OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [binutils-2.18.50/] [ld/] [ldcref.c] - Diff between revs 156 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 156 Rev 816
/* ldcref.c -- output a cross reference table
/* ldcref.c -- output a cross reference table
   Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006,
   Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2006,
   2007, 2008  Free Software Foundation, Inc.
   2007, 2008  Free Software Foundation, Inc.
   Written by Ian Lance Taylor <ian@cygnus.com>
   Written by Ian Lance Taylor <ian@cygnus.com>
 
 
   This file is part of the GNU Binutils.
   This file is part of the GNU Binutils.
 
 
   This program is free software; you can redistribute it and/or modify
   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.
   (at your option) any later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */
   MA 02110-1301, USA.  */
 
 
 
 
/* This file holds routines that manage the cross reference table.
/* This file holds routines that manage the cross reference table.
   The table is used to generate cross reference reports.  It is also
   The table is used to generate cross reference reports.  It is also
   used to implement the NOCROSSREFS command in the linker script.  */
   used to implement the NOCROSSREFS command in the linker script.  */
 
 
#include "sysdep.h"
#include "sysdep.h"
#include "bfd.h"
#include "bfd.h"
#include "bfdlink.h"
#include "bfdlink.h"
#include "libiberty.h"
#include "libiberty.h"
#include "demangle.h"
#include "demangle.h"
#include "objalloc.h"
#include "objalloc.h"
 
 
#include "ld.h"
#include "ld.h"
#include "ldmain.h"
#include "ldmain.h"
#include "ldmisc.h"
#include "ldmisc.h"
#include "ldexp.h"
#include "ldexp.h"
#include "ldlang.h"
#include "ldlang.h"
 
 
/* We keep an instance of this structure for each reference to a
/* We keep an instance of this structure for each reference to a
   symbol from a given object.  */
   symbol from a given object.  */
 
 
struct cref_ref {
struct cref_ref {
  /* The next reference.  */
  /* The next reference.  */
  struct cref_ref *next;
  struct cref_ref *next;
  /* The object.  */
  /* The object.  */
  bfd *abfd;
  bfd *abfd;
  /* True if the symbol is defined.  */
  /* True if the symbol is defined.  */
  unsigned int def : 1;
  unsigned int def : 1;
  /* True if the symbol is common.  */
  /* True if the symbol is common.  */
  unsigned int common : 1;
  unsigned int common : 1;
  /* True if the symbol is undefined.  */
  /* True if the symbol is undefined.  */
  unsigned int undef : 1;
  unsigned int undef : 1;
};
};
 
 
/* We keep a hash table of symbols.  Each entry looks like this.  */
/* We keep a hash table of symbols.  Each entry looks like this.  */
 
 
struct cref_hash_entry {
struct cref_hash_entry {
  struct bfd_hash_entry root;
  struct bfd_hash_entry root;
  /* The demangled name.  */
  /* The demangled name.  */
  const char *demangled;
  const char *demangled;
  /* References to and definitions of this symbol.  */
  /* References to and definitions of this symbol.  */
  struct cref_ref *refs;
  struct cref_ref *refs;
};
};
 
 
/* This is what the hash table looks like.  */
/* This is what the hash table looks like.  */
 
 
struct cref_hash_table {
struct cref_hash_table {
  struct bfd_hash_table root;
  struct bfd_hash_table root;
};
};
 
 
/* Forward declarations.  */
/* Forward declarations.  */
 
 
static void output_one_cref (FILE *, struct cref_hash_entry *);
static void output_one_cref (FILE *, struct cref_hash_entry *);
static void check_local_sym_xref (lang_input_statement_type *);
static void check_local_sym_xref (lang_input_statement_type *);
static bfd_boolean check_nocrossref (struct cref_hash_entry *, void *);
static bfd_boolean check_nocrossref (struct cref_hash_entry *, void *);
static void check_refs (const char *, bfd_boolean, asection *, bfd *,
static void check_refs (const char *, bfd_boolean, asection *, bfd *,
                        struct lang_nocrossrefs *);
                        struct lang_nocrossrefs *);
static void check_reloc_refs (bfd *, asection *, void *);
static void check_reloc_refs (bfd *, asection *, void *);
 
 
/* Look up an entry in the cref hash table.  */
/* Look up an entry in the cref hash table.  */
 
 
#define cref_hash_lookup(table, string, create, copy)           \
#define cref_hash_lookup(table, string, create, copy)           \
  ((struct cref_hash_entry *)                                   \
  ((struct cref_hash_entry *)                                   \
   bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
   bfd_hash_lookup (&(table)->root, (string), (create), (copy)))
 
 
/* Traverse the cref hash table.  */
/* Traverse the cref hash table.  */
 
 
#define cref_hash_traverse(table, func, info)                           \
#define cref_hash_traverse(table, func, info)                           \
  (bfd_hash_traverse                                                    \
  (bfd_hash_traverse                                                    \
   (&(table)->root,                                                     \
   (&(table)->root,                                                     \
    (bfd_boolean (*) (struct bfd_hash_entry *, void *)) (func),         \
    (bfd_boolean (*) (struct bfd_hash_entry *, void *)) (func),         \
    (info)))
    (info)))
 
 
/* The cref hash table.  */
/* The cref hash table.  */
 
 
static struct cref_hash_table cref_table;
static struct cref_hash_table cref_table;
 
 
/* Whether the cref hash table has been initialized.  */
/* Whether the cref hash table has been initialized.  */
 
 
static bfd_boolean cref_initialized;
static bfd_boolean cref_initialized;
 
 
/* The number of symbols seen so far.  */
/* The number of symbols seen so far.  */
 
 
static size_t cref_symcount;
static size_t cref_symcount;
 
