OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [binutils-2.18.50/] [gas/] [config/] [tc-iq2000.c] - Diff between revs 156 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 156 Rev 816
/* tc-iq2000.c -- Assembler for the Sitera IQ2000.
/* tc-iq2000.c -- Assembler for the Sitera IQ2000.
   Copyright (C) 2003, 2004, 2005, 2006, 2007
   Copyright (C) 2003, 2004, 2005, 2006, 2007
   Free Software Foundation. Inc.
   Free Software Foundation. Inc.
 
 
   This file is part of GAS, the GNU Assembler.
   This file is part of GAS, the GNU Assembler.
 
 
   GAS is free software; you can redistribute it and/or modify
   GAS is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   the Free Software Foundation; either version 3, or (at your option)
   any later version.
   any later version.
 
 
   GAS is distributed in the hope that it will be useful,
   GAS is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with GAS; see the file COPYING.  If not, write to
   along with GAS; see the file COPYING.  If not, write to
   the Free Software Foundation, 51 Franklin Street - Fifth Floor,
   the Free Software Foundation, 51 Franklin Street - Fifth Floor,
   Boston, MA 02110-1301, USA.  */
   Boston, MA 02110-1301, USA.  */
 
 
#include "as.h"
#include "as.h"
#include "safe-ctype.h"
#include "safe-ctype.h"
#include "subsegs.h"
#include "subsegs.h"
#include "symcat.h"
#include "symcat.h"
#include "opcodes/iq2000-desc.h"
#include "opcodes/iq2000-desc.h"
#include "opcodes/iq2000-opc.h"
#include "opcodes/iq2000-opc.h"
#include "cgen.h"
#include "cgen.h"
#include "elf/common.h"
#include "elf/common.h"
#include "elf/iq2000.h"
#include "elf/iq2000.h"
#include "libbfd.h"
#include "libbfd.h"
#include "sb.h"
#include "sb.h"
#include "macro.h"
#include "macro.h"
 
 
/* Structure to hold all of the different components describing
/* Structure to hold all of the different components describing
   an individual instruction.  */
   an individual instruction.  */
typedef struct
typedef struct
{
{
  const CGEN_INSN *     insn;
  const CGEN_INSN *     insn;
  const CGEN_INSN *     orig_insn;
  const CGEN_INSN *     orig_insn;
  CGEN_FIELDS           fields;
  CGEN_FIELDS           fields;
#if CGEN_INT_INSN_P
#if CGEN_INT_INSN_P
  CGEN_INSN_INT         buffer [1];
  CGEN_INSN_INT         buffer [1];
#define INSN_VALUE(buf) (*(buf))
#define INSN_VALUE(buf) (*(buf))
#else
#else
  unsigned char         buffer [CGEN_MAX_INSN_SIZE];
  unsigned char         buffer [CGEN_MAX_INSN_SIZE];
#define INSN_VALUE(buf) (buf)
#define INSN_VALUE(buf) (buf)
#endif
#endif
  char *                addr;
  char *                addr;
  fragS *               frag;
  fragS *               frag;
  int                   num_fixups;
  int                   num_fixups;
  fixS *                fixups [GAS_CGEN_MAX_FIXUPS];
  fixS *                fixups [GAS_CGEN_MAX_FIXUPS];
  int                   indices [MAX_OPERAND_INSTANCES];
  int                   indices [MAX_OPERAND_INSTANCES];
}
}
iq2000_insn;
iq2000_insn;
 
 
const char comment_chars[]        = "#";
const char comment_chars[]        = "#";
const char line_comment_chars[]   = "#";
const char line_comment_chars[]   = "#";
const char line_separator_chars[] = ";";
const char line_separator_chars[] = ";";
const char EXP_CHARS[]            = "eE";
const char EXP_CHARS[]            = "eE";
const char FLT_CHARS[]            = "dD";
const char FLT_CHARS[]            = "dD";
 
 
/* Default machine.  */
/* Default machine.  */
#define DEFAULT_MACHINE bfd_mach_iq2000
#define DEFAULT_MACHINE bfd_mach_iq2000
#define DEFAULT_FLAGS   EF_IQ2000_CPU_IQ2000
#define DEFAULT_FLAGS   EF_IQ2000_CPU_IQ2000
 
 
static unsigned long iq2000_mach = bfd_mach_iq2000;
static unsigned long iq2000_mach = bfd_mach_iq2000;
static int cpu_mach = (1 << MACH_IQ2000);
static int cpu_mach = (1 << MACH_IQ2000);
 
 
/* Flags to set in the elf header.  */
/* Flags to set in the elf header.  */
static flagword iq2000_flags = DEFAULT_FLAGS;
static flagword iq2000_flags = DEFAULT_FLAGS;
 
 
typedef struct proc
typedef struct proc
{
{
  symbolS *isym;
  symbolS *isym;
  unsigned long reg_mask;
  unsigned long reg_mask;
  unsigned long reg_offset;
  unsigned long reg_offset;
  unsigned long fpreg_mask;
  unsigned long fpreg_mask;
  unsigned long fpreg_offset;
  unsigned long fpreg_offset;
  unsigned long frame_offset;
  unsigned long frame_offset;
  unsigned long frame_reg;
  unsigned long frame_reg;
  unsigned long pc_reg;
  unsigned long pc_reg;
} procS;
} procS;
 
 
static procS cur_proc;
static procS cur_proc;
static procS *cur_proc_ptr;
static procS *cur_proc_ptr;
static int numprocs;
static int numprocs;
 
 
/* Relocations against symbols are done in two
/* Relocations against symbols are done in two
   parts, with a HI relocation and a LO relocation.  Each relocation
   parts, with a HI relocation and a LO relocation.  Each relocation
   has only 16 bits of space to store an addend.  This means that in
   has only 16 bits of space to store an addend.  This means that in
   order for the linker to handle carries correctly, it must be able
   order for the linker to handle carries correctly, it must be able
   to locate both the HI and the LO relocation.  This means that the
   to locate both the HI and the LO relocation.  This means that the
   relocations must appear in order in the relocation table.
   relocations must appear in order in the relocation table.
 
 
   In order to implement this, we keep track of each unmatched HI
   In order to implement this, we keep track of each unmatched HI
   relocation.  We then sort them so that they immediately precede the
   relocation.  We then sort them so that they immediately precede the
   corresponding LO relocation.  */
   corresponding LO relocation.  */
 
 
struct iq2000_hi_fixup
struct iq2000_hi_fixup
{
{
  struct iq2000_hi_fixup * next;  /* Next HI fixup.  */
  struct iq2000_hi_fixup * next;  /* Next HI fixup.  */
  fixS *                  fixp;   /* This fixup.  */
  fixS *                  fixp;   /* This fixup.  */
  segT                    seg;    /* The section this fixup is in.  */
  segT                    seg;    /* The section this fixup is in.  */
};
};
 
 
/* The list of unmatched HI relocs.  */
/* The list of unmatched HI relocs.  */
static struct iq2000_hi_fixup * iq2000_hi_fixup_list;
static struct iq2000_hi_fixup * iq2000_hi_fixup_list;
 
 
/* Macro hash table, which we will add to.  */
/* Macro hash table, which we will add to.  */
extern struct hash_control *macro_hash;
extern struct hash_control *macro_hash;


const char *md_shortopts = "";
const char *md_shortopts = "";
struct option md_longopts[] =
struct option md_longopts[] =
{
{
  {NULL, no_argument, NULL, 0}
  {NULL, no_argument, NULL, 0}
};
};
size_t md_longopts_size = sizeof (md_longopts);
size_t md_longopts_size = sizeof (md_longopts);
 
 
int
int
md_parse_option (int c ATTRIBUTE_UNUSED,
md_parse_option (int c ATTRIBUTE_UNUSED,
                 char * arg ATTRIBUTE_UNUSED)
                 char * arg ATTRIBUTE_UNUSED)
{
{
  return 0;
  return 0;
}
}
 
 
void
void
md_show_usage (FILE * stream ATTRIBUTE_UNUSED)
md_show_usage (FILE * stream ATTRIBUTE_UNUSED)
{
{
}
}


