OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [binutils-2.18.50/] [libiberty/] [sha1.c] - Diff between revs 156 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 156 Rev 816
/* sha1.c - Functions to compute SHA1 message digest of files or
/* sha1.c - Functions to compute SHA1 message digest of files or
   memory blocks according to the NIST specification FIPS-180-1.
   memory blocks according to the NIST specification FIPS-180-1.
 
 
   Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2008 Free Software
   Copyright (C) 2000, 2001, 2003, 2004, 2005, 2006, 2008 Free Software
   Foundation, Inc.
   Foundation, Inc.
 
 
   This program is free software; you can redistribute it and/or modify it
   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   Free Software Foundation; either version 2, or (at your option) any
   later version.
   later version.
 
 
   This program is distributed in the hope that it will be useful,
   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
   GNU General Public License for more details.
 
 
   You should have received a copy of the GNU General Public License
   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software Foundation,
   along with this program; if not, write to the Free Software Foundation,
   Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */
   Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.  */
 
 
/* Written by Scott G. Miller
/* Written by Scott G. Miller
   Credits:
   Credits:
      Robert Klep <robert@ilse.nl>  -- Expansion function fix
      Robert Klep <robert@ilse.nl>  -- Expansion function fix
*/
*/
 
 
#include <config.h>
#include <config.h>
 
 
#include "sha1.h"
#include "sha1.h"
 
 
#include <stddef.h>
#include <stddef.h>
#include <string.h>
#include <string.h>
 
 
#if USE_UNLOCKED_IO
#if USE_UNLOCKED_IO
# include "unlocked-io.h"
# include "unlocked-io.h"
#endif
#endif
 
 
#ifdef WORDS_BIGENDIAN
#ifdef WORDS_BIGENDIAN
# define SWAP(n) (n)
# define SWAP(n) (n)
#else
#else
# define SWAP(n) \
# define SWAP(n) \
    (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
    (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
#endif
#endif
 
 
#define BLOCKSIZE 4096
#define BLOCKSIZE 4096
#if BLOCKSIZE % 64 != 0
#if BLOCKSIZE % 64 != 0
# error "invalid BLOCKSIZE"
# error "invalid BLOCKSIZE"
#endif
#endif
 
 
/* This array contains the bytes used to pad the buffer to the next
/* This array contains the bytes used to pad the buffer to the next
   64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
   64-byte boundary.  (RFC 1321, 3.1: Step 1)  */
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ...  */ };
 
 
 
 
/* Take a pointer to a 160 bit block of data (five 32 bit ints) and
/* Take a pointer to a 160 bit block of data (five 32 bit ints) and
   initialize it to the start constants of the SHA1 algorithm.  This
   initialize it to the start constants of the SHA1 algorithm.  This
   must be called before using hash in the call to sha1_hash.  */
   must be called before using hash in the call to sha1_hash.  */
void
void
sha1_init_ctx (struct sha1_ctx *ctx)
sha1_init_ctx (struct sha1_ctx *ctx)
{
{
  ctx->A = 0x67452301;
  ctx->A = 0x67452301;
  ctx->B = 0xefcdab89;
  ctx->B = 0xefcdab89;
  ctx->C = 0x98badcfe;
  ctx->C = 0x98badcfe;
  ctx->D = 0x10325476;
  ctx->D = 0x10325476;
  ctx->E = 0xc3d2e1f0;
  ctx->E = 0xc3d2e1f0;
 
 
  ctx->total[0] = ctx->total[1] = 0;
  ctx->total[0] = ctx->total[1] = 0;
  ctx->buflen = 0;
  ctx->buflen = 0;
}
}
 
 
/* Put result from CTX in first 20 bytes following RESBUF.  The result
/* Put result from CTX in first 20 bytes following RESBUF.  The result
   must be in little endian byte order.
   must be in little endian byte order.
 