 
/* Used to take a snapshot of the cref hash table when starting to
/* Used to take a snapshot of the cref hash table when starting to
   add syms from an as-needed library.  */
   add syms from an as-needed library.  */
static struct bfd_hash_entry **old_table;
static struct bfd_hash_entry **old_table;
static unsigned int old_size;
static unsigned int old_size;
static unsigned int old_count;
static unsigned int old_count;
static void *old_tab;
static void *old_tab;
static void *alloc_mark;
static void *alloc_mark;
static size_t tabsize, entsize, refsize;
static size_t tabsize, entsize, refsize;
static size_t old_symcount;
static size_t old_symcount;
 
 
/* Create an entry in a cref hash table.  */
/* Create an entry in a cref hash table.  */
 
 
static struct bfd_hash_entry *
static struct bfd_hash_entry *
cref_hash_newfunc (struct bfd_hash_entry *entry,
cref_hash_newfunc (struct bfd_hash_entry *entry,
                   struct bfd_hash_table *table,
                   struct bfd_hash_table *table,
                   const char *string)
                   const char *string)
{
{
  struct cref_hash_entry *ret = (struct cref_hash_entry *) entry;
  struct cref_hash_entry *ret = (struct cref_hash_entry *) entry;
 
 
  /* Allocate the structure if it has not already been allocated by a
  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
     subclass.  */
  if (ret == NULL)
  if (ret == NULL)
    ret = ((struct cref_hash_entry *)
    ret = ((struct cref_hash_entry *)
           bfd_hash_allocate (table, sizeof (struct cref_hash_entry)));
           bfd_hash_allocate (table, sizeof (struct cref_hash_entry)));
  if (ret == NULL)
  if (ret == NULL)
    return NULL;
    return NULL;
 
 
  /* Call the allocation method of the superclass.  */
  /* Call the allocation method of the superclass.  */
  ret = ((struct cref_hash_entry *)
  ret = ((struct cref_hash_entry *)
         bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
         bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
  if (ret != NULL)
  if (ret != NULL)
    {
    {
      /* Set local fields.  */
      /* Set local fields.  */
      ret->demangled = NULL;
      ret->demangled = NULL;
      ret->refs = NULL;
      ret->refs = NULL;
 
 
      /* Keep a count of the number of entries created in the hash
      /* Keep a count of the number of entries created in the hash
         table.  */
         table.  */
      ++cref_symcount;
      ++cref_symcount;
    }
    }
 
 
  return &ret->root;
  return &ret->root;
}
}
 
 
/* Add a symbol to the cref hash table.  This is called for every
/* Add a symbol to the cref hash table.  This is called for every
   global symbol that is seen during the link.  */
   global symbol that is seen during the link.  */
 
 
void
void
add_cref (const char *name,
add_cref (const char *name,
          bfd *abfd,
          bfd *abfd,
          asection *section,
          asection *section,
          bfd_vma value ATTRIBUTE_UNUSED)
          bfd_vma value ATTRIBUTE_UNUSED)
{
{
  struct cref_hash_entry *h;
  struct cref_hash_entry *h;
  struct cref_ref *r;
  struct cref_ref *r;
 
 
  if (! cref_initialized)
  if (! cref_initialized)
    {
    {
      if (!bfd_hash_table_init (&cref_table.root, cref_hash_newfunc,
      if (!bfd_hash_table_init (&cref_table.root, cref_hash_newfunc,
                                sizeof (struct cref_hash_entry)))
                                sizeof (struct cref_hash_entry)))
        einfo (_("%X%P: bfd_hash_table_init of cref table failed: %E\n"));
        einfo (_("%X%P: bfd_hash_table_init of cref table failed: %E\n"));
      cref_initialized = TRUE;
      cref_initialized = TRUE;
    }
    }
 
 
  h = cref_hash_lookup (&cref_table, name, TRUE, FALSE);
  h = cref_hash_lookup (&cref_table, name, TRUE, FALSE);
  if (h == NULL)
  if (h == NULL)
    einfo (_("%X%P: cref_hash_lookup failed: %E\n"));
    einfo (_("%X%P: cref_hash_lookup failed: %E\n"));
 
 
  for (r = h->refs; r != NULL; r = r->next)
  for (r = h->refs; r != NULL; r = r->next)
    if (r->abfd == abfd)
    if (r->abfd == abfd)
      break;
      break;
 
 
  if (r == NULL)
  if (r == NULL)
    {
    {
      r = bfd_hash_allocate (&cref_table.root, sizeof *r);
      r = bfd_hash_allocate (&cref_table.root, sizeof *r);
      if (r == NULL)
      if (r == NULL)
        einfo (_("%X%P: cref alloc failed: %E\n"));
        einfo (_("%X%P: cref alloc failed: %E\n"));
      r->next = h->refs;
      r->next = h->refs;
      h->refs = r;
      h->refs = r;
      r->abfd = abfd;
      r->abfd = abfd;
      r->def = FALSE;
      r->def = FALSE;
      r->common = FALSE;
      r->common = FALSE;
      r->undef = FALSE;
      r->undef = FALSE;
    }
    }
 
 
  if (bfd_is_und_section (section))
  if (bfd_is_und_section (section))
    r->undef = TRUE;
    r->undef = TRUE;
  else if (bfd_is_com_section (section))
  else if (bfd_is_com_section (section))
    r->common = TRUE;
    r->common = TRUE;
  else
  else
    r->def = TRUE;
    r->def = TRUE;
}
}
 