/* Automatically enter conditional branch macros.  */
/* Automatically enter conditional branch macros.  */
 
 
typedef struct
typedef struct
{
{
  const char * mnemonic;
  const char * mnemonic;
  const char ** expansion;
  const char ** expansion;
  const char ** args;
  const char ** args;
} iq2000_macro_defs_s;
} iq2000_macro_defs_s;
 
 
static const char * abs_args[] = { "rd", "rs", "scratch=%1", NULL };
static const char * abs_args[] = { "rd", "rs", "scratch=%1", NULL };
static const char * abs_expn   = "\n sra \\rd,\\rs,31\n xor \\scratch,\\rd,\\rs\n sub \\rd,\\scratch,\\rd\n";
static const char * abs_expn   = "\n sra \\rd,\\rs,31\n xor \\scratch,\\rd,\\rs\n sub \\rd,\\scratch,\\rd\n";
static const char * la_expn    = "\n lui \\reg,%hi(\\label)\n ori \\reg,\\reg,%lo(\\label)\n";
static const char * la_expn    = "\n lui \\reg,%hi(\\label)\n ori \\reg,\\reg,%lo(\\label)\n";
static const char * la_args[]  = { "reg", "label", NULL };
static const char * la_args[]  = { "reg", "label", NULL };
static const char * bxx_args[] = { "rs", "rt", "label", "scratch=%1", NULL };
static const char * bxx_args[] = { "rs", "rt", "label", "scratch=%1", NULL };
static const char * bge_expn   = "\n slt \\scratch,\\rs,\\rt\n beq %0,\\scratch,\\label\n";
static const char * bge_expn   = "\n slt \\scratch,\\rs,\\rt\n beq %0,\\scratch,\\label\n";
static const char * bgeu_expn  = "\n sltu \\scratch,\\rs,\\rt\n beq %0,\\scratch,\\label\n";
static const char * bgeu_expn  = "\n sltu \\scratch,\\rs,\\rt\n beq %0,\\scratch,\\label\n";
static const char * bgt_expn   = "\n slt \\scratch,\\rt,\\rs\n bne %0,\\scratch,\\label\n";
static const char * bgt_expn   = "\n slt \\scratch,\\rt,\\rs\n bne %0,\\scratch,\\label\n";
static const char * bgtu_expn  = "\n sltu \\scratch,\\rt,\\rs\n bne %0,\\scratch,\\label\n";
static const char * bgtu_expn  = "\n sltu \\scratch,\\rt,\\rs\n bne %0,\\scratch,\\label\n";
static const char * ble_expn   = "\n slt \\scratch,\\rt,\\rs\n beq %0,\\scratch,\\label\n";
static const char * ble_expn   = "\n slt \\scratch,\\rt,\\rs\n beq %0,\\scratch,\\label\n";
static const char * bleu_expn  = "\n sltu \\scratch,\\rt,\\rs\n beq %0,\\scratch,\\label\n";
static const char * bleu_expn  = "\n sltu \\scratch,\\rt,\\rs\n beq %0,\\scratch,\\label\n";
static const char * blt_expn   = "\n slt \\scratch,\\rs,\\rt\n bne %0,\\scratch,\\label\n";
static const char * blt_expn   = "\n slt \\scratch,\\rs,\\rt\n bne %0,\\scratch,\\label\n";
static const char * bltu_expn  = "\n sltu \\scratch,\\rs,\\rt\n bne %0,\\scratch,\\label\n";
static const char * bltu_expn  = "\n sltu \\scratch,\\rs,\\rt\n bne %0,\\scratch,\\label\n";
static const char * sxx_args[] = { "rd", "rs", "rt", NULL };
static const char * sxx_args[] = { "rd", "rs", "rt", NULL };
static const char * sge_expn   = "\n slt \\rd,\\rs,\\rt\n xori \\rd,\\rd,1\n";
static const char * sge_expn   = "\n slt \\rd,\\rs,\\rt\n xori \\rd,\\rd,1\n";
static const char * sgeu_expn  = "\n sltu \\rd,\\rs,\\rt\n xori \\rd,\\rd,1\n";
static const char * sgeu_expn  = "\n sltu \\rd,\\rs,\\rt\n xori \\rd,\\rd,1\n";
static const char * sle_expn   = "\n slt \\rd,\\rt,\\rs\n xori \\rd,\\rd,1\n";
static const char * sle_expn   = "\n slt \\rd,\\rt,\\rs\n xori \\rd,\\rd,1\n";
static const char * sleu_expn  = "\n sltu \\rd,\\rt,\\rs\n xori \\rd,\\rd,1\n";
static const char * sleu_expn  = "\n sltu \\rd,\\rt,\\rs\n xori \\rd,\\rd,1\n";
static const char * sgt_expn   = "\n slt \\rd,\\rt,\\rs\n";
static const char * sgt_expn   = "\n slt \\rd,\\rt,\\rs\n";
static const char * sgtu_expn  = "\n sltu \\rd,\\rt,\\rs\n";
static const char * sgtu_expn  = "\n sltu \\rd,\\rt,\\rs\n";
static const char * sne_expn   = "\n xor \\rd,\\rt,\\rs\n sltu \\rd,%0,\\rd\n";
static const char * sne_expn   = "\n xor \\rd,\\rt,\\rs\n sltu \\rd,%0,\\rd\n";
static const char * seq_expn   = "\n xor \\rd,\\rt,\\rs\n sltu \\rd,%0,\\rd\n xori \\rd,\\rd,1\n";
static const char * seq_expn   = "\n xor \\rd,\\rt,\\rs\n sltu \\rd,%0,\\rd\n xori \\rd,\\rd,1\n";
static const char * ai32_args[] = { "rt", "rs", "imm", NULL };
static const char * ai32_args[] = { "rt", "rs", "imm", NULL };
static const char * andi32_expn = "\n\
static const char * andi32_expn = "\n\
 .if (\\imm & 0xffff0000 == 0xffff0000)\n\
 .if (\\imm & 0xffff0000 == 0xffff0000)\n\
 andoi \\rt,\\rs,%lo(\\imm)\n\
 andoi \\rt,\\rs,%lo(\\imm)\n\
 .elseif (\\imm & 0x0000ffff == 0x0000ffff)\n\
 .elseif (\\imm & 0x0000ffff == 0x0000ffff)\n\
 andoui \\rt,\\rs,%uhi(\\imm)\n\
 andoui \\rt,\\rs,%uhi(\\imm)\n\
 .elseif (\\imm & 0xffff0000 == 0x00000000)\n\
 .elseif (\\imm & 0xffff0000 == 0x00000000)\n\
 andi \\rt,\\rs,%lo(\\imm)\n\
 andi \\rt,\\rs,%lo(\\imm)\n\
 .else\n\
 .else\n\
 andoui \\rt,\\rs,%uhi(\\imm)\n\
 andoui \\rt,\\rs,%uhi(\\imm)\n\
 andoi \\rt,\\rt,%lo(\\imm)\n\
 andoi \\rt,\\rt,%lo(\\imm)\n\
 .endif\n";
 .endif\n";
static const char * ori32_expn  = "\n\
static const char * ori32_expn  = "\n\
 .if (\\imm & 0xffff == 0)\n\
 .if (\\imm & 0xffff == 0)\n\
 orui \\rt,\\rs,%uhi(\\imm)\n\
 orui \\rt,\\rs,%uhi(\\imm)\n\
 .elseif (\\imm & 0xffff0000 == 0)\n\
 .elseif (\\imm & 0xffff0000 == 0)\n\
 ori \\rt,\\rs,%lo(\\imm)\n\
 ori \\rt,\\rs,%lo(\\imm)\n\
 .else\n\
 .else\n\
 orui \\rt,\\rs,%uhi(\\imm)\n\
 orui \\rt,\\rs,%uhi(\\imm)\n\
 ori \\rt,\\rt,%lo(\\imm)\n\
 ori \\rt,\\rt,%lo(\\imm)\n\
 .endif\n";
 .endif\n";
 
 
static const char * neg_args[] = { "rd", "rs", NULL };
static const char * neg_args[] = { "rd", "rs", NULL };
static const char * neg_expn   = "\n sub \\rd,%0,\\rs\n";
static const char * neg_expn   = "\n sub \\rd,%0,\\rs\n";
static const char * negu_expn  = "\n subu \\rd,%0,\\rs\n";
static const char * negu_expn  = "\n subu \\rd,%0,\\rs\n";
static const char * li_args[]  = { "rt", "imm", NULL };
static const char * li_args[]  = { "rt", "imm", NULL };
static const char * li_expn    = "\n\
static const char * li_expn    = "\n\
 .if (\\imm & 0xffff0000 == 0x0)\n\
 .if (\\imm & 0xffff0000 == 0x0)\n\
 ori \\rt,%0,\\imm\n\
 ori \\rt,%0,\\imm\n\
 .elseif (\\imm & 0xffff0000 == 0xffff0000)\n\
 .elseif (\\imm & 0xffff0000 == 0xffff0000)\n\
 addi \\rt,%0,\\imm\n\
 addi \\rt,%0,\\imm\n\
 .elseif (\\imm & 0x0000ffff == 0)\n\
 .elseif (\\imm & 0x0000ffff == 0)\n\
 lui \\rt,%uhi(\\imm)\n\
 lui \\rt,%uhi(\\imm)\n\
 .else\n\
 .else\n\
 lui \\rt,%uhi(\\imm)\n\
 lui \\rt,%uhi(\\imm)\n\
 ori \\rt,\\rt,%lo(\\imm)\n\
 ori \\rt,\\rt,%lo(\\imm)\n\
 .endif\n";
 .endif\n";
 