 
   IMPORTANT: On some systems it is required that RESBUF is correctly
   IMPORTANT: On some systems it is required that RESBUF is correctly
   aligned for a 32-bit value.  */
   aligned for a 32-bit value.  */
void *
void *
sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
{
{
  ((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A);
  ((sha1_uint32 *) resbuf)[0] = SWAP (ctx->A);
  ((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B);
  ((sha1_uint32 *) resbuf)[1] = SWAP (ctx->B);
  ((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C);
  ((sha1_uint32 *) resbuf)[2] = SWAP (ctx->C);
  ((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D);
  ((sha1_uint32 *) resbuf)[3] = SWAP (ctx->D);
  ((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E);
  ((sha1_uint32 *) resbuf)[4] = SWAP (ctx->E);
 
 
  return resbuf;
  return resbuf;
}
}
 
 
/* Process the remaining bytes in the internal buffer and the usual
/* Process the remaining bytes in the internal buffer and the usual
   prolog according to the standard and write the result to RESBUF.
   prolog according to the standard and write the result to RESBUF.
 
 
   IMPORTANT: On some systems it is required that RESBUF is correctly
   IMPORTANT: On some systems it is required that RESBUF is correctly
   aligned for a 32-bit value.  */
   aligned for a 32-bit value.  */
void *
void *
sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
{
{
  /* Take yet unprocessed bytes into account.  */
  /* Take yet unprocessed bytes into account.  */
  sha1_uint32 bytes = ctx->buflen;
  sha1_uint32 bytes = ctx->buflen;
  size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
  size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
 
 
  /* Now count remaining bytes.  */
  /* Now count remaining bytes.  */
  ctx->total[0] += bytes;
  ctx->total[0] += bytes;
  if (ctx->total[0] < bytes)
  if (ctx->total[0] < bytes)
    ++ctx->total[1];
    ++ctx->total[1];
 
 
  /* Put the 64-bit file length in *bits* at the end of the buffer.  */
  /* Put the 64-bit file length in *bits* at the end of the buffer.  */
  ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
  ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
  ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
  ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
 
 
  memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
  memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
 
 
  /* Process last bytes.  */
  /* Process last bytes.  */
  sha1_process_block (ctx->buffer, size * 4, ctx);
  sha1_process_block (ctx->buffer, size * 4, ctx);
 
 
  return sha1_read_ctx (ctx, resbuf);
  return sha1_read_ctx (ctx, resbuf);
}
}
 
 
/* Compute SHA1 message digest for bytes read from STREAM.  The
/* Compute SHA1 message digest for bytes read from STREAM.  The
   resulting message digest number will be written into the 16 bytes
   resulting message digest number will be written into the 16 bytes
   beginning at RESBLOCK.  */
   beginning at RESBLOCK.  */
int
int
sha1_stream (FILE *stream, void *resblock)
sha1_stream (FILE *stream, void *resblock)
{
{
  struct sha1_ctx ctx;
  struct sha1_ctx ctx;
  char buffer[BLOCKSIZE + 72];
  char buffer[BLOCKSIZE + 72];
  size_t sum;
  size_t sum;
 
 
  /* Initialize the computation context.  */
  /* Initialize the computation context.  */
  sha1_init_ctx (&ctx);
  sha1_init_ctx (&ctx);
 
 
  /* Iterate over full file contents.  */
  /* Iterate over full file contents.  */
  while (1)
  while (1)
    {
    {
      /* We read the file in blocks of BLOCKSIZE bytes.  One call of the
      /* We read the file in blocks of BLOCKSIZE bytes.  One call of the
         computation function processes the whole buffer so that with the
         computation function processes the whole buffer so that with the
         next round of the loop another block can be read.  */
         next round of the loop another block can be read.  */
      size_t n;
      size_t n;
      sum = 0;
      sum = 0;
 
 
      /* Read block.  Take care for partial reads.  */
      /* Read block.  Take care for partial reads.  */
      while (1)
      while (1)
        {
        {
          n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
          n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
 
 
          sum += n;
          sum += n;
 
 
          if (sum == BLOCKSIZE)
          if (sum == BLOCKSIZE)
            break;
            break;
 
 
          if (n == 0)
          if (n == 0)
            {
            {
              /* Check for the error flag IFF N == 0, so that we don't
              /* Check for the error flag IFF N == 0, so that we don't
                 exit the loop after a partial read due to e.g., EAGAIN
                 exit the loop after a partial read due to e.g., EAGAIN
                 or EWOULDBLOCK.  */
                 or EWOULDBLOCK.  */
              if (ferror (stream))
              if (ferror (stream))
                return 1;
                return 1;
              goto process_partial_block;
              goto process_partial_block;
            }
            }
 