 
/* Called before loading an as-needed library to take a snapshot of
/* Called before loading an as-needed library to take a snapshot of
   the cref hash table, and after we have loaded or found that the
   the cref hash table, and after we have loaded or found that the
   library was not needed.  */
   library was not needed.  */
 
 
bfd_boolean
bfd_boolean
handle_asneeded_cref (bfd *abfd ATTRIBUTE_UNUSED,
handle_asneeded_cref (bfd *abfd ATTRIBUTE_UNUSED,
                      enum notice_asneeded_action act)
                      enum notice_asneeded_action act)
{
{
  unsigned int i;
  unsigned int i;
 
 
  if (!cref_initialized)
  if (!cref_initialized)
    return TRUE;
    return TRUE;
 
 
  if (act == notice_as_needed)
  if (act == notice_as_needed)
    {
    {
      char *old_ent, *old_ref;
      char *old_ent, *old_ref;
 
 
      for (i = 0; i < cref_table.root.size; i++)
      for (i = 0; i < cref_table.root.size; i++)
        {
        {
          struct bfd_hash_entry *p;
          struct bfd_hash_entry *p;
          struct cref_hash_entry *c;
          struct cref_hash_entry *c;
          struct cref_ref *r;
          struct cref_ref *r;
 
 
          for (p = cref_table.root.table[i]; p != NULL; p = p->next)
          for (p = cref_table.root.table[i]; p != NULL; p = p->next)
            {
            {
              entsize += cref_table.root.entsize;
              entsize += cref_table.root.entsize;
              c = (struct cref_hash_entry *) p;
              c = (struct cref_hash_entry *) p;
              for (r = c->refs; r != NULL; r = r->next)
              for (r = c->refs; r != NULL; r = r->next)
                refsize += sizeof (struct cref_hash_entry);
                refsize += sizeof (struct cref_hash_entry);
            }
            }
        }
        }
 
 
      tabsize = cref_table.root.size * sizeof (struct bfd_hash_entry *);
      tabsize = cref_table.root.size * sizeof (struct bfd_hash_entry *);
      old_tab = xmalloc (tabsize + entsize + refsize);
      old_tab = xmalloc (tabsize + entsize + refsize);
 
 
      alloc_mark = bfd_hash_allocate (&cref_table.root, 1);
      alloc_mark = bfd_hash_allocate (&cref_table.root, 1);
      if (alloc_mark == NULL)
      if (alloc_mark == NULL)
        return FALSE;
        return FALSE;
 
 
      memcpy (old_tab, cref_table.root.table, tabsize);
      memcpy (old_tab, cref_table.root.table, tabsize);
      old_ent = (char *) old_tab + tabsize;
      old_ent = (char *) old_tab + tabsize;
      old_ref = (char *) old_ent + entsize;
      old_ref = (char *) old_ent + entsize;
      old_table = cref_table.root.table;
      old_table = cref_table.root.table;
      old_size = cref_table.root.size;
      old_size = cref_table.root.size;
      old_count = cref_table.root.count;
      old_count = cref_table.root.count;
      old_symcount = cref_symcount;
      old_symcount = cref_symcount;
 
 
      for (i = 0; i < cref_table.root.size; i++)
      for (i = 0; i < cref_table.root.size; i++)
        {
        {
          struct bfd_hash_entry *p;
          struct bfd_hash_entry *p;
          struct cref_hash_entry *c;
          struct cref_hash_entry *c;
          struct cref_ref *r;
          struct cref_ref *r;
 
 
          for (p = cref_table.root.table[i]; p != NULL; p = p->next)
          for (p = cref_table.root.table[i]; p != NULL; p = p->next)
            {
            {
              memcpy (old_ent, p, cref_table.root.entsize);
              memcpy (old_ent, p, cref_table.root.entsize);
              old_ent = (char *) old_ent + cref_table.root.entsize;
              old_ent = (char *) old_ent + cref_table.root.entsize;
              c = (struct cref_hash_entry *) p;
              c = (struct cref_hash_entry *) p;
              for (r = c->refs; r != NULL; r = r->next)
              for (r = c->refs; r != NULL; r = r->next)
                {
                {
                  memcpy (old_ref, r, sizeof (struct cref_hash_entry));
                  memcpy (old_ref, r, sizeof (struct cref_hash_entry));
                  old_ref = (char *) old_ref + sizeof (struct cref_hash_entry);
                  old_ref = (char *) old_ref + sizeof (struct cref_hash_entry);
                }
                }
            }
            }
        }
        }
      return TRUE;
      return TRUE;
    }
    }
 
 
  if (act == notice_not_needed)
  if (act == notice_not_needed)
    {
    {
      char *old_ent, *old_ref;
      char *old_ent, *old_ref;
 
 
      if (old_tab == NULL)
      if (old_tab == NULL)
        {
        {
          /* The only way old_tab can be NULL is if the cref hash table
          /* The only way old_tab can be NULL is if the cref hash table
             had not been initialised when notice_as_needed.  */
             had not been initialised when notice_as_needed.  */
          bfd_hash_table_free (&cref_table.root);
          bfd_hash_table_free (&cref_table.root);
          cref_initialized = FALSE;
          cref_initialized = FALSE;
          return TRUE;
          return TRUE;
        }
        }
 
 
      old_ent = (char *) old_tab + tabsize;
      old_ent = (char *) old_tab + tabsize;
      old_ref = (char *) old_ent + entsize;
      old_ref = (char *) old_ent + entsize;
      cref_table.root.table = old_table;
      cref_table.root.table = old_table;
      cref_table.root.size = old_size;
      cref_table.root.size = old_size;
      cref_table.root.count = old_count;
      cref_table.root.count = old_count;
      memcpy (cref_table.root.table, old_tab, tabsize);
      memcpy (cref_table.root.table, old_tab, tabsize);
      cref_symcount = old_symcount;
      cref_symcount = old_symcount;
 