 
static iq2000_macro_defs_s iq2000_macro_defs[] =
static iq2000_macro_defs_s iq2000_macro_defs[] =
{
{
  {"abs",   (const char **) & abs_expn,   (const char **) & abs_args},
  {"abs",   (const char **) & abs_expn,   (const char **) & abs_args},
  {"la",    (const char **) & la_expn,    (const char **) & la_args},
  {"la",    (const char **) & la_expn,    (const char **) & la_args},
  {"bge",   (const char **) & bge_expn,   (const char **) & bxx_args},
  {"bge",   (const char **) & bge_expn,   (const char **) & bxx_args},
  {"bgeu",  (const char **) & bgeu_expn,  (const char **) & bxx_args},
  {"bgeu",  (const char **) & bgeu_expn,  (const char **) & bxx_args},
  {"bgt",   (const char **) & bgt_expn,   (const char **) & bxx_args},
  {"bgt",   (const char **) & bgt_expn,   (const char **) & bxx_args},
  {"bgtu",  (const char **) & bgtu_expn,  (const char **) & bxx_args},
  {"bgtu",  (const char **) & bgtu_expn,  (const char **) & bxx_args},
  {"ble",   (const char **) & ble_expn,   (const char **) & bxx_args},
  {"ble",   (const char **) & ble_expn,   (const char **) & bxx_args},
  {"bleu",  (const char **) & bleu_expn,  (const char **) & bxx_args},
  {"bleu",  (const char **) & bleu_expn,  (const char **) & bxx_args},
  {"blt",   (const char **) & blt_expn,   (const char **) & bxx_args},
  {"blt",   (const char **) & blt_expn,   (const char **) & bxx_args},
  {"bltu",  (const char **) & bltu_expn,  (const char **) & bxx_args},
  {"bltu",  (const char **) & bltu_expn,  (const char **) & bxx_args},
  {"sge",   (const char **) & sge_expn,   (const char **) & sxx_args},
  {"sge",   (const char **) & sge_expn,   (const char **) & sxx_args},
  {"sgeu",  (const char **) & sgeu_expn,  (const char **) & sxx_args},
  {"sgeu",  (const char **) & sgeu_expn,  (const char **) & sxx_args},
  {"sle",   (const char **) & sle_expn,   (const char **) & sxx_args},
  {"sle",   (const char **) & sle_expn,   (const char **) & sxx_args},
  {"sleu",  (const char **) & sleu_expn,  (const char **) & sxx_args},
  {"sleu",  (const char **) & sleu_expn,  (const char **) & sxx_args},
  {"sgt",   (const char **) & sgt_expn,   (const char **) & sxx_args},
  {"sgt",   (const char **) & sgt_expn,   (const char **) & sxx_args},
  {"sgtu",  (const char **) & sgtu_expn,  (const char **) & sxx_args},
  {"sgtu",  (const char **) & sgtu_expn,  (const char **) & sxx_args},
  {"seq",   (const char **) & seq_expn,   (const char **) & sxx_args},
  {"seq",   (const char **) & seq_expn,   (const char **) & sxx_args},
  {"sne",   (const char **) & sne_expn,   (const char **) & sxx_args},
  {"sne",   (const char **) & sne_expn,   (const char **) & sxx_args},
  {"neg",   (const char **) & neg_expn,   (const char **) & neg_args},
  {"neg",   (const char **) & neg_expn,   (const char **) & neg_args},
  {"negu",  (const char **) & negu_expn,  (const char **) & neg_args},
  {"negu",  (const char **) & negu_expn,  (const char **) & neg_args},
  {"li",    (const char **) & li_expn,    (const char **) & li_args},
  {"li",    (const char **) & li_expn,    (const char **) & li_args},
  {"ori32", (const char **) & ori32_expn, (const char **) & ai32_args},
  {"ori32", (const char **) & ori32_expn, (const char **) & ai32_args},
  {"andi32",(const char **) & andi32_expn,(const char **) & ai32_args},
  {"andi32",(const char **) & andi32_expn,(const char **) & ai32_args},
};
};
 
 
static void
static void
iq2000_add_macro (const char *  name,
iq2000_add_macro (const char *  name,
                  const char *  semantics,
                  const char *  semantics,
                  const char ** arguments)
                  const char ** arguments)
{
{
  macro_entry *macro;
  macro_entry *macro;
  sb macro_name;
  sb macro_name;
  const char *namestr;
  const char *namestr;
 
 
  macro = xmalloc (sizeof (macro_entry));
  macro = xmalloc (sizeof (macro_entry));
  sb_new (& macro->sub);
  sb_new (& macro->sub);
  sb_new (& macro_name);
  sb_new (& macro_name);
 
 
  macro->formal_count = 0;
  macro->formal_count = 0;
  macro->formals = 0;
  macro->formals = 0;
 
 
  sb_add_string (& macro->sub, semantics);
  sb_add_string (& macro->sub, semantics);
 
 
  if (arguments != NULL)
  if (arguments != NULL)
    {
    {
      formal_entry ** p = &macro->formals;
      formal_entry ** p = &macro->formals;
 
 
      macro->formal_count = 0;
      macro->formal_count = 0;
      macro->formal_hash = hash_new ();
      macro->formal_hash = hash_new ();
 
 
      while (*arguments != NULL)
      while (*arguments != NULL)
        {
        {
          formal_entry *formal;
          formal_entry *formal;
 
 
          formal = xmalloc (sizeof (formal_entry));
          formal = xmalloc (sizeof (formal_entry));
 
 
          sb_new (& formal->name);
          sb_new (& formal->name);
          sb_new (& formal->def);
          sb_new (& formal->def);
          sb_new (& formal->actual);
          sb_new (& formal->actual);
 
 
          /* chlm: Added the following to allow defaulted args.  */
          /* chlm: Added the following to allow defaulted args.  */
          if (strchr (*arguments,'='))
          if (strchr (*arguments,'='))
            {
            {
              char * tt_args = strdup (*arguments);
              char * tt_args = strdup (*arguments);
              char * tt_dflt = strchr (tt_args,'=');
              char * tt_dflt = strchr (tt_args,'=');
 
 
              *tt_dflt = 0;
              *tt_dflt = 0;
              sb_add_string (& formal->name, tt_args);
              sb_add_string (& formal->name, tt_args);
              sb_add_string (& formal->def,  tt_dflt + 1);
              sb_add_string (& formal->def,  tt_dflt + 1);
            }
            }
          else
          else
            sb_add_string (& formal->name, *arguments);
            sb_add_string (& formal->name, *arguments);
 
 
          /* Add to macro's hash table.  */
          /* Add to macro's hash table.  */
          hash_jam (macro->formal_hash, sb_terminate (& formal->name), formal);
          hash_jam (macro->formal_hash, sb_terminate (& formal->name), formal);
 
 
          formal->index = macro->formal_count;
          formal->index = macro->formal_count;
          macro->formal_count++;
          macro->formal_count++;
          *p = formal;
          *p = formal;
          p = & formal->next;
          p = & formal->next;
          *p = NULL;
          *p = NULL;
          ++arguments;
          ++arguments;
        }
        }
    }
    }
 
 
  sb_add_string (&macro_name, name);
  sb_add_string (&macro_name, name);
  namestr = sb_terminate (&macro_name);
  namestr = sb_terminate (&macro_name);
  hash_jam (macro_hash, namestr, macro);
  hash_jam (macro_hash, namestr, macro);
 
 
  macro_defined = 1;
  macro_defined = 1;
}
}
 
 
static void
static void
iq2000_load_macros (void)
iq2000_load_macros (void)
{
{
  int i;
  int i;
  int mcnt = ARRAY_SIZE (iq2000_macro_defs);
  int mcnt = ARRAY_SIZE (iq2000_macro_defs);
 
 
  for (i = 0; i < mcnt; i++)
  for (i = 0; i < mcnt; i++)
    iq2000_add_macro (iq2000_macro_defs[i].mnemonic,
    iq2000_add_macro (iq2000_macro_defs[i].mnemonic,
                      *iq2000_macro_defs[i].expansion,
                      *iq2000_macro_defs[i].expansion,
                      iq2000_macro_defs[i].args);
                      iq2000_macro_defs[i].args);
}
}
 
 
void
void
md_begin (void)
md_begin (void)
{
{
  /* Initialize the `cgen' interface.  */
  /* Initialize the `cgen' interface.  */
 