 
          /* We've read at least one byte, so ignore errors.  But always
          /* We've read at least one byte, so ignore errors.  But always
             check for EOF, since feof may be true even though N > 0.
             check for EOF, since feof may be true even though N > 0.
             Otherwise, we could end up calling fread after EOF.  */
             Otherwise, we could end up calling fread after EOF.  */
          if (feof (stream))
          if (feof (stream))
            goto process_partial_block;
            goto process_partial_block;
        }
        }
 
 
      /* Process buffer with BLOCKSIZE bytes.  Note that
      /* Process buffer with BLOCKSIZE bytes.  Note that
                        BLOCKSIZE % 64 == 0
                        BLOCKSIZE % 64 == 0
       */
       */
      sha1_process_block (buffer, BLOCKSIZE, &ctx);
      sha1_process_block (buffer, BLOCKSIZE, &ctx);
    }
    }
 
 
 process_partial_block:;
 process_partial_block:;
 
 
  /* Process any remaining bytes.  */
  /* Process any remaining bytes.  */
  if (sum > 0)
  if (sum > 0)
    sha1_process_bytes (buffer, sum, &ctx);
    sha1_process_bytes (buffer, sum, &ctx);
 
 
  /* Construct result in desired memory.  */
  /* Construct result in desired memory.  */
  sha1_finish_ctx (&ctx, resblock);
  sha1_finish_ctx (&ctx, resblock);
  return 0;
  return 0;
}
}
 
 
/* Compute SHA1 message digest for LEN bytes beginning at BUFFER.  The
/* Compute SHA1 message digest for LEN bytes beginning at BUFFER.  The
   result is always in little endian byte order, so that a byte-wise
   result is always in little endian byte order, so that a byte-wise
   output yields to the wanted ASCII representation of the message
   output yields to the wanted ASCII representation of the message
   digest.  */
   digest.  */
void *
void *
sha1_buffer (const char *buffer, size_t len, void *resblock)
sha1_buffer (const char *buffer, size_t len, void *resblock)
{
{
  struct sha1_ctx ctx;
  struct sha1_ctx ctx;
 
 
  /* Initialize the computation context.  */
  /* Initialize the computation context.  */
  sha1_init_ctx (&ctx);
  sha1_init_ctx (&ctx);
 
 
  /* Process whole buffer but last len % 64 bytes.  */
  /* Process whole buffer but last len % 64 bytes.  */
  sha1_process_bytes (buffer, len, &ctx);
  sha1_process_bytes (buffer, len, &ctx);
 
 
  /* Put result in desired memory area.  */
  /* Put result in desired memory area.  */
  return sha1_finish_ctx (&ctx, resblock);
  return sha1_finish_ctx (&ctx, resblock);
}
}
 
 
void
void
sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
{
{
  /* When we already have some bits in our internal buffer concatenate
  /* When we already have some bits in our internal buffer concatenate
     both inputs first.  */
     both inputs first.  */
  if (ctx->buflen != 0)
  if (ctx->buflen != 0)
    {
    {
      size_t left_over = ctx->buflen;
      size_t left_over = ctx->buflen;
      size_t add = 128 - left_over > len ? len : 128 - left_over;
      size_t add = 128 - left_over > len ? len : 128 - left_over;
 
 
      memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
      memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
      ctx->buflen += add;
      ctx->buflen += add;
 
 
      if (ctx->buflen > 64)
      if (ctx->buflen > 64)
        {
        {
          sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
          sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
 
 
          ctx->buflen &= 63;
          ctx->buflen &= 63;
          /* The regions in the following copy operation cannot overlap.  */
          /* The regions in the following copy operation cannot overlap.  */
          memcpy (ctx->buffer,
          memcpy (ctx->buffer,
                  &((char *) ctx->buffer)[(left_over + add) & ~63],
                  &((char *) ctx->buffer)[(left_over + add) & ~63],
                  ctx->buflen);
                  ctx->buflen);
        }
        }
 
 
      buffer = (const char *) buffer + add;
      buffer = (const char *) buffer + add;
      len -= add;
      len -= add;
    }
    }
 
