OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [builtins.c] - Diff between revs 38 and 154

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 38 Rev 154
/* Expand builtin functions.
/* Expand builtin functions.
   Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "machmode.h"
#include "machmode.h"
#include "real.h"
#include "real.h"
#include "rtl.h"
#include "rtl.h"
#include "tree.h"
#include "tree.h"
#include "tree-gimple.h"
#include "tree-gimple.h"
#include "flags.h"
#include "flags.h"
#include "regs.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "except.h"
#include "except.h"
#include "function.h"
#include "function.h"
#include "insn-config.h"
#include "insn-config.h"
#include "expr.h"
#include "expr.h"
#include "optabs.h"
#include "optabs.h"
#include "libfuncs.h"
#include "libfuncs.h"
#include "recog.h"
#include "recog.h"
#include "output.h"
#include "output.h"
#include "typeclass.h"
#include "typeclass.h"
#include "toplev.h"
#include "toplev.h"
#include "predict.h"
#include "predict.h"
#include "tm_p.h"
#include "tm_p.h"
#include "target.h"
#include "target.h"
#include "langhooks.h"
#include "langhooks.h"
#include "basic-block.h"
#include "basic-block.h"
#include "tree-mudflap.h"
#include "tree-mudflap.h"
 
 
#ifndef PAD_VARARGS_DOWN
#ifndef PAD_VARARGS_DOWN
#define PAD_VARARGS_DOWN BYTES_BIG_ENDIAN
#define PAD_VARARGS_DOWN BYTES_BIG_ENDIAN
#endif
#endif
 
 
/* Define the names of the builtin function types and codes.  */
/* Define the names of the builtin function types and codes.  */
const char *const built_in_class_names[4]
const char *const built_in_class_names[4]
  = {"NOT_BUILT_IN", "BUILT_IN_FRONTEND", "BUILT_IN_MD", "BUILT_IN_NORMAL"};
  = {"NOT_BUILT_IN", "BUILT_IN_FRONTEND", "BUILT_IN_MD", "BUILT_IN_NORMAL"};
 
 
#define DEF_BUILTIN(X, N, C, T, LT, B, F, NA, AT, IM, COND) #X,
#define DEF_BUILTIN(X, N, C, T, LT, B, F, NA, AT, IM, COND) #X,
const char * built_in_names[(int) END_BUILTINS] =
const char * built_in_names[(int) END_BUILTINS] =
{
{
#include "builtins.def"
#include "builtins.def"
};
};
#undef DEF_BUILTIN
#undef DEF_BUILTIN
 
 
/* Setup an array of _DECL trees, make sure each element is
/* Setup an array of _DECL trees, make sure each element is
   initialized to NULL_TREE.  */
   initialized to NULL_TREE.  */
tree built_in_decls[(int) END_BUILTINS];
tree built_in_decls[(int) END_BUILTINS];
/* Declarations used when constructing the builtin implicitly in the compiler.
/* Declarations used when constructing the builtin implicitly in the compiler.
   It may be NULL_TREE when this is invalid (for instance runtime is not
   It may be NULL_TREE when this is invalid (for instance runtime is not
   required to implement the function call in all cases).  */
   required to implement the function call in all cases).  */
tree implicit_built_in_decls[(int) END_BUILTINS];
tree implicit_built_in_decls[(int) END_BUILTINS];
 