 
  /* Set the machine number and endian.  */
  /* Set the machine number and endian.  */
  gas_cgen_cpu_desc = iq2000_cgen_cpu_open (CGEN_CPU_OPEN_MACHS, cpu_mach,
  gas_cgen_cpu_desc = iq2000_cgen_cpu_open (CGEN_CPU_OPEN_MACHS, cpu_mach,
                                           CGEN_CPU_OPEN_ENDIAN,
                                           CGEN_CPU_OPEN_ENDIAN,
                                           CGEN_ENDIAN_BIG,
                                           CGEN_ENDIAN_BIG,
                                           CGEN_CPU_OPEN_END);
                                           CGEN_CPU_OPEN_END);
  iq2000_cgen_init_asm (gas_cgen_cpu_desc);
  iq2000_cgen_init_asm (gas_cgen_cpu_desc);
 
 
  /* This is a callback from cgen to gas to parse operands.  */
  /* This is a callback from cgen to gas to parse operands.  */
  cgen_set_parse_operand_fn (gas_cgen_cpu_desc, gas_cgen_parse_operand);
  cgen_set_parse_operand_fn (gas_cgen_cpu_desc, gas_cgen_parse_operand);
 
 
  /* Set the ELF flags if desired.  */
  /* Set the ELF flags if desired.  */
  if (iq2000_flags)
  if (iq2000_flags)
    bfd_set_private_flags (stdoutput, iq2000_flags);
    bfd_set_private_flags (stdoutput, iq2000_flags);
 
 
  /* Set the machine type */
  /* Set the machine type */
  bfd_default_set_arch_mach (stdoutput, bfd_arch_iq2000, iq2000_mach);
  bfd_default_set_arch_mach (stdoutput, bfd_arch_iq2000, iq2000_mach);
 
 
  iq2000_load_macros ();
  iq2000_load_macros ();
}
}
 
 
void
void
md_assemble (char * str)
md_assemble (char * str)
{
{
  static long delayed_load_register = 0;
  static long delayed_load_register = 0;
  static int last_insn_had_delay_slot = 0;
  static int last_insn_had_delay_slot = 0;
  static int last_insn_has_load_delay = 0;
  static int last_insn_has_load_delay = 0;
  static int last_insn_unconditional_jump = 0;
  static int last_insn_unconditional_jump = 0;
  static int last_insn_was_ldw = 0;
  static int last_insn_was_ldw = 0;
 
 
  iq2000_insn insn;
  iq2000_insn insn;
  char * errmsg;
  char * errmsg;
 
 
  /* Initialize GAS's cgen interface for a new instruction.  */
  /* Initialize GAS's cgen interface for a new instruction.  */
  gas_cgen_init_parse ();
  gas_cgen_init_parse ();
 
 
  insn.insn = iq2000_cgen_assemble_insn
  insn.insn = iq2000_cgen_assemble_insn
      (gas_cgen_cpu_desc, str, & insn.fields, insn.buffer, & errmsg);
      (gas_cgen_cpu_desc, str, & insn.fields, insn.buffer, & errmsg);
 
 
  if (!insn.insn)
  if (!insn.insn)
    {
    {
      as_bad ("%s", errmsg);
      as_bad ("%s", errmsg);
      return;
      return;
    }
    }
 
 
  /* Doesn't really matter what we pass for RELAX_P here.  */
  /* Doesn't really matter what we pass for RELAX_P here.  */
  gas_cgen_finish_insn (insn.insn, insn.buffer,
  gas_cgen_finish_insn (insn.insn, insn.buffer,
                        CGEN_FIELDS_BITSIZE (& insn.fields), 1, NULL);
                        CGEN_FIELDS_BITSIZE (& insn.fields), 1, NULL);
 
 
  /* We need to generate an error if there's a yielding instruction in the delay
  /* We need to generate an error if there's a yielding instruction in the delay
     slot of a control flow modifying instruction (jump (yes), load (no))  */
     slot of a control flow modifying instruction (jump (yes), load (no))  */
  if ((last_insn_had_delay_slot && !last_insn_has_load_delay) &&
  if ((last_insn_had_delay_slot && !last_insn_has_load_delay) &&
      CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_YIELD_INSN))
      CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_YIELD_INSN))
      as_bad (_("the yielding instruction %s may not be in a delay slot."),
      as_bad (_("the yielding instruction %s may not be in a delay slot."),
              CGEN_INSN_NAME (insn.insn));
              CGEN_INSN_NAME (insn.insn));
 
 
  /* Warn about odd numbered base registers for paired-register
  /* Warn about odd numbered base registers for paired-register
     instructions like LDW.  On iq2000, result is always rt.  */
     instructions like LDW.  On iq2000, result is always rt.  */
  if (iq2000_mach == bfd_mach_iq2000
  if (iq2000_mach == bfd_mach_iq2000
      && CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_EVEN_REG_NUM)
      && CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_EVEN_REG_NUM)
      && (insn.fields.f_rt % 2))
      && (insn.fields.f_rt % 2))
    as_bad (_("Register number (R%ld) for double word access must be even."),
    as_bad (_("Register number (R%ld) for double word access must be even."),
            insn.fields.f_rt);
            insn.fields.f_rt);
 
 
  /* Warn about insns that reference the target of a previous load.  */
  /* Warn about insns that reference the target of a previous load.  */
  /* NOTE: R0 is a special case and is not subject to load delays (except for ldw).  */
  /* NOTE: R0 is a special case and is not subject to load delays (except for ldw).  */
  if (delayed_load_register && (last_insn_has_load_delay || last_insn_was_ldw))
  if (delayed_load_register && (last_insn_has_load_delay || last_insn_was_ldw))
    {
    {
      if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RD) &&
      if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RD) &&
          insn.fields.f_rd == delayed_load_register)
          insn.fields.f_rd == delayed_load_register)
        as_warn (_("operand references R%ld of previous load."),
        as_warn (_("operand references R%ld of previous load."),
                 insn.fields.f_rd);
                 insn.fields.f_rd);
 
 
      if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RS) &&
      if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RS) &&
          insn.fields.f_rs == delayed_load_register)
          insn.fields.f_rs == delayed_load_register)
        as_warn (_("operand references R%ld of previous load."),
        as_warn (_("operand references R%ld of previous load."),
                 insn.fields.f_rs);
                 insn.fields.f_rs);
 
 
      if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RT) &&
      if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RT) &&
          insn.fields.f_rt == delayed_load_register)
          insn.fields.f_rt == delayed_load_register)
        as_warn (_("operand references R%ld of previous load."),
        as_warn (_("operand references R%ld of previous load."),
                 insn.fields.f_rt);
                 insn.fields.f_rt);
 
 
      if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_R31) &&
      if (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_R31) &&
          delayed_load_register == 31)
          delayed_load_register == 31)
        as_warn (_("instruction implicitly accesses R31 of previous load."));
        as_warn (_("instruction implicitly accesses R31 of previous load."));
    }
    }
 
 
  /* Warn about insns that reference the (target + 1) of a previous ldw.  */
  /* Warn about insns that reference the (target + 1) of a previous ldw.  */
  if (last_insn_was_ldw)
  if (last_insn_was_ldw)
    {
    {
      if ((CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RD)
      if ((CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RD)
           && insn.fields.f_rd == delayed_load_register + 1)
           && insn.fields.f_rd == delayed_load_register + 1)
       || (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RS)
       || (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RS)
           && insn.fields.f_rs == delayed_load_register + 1)
           && insn.fields.f_rs == delayed_load_register + 1)
       || (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RT)
       || (CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_USES_RT)
           && insn.fields.f_rt == delayed_load_register + 1))
           && insn.fields.f_rt == delayed_load_register + 1))
        as_warn (_("operand references R%ld of previous load."),
        as_warn (_("operand references R%ld of previous load."),
                delayed_load_register + 1);
                delayed_load_register + 1);
    }
    }
 
 
  last_insn_had_delay_slot =
  last_insn_had_delay_slot =
    CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_DELAY_SLOT);
    CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_DELAY_SLOT);
 
 
  last_insn_has_load_delay =
  last_insn_has_load_delay =
    CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_LOAD_DELAY);
    CGEN_INSN_ATTR_VALUE (insn.insn, CGEN_INSN_LOAD_DELAY);
 
 
  if (last_insn_unconditional_jump)
  if (last_insn_unconditional_jump)
    last_insn_has_load_delay = last_insn_unconditional_jump = 0;
    last_insn_has_load_delay = last_insn_unconditional_jump = 0;
  else if (! strcmp (CGEN_INSN_MNEMONIC (insn.insn), "j")
  else if (! strcmp (CGEN_INSN_MNEMONIC (insn.insn), "j")
           || ! strcmp (CGEN_INSN_MNEMONIC (insn.insn), "jal"))
           || ! strcmp (CGEN_INSN_MNEMONIC (insn.insn), "jal"))
           last_insn_unconditional_jump = 1;
           last_insn_unconditional_jump = 1;
 
