            {
            {
              enum bfd_reloc_code_real reloc_type;
              enum bfd_reloc_code_real reloc_type;
              int size = disp_size (n);
              int size = disp_size (n);
              int sign = i.types[n].bitfield.disp32s;
              int sign = i.types[n].bitfield.disp32s;
              int pcrel = (i.flags[n] & Operand_PCrel) != 0;
              int pcrel = (i.flags[n] & Operand_PCrel) != 0;
 
 
              /* We can't have 8 bit displacement here.  */
              /* We can't have 8 bit displacement here.  */
              assert (!i.types[n].bitfield.disp8);
              assert (!i.types[n].bitfield.disp8);
 
 
              /* The PC relative address is computed relative
              /* The PC relative address is computed relative
                 to the instruction boundary, so in case immediate
                 to the instruction boundary, so in case immediate
                 fields follows, we need to adjust the value.  */
                 fields follows, we need to adjust the value.  */
              if (pcrel && i.imm_operands)
              if (pcrel && i.imm_operands)
                {
                {
                  unsigned int n1;
                  unsigned int n1;
                  int sz = 0;
                  int sz = 0;
 
 
                  for (n1 = 0; n1 < i.operands; n1++)
                  for (n1 = 0; n1 < i.operands; n1++)
                    if (operand_type_check (i.types[n1], imm))
                    if (operand_type_check (i.types[n1], imm))
                      {
                      {
                        /* Only one immediate is allowed for PC
                        /* Only one immediate is allowed for PC
                           relative address.  */
                           relative address.  */
                        assert (sz == 0);
                        assert (sz == 0);
                        sz = imm_size (n1);
                        sz = imm_size (n1);
                        i.op[n].disps->X_add_number -= sz;
                        i.op[n].disps->X_add_number -= sz;
                      }
                      }
                  /* We should find the immediate.  */
                  /* We should find the immediate.  */
                  assert (sz != 0);
                  assert (sz != 0);
                }
                }
 
 
              p = frag_more (size);
              p = frag_more (size);
              reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
              reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
              if (GOT_symbol
              if (GOT_symbol
                  && GOT_symbol == i.op[n].disps->X_add_symbol
                  && GOT_symbol == i.op[n].disps->X_add_symbol
                  && (((reloc_type == BFD_RELOC_32
                  && (((reloc_type == BFD_RELOC_32
                        || reloc_type == BFD_RELOC_X86_64_32S
                        || reloc_type == BFD_RELOC_X86_64_32S
                        || (reloc_type == BFD_RELOC_64
                        || (reloc_type == BFD_RELOC_64
                            && object_64bit))
                            && object_64bit))
                       && (i.op[n].disps->X_op == O_symbol
                       && (i.op[n].disps->X_op == O_symbol
                           || (i.op[n].disps->X_op == O_add
                           || (i.op[n].disps->X_op == O_add
                               && ((symbol_get_value_expression
                               && ((symbol_get_value_expression
                                    (i.op[n].disps->X_op_symbol)->X_op)
                                    (i.op[n].disps->X_op_symbol)->X_op)
                                   == O_subtract))))
                                   == O_subtract))))
                      || reloc_type == BFD_RELOC_32_PCREL))
                      || reloc_type == BFD_RELOC_32_PCREL))
                {
                {
                  offsetT add;
                  offsetT add;
 
 
                  if (insn_start_frag == frag_now)
                  if (insn_start_frag == frag_now)
                    add = (p - frag_now->fr_literal) - insn_start_off;
                    add = (p - frag_now->fr_literal) - insn_start_off;
                  else
                  else
                    {
                    {
                      fragS *fr;
                      fragS *fr;
 
 
                      add = insn_start_frag->fr_fix - insn_start_off;
                      add = insn_start_frag->fr_fix - insn_start_off;
                      for (fr = insn_start_frag->fr_next;
                      for (fr = insn_start_frag->fr_next;
                           fr && fr != frag_now; fr = fr->fr_next)
                           fr && fr != frag_now; fr = fr->fr_next)
                        add += fr->fr_fix;
                        add += fr->fr_fix;
                      add += p - frag_now->fr_literal;
                      add += p - frag_now->fr_literal;
                    }
                    }
 
 
                  if (!object_64bit)
                  if (!object_64bit)
                    {
                    {
                      reloc_type = BFD_RELOC_386_GOTPC;
                      reloc_type = BFD_RELOC_386_GOTPC;
                      i.op[n].imms->X_add_number += add;
                      i.op[n].imms->X_add_number += add;
                    }
                    }
                  else if (reloc_type == BFD_RELOC_64)
                  else if (reloc_type == BFD_RELOC_64)
                    reloc_type = BFD_RELOC_X86_64_GOTPC64;
                    reloc_type = BFD_RELOC_X86_64_GOTPC64;
                  else
                  else
                    /* Don't do the adjustment for x86-64, as there
                    /* Don't do the adjustment for x86-64, as there
                       the pcrel addressing is relative to the _next_
                       the pcrel addressing is relative to the _next_
                       insn, and that is taken care of in other code.  */
                       insn, and that is taken care of in other code.  */
                    reloc_type = BFD_RELOC_X86_64_GOTPC32;
                    reloc_type = BFD_RELOC_X86_64_GOTPC32;
                }
                }
              fix_new_exp (frag_now, p - frag_now->fr_literal, size,
              fix_new_exp (frag_now, p - frag_now->fr_literal, size,
                           i.op[n].disps, pcrel, reloc_type);
                           i.op[n].disps, pcrel, reloc_type);
            }
            }
        }
        }
    }
    }
}
}
 
 
static void
static void
output_imm (fragS *insn_start_frag, offsetT insn_start_off)
output_imm (fragS *insn_start_frag, offsetT insn_start_off)
{
{
  char *p;
  char *p;
  unsigned int n;
  unsigned int n;
 
 
  for (n = 0; n < i.operands; n++)
  for (n = 0; n < i.operands; n++)
    {
    {
      if (operand_type_check (i.types[n], imm))
      if (operand_type_check (i.types[n], imm))
        {
        {
          if (i.op[n].imms->X_op == O_constant)
          if (i.op[n].imms->X_op == O_constant)
            {
            {
              int size = imm_size (n);
              int size = imm_size (n);
              offsetT val;
              offsetT val;
 
 
              val = offset_in_range (i.op[n].imms->X_add_number,
              val = offset_in_range (i.op[n].imms->X_add_number,
                                     size);
                                     size);
              p = frag_more (size);
              p = frag_more (size);
              md_number_to_chars (p, val, size);
              md_number_to_chars (p, val, size);
            }
            }
          else
          else
            {
            {
              /* Not absolute_section.
              /* Not absolute_section.
                 Need a 32-bit fixup (don't support 8bit
                 Need a 32-bit fixup (don't support 8bit
                 non-absolute imms).  Try to support other
                 non-absolute imms).  Try to support other
                 sizes ...  */
                 sizes ...  */
              enum bfd_reloc_code_real reloc_type;
              enum bfd_reloc_code_real reloc_type;
              int size = imm_size (n);
              int size = imm_size (n);
              int sign;
              int sign;
 
 
              if (i.types[n].bitfield.imm32s
              if (i.types[n].bitfield.imm32s
                  && (i.suffix == QWORD_MNEM_SUFFIX
                  && (i.suffix == QWORD_MNEM_SUFFIX
                      || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
                      || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
                sign = 1;
                sign = 1;
              else
              else
                sign = 0;
                sign = 0;
 
 
              p = frag_more (size);
              p = frag_more (size);
              reloc_type = reloc (size, 0, sign, i.reloc[n]);
              reloc_type = reloc (size, 0, sign, i.reloc[n]);
 
 
              /*   This is tough to explain.  We end up with this one if we
              /*   This is tough to explain.  We end up with this one if we
               * have operands that look like
               * have operands that look like
               * "_GLOBAL_OFFSET_TABLE_+[.-.L284]".  The goal here is to
               * "_GLOBAL_OFFSET_TABLE_+[.-.L284]".  The goal here is to
               * obtain the absolute address of the GOT, and it is strongly
               * obtain the absolute address of the GOT, and it is strongly
               * preferable from a performance point of view to avoid using
               * preferable from a performance point of view to avoid using
               * a runtime relocation for this.  The actual sequence of
               * a runtime relocation for this.  The actual sequence of
               * instructions often look something like:
               * instructions often look something like:
               *
               *
               *        call    .L66
               *        call    .L66
               * .L66:
               * .L66:
               *        popl    %ebx
               *        popl    %ebx
               *        addl    $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
               *        addl    $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
               *
               *
               *   The call and pop essentially return the absolute address
               *   The call and pop essentially return the absolute address
               * of the label .L66 and store it in %ebx.  The linker itself
               * of the label .L66 and store it in %ebx.  The linker itself
               * will ultimately change the first operand of the addl so
               * will ultimately change the first operand of the addl so
               * that %ebx points to the GOT, but to keep things simple, the
               * that %ebx points to the GOT, but to keep things simple, the
               * .o file must have this operand set so that it generates not
               * .o file must have this operand set so that it generates not
               * the absolute address of .L66, but the absolute address of
               * the absolute address of .L66, but the absolute address of
               * itself.  This allows the linker itself simply treat a GOTPC
               * itself.  This allows the linker itself simply treat a GOTPC
               * relocation as asking for a pcrel offset to the GOT to be
               * relocation as asking for a pcrel offset to the GOT to be
               * added in, and the addend of the relocation is stored in the
               * added in, and the addend of the relocation is stored in the
               * operand field for the instruction itself.
               * operand field for the instruction itself.
               *
               *
               *   Our job here is to fix the operand so that it would add
               *   Our job here is to fix the operand so that it would add
               * the correct offset so that %ebx would point to itself.  The
               * the correct offset so that %ebx would point to itself.  The
               * thing that is tricky is that .-.L66 will point to the
               * thing that is tricky is that .-.L66 will point to the
               * beginning of the instruction, so we need to further modify
               * beginning of the instruction, so we need to further modify
               * the operand so that it will point to itself.  There are
               * the operand so that it will point to itself.  There are
               * other cases where you have something like:
               * other cases where you have something like:
               *
               *
               *        .long   $_GLOBAL_OFFSET_TABLE_+[.-.L66]
               *        .long   $_GLOBAL_OFFSET_TABLE_+[.-.L66]
               *
               *
               * and here no correction would be required.  Internally in
               * and here no correction would be required.  Internally in
               * the assembler we treat operands of this form as not being
               * the assembler we treat operands of this form as not being
               * pcrel since the '.' is explicitly mentioned, and I wonder
               * pcrel since the '.' is explicitly mentioned, and I wonder
               * whether it would simplify matters to do it this way.  Who
               * whether it would simplify matters to do it this way.  Who
               * knows.  In earlier versions of the PIC patches, the
               * knows.  In earlier versions of the PIC patches, the
               * pcrel_adjust field was used to store the correction, but
               * pcrel_adjust field was used to store the correction, but
               * since the expression is not pcrel, I felt it would be
               * since the expression is not pcrel, I felt it would be
               * confusing to do it this way.  */
               * confusing to do it this way.  */
 
 
              if ((reloc_type == BFD_RELOC_32
              if ((reloc_type == BFD_RELOC_32
                   || reloc_type == BFD_RELOC_X86_64_32S
                   || reloc_type == BFD_RELOC_X86_64_32S
                   || reloc_type == BFD_RELOC_64)
                   || reloc_type == BFD_RELOC_64)
                  && GOT_symbol
                  && GOT_symbol
                  && GOT_symbol == i.op[n].imms->X_add_symbol
                  && GOT_symbol == i.op[n].imms->X_add_symbol
                  && (i.op[n].imms->X_op == O_symbol
                  && (i.op[n].imms->X_op == O_symbol
                      || (i.op[n].imms->X_op == O_add
                      || (i.op[n].imms->X_op == O_add
                          && ((symbol_get_value_expression
                          && ((symbol_get_value_expression
                               (i.op[n].imms->X_op_symbol)->X_op)
                               (i.op[n].imms->X_op_symbol)->X_op)
                              == O_subtract))))
                              == O_subtract))))
                {
                {
                  offsetT add;
                  offsetT add;
 
 
                  if (insn_start_frag == frag_now)
                  if (insn_start_frag == frag_now)
                    add = (p - frag_now->fr_literal) - insn_start_off;
                    add = (p - frag_now->fr_literal) - insn_start_off;
                  else
                  else
                    {
                    {
                      fragS *fr;
                      fragS *fr;
 
 
                      add = insn_start_frag->fr_fix - insn_start_off;
                      add = insn_start_frag->fr_fix - insn_start_off;
                      for (fr = insn_start_frag->fr_next;
                      for (fr = insn_start_frag->fr_next;
                           fr && fr != frag_now; fr = fr->fr_next)
                           fr && fr != frag_now; fr = fr->fr_next)
                        add += fr->fr_fix;
                        add += fr->fr_fix;
                      add += p - frag_now->fr_literal;
                      add += p - frag_now->fr_literal;
                    }
                    }
 
 
                  if (!object_64bit)
                  if (!object_64bit)
                    reloc_type = BFD_RELOC_386_GOTPC;
                    reloc_type = BFD_RELOC_386_GOTPC;
                  else if (size == 4)
                  else if (size == 4)
                    reloc_type = BFD_RELOC_X86_64_GOTPC32;
                    reloc_type = BFD_RELOC_X86_64_GOTPC32;
                  else if (size == 8)
                  else if (size == 8)
                    reloc_type = BFD_RELOC_X86_64_GOTPC64;
                    reloc_type = BFD_RELOC_X86_64_GOTPC64;
                  i.op[n].imms->X_add_number += add;
                  i.op[n].imms->X_add_number += add;
                }
                }
              fix_new_exp (frag_now, p - frag_now->fr_literal, size,
              fix_new_exp (frag_now, p - frag_now->fr_literal, size,
                           i.op[n].imms, 0, reloc_type);
                           i.op[n].imms, 0, reloc_type);
            }
            }
        }
        }
    }
    }
}
}


/* x86_cons_fix_new is called via the expression parsing code when a
/* x86_cons_fix_new is called via the expression parsing code when a
   reloc is needed.  We use this hook to get the correct .got reloc.  */
   reloc is needed.  We use this hook to get the correct .got reloc.  */
static enum bfd_reloc_code_real got_reloc = NO_RELOC;
static enum bfd_reloc_code_real got_reloc = NO_RELOC;
static int cons_sign = -1;
static int cons_sign = -1;
 
 
void
void
x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
                  expressionS *exp)
                  expressionS *exp)
{
{
  enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
  enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
 
 
  got_reloc = NO_RELOC;
  got_reloc = NO_RELOC;
 
 
#ifdef TE_PE
#ifdef TE_PE
  if (exp->X_op == O_secrel)
  if (exp->X_op == O_secrel)
    {
    {
      exp->X_op = O_symbol;
      exp->X_op = O_symbol;
      r = BFD_RELOC_32_SECREL;
      r = BFD_RELOC_32_SECREL;
    }
    }
#endif
#endif
 
 
  fix_new_exp (frag, off, len, exp, 0, r);
  fix_new_exp (frag, off, len, exp, 0, r);
}
}
 
 
#if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
#if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
# define lex_got(reloc, adjust, types) NULL
# define lex_got(reloc, adjust, types) NULL
#else
#else
/* Parse operands of the form
/* Parse operands of the form
   <symbol>@GOTOFF+<nnn>
   <symbol>@GOTOFF+<nnn>
   and similar .plt or .got references.
   and similar .plt or .got references.
 
 
   If we find one, set up the correct relocation in RELOC and copy the
   If we find one, set up the correct relocation in RELOC and copy the
   input string, minus the `@GOTOFF' into a malloc'd buffer for
   input string, minus the `@GOTOFF' into a malloc'd buffer for
   parsing by the calling routine.  Return this buffer, and if ADJUST
   parsing by the calling routine.  Return this buffer, and if ADJUST
   is non-null set it to the length of the string we removed from the
   is non-null set it to the length of the string we removed from the
   input line.  Otherwise return NULL.  */
   input line.  Otherwise return NULL.  */
static char *
static char *
lex_got (enum bfd_reloc_code_real *reloc,
lex_got (enum bfd_reloc_code_real *reloc,
         int *adjust,
         int *adjust,
         i386_operand_type *types)
         i386_operand_type *types)
{
{
  /* Some of the relocations depend on the size of what field is to
  /* Some of the relocations depend on the size of what field is to
     be relocated.  But in our callers i386_immediate and i386_displacement
     be relocated.  But in our callers i386_immediate and i386_displacement
     we don't yet know the operand size (this will be set by insn
     we don't yet know the operand size (this will be set by insn
     matching).  Hence we record the word32 relocation here,
     matching).  Hence we record the word32 relocation here,
     and adjust the reloc according to the real size in reloc().  */
     and adjust the reloc according to the real size in reloc().  */
  static const struct {
  static const struct {
    const char *str;
    const char *str;
    const enum bfd_reloc_code_real rel[2];
    const enum bfd_reloc_code_real rel[2];
    const i386_operand_type types64;
    const i386_operand_type types64;
  } gotrel[] = {
  } gotrel[] = {
    { "PLTOFF",   { 0,
    { "PLTOFF",   { 0,
                    BFD_RELOC_X86_64_PLTOFF64 },
                    BFD_RELOC_X86_64_PLTOFF64 },
      OPERAND_TYPE_IMM64 },
      OPERAND_TYPE_IMM64 },
    { "PLT",      { BFD_RELOC_386_PLT32,
    { "PLT",      { BFD_RELOC_386_PLT32,
                    BFD_RELOC_X86_64_PLT32    },
                    BFD_RELOC_X86_64_PLT32    },
      OPERAND_TYPE_IMM32_32S_DISP32 },
      OPERAND_TYPE_IMM32_32S_DISP32 },
    { "GOTPLT",   { 0,
    { "GOTPLT",   { 0,
                    BFD_RELOC_X86_64_GOTPLT64 },
                    BFD_RELOC_X86_64_GOTPLT64 },
      OPERAND_TYPE_IMM64_DISP64 },
      OPERAND_TYPE_IMM64_DISP64 },
    { "GOTOFF",   { BFD_RELOC_386_GOTOFF,
    { "GOTOFF",   { BFD_RELOC_386_GOTOFF,
                    BFD_RELOC_X86_64_GOTOFF64 },
                    BFD_RELOC_X86_64_GOTOFF64 },
      OPERAND_TYPE_IMM64_DISP64 },
      OPERAND_TYPE_IMM64_DISP64 },
    { "GOTPCREL", { 0,
    { "GOTPCREL", { 0,
                    BFD_RELOC_X86_64_GOTPCREL },
                    BFD_RELOC_X86_64_GOTPCREL },
      OPERAND_TYPE_IMM32_32S_DISP32 },
      OPERAND_TYPE_IMM32_32S_DISP32 },
    { "TLSGD",    { BFD_RELOC_386_TLS_GD,
    { "TLSGD",    { BFD_RELOC_386_TLS_GD,
                    BFD_RELOC_X86_64_TLSGD    },
                    BFD_RELOC_X86_64_TLSGD    },
      OPERAND_TYPE_IMM32_32S_DISP32 },
      OPERAND_TYPE_IMM32_32S_DISP32 },
    { "TLSLDM",   { BFD_RELOC_386_TLS_LDM,
    { "TLSLDM",   { BFD_RELOC_386_TLS_LDM,
                    0                         },
                    0                         },
      OPERAND_TYPE_NONE },
      OPERAND_TYPE_NONE },
    { "TLSLD",    { 0,
    { "TLSLD",    { 0,
                    BFD_RELOC_X86_64_TLSLD    },
                    BFD_RELOC_X86_64_TLSLD    },
      OPERAND_TYPE_IMM32_32S_DISP32 },
      OPERAND_TYPE_IMM32_32S_DISP32 },
    { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
    { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
                    BFD_RELOC_X86_64_GOTTPOFF },
                    BFD_RELOC_X86_64_GOTTPOFF },
      OPERAND_TYPE_IMM32_32S_DISP32 },
      OPERAND_TYPE_IMM32_32S_DISP32 },
    { "TPOFF",    { BFD_RELOC_386_TLS_LE_32,
    { "TPOFF",    { BFD_RELOC_386_TLS_LE_32,
                    BFD_RELOC_X86_64_TPOFF32  },
                    BFD_RELOC_X86_64_TPOFF32  },
      OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
      OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
    { "NTPOFF",   { BFD_RELOC_386_TLS_LE,
    { "NTPOFF",   { BFD_RELOC_386_TLS_LE,
                    0                         },
                    0                         },
      OPERAND_TYPE_NONE },
      OPERAND_TYPE_NONE },
    { "DTPOFF",   { BFD_RELOC_386_TLS_LDO_32,
    { "DTPOFF",   { BFD_RELOC_386_TLS_LDO_32,
                    BFD_RELOC_X86_64_DTPOFF32 },
                    BFD_RELOC_X86_64_DTPOFF32 },
 
 
      OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
      OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
    { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
    { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
                    0                         },
                    0                         },
      OPERAND_TYPE_NONE },
      OPERAND_TYPE_NONE },
    { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
    { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
                    0                         },
                    0                         },
      OPERAND_TYPE_NONE },
      OPERAND_TYPE_NONE },
    { "GOT",      { BFD_RELOC_386_GOT32,
    { "GOT",      { BFD_RELOC_386_GOT32,
                    BFD_RELOC_X86_64_GOT32    },
                    BFD_RELOC_X86_64_GOT32    },
      OPERAND_TYPE_IMM32_32S_64_DISP32 },
      OPERAND_TYPE_IMM32_32S_64_DISP32 },
    { "TLSDESC",  { BFD_RELOC_386_TLS_GOTDESC,
    { "TLSDESC",  { BFD_RELOC_386_TLS_GOTDESC,
                    BFD_RELOC_X86_64_GOTPC32_TLSDESC },
                    BFD_RELOC_X86_64_GOTPC32_TLSDESC },
      OPERAND_TYPE_IMM32_32S_DISP32 },
      OPERAND_TYPE_IMM32_32S_DISP32 },
    { "TLSCALL",  { BFD_RELOC_386_TLS_DESC_CALL,
    { "TLSCALL",  { BFD_RELOC_386_TLS_DESC_CALL,
                    BFD_RELOC_X86_64_TLSDESC_CALL },
                    BFD_RELOC_X86_64_TLSDESC_CALL },
      OPERAND_TYPE_IMM32_32S_DISP32 },
      OPERAND_TYPE_IMM32_32S_DISP32 },
  };
  };
  char *cp;
  char *cp;
  unsigned int j;
  unsigned int j;
 
 
  if (!IS_ELF)
  if (!IS_ELF)
    return NULL;
    return NULL;
 
 
  for (cp = input_line_pointer; *cp != '@'; cp++)
  for (cp = input_line_pointer; *cp != '@'; cp++)
    if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
    if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
      return NULL;
      return NULL;
 
 
  for (j = 0; j < ARRAY_SIZE (gotrel); j++)
  for (j = 0; j < ARRAY_SIZE (gotrel); j++)
    {
    {
      int len;
      int len;
 
 
      len = strlen (gotrel[j].str);
      len = strlen (gotrel[j].str);
      if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
      if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
        {
        {
          if (gotrel[j].rel[object_64bit] != 0)
          if (gotrel[j].rel[object_64bit] != 0)
            {
            {
              int first, second;
              int first, second;
              char *tmpbuf, *past_reloc;
              char *tmpbuf, *past_reloc;
 
 
              *reloc = gotrel[j].rel[object_64bit];
              *reloc = gotrel[j].rel[object_64bit];
              if (adjust)
              if (adjust)
                *adjust = len;
                *adjust = len;
 
 
              if (types)
              if (types)
                {
                {
                  if (flag_code != CODE_64BIT)
                  if (flag_code != CODE_64BIT)
                    {
                    {
                      types->bitfield.imm32 = 1;
                      types->bitfield.imm32 = 1;
                      types->bitfield.disp32 = 1;
                      types->bitfield.disp32 = 1;
                    }
                    }
                  else
                  else
                    *types = gotrel[j].types64;
                    *types = gotrel[j].types64;
                }
                }
 
 
              if (GOT_symbol == NULL)
              if (GOT_symbol == NULL)
                GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
                GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
 
 
              /* The length of the first part of our input line.  */
              /* The length of the first part of our input line.  */
              first = cp - input_line_pointer;
              first = cp - input_line_pointer;
 
 
              /* The second part goes from after the reloc token until
              /* The second part goes from after the reloc token until
                 (and including) an end_of_line char or comma.  */
                 (and including) an end_of_line char or comma.  */
              past_reloc = cp + 1 + len;
              past_reloc = cp + 1 + len;
              cp = past_reloc;
              cp = past_reloc;
              while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
              while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
                ++cp;
                ++cp;
              second = cp + 1 - past_reloc;
              second = cp + 1 - past_reloc;
 
 
              /* Allocate and copy string.  The trailing NUL shouldn't
              /* Allocate and copy string.  The trailing NUL shouldn't
                 be necessary, but be safe.  */
                 be necessary, but be safe.  */
              tmpbuf = xmalloc (first + second + 2);
              tmpbuf = xmalloc (first + second + 2);
              memcpy (tmpbuf, input_line_pointer, first);
              memcpy (tmpbuf, input_line_pointer, first);
              if (second != 0 && *past_reloc != ' ')
              if (second != 0 && *past_reloc != ' ')
                /* Replace the relocation token with ' ', so that
                /* Replace the relocation token with ' ', so that
                   errors like foo@GOTOFF1 will be detected.  */
                   errors like foo@GOTOFF1 will be detected.  */
                tmpbuf[first++] = ' ';
                tmpbuf[first++] = ' ';
              memcpy (tmpbuf + first, past_reloc, second);
              memcpy (tmpbuf + first, past_reloc, second);
              tmpbuf[first + second] = '\0';
              tmpbuf[first + second] = '\0';
              return tmpbuf;
              return tmpbuf;
            }
            }
 
 
          as_bad (_("@%s reloc is not supported with %d-bit output format"),
          as_bad (_("@%s reloc is not supported with %d-bit output format"),
                  gotrel[j].str, 1 << (5 + object_64bit));
                  gotrel[j].str, 1 << (5 + object_64bit));
          return NULL;
          return NULL;
        }
        }
    }
    }
 
 
  /* Might be a symbol version string.  Don't as_bad here.  */
  /* Might be a symbol version string.  Don't as_bad here.  */
  return NULL;
  return NULL;
}
}
 
 
void
void
x86_cons (expressionS *exp, int size)
x86_cons (expressionS *exp, int size)
{
{
  if (size == 4 || (object_64bit && size == 8))
  if (size == 4 || (object_64bit && size == 8))
    {
    {
      /* Handle @GOTOFF and the like in an expression.  */
      /* Handle @GOTOFF and the like in an expression.  */
      char *save;
      char *save;
      char *gotfree_input_line;
      char *gotfree_input_line;
      int adjust;
      int adjust;
 
 
      save = input_line_pointer;
      save = input_line_pointer;
      gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
      gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
      if (gotfree_input_line)
      if (gotfree_input_line)
        input_line_pointer = gotfree_input_line;
        input_line_pointer = gotfree_input_line;
 
 
      expression (exp);
      expression (exp);
 
 
      if (gotfree_input_line)
      if (gotfree_input_line)
        {
        {
          /* expression () has merrily parsed up to the end of line,
          /* expression () has merrily parsed up to the end of line,
             or a comma - in the wrong buffer.  Transfer how far
             or a comma - in the wrong buffer.  Transfer how far
             input_line_pointer has moved to the right buffer.  */
             input_line_pointer has moved to the right buffer.  */
          input_line_pointer = (save
          input_line_pointer = (save
                                + (input_line_pointer - gotfree_input_line)
                                + (input_line_pointer - gotfree_input_line)
                                + adjust);
                                + adjust);
          free (gotfree_input_line);
          free (gotfree_input_line);
          if (exp->X_op == O_constant
          if (exp->X_op == O_constant
              || exp->X_op == O_absent
              || exp->X_op == O_absent
              || exp->X_op == O_illegal
              || exp->X_op == O_illegal
              || exp->X_op == O_register
              || exp->X_op == O_register
              || exp->X_op == O_big)
              || exp->X_op == O_big)
            {
            {
              char c = *input_line_pointer;
              char c = *input_line_pointer;
              *input_line_pointer = 0;
              *input_line_pointer = 0;
              as_bad (_("missing or invalid expression `%s'"), save);
              as_bad (_("missing or invalid expression `%s'"), save);
              *input_line_pointer = c;
              *input_line_pointer = c;
            }
            }
        }
        }
    }
    }
  else
  else
    expression (exp);
    expression (exp);
}
}
#endif
#endif
 
 
static void signed_cons (int size)
static void signed_cons (int size)
{
{
  if (flag_code == CODE_64BIT)
  if (flag_code == CODE_64BIT)
    cons_sign = 1;
    cons_sign = 1;
  cons (size);
  cons (size);
  cons_sign = -1;
  cons_sign = -1;
}
}
 