 
static int get_pointer_alignment (tree, unsigned int);
static int get_pointer_alignment (tree, unsigned int);
static const char *c_getstr (tree);
static const char *c_getstr (tree);
static rtx c_readstr (const char *, enum machine_mode);
static rtx c_readstr (const char *, enum machine_mode);
static int target_char_cast (tree, char *);
static int target_char_cast (tree, char *);
static rtx get_memory_rtx (tree, tree);
static rtx get_memory_rtx (tree, tree);
static int apply_args_size (void);
static int apply_args_size (void);
static int apply_result_size (void);
static int apply_result_size (void);
#if defined (HAVE_untyped_call) || defined (HAVE_untyped_return)
#if defined (HAVE_untyped_call) || defined (HAVE_untyped_return)
static rtx result_vector (int, rtx);
static rtx result_vector (int, rtx);
#endif
#endif
static void expand_builtin_update_setjmp_buf (rtx);
static void expand_builtin_update_setjmp_buf (rtx);
static void expand_builtin_prefetch (tree);
static void expand_builtin_prefetch (tree);
static rtx expand_builtin_apply_args (void);
static rtx expand_builtin_apply_args (void);
static rtx expand_builtin_apply_args_1 (void);
static rtx expand_builtin_apply_args_1 (void);
static rtx expand_builtin_apply (rtx, rtx, rtx);
static rtx expand_builtin_apply (rtx, rtx, rtx);
static void expand_builtin_return (rtx);
static void expand_builtin_return (rtx);
static enum type_class type_to_class (tree);
static enum type_class type_to_class (tree);
static rtx expand_builtin_classify_type (tree);
static rtx expand_builtin_classify_type (tree);
static void expand_errno_check (tree, rtx);
static void expand_errno_check (tree, rtx);
static rtx expand_builtin_mathfn (tree, rtx, rtx);
static rtx expand_builtin_mathfn (tree, rtx, rtx);
static rtx expand_builtin_mathfn_2 (tree, rtx, rtx);
static rtx expand_builtin_mathfn_2 (tree, rtx, rtx);
static rtx expand_builtin_mathfn_3 (tree, rtx, rtx);
static rtx expand_builtin_mathfn_3 (tree, rtx, rtx);
static rtx expand_builtin_sincos (tree);
static rtx expand_builtin_sincos (tree);
static rtx expand_builtin_int_roundingfn (tree, rtx, rtx);
static rtx expand_builtin_int_roundingfn (tree, rtx, rtx);
static rtx expand_builtin_args_info (tree);
static rtx expand_builtin_args_info (tree);
static rtx expand_builtin_next_arg (void);
static rtx expand_builtin_next_arg (void);
static rtx expand_builtin_va_start (tree);
static rtx expand_builtin_va_start (tree);
static rtx expand_builtin_va_end (tree);
static rtx expand_builtin_va_end (tree);
static rtx expand_builtin_va_copy (tree);
static rtx expand_builtin_va_copy (tree);
static rtx expand_builtin_memcmp (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_memcmp (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_strcmp (tree, rtx, enum machine_mode);
static rtx expand_builtin_strcmp (tree, rtx, enum machine_mode);
static rtx expand_builtin_strncmp (tree, rtx, enum machine_mode);
static rtx expand_builtin_strncmp (tree, rtx, enum machine_mode);
static rtx builtin_memcpy_read_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx builtin_memcpy_read_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx expand_builtin_strcat (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_strcat (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_strncat (tree, rtx, enum machine_mode);
static rtx expand_builtin_strncat (tree, rtx, enum machine_mode);
static rtx expand_builtin_strspn (tree, rtx, enum machine_mode);
static rtx expand_builtin_strspn (tree, rtx, enum machine_mode);
static rtx expand_builtin_strcspn (tree, rtx, enum machine_mode);
static rtx expand_builtin_strcspn (tree, rtx, enum machine_mode);
static rtx expand_builtin_memcpy (tree, rtx, enum machine_mode);
static rtx expand_builtin_memcpy (tree, rtx, enum machine_mode);
static rtx expand_builtin_mempcpy (tree, tree, rtx, enum machine_mode, int);
static rtx expand_builtin_mempcpy (tree, tree, rtx, enum machine_mode, int);
static rtx expand_builtin_memmove (tree, tree, rtx, enum machine_mode, tree);
static rtx expand_builtin_memmove (tree, tree, rtx, enum machine_mode, tree);
static rtx expand_builtin_bcopy (tree);
static rtx expand_builtin_bcopy (tree);
static rtx expand_builtin_strcpy (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_strcpy (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_stpcpy (tree, rtx, enum machine_mode);
static rtx expand_builtin_stpcpy (tree, rtx, enum machine_mode);
static rtx builtin_strncpy_read_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx builtin_strncpy_read_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx expand_builtin_strncpy (tree, rtx, enum machine_mode);
static rtx expand_builtin_strncpy (tree, rtx, enum machine_mode);
static rtx builtin_memset_read_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx builtin_memset_read_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx builtin_memset_gen_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx builtin_memset_gen_str (void *, HOST_WIDE_INT, enum machine_mode);
static rtx expand_builtin_memset (tree, rtx, enum machine_mode, tree);
static rtx expand_builtin_memset (tree, rtx, enum machine_mode, tree);
static rtx expand_builtin_bzero (tree);
static rtx expand_builtin_bzero (tree);
static rtx expand_builtin_strlen (tree, rtx, enum machine_mode);