 
      for (i = 0; i < cref_table.root.size; i++)
      for (i = 0; i < cref_table.root.size; i++)
        {
        {
          struct bfd_hash_entry *p;
          struct bfd_hash_entry *p;
          struct cref_hash_entry *c;
          struct cref_hash_entry *c;
          struct cref_ref *r;
          struct cref_ref *r;
 
 
          for (p = cref_table.root.table[i]; p != NULL; p = p->next)
          for (p = cref_table.root.table[i]; p != NULL; p = p->next)
            {
            {
              memcpy (p, old_ent, cref_table.root.entsize);
              memcpy (p, old_ent, cref_table.root.entsize);
              old_ent = (char *) old_ent + cref_table.root.entsize;
              old_ent = (char *) old_ent + cref_table.root.entsize;
              c = (struct cref_hash_entry *) p;
              c = (struct cref_hash_entry *) p;
              for (r = c->refs; r != NULL; r = r->next)
              for (r = c->refs; r != NULL; r = r->next)
                {
                {
                  memcpy (r, old_ref, sizeof (struct cref_hash_entry));
                  memcpy (r, old_ref, sizeof (struct cref_hash_entry));
                  old_ref = (char *) old_ref + sizeof (struct cref_hash_entry);
                  old_ref = (char *) old_ref + sizeof (struct cref_hash_entry);
                }
                }
            }
            }
        }
        }
 
 
      objalloc_free_block ((struct objalloc *) cref_table.root.memory,
      objalloc_free_block ((struct objalloc *) cref_table.root.memory,
                           alloc_mark);
                           alloc_mark);
    }
    }
  else if (act != notice_needed)
  else if (act != notice_needed)
    return FALSE;
    return FALSE;
 
 
  free (old_tab);
  free (old_tab);
  old_tab = NULL;
  old_tab = NULL;
  return TRUE;
  return TRUE;
}
}
 
 
/* Copy the addresses of the hash table entries into an array.  This
/* Copy the addresses of the hash table entries into an array.  This
   is called via cref_hash_traverse.  We also fill in the demangled
   is called via cref_hash_traverse.  We also fill in the demangled
   name.  */
   name.  */
 
 
static bfd_boolean
static bfd_boolean
cref_fill_array (struct cref_hash_entry *h, void *data)
cref_fill_array (struct cref_hash_entry *h, void *data)
{
{
  struct cref_hash_entry ***pph = data;
  struct cref_hash_entry ***pph = data;
 
 
  ASSERT (h->demangled == NULL);
  ASSERT (h->demangled == NULL);
  h->demangled = bfd_demangle (link_info.output_bfd, h->root.string,
  h->demangled = bfd_demangle (link_info.output_bfd, h->root.string,
                               DMGL_ANSI | DMGL_PARAMS);
                               DMGL_ANSI | DMGL_PARAMS);
  if (h->demangled == NULL)
  if (h->demangled == NULL)
    h->demangled = h->root.string;
    h->demangled = h->root.string;
 
 
  **pph = h;
  **pph = h;
 
 
  ++*pph;
  ++*pph;
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* Sort an array of cref hash table entries by name.  */
/* Sort an array of cref hash table entries by name.  */
 
 
static int
static int
cref_sort_array (const void *a1, const void *a2)
cref_sort_array (const void *a1, const void *a2)
{
{
  const struct cref_hash_entry * const *p1 = a1;
  const struct cref_hash_entry * const *p1 = a1;
  const struct cref_hash_entry * const *p2 = a2;
  const struct cref_hash_entry * const *p2 = a2;
 
 
  return strcmp ((*p1)->demangled, (*p2)->demangled);
  return strcmp ((*p1)->demangled, (*p2)->demangled);
}
}
 
 
/* Write out the cref table.  */
/* Write out the cref table.  */
 
 
#define FILECOL (50)
#define FILECOL (50)
 
 
void
void
output_cref (FILE *fp)
output_cref (FILE *fp)
{
{
  int len;
  int len;
  struct cref_hash_entry **csyms, **csym_fill, **csym, **csym_end;
  struct cref_hash_entry **csyms, **csym_fill, **csym, **csym_end;
  const char *msg;
  const char *msg;
 
 
  fprintf (fp, _("\nCross Reference Table\n\n"));
  fprintf (fp, _("\nCross Reference Table\n\n"));
  msg = _("Symbol");
  msg = _("Symbol");
  fprintf (fp, "%s", msg);
  fprintf (fp, "%s", msg);
  len = strlen (msg);
  len = strlen (msg);
  while (len < FILECOL)
  while (len < FILECOL)
    {
    {
      putc (' ', fp);
      putc (' ', fp);
      ++len;
      ++len;
    }
    }
  fprintf (fp, _("File\n"));
  fprintf (fp, _("File\n"));
 
 
  if (! cref_initialized)
  if (! cref_initialized)
    {
    {
      fprintf (fp, _("No symbols\n"));
      fprintf (fp, _("No symbols\n"));
      return;
      return;
    }
    }
 
 
  csyms = xmalloc (cref_symcount * sizeof (*csyms));
  csyms = xmalloc (cref_symcount * sizeof (*csyms));
 
 
  csym_fill = csyms;
  csym_fill = csyms;
  cref_hash_traverse (&cref_table, cref_fill_array, &csym_fill);
  cref_hash_traverse (&cref_table, cref_fill_array, &csym_fill);
  ASSERT ((size_t) (csym_fill - csyms) == cref_symcount);
  ASSERT ((size_t) (csym_fill - csyms) == cref_symcount);
 
 
  qsort (csyms, cref_symcount, sizeof (*csyms), cref_sort_array);
  qsort (csyms, cref_symcount, sizeof (*csyms), cref_sort_array);
 
 
  csym_end = csyms + cref_symcount;
  csym_end = csyms + cref_symcount;
  for (csym = csyms; csym < csym_end; csym++)
  for (csym = csyms; csym < csym_end; csym++)
    output_one_cref (fp, *csym);
    output_one_cref (fp, *csym);
}
}
 