 
  /* The meaning of EVEN_REG_NUM was overloaded to also imply LDW.  Since
  /* The meaning of EVEN_REG_NUM was overloaded to also imply LDW.  Since
     that's not true for IQ10, let's make the above logic specific to LDW.  */
     that's not true for IQ10, let's make the above logic specific to LDW.  */
  last_insn_was_ldw = ! strcmp ("ldw", CGEN_INSN_NAME (insn.insn));
  last_insn_was_ldw = ! strcmp ("ldw", CGEN_INSN_NAME (insn.insn));
 
 
  /* The assumption here is that the target of a load is always rt.  */
  /* The assumption here is that the target of a load is always rt.  */
  delayed_load_register = insn.fields.f_rt;
  delayed_load_register = insn.fields.f_rt;
}
}
 
 
valueT
valueT
md_section_align (segT segment, valueT size)
md_section_align (segT segment, valueT size)
{
{
  int align = bfd_get_section_alignment (stdoutput, segment);
  int align = bfd_get_section_alignment (stdoutput, segment);
  return ((size + (1 << align) - 1) & (-1 << align));
  return ((size + (1 << align) - 1) & (-1 << align));
}
}
 
 
symbolS *
symbolS *
md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
md_undefined_symbol (char * name ATTRIBUTE_UNUSED)
{
{
    return 0;
    return 0;
}
}


/* Interface to relax_segment.  */
/* Interface to relax_segment.  */
 
 
/* Return an initial guess of the length by which a fragment must grow to
/* Return an initial guess of the length by which a fragment must grow to
   hold a branch to reach its destination.
   hold a branch to reach its destination.
   Also updates fr_type/fr_subtype as necessary.
   Also updates fr_type/fr_subtype as necessary.
 
 
   Called just before doing relaxation.
   Called just before doing relaxation.
   Any symbol that is now undefined will not become defined.
   Any symbol that is now undefined will not become defined.
   The guess for fr_var is ACTUALLY the growth beyond fr_fix.
   The guess for fr_var is ACTUALLY the growth beyond fr_fix.
   Whatever we do to grow fr_fix or fr_var contributes to our returned value.
   Whatever we do to grow fr_fix or fr_var contributes to our returned value.
   Although it may not be explicit in the frag, pretend fr_var starts with a
   Although it may not be explicit in the frag, pretend fr_var starts with a
   0 value.  */
   0 value.  */
 
 
int
int
md_estimate_size_before_relax (fragS * fragP,
md_estimate_size_before_relax (fragS * fragP,
                               segT    segment ATTRIBUTE_UNUSED)
                               segT    segment ATTRIBUTE_UNUSED)
{
{
  int    old_fr_fix = fragP->fr_fix;
  int    old_fr_fix = fragP->fr_fix;
 
 
  /* The only thing we have to handle here are symbols outside of the
  /* The only thing we have to handle here are symbols outside of the
     current segment.  They may be undefined or in a different segment in
     current segment.  They may be undefined or in a different segment in
     which case linker scripts may place them anywhere.
     which case linker scripts may place them anywhere.
     However, we can't finish the fragment here and emit the reloc as insn
     However, we can't finish the fragment here and emit the reloc as insn
     alignment requirements may move the insn about.  */
     alignment requirements may move the insn about.  */
 
 
  return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
  return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
}
}
 
 
/* *fragP has been relaxed to its final size, and now needs to have
/* *fragP has been relaxed to its final size, and now needs to have
   the bytes inside it modified to conform to the new size.
   the bytes inside it modified to conform to the new size.
 
 
   Called after relaxation is finished.
   Called after relaxation is finished.
   fragP->fr_type == rs_machine_dependent.
   fragP->fr_type == rs_machine_dependent.
   fragP->fr_subtype is the subtype of what the address relaxed to.  */
   fragP->fr_subtype is the subtype of what the address relaxed to.  */
 
 
void
void
md_convert_frag (bfd   * abfd  ATTRIBUTE_UNUSED,
md_convert_frag (bfd   * abfd  ATTRIBUTE_UNUSED,
                 segT    sec   ATTRIBUTE_UNUSED,
                 segT    sec   ATTRIBUTE_UNUSED,
                 fragS * fragP ATTRIBUTE_UNUSED)
                 fragS * fragP ATTRIBUTE_UNUSED)
{
{
}
}
 
 


/* Functions concerning relocs.  */
/* Functions concerning relocs.  */
 
 
long
long
md_pcrel_from_section (fixS * fixP, segT sec)
md_pcrel_from_section (fixS * fixP, segT sec)
{
{
  if (fixP->fx_addsy != (symbolS *) NULL
  if (fixP->fx_addsy != (symbolS *) NULL
      && (! S_IS_DEFINED (fixP->fx_addsy)
      && (! S_IS_DEFINED (fixP->fx_addsy)
          || S_GET_SEGMENT (fixP->fx_addsy) != sec))
          || S_GET_SEGMENT (fixP->fx_addsy) != sec))
    {
    {
      /* The symbol is undefined (or is defined but not in this section).
      /* The symbol is undefined (or is defined but not in this section).
         Let the linker figure it out.  */
         Let the linker figure it out.  */
      return 0;
      return 0;
    }
    }
 
 
  /* Return the address of the delay slot.  */
  /* Return the address of the delay slot.  */
  return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
  return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
}
}
 
 
/* Return the bfd reloc type for OPERAND of INSN at fixup FIXP.
/* Return the bfd reloc type for OPERAND of INSN at fixup FIXP.
   Returns BFD_RELOC_NONE if no reloc type can be found.
   Returns BFD_RELOC_NONE if no reloc type can be found.
   *FIXP may be modified if desired.  */
   *FIXP may be modified if desired.  */
 
 
bfd_reloc_code_real_type
bfd_reloc_code_real_type
md_cgen_lookup_reloc (const CGEN_INSN *    insn     ATTRIBUTE_UNUSED,
md_cgen_lookup_reloc (const CGEN_INSN *    insn     ATTRIBUTE_UNUSED,
                      const CGEN_OPERAND * operand,
                      const CGEN_OPERAND * operand,
                      fixS *               fixP     ATTRIBUTE_UNUSED)
                      fixS *               fixP     ATTRIBUTE_UNUSED)
{
{
  switch (operand->type)
  switch (operand->type)
    {
    {
    case IQ2000_OPERAND_OFFSET:      return BFD_RELOC_16_PCREL_S2;
    case IQ2000_OPERAND_OFFSET:      return BFD_RELOC_16_PCREL_S2;
    case IQ2000_OPERAND_JMPTARG:     return BFD_RELOC_IQ2000_OFFSET_16;
    case IQ2000_OPERAND_JMPTARG:     return BFD_RELOC_IQ2000_OFFSET_16;
    case IQ2000_OPERAND_JMPTARGQ10:  return BFD_RELOC_NONE;
    case IQ2000_OPERAND_JMPTARGQ10:  return BFD_RELOC_NONE;
    case IQ2000_OPERAND_HI16:        return BFD_RELOC_HI16;
    case IQ2000_OPERAND_HI16:        return BFD_RELOC_HI16;
    case IQ2000_OPERAND_LO16:        return BFD_RELOC_LO16;
    case IQ2000_OPERAND_LO16:        return BFD_RELOC_LO16;
    default: break;
    default: break;
    }
    }
 
 
  return BFD_RELOC_NONE;
  return BFD_RELOC_NONE;
}
}
 
 
/* Record a HI16 reloc for later matching with its LO16 cousin.  */
/* Record a HI16 reloc for later matching with its LO16 cousin.  */
 
 
static void
static void
iq2000_record_hi16 (int    reloc_type,
iq2000_record_hi16 (int    reloc_type,
                    fixS * fixP,
                    fixS * fixP,
                    segT   seg ATTRIBUTE_UNUSED)
                    segT   seg ATTRIBUTE_UNUSED)
{
{
  struct iq2000_hi_fixup * hi_fixup;
  struct iq2000_hi_fixup * hi_fixup;
 