static rtx expand_builtin_strlen (tree, rtx, enum machine_mode);
static rtx expand_builtin_strstr (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_strstr (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_strpbrk (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_strpbrk (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_strchr (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_strchr (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_strrchr (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_strrchr (tree, tree, rtx, enum machine_mode);
static rtx expand_builtin_alloca (tree, rtx);
static rtx expand_builtin_alloca (tree, rtx);
static rtx expand_builtin_unop (enum machine_mode, tree, rtx, rtx, optab);
static rtx expand_builtin_unop (enum machine_mode, tree, rtx, rtx, optab);
static rtx expand_builtin_frame_address (tree, tree);
static rtx expand_builtin_frame_address (tree, tree);
static rtx expand_builtin_fputs (tree, rtx, bool);
static rtx expand_builtin_fputs (tree, rtx, bool);
static rtx expand_builtin_printf (tree, rtx, enum machine_mode, bool);
static rtx expand_builtin_printf (tree, rtx, enum machine_mode, bool);
static rtx expand_builtin_fprintf (tree, rtx, enum machine_mode, bool);
static rtx expand_builtin_fprintf (tree, rtx, enum machine_mode, bool);
static rtx expand_builtin_sprintf (tree, rtx, enum machine_mode);
static rtx expand_builtin_sprintf (tree, rtx, enum machine_mode);
static tree stabilize_va_list (tree, int);
static tree stabilize_va_list (tree, int);
static rtx expand_builtin_expect (tree, rtx);
static rtx expand_builtin_expect (tree, rtx);
static tree fold_builtin_constant_p (tree);
static tree fold_builtin_constant_p (tree);
static tree fold_builtin_classify_type (tree);
static tree fold_builtin_classify_type (tree);
static tree fold_builtin_strlen (tree);
static tree fold_builtin_strlen (tree);
static tree fold_builtin_inf (tree, int);
static tree fold_builtin_inf (tree, int);
static tree fold_builtin_nan (tree, tree, int);
static tree fold_builtin_nan (tree, tree, int);
static int validate_arglist (tree, ...);
static int validate_arglist (tree, ...);
static bool integer_valued_real_p (tree);
static bool integer_valued_real_p (tree);
static tree fold_trunc_transparent_mathfn (tree, tree);
static tree fold_trunc_transparent_mathfn (tree, tree);
static bool readonly_data_expr (tree);
static bool readonly_data_expr (tree);
static rtx expand_builtin_fabs (tree, rtx, rtx);
static rtx expand_builtin_fabs (tree, rtx, rtx);
static rtx expand_builtin_signbit (tree, rtx);
static rtx expand_builtin_signbit (tree, rtx);
static tree fold_builtin_sqrt (tree, tree);
static tree fold_builtin_sqrt (tree, tree);
static tree fold_builtin_cbrt (tree, tree);
static tree fold_builtin_cbrt (tree, tree);
static tree fold_builtin_pow (tree, tree, tree);
static tree fold_builtin_pow (tree, tree, tree);
static tree fold_builtin_powi (tree, tree, tree);
static tree fold_builtin_powi (tree, tree, tree);
static tree fold_builtin_sin (tree);
static tree fold_builtin_sin (tree);
static tree fold_builtin_cos (tree, tree, tree);
static tree fold_builtin_cos (tree, tree, tree);
static tree fold_builtin_tan (tree);
static tree fold_builtin_tan (tree);
static tree fold_builtin_atan (tree, tree);
static tree fold_builtin_atan (tree, tree);
static tree fold_builtin_trunc (tree, tree);
static tree fold_builtin_trunc (tree, tree);
static tree fold_builtin_floor (tree, tree);
static tree fold_builtin_floor (tree, tree);
static tree fold_builtin_ceil (tree, tree);
static tree fold_builtin_ceil (tree, tree);
static tree fold_builtin_round (tree, tree);
static tree fold_builtin_round (tree, tree);
static tree fold_builtin_int_roundingfn (tree, tree);
static tree fold_builtin_int_roundingfn (tree, tree);
static tree fold_builtin_bitop (tree, tree);
static tree fold_builtin_bitop (tree, tree);
static tree fold_builtin_memory_op (tree, tree, bool, int);
static tree fold_builtin_memory_op (tree, tree, bool, int);
static tree fold_builtin_strchr (tree, tree);
static tree fold_builtin_strchr (tree, tree);
static tree fold_builtin_memcmp (tree);
static tree fold_builtin_memcmp (tree);
static tree fold_builtin_strcmp (tree);
static tree fold_builtin_strcmp (tree);
static tree fold_builtin_strncmp (tree);
static tree fold_builtin_strncmp (tree);
static tree fold_builtin_signbit (tree, tree);
static tree fold_builtin_signbit (tree, tree);
static tree fold_builtin_copysign (tree, tree, tree);
static tree fold_builtin_copysign (tree, tree, tree);
static tree fold_builtin_isascii (tree);
static tree fold_builtin_isascii (tree);
static tree fold_builtin_toascii (tree);
static tree fold_builtin_toascii (tree);
static tree fold_builtin_isdigit (tree);
static tree fold_builtin_isdigit (tree);
static tree fold_builtin_fabs (tree, tree);
static tree fold_builtin_fabs (tree, tree);
static tree fold_builtin_abs (tree, tree);
static tree fold_builtin_abs (tree, tree);
static tree fold_builtin_unordered_cmp (tree, tree, enum tree_code,
static tree fold_builtin_unordered_cmp (tree, tree, enum tree_code,
                                        enum tree_code);
                                        enum tree_code);
static tree fold_builtin_1 (tree, tree, bool);
static tree fold_builtin_1 (tree, tree, bool);
 