 
/* Output one entry in the cross reference table.  */
/* Output one entry in the cross reference table.  */
 
 
static void
static void
output_one_cref (FILE *fp, struct cref_hash_entry *h)
output_one_cref (FILE *fp, struct cref_hash_entry *h)
{
{
  int len;
  int len;
  struct bfd_link_hash_entry *hl;
  struct bfd_link_hash_entry *hl;
  struct cref_ref *r;
  struct cref_ref *r;
 
 
  hl = bfd_link_hash_lookup (link_info.hash, h->root.string, FALSE,
  hl = bfd_link_hash_lookup (link_info.hash, h->root.string, FALSE,
                             FALSE, TRUE);
                             FALSE, TRUE);
  if (hl == NULL)
  if (hl == NULL)
    einfo ("%P: symbol `%T' missing from main hash table\n",
    einfo ("%P: symbol `%T' missing from main hash table\n",
           h->root.string);
           h->root.string);
  else
  else
    {
    {
      /* If this symbol is defined in a dynamic object but never
      /* If this symbol is defined in a dynamic object but never
         referenced by a normal object, then don't print it.  */
         referenced by a normal object, then don't print it.  */
      if (hl->type == bfd_link_hash_defined)
      if (hl->type == bfd_link_hash_defined)
        {
        {
          if (hl->u.def.section->output_section == NULL)
          if (hl->u.def.section->output_section == NULL)
            return;
            return;
          if (hl->u.def.section->owner != NULL
          if (hl->u.def.section->owner != NULL
              && (hl->u.def.section->owner->flags & DYNAMIC) != 0)
              && (hl->u.def.section->owner->flags & DYNAMIC) != 0)
            {
            {
              for (r = h->refs; r != NULL; r = r->next)
              for (r = h->refs; r != NULL; r = r->next)
                if ((r->abfd->flags & DYNAMIC) == 0)
                if ((r->abfd->flags & DYNAMIC) == 0)
                  break;
                  break;
              if (r == NULL)
              if (r == NULL)
                return;
                return;
            }
            }
        }
        }
    }
    }
 
 
  fprintf (fp, "%s ", h->demangled);
  fprintf (fp, "%s ", h->demangled);
  len = strlen (h->demangled) + 1;
  len = strlen (h->demangled) + 1;
 
 
  for (r = h->refs; r != NULL; r = r->next)
  for (r = h->refs; r != NULL; r = r->next)
    {
    {
      if (r->def)
      if (r->def)
        {
        {
          while (len < FILECOL)
          while (len < FILECOL)
            {
            {
              putc (' ', fp);
              putc (' ', fp);
              ++len;
              ++len;
            }
            }
          lfinfo (fp, "%B\n", r->abfd);
          lfinfo (fp, "%B\n", r->abfd);
          len = 0;
          len = 0;
        }
        }
    }
    }
 
 
  for (r = h->refs; r != NULL; r = r->next)
  for (r = h->refs; r != NULL; r = r->next)
    {
    {
      if (! r->def)
      if (! r->def)
        {
        {
          while (len < FILECOL)
          while (len < FILECOL)
            {
            {
              putc (' ', fp);
              putc (' ', fp);
              ++len;
              ++len;
            }
            }
          lfinfo (fp, "%B\n", r->abfd);
          lfinfo (fp, "%B\n", r->abfd);
          len = 0;
          len = 0;
        }
        }
    }
    }
 
 
  ASSERT (len == 0);
  ASSERT (len == 0);
}
}
 
 
/* Check for prohibited cross references.  */
/* Check for prohibited cross references.  */
 
 
void
void
check_nocrossrefs (void)
check_nocrossrefs (void)
{
{
  if (! cref_initialized)
  if (! cref_initialized)
    return;
    return;
 
 
  cref_hash_traverse (&cref_table, check_nocrossref, NULL);
  cref_hash_traverse (&cref_table, check_nocrossref, NULL);
 
 
  lang_for_each_file (check_local_sym_xref);
  lang_for_each_file (check_local_sym_xref);
}
}
 
 
/* Check for prohibited cross references to local and section symbols.  */
/* Check for prohibited cross references to local and section symbols.  */
 
 
static void
static void
check_local_sym_xref (lang_input_statement_type *statement)
check_local_sym_xref (lang_input_statement_type *statement)
{
{
  bfd *abfd;
  bfd *abfd;
  lang_input_statement_type *li;
  lang_input_statement_type *li;
  asymbol **asymbols, **syms;
  asymbol **asymbols, **syms;
 
 
  abfd = statement->the_bfd;
  abfd = statement->the_bfd;
  if (abfd == NULL)
  if (abfd == NULL)
    return;
    return;
 
 
  li = abfd->usrdata;
  li = abfd->usrdata;
  if (li != NULL && li->asymbols != NULL)
  if (li != NULL && li->asymbols != NULL)
    asymbols = li->asymbols;
    asymbols = li->asymbols;
  else
  else
    {
    {
      long symsize;
      long symsize;
      long symbol_count;
      long symbol_count;
 