 
#ifdef TE_PE
#ifdef TE_PE
static void
static void
pe_directive_secrel (dummy)
pe_directive_secrel (dummy)
     int dummy ATTRIBUTE_UNUSED;
     int dummy ATTRIBUTE_UNUSED;
{
{
  expressionS exp;
  expressionS exp;
 
 
  do
  do
    {
    {
      expression (&exp);
      expression (&exp);
      if (exp.X_op == O_symbol)
      if (exp.X_op == O_symbol)
        exp.X_op = O_secrel;
        exp.X_op = O_secrel;
 
 
      emit_expr (&exp, 4);
      emit_expr (&exp, 4);
    }
    }
  while (*input_line_pointer++ == ',');
  while (*input_line_pointer++ == ',');
 
 
  input_line_pointer--;
  input_line_pointer--;
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
#endif
#endif
 
 
static int
static int
i386_immediate (char *imm_start)
i386_immediate (char *imm_start)
{
{
  char *save_input_line_pointer;
  char *save_input_line_pointer;
  char *gotfree_input_line;
  char *gotfree_input_line;
  segT exp_seg = 0;
  segT exp_seg = 0;
  expressionS *exp;
  expressionS *exp;
  i386_operand_type types;
  i386_operand_type types;
 
 
  operand_type_set (&types, ~0);
  operand_type_set (&types, ~0);
 
 
  if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
  if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
    {
    {
      as_bad (_("at most %d immediate operands are allowed"),
      as_bad (_("at most %d immediate operands are allowed"),
              MAX_IMMEDIATE_OPERANDS);
              MAX_IMMEDIATE_OPERANDS);
      return 0;
      return 0;
    }
    }
 
 
  exp = &im_expressions[i.imm_operands++];
  exp = &im_expressions[i.imm_operands++];
  i.op[this_operand].imms = exp;
  i.op[this_operand].imms = exp;
 
 
  if (is_space_char (*imm_start))
  if (is_space_char (*imm_start))
    ++imm_start;
    ++imm_start;
 
 
  save_input_line_pointer = input_line_pointer;
  save_input_line_pointer = input_line_pointer;
  input_line_pointer = imm_start;
  input_line_pointer = imm_start;
 
 
  gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
  gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
  if (gotfree_input_line)
  if (gotfree_input_line)
    input_line_pointer = gotfree_input_line;
    input_line_pointer = gotfree_input_line;
 
 
  exp_seg = expression (exp);
  exp_seg = expression (exp);
 
 
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  if (*input_line_pointer)
  if (*input_line_pointer)
    as_bad (_("junk `%s' after expression"), input_line_pointer);
    as_bad (_("junk `%s' after expression"), input_line_pointer);
 
 
  input_line_pointer = save_input_line_pointer;
  input_line_pointer = save_input_line_pointer;
  if (gotfree_input_line)
  if (gotfree_input_line)
    free (gotfree_input_line);
    free (gotfree_input_line);
 
 
  if (exp->X_op == O_absent
  if (exp->X_op == O_absent
      || exp->X_op == O_illegal
      || exp->X_op == O_illegal
      || exp->X_op == O_big
      || exp->X_op == O_big
      || (gotfree_input_line
      || (gotfree_input_line
          && (exp->X_op == O_constant
          && (exp->X_op == O_constant
              || exp->X_op == O_register)))
              || exp->X_op == O_register)))
    {
    {
      as_bad (_("missing or invalid immediate expression `%s'"),
      as_bad (_("missing or invalid immediate expression `%s'"),
              imm_start);
              imm_start);
      return 0;
      return 0;
    }
    }
  else if (exp->X_op == O_constant)
  else if (exp->X_op == O_constant)
    {
    {
      /* Size it properly later.  */
      /* Size it properly later.  */
      i.types[this_operand].bitfield.imm64 = 1;
      i.types[this_operand].bitfield.imm64 = 1;
      /* If BFD64, sign extend val.  */
      /* If BFD64, sign extend val.  */
      if (!use_rela_relocations
      if (!use_rela_relocations
          && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
          && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
        exp->X_add_number
        exp->X_add_number
          = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
          = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
    }
    }
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
  else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
  else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
           && exp_seg != absolute_section
           && exp_seg != absolute_section
           && exp_seg != text_section
           && exp_seg != text_section
           && exp_seg != data_section
           && exp_seg != data_section
           && exp_seg != bss_section
           && exp_seg != bss_section
           && exp_seg != undefined_section
           && exp_seg != undefined_section
           && !bfd_is_com_section (exp_seg))
           && !bfd_is_com_section (exp_seg))
    {
    {
      as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
      as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
      return 0;
      return 0;
    }
    }
#endif
#endif
  else if (!intel_syntax && exp->X_op == O_register)
  else if (!intel_syntax && exp->X_op == O_register)
    {
    {
      as_bad (_("illegal immediate register operand %s"), imm_start);
      as_bad (_("illegal immediate register operand %s"), imm_start);
      return 0;
      return 0;
    }
    }
  else
  else
    {
    {
      /* This is an address.  The size of the address will be
      /* This is an address.  The size of the address will be
         determined later, depending on destination register,
         determined later, depending on destination register,
         suffix, or the default for the section.  */
         suffix, or the default for the section.  */
      i.types[this_operand].bitfield.imm8 = 1;
      i.types[this_operand].bitfield.imm8 = 1;
      i.types[this_operand].bitfield.imm16 = 1;
      i.types[this_operand].bitfield.imm16 = 1;
      i.types[this_operand].bitfield.imm32 = 1;
      i.types[this_operand].bitfield.imm32 = 1;
      i.types[this_operand].bitfield.imm32s = 1;
      i.types[this_operand].bitfield.imm32s = 1;
      i.types[this_operand].bitfield.imm64 = 1;
      i.types[this_operand].bitfield.imm64 = 1;
      i.types[this_operand] = operand_type_and (i.types[this_operand],
      i.types[this_operand] = operand_type_and (i.types[this_operand],
                                                types);
                                                types);
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
static char *
static char *
i386_scale (char *scale)
i386_scale (char *scale)
{
{
  offsetT val;
  offsetT val;
  char *save = input_line_pointer;
  char *save = input_line_pointer;
 
 
  input_line_pointer = scale;
  input_line_pointer = scale;
  val = get_absolute_expression ();
  val = get_absolute_expression ();
 
 
  switch (val)
  switch (val)
    {
    {
    case 1:
    case 1:
      i.log2_scale_factor = 0;
      i.log2_scale_factor = 0;
      break;
      break;
    case 2:
    case 2:
      i.log2_scale_factor = 1;
      i.log2_scale_factor = 1;
      break;
      break;
    case 4:
    case 4:
      i.log2_scale_factor = 2;
      i.log2_scale_factor = 2;
      break;
      break;
    case 8:
    case 8:
      i.log2_scale_factor = 3;
      i.log2_scale_factor = 3;
      break;
      break;
    default:
    default:
      {
      {
        char sep = *input_line_pointer;
        char sep = *input_line_pointer;
 
 
        *input_line_pointer = '\0';
        *input_line_pointer = '\0';
        as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
        as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
                scale);
                scale);
        *input_line_pointer = sep;
        *input_line_pointer = sep;
        input_line_pointer = save;
        input_line_pointer = save;
        return NULL;
        return NULL;
      }
      }
    }
    }
  if (i.log2_scale_factor != 0 && i.index_reg == 0)
  if (i.log2_scale_factor != 0 && i.index_reg == 0)
    {
    {
      as_warn (_("scale factor of %d without an index register"),
      as_warn (_("scale factor of %d without an index register"),
               1 << i.log2_scale_factor);
               1 << i.log2_scale_factor);
      i.log2_scale_factor = 0;
      i.log2_scale_factor = 0;
    }
    }
  scale = input_line_pointer;
  scale = input_line_pointer;
  input_line_pointer = save;
  input_line_pointer = save;
  return scale;
  return scale;
}
}
 
 
static int
static int
i386_displacement (char *disp_start, char *disp_end)
i386_displacement (char *disp_start, char *disp_end)
{
{
  expressionS *exp;
  expressionS *exp;
  segT exp_seg = 0;
  segT exp_seg = 0;
  char *save_input_line_pointer;
  char *save_input_line_pointer;
  char *gotfree_input_line;
  char *gotfree_input_line;
  int override;
  int override;
  i386_operand_type bigdisp, types = anydisp;
  i386_operand_type bigdisp, types = anydisp;
  int ret;
  int ret;
 
 
  if (i.disp_operands == MAX_MEMORY_OPERANDS)
  if (i.disp_operands == MAX_MEMORY_OPERANDS)
    {
    {
      as_bad (_("at most %d displacement operands are allowed"),
      as_bad (_("at most %d displacement operands are allowed"),
              MAX_MEMORY_OPERANDS);
              MAX_MEMORY_OPERANDS);
      return 0;
      return 0;
    }
    }
 
 
  operand_type_set (&bigdisp, 0);
  operand_type_set (&bigdisp, 0);
  if ((i.types[this_operand].bitfield.jumpabsolute)
  if ((i.types[this_operand].bitfield.jumpabsolute)
      || (!current_templates->start->opcode_modifier.jump
      || (!current_templates->start->opcode_modifier.jump
          && !current_templates->start->opcode_modifier.jumpdword))
          && !current_templates->start->opcode_modifier.jumpdword))
    {
    {
      bigdisp.bitfield.disp32 = 1;
      bigdisp.bitfield.disp32 = 1;
      override = (i.prefix[ADDR_PREFIX] != 0);
      override = (i.prefix[ADDR_PREFIX] != 0);
      if (flag_code == CODE_64BIT)
      if (flag_code == CODE_64BIT)
        {
        {
          if (!override)
          if (!override)
            {
            {
              bigdisp.bitfield.disp32s = 1;
              bigdisp.bitfield.disp32s = 1;
              bigdisp.bitfield.disp64 = 1;
              bigdisp.bitfield.disp64 = 1;
            }
            }
        }
        }
      else if ((flag_code == CODE_16BIT) ^ override)
      else if ((flag_code == CODE_16BIT) ^ override)
        {
        {
          bigdisp.bitfield.disp32 = 0;
          bigdisp.bitfield.disp32 = 0;
          bigdisp.bitfield.disp16 = 1;
          bigdisp.bitfield.disp16 = 1;
        }
        }
    }
    }
  else
  else
    {
    {
      /* For PC-relative branches, the width of the displacement
      /* For PC-relative branches, the width of the displacement
         is dependent upon data size, not address size.  */
         is dependent upon data size, not address size.  */
      override = (i.prefix[DATA_PREFIX] != 0);
      override = (i.prefix[DATA_PREFIX] != 0);
      if (flag_code == CODE_64BIT)
      if (flag_code == CODE_64BIT)
        {
        {
          if (override || i.suffix == WORD_MNEM_SUFFIX)
          if (override || i.suffix == WORD_MNEM_SUFFIX)
            bigdisp.bitfield.disp16 = 1;
            bigdisp.bitfield.disp16 = 1;
          else
          else
            {
            {
              bigdisp.bitfield.disp32 = 1;
              bigdisp.bitfield.disp32 = 1;
              bigdisp.bitfield.disp32s = 1;
              bigdisp.bitfield.disp32s = 1;
            }
            }
        }
        }
      else
      else
        {
        {
          if (!override)
          if (!override)
            override = (i.suffix == (flag_code != CODE_16BIT
            override = (i.suffix == (flag_code != CODE_16BIT
                                     ? WORD_MNEM_SUFFIX
                                     ? WORD_MNEM_SUFFIX
                                     : LONG_MNEM_SUFFIX));
                                     : LONG_MNEM_SUFFIX));
          bigdisp.bitfield.disp32 = 1;
          bigdisp.bitfield.disp32 = 1;
          if ((flag_code == CODE_16BIT) ^ override)
          if ((flag_code == CODE_16BIT) ^ override)
            {
            {
              bigdisp.bitfield.disp32 = 0;
              bigdisp.bitfield.disp32 = 0;
              bigdisp.bitfield.disp16 = 1;
              bigdisp.bitfield.disp16 = 1;
            }
            }
        }
        }
    }
    }
  i.types[this_operand] = operand_type_or (i.types[this_operand],
  i.types[this_operand] = operand_type_or (i.types[this_operand],
                                           bigdisp);
                                           bigdisp);
 
 
  exp = &disp_expressions[i.disp_operands];
  exp = &disp_expressions[i.disp_operands];
  i.op[this_operand].disps = exp;
  i.op[this_operand].disps = exp;
  i.disp_operands++;
  i.disp_operands++;
  save_input_line_pointer = input_line_pointer;
  save_input_line_pointer = input_line_pointer;
  input_line_pointer = disp_start;
  input_line_pointer = disp_start;
  END_STRING_AND_SAVE (disp_end);
  END_STRING_AND_SAVE (disp_end);
 
 
#ifndef GCC_ASM_O_HACK
#ifndef GCC_ASM_O_HACK
#define GCC_ASM_O_HACK 0
#define GCC_ASM_O_HACK 0
#endif
#endif
#if GCC_ASM_O_HACK
#if GCC_ASM_O_HACK
  END_STRING_AND_SAVE (disp_end + 1);
  END_STRING_AND_SAVE (disp_end + 1);
  if (i.types[this_operand].bitfield.baseIndex
  if (i.types[this_operand].bitfield.baseIndex
      && displacement_string_end[-1] == '+')
      && displacement_string_end[-1] == '+')
    {
    {
      /* This hack is to avoid a warning when using the "o"
      /* This hack is to avoid a warning when using the "o"
         constraint within gcc asm statements.
         constraint within gcc asm statements.
         For instance:
         For instance:
 
 
         #define _set_tssldt_desc(n,addr,limit,type) \
         #define _set_tssldt_desc(n,addr,limit,type) \
         __asm__ __volatile__ ( \
         __asm__ __volatile__ ( \
         "movw %w2,%0\n\t" \
         "movw %w2,%0\n\t" \
         "movw %w1,2+%0\n\t" \
         "movw %w1,2+%0\n\t" \
         "rorl $16,%1\n\t" \
         "rorl $16,%1\n\t" \
         "movb %b1,4+%0\n\t" \
         "movb %b1,4+%0\n\t" \
         "movb %4,5+%0\n\t" \
         "movb %4,5+%0\n\t" \
         "movb $0,6+%0\n\t" \
         "movb $0,6+%0\n\t" \
         "movb %h1,7+%0\n\t" \
         "movb %h1,7+%0\n\t" \
         "rorl $16,%1" \
         "rorl $16,%1" \
         : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
         : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
 
 
         This works great except that the output assembler ends
         This works great except that the output assembler ends
         up looking a bit weird if it turns out that there is
         up looking a bit weird if it turns out that there is
         no offset.  You end up producing code that looks like:
         no offset.  You end up producing code that looks like:
 
 
         #APP
         #APP
         movw $235,(%eax)
         movw $235,(%eax)
         movw %dx,2+(%eax)
         movw %dx,2+(%eax)
         rorl $16,%edx
         rorl $16,%edx
         movb %dl,4+(%eax)
         movb %dl,4+(%eax)
         movb $137,5+(%eax)
         movb $137,5+(%eax)
         movb $0,6+(%eax)
         movb $0,6+(%eax)
         movb %dh,7+(%eax)
         movb %dh,7+(%eax)
         rorl $16,%edx
         rorl $16,%edx
         #NO_APP
         #NO_APP
 
 
         So here we provide the missing zero.  */
         So here we provide the missing zero.  */
 
 
      *displacement_string_end = '0';
      *displacement_string_end = '0';
    }
    }
#endif
#endif
  gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
  gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
  if (gotfree_input_line)
  if (gotfree_input_line)
    input_line_pointer = gotfree_input_line;
    input_line_pointer = gotfree_input_line;
 
 
  exp_seg = expression (exp);
  exp_seg = expression (exp);
 
 
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  if (*input_line_pointer)
  if (*input_line_pointer)
    as_bad (_("junk `%s' after expression"), input_line_pointer);
    as_bad (_("junk `%s' after expression"), input_line_pointer);
#if GCC_ASM_O_HACK
#if GCC_ASM_O_HACK
  RESTORE_END_STRING (disp_end + 1);
  RESTORE_END_STRING (disp_end + 1);
#endif
#endif
  input_line_pointer = save_input_line_pointer;
  input_line_pointer = save_input_line_pointer;
  if (gotfree_input_line)
  if (gotfree_input_line)
    free (gotfree_input_line);
    free (gotfree_input_line);
  ret = 1;
  ret = 1;
 
 
  /* We do this to make sure that the section symbol is in
  /* We do this to make sure that the section symbol is in
     the symbol table.  We will ultimately change the relocation
     the symbol table.  We will ultimately change the relocation
     to be relative to the beginning of the section.  */
     to be relative to the beginning of the section.  */
  if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
  if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
      || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
      || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
      || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
      || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
    {
    {
      if (exp->X_op != O_symbol)
      if (exp->X_op != O_symbol)
        goto inv_disp;
        goto inv_disp;
 
 
      if (S_IS_LOCAL (exp->X_add_symbol)
      if (S_IS_LOCAL (exp->X_add_symbol)
          && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
          && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
        section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
        section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
      exp->X_op = O_subtract;
      exp->X_op = O_subtract;
      exp->X_op_symbol = GOT_symbol;
      exp->X_op_symbol = GOT_symbol;
      if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
      if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
        i.reloc[this_operand] = BFD_RELOC_32_PCREL;
        i.reloc[this_operand] = BFD_RELOC_32_PCREL;
      else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
      else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
        i.reloc[this_operand] = BFD_RELOC_64;
        i.reloc[this_operand] = BFD_RELOC_64;
      else
      else
        i.reloc[this_operand] = BFD_RELOC_32;
        i.reloc[this_operand] = BFD_RELOC_32;
    }
    }
 
 
  else if (exp->X_op == O_absent
  else if (exp->X_op == O_absent
           || exp->X_op == O_illegal
           || exp->X_op == O_illegal
           || exp->X_op == O_big
           || exp->X_op == O_big
           || (gotfree_input_line
           || (gotfree_input_line
               && (exp->X_op == O_constant
               && (exp->X_op == O_constant
                   || exp->X_op == O_register)))
                   || exp->X_op == O_register)))
    {
    {
    inv_disp:
    inv_disp:
      as_bad (_("missing or invalid displacement expression `%s'"),
      as_bad (_("missing or invalid displacement expression `%s'"),
              disp_start);
              disp_start);
      ret = 0;
      ret = 0;
    }
    }
 
 
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
  else if (exp->X_op != O_constant
  else if (exp->X_op != O_constant
           && OUTPUT_FLAVOR == bfd_target_aout_flavour
           && OUTPUT_FLAVOR == bfd_target_aout_flavour
           && exp_seg != absolute_section
           && exp_seg != absolute_section
           && exp_seg != text_section
           && exp_seg != text_section
           && exp_seg != data_section
           && exp_seg != data_section
           && exp_seg != bss_section
           && exp_seg != bss_section
           && exp_seg != undefined_section
           && exp_seg != undefined_section
           && !bfd_is_com_section (exp_seg))
           && !bfd_is_com_section (exp_seg))
    {
    {
      as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
      as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
      ret = 0;
      ret = 0;
    }
    }
#endif
#endif
 
 
  RESTORE_END_STRING (disp_end);
  RESTORE_END_STRING (disp_end);
 
 
  /* Check if this is a displacement only operand.  */
  /* Check if this is a displacement only operand.  */
  bigdisp = i.types[this_operand];
  bigdisp = i.types[this_operand];
  bigdisp.bitfield.disp8 = 0;
  bigdisp.bitfield.disp8 = 0;
  bigdisp.bitfield.disp16 = 0;
  bigdisp.bitfield.disp16 = 0;
  bigdisp.bitfield.disp32 = 0;
  bigdisp.bitfield.disp32 = 0;
  bigdisp.bitfield.disp32s = 0;
  bigdisp.bitfield.disp32s = 0;
  bigdisp.bitfield.disp64 = 0;
  bigdisp.bitfield.disp64 = 0;
  if (operand_type_all_zero (&bigdisp))
  if (operand_type_all_zero (&bigdisp))
    i.types[this_operand] = operand_type_and (i.types[this_operand],
    i.types[this_operand] = operand_type_and (i.types[this_operand],
                                              types);
                                              types);
 
 
  return ret;
  return ret;
}
}
 
 
/* Make sure the memory operand we've been dealt is valid.
/* Make sure the memory operand we've been dealt is valid.
   Return 1 on success, 0 on a failure.  */
   Return 1 on success, 0 on a failure.  */
 
 
static int
static int
i386_index_check (const char *operand_string)
i386_index_check (const char *operand_string)
{
{
  int ok;
  int ok;
#if INFER_ADDR_PREFIX
#if INFER_ADDR_PREFIX
  int fudged = 0;
  int fudged = 0;
 
 
 tryprefix:
 tryprefix:
#endif
#endif
  ok = 1;
  ok = 1;
  if (flag_code == CODE_64BIT)
  if (flag_code == CODE_64BIT)
    {
    {
      if ((i.base_reg
      if ((i.base_reg
           && ((i.prefix[ADDR_PREFIX] == 0
           && ((i.prefix[ADDR_PREFIX] == 0
                && !i.base_reg->reg_type.bitfield.reg64)
                && !i.base_reg->reg_type.bitfield.reg64)
               || (i.prefix[ADDR_PREFIX]
               || (i.prefix[ADDR_PREFIX]
                   && !i.base_reg->reg_type.bitfield.reg32))
                   && !i.base_reg->reg_type.bitfield.reg32))
           && (i.index_reg
           && (i.index_reg
               || i.base_reg->reg_num !=
               || i.base_reg->reg_num !=
                  (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
                  (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
          || (i.index_reg
          || (i.index_reg
              && (!i.index_reg->reg_type.bitfield.baseindex
              && (!i.index_reg->reg_type.bitfield.baseindex
                  || (i.prefix[ADDR_PREFIX] == 0
                  || (i.prefix[ADDR_PREFIX] == 0
                      && i.index_reg->reg_num != RegRiz
                      && i.index_reg->reg_num != RegRiz
                      && !i.index_reg->reg_type.bitfield.reg64
                      && !i.index_reg->reg_type.bitfield.reg64
                      )
                      )
                  || (i.prefix[ADDR_PREFIX]
                  || (i.prefix[ADDR_PREFIX]
                      && i.index_reg->reg_num != RegEiz
                      && i.index_reg->reg_num != RegEiz
                      && !i.index_reg->reg_type.bitfield.reg32))))
                      && !i.index_reg->reg_type.bitfield.reg32))))
        ok = 0;
        ok = 0;
    }
    }
  else
  else
    {
    {
      if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
      if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
        {
        {
          /* 16bit checks.  */
          /* 16bit checks.  */
          if ((i.base_reg
          if ((i.base_reg
               && (!i.base_reg->reg_type.bitfield.reg16
               && (!i.base_reg->reg_type.bitfield.reg16
                   || !i.base_reg->reg_type.bitfield.baseindex))
                   || !i.base_reg->reg_type.bitfield.baseindex))
              || (i.index_reg
              || (i.index_reg
                  && (!i.index_reg->reg_type.bitfield.reg16
                  && (!i.index_reg->reg_type.bitfield.reg16
                      || !i.index_reg->reg_type.bitfield.baseindex
                      || !i.index_reg->reg_type.bitfield.baseindex
                      || !(i.base_reg
                      || !(i.base_reg
                           && i.base_reg->reg_num < 6
                           && i.base_reg->reg_num < 6
                           && i.index_reg->reg_num >= 6
                           && i.index_reg->reg_num >= 6
                           && i.log2_scale_factor == 0))))
                           && i.log2_scale_factor == 0))))
            ok = 0;
            ok = 0;
        }
        }
      else
      else
        {
        {
          /* 32bit checks.  */
          /* 32bit checks.  */
          if ((i.base_reg
          if ((i.base_reg
               && !i.base_reg->reg_type.bitfield.reg32)
               && !i.base_reg->reg_type.bitfield.reg32)
              || (i.index_reg
              || (i.index_reg
                  && ((!i.index_reg->reg_type.bitfield.reg32
                  && ((!i.index_reg->reg_type.bitfield.reg32
                       && i.index_reg->reg_num != RegEiz)
                       && i.index_reg->reg_num != RegEiz)
                      || !i.index_reg->reg_type.bitfield.baseindex)))
                      || !i.index_reg->reg_type.bitfield.baseindex)))
            ok = 0;
            ok = 0;
        }
        }
    }
    }
  if (!ok)
  if (!ok)
    {
    {
#if INFER_ADDR_PREFIX
#if INFER_ADDR_PREFIX
      if (i.prefix[ADDR_PREFIX] == 0)
      if (i.prefix[ADDR_PREFIX] == 0)
        {
        {
          i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
          i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
          i.prefixes += 1;
          i.prefixes += 1;
          /* Change the size of any displacement too.  At most one of
          /* Change the size of any displacement too.  At most one of
             Disp16 or Disp32 is set.
             Disp16 or Disp32 is set.
             FIXME.  There doesn't seem to be any real need for separate
             FIXME.  There doesn't seem to be any real need for separate
             Disp16 and Disp32 flags.  The same goes for Imm16 and Imm32.
             Disp16 and Disp32 flags.  The same goes for Imm16 and Imm32.
             Removing them would probably clean up the code quite a lot.  */
             Removing them would probably clean up the code quite a lot.  */
          if (flag_code != CODE_64BIT
          if (flag_code != CODE_64BIT
              && (i.types[this_operand].bitfield.disp16
              && (i.types[this_operand].bitfield.disp16
                  || i.types[this_operand].bitfield.disp32))
                  || i.types[this_operand].bitfield.disp32))
            i.types[this_operand]
            i.types[this_operand]
              = operand_type_xor (i.types[this_operand], disp16_32);
              = operand_type_xor (i.types[this_operand], disp16_32);
          fudged = 1;
          fudged = 1;
          goto tryprefix;
          goto tryprefix;
        }
        }
      if (fudged)
      if (fudged)
        as_bad (_("`%s' is not a valid base/index expression"),
        as_bad (_("`%s' is not a valid base/index expression"),
                operand_string);
                operand_string);
      else
      else
#endif
#endif
        as_bad (_("`%s' is not a valid %s bit base/index expression"),
        as_bad (_("`%s' is not a valid %s bit base/index expression"),
                operand_string,
                operand_string,
                flag_code_names[flag_code]);
                flag_code_names[flag_code]);
    }
    }
  return ok;
  return ok;
}
}
 
 
/* Parse OPERAND_STRING into the i386_insn structure I.  Returns non-zero
/* Parse OPERAND_STRING into the i386_insn structure I.  Returns non-zero
   on error.  */
   on error.  */
 
 
static int
static int
i386_att_operand (char *operand_string)
i386_att_operand (char *operand_string)
{
{
  const reg_entry *r;
  const reg_entry *r;
  char *end_op;
  char *end_op;
  char *op_string = operand_string;
  char *op_string = operand_string;
 
 
  if (is_space_char (*op_string))
  if (is_space_char (*op_string))
    ++op_string;
    ++op_string;
 
 
  /* We check for an absolute prefix (differentiating,
  /* We check for an absolute prefix (differentiating,
     for example, 'jmp pc_relative_label' from 'jmp *absolute_label'.  */
     for example, 'jmp pc_relative_label' from 'jmp *absolute_label'.  */
  if (*op_string == ABSOLUTE_PREFIX)
  if (*op_string == ABSOLUTE_PREFIX)
    {
    {
      ++op_string;
      ++op_string;
      if (is_space_char (*op_string))
      if (is_space_char (*op_string))
        ++op_string;
        ++op_string;
      i.types[this_operand].bitfield.jumpabsolute = 1;
      i.types[this_operand].bitfield.jumpabsolute = 1;
    }
    }
 