 
  assert (reloc_type == BFD_RELOC_HI16);
  assert (reloc_type == BFD_RELOC_HI16);
 
 
  hi_fixup = xmalloc (sizeof * hi_fixup);
  hi_fixup = xmalloc (sizeof * hi_fixup);
  hi_fixup->fixp = fixP;
  hi_fixup->fixp = fixP;
  hi_fixup->seg  = now_seg;
  hi_fixup->seg  = now_seg;
  hi_fixup->next = iq2000_hi_fixup_list;
  hi_fixup->next = iq2000_hi_fixup_list;
 
 
  iq2000_hi_fixup_list = hi_fixup;
  iq2000_hi_fixup_list = hi_fixup;
}
}
 
 
/* Called while parsing an instruction to create a fixup.
/* Called while parsing an instruction to create a fixup.
   We need to check for HI16 relocs and queue them up for later sorting.  */
   We need to check for HI16 relocs and queue them up for later sorting.  */
 
 
fixS *
fixS *
iq2000_cgen_record_fixup_exp (fragS *              frag,
iq2000_cgen_record_fixup_exp (fragS *              frag,
                              int                  where,
                              int                  where,
                              const CGEN_INSN *    insn,
                              const CGEN_INSN *    insn,
                              int                  length,
                              int                  length,
                              const CGEN_OPERAND * operand,
                              const CGEN_OPERAND * operand,
                              int                  opinfo,
                              int                  opinfo,
                              expressionS *        exp)
                              expressionS *        exp)
{
{
  fixS * fixP = gas_cgen_record_fixup_exp (frag, where, insn, length,
  fixS * fixP = gas_cgen_record_fixup_exp (frag, where, insn, length,
                                           operand, opinfo, exp);
                                           operand, opinfo, exp);
 
 
  if (operand->type == IQ2000_OPERAND_HI16
  if (operand->type == IQ2000_OPERAND_HI16
      /* If low/high was used, it is recorded in `opinfo'.  */
      /* If low/high was used, it is recorded in `opinfo'.  */
      && (fixP->fx_cgen.opinfo == BFD_RELOC_HI16
      && (fixP->fx_cgen.opinfo == BFD_RELOC_HI16
          || fixP->fx_cgen.opinfo == BFD_RELOC_LO16))
          || fixP->fx_cgen.opinfo == BFD_RELOC_LO16))
    iq2000_record_hi16 (fixP->fx_cgen.opinfo, fixP, now_seg);
    iq2000_record_hi16 (fixP->fx_cgen.opinfo, fixP, now_seg);
 
 
  return fixP;
  return fixP;
}
}
 
 
/* Return BFD reloc type from opinfo field in a fixS.
/* Return BFD reloc type from opinfo field in a fixS.
   It's tricky using fx_r_type in iq2000_frob_file because the values
   It's tricky using fx_r_type in iq2000_frob_file because the values
   are BFD_RELOC_UNUSED + operand number.  */
   are BFD_RELOC_UNUSED + operand number.  */
#define FX_OPINFO_R_TYPE(f) ((f)->fx_cgen.opinfo)
#define FX_OPINFO_R_TYPE(f) ((f)->fx_cgen.opinfo)
 
 
/* Sort any unmatched HI16 relocs so that they immediately precede
/* Sort any unmatched HI16 relocs so that they immediately precede
   the corresponding LO16 reloc.  This is called before md_apply_fix and
   the corresponding LO16 reloc.  This is called before md_apply_fix and
   tc_gen_reloc.  */
   tc_gen_reloc.  */
 
 
void
void
iq2000_frob_file (void)
iq2000_frob_file (void)
{
{
  struct iq2000_hi_fixup * l;
  struct iq2000_hi_fixup * l;
 
 
  for (l = iq2000_hi_fixup_list; l != NULL; l = l->next)
  for (l = iq2000_hi_fixup_list; l != NULL; l = l->next)
    {
    {
      segment_info_type * seginfo;
      segment_info_type * seginfo;
      int                 pass;
      int                 pass;
 
 
      assert (FX_OPINFO_R_TYPE (l->fixp) == BFD_RELOC_HI16
      assert (FX_OPINFO_R_TYPE (l->fixp) == BFD_RELOC_HI16
              || FX_OPINFO_R_TYPE (l->fixp) == BFD_RELOC_LO16);
              || FX_OPINFO_R_TYPE (l->fixp) == BFD_RELOC_LO16);
 
 
      /* Check quickly whether the next fixup happens to be a matching low.  */
      /* Check quickly whether the next fixup happens to be a matching low.  */
      if (l->fixp->fx_next != NULL
      if (l->fixp->fx_next != NULL
          && FX_OPINFO_R_TYPE (l->fixp->fx_next) == BFD_RELOC_LO16
          && FX_OPINFO_R_TYPE (l->fixp->fx_next) == BFD_RELOC_LO16
          && l->fixp->fx_addsy == l->fixp->fx_next->fx_addsy
          && l->fixp->fx_addsy == l->fixp->fx_next->fx_addsy
          && l->fixp->fx_offset == l->fixp->fx_next->fx_offset)
          && l->fixp->fx_offset == l->fixp->fx_next->fx_offset)
        continue;
        continue;
 
 
      /* Look through the fixups for this segment for a matching
      /* Look through the fixups for this segment for a matching
         `low'.  When we find one, move the high just in front of it.
         `low'.  When we find one, move the high just in front of it.
         We do this in two passes.  In the first pass, we try to find
         We do this in two passes.  In the first pass, we try to find
         a unique `low'.  In the second pass, we permit multiple
         a unique `low'.  In the second pass, we permit multiple
         high's relocs for a single `low'.  */
         high's relocs for a single `low'.  */
      seginfo = seg_info (l->seg);
      seginfo = seg_info (l->seg);
      for (pass = 0; pass < 2; pass++)
      for (pass = 0; pass < 2; pass++)
        {
        {
          fixS * f;
          fixS * f;
          fixS * prev;
          fixS * prev;
 
 
          prev = NULL;
          prev = NULL;
          for (f = seginfo->fix_root; f != NULL; f = f->fx_next)
          for (f = seginfo->fix_root; f != NULL; f = f->fx_next)
            {
            {
              /* Check whether this is a `low' fixup which matches l->fixp.  */
              /* Check whether this is a `low' fixup which matches l->fixp.  */
              if (FX_OPINFO_R_TYPE (f) == BFD_RELOC_LO16
              if (FX_OPINFO_R_TYPE (f) == BFD_RELOC_LO16
                  && f->fx_addsy == l->fixp->fx_addsy
                  && f->fx_addsy == l->fixp->fx_addsy
                  && f->fx_offset == l->fixp->fx_offset
                  && f->fx_offset == l->fixp->fx_offset
                  && (pass == 1
                  && (pass == 1
                      || prev == NULL
                      || prev == NULL
                      || (FX_OPINFO_R_TYPE (prev) != BFD_RELOC_HI16)
                      || (FX_OPINFO_R_TYPE (prev) != BFD_RELOC_HI16)
                      || prev->fx_addsy != f->fx_addsy
                      || prev->fx_addsy != f->fx_addsy
                      || prev->fx_offset !=  f->fx_offset))
                      || prev->fx_offset !=  f->fx_offset))
                {
                {
                  fixS ** pf;
                  fixS ** pf;
 
 
                  /* Move l->fixp before f.  */
                  /* Move l->fixp before f.  */
                  for (pf = &seginfo->fix_root;
                  for (pf = &seginfo->fix_root;
                       * pf != l->fixp;
                       * pf != l->fixp;
                       pf = & (* pf)->fx_next)
                       pf = & (* pf)->fx_next)
                    assert (* pf != NULL);
                    assert (* pf != NULL);
 
 
                  * pf = l->fixp->fx_next;
                  * pf = l->fixp->fx_next;
 
 
                  l->fixp->fx_next = f;
                  l->fixp->fx_next = f;
                  if (prev == NULL)
                  if (prev == NULL)
                    seginfo->fix_root = l->fixp;
                    seginfo->fix_root = l->fixp;
                  else
                  else
                    prev->fx_next = l->fixp;
                    prev->fx_next = l->fixp;
 
 
                  break;
                  break;
                }
                }
 
 
              prev = f;
              prev = f;
            }
            }
 
 
          if (f != NULL)
          if (f != NULL)
            break;
            break;
 
 
          if (pass == 1)
          if (pass == 1)
            as_warn_where (l->fixp->fx_file, l->fixp->fx_line,
            as_warn_where (l->fixp->fx_file, l->fixp->fx_line,
                           _("Unmatched high relocation"));
                           _("Unmatched high relocation"));
        }
        }
    }
    }
}
}
 