 
      symsize = bfd_get_symtab_upper_bound (abfd);
      symsize = bfd_get_symtab_upper_bound (abfd);
      if (symsize < 0)
      if (symsize < 0)
        einfo (_("%B%F: could not read symbols; %E\n"), abfd);
        einfo (_("%B%F: could not read symbols; %E\n"), abfd);
      asymbols = xmalloc (symsize);
      asymbols = xmalloc (symsize);
      symbol_count = bfd_canonicalize_symtab (abfd, asymbols);
      symbol_count = bfd_canonicalize_symtab (abfd, asymbols);
      if (symbol_count < 0)
      if (symbol_count < 0)
        einfo (_("%B%F: could not read symbols: %E\n"), abfd);
        einfo (_("%B%F: could not read symbols: %E\n"), abfd);
      if (li != NULL)
      if (li != NULL)
        {
        {
          li->asymbols = asymbols;
          li->asymbols = asymbols;
          li->symbol_count = symbol_count;
          li->symbol_count = symbol_count;
        }
        }
    }
    }
 
 
  for (syms = asymbols; *syms; ++syms)
  for (syms = asymbols; *syms; ++syms)
    {
    {
      asymbol *sym = *syms;
      asymbol *sym = *syms;
      if (sym->flags & (BSF_GLOBAL | BSF_WARNING | BSF_INDIRECT | BSF_FILE))
      if (sym->flags & (BSF_GLOBAL | BSF_WARNING | BSF_INDIRECT | BSF_FILE))
        continue;
        continue;
      if ((sym->flags & (BSF_LOCAL | BSF_SECTION_SYM)) != 0
      if ((sym->flags & (BSF_LOCAL | BSF_SECTION_SYM)) != 0
          && sym->section->output_section != NULL)
          && sym->section->output_section != NULL)
        {
        {
          const char *outsecname, *symname;
          const char *outsecname, *symname;
          struct lang_nocrossrefs *ncrs;
          struct lang_nocrossrefs *ncrs;
          struct lang_nocrossref *ncr;
          struct lang_nocrossref *ncr;
 
 
          outsecname = sym->section->output_section->name;
          outsecname = sym->section->output_section->name;
          symname = NULL;
          symname = NULL;
          if ((sym->flags & BSF_SECTION_SYM) == 0)
          if ((sym->flags & BSF_SECTION_SYM) == 0)
            symname = sym->name;
            symname = sym->name;
          for (ncrs = nocrossref_list; ncrs != NULL; ncrs = ncrs->next)
          for (ncrs = nocrossref_list; ncrs != NULL; ncrs = ncrs->next)
            for (ncr = ncrs->list; ncr != NULL; ncr = ncr->next)
            for (ncr = ncrs->list; ncr != NULL; ncr = ncr->next)
              if (strcmp (ncr->name, outsecname) == 0)
              if (strcmp (ncr->name, outsecname) == 0)
                check_refs (symname, FALSE, sym->section, abfd, ncrs);
                check_refs (symname, FALSE, sym->section, abfd, ncrs);
        }
        }
    }
    }
 
 
  if (li == NULL)
  if (li == NULL)
    free (asymbols);
    free (asymbols);
}
}
 
 
/* Check one symbol to see if it is a prohibited cross reference.  */
/* Check one symbol to see if it is a prohibited cross reference.  */
 
 
static bfd_boolean
static bfd_boolean
check_nocrossref (struct cref_hash_entry *h, void *ignore ATTRIBUTE_UNUSED)
check_nocrossref (struct cref_hash_entry *h, void *ignore ATTRIBUTE_UNUSED)
{
{
  struct bfd_link_hash_entry *hl;
  struct bfd_link_hash_entry *hl;
  asection *defsec;
  asection *defsec;
  const char *defsecname;
  const char *defsecname;
  struct lang_nocrossrefs *ncrs;
  struct lang_nocrossrefs *ncrs;
  struct lang_nocrossref *ncr;
  struct lang_nocrossref *ncr;
  struct cref_ref *ref;
  struct cref_ref *ref;
 
 
  hl = bfd_link_hash_lookup (link_info.hash, h->root.string, FALSE,
  hl = bfd_link_hash_lookup (link_info.hash, h->root.string, FALSE,
                             FALSE, TRUE);
                             FALSE, TRUE);
  if (hl == NULL)
  if (hl == NULL)
    {
    {
      einfo (_("%P: symbol `%T' missing from main hash table\n"),
      einfo (_("%P: symbol `%T' missing from main hash table\n"),
             h->root.string);
             h->root.string);
      return TRUE;
      return TRUE;
    }
    }
 
 
  if (hl->type != bfd_link_hash_defined
  if (hl->type != bfd_link_hash_defined
      && hl->type != bfd_link_hash_defweak)
      && hl->type != bfd_link_hash_defweak)
    return TRUE;
    return TRUE;
 
 
  defsec = hl->u.def.section->output_section;
  defsec = hl->u.def.section->output_section;
  if (defsec == NULL)
  if (defsec == NULL)
    return TRUE;
    return TRUE;
  defsecname = bfd_get_section_name (defsec->owner, defsec);
  defsecname = bfd_get_section_name (defsec->owner, defsec);
 
 
  for (ncrs = nocrossref_list; ncrs != NULL; ncrs = ncrs->next)
  for (ncrs = nocrossref_list; ncrs != NULL; ncrs = ncrs->next)
    for (ncr = ncrs->list; ncr != NULL; ncr = ncr->next)
    for (ncr = ncrs->list; ncr != NULL; ncr = ncr->next)
      if (strcmp (ncr->name, defsecname) == 0)
      if (strcmp (ncr->name, defsecname) == 0)
        for (ref = h->refs; ref != NULL; ref = ref->next)
        for (ref = h->refs; ref != NULL; ref = ref->next)
          check_refs (hl->root.string, TRUE, hl->u.def.section,
          check_refs (hl->root.string, TRUE, hl->u.def.section,
                      ref->abfd, ncrs);
                      ref->abfd, ncrs);
 
 
  return TRUE;
  return TRUE;
}
}
 
 
/* The struct is used to pass information from check_refs to
/* The struct is used to pass information from check_refs to
   check_reloc_refs through bfd_map_over_sections.  */
   check_reloc_refs through bfd_map_over_sections.  */
 
 
struct check_refs_info {
struct check_refs_info {
  const char *sym_name;
  const char *sym_name;
  asection *defsec;
  asection *defsec;
  struct lang_nocrossrefs *ncrs;
  struct lang_nocrossrefs *ncrs;
  asymbol **asymbols;
  asymbol **asymbols;
  bfd_boolean global;
  bfd_boolean global;
};
};
 