 
  /* Check if operand is a register.  */
  /* Check if operand is a register.  */
  if ((r = parse_register (op_string, &end_op)) != NULL)
  if ((r = parse_register (op_string, &end_op)) != NULL)
    {
    {
      i386_operand_type temp;
      i386_operand_type temp;
 
 
      /* Check for a segment override by searching for ':' after a
      /* Check for a segment override by searching for ':' after a
         segment register.  */
         segment register.  */
      op_string = end_op;
      op_string = end_op;
      if (is_space_char (*op_string))
      if (is_space_char (*op_string))
        ++op_string;
        ++op_string;
      if (*op_string == ':'
      if (*op_string == ':'
          && (r->reg_type.bitfield.sreg2
          && (r->reg_type.bitfield.sreg2
              || r->reg_type.bitfield.sreg3))
              || r->reg_type.bitfield.sreg3))
        {
        {
          switch (r->reg_num)
          switch (r->reg_num)
            {
            {
            case 0:
            case 0:
              i.seg[i.mem_operands] = &es;
              i.seg[i.mem_operands] = &es;
              break;
              break;
            case 1:
            case 1:
              i.seg[i.mem_operands] = &cs;
              i.seg[i.mem_operands] = &cs;
              break;
              break;
            case 2:
            case 2:
              i.seg[i.mem_operands] = &ss;
              i.seg[i.mem_operands] = &ss;
              break;
              break;
            case 3:
            case 3:
              i.seg[i.mem_operands] = &ds;
              i.seg[i.mem_operands] = &ds;
              break;
              break;
            case 4:
            case 4:
              i.seg[i.mem_operands] = &fs;
              i.seg[i.mem_operands] = &fs;
              break;
              break;
            case 5:
            case 5:
              i.seg[i.mem_operands] = &gs;
              i.seg[i.mem_operands] = &gs;
              break;
              break;
            }
            }
 
 
          /* Skip the ':' and whitespace.  */
          /* Skip the ':' and whitespace.  */
          ++op_string;
          ++op_string;
          if (is_space_char (*op_string))
          if (is_space_char (*op_string))
            ++op_string;
            ++op_string;
 
 
          if (!is_digit_char (*op_string)
          if (!is_digit_char (*op_string)
              && !is_identifier_char (*op_string)
              && !is_identifier_char (*op_string)
              && *op_string != '('
              && *op_string != '('
              && *op_string != ABSOLUTE_PREFIX)
              && *op_string != ABSOLUTE_PREFIX)
            {
            {
              as_bad (_("bad memory operand `%s'"), op_string);
              as_bad (_("bad memory operand `%s'"), op_string);
              return 0;
              return 0;
            }
            }
          /* Handle case of %es:*foo.  */
          /* Handle case of %es:*foo.  */
          if (*op_string == ABSOLUTE_PREFIX)
          if (*op_string == ABSOLUTE_PREFIX)
            {
            {
              ++op_string;
              ++op_string;
              if (is_space_char (*op_string))
              if (is_space_char (*op_string))
                ++op_string;
                ++op_string;
              i.types[this_operand].bitfield.jumpabsolute = 1;
              i.types[this_operand].bitfield.jumpabsolute = 1;
            }
            }
          goto do_memory_reference;
          goto do_memory_reference;
        }
        }
      if (*op_string)
      if (*op_string)
        {
        {
          as_bad (_("junk `%s' after register"), op_string);
          as_bad (_("junk `%s' after register"), op_string);
          return 0;
          return 0;
        }
        }
      temp = r->reg_type;
      temp = r->reg_type;
      temp.bitfield.baseindex = 0;
      temp.bitfield.baseindex = 0;
      i.types[this_operand] = operand_type_or (i.types[this_operand],
      i.types[this_operand] = operand_type_or (i.types[this_operand],
                                               temp);
                                               temp);
      i.types[this_operand].bitfield.unspecified = 0;
      i.types[this_operand].bitfield.unspecified = 0;
      i.op[this_operand].regs = r;
      i.op[this_operand].regs = r;
      i.reg_operands++;
      i.reg_operands++;
    }
    }
  else if (*op_string == REGISTER_PREFIX)
  else if (*op_string == REGISTER_PREFIX)
    {
    {
      as_bad (_("bad register name `%s'"), op_string);
      as_bad (_("bad register name `%s'"), op_string);
      return 0;
      return 0;
    }
    }
  else if (*op_string == IMMEDIATE_PREFIX)
  else if (*op_string == IMMEDIATE_PREFIX)
    {
    {
      ++op_string;
      ++op_string;
      if (i.types[this_operand].bitfield.jumpabsolute)
      if (i.types[this_operand].bitfield.jumpabsolute)
        {
        {
          as_bad (_("immediate operand illegal with absolute jump"));
          as_bad (_("immediate operand illegal with absolute jump"));
          return 0;
          return 0;
        }
        }
      if (!i386_immediate (op_string))
      if (!i386_immediate (op_string))
        return 0;
        return 0;
    }
    }
  else if (is_digit_char (*op_string)
  else if (is_digit_char (*op_string)
           || is_identifier_char (*op_string)
           || is_identifier_char (*op_string)
           || *op_string == '(')
           || *op_string == '(')
    {
    {
      /* This is a memory reference of some sort.  */
      /* This is a memory reference of some sort.  */
      char *base_string;
      char *base_string;
 
 
      /* Start and end of displacement string expression (if found).  */
      /* Start and end of displacement string expression (if found).  */
      char *displacement_string_start;
      char *displacement_string_start;
      char *displacement_string_end;
      char *displacement_string_end;
 
 
    do_memory_reference:
    do_memory_reference:
      if ((i.mem_operands == 1
      if ((i.mem_operands == 1
           && !current_templates->start->opcode_modifier.isstring)
           && !current_templates->start->opcode_modifier.isstring)
          || i.mem_operands == 2)
          || i.mem_operands == 2)
        {
        {
          as_bad (_("too many memory references for `%s'"),
          as_bad (_("too many memory references for `%s'"),
                  current_templates->start->name);
                  current_templates->start->name);
          return 0;
          return 0;
        }
        }
 
 
      /* Check for base index form.  We detect the base index form by
      /* Check for base index form.  We detect the base index form by
         looking for an ')' at the end of the operand, searching
         looking for an ')' at the end of the operand, searching
         for the '(' matching it, and finding a REGISTER_PREFIX or ','
         for the '(' matching it, and finding a REGISTER_PREFIX or ','
         after the '('.  */
         after the '('.  */
      base_string = op_string + strlen (op_string);
      base_string = op_string + strlen (op_string);
 
 
      --base_string;
      --base_string;
      if (is_space_char (*base_string))
      if (is_space_char (*base_string))
        --base_string;
        --base_string;
 
 
      /* If we only have a displacement, set-up for it to be parsed later.  */
      /* If we only have a displacement, set-up for it to be parsed later.  */
      displacement_string_start = op_string;
      displacement_string_start = op_string;
      displacement_string_end = base_string + 1;
      displacement_string_end = base_string + 1;
 
 
      if (*base_string == ')')
      if (*base_string == ')')
        {
        {
          char *temp_string;
          char *temp_string;
          unsigned int parens_balanced = 1;
          unsigned int parens_balanced = 1;
          /* We've already checked that the number of left & right ()'s are
          /* We've already checked that the number of left & right ()'s are
             equal, so this loop will not be infinite.  */
             equal, so this loop will not be infinite.  */
          do
          do
            {
            {
              base_string--;
              base_string--;
              if (*base_string == ')')
              if (*base_string == ')')
                parens_balanced++;
                parens_balanced++;
              if (*base_string == '(')
              if (*base_string == '(')
                parens_balanced--;
                parens_balanced--;
            }
            }
          while (parens_balanced);
          while (parens_balanced);
 
 
          temp_string = base_string;
          temp_string = base_string;
 
 
          /* Skip past '(' and whitespace.  */
          /* Skip past '(' and whitespace.  */
          ++base_string;
          ++base_string;
          if (is_space_char (*base_string))
          if (is_space_char (*base_string))
            ++base_string;
            ++base_string;
 
 
          if (*base_string == ','
          if (*base_string == ','
              || ((i.base_reg = parse_register (base_string, &end_op))
              || ((i.base_reg = parse_register (base_string, &end_op))
                  != NULL))
                  != NULL))
            {
            {
              displacement_string_end = temp_string;
              displacement_string_end = temp_string;
 
 
              i.types[this_operand].bitfield.baseindex = 1;
              i.types[this_operand].bitfield.baseindex = 1;
 
 
              if (i.base_reg)
              if (i.base_reg)
                {
                {
                  base_string = end_op;
                  base_string = end_op;
                  if (is_space_char (*base_string))
                  if (is_space_char (*base_string))
                    ++base_string;
                    ++base_string;
                }
                }
 
 
              /* There may be an index reg or scale factor here.  */
              /* There may be an index reg or scale factor here.  */
              if (*base_string == ',')
              if (*base_string == ',')
                {
                {
                  ++base_string;
                  ++base_string;
                  if (is_space_char (*base_string))
                  if (is_space_char (*base_string))
                    ++base_string;
                    ++base_string;
 
 
                  if ((i.index_reg = parse_register (base_string, &end_op))
                  if ((i.index_reg = parse_register (base_string, &end_op))
                      != NULL)
                      != NULL)
                    {
                    {
                      base_string = end_op;
                      base_string = end_op;
                      if (is_space_char (*base_string))
                      if (is_space_char (*base_string))
                        ++base_string;
                        ++base_string;
                      if (*base_string == ',')
                      if (*base_string == ',')
                        {
                        {
                          ++base_string;
                          ++base_string;
                          if (is_space_char (*base_string))
                          if (is_space_char (*base_string))
                            ++base_string;
                            ++base_string;
                        }
                        }
                      else if (*base_string != ')')
                      else if (*base_string != ')')
                        {
                        {
                          as_bad (_("expecting `,' or `)' "
                          as_bad (_("expecting `,' or `)' "
                                    "after index register in `%s'"),
                                    "after index register in `%s'"),
                                  operand_string);
                                  operand_string);
                          return 0;
                          return 0;
                        }
                        }
                    }
                    }
                  else if (*base_string == REGISTER_PREFIX)
                  else if (*base_string == REGISTER_PREFIX)
                    {
                    {
                      as_bad (_("bad register name `%s'"), base_string);
                      as_bad (_("bad register name `%s'"), base_string);
                      return 0;
                      return 0;
                    }
                    }
 
 
                  /* Check for scale factor.  */
                  /* Check for scale factor.  */
                  if (*base_string != ')')
                  if (*base_string != ')')
                    {
                    {
                      char *end_scale = i386_scale (base_string);
                      char *end_scale = i386_scale (base_string);
 
 
                      if (!end_scale)
                      if (!end_scale)
                        return 0;
                        return 0;
 
 
                      base_string = end_scale;
                      base_string = end_scale;
                      if (is_space_char (*base_string))
                      if (is_space_char (*base_string))
                        ++base_string;
                        ++base_string;
                      if (*base_string != ')')
                      if (*base_string != ')')
                        {
                        {
                          as_bad (_("expecting `)' "
                          as_bad (_("expecting `)' "
                                    "after scale factor in `%s'"),
                                    "after scale factor in `%s'"),
                                  operand_string);
                                  operand_string);
                          return 0;
                          return 0;
                        }
                        }
                    }
                    }
                  else if (!i.index_reg)
                  else if (!i.index_reg)
                    {
                    {
                      as_bad (_("expecting index register or scale factor "
                      as_bad (_("expecting index register or scale factor "
                                "after `,'; got '%c'"),
                                "after `,'; got '%c'"),
                              *base_string);
                              *base_string);
                      return 0;
                      return 0;
                    }
                    }
                }
                }
              else if (*base_string != ')')
              else if (*base_string != ')')
                {
                {
                  as_bad (_("expecting `,' or `)' "
                  as_bad (_("expecting `,' or `)' "
                            "after base register in `%s'"),
                            "after base register in `%s'"),
                          operand_string);
                          operand_string);
                  return 0;
                  return 0;
                }
                }
            }
            }
          else if (*base_string == REGISTER_PREFIX)
          else if (*base_string == REGISTER_PREFIX)
            {
            {
              as_bad (_("bad register name `%s'"), base_string);
              as_bad (_("bad register name `%s'"), base_string);
              return 0;
              return 0;
            }
            }
        }
        }
 
 
      /* If there's an expression beginning the operand, parse it,
      /* If there's an expression beginning the operand, parse it,
         assuming displacement_string_start and
         assuming displacement_string_start and
         displacement_string_end are meaningful.  */
         displacement_string_end are meaningful.  */
      if (displacement_string_start != displacement_string_end)
      if (displacement_string_start != displacement_string_end)
        {
        {
          if (!i386_displacement (displacement_string_start,
          if (!i386_displacement (displacement_string_start,
                                  displacement_string_end))
                                  displacement_string_end))
            return 0;
            return 0;
        }
        }
 
 
      /* Special case for (%dx) while doing input/output op.  */
      /* Special case for (%dx) while doing input/output op.  */
      if (i.base_reg
      if (i.base_reg
          && operand_type_equal (&i.base_reg->reg_type,
          && operand_type_equal (&i.base_reg->reg_type,
                                 &reg16_inoutportreg)
                                 &reg16_inoutportreg)
          && i.index_reg == 0
          && i.index_reg == 0
          && i.log2_scale_factor == 0
          && i.log2_scale_factor == 0
          && i.seg[i.mem_operands] == 0
          && i.seg[i.mem_operands] == 0
          && !operand_type_check (i.types[this_operand], disp))
          && !operand_type_check (i.types[this_operand], disp))
        {
        {
          i.types[this_operand] = inoutportreg;
          i.types[this_operand] = inoutportreg;
          return 1;
          return 1;
        }
        }
 
 
      if (i386_index_check (operand_string) == 0)
      if (i386_index_check (operand_string) == 0)
        return 0;
        return 0;
      i.types[this_operand].bitfield.mem = 1;
      i.types[this_operand].bitfield.mem = 1;
      i.mem_operands++;
      i.mem_operands++;
    }
    }
  else
  else
    {
    {
      /* It's not a memory operand; argh!  */
      /* It's not a memory operand; argh!  */
      as_bad (_("invalid char %s beginning operand %d `%s'"),
      as_bad (_("invalid char %s beginning operand %d `%s'"),
              output_invalid (*op_string),
              output_invalid (*op_string),
              this_operand + 1,
              this_operand + 1,
              op_string);
              op_string);
      return 0;
      return 0;
    }
    }
  return 1;                     /* Normal return.  */
  return 1;                     /* Normal return.  */
}
}


/* md_estimate_size_before_relax()
/* md_estimate_size_before_relax()
 
 
   Called just before relax() for rs_machine_dependent frags.  The x86
   Called just before relax() for rs_machine_dependent frags.  The x86
   assembler uses these frags to handle variable size jump
   assembler uses these frags to handle variable size jump
   instructions.
   instructions.
 
 
   Any symbol that is now undefined will not become defined.
   Any symbol that is now undefined will not become defined.
   Return the correct fr_subtype in the frag.
   Return the correct fr_subtype in the frag.
   Return the initial "guess for variable size of frag" to caller.
   Return the initial "guess for variable size of frag" to caller.
   The guess is actually the growth beyond the fixed part.  Whatever
   The guess is actually the growth beyond the fixed part.  Whatever
   we do to grow the fixed or variable part contributes to our
   we do to grow the fixed or variable part contributes to our
   returned value.  */
   returned value.  */
 
 
int
int
md_estimate_size_before_relax (fragP, segment)
md_estimate_size_before_relax (fragP, segment)
     fragS *fragP;
     fragS *fragP;
     segT segment;
     segT segment;
{
{
  /* We've already got fragP->fr_subtype right;  all we have to do is
  /* We've already got fragP->fr_subtype right;  all we have to do is
     check for un-relaxable symbols.  On an ELF system, we can't relax
     check for un-relaxable symbols.  On an ELF system, we can't relax
     an externally visible symbol, because it may be overridden by a
     an externally visible symbol, because it may be overridden by a
     shared library.  */
     shared library.  */
  if (S_GET_SEGMENT (fragP->fr_symbol) != segment
  if (S_GET_SEGMENT (fragP->fr_symbol) != segment
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
      || (IS_ELF
      || (IS_ELF
          && (S_IS_EXTERNAL (fragP->fr_symbol)
          && (S_IS_EXTERNAL (fragP->fr_symbol)
              || S_IS_WEAK (fragP->fr_symbol)))
              || S_IS_WEAK (fragP->fr_symbol)))
#endif
#endif
      )
      )
    {
    {
      /* Symbol is undefined in this segment, or we need to keep a
      /* Symbol is undefined in this segment, or we need to keep a
         reloc so that weak symbols can be overridden.  */
         reloc so that weak symbols can be overridden.  */
      int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
      int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
      enum bfd_reloc_code_real reloc_type;
      enum bfd_reloc_code_real reloc_type;
      unsigned char *opcode;
      unsigned char *opcode;
      int old_fr_fix;
      int old_fr_fix;
 
 
      if (fragP->fr_var != NO_RELOC)
      if (fragP->fr_var != NO_RELOC)
        reloc_type = fragP->fr_var;
        reloc_type = fragP->fr_var;
      else if (size == 2)
      else if (size == 2)
        reloc_type = BFD_RELOC_16_PCREL;
        reloc_type = BFD_RELOC_16_PCREL;
      else
      else
        reloc_type = BFD_RELOC_32_PCREL;
        reloc_type = BFD_RELOC_32_PCREL;
 
 
      old_fr_fix = fragP->fr_fix;
      old_fr_fix = fragP->fr_fix;
      opcode = (unsigned char *) fragP->fr_opcode;
      opcode = (unsigned char *) fragP->fr_opcode;
 
 
      switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
      switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
        {
        {
        case UNCOND_JUMP:
        case UNCOND_JUMP:
          /* Make jmp (0xeb) a (d)word displacement jump.  */
          /* Make jmp (0xeb) a (d)word displacement jump.  */
          opcode[0] = 0xe9;
          opcode[0] = 0xe9;
          fragP->fr_fix += size;
          fragP->fr_fix += size;
          fix_new (fragP, old_fr_fix, size,
          fix_new (fragP, old_fr_fix, size,
                   fragP->fr_symbol,
                   fragP->fr_symbol,
                   fragP->fr_offset, 1,
                   fragP->fr_offset, 1,
                   reloc_type);
                   reloc_type);
          break;
          break;
 
 
        case COND_JUMP86:
        case COND_JUMP86:
          if (size == 2
          if (size == 2
              && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
              && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
            {
            {
              /* Negate the condition, and branch past an
              /* Negate the condition, and branch past an
                 unconditional jump.  */
                 unconditional jump.  */
              opcode[0] ^= 1;
              opcode[0] ^= 1;
              opcode[1] = 3;
              opcode[1] = 3;
              /* Insert an unconditional jump.  */
              /* Insert an unconditional jump.  */
              opcode[2] = 0xe9;
              opcode[2] = 0xe9;
              /* We added two extra opcode bytes, and have a two byte
              /* We added two extra opcode bytes, and have a two byte
                 offset.  */
                 offset.  */
              fragP->fr_fix += 2 + 2;
              fragP->fr_fix += 2 + 2;
              fix_new (fragP, old_fr_fix + 2, 2,
              fix_new (fragP, old_fr_fix + 2, 2,
                       fragP->fr_symbol,
                       fragP->fr_symbol,
                       fragP->fr_offset, 1,
                       fragP->fr_offset, 1,
                       reloc_type);
                       reloc_type);
              break;
              break;
            }
            }
          /* Fall through.  */
          /* Fall through.  */
 
 
        case COND_JUMP:
        case COND_JUMP:
          if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
          if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
            {
            {
              fixS *fixP;
              fixS *fixP;
 
 
              fragP->fr_fix += 1;
              fragP->fr_fix += 1;
              fixP = fix_new (fragP, old_fr_fix, 1,
              fixP = fix_new (fragP, old_fr_fix, 1,
                              fragP->fr_symbol,
                              fragP->fr_symbol,
                              fragP->fr_offset, 1,
                              fragP->fr_offset, 1,
                              BFD_RELOC_8_PCREL);
                              BFD_RELOC_8_PCREL);
              fixP->fx_signed = 1;
              fixP->fx_signed = 1;
              break;
              break;
            }
            }
 
 
          /* This changes the byte-displacement jump 0x7N
          /* This changes the byte-displacement jump 0x7N
             to the (d)word-displacement jump 0x0f,0x8N.  */
             to the (d)word-displacement jump 0x0f,0x8N.  */
          opcode[1] = opcode[0] + 0x10;
          opcode[1] = opcode[0] + 0x10;
          opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
          opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
          /* We've added an opcode byte.  */
          /* We've added an opcode byte.  */
          fragP->fr_fix += 1 + size;
          fragP->fr_fix += 1 + size;
          fix_new (fragP, old_fr_fix + 1, size,
          fix_new (fragP, old_fr_fix + 1, size,
                   fragP->fr_symbol,
                   fragP->fr_symbol,
                   fragP->fr_offset, 1,
                   fragP->fr_offset, 1,
                   reloc_type);
                   reloc_type);
          break;
          break;
 
 
        default:
        default:
          BAD_CASE (fragP->fr_subtype);
          BAD_CASE (fragP->fr_subtype);
          break;
          break;
        }
        }
      frag_wane (fragP);
      frag_wane (fragP);
      return fragP->fr_fix - old_fr_fix;
      return fragP->fr_fix - old_fr_fix;
    }
    }
 
 
  /* Guess size depending on current relax state.  Initially the relax
  /* Guess size depending on current relax state.  Initially the relax
     state will correspond to a short jump and we return 1, because
     state will correspond to a short jump and we return 1, because
     the variable part of the frag (the branch offset) is one byte
     the variable part of the frag (the branch offset) is one byte
     long.  However, we can relax a section more than once and in that
     long.  However, we can relax a section more than once and in that
     case we must either set fr_subtype back to the unrelaxed state,
     case we must either set fr_subtype back to the unrelaxed state,
     or return the value for the appropriate branch.  */
     or return the value for the appropriate branch.  */
  return md_relax_table[fragP->fr_subtype].rlx_length;
  return md_relax_table[fragP->fr_subtype].rlx_length;
}
}
 
 
/* Called after relax() is finished.
/* Called after relax() is finished.
 
 
   In:  Address of frag.
   In:  Address of frag.
        fr_type == rs_machine_dependent.
        fr_type == rs_machine_dependent.
        fr_subtype is what the address relaxed to.
        fr_subtype is what the address relaxed to.
 
 
   Out: Any fixSs and constants are set up.
   Out: Any fixSs and constants are set up.
        Caller will turn frag into a ".space 0".  */
        Caller will turn frag into a ".space 0".  */
 
 
void
void
md_convert_frag (abfd, sec, fragP)
md_convert_frag (abfd, sec, fragP)
     bfd *abfd ATTRIBUTE_UNUSED;
     bfd *abfd ATTRIBUTE_UNUSED;
     segT sec ATTRIBUTE_UNUSED;
     segT sec ATTRIBUTE_UNUSED;
     fragS *fragP;
     fragS *fragP;
{
{
  unsigned char *opcode;
  unsigned char *opcode;
  unsigned char *where_to_put_displacement = NULL;
  unsigned char *where_to_put_displacement = NULL;
  offsetT target_address;
  offsetT target_address;
  offsetT opcode_address;
  offsetT opcode_address;
  unsigned int extension = 0;
  unsigned int extension = 0;
  offsetT displacement_from_opcode_start;
  offsetT displacement_from_opcode_start;
 
 
  opcode = (unsigned char *) fragP->fr_opcode;
  opcode = (unsigned char *) fragP->fr_opcode;
 
 
  /* Address we want to reach in file space.  */
  /* Address we want to reach in file space.  */
  target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
  target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
 
 
  /* Address opcode resides at in file space.  */
  /* Address opcode resides at in file space.  */
  opcode_address = fragP->fr_address + fragP->fr_fix;
  opcode_address = fragP->fr_address + fragP->fr_fix;
 
 
  /* Displacement from opcode start to fill into instruction.  */
  /* Displacement from opcode start to fill into instruction.  */
  displacement_from_opcode_start = target_address - opcode_address;
  displacement_from_opcode_start = target_address - opcode_address;
 
 
  if ((fragP->fr_subtype & BIG) == 0)
  if ((fragP->fr_subtype & BIG) == 0)
    {
    {
      /* Don't have to change opcode.  */
      /* Don't have to change opcode.  */
      extension = 1;            /* 1 opcode + 1 displacement  */
      extension = 1;            /* 1 opcode + 1 displacement  */
      where_to_put_displacement = &opcode[1];
      where_to_put_displacement = &opcode[1];
    }
    }
  else
  else
    {
    {
      if (no_cond_jump_promotion
      if (no_cond_jump_promotion
          && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
          && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
        as_warn_where (fragP->fr_file, fragP->fr_line,
        as_warn_where (fragP->fr_file, fragP->fr_line,
                       _("long jump required"));
                       _("long jump required"));
 
 
      switch (fragP->fr_subtype)
      switch (fragP->fr_subtype)
        {
        {
        case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
        case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
          extension = 4;                /* 1 opcode + 4 displacement  */
          extension = 4;                /* 1 opcode + 4 displacement  */
          opcode[0] = 0xe9;
          opcode[0] = 0xe9;
          where_to_put_displacement = &opcode[1];
          where_to_put_displacement = &opcode[1];
          break;
          break;
 
 
        case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
        case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
          extension = 2;                /* 1 opcode + 2 displacement  */
          extension = 2;                /* 1 opcode + 2 displacement  */
          opcode[0] = 0xe9;
          opcode[0] = 0xe9;
          where_to_put_displacement = &opcode[1];
          where_to_put_displacement = &opcode[1];
          break;
          break;
 
 
        case ENCODE_RELAX_STATE (COND_JUMP, BIG):
        case ENCODE_RELAX_STATE (COND_JUMP, BIG):
        case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
        case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
          extension = 5;                /* 2 opcode + 4 displacement  */
          extension = 5;                /* 2 opcode + 4 displacement  */
          opcode[1] = opcode[0] + 0x10;
          opcode[1] = opcode[0] + 0x10;
          opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
          opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
          where_to_put_displacement = &opcode[2];
          where_to_put_displacement = &opcode[2];
          break;
          break;
 
 
        case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
        case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
          extension = 3;                /* 2 opcode + 2 displacement  */
          extension = 3;                /* 2 opcode + 2 displacement  */
          opcode[1] = opcode[0] + 0x10;
          opcode[1] = opcode[0] + 0x10;
          opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
          opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
          where_to_put_displacement = &opcode[2];
          where_to_put_displacement = &opcode[2];
          break;
          break;
 
 
        case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
        case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
          extension = 4;
          extension = 4;
          opcode[0] ^= 1;
          opcode[0] ^= 1;
          opcode[1] = 3;
          opcode[1] = 3;
          opcode[2] = 0xe9;
          opcode[2] = 0xe9;
          where_to_put_displacement = &opcode[3];
          where_to_put_displacement = &opcode[3];
          break;
          break;
 
 
        default:
        default:
          BAD_CASE (fragP->fr_subtype);
          BAD_CASE (fragP->fr_subtype);
          break;
          break;
        }
        }
    }
    }
 
 
  /* If size if less then four we are sure that the operand fits,
  /* If size if less then four we are sure that the operand fits,
     but if it's 4, then it could be that the displacement is larger
     but if it's 4, then it could be that the displacement is larger
     then -/+ 2GB.  */
     then -/+ 2GB.  */
  if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
  if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
      && object_64bit
      && object_64bit
      && ((addressT) (displacement_from_opcode_start - extension
      && ((addressT) (displacement_from_opcode_start - extension
                      + ((addressT) 1 << 31))
                      + ((addressT) 1 << 31))
          > (((addressT) 2 << 31) - 1)))
          > (((addressT) 2 << 31) - 1)))
    {
    {
      as_bad_where (fragP->fr_file, fragP->fr_line,
      as_bad_where (fragP->fr_file, fragP->fr_line,
                    _("jump target out of range"));
                    _("jump target out of range"));
      /* Make us emit 0.  */
      /* Make us emit 0.  */
      displacement_from_opcode_start = extension;
      displacement_from_opcode_start = extension;
    }
    }
  /* Now put displacement after opcode.  */
  /* Now put displacement after opcode.  */
  md_number_to_chars ((char *) where_to_put_displacement,
  md_number_to_chars ((char *) where_to_put_displacement,
                      (valueT) (displacement_from_opcode_start - extension),
                      (valueT) (displacement_from_opcode_start - extension),
                      DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
                      DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
  fragP->fr_fix += extension;
  fragP->fr_fix += extension;
}
}


/* Apply a fixup (fixS) to segment data, once it has been determined
/* Apply a fixup (fixS) to segment data, once it has been determined
   by our caller that we have all the info we need to fix it up.
   by our caller that we have all the info we need to fix it up.
 