 
static tree fold_builtin_strpbrk (tree, tree);
static tree fold_builtin_strpbrk (tree, tree);
static tree fold_builtin_strstr (tree, tree);
static tree fold_builtin_strstr (tree, tree);
static tree fold_builtin_strrchr (tree, tree);
static tree fold_builtin_strrchr (tree, tree);
static tree fold_builtin_strcat (tree);
static tree fold_builtin_strcat (tree);
static tree fold_builtin_strncat (tree);
static tree fold_builtin_strncat (tree);
static tree fold_builtin_strspn (tree);
static tree fold_builtin_strspn (tree);
static tree fold_builtin_strcspn (tree);
static tree fold_builtin_strcspn (tree);
static tree fold_builtin_sprintf (tree, int);
static tree fold_builtin_sprintf (tree, int);
 
 
static rtx expand_builtin_object_size (tree);
static rtx expand_builtin_object_size (tree);
static rtx expand_builtin_memory_chk (tree, rtx, enum machine_mode,
static rtx expand_builtin_memory_chk (tree, rtx, enum machine_mode,
                                      enum built_in_function);
                                      enum built_in_function);
static void maybe_emit_chk_warning (tree, enum built_in_function);
static void maybe_emit_chk_warning (tree, enum built_in_function);
static void maybe_emit_sprintf_chk_warning (tree, enum built_in_function);
static void maybe_emit_sprintf_chk_warning (tree, enum built_in_function);
static tree fold_builtin_object_size (tree);
static tree fold_builtin_object_size (tree);
static tree fold_builtin_strcat_chk (tree, tree);
static tree fold_builtin_strcat_chk (tree, tree);
static tree fold_builtin_strncat_chk (tree, tree);
static tree fold_builtin_strncat_chk (tree, tree);
static tree fold_builtin_sprintf_chk (tree, enum built_in_function);
static tree fold_builtin_sprintf_chk (tree, enum built_in_function);
static tree fold_builtin_printf (tree, tree, bool, enum built_in_function);
static tree fold_builtin_printf (tree, tree, bool, enum built_in_function);
static tree fold_builtin_fprintf (tree, tree, bool, enum built_in_function);
static tree fold_builtin_fprintf (tree, tree, bool, enum built_in_function);
static bool init_target_chars (void);
static bool init_target_chars (void);
 
 
static unsigned HOST_WIDE_INT target_newline;
static unsigned HOST_WIDE_INT target_newline;
static unsigned HOST_WIDE_INT target_percent;
static unsigned HOST_WIDE_INT target_percent;
static unsigned HOST_WIDE_INT target_c;
static unsigned HOST_WIDE_INT target_c;
static unsigned HOST_WIDE_INT target_s;
static unsigned HOST_WIDE_INT target_s;
static char target_percent_c[3];
static char target_percent_c[3];
static char target_percent_s[3];
static char target_percent_s[3];
static char target_percent_s_newline[4];
static char target_percent_s_newline[4];
 