 
/* This function is called for each symbol defined in a section which
/* This function is called for each symbol defined in a section which
   prohibits cross references.  We need to look through all references
   prohibits cross references.  We need to look through all references
   to this symbol, and ensure that the references are not from
   to this symbol, and ensure that the references are not from
   prohibited sections.  */
   prohibited sections.  */
 
 
static void
static void
check_refs (const char *name,
check_refs (const char *name,
            bfd_boolean global,
            bfd_boolean global,
            asection *sec,
            asection *sec,
            bfd *abfd,
            bfd *abfd,
            struct lang_nocrossrefs *ncrs)
            struct lang_nocrossrefs *ncrs)
{
{
  lang_input_statement_type *li;
  lang_input_statement_type *li;
  asymbol **asymbols;
  asymbol **asymbols;
  struct check_refs_info info;
  struct check_refs_info info;
 
 
  /* We need to look through the relocations for this BFD, to see
  /* We need to look through the relocations for this BFD, to see
     if any of the relocations which refer to this symbol are from
     if any of the relocations which refer to this symbol are from
     a prohibited section.  Note that we need to do this even for
     a prohibited section.  Note that we need to do this even for
     the BFD in which the symbol is defined, since even a single
     the BFD in which the symbol is defined, since even a single
     BFD might contain a prohibited cross reference.  */
     BFD might contain a prohibited cross reference.  */
 
 
  li = abfd->usrdata;
  li = abfd->usrdata;
  if (li != NULL && li->asymbols != NULL)
  if (li != NULL && li->asymbols != NULL)
    asymbols = li->asymbols;
    asymbols = li->asymbols;
  else
  else
    {
    {
      long symsize;
      long symsize;
      long symbol_count;
      long symbol_count;
 
 
      symsize = bfd_get_symtab_upper_bound (abfd);
      symsize = bfd_get_symtab_upper_bound (abfd);
      if (symsize < 0)
      if (symsize < 0)
        einfo (_("%B%F: could not read symbols; %E\n"), abfd);
        einfo (_("%B%F: could not read symbols; %E\n"), abfd);
      asymbols = xmalloc (symsize);
      asymbols = xmalloc (symsize);
      symbol_count = bfd_canonicalize_symtab (abfd, asymbols);
      symbol_count = bfd_canonicalize_symtab (abfd, asymbols);
      if (symbol_count < 0)
      if (symbol_count < 0)
        einfo (_("%B%F: could not read symbols: %E\n"), abfd);
        einfo (_("%B%F: could not read symbols: %E\n"), abfd);
      if (li != NULL)
      if (li != NULL)
        {
        {
          li->asymbols = asymbols;
          li->asymbols = asymbols;
          li->symbol_count = symbol_count;
          li->symbol_count = symbol_count;
        }
        }
    }
    }
 
 
  info.sym_name = name;
  info.sym_name = name;
  info.global = global;
  info.global = global;
  info.defsec = sec;
  info.defsec = sec;
  info.ncrs = ncrs;
  info.ncrs = ncrs;
  info.asymbols = asymbols;
  info.asymbols = asymbols;
  bfd_map_over_sections (abfd, check_reloc_refs, &info);
  bfd_map_over_sections (abfd, check_reloc_refs, &info);
 
 
  if (li == NULL)
  if (li == NULL)
    free (asymbols);
    free (asymbols);
}
}
 
 
/* This is called via bfd_map_over_sections.  INFO->SYM_NAME is a symbol
/* This is called via bfd_map_over_sections.  INFO->SYM_NAME is a symbol
   defined in INFO->DEFSECNAME.  If this section maps into any of the
   defined in INFO->DEFSECNAME.  If this section maps into any of the
   sections listed in INFO->NCRS, other than INFO->DEFSECNAME, then we
   sections listed in INFO->NCRS, other than INFO->DEFSECNAME, then we
   look through the relocations.  If any of the relocations are to
   look through the relocations.  If any of the relocations are to
   INFO->SYM_NAME, then we report a prohibited cross reference error.  */
   INFO->SYM_NAME, then we report a prohibited cross reference error.  */
 
 
static void
static void
check_reloc_refs (bfd *abfd, asection *sec, void *iarg)
check_reloc_refs (bfd *abfd, asection *sec, void *iarg)
{
{
  struct check_refs_info *info = iarg;
  struct check_refs_info *info = iarg;
  asection *outsec;
  asection *outsec;
  const char *outsecname;
  const char *outsecname;
  asection *outdefsec;
  asection *outdefsec;
  const char *outdefsecname;
  const char *outdefsecname;
  struct lang_nocrossref *ncr;
  struct lang_nocrossref *ncr;
  const char *symname;
  const char *symname;
  bfd_boolean global;
  bfd_boolean global;
  long relsize;
  long relsize;
  arelent **relpp;
  arelent **relpp;
  long relcount;
  long relcount;
  arelent **p, **pend;
  arelent **p, **pend;
 
 
  outsec = sec->output_section;
  outsec = sec->output_section;
  outsecname = bfd_get_section_name (outsec->owner, outsec);
  outsecname = bfd_get_section_name (outsec->owner, outsec);
 
 
  outdefsec = info->defsec->output_section;
  outdefsec = info->defsec->output_section;
  outdefsecname = bfd_get_section_name (outdefsec->owner, outdefsec);
  outdefsecname = bfd_get_section_name (outdefsec->owner, outdefsec);
 