 
   On the 386, immediates, displacements, and data pointers are all in
   On the 386, immediates, displacements, and data pointers are all in
   the same (little-endian) format, so we don't need to care about which
   the same (little-endian) format, so we don't need to care about which
   we are handling.  */
   we are handling.  */
 
 
void
void
md_apply_fix (fixP, valP, seg)
md_apply_fix (fixP, valP, seg)
     /* The fix we're to put in.  */
     /* The fix we're to put in.  */
     fixS *fixP;
     fixS *fixP;
     /* Pointer to the value of the bits.  */
     /* Pointer to the value of the bits.  */
     valueT *valP;
     valueT *valP;
     /* Segment fix is from.  */
     /* Segment fix is from.  */
     segT seg ATTRIBUTE_UNUSED;
     segT seg ATTRIBUTE_UNUSED;
{
{
  char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
  char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
  valueT value = *valP;
  valueT value = *valP;
 
 
#if !defined (TE_Mach)
#if !defined (TE_Mach)
  if (fixP->fx_pcrel)
  if (fixP->fx_pcrel)
    {
    {
      switch (fixP->fx_r_type)
      switch (fixP->fx_r_type)
        {
        {
        default:
        default:
          break;
          break;
 
 
        case BFD_RELOC_64:
        case BFD_RELOC_64:
          fixP->fx_r_type = BFD_RELOC_64_PCREL;
          fixP->fx_r_type = BFD_RELOC_64_PCREL;
          break;
          break;
        case BFD_RELOC_32:
        case BFD_RELOC_32:
        case BFD_RELOC_X86_64_32S:
        case BFD_RELOC_X86_64_32S:
          fixP->fx_r_type = BFD_RELOC_32_PCREL;
          fixP->fx_r_type = BFD_RELOC_32_PCREL;
          break;
          break;
        case BFD_RELOC_16:
        case BFD_RELOC_16:
          fixP->fx_r_type = BFD_RELOC_16_PCREL;
          fixP->fx_r_type = BFD_RELOC_16_PCREL;
          break;
          break;
        case BFD_RELOC_8:
        case BFD_RELOC_8:
          fixP->fx_r_type = BFD_RELOC_8_PCREL;
          fixP->fx_r_type = BFD_RELOC_8_PCREL;
          break;
          break;
        }
        }
    }
    }
 
 
  if (fixP->fx_addsy != NULL
  if (fixP->fx_addsy != NULL
      && (fixP->fx_r_type == BFD_RELOC_32_PCREL
      && (fixP->fx_r_type == BFD_RELOC_32_PCREL
          || fixP->fx_r_type == BFD_RELOC_64_PCREL
          || fixP->fx_r_type == BFD_RELOC_64_PCREL
          || fixP->fx_r_type == BFD_RELOC_16_PCREL
          || fixP->fx_r_type == BFD_RELOC_16_PCREL
          || fixP->fx_r_type == BFD_RELOC_8_PCREL)
          || fixP->fx_r_type == BFD_RELOC_8_PCREL)
      && !use_rela_relocations)
      && !use_rela_relocations)
    {
    {
      /* This is a hack.  There should be a better way to handle this.
      /* This is a hack.  There should be a better way to handle this.
         This covers for the fact that bfd_install_relocation will
         This covers for the fact that bfd_install_relocation will
         subtract the current location (for partial_inplace, PC relative
         subtract the current location (for partial_inplace, PC relative
         relocations); see more below.  */
         relocations); see more below.  */
#ifndef OBJ_AOUT
#ifndef OBJ_AOUT
      if (IS_ELF
      if (IS_ELF
#ifdef TE_PE
#ifdef TE_PE
          || OUTPUT_FLAVOR == bfd_target_coff_flavour
          || OUTPUT_FLAVOR == bfd_target_coff_flavour
#endif
#endif
          )
          )
        value += fixP->fx_where + fixP->fx_frag->fr_address;
        value += fixP->fx_where + fixP->fx_frag->fr_address;
#endif
#endif
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
      if (IS_ELF)
      if (IS_ELF)
        {
        {
          segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
          segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
 
 
          if ((sym_seg == seg
          if ((sym_seg == seg
               || (symbol_section_p (fixP->fx_addsy)
               || (symbol_section_p (fixP->fx_addsy)
                   && sym_seg != absolute_section))
                   && sym_seg != absolute_section))
              && !generic_force_reloc (fixP))
              && !generic_force_reloc (fixP))
            {
            {
              /* Yes, we add the values in twice.  This is because
              /* Yes, we add the values in twice.  This is because
                 bfd_install_relocation subtracts them out again.  I think
                 bfd_install_relocation subtracts them out again.  I think
                 bfd_install_relocation is broken, but I don't dare change
                 bfd_install_relocation is broken, but I don't dare change
                 it.  FIXME.  */
                 it.  FIXME.  */
              value += fixP->fx_where + fixP->fx_frag->fr_address;
              value += fixP->fx_where + fixP->fx_frag->fr_address;
            }
            }
        }
        }
#endif
#endif
#if defined (OBJ_COFF) && defined (TE_PE)
#if defined (OBJ_COFF) && defined (TE_PE)
      /* For some reason, the PE format does not store a
      /* For some reason, the PE format does not store a
         section address offset for a PC relative symbol.  */
         section address offset for a PC relative symbol.  */
      if (S_GET_SEGMENT (fixP->fx_addsy) != seg
      if (S_GET_SEGMENT (fixP->fx_addsy) != seg
          || S_IS_WEAK (fixP->fx_addsy))
          || S_IS_WEAK (fixP->fx_addsy))
        value += md_pcrel_from (fixP);
        value += md_pcrel_from (fixP);
#endif
#endif
    }
    }
 
 
  /* Fix a few things - the dynamic linker expects certain values here,
  /* Fix a few things - the dynamic linker expects certain values here,
     and we must not disappoint it.  */
     and we must not disappoint it.  */
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
  if (IS_ELF && fixP->fx_addsy)
  if (IS_ELF && fixP->fx_addsy)
    switch (fixP->fx_r_type)
    switch (fixP->fx_r_type)
      {
      {
      case BFD_RELOC_386_PLT32:
      case BFD_RELOC_386_PLT32:
      case BFD_RELOC_X86_64_PLT32:
      case BFD_RELOC_X86_64_PLT32:
        /* Make the jump instruction point to the address of the operand.  At
        /* Make the jump instruction point to the address of the operand.  At
           runtime we merely add the offset to the actual PLT entry.  */
           runtime we merely add the offset to the actual PLT entry.  */
        value = -4;
        value = -4;
        break;
        break;
 
 
      case BFD_RELOC_386_TLS_GD:
      case BFD_RELOC_386_TLS_GD:
      case BFD_RELOC_386_TLS_LDM:
      case BFD_RELOC_386_TLS_LDM:
      case BFD_RELOC_386_TLS_IE_32:
      case BFD_RELOC_386_TLS_IE_32:
      case BFD_RELOC_386_TLS_IE:
      case BFD_RELOC_386_TLS_IE:
      case BFD_RELOC_386_TLS_GOTIE:
      case BFD_RELOC_386_TLS_GOTIE:
      case BFD_RELOC_386_TLS_GOTDESC:
      case BFD_RELOC_386_TLS_GOTDESC:
      case BFD_RELOC_X86_64_TLSGD:
      case BFD_RELOC_X86_64_TLSGD:
      case BFD_RELOC_X86_64_TLSLD:
      case BFD_RELOC_X86_64_TLSLD:
      case BFD_RELOC_X86_64_GOTTPOFF:
      case BFD_RELOC_X86_64_GOTTPOFF:
      case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
      case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
        value = 0; /* Fully resolved at runtime.  No addend.  */
        value = 0; /* Fully resolved at runtime.  No addend.  */
        /* Fallthrough */
        /* Fallthrough */
      case BFD_RELOC_386_TLS_LE:
      case BFD_RELOC_386_TLS_LE:
      case BFD_RELOC_386_TLS_LDO_32:
      case BFD_RELOC_386_TLS_LDO_32:
      case BFD_RELOC_386_TLS_LE_32:
      case BFD_RELOC_386_TLS_LE_32:
      case BFD_RELOC_X86_64_DTPOFF32:
      case BFD_RELOC_X86_64_DTPOFF32:
      case BFD_RELOC_X86_64_DTPOFF64:
      case BFD_RELOC_X86_64_DTPOFF64:
      case BFD_RELOC_X86_64_TPOFF32:
      case BFD_RELOC_X86_64_TPOFF32:
      case BFD_RELOC_X86_64_TPOFF64:
      case BFD_RELOC_X86_64_TPOFF64:
        S_SET_THREAD_LOCAL (fixP->fx_addsy);
        S_SET_THREAD_LOCAL (fixP->fx_addsy);
        break;
        break;
 
 
      case BFD_RELOC_386_TLS_DESC_CALL:
      case BFD_RELOC_386_TLS_DESC_CALL:
      case BFD_RELOC_X86_64_TLSDESC_CALL:
      case BFD_RELOC_X86_64_TLSDESC_CALL:
        value = 0; /* Fully resolved at runtime.  No addend.  */
        value = 0; /* Fully resolved at runtime.  No addend.  */
        S_SET_THREAD_LOCAL (fixP->fx_addsy);
        S_SET_THREAD_LOCAL (fixP->fx_addsy);
        fixP->fx_done = 0;
        fixP->fx_done = 0;
        return;
        return;
 
 
      case BFD_RELOC_386_GOT32:
      case BFD_RELOC_386_GOT32:
      case BFD_RELOC_X86_64_GOT32:
      case BFD_RELOC_X86_64_GOT32:
        value = 0; /* Fully resolved at runtime.  No addend.  */
        value = 0; /* Fully resolved at runtime.  No addend.  */
        break;
        break;
 
 
      case BFD_RELOC_VTABLE_INHERIT:
      case BFD_RELOC_VTABLE_INHERIT:
      case BFD_RELOC_VTABLE_ENTRY:
      case BFD_RELOC_VTABLE_ENTRY:
        fixP->fx_done = 0;
        fixP->fx_done = 0;
        return;
        return;
 
 
      default:
      default:
        break;
        break;
      }
      }
#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)  */
#endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)  */
  *valP = value;
  *valP = value;
#endif /* !defined (TE_Mach)  */
#endif /* !defined (TE_Mach)  */
 
 
  /* Are we finished with this relocation now?  */
  /* Are we finished with this relocation now?  */
  if (fixP->fx_addsy == NULL)
  if (fixP->fx_addsy == NULL)
    fixP->fx_done = 1;
    fixP->fx_done = 1;
  else if (use_rela_relocations)
  else if (use_rela_relocations)
    {
    {
      fixP->fx_no_overflow = 1;
      fixP->fx_no_overflow = 1;
      /* Remember value for tc_gen_reloc.  */
      /* Remember value for tc_gen_reloc.  */
      fixP->fx_addnumber = value;
      fixP->fx_addnumber = value;
      value = 0;
      value = 0;
    }
    }
 
 
  md_number_to_chars (p, value, fixP->fx_size);
  md_number_to_chars (p, value, fixP->fx_size);
}
}


char *
char *
md_atof (int type, char *litP, int *sizeP)
md_atof (int type, char *litP, int *sizeP)
{
{
  /* This outputs the LITTLENUMs in REVERSE order;
  /* This outputs the LITTLENUMs in REVERSE order;
     in accord with the bigendian 386.  */
     in accord with the bigendian 386.  */
  return ieee_md_atof (type, litP, sizeP, FALSE);
  return ieee_md_atof (type, litP, sizeP, FALSE);
}
}


static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
 
 
static char *
static char *
output_invalid (int c)
output_invalid (int c)
{
{
  if (ISPRINT (c))
  if (ISPRINT (c))
    snprintf (output_invalid_buf, sizeof (output_invalid_buf),
    snprintf (output_invalid_buf, sizeof (output_invalid_buf),
              "'%c'", c);
              "'%c'", c);
  else
  else
    snprintf (output_invalid_buf, sizeof (output_invalid_buf),
    snprintf (output_invalid_buf, sizeof (output_invalid_buf),
              "(0x%x)", (unsigned char) c);
              "(0x%x)", (unsigned char) c);
  return output_invalid_buf;
  return output_invalid_buf;
}
}
 
 
/* REG_STRING starts *before* REGISTER_PREFIX.  */
/* REG_STRING starts *before* REGISTER_PREFIX.  */
 
 
static const reg_entry *
static const reg_entry *
parse_real_register (char *reg_string, char **end_op)
parse_real_register (char *reg_string, char **end_op)
{
{
  char *s = reg_string;
  char *s = reg_string;
  char *p;
  char *p;
  char reg_name_given[MAX_REG_NAME_SIZE + 1];
  char reg_name_given[MAX_REG_NAME_SIZE + 1];
  const reg_entry *r;
  const reg_entry *r;
 
 
  /* Skip possible REGISTER_PREFIX and possible whitespace.  */
  /* Skip possible REGISTER_PREFIX and possible whitespace.  */
  if (*s == REGISTER_PREFIX)
  if (*s == REGISTER_PREFIX)
    ++s;
    ++s;
 
 
  if (is_space_char (*s))
  if (is_space_char (*s))
    ++s;
    ++s;
 
 
  p = reg_name_given;
  p = reg_name_given;
  while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
  while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
    {
    {
      if (p >= reg_name_given + MAX_REG_NAME_SIZE)
      if (p >= reg_name_given + MAX_REG_NAME_SIZE)
        return (const reg_entry *) NULL;
        return (const reg_entry *) NULL;
      s++;
      s++;
    }
    }
 
 
  /* For naked regs, make sure that we are not dealing with an identifier.
  /* For naked regs, make sure that we are not dealing with an identifier.
     This prevents confusing an identifier like `eax_var' with register
     This prevents confusing an identifier like `eax_var' with register
     `eax'.  */
     `eax'.  */
  if (allow_naked_reg && identifier_chars[(unsigned char) *s])
  if (allow_naked_reg && identifier_chars[(unsigned char) *s])
    return (const reg_entry *) NULL;
    return (const reg_entry *) NULL;
 
 
  *end_op = s;
  *end_op = s;
 
 
  r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
  r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
 
 
  /* Handle floating point regs, allowing spaces in the (i) part.  */
  /* Handle floating point regs, allowing spaces in the (i) part.  */
  if (r == i386_regtab /* %st is first entry of table  */)
  if (r == i386_regtab /* %st is first entry of table  */)
    {
    {
      if (is_space_char (*s))
      if (is_space_char (*s))
        ++s;
        ++s;
      if (*s == '(')
      if (*s == '(')
        {
        {
          ++s;
          ++s;
          if (is_space_char (*s))
          if (is_space_char (*s))
            ++s;
            ++s;
          if (*s >= '0' && *s <= '7')
          if (*s >= '0' && *s <= '7')
            {
            {
              int fpr = *s - '0';
              int fpr = *s - '0';
              ++s;
              ++s;
              if (is_space_char (*s))
              if (is_space_char (*s))
                ++s;
                ++s;
              if (*s == ')')
              if (*s == ')')
                {
                {
                  *end_op = s + 1;
                  *end_op = s + 1;
                  r = hash_find (reg_hash, "st(0)");
                  r = hash_find (reg_hash, "st(0)");
                  know (r);
                  know (r);
                  return r + fpr;
                  return r + fpr;
                }
                }
            }
            }
          /* We have "%st(" then garbage.  */
          /* We have "%st(" then garbage.  */
          return (const reg_entry *) NULL;
          return (const reg_entry *) NULL;
        }
        }
    }
    }
 
 
  if (r == NULL || allow_pseudo_reg)
  if (r == NULL || allow_pseudo_reg)
    return r;
    return r;
 
 
  if (operand_type_all_zero (&r->reg_type))
  if (operand_type_all_zero (&r->reg_type))
    return (const reg_entry *) NULL;
    return (const reg_entry *) NULL;
 
 
  if ((r->reg_type.bitfield.reg32
  if ((r->reg_type.bitfield.reg32
       || r->reg_type.bitfield.sreg3
       || r->reg_type.bitfield.sreg3
       || r->reg_type.bitfield.control
       || r->reg_type.bitfield.control
       || r->reg_type.bitfield.debug
       || r->reg_type.bitfield.debug
       || r->reg_type.bitfield.test)
       || r->reg_type.bitfield.test)
      && !cpu_arch_flags.bitfield.cpui386)
      && !cpu_arch_flags.bitfield.cpui386)
    return (const reg_entry *) NULL;
    return (const reg_entry *) NULL;
 
 
  if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
  if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
    return (const reg_entry *) NULL;
    return (const reg_entry *) NULL;
 
 
  if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
  if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
    return (const reg_entry *) NULL;
    return (const reg_entry *) NULL;
 
 
  if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
  if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
    return (const reg_entry *) NULL;
    return (const reg_entry *) NULL;
 
 
  /* Don't allow fake index register unless allow_index_reg isn't 0. */
  /* Don't allow fake index register unless allow_index_reg isn't 0. */
  if (!allow_index_reg
  if (!allow_index_reg
      && (r->reg_num == RegEiz || r->reg_num == RegRiz))
      && (r->reg_num == RegEiz || r->reg_num == RegRiz))
    return (const reg_entry *) NULL;
    return (const reg_entry *) NULL;
 
 
  if (((r->reg_flags & (RegRex64 | RegRex))
  if (((r->reg_flags & (RegRex64 | RegRex))
       || r->reg_type.bitfield.reg64)
       || r->reg_type.bitfield.reg64)
      && (!cpu_arch_flags.bitfield.cpulm
      && (!cpu_arch_flags.bitfield.cpulm
          || !operand_type_equal (&r->reg_type, &control))
          || !operand_type_equal (&r->reg_type, &control))
      && flag_code != CODE_64BIT)
      && flag_code != CODE_64BIT)
    return (const reg_entry *) NULL;
    return (const reg_entry *) NULL;
 
 
  if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
  if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
    return (const reg_entry *) NULL;
    return (const reg_entry *) NULL;
 
 
  return r;
  return r;
}
}
 
 
/* REG_STRING starts *before* REGISTER_PREFIX.  */
/* REG_STRING starts *before* REGISTER_PREFIX.  */
 
 
static const reg_entry *
static const reg_entry *
parse_register (char *reg_string, char **end_op)
parse_register (char *reg_string, char **end_op)
{
{
  const reg_entry *r;
  const reg_entry *r;
 
 
  if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
  if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
    r = parse_real_register (reg_string, end_op);
    r = parse_real_register (reg_string, end_op);
  else
  else
    r = NULL;
    r = NULL;
  if (!r)
  if (!r)
    {
    {
      char *save = input_line_pointer;
      char *save = input_line_pointer;
      char c;
      char c;
      symbolS *symbolP;
      symbolS *symbolP;
 
 
      input_line_pointer = reg_string;
      input_line_pointer = reg_string;
      c = get_symbol_end ();
      c = get_symbol_end ();
      symbolP = symbol_find (reg_string);
      symbolP = symbol_find (reg_string);
      if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
      if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
        {
        {
          const expressionS *e = symbol_get_value_expression (symbolP);
          const expressionS *e = symbol_get_value_expression (symbolP);
 
 
          know (e->X_op == O_register);
          know (e->X_op == O_register);
          know (e->X_add_number >= 0
          know (e->X_add_number >= 0
                && (valueT) e->X_add_number < i386_regtab_size);
                && (valueT) e->X_add_number < i386_regtab_size);
          r = i386_regtab + e->X_add_number;
          r = i386_regtab + e->X_add_number;
          *end_op = input_line_pointer;
          *end_op = input_line_pointer;
        }
        }
      *input_line_pointer = c;
      *input_line_pointer = c;
      input_line_pointer = save;
      input_line_pointer = save;
    }
    }
  return r;
  return r;
}
}
 
 
int
int
i386_parse_name (char *name, expressionS *e, char *nextcharP)
i386_parse_name (char *name, expressionS *e, char *nextcharP)
{
{
  const reg_entry *r;
  const reg_entry *r;
  char *end = input_line_pointer;
  char *end = input_line_pointer;
 
 
  *end = *nextcharP;
  *end = *nextcharP;
  r = parse_register (name, &input_line_pointer);
  r = parse_register (name, &input_line_pointer);
  if (r && end <= input_line_pointer)
  if (r && end <= input_line_pointer)
    {
    {
      *nextcharP = *input_line_pointer;
      *nextcharP = *input_line_pointer;
      *input_line_pointer = 0;
      *input_line_pointer = 0;
      e->X_op = O_register;
      e->X_op = O_register;
      e->X_add_number = r - i386_regtab;
      e->X_add_number = r - i386_regtab;
      return 1;
      return 1;
    }
    }
  input_line_pointer = end;
  input_line_pointer = end;
  *end = 0;
  *end = 0;
  return 0;
  return 0;
}
}
 
 
void
void
md_operand (expressionS *e)
md_operand (expressionS *e)
{
{
  if (*input_line_pointer == REGISTER_PREFIX)
  if (*input_line_pointer == REGISTER_PREFIX)
    {
    {
      char *end;
      char *end;
      const reg_entry *r = parse_real_register (input_line_pointer, &end);
      const reg_entry *r = parse_real_register (input_line_pointer, &end);
 
 
      if (r)
      if (r)
        {
        {
          e->X_op = O_register;
          e->X_op = O_register;
          e->X_add_number = r - i386_regtab;
          e->X_add_number = r - i386_regtab;
          input_line_pointer = end;
          input_line_pointer = end;
        }
        }
    }
    }
}
}
 
 


#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
const char *md_shortopts = "kVQ:sqn";
const char *md_shortopts = "kVQ:sqn";
#else
#else
const char *md_shortopts = "qn";
const char *md_shortopts = "qn";
#endif
#endif
 
 
#define OPTION_32 (OPTION_MD_BASE + 0)
#define OPTION_32 (OPTION_MD_BASE + 0)
#define OPTION_64 (OPTION_MD_BASE + 1)
#define OPTION_64 (OPTION_MD_BASE + 1)
#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
#define OPTION_DIVIDE (OPTION_MD_BASE + 2)
#define OPTION_MARCH (OPTION_MD_BASE + 3)
#define OPTION_MARCH (OPTION_MD_BASE + 3)
#define OPTION_MTUNE (OPTION_MD_BASE + 4)
#define OPTION_MTUNE (OPTION_MD_BASE + 4)
#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
#define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
#define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
#define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
#define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
#define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
#define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
#define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
 
 
struct option md_longopts[] =
struct option md_longopts[] =
{
{
  {"32", no_argument, NULL, OPTION_32},
  {"32", no_argument, NULL, OPTION_32},
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
  {"64", no_argument, NULL, OPTION_64},
  {"64", no_argument, NULL, OPTION_64},
#endif
#endif
  {"divide", no_argument, NULL, OPTION_DIVIDE},
  {"divide", no_argument, NULL, OPTION_DIVIDE},
  {"march", required_argument, NULL, OPTION_MARCH},
  {"march", required_argument, NULL, OPTION_MARCH},
  {"mtune", required_argument, NULL, OPTION_MTUNE},
  {"mtune", required_argument, NULL, OPTION_MTUNE},
  {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
  {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
  {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
  {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
  {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
  {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
  {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
  {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
  {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
  {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
  {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
  {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
  {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
  {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
  {NULL, no_argument, NULL, 0}
  {NULL, no_argument, NULL, 0}
};
};
size_t md_longopts_size = sizeof (md_longopts);
size_t md_longopts_size = sizeof (md_longopts);
 
 
int
int
md_parse_option (int c, char *arg)
md_parse_option (int c, char *arg)
{
{
  unsigned int i;
  unsigned int i;
  char *arch, *next;
  char *arch, *next;
 
 
  switch (c)
  switch (c)
    {
    {
    case 'n':
    case 'n':
      optimize_align_code = 0;
      optimize_align_code = 0;
      break;
      break;
 
 
    case 'q':
    case 'q':
      quiet_warnings = 1;
      quiet_warnings = 1;
      break;
      break;
 
 
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
      /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
      /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
         should be emitted or not.  FIXME: Not implemented.  */
         should be emitted or not.  FIXME: Not implemented.  */
    case 'Q':
    case 'Q':
      break;
      break;
 
 
      /* -V: SVR4 argument to print version ID.  */
      /* -V: SVR4 argument to print version ID.  */
    case 'V':
    case 'V':
      print_version_id ();
      print_version_id ();
      break;
      break;
 