 
/* See whether we need to force a relocation into the output file.  */
/* See whether we need to force a relocation into the output file.  */
 
 
int
int
iq2000_force_relocation (fixS * fix)
iq2000_force_relocation (fixS * fix)
{
{
  if (fix->fx_r_type == BFD_RELOC_VTABLE_INHERIT
  if (fix->fx_r_type == BFD_RELOC_VTABLE_INHERIT
      || fix->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
      || fix->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
    return 1;
    return 1;
 
 
  return 0;
  return 0;
}
}


/* Handle the .set pseudo-op.  */
/* Handle the .set pseudo-op.  */
 
 
static void
static void
s_iq2000_set (int x ATTRIBUTE_UNUSED)
s_iq2000_set (int x ATTRIBUTE_UNUSED)
{
{
  static const char * ignored_arguments [] =
  static const char * ignored_arguments [] =
    {
    {
      "reorder",
      "reorder",
      "noreorder",
      "noreorder",
      "at",
      "at",
      "noat",
      "noat",
      "macro",
      "macro",
      "nomacro",
      "nomacro",
      "move",
      "move",
      "novolatile",
      "novolatile",
      "nomove",
      "nomove",
      "volatile",
      "volatile",
      "bopt",
      "bopt",
      "nobopt",
      "nobopt",
      NULL
      NULL
    };
    };
  const char ** ignored;
  const char ** ignored;
  char *name = input_line_pointer, ch;
  char *name = input_line_pointer, ch;
  char *save_ILP = input_line_pointer;
  char *save_ILP = input_line_pointer;
 
 
  while (!is_end_of_line[(unsigned char) *input_line_pointer])
  while (!is_end_of_line[(unsigned char) *input_line_pointer])
    input_line_pointer++;
    input_line_pointer++;
  ch = *input_line_pointer;
  ch = *input_line_pointer;
  *input_line_pointer = '\0';
  *input_line_pointer = '\0';
 
 
  for (ignored = ignored_arguments; * ignored; ignored ++)
  for (ignored = ignored_arguments; * ignored; ignored ++)
    if (strcmp (* ignored, name) == 0)
    if (strcmp (* ignored, name) == 0)
      break;
      break;
  if (* ignored == NULL)
  if (* ignored == NULL)
    {
    {
      /* We'd like to be able to use .set symbol, expn */
      /* We'd like to be able to use .set symbol, expn */
      input_line_pointer = save_ILP;
      input_line_pointer = save_ILP;
      s_set (0);
      s_set (0);
      return;
      return;
    }
    }
  *input_line_pointer = ch;
  *input_line_pointer = ch;
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}


/* Write a value out to the object file, using the appropriate endianness.  */
/* Write a value out to the object file, using the appropriate endianness.  */
 
 
void
void
md_number_to_chars (char * buf, valueT val, int n)
md_number_to_chars (char * buf, valueT val, int n)
{
{
  number_to_chars_bigendian (buf, val, n);
  number_to_chars_bigendian (buf, val, n);
}
}
 
 
void
void
md_operand (expressionS * exp)
md_operand (expressionS * exp)
{
{
  /* In case of a syntax error, escape back to try next syntax combo.  */
  /* In case of a syntax error, escape back to try next syntax combo.  */
  if (exp->X_op == O_absent)
  if (exp->X_op == O_absent)
    gas_cgen_md_operand (exp);
    gas_cgen_md_operand (exp);
}
}
 
 
char *
char *
md_atof (int type, char * litP, int * sizeP)
md_atof (int type, char * litP, int * sizeP)
{
{
  return ieee_md_atof (type, litP, sizeP, TRUE);
  return ieee_md_atof (type, litP, sizeP, TRUE);
}
}
 
 
bfd_boolean
bfd_boolean
iq2000_fix_adjustable (fixS * fixP)
iq2000_fix_adjustable (fixS * fixP)
{
{
  bfd_reloc_code_real_type reloc_type;
  bfd_reloc_code_real_type reloc_type;
 
 
  if ((int) fixP->fx_r_type >= (int) BFD_RELOC_UNUSED)
  if ((int) fixP->fx_r_type >= (int) BFD_RELOC_UNUSED)
    {
    {
      const CGEN_INSN *insn = NULL;
      const CGEN_INSN *insn = NULL;
      int opindex = (int) fixP->fx_r_type - (int) BFD_RELOC_UNUSED;
      int opindex = (int) fixP->fx_r_type - (int) BFD_RELOC_UNUSED;
      const CGEN_OPERAND *operand = cgen_operand_lookup_by_num(gas_cgen_cpu_desc, opindex);
      const CGEN_OPERAND *operand = cgen_operand_lookup_by_num(gas_cgen_cpu_desc, opindex);
 
 
      reloc_type = md_cgen_lookup_reloc (insn, operand, fixP);
      reloc_type = md_cgen_lookup_reloc (insn, operand, fixP);
    }
    }
  else
  else
    reloc_type = fixP->fx_r_type;
    reloc_type = fixP->fx_r_type;
 
 
  if (fixP->fx_addsy == NULL)
  if (fixP->fx_addsy == NULL)
    return TRUE;
    return TRUE;
 
 
  /* Prevent all adjustments to global symbols.  */
  /* Prevent all adjustments to global symbols.  */
  if (S_IS_EXTERNAL (fixP->fx_addsy))
  if (S_IS_EXTERNAL (fixP->fx_addsy))
    return FALSE;
    return FALSE;
 
 
  if (S_IS_WEAK (fixP->fx_addsy))
  if (S_IS_WEAK (fixP->fx_addsy))
    return FALSE;
    return FALSE;
 
 
  /* We need the symbol name for the VTABLE entries.  */
  /* We need the symbol name for the VTABLE entries.  */
  if (   reloc_type == BFD_RELOC_VTABLE_INHERIT
  if (   reloc_type == BFD_RELOC_VTABLE_INHERIT
      || reloc_type == BFD_RELOC_VTABLE_ENTRY)
      || reloc_type == BFD_RELOC_VTABLE_ENTRY)
    return FALSE;
    return FALSE;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
static void
static void
s_change_sec (int sec)
s_change_sec (int sec)
{
{
#ifdef OBJ_ELF
#ifdef OBJ_ELF
  /* The ELF backend needs to know that we are changing sections, so
  /* The ELF backend needs to know that we are changing sections, so
     that .previous works correctly.  We could do something like check
     that .previous works correctly.  We could do something like check
     for a obj_section_change_hook macro, but that might be confusing
     for a obj_section_change_hook macro, but that might be confusing
     as it would not be appropriate to use it in the section changing
     as it would not be appropriate to use it in the section changing
     functions in read.c, since obj-elf.c intercepts those.  FIXME:
     functions in read.c, since obj-elf.c intercepts those.  FIXME:
     This should be cleaner, somehow.  */
     This should be cleaner, somehow.  */
  obj_elf_section_change_hook ();
  obj_elf_section_change_hook ();
#endif
#endif
 
 
  switch (sec)
  switch (sec)
    {
    {
    case 't':
    case 't':
      s_text (0);
      s_text (0);
      break;
      break;
    case 'd':
    case 'd':
    case 'r':
    case 'r':
      s_data (0);
      s_data (0);
      break;
      break;
    }
    }
}
}
 
 
static symbolS *
static symbolS *
get_symbol (void)
get_symbol (void)
{
{
  int c;
  int c;
  char *name;
  char *name;
  symbolS *p;
  symbolS *p;
 
 
  name = input_line_pointer;
  name = input_line_pointer;
  c = get_symbol_end ();
  c = get_symbol_end ();
  p = (symbolS *) symbol_find_or_make (name);
  p = (symbolS *) symbol_find_or_make (name);
  *input_line_pointer = c;
  *input_line_pointer = c;
  return p;
  return p;
}
}
 