 
/* Return true if NODE should be considered for inline expansion regardless
/* Return true if NODE should be considered for inline expansion regardless
   of the optimization level.  This means whenever a function is invoked with
   of the optimization level.  This means whenever a function is invoked with
   its "internal" name, which normally contains the prefix "__builtin".  */
   its "internal" name, which normally contains the prefix "__builtin".  */
 
 
static bool called_as_built_in (tree node)
static bool called_as_built_in (tree node)
{
{
  const char *name = IDENTIFIER_POINTER (DECL_NAME (node));
  const char *name = IDENTIFIER_POINTER (DECL_NAME (node));
  if (strncmp (name, "__builtin_", 10) == 0)
  if (strncmp (name, "__builtin_", 10) == 0)
    return true;
    return true;
  if (strncmp (name, "__sync_", 7) == 0)
  if (strncmp (name, "__sync_", 7) == 0)
    return true;
    return true;
  return false;
  return false;
}
}
 
 
/* Return the alignment in bits of EXP, a pointer valued expression.
/* Return the alignment in bits of EXP, a pointer valued expression.
   But don't return more than MAX_ALIGN no matter what.
   But don't return more than MAX_ALIGN no matter what.
   The alignment returned is, by default, the alignment of the thing that
   The alignment returned is, by default, the alignment of the thing that
   EXP points to.  If it is not a POINTER_TYPE, 0 is returned.
   EXP points to.  If it is not a POINTER_TYPE, 0 is returned.
 
 
   Otherwise, look at the expression to see if we can do better, i.e., if the
   Otherwise, look at the expression to see if we can do better, i.e., if the
   expression is actually pointing at an object whose alignment is tighter.  */
   expression is actually pointing at an object whose alignment is tighter.  */
 
 
static int
static int
get_pointer_alignment (tree exp, unsigned int max_align)
get_pointer_alignment (tree exp, unsigned int max_align)
{
{
  unsigned int align, inner;
  unsigned int align, inner;
 
 
  /* We rely on TER to compute accurate alignment information.  */
  /* We rely on TER to compute accurate alignment information.  */
  if (!(optimize && flag_tree_ter))
  if (!(optimize && flag_tree_ter))
    return 0;
    return 0;
 
 
  if (!POINTER_TYPE_P (TREE_TYPE (exp)))
  if (!POINTER_TYPE_P (TREE_TYPE (exp)))
    return 0;
    return 0;
 
 
  align = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
  align = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
  align = MIN (align, max_align);
  align = MIN (align, max_align);
 
 
  while (1)
  while (1)
    {
    {
      switch (TREE_CODE (exp))
      switch (TREE_CODE (exp))
        {
        {
        case NOP_EXPR:
        case NOP_EXPR:
        case CONVERT_EXPR:
        case CONVERT_EXPR:
        case NON_LVALUE_EXPR:
        case NON_LVALUE_EXPR:
          exp = TREE_OPERAND (exp, 0);
          exp = TREE_OPERAND (exp, 0);
          if (! POINTER_TYPE_P (TREE_TYPE (exp)))
          if (! POINTER_TYPE_P (TREE_TYPE (exp)))
            return align;
            return align;
 
 
          inner = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
          inner = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
          align = MIN (inner, max_align);
          align = MIN (inner, max_align);
          break;
          break;
 
 
        case PLUS_EXPR:
        case PLUS_EXPR:
          /* If sum of pointer + int, restrict our maximum alignment to that
          /* If sum of pointer + int, restrict our maximum alignment to that
             imposed by the integer.  If not, we can't do any better than
             imposed by the integer.  If not, we can't do any better than
             ALIGN.  */
             ALIGN.  */
          if (! host_integerp (TREE_OPERAND (exp, 1), 1))
          if (! host_integerp (TREE_OPERAND (exp, 1), 1))
            return align;
            return align;
 
 
          while (((tree_low_cst (TREE_OPERAND (exp, 1), 1))
          while (((tree_low_cst (TREE_OPERAND (exp, 1), 1))
                  & (max_align / BITS_PER_UNIT - 1))
                  & (max_align / BITS_PER_UNIT - 1))
                 != 0)
                 != 0)
            max_align >>= 1;
            max_align >>= 1;
 
 
          exp = TREE_OPERAND (exp, 0);
          exp = TREE_OPERAND (exp, 0);
          break;
          break;
 