 
      /* -k: Ignore for FreeBSD compatibility.  */
      /* -k: Ignore for FreeBSD compatibility.  */
    case 'k':
    case 'k':
      break;
      break;
 
 
    case 's':
    case 's':
      /* -s: On i386 Solaris, this tells the native assembler to use
      /* -s: On i386 Solaris, this tells the native assembler to use
         .stab instead of .stab.excl.  We always use .stab anyhow.  */
         .stab instead of .stab.excl.  We always use .stab anyhow.  */
      break;
      break;
#endif
#endif
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
    case OPTION_64:
    case OPTION_64:
      {
      {
        const char **list, **l;
        const char **list, **l;
 
 
        list = bfd_target_list ();
        list = bfd_target_list ();
        for (l = list; *l != NULL; l++)
        for (l = list; *l != NULL; l++)
          if (CONST_STRNEQ (*l, "elf64-x86-64")
          if (CONST_STRNEQ (*l, "elf64-x86-64")
              || strcmp (*l, "coff-x86-64") == 0
              || strcmp (*l, "coff-x86-64") == 0
              || strcmp (*l, "pe-x86-64") == 0
              || strcmp (*l, "pe-x86-64") == 0
              || strcmp (*l, "pei-x86-64") == 0)
              || strcmp (*l, "pei-x86-64") == 0)
            {
            {
              default_arch = "x86_64";
              default_arch = "x86_64";
              break;
              break;
            }
            }
        if (*l == NULL)
        if (*l == NULL)
          as_fatal (_("No compiled in support for x86_64"));
          as_fatal (_("No compiled in support for x86_64"));
        free (list);
        free (list);
      }
      }
      break;
      break;
#endif
#endif
 
 
    case OPTION_32:
    case OPTION_32:
      default_arch = "i386";
      default_arch = "i386";
      break;
      break;
 
 
    case OPTION_DIVIDE:
    case OPTION_DIVIDE:
#ifdef SVR4_COMMENT_CHARS
#ifdef SVR4_COMMENT_CHARS
      {
      {
        char *n, *t;
        char *n, *t;
        const char *s;
        const char *s;
 
 
        n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
        n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
        t = n;
        t = n;
        for (s = i386_comment_chars; *s != '\0'; s++)
        for (s = i386_comment_chars; *s != '\0'; s++)
          if (*s != '/')
          if (*s != '/')
            *t++ = *s;
            *t++ = *s;
        *t = '\0';
        *t = '\0';
        i386_comment_chars = n;
        i386_comment_chars = n;
      }
      }
#endif
#endif
      break;
      break;
 
 
    case OPTION_MARCH:
    case OPTION_MARCH:
      arch = xstrdup (arg);
      arch = xstrdup (arg);
      do
      do
        {
        {
          if (*arch == '.')
          if (*arch == '.')
            as_fatal (_("Invalid -march= option: `%s'"), arg);
            as_fatal (_("Invalid -march= option: `%s'"), arg);
          next = strchr (arch, '+');
          next = strchr (arch, '+');
          if (next)
          if (next)
            *next++ = '\0';
            *next++ = '\0';
          for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
          for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
            {
            {
              if (strcmp (arch, cpu_arch [i].name) == 0)
              if (strcmp (arch, cpu_arch [i].name) == 0)
                {
                {
                  /* Processor.  */
                  /* Processor.  */
                  cpu_arch_name = cpu_arch[i].name;
                  cpu_arch_name = cpu_arch[i].name;
                  cpu_sub_arch_name = NULL;
                  cpu_sub_arch_name = NULL;
                  cpu_arch_flags = cpu_arch[i].flags;
                  cpu_arch_flags = cpu_arch[i].flags;
                  cpu_arch_isa = cpu_arch[i].type;
                  cpu_arch_isa = cpu_arch[i].type;
                  cpu_arch_isa_flags = cpu_arch[i].flags;
                  cpu_arch_isa_flags = cpu_arch[i].flags;
                  if (!cpu_arch_tune_set)
                  if (!cpu_arch_tune_set)
                    {
                    {
                      cpu_arch_tune = cpu_arch_isa;
                      cpu_arch_tune = cpu_arch_isa;
                      cpu_arch_tune_flags = cpu_arch_isa_flags;
                      cpu_arch_tune_flags = cpu_arch_isa_flags;
                    }
                    }
                  break;
                  break;
                }
                }
              else if (*cpu_arch [i].name == '.'
              else if (*cpu_arch [i].name == '.'
                       && strcmp (arch, cpu_arch [i].name + 1) == 0)
                       && strcmp (arch, cpu_arch [i].name + 1) == 0)
                {
                {
                  /* ISA entension.  */
                  /* ISA entension.  */
                  i386_cpu_flags flags;
                  i386_cpu_flags flags;
                  flags = cpu_flags_or (cpu_arch_flags,
                  flags = cpu_flags_or (cpu_arch_flags,
                                        cpu_arch[i].flags);
                                        cpu_arch[i].flags);
                  if (!cpu_flags_equal (&flags, &cpu_arch_flags))
                  if (!cpu_flags_equal (&flags, &cpu_arch_flags))
                    {
                    {
                      if (cpu_sub_arch_name)
                      if (cpu_sub_arch_name)
                        {
                        {
                          char *name = cpu_sub_arch_name;
                          char *name = cpu_sub_arch_name;
                          cpu_sub_arch_name = concat (name,
                          cpu_sub_arch_name = concat (name,
                                                      cpu_arch[i].name,
                                                      cpu_arch[i].name,
                                                      (const char *) NULL);
                                                      (const char *) NULL);
                          free (name);
                          free (name);
                        }
                        }
                      else
                      else
                        cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
                        cpu_sub_arch_name = xstrdup (cpu_arch[i].name);
                      cpu_arch_flags = flags;
                      cpu_arch_flags = flags;
                    }
                    }
                  break;
                  break;
                }
                }
            }
            }
 
 
          if (i >= ARRAY_SIZE (cpu_arch))
          if (i >= ARRAY_SIZE (cpu_arch))
            as_fatal (_("Invalid -march= option: `%s'"), arg);
            as_fatal (_("Invalid -march= option: `%s'"), arg);
 
 
          arch = next;
          arch = next;
        }
        }
      while (next != NULL );
      while (next != NULL );
      break;
      break;
 
 
    case OPTION_MTUNE:
    case OPTION_MTUNE:
      if (*arg == '.')
      if (*arg == '.')
        as_fatal (_("Invalid -mtune= option: `%s'"), arg);
        as_fatal (_("Invalid -mtune= option: `%s'"), arg);
      for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
      for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
        {
        {
          if (strcmp (arg, cpu_arch [i].name) == 0)
          if (strcmp (arg, cpu_arch [i].name) == 0)
            {
            {
              cpu_arch_tune_set = 1;
              cpu_arch_tune_set = 1;
              cpu_arch_tune = cpu_arch [i].type;
              cpu_arch_tune = cpu_arch [i].type;
              cpu_arch_tune_flags = cpu_arch[i].flags;
              cpu_arch_tune_flags = cpu_arch[i].flags;
              break;
              break;
            }
            }
        }
        }
      if (i >= ARRAY_SIZE (cpu_arch))
      if (i >= ARRAY_SIZE (cpu_arch))
        as_fatal (_("Invalid -mtune= option: `%s'"), arg);
        as_fatal (_("Invalid -mtune= option: `%s'"), arg);
      break;
      break;
 
 
    case OPTION_MMNEMONIC:
    case OPTION_MMNEMONIC:
      if (strcasecmp (arg, "att") == 0)
      if (strcasecmp (arg, "att") == 0)
        intel_mnemonic = 0;
        intel_mnemonic = 0;
      else if (strcasecmp (arg, "intel") == 0)
      else if (strcasecmp (arg, "intel") == 0)
        intel_mnemonic = 1;
        intel_mnemonic = 1;
      else
      else
        as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
        as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
      break;
      break;
 
 
    case OPTION_MSYNTAX:
    case OPTION_MSYNTAX:
      if (strcasecmp (arg, "att") == 0)
      if (strcasecmp (arg, "att") == 0)
        intel_syntax = 0;
        intel_syntax = 0;
      else if (strcasecmp (arg, "intel") == 0)
      else if (strcasecmp (arg, "intel") == 0)
        intel_syntax = 1;
        intel_syntax = 1;
      else
      else
        as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
        as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
      break;
      break;
 
 
    case OPTION_MINDEX_REG:
    case OPTION_MINDEX_REG:
      allow_index_reg = 1;
      allow_index_reg = 1;
      break;
      break;
 
 
    case OPTION_MNAKED_REG:
    case OPTION_MNAKED_REG:
      allow_naked_reg = 1;
      allow_naked_reg = 1;
      break;
      break;
 
 
    case OPTION_MOLD_GCC:
    case OPTION_MOLD_GCC:
      old_gcc = 1;
      old_gcc = 1;
      break;
      break;
 
 
    case OPTION_MSSE2AVX:
    case OPTION_MSSE2AVX:
      sse2avx = 1;
      sse2avx = 1;
      break;
      break;
 
 
    case OPTION_MSSE_CHECK:
    case OPTION_MSSE_CHECK:
      if (strcasecmp (arg, "error") == 0)
      if (strcasecmp (arg, "error") == 0)
        sse_check = sse_check_error;
        sse_check = sse_check_error;
      else if (strcasecmp (arg, "warning") == 0)
      else if (strcasecmp (arg, "warning") == 0)
        sse_check = sse_check_warning;
        sse_check = sse_check_warning;
      else if (strcasecmp (arg, "none") == 0)
      else if (strcasecmp (arg, "none") == 0)
        sse_check = sse_check_none;
        sse_check = sse_check_none;
      else
      else
        as_fatal (_("Invalid -msse-check= option: `%s'"), arg);
        as_fatal (_("Invalid -msse-check= option: `%s'"), arg);
      break;
      break;
 
 
    default:
    default:
      return 0;
      return 0;
    }
    }
  return 1;
  return 1;
}
}
 
 
void
void
md_show_usage (stream)
md_show_usage (stream)
     FILE *stream;
     FILE *stream;
{
{
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
  fprintf (stream, _("\
  fprintf (stream, _("\
  -Q                      ignored\n\
  -Q                      ignored\n\
  -V                      print assembler version number\n\
  -V                      print assembler version number\n\
  -k                      ignored\n"));
  -k                      ignored\n"));
#endif
#endif
  fprintf (stream, _("\
  fprintf (stream, _("\
  -n                      Do not optimize code alignment\n\
  -n                      Do not optimize code alignment\n\
  -q                      quieten some warnings\n"));
  -q                      quieten some warnings\n"));
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
  fprintf (stream, _("\
  fprintf (stream, _("\
  -s                      ignored\n"));
  -s                      ignored\n"));
#endif
#endif
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
  fprintf (stream, _("\
  fprintf (stream, _("\
  --32/--64               generate 32bit/64bit code\n"));
  --32/--64               generate 32bit/64bit code\n"));
#endif
#endif
#ifdef SVR4_COMMENT_CHARS
#ifdef SVR4_COMMENT_CHARS
  fprintf (stream, _("\
  fprintf (stream, _("\
  --divide                do not treat `/' as a comment character\n"));
  --divide                do not treat `/' as a comment character\n"));
#else
#else
  fprintf (stream, _("\
  fprintf (stream, _("\
  --divide                ignored\n"));
  --divide                ignored\n"));
#endif
#endif
  fprintf (stream, _("\
  fprintf (stream, _("\
  -march=CPU[,+EXTENSION...]\n\
  -march=CPU[,+EXTENSION...]\n\
                          generate code for CPU and EXTENSION, CPU is one of:\n\
                          generate code for CPU and EXTENSION, CPU is one of:\n\
                           i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
                           i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
                           pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
                           pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
                           core, core2, k6, k6_2, athlon, k8, amdfam10,\n\
                           core, core2, k6, k6_2, athlon, k8, amdfam10,\n\
                           generic32, generic64\n\
                           generic32, generic64\n\
                          EXTENSION is combination of:\n\
                          EXTENSION is combination of:\n\
                           mmx, sse, sse2, sse3, ssse3, sse4.1, sse4.2, sse4,\n\
                           mmx, sse, sse2, sse3, ssse3, sse4.1, sse4.2, sse4,\n\
                           avx, vmx, smx, xsave, movbe, ept, aes, pclmul, fma,\n\
                           avx, vmx, smx, xsave, movbe, ept, aes, pclmul, fma,\n\
                           3dnow, 3dnowa, sse4a, sse5, svme, abm, padlock\n"));
                           3dnow, 3dnowa, sse4a, sse5, svme, abm, padlock\n"));
  fprintf (stream, _("\
  fprintf (stream, _("\
  -mtune=CPU              optimize for CPU, CPU is one of:\n\
  -mtune=CPU              optimize for CPU, CPU is one of:\n\
                           i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
                           i8086, i186, i286, i386, i486, pentium, pentiumpro,\n\
                           pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
                           pentiumii, pentiumiii, pentium4, prescott, nocona,\n\
                           core, core2, k6, k6_2, athlon, k8, amdfam10,\n\
                           core, core2, k6, k6_2, athlon, k8, amdfam10,\n\
                           generic32, generic64\n"));
                           generic32, generic64\n"));
  fprintf (stream, _("\
  fprintf (stream, _("\
  -msse2avx               encode SSE instructions with VEX prefix\n"));
  -msse2avx               encode SSE instructions with VEX prefix\n"));
  fprintf (stream, _("\
  fprintf (stream, _("\
  -msse-check=[none|error|warning]\n\
  -msse-check=[none|error|warning]\n\
                          check SSE instructions\n"));
                          check SSE instructions\n"));
  fprintf (stream, _("\
  fprintf (stream, _("\
  -mmnemonic=[att|intel]  use AT&T/Intel mnemonic\n"));
  -mmnemonic=[att|intel]  use AT&T/Intel mnemonic\n"));
  fprintf (stream, _("\
  fprintf (stream, _("\
  -msyntax=[att|intel]    use AT&T/Intel syntax\n"));
  -msyntax=[att|intel]    use AT&T/Intel syntax\n"));
  fprintf (stream, _("\
  fprintf (stream, _("\
  -mindex-reg             support pseudo index registers\n"));
  -mindex-reg             support pseudo index registers\n"));
  fprintf (stream, _("\
  fprintf (stream, _("\
  -mnaked-reg             don't require `%%' prefix for registers\n"));
  -mnaked-reg             don't require `%%' prefix for registers\n"));
  fprintf (stream, _("\
  fprintf (stream, _("\
  -mold-gcc               support old (<= 2.8.1) versions of gcc\n"));
  -mold-gcc               support old (<= 2.8.1) versions of gcc\n"));
}
}
 
 
#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
#if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
     || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (TE_PEP))
     || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (TE_PEP))
 
 
/* Pick the target format to use.  */
/* Pick the target format to use.  */
 
 
const char *
const char *
i386_target_format (void)
i386_target_format (void)
{
{
  if (!strcmp (default_arch, "x86_64"))
  if (!strcmp (default_arch, "x86_64"))
    {
    {
      set_code_flag (CODE_64BIT);
      set_code_flag (CODE_64BIT);
      if (cpu_flags_all_zero (&cpu_arch_isa_flags))
      if (cpu_flags_all_zero (&cpu_arch_isa_flags))
        {
        {
          cpu_arch_isa_flags.bitfield.cpui186 = 1;
          cpu_arch_isa_flags.bitfield.cpui186 = 1;
          cpu_arch_isa_flags.bitfield.cpui286 = 1;
          cpu_arch_isa_flags.bitfield.cpui286 = 1;
          cpu_arch_isa_flags.bitfield.cpui386 = 1;
          cpu_arch_isa_flags.bitfield.cpui386 = 1;
          cpu_arch_isa_flags.bitfield.cpui486 = 1;
          cpu_arch_isa_flags.bitfield.cpui486 = 1;
          cpu_arch_isa_flags.bitfield.cpui586 = 1;
          cpu_arch_isa_flags.bitfield.cpui586 = 1;
          cpu_arch_isa_flags.bitfield.cpui686 = 1;
          cpu_arch_isa_flags.bitfield.cpui686 = 1;
          cpu_arch_isa_flags.bitfield.cpup4 = 1;
          cpu_arch_isa_flags.bitfield.cpup4 = 1;
          cpu_arch_isa_flags.bitfield.cpummx= 1;
          cpu_arch_isa_flags.bitfield.cpummx= 1;
          cpu_arch_isa_flags.bitfield.cpusse = 1;
          cpu_arch_isa_flags.bitfield.cpusse = 1;
          cpu_arch_isa_flags.bitfield.cpusse2 = 1;
          cpu_arch_isa_flags.bitfield.cpusse2 = 1;
        }
        }
      if (cpu_flags_all_zero (&cpu_arch_tune_flags))
      if (cpu_flags_all_zero (&cpu_arch_tune_flags))
        {
        {
          cpu_arch_tune_flags.bitfield.cpui186 = 1;
          cpu_arch_tune_flags.bitfield.cpui186 = 1;
          cpu_arch_tune_flags.bitfield.cpui286 = 1;
          cpu_arch_tune_flags.bitfield.cpui286 = 1;
          cpu_arch_tune_flags.bitfield.cpui386 = 1;
          cpu_arch_tune_flags.bitfield.cpui386 = 1;
          cpu_arch_tune_flags.bitfield.cpui486 = 1;
          cpu_arch_tune_flags.bitfield.cpui486 = 1;
          cpu_arch_tune_flags.bitfield.cpui586 = 1;
          cpu_arch_tune_flags.bitfield.cpui586 = 1;
          cpu_arch_tune_flags.bitfield.cpui686 = 1;
          cpu_arch_tune_flags.bitfield.cpui686 = 1;
          cpu_arch_tune_flags.bitfield.cpup4 = 1;
          cpu_arch_tune_flags.bitfield.cpup4 = 1;
          cpu_arch_tune_flags.bitfield.cpummx= 1;
          cpu_arch_tune_flags.bitfield.cpummx= 1;
          cpu_arch_tune_flags.bitfield.cpusse = 1;
          cpu_arch_tune_flags.bitfield.cpusse = 1;
          cpu_arch_tune_flags.bitfield.cpusse2 = 1;
          cpu_arch_tune_flags.bitfield.cpusse2 = 1;
        }
        }
    }
    }
  else if (!strcmp (default_arch, "i386"))
  else if (!strcmp (default_arch, "i386"))
    {
    {
      set_code_flag (CODE_32BIT);
      set_code_flag (CODE_32BIT);
      if (cpu_flags_all_zero (&cpu_arch_isa_flags))
      if (cpu_flags_all_zero (&cpu_arch_isa_flags))
        {
        {
          cpu_arch_isa_flags.bitfield.cpui186 = 1;
          cpu_arch_isa_flags.bitfield.cpui186 = 1;
          cpu_arch_isa_flags.bitfield.cpui286 = 1;
          cpu_arch_isa_flags.bitfield.cpui286 = 1;
          cpu_arch_isa_flags.bitfield.cpui386 = 1;
          cpu_arch_isa_flags.bitfield.cpui386 = 1;
        }
        }
      if (cpu_flags_all_zero (&cpu_arch_tune_flags))
      if (cpu_flags_all_zero (&cpu_arch_tune_flags))
        {
        {
          cpu_arch_tune_flags.bitfield.cpui186 = 1;
          cpu_arch_tune_flags.bitfield.cpui186 = 1;
          cpu_arch_tune_flags.bitfield.cpui286 = 1;
          cpu_arch_tune_flags.bitfield.cpui286 = 1;
          cpu_arch_tune_flags.bitfield.cpui386 = 1;
          cpu_arch_tune_flags.bitfield.cpui386 = 1;
        }
        }
    }
    }
  else
  else
    as_fatal (_("Unknown architecture"));
    as_fatal (_("Unknown architecture"));
  switch (OUTPUT_FLAVOR)
  switch (OUTPUT_FLAVOR)
    {
    {
#ifdef TE_PEP
#ifdef TE_PEP
    case bfd_target_coff_flavour:
    case bfd_target_coff_flavour:
      return flag_code == CODE_64BIT ? COFF_TARGET_FORMAT : "coff-i386";
      return flag_code == CODE_64BIT ? COFF_TARGET_FORMAT : "coff-i386";
      break;
      break;
#endif
#endif
#ifdef OBJ_MAYBE_AOUT
#ifdef OBJ_MAYBE_AOUT
    case bfd_target_aout_flavour:
    case bfd_target_aout_flavour:
      return AOUT_TARGET_FORMAT;
      return AOUT_TARGET_FORMAT;
#endif
#endif
#ifdef OBJ_MAYBE_COFF
#ifdef OBJ_MAYBE_COFF
    case bfd_target_coff_flavour:
    case bfd_target_coff_flavour:
      return "coff-i386";
      return "coff-i386";
#endif
#endif
#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
#if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
    case bfd_target_elf_flavour:
    case bfd_target_elf_flavour:
      {
      {
        if (flag_code == CODE_64BIT)
        if (flag_code == CODE_64BIT)
          {
          {
            object_64bit = 1;
            object_64bit = 1;
            use_rela_relocations = 1;
            use_rela_relocations = 1;
          }
          }
        return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
        return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
      }
      }
#endif
#endif
    default:
    default:
      abort ();
      abort ();
      return NULL;
      return NULL;
    }
    }
}
}
 
 
#endif /* OBJ_MAYBE_ more than one  */
#endif /* OBJ_MAYBE_ more than one  */
 
 
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
#if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
void
void
i386_elf_emit_arch_note (void)
i386_elf_emit_arch_note (void)
{
{
  if (IS_ELF && cpu_arch_name != NULL)
  if (IS_ELF && cpu_arch_name != NULL)
    {
    {
      char *p;
      char *p;
      asection *seg = now_seg;
      asection *seg = now_seg;
      subsegT subseg = now_subseg;
      subsegT subseg = now_subseg;
      Elf_Internal_Note i_note;
      Elf_Internal_Note i_note;
      Elf_External_Note e_note;
      Elf_External_Note e_note;
      asection *note_secp;
      asection *note_secp;
      int len;
      int len;
 
 
      /* Create the .note section.  */
      /* Create the .note section.  */
      note_secp = subseg_new (".note", 0);
      note_secp = subseg_new (".note", 0);
      bfd_set_section_flags (stdoutput,
      bfd_set_section_flags (stdoutput,
                             note_secp,
                             note_secp,
                             SEC_HAS_CONTENTS | SEC_READONLY);
                             SEC_HAS_CONTENTS | SEC_READONLY);
 
 
      /* Process the arch string.  */
      /* Process the arch string.  */
      len = strlen (cpu_arch_name);
      len = strlen (cpu_arch_name);
 
 
      i_note.namesz = len + 1;
      i_note.namesz = len + 1;
      i_note.descsz = 0;
      i_note.descsz = 0;
      i_note.type = NT_ARCH;
      i_note.type = NT_ARCH;
      p = frag_more (sizeof (e_note.namesz));
      p = frag_more (sizeof (e_note.namesz));
      md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
      md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
      p = frag_more (sizeof (e_note.descsz));
      p = frag_more (sizeof (e_note.descsz));
      md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
      md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
      p = frag_more (sizeof (e_note.type));
      p = frag_more (sizeof (e_note.type));
      md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
      md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
      p = frag_more (len + 1);
      p = frag_more (len + 1);
      strcpy (p, cpu_arch_name);
      strcpy (p, cpu_arch_name);
 
 
      frag_align (2, 0, 0);
      frag_align (2, 0, 0);
 
 
      subseg_set (seg, subseg);
      subseg_set (seg, subseg);
    }
    }
}
}
#endif
#endif


symbolS *
symbolS *
md_undefined_symbol (name)
md_undefined_symbol (name)
     char *name;
     char *name;
{
{
  if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
  if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
      && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
      && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
      && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
      && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
      && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
      && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
    {
    {
      if (!GOT_symbol)
      if (!GOT_symbol)
        {
        {
          if (symbol_find (name))
          if (symbol_find (name))
            as_bad (_("GOT already in symbol table"));
            as_bad (_("GOT already in symbol table"));
          GOT_symbol = symbol_new (name, undefined_section,
          GOT_symbol = symbol_new (name, undefined_section,
                                   (valueT) 0, &zero_address_frag);
                                   (valueT) 0, &zero_address_frag);
        };
        };
      return GOT_symbol;
      return GOT_symbol;
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Round up a section size to the appropriate boundary.  */
/* Round up a section size to the appropriate boundary.  */
 
 
valueT
valueT
md_section_align (segment, size)
md_section_align (segment, size)
     segT segment ATTRIBUTE_UNUSED;
     segT segment ATTRIBUTE_UNUSED;
     valueT size;
     valueT size;
{
{
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
#if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
  if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
  if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
    {
    {
      /* For a.out, force the section size to be aligned.  If we don't do
      /* For a.out, force the section size to be aligned.  If we don't do
         this, BFD will align it for us, but it will not write out the
         this, BFD will align it for us, but it will not write out the
         final bytes of the section.  This may be a bug in BFD, but it is
         final bytes of the section.  This may be a bug in BFD, but it is
         easier to fix it here since that is how the other a.out targets
         easier to fix it here since that is how the other a.out targets
         work.  */
         work.  */
      int align;
      int align;
 
 
      align = bfd_get_section_alignment (stdoutput, segment);
      align = bfd_get_section_alignment (stdoutput, segment);
      size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
      size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
    }
    }
#endif
#endif
 
 
  return size;
  return size;
}
}
 
 
/* On the i386, PC-relative offsets are relative to the start of the
/* On the i386, PC-relative offsets are relative to the start of the
   next instruction.  That is, the address of the offset, plus its
   next instruction.  That is, the address of the offset, plus its
   size, since the offset is always the last part of the insn.  */
   size, since the offset is always the last part of the insn.  */
 
 
long
long
md_pcrel_from (fixS *fixP)
md_pcrel_from (fixS *fixP)
{
{
  return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
  return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
}
}
 
 
#ifndef I386COFF
#ifndef I386COFF
 
 
static void
static void
s_bss (int ignore ATTRIBUTE_UNUSED)
s_bss (int ignore ATTRIBUTE_UNUSED)
{
{
  int temp;
  int temp;
 
 
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
  if (IS_ELF)
  if (IS_ELF)
    obj_elf_section_change_hook ();
    obj_elf_section_change_hook ();
#endif
#endif
  temp = get_absolute_expression ();
  temp = get_absolute_expression ();
  subseg_set (bss_section, (subsegT) temp);
  subseg_set (bss_section, (subsegT) temp);
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
#endif
#endif
 
 
void
void
i386_validate_fix (fixS *fixp)
i386_validate_fix (fixS *fixp)
{
{
  if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
  if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
    {
    {
      if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
      if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
        {
        {
          if (!object_64bit)
          if (!object_64bit)
            abort ();
            abort ();
          fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
          fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
        }
        }
      else
      else
        {
        {
          if (!object_64bit)
          if (!object_64bit)
            fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
            fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
          else
          else
            fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
            fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
        }
        }
      fixp->fx_subsy = 0;
      fixp->fx_subsy = 0;
    }
    }
}
}
 
 
arelent *
arelent *
tc_gen_reloc (section, fixp)
tc_gen_reloc (section, fixp)
     asection *section ATTRIBUTE_UNUSED;
     asection *section ATTRIBUTE_UNUSED;
     fixS *fixp;
     fixS *fixp;
{
{
  arelent *rel;
  arelent *rel;
  bfd_reloc_code_real_type code;
  bfd_reloc_code_real_type code;
 
 
  switch (fixp->fx_r_type)
  switch (fixp->fx_r_type)
    {
    {
    case BFD_RELOC_X86_64_PLT32:
    case BFD_RELOC_X86_64_PLT32:
    case BFD_RELOC_X86_64_GOT32:
    case BFD_RELOC_X86_64_GOT32:
    case BFD_RELOC_X86_64_GOTPCREL:
    case BFD_RELOC_X86_64_GOTPCREL:
    case BFD_RELOC_386_PLT32:
    case BFD_RELOC_386_PLT32:
    case BFD_RELOC_386_GOT32:
    case BFD_RELOC_386_GOT32:
    case BFD_RELOC_386_GOTOFF:
    case BFD_RELOC_386_GOTOFF:
    case BFD_RELOC_386_GOTPC:
    case BFD_RELOC_386_GOTPC:
    case BFD_RELOC_386_TLS_GD:
    case BFD_RELOC_386_TLS_GD:
    case BFD_RELOC_386_TLS_LDM:
    case BFD_RELOC_386_TLS_LDM:
    case BFD_RELOC_386_TLS_LDO_32:
    case BFD_RELOC_386_TLS_LDO_32:
    case BFD_RELOC_386_TLS_IE_32:
    case BFD_RELOC_386_TLS_IE_32:
    case BFD_RELOC_386_TLS_IE:
    case BFD_RELOC_386_TLS_IE:
    case BFD_RELOC_386_TLS_GOTIE:
    case BFD_RELOC_386_TLS_GOTIE:
    case BFD_RELOC_386_TLS_LE_32:
    case BFD_RELOC_386_TLS_LE_32:
    case BFD_RELOC_386_TLS_LE:
    case BFD_RELOC_386_TLS_LE:
    case BFD_RELOC_386_TLS_GOTDESC:
    case BFD_RELOC_386_TLS_GOTDESC:
    case BFD_RELOC_386_TLS_DESC_CALL:
    case BFD_RELOC_386_TLS_DESC_CALL:
    case BFD_RELOC_X86_64_TLSGD:
    case BFD_RELOC_X86_64_TLSGD:
    case BFD_RELOC_X86_64_TLSLD:
    case BFD_RELOC_X86_64_TLSLD:
    case BFD_RELOC_X86_64_DTPOFF32:
    case BFD_RELOC_X86_64_DTPOFF32:
    case BFD_RELOC_X86_64_DTPOFF64:
    case BFD_RELOC_X86_64_DTPOFF64:
    case BFD_RELOC_X86_64_GOTTPOFF:
    case BFD_RELOC_X86_64_GOTTPOFF:
    case BFD_RELOC_X86_64_TPOFF32:
    case BFD_RELOC_X86_64_TPOFF32:
    case BFD_RELOC_X86_64_TPOFF64:
    case BFD_RELOC_X86_64_TPOFF64:
    case BFD_RELOC_X86_64_GOTOFF64:
    case BFD_RELOC_X86_64_GOTOFF64:
    case BFD_RELOC_X86_64_GOTPC32:
    case BFD_RELOC_X86_64_GOTPC32:
    case BFD_RELOC_X86_64_GOT64:
    case BFD_RELOC_X86_64_GOT64:
    case BFD_RELOC_X86_64_GOTPCREL64:
    case BFD_RELOC_X86_64_GOTPCREL64:
    case BFD_RELOC_X86_64_GOTPC64:
    case BFD_RELOC_X86_64_GOTPC64:
    case BFD_RELOC_X86_64_GOTPLT64:
    case BFD_RELOC_X86_64_GOTPLT64:
    case BFD_RELOC_X86_64_PLTOFF64:
    case BFD_RELOC_X86_64_PLTOFF64:
    case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
    case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
    case BFD_RELOC_X86_64_TLSDESC_CALL:
    case BFD_RELOC_X86_64_TLSDESC_CALL:
    case BFD_RELOC_RVA:
    case BFD_RELOC_RVA:
    case BFD_RELOC_VTABLE_ENTRY:
    case BFD_RELOC_VTABLE_ENTRY:
    case BFD_RELOC_VTABLE_INHERIT:
    case BFD_RELOC_VTABLE_INHERIT:
#ifdef TE_PE
#ifdef TE_PE
    case BFD_RELOC_32_SECREL:
    case BFD_RELOC_32_SECREL:
#endif
#endif
      code = fixp->fx_r_type;
      code = fixp->fx_r_type;
      break;
      break;
    case BFD_RELOC_X86_64_32S:
    case BFD_RELOC_X86_64_32S:
      if (!fixp->fx_pcrel)
      if (!fixp->fx_pcrel)
        {
        {
          /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32.  */
          /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32.  */
          code = fixp->fx_r_type;
          code = fixp->fx_r_type;
          break;
          break;
        }
        }
    default:
    default:
      if (fixp->fx_pcrel)
      if (fixp->fx_pcrel)
        {
        {
          switch (fixp->fx_size)
          switch (fixp->fx_size)
            {
            {
            default:
            default:
              as_bad_where (fixp->fx_file, fixp->fx_line,
              as_bad_where (fixp->fx_file, fixp->fx_line,
                            _("can not do %d byte pc-relative relocation"),
                            _("can not do %d byte pc-relative relocation"),
                            fixp->fx_size);
                            fixp->fx_size);
              code = BFD_RELOC_32_PCREL;
              code = BFD_RELOC_32_PCREL;
              break;
              break;
            case 1: code = BFD_RELOC_8_PCREL;  break;
            case 1: code = BFD_RELOC_8_PCREL;  break;
            case 2: code = BFD_RELOC_16_PCREL; break;
            case 2: code = BFD_RELOC_16_PCREL; break;
            case 4: code = BFD_RELOC_32_PCREL; break;
            case 4: code = BFD_RELOC_32_PCREL; break;
#ifdef BFD64
#ifdef BFD64
            case 8: code = BFD_RELOC_64_PCREL; break;
            case 8: code = BFD_RELOC_64_PCREL; break;
#endif
#endif
            }
            }
        }
        }
      else
      else
        {
        {
          switch (fixp->fx_size)
          switch (fixp->fx_size)
            {
            {
            default:
            default:
              as_bad_where (fixp->fx_file, fixp->fx_line,
              as_bad_where (fixp->fx_file, fixp->fx_line,
                            _("can not do %d byte relocation"),
                            _("can not do %d byte relocation"),
                            fixp->fx_size);
                            fixp->fx_size);
              code = BFD_RELOC_32;
              code = BFD_RELOC_32;
              break;
              break;
            case 1: code = BFD_RELOC_8;  break;
            case 1: code = BFD_RELOC_8;  break;
            case 2: code = BFD_RELOC_16; break;
            case 2: code = BFD_RELOC_16; break;
            case 4: code = BFD_RELOC_32; break;
            case 4: code = BFD_RELOC_32; break;
#ifdef BFD64
#ifdef BFD64
            case 8: code = BFD_RELOC_64; break;
            case 8: code = BFD_RELOC_64; break;
#endif
#endif
            }
            }
        }
        }
      break;
      break;
    }
    }
 