 
  /* Process available complete blocks.  */
  /* Process available complete blocks.  */
  if (len >= 64)
  if (len >= 64)
    {
    {
#if !_STRING_ARCH_unaligned
#if !_STRING_ARCH_unaligned
# define alignof(type) offsetof (struct { char c; type x; }, x)
# define alignof(type) offsetof (struct { char c; type x; }, x)
# define UNALIGNED_P(p) (((size_t) p) % alignof (sha1_uint32) != 0)
# define UNALIGNED_P(p) (((size_t) p) % alignof (sha1_uint32) != 0)
      if (UNALIGNED_P (buffer))
      if (UNALIGNED_P (buffer))
        while (len > 64)
        while (len > 64)
          {
          {
            sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
            sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
            buffer = (const char *) buffer + 64;
            buffer = (const char *) buffer + 64;
            len -= 64;
            len -= 64;
          }
          }
      else
      else
#endif
#endif
        {
        {
          sha1_process_block (buffer, len & ~63, ctx);
          sha1_process_block (buffer, len & ~63, ctx);
          buffer = (const char *) buffer + (len & ~63);
          buffer = (const char *) buffer + (len & ~63);
          len &= 63;
          len &= 63;
        }
        }
    }
    }
 
 
  /* Move remaining bytes in internal buffer.  */
  /* Move remaining bytes in internal buffer.  */
  if (len > 0)
  if (len > 0)
    {
    {
      size_t left_over = ctx->buflen;
      size_t left_over = ctx->buflen;
 
 
      memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
      memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
      left_over += len;
      left_over += len;
      if (left_over >= 64)
      if (left_over >= 64)
        {
        {
          sha1_process_block (ctx->buffer, 64, ctx);
          sha1_process_block (ctx->buffer, 64, ctx);
          left_over -= 64;
          left_over -= 64;
          memcpy (ctx->buffer, &ctx->buffer[16], left_over);
          memcpy (ctx->buffer, &ctx->buffer[16], left_over);
        }
        }
      ctx->buflen = left_over;
      ctx->buflen = left_over;
    }
    }
}
}
 
 
/* --- Code below is the primary difference between md5.c and sha1.c --- */
/* --- Code below is the primary difference between md5.c and sha1.c --- */
 
 
/* SHA1 round constants */
/* SHA1 round constants */
#define K1 0x5a827999
#define K1 0x5a827999
#define K2 0x6ed9eba1
#define K2 0x6ed9eba1
#define K3 0x8f1bbcdc
#define K3 0x8f1bbcdc
#define K4 0xca62c1d6
#define K4 0xca62c1d6
 
 
/* Round functions.  Note that F2 is the same as F4.  */
/* Round functions.  Note that F2 is the same as F4.  */
#define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
#define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
#define F2(B,C,D) (B ^ C ^ D)
#define F2(B,C,D) (B ^ C ^ D)
#define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
#define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
#define F4(B,C,D) (B ^ C ^ D)
#define F4(B,C,D) (B ^ C ^ D)
 
 
/* Process LEN bytes of BUFFER, accumulating context into CTX.
/* Process LEN bytes of BUFFER, accumulating context into CTX.
   It is assumed that LEN % 64 == 0.
   It is assumed that LEN % 64 == 0.
   Most of this code comes from GnuPG's cipher/sha1.c.  */
   Most of this code comes from GnuPG's cipher/sha1.c.  */
 
 
void
void
sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
{
{
  const sha1_uint32 *words = (const sha1_uint32*) buffer;
  const sha1_uint32 *words = (const sha1_uint32*) buffer;
  size_t nwords = len / sizeof (sha1_uint32);
  size_t nwords = len / sizeof (sha1_uint32);
  const sha1_uint32 *endp = words + nwords;
  const sha1_uint32 *endp = words + nwords;
  sha1_uint32 x[16];
  sha1_uint32 x[16];
  sha1_uint32 a = ctx->A;
  sha1_uint32 a = ctx->A;
  sha1_uint32 b = ctx->B;
  sha1_uint32 b = ctx->B;
  sha1_uint32 c = ctx->C;
  sha1_uint32 c = ctx->C;
  sha1_uint32 d = ctx->D;
  sha1_uint32 d = ctx->D;
  sha1_uint32 e = ctx->E;
  sha1_uint32 e = ctx->E;
 