 
        case ADDR_EXPR:
        case ADDR_EXPR:
          /* See what we are pointing at and look at its alignment.  */
          /* See what we are pointing at and look at its alignment.  */
          exp = TREE_OPERAND (exp, 0);
          exp = TREE_OPERAND (exp, 0);
          inner = max_align;
          inner = max_align;
          if (handled_component_p (exp))
          if (handled_component_p (exp))
            {
            {
              HOST_WIDE_INT bitsize, bitpos;
              HOST_WIDE_INT bitsize, bitpos;
              tree offset;
              tree offset;
              enum machine_mode mode;
              enum machine_mode mode;
              int unsignedp, volatilep;
              int unsignedp, volatilep;
 
 
              exp = get_inner_reference (exp, &bitsize, &bitpos, &offset,
              exp = get_inner_reference (exp, &bitsize, &bitpos, &offset,
                                         &mode, &unsignedp, &volatilep, true);
                                         &mode, &unsignedp, &volatilep, true);
              if (bitpos)
              if (bitpos)
                inner = MIN (inner, (unsigned) (bitpos & -bitpos));
                inner = MIN (inner, (unsigned) (bitpos & -bitpos));
              if (offset && TREE_CODE (offset) == PLUS_EXPR
              if (offset && TREE_CODE (offset) == PLUS_EXPR
                  && host_integerp (TREE_OPERAND (offset, 1), 1))
                  && host_integerp (TREE_OPERAND (offset, 1), 1))
                {
                {
                  /* Any overflow in calculating offset_bits won't change
                  /* Any overflow in calculating offset_bits won't change
                     the alignment.  */
                     the alignment.  */
                  unsigned offset_bits
                  unsigned offset_bits
                    = ((unsigned) tree_low_cst (TREE_OPERAND (offset, 1), 1)
                    = ((unsigned) tree_low_cst (TREE_OPERAND (offset, 1), 1)
                       * BITS_PER_UNIT);
                       * BITS_PER_UNIT);
 
 
                  if (offset_bits)
                  if (offset_bits)
                    inner = MIN (inner, (offset_bits & -offset_bits));
                    inner = MIN (inner, (offset_bits & -offset_bits));
                  offset = TREE_OPERAND (offset, 0);
                  offset = TREE_OPERAND (offset, 0);
                }
                }
              if (offset && TREE_CODE (offset) == MULT_EXPR
              if (offset && TREE_CODE (offset) == MULT_EXPR
                  && host_integerp (TREE_OPERAND (offset, 1), 1))
                  && host_integerp (TREE_OPERAND (offset, 1), 1))
                {
                {
                  /* Any overflow in calculating offset_factor won't change
                  /* Any overflow in calculating offset_factor won't change
                     the alignment.  */
                     the alignment.  */
                  unsigned offset_factor
                  unsigned offset_factor
                    = ((unsigned) tree_low_cst (TREE_OPERAND (offset, 1), 1)
                    = ((unsigned) tree_low_cst (TREE_OPERAND (offset, 1), 1)
                       * BITS_PER_UNIT);
                       * BITS_PER_UNIT);
 
 
                  if (offset_factor)
                  if (offset_factor)
                    inner = MIN (inner, (offset_factor & -offset_factor));
                    inner = MIN (inner, (offset_factor & -offset_factor));
                }
                }
              else if (offset)
              else if (offset)
                inner = MIN (inner, BITS_PER_UNIT);
                inner = MIN (inner, BITS_PER_UNIT);
            }
            }
          if (TREE_CODE (exp) == FUNCTION_DECL)
          if (TREE_CODE (exp) == FUNCTION_DECL)
            align = FUNCTION_BOUNDARY;
            align = FUNCTION_BOUNDARY;
          else if (DECL_P (exp))
          else if (DECL_P (exp))
            align = MIN (inner, DECL_ALIGN (exp));
            align = MIN (inner, DECL_ALIGN (exp));
#ifdef CONSTANT_ALIGNMENT
#ifdef CONSTANT_ALIGNMENT
          else if (CONSTANT_CLASS_P (exp))
          else if (CONSTANT_CLASS_P (exp))
            align = MIN (inner, (unsigned)CONSTANT_ALIGNMENT (exp, align));
            align = MIN (inner, (unsigned)CONSTANT_ALIGNMENT (exp, align));
#endif
#endif
          else if (TREE_CODE (exp) == VIEW_CONVERT_EXPR
          else if (TREE_CODE (exp) == VIEW_CONVERT_EXPR
                   || TREE_CODE (exp) == INDIRECT_REF)
                   || TREE_CODE (exp) == INDIRECT_REF)
            align = MIN (TYPE_ALIGN (TREE_TYPE (exp)), inner);
            align = MIN (TYPE_ALIGN (TREE_TYPE (exp)), inner);
          else
          else
            align = MIN (align, inner);
            align = MIN (align, inner);
          return MIN (align, max_align);
          return MIN (align, max_align);
 
 
        default:
        default:
          return align;
          return align;
        }
        }
    }
    }
}
}
 