 
  /* The section where the symbol is defined is permitted.  */
  /* The section where the symbol is defined is permitted.  */
  if (strcmp (outsecname, outdefsecname) == 0)
  if (strcmp (outsecname, outdefsecname) == 0)
    return;
    return;
 
 
  for (ncr = info->ncrs->list; ncr != NULL; ncr = ncr->next)
  for (ncr = info->ncrs->list; ncr != NULL; ncr = ncr->next)
    if (strcmp (outsecname, ncr->name) == 0)
    if (strcmp (outsecname, ncr->name) == 0)
      break;
      break;
 
 
  if (ncr == NULL)
  if (ncr == NULL)
    return;
    return;
 
 
  /* This section is one for which cross references are prohibited.
  /* This section is one for which cross references are prohibited.
     Look through the relocations, and see if any of them are to
     Look through the relocations, and see if any of them are to
     INFO->SYM_NAME.  If INFO->SYMNAME is NULL, check for relocations
     INFO->SYM_NAME.  If INFO->SYMNAME is NULL, check for relocations
     against the section symbol.  If INFO->GLOBAL is TRUE, the
     against the section symbol.  If INFO->GLOBAL is TRUE, the
     definition is global, check for relocations against the global
     definition is global, check for relocations against the global
     symbols.  Otherwise check for relocations against the local and
     symbols.  Otherwise check for relocations against the local and
     section symbols.  */
     section symbols.  */
 
 
  symname = info->sym_name;
  symname = info->sym_name;
  global = info->global;
  global = info->global;
 
 
  relsize = bfd_get_reloc_upper_bound (abfd, sec);
  relsize = bfd_get_reloc_upper_bound (abfd, sec);
  if (relsize < 0)
  if (relsize < 0)
    einfo (_("%B%F: could not read relocs: %E\n"), abfd);
    einfo (_("%B%F: could not read relocs: %E\n"), abfd);
  if (relsize == 0)
  if (relsize == 0)
    return;
    return;
 
 
  relpp = xmalloc (relsize);
  relpp = xmalloc (relsize);
  relcount = bfd_canonicalize_reloc (abfd, sec, relpp, info->asymbols);
  relcount = bfd_canonicalize_reloc (abfd, sec, relpp, info->asymbols);
  if (relcount < 0)
  if (relcount < 0)
    einfo (_("%B%F: could not read relocs: %E\n"), abfd);
    einfo (_("%B%F: could not read relocs: %E\n"), abfd);
 
 
  p = relpp;
  p = relpp;
  pend = p + relcount;
  pend = p + relcount;
  for (; p < pend && *p != NULL; p++)
  for (; p < pend && *p != NULL; p++)
    {
    {
      arelent *q = *p;
      arelent *q = *p;
 
 
      if (q->sym_ptr_ptr != NULL
      if (q->sym_ptr_ptr != NULL
          && *q->sym_ptr_ptr != NULL
          && *q->sym_ptr_ptr != NULL
          && ((global
          && ((global
               && (bfd_is_und_section (bfd_get_section (*q->sym_ptr_ptr))
               && (bfd_is_und_section (bfd_get_section (*q->sym_ptr_ptr))
                   || bfd_is_com_section (bfd_get_section (*q->sym_ptr_ptr))
                   || bfd_is_com_section (bfd_get_section (*q->sym_ptr_ptr))
                   || ((*q->sym_ptr_ptr)->flags & (BSF_GLOBAL
                   || ((*q->sym_ptr_ptr)->flags & (BSF_GLOBAL
                                                   | BSF_WEAK)) != 0))
                                                   | BSF_WEAK)) != 0))
              || (!global
              || (!global
                  && ((*q->sym_ptr_ptr)->flags & (BSF_LOCAL
                  && ((*q->sym_ptr_ptr)->flags & (BSF_LOCAL
                                                  | BSF_SECTION_SYM)) != 0
                                                  | BSF_SECTION_SYM)) != 0
                  && bfd_get_section (*q->sym_ptr_ptr) == info->defsec))
                  && bfd_get_section (*q->sym_ptr_ptr) == info->defsec))
          && (symname != NULL
          && (symname != NULL
              ? strcmp (bfd_asymbol_name (*q->sym_ptr_ptr), symname) == 0
              ? strcmp (bfd_asymbol_name (*q->sym_ptr_ptr), symname) == 0
              : ((*q->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0))
              : ((*q->sym_ptr_ptr)->flags & BSF_SECTION_SYM) != 0))
        {
        {
          /* We found a reloc for the symbol.  The symbol is defined
          /* We found a reloc for the symbol.  The symbol is defined
             in OUTSECNAME.  This reloc is from a section which is
             in OUTSECNAME.  This reloc is from a section which is
             mapped into a section from which references to OUTSECNAME
             mapped into a section from which references to OUTSECNAME
             are prohibited.  We must report an error.  */
             are prohibited.  We must report an error.  */
          einfo (_("%X%C: prohibited cross reference from %s to `%T' in %s\n"),
          einfo (_("%X%C: prohibited cross reference from %s to `%T' in %s\n"),
                 abfd, sec, q->address, outsecname,
                 abfd, sec, q->address, outsecname,
                 bfd_asymbol_name (*q->sym_ptr_ptr), outdefsecname);
                 bfd_asymbol_name (*q->sym_ptr_ptr), outdefsecname);
        }
        }
    }
    }
 
 
  free (relpp);
  free (relpp);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.