 
  if ((code == BFD_RELOC_32
  if ((code == BFD_RELOC_32
       || code == BFD_RELOC_32_PCREL
       || code == BFD_RELOC_32_PCREL
       || code == BFD_RELOC_X86_64_32S)
       || code == BFD_RELOC_X86_64_32S)
      && GOT_symbol
      && GOT_symbol
      && fixp->fx_addsy == GOT_symbol)
      && fixp->fx_addsy == GOT_symbol)
    {
    {
      if (!object_64bit)
      if (!object_64bit)
        code = BFD_RELOC_386_GOTPC;
        code = BFD_RELOC_386_GOTPC;
      else
      else
        code = BFD_RELOC_X86_64_GOTPC32;
        code = BFD_RELOC_X86_64_GOTPC32;
    }
    }
  if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
  if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
      && GOT_symbol
      && GOT_symbol
      && fixp->fx_addsy == GOT_symbol)
      && fixp->fx_addsy == GOT_symbol)
    {
    {
      code = BFD_RELOC_X86_64_GOTPC64;
      code = BFD_RELOC_X86_64_GOTPC64;
    }
    }
 
 
  rel = (arelent *) xmalloc (sizeof (arelent));
  rel = (arelent *) xmalloc (sizeof (arelent));
  rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
  rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
  *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
  *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
 
 
  rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
  rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
 
 
  if (!use_rela_relocations)
  if (!use_rela_relocations)
    {
    {
      /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
      /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
         vtable entry to be used in the relocation's section offset.  */
         vtable entry to be used in the relocation's section offset.  */
      if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
      if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
        rel->address = fixp->fx_offset;
        rel->address = fixp->fx_offset;
 
 
      rel->addend = 0;
      rel->addend = 0;
    }
    }
  /* Use the rela in 64bit mode.  */
  /* Use the rela in 64bit mode.  */
  else
  else
    {
    {
      if (!fixp->fx_pcrel)
      if (!fixp->fx_pcrel)
        rel->addend = fixp->fx_offset;
        rel->addend = fixp->fx_offset;
      else
      else
        switch (code)
        switch (code)
          {
          {
          case BFD_RELOC_X86_64_PLT32:
          case BFD_RELOC_X86_64_PLT32:
          case BFD_RELOC_X86_64_GOT32:
          case BFD_RELOC_X86_64_GOT32:
          case BFD_RELOC_X86_64_GOTPCREL:
          case BFD_RELOC_X86_64_GOTPCREL:
          case BFD_RELOC_X86_64_TLSGD:
          case BFD_RELOC_X86_64_TLSGD:
          case BFD_RELOC_X86_64_TLSLD:
          case BFD_RELOC_X86_64_TLSLD:
          case BFD_RELOC_X86_64_GOTTPOFF:
          case BFD_RELOC_X86_64_GOTTPOFF:
          case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
          case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
          case BFD_RELOC_X86_64_TLSDESC_CALL:
          case BFD_RELOC_X86_64_TLSDESC_CALL:
            rel->addend = fixp->fx_offset - fixp->fx_size;
            rel->addend = fixp->fx_offset - fixp->fx_size;
            break;
            break;
          default:
          default:
            rel->addend = (section->vma
            rel->addend = (section->vma
                           - fixp->fx_size
                           - fixp->fx_size
                           + fixp->fx_addnumber
                           + fixp->fx_addnumber
                           + md_pcrel_from (fixp));
                           + md_pcrel_from (fixp));
            break;
            break;
          }
          }
    }
    }
 
 
  rel->howto = bfd_reloc_type_lookup (stdoutput, code);
  rel->howto = bfd_reloc_type_lookup (stdoutput, code);
  if (rel->howto == NULL)
  if (rel->howto == NULL)
    {
    {
      as_bad_where (fixp->fx_file, fixp->fx_line,
      as_bad_where (fixp->fx_file, fixp->fx_line,
                    _("cannot represent relocation type %s"),
                    _("cannot represent relocation type %s"),
                    bfd_get_reloc_code_name (code));
                    bfd_get_reloc_code_name (code));
      /* Set howto to a garbage value so that we can keep going.  */
      /* Set howto to a garbage value so that we can keep going.  */
      rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
      rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
      assert (rel->howto != NULL);
      assert (rel->howto != NULL);
    }
    }
 
 
  return rel;
  return rel;
}
}
 
 


/* Parse operands using Intel syntax. This implements a recursive descent
/* Parse operands using Intel syntax. This implements a recursive descent
   parser based on the BNF grammar published in Appendix B of the MASM 6.1
   parser based on the BNF grammar published in Appendix B of the MASM 6.1
   Programmer's Guide.
   Programmer's Guide.
 
 
   FIXME: We do not recognize the full operand grammar defined in the MASM
   FIXME: We do not recognize the full operand grammar defined in the MASM
          documentation.  In particular, all the structure/union and
          documentation.  In particular, all the structure/union and
          high-level macro operands are missing.
          high-level macro operands are missing.
 
 
   Uppercase words are terminals, lower case words are non-terminals.
   Uppercase words are terminals, lower case words are non-terminals.
   Objects surrounded by double brackets '[[' ']]' are optional. Vertical
   Objects surrounded by double brackets '[[' ']]' are optional. Vertical
   bars '|' denote choices. Most grammar productions are implemented in
   bars '|' denote choices. Most grammar productions are implemented in
   functions called 'intel_<production>'.
   functions called 'intel_<production>'.
 
 
   Initial production is 'expr'.
   Initial production is 'expr'.
 
 
    addOp               + | -
    addOp               + | -
 
 
    alpha               [a-zA-Z]
    alpha               [a-zA-Z]
 
 
    binOp               & | AND | \| | OR | ^ | XOR
    binOp               & | AND | \| | OR | ^ | XOR
 
 
    byteRegister        AL | AH | BL | BH | CL | CH | DL | DH
    byteRegister        AL | AH | BL | BH | CL | CH | DL | DH
 
 
    constant            digits [[ radixOverride ]]
    constant            digits [[ radixOverride ]]
 
 
    dataType            BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD | YMMWORD
    dataType            BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD | YMMWORD
 
 
    digits              decdigit
    digits              decdigit
                        | digits decdigit
                        | digits decdigit
                        | digits hexdigit
                        | digits hexdigit
 
 
    decdigit            [0-9]
    decdigit            [0-9]
 
 
    e04                 e04 addOp e05
    e04                 e04 addOp e05
                        | e05
                        | e05
 
 
    e05                 e05 binOp e06
    e05                 e05 binOp e06
                        | e06
                        | e06
 
 
    e06                 e06 mulOp e09
    e06                 e06 mulOp e09
                        | e09
                        | e09
 
 
    e09                 OFFSET e10
    e09                 OFFSET e10
                        | SHORT e10
                        | SHORT e10
                        | + e10
                        | + e10
                        | - e10
                        | - e10
                        | ~ e10
                        | ~ e10
                        | NOT e10
                        | NOT e10
                        | e09 PTR e10
                        | e09 PTR e10
                        | e09 : e10
                        | e09 : e10
                        | e10
                        | e10
 
 
    e10                 e10 [ expr ]
    e10                 e10 [ expr ]
                        | e11
                        | e11
 
 
    e11                 ( expr )
    e11                 ( expr )
                        | [ expr ]
                        | [ expr ]
                        | constant
                        | constant
                        | dataType
                        | dataType
                        | id
                        | id
                        | $
                        | $
                        | register
                        | register
 
 
 => expr                expr cmpOp e04
 => expr                expr cmpOp e04
                        | e04
                        | e04
 
 
    gpRegister          AX | EAX | BX | EBX | CX | ECX | DX | EDX
    gpRegister          AX | EAX | BX | EBX | CX | ECX | DX | EDX
                        | BP | EBP | SP | ESP | DI | EDI | SI | ESI
                        | BP | EBP | SP | ESP | DI | EDI | SI | ESI
 
 
    hexdigit            a | b | c | d | e | f
    hexdigit            a | b | c | d | e | f
                        | A | B | C | D | E | F
                        | A | B | C | D | E | F
 
 
    id                  alpha
    id                  alpha
                        | id alpha
                        | id alpha
                        | id decdigit
                        | id decdigit
 
 
    mulOp               * | / | % | MOD | << | SHL | >> | SHR
    mulOp               * | / | % | MOD | << | SHL | >> | SHR
 
 
    quote               " | '
    quote               " | '
 
 
    register            specialRegister
    register            specialRegister
                        | gpRegister
                        | gpRegister
                        | byteRegister
                        | byteRegister
 
 
    segmentRegister     CS | DS | ES | FS | GS | SS
    segmentRegister     CS | DS | ES | FS | GS | SS
 
 
    specialRegister     CR0 | CR2 | CR3 | CR4
    specialRegister     CR0 | CR2 | CR3 | CR4
                        | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
                        | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
                        | TR3 | TR4 | TR5 | TR6 | TR7
                        | TR3 | TR4 | TR5 | TR6 | TR7
 
 
    We simplify the grammar in obvious places (e.g., register parsing is
    We simplify the grammar in obvious places (e.g., register parsing is
    done by calling parse_register) and eliminate immediate left recursion
    done by calling parse_register) and eliminate immediate left recursion
    to implement a recursive-descent parser.
    to implement a recursive-descent parser.
 
 
    expr        e04 expr'
    expr        e04 expr'
 
 
    expr'       cmpOp e04 expr'
    expr'       cmpOp e04 expr'
                | Empty
                | Empty
 
 
    e04         e05 e04'
    e04         e05 e04'
 
 
    e04'        addOp e05 e04'
    e04'        addOp e05 e04'
                | Empty
                | Empty
 
 
    e05         e06 e05'
    e05         e06 e05'
 
 
    e05'        binOp e06 e05'
    e05'        binOp e06 e05'
                | Empty
                | Empty
 
 
    e06         e09 e06'
    e06         e09 e06'
 
 
    e06'        mulOp e09 e06'
    e06'        mulOp e09 e06'
                | Empty
                | Empty
 
 
    e09         OFFSET e10 e09'
    e09         OFFSET e10 e09'
                | SHORT e10'
                | SHORT e10'
                | + e10'
                | + e10'
                | - e10'
                | - e10'
                | ~ e10'
                | ~ e10'
                | NOT e10'
                | NOT e10'
                | e10 e09'
                | e10 e09'
 
 
    e09'        PTR e10 e09'
    e09'        PTR e10 e09'
                | : e10 e09'
                | : e10 e09'
                | Empty
                | Empty
 
 
    e10         e11 e10'
    e10         e11 e10'
 
 
    e10'        [ expr ] e10'
    e10'        [ expr ] e10'
                | Empty
                | Empty
 
 
    e11         ( expr )
    e11         ( expr )
                | [ expr ]
                | [ expr ]
                | BYTE
                | BYTE
                | WORD
                | WORD
                | DWORD
                | DWORD
                | FWORD
                | FWORD
                | QWORD
                | QWORD
                | TBYTE
                | TBYTE
                | OWORD
                | OWORD
                | XMMWORD
                | XMMWORD
                | YMMWORD
                | YMMWORD
                | .
                | .
                | $
                | $
                | register
                | register
                | id
                | id
                | constant  */
                | constant  */
 
 
/* Parsing structure for the intel syntax parser. Used to implement the
/* Parsing structure for the intel syntax parser. Used to implement the
   semantic actions for the operand grammar.  */
   semantic actions for the operand grammar.  */
struct intel_parser_s
struct intel_parser_s
  {
  {
    char *op_string;            /* The string being parsed.  */
    char *op_string;            /* The string being parsed.  */
    int got_a_float;            /* Whether the operand is a float.  */
    int got_a_float;            /* Whether the operand is a float.  */
    int op_modifier;            /* Operand modifier.  */
    int op_modifier;            /* Operand modifier.  */
    int is_mem;                 /* 1 if operand is memory reference.  */
    int is_mem;                 /* 1 if operand is memory reference.  */
    int in_offset;              /* >=1 if parsing operand of offset.  */
    int in_offset;              /* >=1 if parsing operand of offset.  */
    int in_bracket;             /* >=1 if parsing operand in brackets.  */
    int in_bracket;             /* >=1 if parsing operand in brackets.  */
    const reg_entry *reg;       /* Last register reference found.  */
    const reg_entry *reg;       /* Last register reference found.  */
    char *disp;                 /* Displacement string being built.  */
    char *disp;                 /* Displacement string being built.  */
    char *next_operand;         /* Resume point when splitting operands.  */
    char *next_operand;         /* Resume point when splitting operands.  */
  };
  };
 
 
static struct intel_parser_s intel_parser;
static struct intel_parser_s intel_parser;
 
 
/* Token structure for parsing intel syntax.  */
/* Token structure for parsing intel syntax.  */
struct intel_token
struct intel_token
  {
  {
    int code;                   /* Token code.  */
    int code;                   /* Token code.  */
    const reg_entry *reg;       /* Register entry for register tokens.  */
    const reg_entry *reg;       /* Register entry for register tokens.  */
    char *str;                  /* String representation.  */
    char *str;                  /* String representation.  */
  };
  };
 
 
static struct intel_token cur_token, prev_token;
static struct intel_token cur_token, prev_token;
 
 
/* Token codes for the intel parser. Since T_SHORT is already used
/* Token codes for the intel parser. Since T_SHORT is already used
   by COFF, undefine it first to prevent a warning.  */
   by COFF, undefine it first to prevent a warning.  */
#define T_NIL           -1
#define T_NIL           -1
#define T_CONST         1
#define T_CONST         1
#define T_REG           2
#define T_REG           2
#define T_BYTE          3
#define T_BYTE          3
#define T_WORD          4
#define T_WORD          4
#define T_DWORD         5
#define T_DWORD         5
#define T_FWORD         6
#define T_FWORD         6
#define T_QWORD         7
#define T_QWORD         7
#define T_TBYTE         8
#define T_TBYTE         8
#define T_XMMWORD       9
#define T_XMMWORD       9
#undef  T_SHORT
#undef  T_SHORT
#define T_SHORT         10
#define T_SHORT         10
#define T_OFFSET        11
#define T_OFFSET        11
#define T_PTR           12
#define T_PTR           12
#define T_ID            13
#define T_ID            13
#define T_SHL           14
#define T_SHL           14
#define T_SHR           15
#define T_SHR           15
#define T_YMMWORD       16
#define T_YMMWORD       16
 
 
/* Prototypes for intel parser functions.  */
/* Prototypes for intel parser functions.  */
static int intel_match_token (int);
static int intel_match_token (int);
static void intel_putback_token (void);
static void intel_putback_token (void);
static void intel_get_token (void);
static void intel_get_token (void);
static int intel_expr (void);
static int intel_expr (void);
static int intel_e04 (void);
static int intel_e04 (void);
static int intel_e05 (void);
static int intel_e05 (void);
static int intel_e06 (void);
static int intel_e06 (void);
static int intel_e09 (void);
static int intel_e09 (void);
static int intel_e10 (void);
static int intel_e10 (void);
static int intel_e11 (void);
static int intel_e11 (void);
 
 
static int
static int
i386_intel_operand (char *operand_string, int got_a_float)
i386_intel_operand (char *operand_string, int got_a_float)
{
{
  int ret;
  int ret;
  char *p;
  char *p;
 
 
  p = intel_parser.op_string = xstrdup (operand_string);
  p = intel_parser.op_string = xstrdup (operand_string);
  intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
  intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
 
 
  for (;;)
  for (;;)
    {
    {
      /* Initialize token holders.  */
      /* Initialize token holders.  */
      cur_token.code = prev_token.code = T_NIL;
      cur_token.code = prev_token.code = T_NIL;
      cur_token.reg = prev_token.reg = NULL;
      cur_token.reg = prev_token.reg = NULL;
      cur_token.str = prev_token.str = NULL;
      cur_token.str = prev_token.str = NULL;
 
 
      /* Initialize parser structure.  */
      /* Initialize parser structure.  */
      intel_parser.got_a_float = got_a_float;
      intel_parser.got_a_float = got_a_float;
      intel_parser.op_modifier = 0;
      intel_parser.op_modifier = 0;
      intel_parser.is_mem = 0;
      intel_parser.is_mem = 0;
      intel_parser.in_offset = 0;
      intel_parser.in_offset = 0;
      intel_parser.in_bracket = 0;
      intel_parser.in_bracket = 0;
      intel_parser.reg = NULL;
      intel_parser.reg = NULL;
      intel_parser.disp[0] = '\0';
      intel_parser.disp[0] = '\0';
      intel_parser.next_operand = NULL;
      intel_parser.next_operand = NULL;
 
 
      /* Read the first token and start the parser.  */
      /* Read the first token and start the parser.  */
      intel_get_token ();
      intel_get_token ();
      ret = intel_expr ();
      ret = intel_expr ();
 
 
      if (!ret)
      if (!ret)
        break;
        break;
 
 
      if (cur_token.code != T_NIL)
      if (cur_token.code != T_NIL)
        {
        {
          as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
          as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
                  current_templates->start->name, cur_token.str);
                  current_templates->start->name, cur_token.str);
          ret = 0;
          ret = 0;
        }
        }
      /* If we found a memory reference, hand it over to i386_displacement
      /* If we found a memory reference, hand it over to i386_displacement
         to fill in the rest of the operand fields.  */
         to fill in the rest of the operand fields.  */
      else if (intel_parser.is_mem)
      else if (intel_parser.is_mem)
        {
        {
          if ((i.mem_operands == 1
          if ((i.mem_operands == 1
               && !current_templates->start->opcode_modifier.isstring)
               && !current_templates->start->opcode_modifier.isstring)
              || i.mem_operands == 2)
              || i.mem_operands == 2)
            {
            {
              as_bad (_("too many memory references for '%s'"),
              as_bad (_("too many memory references for '%s'"),
                      current_templates->start->name);
                      current_templates->start->name);
              ret = 0;
              ret = 0;
            }
            }
          else
          else
            {
            {
              char *s = intel_parser.disp;
              char *s = intel_parser.disp;
              i.types[this_operand].bitfield.mem = 1;
              i.types[this_operand].bitfield.mem = 1;
              i.mem_operands++;
              i.mem_operands++;
 
 
              if (!quiet_warnings && intel_parser.is_mem < 0)
              if (!quiet_warnings && intel_parser.is_mem < 0)
                /* See the comments in intel_bracket_expr.  */
                /* See the comments in intel_bracket_expr.  */
                as_warn (_("Treating `%s' as memory reference"), operand_string);
                as_warn (_("Treating `%s' as memory reference"), operand_string);
 
 
              /* Add the displacement expression.  */
              /* Add the displacement expression.  */
              if (*s != '\0')
              if (*s != '\0')
                ret = i386_displacement (s, s + strlen (s));
                ret = i386_displacement (s, s + strlen (s));
              if (ret)
              if (ret)
                {
                {
                  /* Swap base and index in 16-bit memory operands like
                  /* Swap base and index in 16-bit memory operands like
                     [si+bx]. Since i386_index_check is also used in AT&T
                     [si+bx]. Since i386_index_check is also used in AT&T
                     mode we have to do that here.  */
                     mode we have to do that here.  */
                  if (i.base_reg
                  if (i.base_reg
                      && i.index_reg
                      && i.index_reg
                      && i.base_reg->reg_type.bitfield.reg16
                      && i.base_reg->reg_type.bitfield.reg16
                      && i.index_reg->reg_type.bitfield.reg16
                      && i.index_reg->reg_type.bitfield.reg16
                      && i.base_reg->reg_num >= 6
                      && i.base_reg->reg_num >= 6
                      && i.index_reg->reg_num < 6)
                      && i.index_reg->reg_num < 6)
                    {
                    {
                      const reg_entry *base = i.index_reg;
                      const reg_entry *base = i.index_reg;
 
 
                      i.index_reg = i.base_reg;
                      i.index_reg = i.base_reg;
                      i.base_reg = base;
                      i.base_reg = base;
                    }
                    }
                  ret = i386_index_check (operand_string);
                  ret = i386_index_check (operand_string);
                }
                }
            }
            }
        }
        }
 
 
      /* Constant and OFFSET expressions are handled by i386_immediate.  */
      /* Constant and OFFSET expressions are handled by i386_immediate.  */
      else if ((intel_parser.op_modifier & (1 << T_OFFSET))
      else if ((intel_parser.op_modifier & (1 << T_OFFSET))
               || intel_parser.reg == NULL)
               || intel_parser.reg == NULL)
        {
        {
          if (i.mem_operands < 2 && i.seg[i.mem_operands])
          if (i.mem_operands < 2 && i.seg[i.mem_operands])
            {
            {
              if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
              if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
                as_warn (_("Segment override ignored"));
                as_warn (_("Segment override ignored"));
              i.seg[i.mem_operands] = NULL;
              i.seg[i.mem_operands] = NULL;
            }
            }
          ret = i386_immediate (intel_parser.disp);
          ret = i386_immediate (intel_parser.disp);
        }
        }
 
 
      if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
      if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
        ret = 0;
        ret = 0;
      if (!ret || !intel_parser.next_operand)
      if (!ret || !intel_parser.next_operand)
        break;
        break;
      intel_parser.op_string = intel_parser.next_operand;
      intel_parser.op_string = intel_parser.next_operand;
      this_operand = i.operands++;
      this_operand = i.operands++;
      i.types[this_operand].bitfield.unspecified = 1;
      i.types[this_operand].bitfield.unspecified = 1;
    }
    }
 
 
  free (p);
  free (p);
  free (intel_parser.disp);
  free (intel_parser.disp);
 
 
  return ret;
  return ret;
}
}
 
 
#define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
#define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
 
 
/* expr e04 expr'
/* expr e04 expr'
 
 
   expr'  cmpOp e04 expr'
   expr'  cmpOp e04 expr'
        | Empty  */
        | Empty  */
static int
static int
intel_expr (void)
intel_expr (void)
{
{
  /* XXX Implement the comparison operators.  */
  /* XXX Implement the comparison operators.  */
  return intel_e04 ();
  return intel_e04 ();
}
}
 
 
/* e04  e05 e04'
/* e04  e05 e04'
 
 
   e04' addOp e05 e04'
   e04' addOp e05 e04'
        | Empty  */
        | Empty  */
static int
static int
intel_e04 (void)
intel_e04 (void)
{
{
  int nregs = -1;
  int nregs = -1;
 
 
  for (;;)
  for (;;)
    {
    {
      if (!intel_e05())
      if (!intel_e05())
        return 0;
        return 0;
 
 
      if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
      if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
        i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
        i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
 
 
      if (cur_token.code == '+')
      if (cur_token.code == '+')
        nregs = -1;
        nregs = -1;
      else if (cur_token.code == '-')
      else if (cur_token.code == '-')
        nregs = NUM_ADDRESS_REGS;
        nregs = NUM_ADDRESS_REGS;
      else
      else
        return 1;
        return 1;
 
 
      strcat (intel_parser.disp, cur_token.str);
      strcat (intel_parser.disp, cur_token.str);
      intel_match_token (cur_token.code);
      intel_match_token (cur_token.code);
    }
    }
}
}
 
 
/* e05  e06 e05'
/* e05  e06 e05'
 
 
   e05' binOp e06 e05'
   e05' binOp e06 e05'
        | Empty  */
        | Empty  */
static int
static int
intel_e05 (void)
intel_e05 (void)
{
{
  int nregs = ~NUM_ADDRESS_REGS;
  int nregs = ~NUM_ADDRESS_REGS;
 
 
  for (;;)
  for (;;)
    {
    {
      if (!intel_e06())
      if (!intel_e06())
        return 0;
        return 0;
 
 
      if (cur_token.code == '&'
      if (cur_token.code == '&'
          || cur_token.code == '|'
          || cur_token.code == '|'
          || cur_token.code == '^')
          || cur_token.code == '^')
        {
        {
          char str[2];
          char str[2];
 
 
          str[0] = cur_token.code;
          str[0] = cur_token.code;
          str[1] = 0;
          str[1] = 0;
          strcat (intel_parser.disp, str);
          strcat (intel_parser.disp, str);
        }
        }
      else
      else
        break;
        break;
 
 
      intel_match_token (cur_token.code);
      intel_match_token (cur_token.code);
 
 
      if (nregs < 0)
      if (nregs < 0)
        nregs = ~nregs;
        nregs = ~nregs;
    }
    }
  if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
  if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
    i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
    i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
  return 1;
  return 1;
}
}
 