 
  /* First increment the byte count.  RFC 1321 specifies the possible
  /* First increment the byte count.  RFC 1321 specifies the possible
     length of the file up to 2^64 bits.  Here we only compute the
     length of the file up to 2^64 bits.  Here we only compute the
     number of bytes.  Do a double word increment.  */
     number of bytes.  Do a double word increment.  */
  ctx->total[0] += len;
  ctx->total[0] += len;
  if (ctx->total[0] < len)
  if (ctx->total[0] < len)
    ++ctx->total[1];
    ++ctx->total[1];
 
 
#define rol(x, n) (((x) << (n)) | ((sha1_uint32) (x) >> (32 - (n))))
#define rol(x, n) (((x) << (n)) | ((sha1_uint32) (x) >> (32 - (n))))
 
 
#define M(I) ( tm =   x[I&0x0f] ^ x[(I-14)&0x0f] \
#define M(I) ( tm =   x[I&0x0f] ^ x[(I-14)&0x0f] \
                    ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
                    ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
               , (x[I&0x0f] = rol(tm, 1)) )
               , (x[I&0x0f] = rol(tm, 1)) )
 
 
#define R(A,B,C,D,E,F,K,M)  do { E += rol( A, 5 )     \
#define R(A,B,C,D,E,F,K,M)  do { E += rol( A, 5 )     \
                                      + F( B, C, D )  \
                                      + F( B, C, D )  \
                                      + K             \
                                      + K             \
                                      + M;            \
                                      + M;            \
                                 B = rol( B, 30 );    \
                                 B = rol( B, 30 );    \
                               } while(0)
                               } while(0)
 
 
  while (words < endp)
  while (words < endp)
    {
    {
      sha1_uint32 tm;
      sha1_uint32 tm;
      int t;
      int t;
      for (t = 0; t < 16; t++)
      for (t = 0; t < 16; t++)
        {
        {
          x[t] = SWAP (*words);
          x[t] = SWAP (*words);
          words++;
          words++;
        }
        }
 