 
/* Compute the length of a C string.  TREE_STRING_LENGTH is not the right
/* Compute the length of a C string.  TREE_STRING_LENGTH is not the right
   way, because it could contain a zero byte in the middle.
   way, because it could contain a zero byte in the middle.
   TREE_STRING_LENGTH is the size of the character array, not the string.
   TREE_STRING_LENGTH is the size of the character array, not the string.
 
 
   ONLY_VALUE should be nonzero if the result is not going to be emitted
   ONLY_VALUE should be nonzero if the result is not going to be emitted
   into the instruction stream and zero if it is going to be expanded.
   into the instruction stream and zero if it is going to be expanded.
   E.g. with i++ ? "foo" : "bar", if ONLY_VALUE is nonzero, constant 3
   E.g. with i++ ? "foo" : "bar", if ONLY_VALUE is nonzero, constant 3
   is returned, otherwise NULL, since
   is returned, otherwise NULL, since
   len = c_strlen (src, 1); if (len) expand_expr (len, ...); would not
   len = c_strlen (src, 1); if (len) expand_expr (len, ...); would not
   evaluate the side-effects.
   evaluate the side-effects.
 
 
   The value returned is of type `ssizetype'.
   The value returned is of type `ssizetype'.
 
 
   Unfortunately, string_constant can't access the values of const char
   Unfortunately, string_constant can't access the values of const char
   arrays with initializers, so neither can we do so here.  */
   arrays with initializers, so neither can we do so here.  */
 
 
tree
tree
c_strlen (tree src, int only_value)
c_strlen (tree src, int only_value)
{
{
  tree offset_node;
  tree offset_node;
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
  int max;
  int max;
  const char *ptr;
  const char *ptr;
 
 
  STRIP_NOPS (src);
  STRIP_NOPS (src);
  if (TREE_CODE (src) == COND_EXPR
  if (TREE_CODE (src) == COND_EXPR
      && (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0))))
      && (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0))))
    {
    {
      tree len1, len2;
      tree len1, len2;
 
 
      len1 = c_strlen (TREE_OPERAND (src, 1), only_value);
      len1 = c_strlen (TREE_OPERAND (src, 1), only_value);
      len2 = c_strlen (TREE_OPERAND (src, 2), only_value);
      len2 = c_strlen (TREE_OPERAND (src, 2), only_value);
      if (tree_int_cst_equal (len1, len2))
      if (tree_int_cst_equal (len1, len2))
        return len1;
        return len1;
    }
    }
 
 
  if (TREE_CODE (src) == COMPOUND_EXPR
  if (TREE_CODE (src) == COMPOUND_EXPR
      && (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0))))
      && (only_value || !TREE_SIDE_EFFECTS (TREE_OPERAND (src, 0))))
    return c_strlen (TREE_OPERAND (src, 1), only_value);
    return c_strlen (TREE_OPERAND (src, 1), only_value);
 
 
  src = string_constant (src, &offset_node);
  src = string_constant (src, &offset_node);
  if (src == 0)
  if (src == 0)
    return 0;
    return 0;
 
 
  max = TREE_STRING_LENGTH (src) - 1;
  max = TREE_STRING_LENGTH (src) - 1;
  ptr = TREE_STRING_POINTER (src);
  ptr = TREE_STRING_POINTER (src);
 
 
  if (offset_node && TREE_CODE (offset_node) != INTEGER_CST)
  if (offset_node && TREE_CODE (offset_node) != INTEGER_CST)
    {
    {
      /* If the string has an internal zero byte (e.g., "foo\0bar"), we can't
      /* If the string has an internal zero byte (e.g., "foo\0bar"), we can't
         compute the offset to the following null if we don't know where to
         compute the offset to the following null if we don't know where to
         start searching for it.  */
         start searching for it.  */
      int i;
      int i;
 
 
      for (i = 0; i < max; i++)
      for (i = 0; i < max; i++)
        if (ptr[i] == 0)
        if (ptr[i] == 0)
          return 0;
          return 0;
 