 
/* e06  e09 e06'
/* e06  e09 e06'
 
 
   e06' mulOp e09 e06'
   e06' mulOp e09 e06'
        | Empty  */
        | Empty  */
static int
static int
intel_e06 (void)
intel_e06 (void)
{
{
  int nregs = ~NUM_ADDRESS_REGS;
  int nregs = ~NUM_ADDRESS_REGS;
 
 
  for (;;)
  for (;;)
    {
    {
      if (!intel_e09())
      if (!intel_e09())
        return 0;
        return 0;
 
 
      if (cur_token.code == '*'
      if (cur_token.code == '*'
          || cur_token.code == '/'
          || cur_token.code == '/'
          || cur_token.code == '%')
          || cur_token.code == '%')
        {
        {
          char str[2];
          char str[2];
 
 
          str[0] = cur_token.code;
          str[0] = cur_token.code;
          str[1] = 0;
          str[1] = 0;
          strcat (intel_parser.disp, str);
          strcat (intel_parser.disp, str);
        }
        }
      else if (cur_token.code == T_SHL)
      else if (cur_token.code == T_SHL)
        strcat (intel_parser.disp, "<<");
        strcat (intel_parser.disp, "<<");
      else if (cur_token.code == T_SHR)
      else if (cur_token.code == T_SHR)
        strcat (intel_parser.disp, ">>");
        strcat (intel_parser.disp, ">>");
      else
      else
        break;
        break;
 
 
      intel_match_token (cur_token.code);
      intel_match_token (cur_token.code);
 
 
      if (nregs < 0)
      if (nregs < 0)
        nregs = ~nregs;
        nregs = ~nregs;
    }
    }
  if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
  if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
    i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
    i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
  return 1;
  return 1;
}
}
 
 
/* e09  OFFSET e09
/* e09  OFFSET e09
        | SHORT e09
        | SHORT e09
        | + e09
        | + e09
        | - e09
        | - e09
        | ~ e09
        | ~ e09
        | NOT e09
        | NOT e09
        | e10 e09'
        | e10 e09'
 
 
   e09' PTR e10 e09'
   e09' PTR e10 e09'
        | : e10 e09'
        | : e10 e09'
        | Empty */
        | Empty */
static int
static int
intel_e09 (void)
intel_e09 (void)
{
{
  int nregs = ~NUM_ADDRESS_REGS;
  int nregs = ~NUM_ADDRESS_REGS;
  int in_offset = 0;
  int in_offset = 0;
 
 
  for (;;)
  for (;;)
    {
    {
      /* Don't consume constants here.  */
      /* Don't consume constants here.  */
      if (cur_token.code == '+' || cur_token.code == '-')
      if (cur_token.code == '+' || cur_token.code == '-')
        {
        {
          /* Need to look one token ahead - if the next token
          /* Need to look one token ahead - if the next token
             is a constant, the current token is its sign.  */
             is a constant, the current token is its sign.  */
          int next_code;
          int next_code;
 
 
          intel_match_token (cur_token.code);
          intel_match_token (cur_token.code);
          next_code = cur_token.code;
          next_code = cur_token.code;
          intel_putback_token ();
          intel_putback_token ();
          if (next_code == T_CONST)
          if (next_code == T_CONST)
            break;
            break;
        }
        }
 
 
      /* e09  OFFSET e09  */
      /* e09  OFFSET e09  */
      if (cur_token.code == T_OFFSET)
      if (cur_token.code == T_OFFSET)
        {
        {
          if (!in_offset++)
          if (!in_offset++)
            ++intel_parser.in_offset;
            ++intel_parser.in_offset;
        }
        }
 
 
      /* e09  SHORT e09  */
      /* e09  SHORT e09  */
      else if (cur_token.code == T_SHORT)
      else if (cur_token.code == T_SHORT)
        intel_parser.op_modifier |= 1 << T_SHORT;
        intel_parser.op_modifier |= 1 << T_SHORT;
 
 
      /* e09  + e09  */
      /* e09  + e09  */
      else if (cur_token.code == '+')
      else if (cur_token.code == '+')
        strcat (intel_parser.disp, "+");
        strcat (intel_parser.disp, "+");
 
 
      /* e09  - e09
      /* e09  - e09
              | ~ e09
              | ~ e09
              | NOT e09  */
              | NOT e09  */
      else if (cur_token.code == '-' || cur_token.code == '~')
      else if (cur_token.code == '-' || cur_token.code == '~')
        {
        {
          char str[2];
          char str[2];
 
 
          if (nregs < 0)
          if (nregs < 0)
            nregs = ~nregs;
            nregs = ~nregs;
          str[0] = cur_token.code;
          str[0] = cur_token.code;
          str[1] = 0;
          str[1] = 0;
          strcat (intel_parser.disp, str);
          strcat (intel_parser.disp, str);
        }
        }
 
 
      /* e09  e10 e09'  */
      /* e09  e10 e09'  */
      else
      else
        break;
        break;
 
 
      intel_match_token (cur_token.code);
      intel_match_token (cur_token.code);
    }
    }
 
 
  for (;;)
  for (;;)
    {
    {
      if (!intel_e10 ())
      if (!intel_e10 ())
        return 0;
        return 0;
 
 
      /* e09'  PTR e10 e09' */
      /* e09'  PTR e10 e09' */
      if (cur_token.code == T_PTR)
      if (cur_token.code == T_PTR)
        {
        {
          char suffix;
          char suffix;
 
 
          if (prev_token.code == T_BYTE)
          if (prev_token.code == T_BYTE)
            {
            {
              suffix = BYTE_MNEM_SUFFIX;
              suffix = BYTE_MNEM_SUFFIX;
              i.types[this_operand].bitfield.byte = 1;
              i.types[this_operand].bitfield.byte = 1;
            }
            }
 
 
          else if (prev_token.code == T_WORD)
          else if (prev_token.code == T_WORD)
            {
            {
              if ((current_templates->start->name[0] == 'l'
              if ((current_templates->start->name[0] == 'l'
                   && current_templates->start->name[2] == 's'
                   && current_templates->start->name[2] == 's'
                   && current_templates->start->name[3] == 0)
                   && current_templates->start->name[3] == 0)
                  || current_templates->start->base_opcode == 0x62 /* bound */)
                  || current_templates->start->base_opcode == 0x62 /* bound */)
                suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
                suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
              else if (intel_parser.got_a_float == 2)   /* "fi..." */
              else if (intel_parser.got_a_float == 2)   /* "fi..." */
                suffix = SHORT_MNEM_SUFFIX;
                suffix = SHORT_MNEM_SUFFIX;
              else
              else
                suffix = WORD_MNEM_SUFFIX;
                suffix = WORD_MNEM_SUFFIX;
              i.types[this_operand].bitfield.word = 1;
              i.types[this_operand].bitfield.word = 1;
            }
            }
 
 
          else if (prev_token.code == T_DWORD)
          else if (prev_token.code == T_DWORD)
            {
            {
              if ((current_templates->start->name[0] == 'l'
              if ((current_templates->start->name[0] == 'l'
                   && current_templates->start->name[2] == 's'
                   && current_templates->start->name[2] == 's'
                   && current_templates->start->name[3] == 0)
                   && current_templates->start->name[3] == 0)
                  || current_templates->start->base_opcode == 0x62 /* bound */)
                  || current_templates->start->base_opcode == 0x62 /* bound */)
                suffix = WORD_MNEM_SUFFIX;
                suffix = WORD_MNEM_SUFFIX;
              else if (flag_code == CODE_16BIT
              else if (flag_code == CODE_16BIT
                       && (current_templates->start->opcode_modifier.jump
                       && (current_templates->start->opcode_modifier.jump
                           || current_templates->start->opcode_modifier.jumpdword))
                           || current_templates->start->opcode_modifier.jumpdword))
                suffix = LONG_DOUBLE_MNEM_SUFFIX;
                suffix = LONG_DOUBLE_MNEM_SUFFIX;
              else if (intel_parser.got_a_float == 1)   /* "f..." */
              else if (intel_parser.got_a_float == 1)   /* "f..." */
                suffix = SHORT_MNEM_SUFFIX;
                suffix = SHORT_MNEM_SUFFIX;
              else
              else
                suffix = LONG_MNEM_SUFFIX;
                suffix = LONG_MNEM_SUFFIX;
              i.types[this_operand].bitfield.dword = 1;
              i.types[this_operand].bitfield.dword = 1;
            }
            }
 
 
          else if (prev_token.code == T_FWORD)
          else if (prev_token.code == T_FWORD)
            {
            {
              if (current_templates->start->name[0] == 'l'
              if (current_templates->start->name[0] == 'l'
                  && current_templates->start->name[2] == 's'
                  && current_templates->start->name[2] == 's'
                  && current_templates->start->name[3] == 0)
                  && current_templates->start->name[3] == 0)
                suffix = LONG_MNEM_SUFFIX;
                suffix = LONG_MNEM_SUFFIX;
              else if (!intel_parser.got_a_float)
              else if (!intel_parser.got_a_float)
                {
                {
                  if (flag_code == CODE_16BIT)
                  if (flag_code == CODE_16BIT)
                    add_prefix (DATA_PREFIX_OPCODE);
                    add_prefix (DATA_PREFIX_OPCODE);
                  suffix = LONG_DOUBLE_MNEM_SUFFIX;
                  suffix = LONG_DOUBLE_MNEM_SUFFIX;
                }
                }
              else
              else
                suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
                suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
              i.types[this_operand].bitfield.fword = 1;
              i.types[this_operand].bitfield.fword = 1;
            }
            }
 
 
          else if (prev_token.code == T_QWORD)
          else if (prev_token.code == T_QWORD)
            {
            {
              if (current_templates->start->base_opcode == 0x62 /* bound */
              if (current_templates->start->base_opcode == 0x62 /* bound */
                  || intel_parser.got_a_float == 1)     /* "f..." */
                  || intel_parser.got_a_float == 1)     /* "f..." */
                suffix = LONG_MNEM_SUFFIX;
                suffix = LONG_MNEM_SUFFIX;
              else
              else
                suffix = QWORD_MNEM_SUFFIX;
                suffix = QWORD_MNEM_SUFFIX;
              i.types[this_operand].bitfield.qword = 1;
              i.types[this_operand].bitfield.qword = 1;
            }
            }
 
 
          else if (prev_token.code == T_TBYTE)
          else if (prev_token.code == T_TBYTE)
            {
            {
              if (intel_parser.got_a_float == 1)
              if (intel_parser.got_a_float == 1)
                suffix = LONG_DOUBLE_MNEM_SUFFIX;
                suffix = LONG_DOUBLE_MNEM_SUFFIX;
              else
              else
                suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
                suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
            }
            }
 
 
          else if (prev_token.code == T_XMMWORD)
          else if (prev_token.code == T_XMMWORD)
            {
            {
              suffix = XMMWORD_MNEM_SUFFIX;
              suffix = XMMWORD_MNEM_SUFFIX;
              i.types[this_operand].bitfield.xmmword = 1;
              i.types[this_operand].bitfield.xmmword = 1;
            }
            }
 
 
          else if (prev_token.code == T_YMMWORD)
          else if (prev_token.code == T_YMMWORD)
            {
            {
              suffix = YMMWORD_MNEM_SUFFIX;
              suffix = YMMWORD_MNEM_SUFFIX;
              i.types[this_operand].bitfield.ymmword = 1;
              i.types[this_operand].bitfield.ymmword = 1;
            }
            }
 
 
          else
          else
            {
            {
              as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
              as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
              return 0;
              return 0;
            }
            }
 
 
          i.types[this_operand].bitfield.unspecified = 0;
          i.types[this_operand].bitfield.unspecified = 0;
 
 
          /* Operands for jump/call using 'ptr' notation denote absolute
          /* Operands for jump/call using 'ptr' notation denote absolute
             addresses.  */
             addresses.  */
          if (current_templates->start->opcode_modifier.jump
          if (current_templates->start->opcode_modifier.jump
              || current_templates->start->opcode_modifier.jumpdword)
              || current_templates->start->opcode_modifier.jumpdword)
            i.types[this_operand].bitfield.jumpabsolute = 1;
            i.types[this_operand].bitfield.jumpabsolute = 1;
 
 
          if (current_templates->start->base_opcode == 0x8d /* lea */)
          if (current_templates->start->base_opcode == 0x8d /* lea */)
            ;
            ;
          else if (!i.suffix)
          else if (!i.suffix)
            i.suffix = suffix;
            i.suffix = suffix;
          else if (i.suffix != suffix)
          else if (i.suffix != suffix)
            {
            {
              as_bad (_("Conflicting operand modifiers"));
              as_bad (_("Conflicting operand modifiers"));
              return 0;
              return 0;
            }
            }
 
 
        }
        }
 
 
      /* e09'  : e10 e09'  */
      /* e09'  : e10 e09'  */
      else if (cur_token.code == ':')
      else if (cur_token.code == ':')
        {
        {
          if (prev_token.code != T_REG)
          if (prev_token.code != T_REG)
            {
            {
              /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
              /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
                 segment/group identifier (which we don't have), using comma
                 segment/group identifier (which we don't have), using comma
                 as the operand separator there is even less consistent, since
                 as the operand separator there is even less consistent, since
                 there all branches only have a single operand.  */
                 there all branches only have a single operand.  */
              if (this_operand != 0
              if (this_operand != 0
                  || intel_parser.in_offset
                  || intel_parser.in_offset
                  || intel_parser.in_bracket
                  || intel_parser.in_bracket
                  || (!current_templates->start->opcode_modifier.jump
                  || (!current_templates->start->opcode_modifier.jump
                      && !current_templates->start->opcode_modifier.jumpdword
                      && !current_templates->start->opcode_modifier.jumpdword
                      && !current_templates->start->opcode_modifier.jumpintersegment
                      && !current_templates->start->opcode_modifier.jumpintersegment
                      && !current_templates->start->operand_types[0].bitfield.jumpabsolute))
                      && !current_templates->start->operand_types[0].bitfield.jumpabsolute))
                return intel_match_token (T_NIL);
                return intel_match_token (T_NIL);
              /* Remember the start of the 2nd operand and terminate 1st
              /* Remember the start of the 2nd operand and terminate 1st
                 operand here.
                 operand here.
                 XXX This isn't right, yet (when SSSS:OOOO is right operand of
                 XXX This isn't right, yet (when SSSS:OOOO is right operand of
                 another expression), but it gets at least the simplest case
                 another expression), but it gets at least the simplest case
                 (a plain number or symbol on the left side) right.  */
                 (a plain number or symbol on the left side) right.  */
              intel_parser.next_operand = intel_parser.op_string;
              intel_parser.next_operand = intel_parser.op_string;
              *--intel_parser.op_string = '\0';
              *--intel_parser.op_string = '\0';
              return intel_match_token (':');
              return intel_match_token (':');
            }
            }
        }
        }
 
 
      /* e09'  Empty  */
      /* e09'  Empty  */
      else
      else
        break;
        break;
 
 
      intel_match_token (cur_token.code);
      intel_match_token (cur_token.code);
 
 
    }
    }
 
 
  if (in_offset)
  if (in_offset)
    {
    {
      --intel_parser.in_offset;
      --intel_parser.in_offset;
      if (nregs < 0)
      if (nregs < 0)
        nregs = ~nregs;
        nregs = ~nregs;
      if (NUM_ADDRESS_REGS > nregs)
      if (NUM_ADDRESS_REGS > nregs)
        {
        {
          as_bad (_("Invalid operand to `OFFSET'"));
          as_bad (_("Invalid operand to `OFFSET'"));
          return 0;
          return 0;
        }
        }
      intel_parser.op_modifier |= 1 << T_OFFSET;
      intel_parser.op_modifier |= 1 << T_OFFSET;
    }
    }
 
 
  if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
  if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
    i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
    i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
  return 1;
  return 1;
}
}
 
 
static int
static int
intel_bracket_expr (void)
intel_bracket_expr (void)
{
{
  int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
  int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
  const char *start = intel_parser.op_string;
  const char *start = intel_parser.op_string;
  int len;
  int len;
 
 
  if (i.op[this_operand].regs)
  if (i.op[this_operand].regs)
    return intel_match_token (T_NIL);
    return intel_match_token (T_NIL);
 
 
  intel_match_token ('[');
  intel_match_token ('[');
 
 
  /* Mark as a memory operand only if it's not already known to be an
  /* Mark as a memory operand only if it's not already known to be an
     offset expression.  If it's an offset expression, we need to keep
     offset expression.  If it's an offset expression, we need to keep
     the brace in.  */
     the brace in.  */
  if (!intel_parser.in_offset)
  if (!intel_parser.in_offset)
    {
    {
      ++intel_parser.in_bracket;
      ++intel_parser.in_bracket;
 
 
      /* Operands for jump/call inside brackets denote absolute addresses.  */
      /* Operands for jump/call inside brackets denote absolute addresses.  */
      if (current_templates->start->opcode_modifier.jump
      if (current_templates->start->opcode_modifier.jump
          || current_templates->start->opcode_modifier.jumpdword)
          || current_templates->start->opcode_modifier.jumpdword)
        i.types[this_operand].bitfield.jumpabsolute = 1;
        i.types[this_operand].bitfield.jumpabsolute = 1;
 
 
      /* Unfortunately gas always diverged from MASM in a respect that can't
      /* Unfortunately gas always diverged from MASM in a respect that can't
         be easily fixed without risking to break code sequences likely to be
         be easily fixed without risking to break code sequences likely to be
         encountered (the testsuite even check for this): MASM doesn't consider
         encountered (the testsuite even check for this): MASM doesn't consider
         an expression inside brackets unconditionally as a memory reference.
         an expression inside brackets unconditionally as a memory reference.
         When that is e.g. a constant, an offset expression, or the sum of the
         When that is e.g. a constant, an offset expression, or the sum of the
         two, this is still taken as a constant load. gas, however, always
         two, this is still taken as a constant load. gas, however, always
         treated these as memory references. As a compromise, we'll try to make
         treated these as memory references. As a compromise, we'll try to make
         offset expressions inside brackets work the MASM way (since that's
         offset expressions inside brackets work the MASM way (since that's
         less likely to be found in real world code), but make constants alone
         less likely to be found in real world code), but make constants alone
         continue to work the traditional gas way. In either case, issue a
         continue to work the traditional gas way. In either case, issue a
         warning.  */
         warning.  */
      intel_parser.op_modifier &= ~was_offset;
      intel_parser.op_modifier &= ~was_offset;
    }
    }
  else
  else
    strcat (intel_parser.disp, "[");
    strcat (intel_parser.disp, "[");
 
 
  /* Add a '+' to the displacement string if necessary.  */
  /* Add a '+' to the displacement string if necessary.  */
  if (*intel_parser.disp != '\0'
  if (*intel_parser.disp != '\0'
      && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
      && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
    strcat (intel_parser.disp, "+");
    strcat (intel_parser.disp, "+");
 
 
  if (intel_expr ()
  if (intel_expr ()
      && (len = intel_parser.op_string - start - 1,
      && (len = intel_parser.op_string - start - 1,
          intel_match_token (']')))
          intel_match_token (']')))
    {
    {
      /* Preserve brackets when the operand is an offset expression.  */
      /* Preserve brackets when the operand is an offset expression.  */
      if (intel_parser.in_offset)
      if (intel_parser.in_offset)
        strcat (intel_parser.disp, "]");
        strcat (intel_parser.disp, "]");
      else
      else
        {
        {
          --intel_parser.in_bracket;
          --intel_parser.in_bracket;
          if (i.base_reg || i.index_reg)
          if (i.base_reg || i.index_reg)
            intel_parser.is_mem = 1;
            intel_parser.is_mem = 1;
          if (!intel_parser.is_mem)
          if (!intel_parser.is_mem)
            {
            {
              if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
              if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
                /* Defer the warning until all of the operand was parsed.  */
                /* Defer the warning until all of the operand was parsed.  */
                intel_parser.is_mem = -1;
                intel_parser.is_mem = -1;
              else if (!quiet_warnings)
              else if (!quiet_warnings)
                as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
                as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
                         len, start, len, start);
                         len, start, len, start);
            }
            }
        }
        }
      intel_parser.op_modifier |= was_offset;
      intel_parser.op_modifier |= was_offset;
 
 
      return 1;
      return 1;
    }
    }
  return 0;
  return 0;
}
}
 
 
/* e10  e11 e10'
/* e10  e11 e10'
 
 
   e10' [ expr ] e10'
   e10' [ expr ] e10'
        | Empty  */
        | Empty  */
static int
static int
intel_e10 (void)
intel_e10 (void)
{
{
  if (!intel_e11 ())
  if (!intel_e11 ())
    return 0;
    return 0;
 
 
  while (cur_token.code == '[')
  while (cur_token.code == '[')
    {
    {
      if (!intel_bracket_expr ())
      if (!intel_bracket_expr ())
        return 0;
        return 0;
    }
    }
 
 
  return 1;
  return 1;
}
}
 
 
/* e11  ( expr )
/* e11  ( expr )
        | [ expr ]
        | [ expr ]
        | BYTE
        | BYTE
        | WORD
        | WORD
        | DWORD
        | DWORD
        | FWORD
        | FWORD
        | QWORD
        | QWORD
        | TBYTE
        | TBYTE
        | OWORD
        | OWORD
        | XMMWORD
        | XMMWORD
        | YMMWORD
        | YMMWORD
        | $
        | $
        | .
        | .
        | register
        | register
        | id
        | id
        | constant  */
        | constant  */
static int
static int
intel_e11 (void)
intel_e11 (void)
{
{
  switch (cur_token.code)
  switch (cur_token.code)
    {
    {
    /* e11  ( expr ) */
    /* e11  ( expr ) */
    case '(':
    case '(':
      intel_match_token ('(');
      intel_match_token ('(');
      strcat (intel_parser.disp, "(");
      strcat (intel_parser.disp, "(");
 
 
      if (intel_expr () && intel_match_token (')'))
      if (intel_expr () && intel_match_token (')'))
        {
        {
          strcat (intel_parser.disp, ")");
          strcat (intel_parser.disp, ")");
          return 1;
          return 1;
        }
        }
      return 0;
      return 0;
 
 
    /* e11  [ expr ] */
    /* e11  [ expr ] */
    case '[':
    case '[':
      return intel_bracket_expr ();
      return intel_bracket_expr ();
 
 
    /* e11  $
    /* e11  $
            | .  */
            | .  */
    case '.':
    case '.':
      strcat (intel_parser.disp, cur_token.str);
      strcat (intel_parser.disp, cur_token.str);
      intel_match_token (cur_token.code);
      intel_match_token (cur_token.code);
 
 
      /* Mark as a memory operand only if it's not already known to be an
      /* Mark as a memory operand only if it's not already known to be an
         offset expression.  */
         offset expression.  */
      if (!intel_parser.in_offset)
      if (!intel_parser.in_offset)
        intel_parser.is_mem = 1;
        intel_parser.is_mem = 1;
 
 
      return 1;
      return 1;
 
 
    /* e11  register  */
    /* e11  register  */
    case T_REG:
    case T_REG:
      {
      {
        const reg_entry *reg = intel_parser.reg = cur_token.reg;
        const reg_entry *reg = intel_parser.reg = cur_token.reg;
 
 
        intel_match_token (T_REG);
        intel_match_token (T_REG);
 
 
        /* Check for segment change.  */
        /* Check for segment change.  */
        if (cur_token.code == ':')
        if (cur_token.code == ':')
          {
          {
            if (!reg->reg_type.bitfield.sreg2
            if (!reg->reg_type.bitfield.sreg2
                && !reg->reg_type.bitfield.sreg3)
                && !reg->reg_type.bitfield.sreg3)
              {
              {
                as_bad (_("`%s' is not a valid segment register"),
                as_bad (_("`%s' is not a valid segment register"),
                        reg->reg_name);
                        reg->reg_name);
                return 0;
                return 0;
              }
              }
            else if (i.mem_operands >= 2)
            else if (i.mem_operands >= 2)
              as_warn (_("Segment override ignored"));
              as_warn (_("Segment override ignored"));
            else if (i.seg[i.mem_operands])
            else if (i.seg[i.mem_operands])
              as_warn (_("Extra segment override ignored"));
              as_warn (_("Extra segment override ignored"));
            else
            else
              {
              {
                if (!intel_parser.in_offset)
                if (!intel_parser.in_offset)
                  intel_parser.is_mem = 1;
                  intel_parser.is_mem = 1;
                switch (reg->reg_num)
                switch (reg->reg_num)
                  {
                  {
                  case 0:
                  case 0:
                    i.seg[i.mem_operands] = &es;
                    i.seg[i.mem_operands] = &es;
                    break;
                    break;
                  case 1:
                  case 1:
                    i.seg[i.mem_operands] = &cs;
                    i.seg[i.mem_operands] = &cs;
                    break;
                    break;
                  case 2:
                  case 2:
                    i.seg[i.mem_operands] = &ss;
                    i.seg[i.mem_operands] = &ss;
                    break;
                    break;
                  case 3:
                  case 3:
                    i.seg[i.mem_operands] = &ds;
                    i.seg[i.mem_operands] = &ds;
                    break;
                    break;
                  case 4:
                  case 4:
                    i.seg[i.mem_operands] = &fs;
                    i.seg[i.mem_operands] = &fs;
                    break;
                    break;
                  case 5:
                  case 5:
                    i.seg[i.mem_operands] = &gs;
                    i.seg[i.mem_operands] = &gs;
                    break;
                    break;
                  }
                  }
              }
              }
          }
          }
 
 
        else if (reg->reg_type.bitfield.sreg3 && reg->reg_num == RegFlat)
        else if (reg->reg_type.bitfield.sreg3 && reg->reg_num == RegFlat)
          {
          {
            as_bad (_("cannot use `FLAT' here"));
            as_bad (_("cannot use `FLAT' here"));
            return 0;
            return 0;
          }
          }
 
 
        /* Not a segment register. Check for register scaling.  */
        /* Not a segment register. Check for register scaling.  */
        else if (cur_token.code == '*')
        else if (cur_token.code == '*')
          {
          {
            if (!intel_parser.in_bracket)
            if (!intel_parser.in_bracket)
              {
              {
                as_bad (_("Register scaling only allowed in memory operands"));
                as_bad (_("Register scaling only allowed in memory operands"));
                return 0;
                return 0;
              }
              }
 
 
            if (reg->reg_type.bitfield.reg16) /* Disallow things like [si*1]. */
            if (reg->reg_type.bitfield.reg16) /* Disallow things like [si*1]. */
              reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
              reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
            else if (i.index_reg)
            else if (i.index_reg)
              reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
              reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
 
 
            /* What follows must be a valid scale.  */
            /* What follows must be a valid scale.  */
            intel_match_token ('*');
            intel_match_token ('*');
            i.index_reg = reg;
            i.index_reg = reg;
            i.types[this_operand].bitfield.baseindex = 1;
            i.types[this_operand].bitfield.baseindex = 1;
 
 
            /* Set the scale after setting the register (otherwise,
            /* Set the scale after setting the register (otherwise,
               i386_scale will complain)  */
               i386_scale will complain)  */
            if (cur_token.code == '+' || cur_token.code == '-')
            if (cur_token.code == '+' || cur_token.code == '-')
              {
              {
                char *str, sign = cur_token.code;
                char *str, sign = cur_token.code;
                intel_match_token (cur_token.code);
                intel_match_token (cur_token.code);
                if (cur_token.code != T_CONST)
                if (cur_token.code != T_CONST)
                  {
                  {
                    as_bad (_("Syntax error: Expecting a constant, got `%s'"),
                    as_bad (_("Syntax error: Expecting a constant, got `%s'"),
                            cur_token.str);
                            cur_token.str);
                    return 0;
                    return 0;
                  }
                  }
                str = (char *) xmalloc (strlen (cur_token.str) + 2);
                str = (char *) xmalloc (strlen (cur_token.str) + 2);
                strcpy (str + 1, cur_token.str);
                strcpy (str + 1, cur_token.str);
                *str = sign;
                *str = sign;
                if (!i386_scale (str))
                if (!i386_scale (str))
                  return 0;
                  return 0;
                free (str);
                free (str);
              }
              }
            else if (!i386_scale (cur_token.str))
            else if (!i386_scale (cur_token.str))
              return 0;
              return 0;
            intel_match_token (cur_token.code);
            intel_match_token (cur_token.code);
          }
          }
 