 
      R( a, b, c, d, e, F1, K1, x[ 0] );
      R( a, b, c, d, e, F1, K1, x[ 0] );
      R( e, a, b, c, d, F1, K1, x[ 1] );
      R( e, a, b, c, d, F1, K1, x[ 1] );
      R( d, e, a, b, c, F1, K1, x[ 2] );
      R( d, e, a, b, c, F1, K1, x[ 2] );
      R( c, d, e, a, b, F1, K1, x[ 3] );
      R( c, d, e, a, b, F1, K1, x[ 3] );
      R( b, c, d, e, a, F1, K1, x[ 4] );
      R( b, c, d, e, a, F1, K1, x[ 4] );
      R( a, b, c, d, e, F1, K1, x[ 5] );
      R( a, b, c, d, e, F1, K1, x[ 5] );
      R( e, a, b, c, d, F1, K1, x[ 6] );
      R( e, a, b, c, d, F1, K1, x[ 6] );
      R( d, e, a, b, c, F1, K1, x[ 7] );
      R( d, e, a, b, c, F1, K1, x[ 7] );
      R( c, d, e, a, b, F1, K1, x[ 8] );
      R( c, d, e, a, b, F1, K1, x[ 8] );
      R( b, c, d, e, a, F1, K1, x[ 9] );
      R( b, c, d, e, a, F1, K1, x[ 9] );
      R( a, b, c, d, e, F1, K1, x[10] );
      R( a, b, c, d, e, F1, K1, x[10] );
      R( e, a, b, c, d, F1, K1, x[11] );
      R( e, a, b, c, d, F1, K1, x[11] );
      R( d, e, a, b, c, F1, K1, x[12] );
      R( d, e, a, b, c, F1, K1, x[12] );
      R( c, d, e, a, b, F1, K1, x[13] );
      R( c, d, e, a, b, F1, K1, x[13] );
      R( b, c, d, e, a, F1, K1, x[14] );
      R( b, c, d, e, a, F1, K1, x[14] );
      R( a, b, c, d, e, F1, K1, x[15] );
      R( a, b, c, d, e, F1, K1, x[15] );
      R( e, a, b, c, d, F1, K1, M(16) );
      R( e, a, b, c, d, F1, K1, M(16) );
      R( d, e, a, b, c, F1, K1, M(17) );
      R( d, e, a, b, c, F1, K1, M(17) );
      R( c, d, e, a, b, F1, K1, M(18) );
      R( c, d, e, a, b, F1, K1, M(18) );
      R( b, c, d, e, a, F1, K1, M(19) );
      R( b, c, d, e, a, F1, K1, M(19) );
      R( a, b, c, d, e, F2, K2, M(20) );
      R( a, b, c, d, e, F2, K2, M(20) );
      R( e, a, b, c, d, F2, K2, M(21) );
      R( e, a, b, c, d, F2, K2, M(21) );
      R( d, e, a, b, c, F2, K2, M(22) );
      R( d, e, a, b, c, F2, K2, M(22) );
      R( c, d, e, a, b, F2, K2, M(23) );
      R( c, d, e, a, b, F2, K2, M(23) );
      R( b, c, d, e, a, F2, K2, M(24) );
      R( b, c, d, e, a, F2, K2, M(24) );
      R( a, b, c, d, e, F2, K2, M(25) );
      R( a, b, c, d, e, F2, K2, M(25) );
      R( e, a, b, c, d, F2, K2, M(26) );
      R( e, a, b, c, d, F2, K2, M(26) );
      R( d, e, a, b, c, F2, K2, M(27) );
      R( d, e, a, b, c, F2, K2, M(27) );
      R( c, d, e, a, b, F2, K2, M(28) );
      R( c, d, e, a, b, F2, K2, M(28) );
      R( b, c, d, e, a, F2, K2, M(29) );
      R( b, c, d, e, a, F2, K2, M(29) );
      R( a, b, c, d, e, F2, K2, M(30) );
      R( a, b, c, d, e, F2, K2, M(30) );
      R( e, a, b, c, d, F2, K2, M(31) );
      R( e, a, b, c, d, F2, K2, M(31) );
      R( d, e, a, b, c, F2, K2, M(32) );
      R( d, e, a, b, c, F2, K2, M(32) );
      R( c, d, e, a, b, F2, K2, M(33) );
      R( c, d, e, a, b, F2, K2, M(33) );
      R( b, c, d, e, a, F2, K2, M(34) );
      R( b, c, d, e, a, F2, K2, M(34) );
      R( a, b, c, d, e, F2, K2, M(35) );
      R( a, b, c, d, e, F2, K2, M(35) );
      R( e, a, b, c, d, F2, K2, M(36) );
      R( e, a, b, c, d, F2, K2, M(36) );
      R( d, e, a, b, c, F2, K2, M(37) );
      R( d, e, a, b, c, F2, K2, M(37) );
      R( c, d, e, a, b, F2, K2, M(38) );
      R( c, d, e, a, b, F2, K2, M(38) );
      R( b, c, d, e, a, F2, K2, M(39) );
      R( b, c, d, e, a, F2, K2, M(39) );
      R( a, b, c, d, e, F3, K3, M(40) );
      R( a, b, c, d, e, F3, K3, M(40) );
      R( e, a, b, c, d, F3, K3, M(41) );
      R( e, a, b, c, d, F3, K3, M(41) );