 
/* The .end directive.  */
/* The .end directive.  */
 
 
static void
static void
s_iq2000_end (int x ATTRIBUTE_UNUSED)
s_iq2000_end (int x ATTRIBUTE_UNUSED)
{
{
  symbolS *p;
  symbolS *p;
  int maybe_text;
  int maybe_text;
 
 
  if (!is_end_of_line[(unsigned char) *input_line_pointer])
  if (!is_end_of_line[(unsigned char) *input_line_pointer])
    {
    {
      p = get_symbol ();
      p = get_symbol ();
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
    }
    }
  else
  else
    p = NULL;
    p = NULL;
 
 
  if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
  if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
    maybe_text = 1;
    maybe_text = 1;
  else
  else
    maybe_text = 0;
    maybe_text = 0;
 
 
  if (!maybe_text)
  if (!maybe_text)
    as_warn (_(".end not in text section"));
    as_warn (_(".end not in text section"));
 
 
  if (!cur_proc_ptr)
  if (!cur_proc_ptr)
    {
    {
      as_warn (_(".end directive without a preceding .ent directive."));
      as_warn (_(".end directive without a preceding .ent directive."));
      demand_empty_rest_of_line ();
      demand_empty_rest_of_line ();
      return;
      return;
    }
    }
 
 
  if (p != NULL)
  if (p != NULL)
    {
    {
      assert (S_GET_NAME (p));
      assert (S_GET_NAME (p));
      if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->isym)))
      if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->isym)))
        as_warn (_(".end symbol does not match .ent symbol."));
        as_warn (_(".end symbol does not match .ent symbol."));
    }
    }
  else
  else
    as_warn (_(".end directive missing or unknown symbol"));
    as_warn (_(".end directive missing or unknown symbol"));
 
 
  cur_proc_ptr = NULL;
  cur_proc_ptr = NULL;
}
}
 
 
static int
static int
get_number (void)
get_number (void)
{
{
  int negative = 0;
  int negative = 0;
  long val = 0;
  long val = 0;
 
 
  if (*input_line_pointer == '-')
  if (*input_line_pointer == '-')
    {
    {
      ++input_line_pointer;
      ++input_line_pointer;
      negative = 1;
      negative = 1;
    }
    }
 
 
  if (! ISDIGIT (*input_line_pointer))
  if (! ISDIGIT (*input_line_pointer))
    as_bad (_("Expected simple number."));
    as_bad (_("Expected simple number."));
 
 
  if (input_line_pointer[0] == '0')
  if (input_line_pointer[0] == '0')
    {
    {
      if (input_line_pointer[1] == 'x')
      if (input_line_pointer[1] == 'x')
        {
        {
          input_line_pointer += 2;
          input_line_pointer += 2;
          while (ISXDIGIT (*input_line_pointer))
          while (ISXDIGIT (*input_line_pointer))
            {
            {
              val <<= 4;
              val <<= 4;
              val |= hex_value (*input_line_pointer++);
              val |= hex_value (*input_line_pointer++);
            }
            }
          return negative ? -val : val;
          return negative ? -val : val;
        }
        }
      else
      else
        {
        {
          ++input_line_pointer;
          ++input_line_pointer;
 
 
          while (ISDIGIT (*input_line_pointer))
          while (ISDIGIT (*input_line_pointer))
            {
            {
              val <<= 3;
              val <<= 3;
              val |= *input_line_pointer++ - '0';
              val |= *input_line_pointer++ - '0';
            }
            }
          return negative ? -val : val;
          return negative ? -val : val;
        }
        }
    }
    }
 
 
  if (! ISDIGIT (*input_line_pointer))
  if (! ISDIGIT (*input_line_pointer))
    {
    {
      printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
      printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
              *input_line_pointer, *input_line_pointer);
              *input_line_pointer, *input_line_pointer);
      as_warn (_("Invalid number"));
      as_warn (_("Invalid number"));
      return -1;
      return -1;
    }
    }
 
 
  while (ISDIGIT (*input_line_pointer))
  while (ISDIGIT (*input_line_pointer))
    {
    {
      val *= 10;
      val *= 10;
      val += *input_line_pointer++ - '0';
      val += *input_line_pointer++ - '0';
    }
    }
 
 
  return negative ? -val : val;
  return negative ? -val : val;
}
}
 
 
/* The .aent and .ent directives.  */
/* The .aent and .ent directives.  */
 
 
static void
static void
s_iq2000_ent (int aent)
s_iq2000_ent (int aent)
{
{
  int number = 0;
  int number = 0;
  symbolS *symbolP;
  symbolS *symbolP;
  int maybe_text;
  int maybe_text;
 
 
  symbolP = get_symbol ();
  symbolP = get_symbol ();
  if (*input_line_pointer == ',')
  if (*input_line_pointer == ',')
    input_line_pointer++;
    input_line_pointer++;
  SKIP_WHITESPACE ();
  SKIP_WHITESPACE ();
  if (ISDIGIT (*input_line_pointer) || *input_line_pointer == '-')
  if (ISDIGIT (*input_line_pointer) || *input_line_pointer == '-')
    number = get_number ();
    number = get_number ();
 
 
  if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
  if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
    maybe_text = 1;
    maybe_text = 1;
  else
  else
    maybe_text = 0;
    maybe_text = 0;
 
 
  if (!maybe_text)
  if (!maybe_text)
    as_warn (_(".ent or .aent not in text section."));
    as_warn (_(".ent or .aent not in text section."));
 
 
  if (!aent && cur_proc_ptr)
  if (!aent && cur_proc_ptr)
    as_warn (_("missing `.end'"));
    as_warn (_("missing `.end'"));
 
 
  if (!aent)
  if (!aent)
    {
    {
      cur_proc_ptr = &cur_proc;
      cur_proc_ptr = &cur_proc;
      memset (cur_proc_ptr, '\0', sizeof (procS));
      memset (cur_proc_ptr, '\0', sizeof (procS));
 
 
      cur_proc_ptr->isym = symbolP;
      cur_proc_ptr->isym = symbolP;
 
 
      symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
      symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
 
 
      numprocs++;
      numprocs++;
    }
    }
 
 
  demand_empty_rest_of_line ();
  demand_empty_rest_of_line ();
}
}
 
 
/* The .frame directive. If the mdebug section is present (IRIX 5 native)
/* The .frame directive. If the mdebug section is present (IRIX 5 native)
   then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
   then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
   s_iq2000_frame is used so that we can set the PDR information correctly.
   s_iq2000_frame is used so that we can set the PDR information correctly.
   We can't use the ecoff routines because they make reference to the ecoff
   We can't use the ecoff routines because they make reference to the ecoff
   symbol table (in the mdebug section).  */
   symbol table (in the mdebug section).  */
 
 
static void
static void
s_iq2000_frame (int ignore)
s_iq2000_frame (int ignore)
{
{
  s_ignore (ignore);
  s_ignore (ignore);
}
}
 
 
/* The .fmask and .mask directives. If the mdebug section is present
/* The .fmask and .mask directives. If the mdebug section is present
   (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
   (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
   embedded targets, s_iq2000_mask is used so that we can set the PDR
   embedded targets, s_iq2000_mask is used so that we can set the PDR
   information correctly. We can't use the ecoff routines because they
   information correctly. We can't use the ecoff routines because they
   make reference to the ecoff symbol table (in the mdebug section).  */
   make reference to the ecoff symbol table (in the mdebug section).  */
 
 
static void
static void
s_iq2000_mask (int reg_type)
s_iq2000_mask (int reg_type)
{
{
  s_ignore (reg_type);
  s_ignore (reg_type);
}
}
 
 
/* The target specific pseudo-ops which we support.  */
/* The target specific pseudo-ops which we support.  */
const pseudo_typeS md_pseudo_table[] =
const pseudo_typeS md_pseudo_table[] =
{
{
    { "align",  s_align_bytes,           0 },
    { "align",  s_align_bytes,           0 },
    { "word",   cons,                    4 },
    { "word",   cons,                    4 },
    { "rdata",  s_change_sec,           'r'},
    { "rdata",  s_change_sec,           'r'},
    { "sdata",  s_change_sec,           's'},
    { "sdata",  s_change_sec,           's'},
    { "set",    s_iq2000_set,            0 },
    { "set",    s_iq2000_set,            0 },
    { "ent",    s_iq2000_ent,            0 },
    { "ent",    s_iq2000_ent,            0 },
    { "end",    s_iq2000_end,            0 },
    { "end",    s_iq2000_end,            0 },
    { "frame",  s_iq2000_frame,          0 },
    { "frame",  s_iq2000_frame,          0 },
    { "fmask",  s_iq2000_mask,          'F'},
    { "fmask",  s_iq2000_mask,          'F'},
    { "mask",   s_iq2000_mask,          'R'},
    { "mask",   s_iq2000_mask,          'R'},
    { "dword",  cons,                    8 },
    { "dword",  cons,                    8 },
    { "half",   cons,                    2 },
    { "half",   cons,                    2 },
    { NULL,     NULL,                    0 }
    { NULL,     NULL,                    0 }
};
};
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.