 
        /* No scaling. If this is a memory operand, the register is either a
        /* No scaling. If this is a memory operand, the register is either a
           base register (first occurrence) or an index register (second
           base register (first occurrence) or an index register (second
           occurrence).  */
           occurrence).  */
        else if (intel_parser.in_bracket)
        else if (intel_parser.in_bracket)
          {
          {
 
 
            if (!i.base_reg)
            if (!i.base_reg)
              i.base_reg = reg;
              i.base_reg = reg;
            else if (!i.index_reg)
            else if (!i.index_reg)
              i.index_reg = reg;
              i.index_reg = reg;
            else
            else
              {
              {
                as_bad (_("Too many register references in memory operand"));
                as_bad (_("Too many register references in memory operand"));
                return 0;
                return 0;
              }
              }
 
 
            i.types[this_operand].bitfield.baseindex = 1;
            i.types[this_operand].bitfield.baseindex = 1;
          }
          }
 
 
        /* It's neither base nor index.  */
        /* It's neither base nor index.  */
        else if (!intel_parser.in_offset && !intel_parser.is_mem)
        else if (!intel_parser.in_offset && !intel_parser.is_mem)
          {
          {
            i386_operand_type temp = reg->reg_type;
            i386_operand_type temp = reg->reg_type;
            temp.bitfield.baseindex = 0;
            temp.bitfield.baseindex = 0;
            i.types[this_operand] = operand_type_or (i.types[this_operand],
            i.types[this_operand] = operand_type_or (i.types[this_operand],
                                                     temp);
                                                     temp);
            i.types[this_operand].bitfield.unspecified = 0;
            i.types[this_operand].bitfield.unspecified = 0;
            i.op[this_operand].regs = reg;
            i.op[this_operand].regs = reg;
            i.reg_operands++;
            i.reg_operands++;
          }
          }
        else
        else
          {
          {
            as_bad (_("Invalid use of register"));
            as_bad (_("Invalid use of register"));
            return 0;
            return 0;
          }
          }
 
 
        /* Since registers are not part of the displacement string (except
        /* Since registers are not part of the displacement string (except
           when we're parsing offset operands), we may need to remove any
           when we're parsing offset operands), we may need to remove any
           preceding '+' from the displacement string.  */
           preceding '+' from the displacement string.  */
        if (*intel_parser.disp != '\0'
        if (*intel_parser.disp != '\0'
            && !intel_parser.in_offset)
            && !intel_parser.in_offset)
          {
          {
            char *s = intel_parser.disp;
            char *s = intel_parser.disp;
            s += strlen (s) - 1;
            s += strlen (s) - 1;
            if (*s == '+')
            if (*s == '+')
              *s = '\0';
              *s = '\0';
          }
          }
 
 
        return 1;
        return 1;
      }
      }
 
 
    /* e11  BYTE
    /* e11  BYTE
            | WORD
            | WORD
            | DWORD
            | DWORD
            | FWORD
            | FWORD
            | QWORD
            | QWORD
            | TBYTE
            | TBYTE
            | OWORD
            | OWORD
            | XMMWORD
            | XMMWORD
            | YMMWORD  */
            | YMMWORD  */
    case T_BYTE:
    case T_BYTE:
    case T_WORD:
    case T_WORD:
    case T_DWORD:
    case T_DWORD:
    case T_FWORD:
    case T_FWORD:
    case T_QWORD:
    case T_QWORD:
    case T_TBYTE:
    case T_TBYTE:
    case T_XMMWORD:
    case T_XMMWORD:
    case T_YMMWORD:
    case T_YMMWORD:
      intel_match_token (cur_token.code);
      intel_match_token (cur_token.code);
 
 
      if (cur_token.code == T_PTR)
      if (cur_token.code == T_PTR)
        return 1;
        return 1;
 
 
      /* It must have been an identifier.  */
      /* It must have been an identifier.  */
      intel_putback_token ();
      intel_putback_token ();
      cur_token.code = T_ID;
      cur_token.code = T_ID;
      /* FALLTHRU */
      /* FALLTHRU */
 
 
    /* e11  id
    /* e11  id
            | constant  */
            | constant  */
    case T_ID:
    case T_ID:
      if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
      if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
        {
        {
          symbolS *symbolP;
          symbolS *symbolP;
 
 
          /* The identifier represents a memory reference only if it's not
          /* The identifier represents a memory reference only if it's not
             preceded by an offset modifier and if it's not an equate.  */
             preceded by an offset modifier and if it's not an equate.  */
          symbolP = symbol_find(cur_token.str);
          symbolP = symbol_find(cur_token.str);
          if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
          if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
            intel_parser.is_mem = 1;
            intel_parser.is_mem = 1;
        }
        }
        /* FALLTHRU */
        /* FALLTHRU */
 
 
    case T_CONST:
    case T_CONST:
    case '-':
    case '-':
    case '+':
    case '+':
      {
      {
        char *save_str, sign = 0;
        char *save_str, sign = 0;
 
 
        /* Allow constants that start with `+' or `-'.  */
        /* Allow constants that start with `+' or `-'.  */
        if (cur_token.code == '-' || cur_token.code == '+')
        if (cur_token.code == '-' || cur_token.code == '+')
          {
          {
            sign = cur_token.code;
            sign = cur_token.code;
            intel_match_token (cur_token.code);
            intel_match_token (cur_token.code);
            if (cur_token.code != T_CONST)
            if (cur_token.code != T_CONST)
              {
              {
                as_bad (_("Syntax error: Expecting a constant, got `%s'"),
                as_bad (_("Syntax error: Expecting a constant, got `%s'"),
                        cur_token.str);
                        cur_token.str);
                return 0;
                return 0;
              }
              }
          }
          }
 
 
        save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
        save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
        strcpy (save_str + !!sign, cur_token.str);
        strcpy (save_str + !!sign, cur_token.str);
        if (sign)
        if (sign)
          *save_str = sign;
          *save_str = sign;
 
 
        /* Get the next token to check for register scaling.  */
        /* Get the next token to check for register scaling.  */
        intel_match_token (cur_token.code);
        intel_match_token (cur_token.code);
 
 
        /* Check if this constant is a scaling factor for an
        /* Check if this constant is a scaling factor for an
           index register.  */
           index register.  */
        if (cur_token.code == '*')
        if (cur_token.code == '*')
          {
          {
            if (intel_match_token ('*') && cur_token.code == T_REG)
            if (intel_match_token ('*') && cur_token.code == T_REG)
              {
              {
                const reg_entry *reg = cur_token.reg;
                const reg_entry *reg = cur_token.reg;
 
 
                if (!intel_parser.in_bracket)
                if (!intel_parser.in_bracket)
                  {
                  {
                    as_bad (_("Register scaling only allowed "
                    as_bad (_("Register scaling only allowed "
                              "in memory operands"));
                              "in memory operands"));
                    return 0;
                    return 0;
                  }
                  }
 
 
                 /* Disallow things like [1*si].
                 /* Disallow things like [1*si].
                    sp and esp are invalid as index.  */
                    sp and esp are invalid as index.  */
                if (reg->reg_type.bitfield.reg16)
                if (reg->reg_type.bitfield.reg16)
                  reg = i386_regtab + REGNAM_AX + 4;
                  reg = i386_regtab + REGNAM_AX + 4;
                else if (i.index_reg)
                else if (i.index_reg)
                  reg = i386_regtab + REGNAM_EAX + 4;
                  reg = i386_regtab + REGNAM_EAX + 4;
 
 
                /* The constant is followed by `* reg', so it must be
                /* The constant is followed by `* reg', so it must be
                   a valid scale.  */
                   a valid scale.  */
                i.index_reg = reg;
                i.index_reg = reg;
                i.types[this_operand].bitfield.baseindex = 1;
                i.types[this_operand].bitfield.baseindex = 1;
 
 
                /* Set the scale after setting the register (otherwise,
                /* Set the scale after setting the register (otherwise,
                   i386_scale will complain)  */
                   i386_scale will complain)  */
                if (!i386_scale (save_str))
                if (!i386_scale (save_str))
                  return 0;
                  return 0;
                intel_match_token (T_REG);
                intel_match_token (T_REG);
 
 
                /* Since registers are not part of the displacement
                /* Since registers are not part of the displacement
                   string, we may need to remove any preceding '+' from
                   string, we may need to remove any preceding '+' from
                   the displacement string.  */
                   the displacement string.  */
                if (*intel_parser.disp != '\0')
                if (*intel_parser.disp != '\0')
                  {
                  {
                    char *s = intel_parser.disp;
                    char *s = intel_parser.disp;
                    s += strlen (s) - 1;
                    s += strlen (s) - 1;
                    if (*s == '+')
                    if (*s == '+')
                      *s = '\0';
                      *s = '\0';
                  }
                  }
 
 
                free (save_str);
                free (save_str);
 
 
                return 1;
                return 1;
              }
              }
 
 
            /* The constant was not used for register scaling. Since we have
            /* The constant was not used for register scaling. Since we have
               already consumed the token following `*' we now need to put it
               already consumed the token following `*' we now need to put it
               back in the stream.  */
               back in the stream.  */
            intel_putback_token ();
            intel_putback_token ();
          }
          }
 
 
        /* Add the constant to the displacement string.  */
        /* Add the constant to the displacement string.  */
        strcat (intel_parser.disp, save_str);
        strcat (intel_parser.disp, save_str);
        free (save_str);
        free (save_str);
 
 
        return 1;
        return 1;
      }
      }
    }
    }
 
 
  as_bad (_("Unrecognized token '%s'"), cur_token.str);
  as_bad (_("Unrecognized token '%s'"), cur_token.str);
  return 0;
  return 0;
}
}
 
 
/* Match the given token against cur_token. If they match, read the next
/* Match the given token against cur_token. If they match, read the next
   token from the operand string.  */
   token from the operand string.  */
static int
static int
intel_match_token (int code)
intel_match_token (int code)
{
{
  if (cur_token.code == code)
  if (cur_token.code == code)
    {
    {
      intel_get_token ();
      intel_get_token ();
      return 1;
      return 1;
    }
    }
  else
  else
    {
    {
      as_bad (_("Unexpected token `%s'"), cur_token.str);
      as_bad (_("Unexpected token `%s'"), cur_token.str);
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Read a new token from intel_parser.op_string and store it in cur_token.  */
/* Read a new token from intel_parser.op_string and store it in cur_token.  */
static void
static void
intel_get_token (void)
intel_get_token (void)
{
{
  char *end_op;
  char *end_op;
  const reg_entry *reg;
  const reg_entry *reg;
  struct intel_token new_token;
  struct intel_token new_token;
 
 
  new_token.code = T_NIL;
  new_token.code = T_NIL;
  new_token.reg = NULL;
  new_token.reg = NULL;
  new_token.str = NULL;
  new_token.str = NULL;
 
 
  /* Free the memory allocated to the previous token and move
  /* Free the memory allocated to the previous token and move
     cur_token to prev_token.  */
     cur_token to prev_token.  */
  if (prev_token.str)
  if (prev_token.str)
    free (prev_token.str);
    free (prev_token.str);
 
 
  prev_token = cur_token;
  prev_token = cur_token;
 
 
  /* Skip whitespace.  */
  /* Skip whitespace.  */
  while (is_space_char (*intel_parser.op_string))
  while (is_space_char (*intel_parser.op_string))
    intel_parser.op_string++;
    intel_parser.op_string++;
 
 
  /* Return an empty token if we find nothing else on the line.  */
  /* Return an empty token if we find nothing else on the line.  */
  if (*intel_parser.op_string == '\0')
  if (*intel_parser.op_string == '\0')
    {
    {
      cur_token = new_token;
      cur_token = new_token;
      return;
      return;
    }
    }
 
 
  /* The new token cannot be larger than the remainder of the operand
  /* The new token cannot be larger than the remainder of the operand
     string.  */
     string.  */
  new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
  new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
  new_token.str[0] = '\0';
  new_token.str[0] = '\0';
 
 
  if (strchr ("0123456789", *intel_parser.op_string))
  if (strchr ("0123456789", *intel_parser.op_string))
    {
    {
      char *p = new_token.str;
      char *p = new_token.str;
      char *q = intel_parser.op_string;
      char *q = intel_parser.op_string;
      new_token.code = T_CONST;
      new_token.code = T_CONST;
 
 
      /* Allow any kind of identifier char to encompass floating point and
      /* Allow any kind of identifier char to encompass floating point and
         hexadecimal numbers.  */
         hexadecimal numbers.  */
      while (is_identifier_char (*q))
      while (is_identifier_char (*q))
        *p++ = *q++;
        *p++ = *q++;
      *p = '\0';
      *p = '\0';
 
 
      /* Recognize special symbol names [0-9][bf].  */
      /* Recognize special symbol names [0-9][bf].  */
      if (strlen (intel_parser.op_string) == 2
      if (strlen (intel_parser.op_string) == 2
          && (intel_parser.op_string[1] == 'b'
          && (intel_parser.op_string[1] == 'b'
              || intel_parser.op_string[1] == 'f'))
              || intel_parser.op_string[1] == 'f'))
        new_token.code = T_ID;
        new_token.code = T_ID;
    }
    }
 
 
  else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
  else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
    {
    {
      size_t len = end_op - intel_parser.op_string;
      size_t len = end_op - intel_parser.op_string;
 
 
      new_token.code = T_REG;
      new_token.code = T_REG;
      new_token.reg = reg;
      new_token.reg = reg;
 
 
      memcpy (new_token.str, intel_parser.op_string, len);
      memcpy (new_token.str, intel_parser.op_string, len);
      new_token.str[len] = '\0';
      new_token.str[len] = '\0';
    }
    }
 
 
  else if (is_identifier_char (*intel_parser.op_string))
  else if (is_identifier_char (*intel_parser.op_string))
    {
    {
      char *p = new_token.str;
      char *p = new_token.str;
      char *q = intel_parser.op_string;
      char *q = intel_parser.op_string;
 
 
      /* A '.' or '$' followed by an identifier char is an identifier.
      /* A '.' or '$' followed by an identifier char is an identifier.
         Otherwise, it's operator '.' followed by an expression.  */
         Otherwise, it's operator '.' followed by an expression.  */
      if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
      if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
        {
        {
          new_token.code = '.';
          new_token.code = '.';
          new_token.str[0] = '.';
          new_token.str[0] = '.';
          new_token.str[1] = '\0';
          new_token.str[1] = '\0';
        }
        }
      else
      else
        {
        {
          while (is_identifier_char (*q) || *q == '@')
          while (is_identifier_char (*q) || *q == '@')
            *p++ = *q++;
            *p++ = *q++;
          *p = '\0';
          *p = '\0';
 
 
          if (strcasecmp (new_token.str, "NOT") == 0)
          if (strcasecmp (new_token.str, "NOT") == 0)
            new_token.code = '~';
            new_token.code = '~';
 
 
          else if (strcasecmp (new_token.str, "MOD") == 0)
          else if (strcasecmp (new_token.str, "MOD") == 0)
            new_token.code = '%';
            new_token.code = '%';
 
 
          else if (strcasecmp (new_token.str, "AND") == 0)
          else if (strcasecmp (new_token.str, "AND") == 0)
            new_token.code = '&';
            new_token.code = '&';
 
 
          else if (strcasecmp (new_token.str, "OR") == 0)
          else if (strcasecmp (new_token.str, "OR") == 0)
            new_token.code = '|';
            new_token.code = '|';
 
 
          else if (strcasecmp (new_token.str, "XOR") == 0)
          else if (strcasecmp (new_token.str, "XOR") == 0)
            new_token.code = '^';
            new_token.code = '^';
 
 
          else if (strcasecmp (new_token.str, "SHL") == 0)
          else if (strcasecmp (new_token.str, "SHL") == 0)
            new_token.code = T_SHL;
            new_token.code = T_SHL;
 
 
          else if (strcasecmp (new_token.str, "SHR") == 0)
          else if (strcasecmp (new_token.str, "SHR") == 0)
            new_token.code = T_SHR;
            new_token.code = T_SHR;
 
 
          else if (strcasecmp (new_token.str, "BYTE") == 0)
          else if (strcasecmp (new_token.str, "BYTE") == 0)
            new_token.code = T_BYTE;
            new_token.code = T_BYTE;
 
 
          else if (strcasecmp (new_token.str, "WORD") == 0)
          else if (strcasecmp (new_token.str, "WORD") == 0)
            new_token.code = T_WORD;
            new_token.code = T_WORD;
 
 
          else if (strcasecmp (new_token.str, "DWORD") == 0)
          else if (strcasecmp (new_token.str, "DWORD") == 0)
            new_token.code = T_DWORD;
            new_token.code = T_DWORD;
 
 
          else if (strcasecmp (new_token.str, "FWORD") == 0)
          else if (strcasecmp (new_token.str, "FWORD") == 0)
            new_token.code = T_FWORD;
            new_token.code = T_FWORD;
 
 
          else if (strcasecmp (new_token.str, "QWORD") == 0)
          else if (strcasecmp (new_token.str, "QWORD") == 0)
            new_token.code = T_QWORD;
            new_token.code = T_QWORD;
 
 
          else if (strcasecmp (new_token.str, "TBYTE") == 0
          else if (strcasecmp (new_token.str, "TBYTE") == 0
                   /* XXX remove (gcc still uses it) */
                   /* XXX remove (gcc still uses it) */
                   || strcasecmp (new_token.str, "XWORD") == 0)
                   || strcasecmp (new_token.str, "XWORD") == 0)
            new_token.code = T_TBYTE;
            new_token.code = T_TBYTE;
 
 
          else if (strcasecmp (new_token.str, "XMMWORD") == 0
          else if (strcasecmp (new_token.str, "XMMWORD") == 0
                   || strcasecmp (new_token.str, "OWORD") == 0)
                   || strcasecmp (new_token.str, "OWORD") == 0)
            new_token.code = T_XMMWORD;
            new_token.code = T_XMMWORD;
 
 
          else if (strcasecmp (new_token.str, "YMMWORD") == 0)
          else if (strcasecmp (new_token.str, "YMMWORD") == 0)
            new_token.code = T_YMMWORD;
            new_token.code = T_YMMWORD;
 
 
          else if (strcasecmp (new_token.str, "PTR") == 0)
          else if (strcasecmp (new_token.str, "PTR") == 0)
            new_token.code = T_PTR;
            new_token.code = T_PTR;
 
 
          else if (strcasecmp (new_token.str, "SHORT") == 0)
          else if (strcasecmp (new_token.str, "SHORT") == 0)
            new_token.code = T_SHORT;
            new_token.code = T_SHORT;
 
 
          else if (strcasecmp (new_token.str, "OFFSET") == 0)
          else if (strcasecmp (new_token.str, "OFFSET") == 0)
            {
            {
              new_token.code = T_OFFSET;
              new_token.code = T_OFFSET;
 
 
              /* ??? This is not mentioned in the MASM grammar but gcc
              /* ??? This is not mentioned in the MASM grammar but gcc
                     makes use of it with -mintel-syntax.  OFFSET may be
                     makes use of it with -mintel-syntax.  OFFSET may be
                     followed by FLAT:  */
                     followed by FLAT:  */
              if (strncasecmp (q, " FLAT:", 6) == 0)
              if (strncasecmp (q, " FLAT:", 6) == 0)
                strcat (new_token.str, " FLAT:");
                strcat (new_token.str, " FLAT:");
            }
            }
 
 
          else
          else
            new_token.code = T_ID;
            new_token.code = T_ID;
        }
        }
    }
    }
 
 
  else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
  else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
    {
    {
      new_token.code = *intel_parser.op_string;
      new_token.code = *intel_parser.op_string;
      new_token.str[0] = *intel_parser.op_string;
      new_token.str[0] = *intel_parser.op_string;
      new_token.str[1] = '\0';
      new_token.str[1] = '\0';
    }
    }
 
 
  else if (strchr ("<>", *intel_parser.op_string)
  else if (strchr ("<>", *intel_parser.op_string)
           && *intel_parser.op_string == *(intel_parser.op_string + 1))
           && *intel_parser.op_string == *(intel_parser.op_string + 1))
    {
    {
      new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
      new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
      new_token.str[0] = *intel_parser.op_string;
      new_token.str[0] = *intel_parser.op_string;
      new_token.str[1] = *intel_parser.op_string;
      new_token.str[1] = *intel_parser.op_string;
      new_token.str[2] = '\0';
      new_token.str[2] = '\0';
    }
    }
 
 
  else
  else
    as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
    as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
 
 
  intel_parser.op_string += strlen (new_token.str);
  intel_parser.op_string += strlen (new_token.str);
  cur_token = new_token;
  cur_token = new_token;
}
}
 
 
/* Put cur_token back into the token stream and make cur_token point to
/* Put cur_token back into the token stream and make cur_token point to
   prev_token.  */
   prev_token.  */
static void
static void
intel_putback_token (void)
intel_putback_token (void)
{
{
  if (cur_token.code != T_NIL)
  if (cur_token.code != T_NIL)
    {
    {
      intel_parser.op_string -= strlen (cur_token.str);
      intel_parser.op_string -= strlen (cur_token.str);
      free (cur_token.str);
      free (cur_token.str);
    }
    }
  cur_token = prev_token;
  cur_token = prev_token;
 
 
  /* Forget prev_token.  */
  /* Forget prev_token.  */
  prev_token.code = T_NIL;
  prev_token.code = T_NIL;
  prev_token.reg = NULL;
  prev_token.reg = NULL;
  prev_token.str = NULL;
  prev_token.str = NULL;
}
}
 
 
void
void
tc_x86_parse_to_dw2regnum (expressionS *exp)
tc_x86_parse_to_dw2regnum (expressionS *exp)
{
{
  int saved_naked_reg;
  int saved_naked_reg;
  char saved_register_dot;
  char saved_register_dot;
 
 
  saved_naked_reg = allow_naked_reg;
  saved_naked_reg = allow_naked_reg;
  allow_naked_reg = 1;
  allow_naked_reg = 1;
  saved_register_dot = register_chars['.'];
  saved_register_dot = register_chars['.'];
  register_chars['.'] = '.';
  register_chars['.'] = '.';
  allow_pseudo_reg = 1;
  allow_pseudo_reg = 1;
  expression_and_evaluate (exp);
  expression_and_evaluate (exp);
  allow_pseudo_reg = 0;
  allow_pseudo_reg = 0;
  register_chars['.'] = saved_register_dot;
  register_chars['.'] = saved_register_dot;
  allow_naked_reg = saved_naked_reg;
  allow_naked_reg = saved_naked_reg;
 
 
  if (exp->X_op == O_register && exp->X_add_number >= 0)
  if (exp->X_op == O_register && exp->X_add_number >= 0)
    {
    {
      if ((addressT) exp->X_add_number < i386_regtab_size)
      if ((addressT) exp->X_add_number < i386_regtab_size)
        {
        {
          exp->X_op = O_constant;
          exp->X_op = O_constant;
          exp->X_add_number = i386_regtab[exp->X_add_number]
          exp->X_add_number = i386_regtab[exp->X_add_number]
                              .dw2_regnum[flag_code >> 1];
                              .dw2_regnum[flag_code >> 1];
        }
        }
      else
      else
        exp->X_op = O_illegal;
        exp->X_op = O_illegal;
    }
    }
}
}
 
 
void
void
tc_x86_frame_initial_instructions (void)
tc_x86_frame_initial_instructions (void)
{
{
  static unsigned int sp_regno[2];
  static unsigned int sp_regno[2];
 
 
  if (!sp_regno[flag_code >> 1])
  if (!sp_regno[flag_code >> 1])
    {
    {
      char *saved_input = input_line_pointer;
      char *saved_input = input_line_pointer;
      char sp[][4] = {"esp", "rsp"};
      char sp[][4] = {"esp", "rsp"};
      expressionS exp;
      expressionS exp;
 
 
      input_line_pointer = sp[flag_code >> 1];
      input_line_pointer = sp[flag_code >> 1];
      tc_x86_parse_to_dw2regnum (&exp);
      tc_x86_parse_to_dw2regnum (&exp);
      assert (exp.X_op == O_constant);
      assert (exp.X_op == O_constant);
      sp_regno[flag_code >> 1] = exp.X_add_number;
      sp_regno[flag_code >> 1] = exp.X_add_number;
      input_line_pointer = saved_input;
      input_line_pointer = saved_input;
    }
    }
 
 
  cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
  cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
  cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
  cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
}
}
 
 
int
int
i386_elf_section_type (const char *str, size_t len)
i386_elf_section_type (const char *str, size_t len)
{
{
  if (flag_code == CODE_64BIT
  if (flag_code == CODE_64BIT
      && len == sizeof ("unwind") - 1
      && len == sizeof ("unwind") - 1
      && strncmp (str, "unwind", 6) == 0)
      && strncmp (str, "unwind", 6) == 0)
    return SHT_X86_64_UNWIND;
    return SHT_X86_64_UNWIND;
 
 
  return -1;
  return -1;
}
}
 
 
#ifdef TE_PE
#ifdef TE_PE
void
void
tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
{
{
  expressionS expr;
  expressionS expr;
 
 
  expr.X_op = O_secrel;
  expr.X_op = O_secrel;
  expr.X_add_symbol = symbol;
  expr.X_add_symbol = symbol;
  expr.X_add_number = 0;
  expr.X_add_number = 0;
  emit_expr (&expr, size);
  emit_expr (&expr, size);
}
}
#endif
#endif
 
 
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
#if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
/* For ELF on x86-64, add support for SHF_X86_64_LARGE.  */
/* For ELF on x86-64, add support for SHF_X86_64_LARGE.  */
 
 
int
int
x86_64_section_letter (int letter, char **ptr_msg)
x86_64_section_letter (int letter, char **ptr_msg)
{
{
  if (flag_code == CODE_64BIT)
  if (flag_code == CODE_64BIT)
    {
    {
      if (letter == 'l')
      if (letter == 'l')
        return SHF_X86_64_LARGE;
        return SHF_X86_64_LARGE;
 
 
      *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
      *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
    }
    }
  else
  else
    *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
    *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
  return -1;
  return -1;
}
}
 
 
int
int
x86_64_section_word (char *str, size_t len)
x86_64_section_word (char *str, size_t len)
{
{
  if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
  if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
    return SHF_X86_64_LARGE;
    return SHF_X86_64_LARGE;
 
 
  return -1;
  return -1;
}
}
 
 
static void
static void
handle_large_common (int small ATTRIBUTE_UNUSED)
handle_large_common (int small ATTRIBUTE_UNUSED)
{
{
  if (flag_code != CODE_64BIT)
  if (flag_code != CODE_64BIT)
    {
    {
      s_comm_internal (0, elf_common_parse);
      s_comm_internal (0, elf_common_parse);
      as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
      as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
    }
    }
  else
  else
    {
    {
      static segT lbss_section;
      static segT lbss_section;
      asection *saved_com_section_ptr = elf_com_section_ptr;
      asection *saved_com_section_ptr = elf_com_section_ptr;
      asection *saved_bss_section = bss_section;
      asection *saved_bss_section = bss_section;
 
 
      if (lbss_section == NULL)
      if (lbss_section == NULL)
        {
        {
          flagword applicable;
          flagword applicable;
          segT seg = now_seg;
          segT seg = now_seg;
          subsegT subseg = now_subseg;
          subsegT subseg = now_subseg;
 
 
          /* The .lbss section is for local .largecomm symbols.  */
          /* The .lbss section is for local .largecomm symbols.  */
          lbss_section = subseg_new (".lbss", 0);
          lbss_section = subseg_new (".lbss", 0);
          applicable = bfd_applicable_section_flags (stdoutput);
          applicable = bfd_applicable_section_flags (stdoutput);
          bfd_set_section_flags (stdoutput, lbss_section,
          bfd_set_section_flags (stdoutput, lbss_section,
                                 applicable & SEC_ALLOC);
                                 applicable & SEC_ALLOC);
          seg_info (lbss_section)->bss = 1;
          seg_info (lbss_section)->bss = 1;
 
 
          subseg_set (seg, subseg);
          subseg_set (seg, subseg);
        }
        }
 
 
      elf_com_section_ptr = &_bfd_elf_large_com_section;
      elf_com_section_ptr = &_bfd_elf_large_com_section;
      bss_section = lbss_section;
      bss_section = lbss_section;
 
 
      s_comm_internal (0, elf_common_parse);
      s_comm_internal (0, elf_common_parse);
 
 
      elf_com_section_ptr = saved_com_section_ptr;
      elf_com_section_ptr = saved_com_section_ptr;
      bss_section = saved_bss_section;
      bss_section = saved_bss_section;
    }
    }
}
}
#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
#endif /* OBJ_ELF || OBJ_MAYBE_ELF */
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.