      R( d, e, a, b, c, F3, K3, M(42) );
      R( d, e, a, b, c, F3, K3, M(42) );
      R( c, d, e, a, b, F3, K3, M(43) );
      R( c, d, e, a, b, F3, K3, M(43) );
      R( b, c, d, e, a, F3, K3, M(44) );
      R( b, c, d, e, a, F3, K3, M(44) );
      R( a, b, c, d, e, F3, K3, M(45) );
      R( a, b, c, d, e, F3, K3, M(45) );
      R( e, a, b, c, d, F3, K3, M(46) );
      R( e, a, b, c, d, F3, K3, M(46) );
      R( d, e, a, b, c, F3, K3, M(47) );
      R( d, e, a, b, c, F3, K3, M(47) );
      R( c, d, e, a, b, F3, K3, M(48) );
      R( c, d, e, a, b, F3, K3, M(48) );
      R( b, c, d, e, a, F3, K3, M(49) );
      R( b, c, d, e, a, F3, K3, M(49) );
      R( a, b, c, d, e, F3, K3, M(50) );
      R( a, b, c, d, e, F3, K3, M(50) );
      R( e, a, b, c, d, F3, K3, M(51) );
      R( e, a, b, c, d, F3, K3, M(51) );
      R( d, e, a, b, c, F3, K3, M(52) );
      R( d, e, a, b, c, F3, K3, M(52) );
      R( c, d, e, a, b, F3, K3, M(53) );
      R( c, d, e, a, b, F3, K3, M(53) );
      R( b, c, d, e, a, F3, K3, M(54) );
      R( b, c, d, e, a, F3, K3, M(54) );
      R( a, b, c, d, e, F3, K3, M(55) );
      R( a, b, c, d, e, F3, K3, M(55) );
      R( e, a, b, c, d, F3, K3, M(56) );
      R( e, a, b, c, d, F3, K3, M(56) );
      R( d, e, a, b, c, F3, K3, M(57) );
      R( d, e, a, b, c, F3, K3, M(57) );
      R( c, d, e, a, b, F3, K3, M(58) );
      R( c, d, e, a, b, F3, K3, M(58) );
      R( b, c, d, e, a, F3, K3, M(59) );
      R( b, c, d, e, a, F3, K3, M(59) );
      R( a, b, c, d, e, F4, K4, M(60) );
      R( a, b, c, d, e, F4, K4, M(60) );
      R( e, a, b, c, d, F4, K4, M(61) );
      R( e, a, b, c, d, F4, K4, M(61) );
      R( d, e, a, b, c, F4, K4, M(62) );
      R( d, e, a, b, c, F4, K4, M(62) );
      R( c, d, e, a, b, F4, K4, M(63) );
      R( c, d, e, a, b, F4, K4, M(63) );
      R( b, c, d, e, a, F4, K4, M(64) );
      R( b, c, d, e, a, F4, K4, M(64) );
      R( a, b, c, d, e, F4, K4, M(65) );
      R( a, b, c, d, e, F4, K4, M(65) );
      R( e, a, b, c, d, F4, K4, M(66) );
      R( e, a, b, c, d, F4, K4, M(66) );
      R( d, e, a, b, c, F4, K4, M(67) );
      R( d, e, a, b, c, F4, K4, M(67) );
      R( c, d, e, a, b, F4, K4, M(68) );
      R( c, d, e, a, b, F4, K4, M(68) );
      R( b, c, d, e, a, F4, K4, M(69) );
      R( b, c, d, e, a, F4, K4, M(69) );
      R( a, b, c, d, e, F4, K4, M(70) );
      R( a, b, c, d, e, F4, K4, M(70) );
      R( e, a, b, c, d, F4, K4, M(71) );
      R( e, a, b, c, d, F4, K4, M(71) );
      R( d, e, a, b, c, F4, K4, M(72) );
      R( d, e, a, b, c, F4, K4, M(72) );
      R( c, d, e, a, b, F4, K4, M(73) );
      R( c, d, e, a, b, F4, K4, M(73) );
      R( b, c, d, e, a, F4, K4, M(74) );
      R( b, c, d, e, a, F4, K4, M(74) );
      R( a, b, c, d, e, F4, K4, M(75) );
      R( a, b, c, d, e, F4, K4, M(75) );
      R( e, a, b, c, d, F4, K4, M(76) );
      R( e, a, b, c, d, F4, K4, M(76) );
      R( d, e, a, b, c, F4, K4, M(77) );
      R( d, e, a, b, c, F4, K4, M(77) );
      R( c, d, e, a, b, F4, K4, M(78) );
      R( c, d, e, a, b, F4, K4, M(78) );
      R( b, c, d, e, a, F4, K4, M(79) );
      R( b, c, d, e, a, F4, K4, M(79) );
 
 
      a = ctx->A += a;
      a = ctx->A += a;
      b = ctx->B += b;
      b = ctx->B += b;
      c = ctx->C += c;
      c = ctx->C += c;
      d = ctx->D += d;
      d = ctx->D += d;
      e = ctx->E += e;
      e = ctx->E += e;
    }
    }
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.