 
      /* We don't know the starting offset, but we do know that the string
      /* We don't know the starting offset, but we do know that the string
         has no internal zero bytes.  We can assume that the offset falls
         has no internal zero bytes.  We can assume that the offset falls
         within the bounds of the string; otherwise, the programmer deserves
         within the bounds of the string; otherwise, the programmer deserves
         what he gets.  Subtract the offset from the length of the string,
         what he gets.  Subtract the offset from the length of the string,
         and return that.  This would perhaps not be valid if we were dealing
         and return that.  This would perhaps not be valid if we were dealing
         with named arrays in addition to literal string constants.  */
         with named arrays in addition to literal string constants.  */
 
 
      return size_diffop (size_int (max), offset_node);
      return size_diffop (size_int (max), offset_node);
    }
    }
 
 
  /* We have a known offset into the string.  Start searching there for
  /* We have a known offset into the string.  Start searching there for
     a null character if we can represent it as a single HOST_WIDE_INT.  */
     a null character if we can represent it as a single HOST_WIDE_INT.  */
  if (offset_node == 0)
  if (offset_node == 0)
    offset = 0;
    offset = 0;
  else if (! host_integerp (offset_node, 0))
  else if (! host_integerp (offset_node, 0))
    offset = -1;
    offset = -1;
  else
  else
    offset = tree_low_cst (offset_node, 0);
    offset = tree_low_cst (offset_node, 0);
 
 
  /* If the offset is known to be out of bounds, warn, and call strlen at
  /* If the offset is known to be out of bounds, warn, and call strlen at
     runtime.  */
     runtime.  */
  if (offset < 0 || offset > max)
  if (offset < 0 || offset > max)
    {
    {
      warning (0, "offset outside bounds of constant string");
      warning (0, "offset outside bounds of constant string");
      return 0;
      return 0;
    }
    }
 
 
  /* Use strlen to search for the first zero byte.  Since any strings
  /* Use strlen to search for the first zero byte.  Since any strings
     constructed with build_string will have nulls appended, we win even
     constructed with build_string will have nulls appended, we win even
     if we get handed something like (char[4])"abcd".
     if we get handed something like (char[4])"abcd".
 
 
     Since OFFSET is our starting index into the string, no further
     Since OFFSET is our starting index into the string, no further
     calculation is needed.  */
     calculation is needed.  */
  return ssize_int (strlen (ptr + offset));
  return ssize_int (strlen (ptr + offset));
}
}
 
 
/* Return a char pointer for a C string if it is a string constant
/* Return a char pointer for a C string if it is a string constant
   or sum of string constant and integer constant.  */
   or sum of string constant and integer constant.  */
 
 
static const char *
static const char *
c_getstr (tree src)
c_getstr (tree src)
{
{
  tree offset_node;
  tree offset_node;
 
 
  src = string_constant (src, &offset_node);
  src = string_constant (src, &offset_node);
  if (src == 0)
  if (src == 0)
    return 0;
    return 0;
 
 
  if (offset_node == 0)
  if (offset_node == 0)
    return TREE_STRING_POINTER (src);
    return TREE_STRING_POINTER (src);
  else if (!host_integerp (offset_node, 1)
  else if (!host_integerp (offset_node, 1)
           || compare_tree_int (offset_node, TREE_STRING_LENGTH (src) - 1) > 0)
           || compare_tree_int (offset_node, TREE_STRING_LENGTH (src) - 1) > 0)
    return 0;
    return 0;
 
 
  return TREE_STRING_POINTER (src) + tree_low_cst (offset_node, 1);
  return TREE_STRING_POINTER (src) + tree_low_cst (offset_node, 1);
}
}
 
 
/* Return a CONST_INT or CONST_DOUBLE corresponding to target reading
/* Return a CONST_INT or CONST_DOUBLE corresponding to target reading
   GET_MODE_BITSIZE (MODE) bits from string constant STR.  */
   GET_MODE_BITSIZE (MODE) bits from string constant STR.  */
 
 
static rtx
static rtx
c_readstr (const char *str, enum machine_mode mode)
c_readstr (const char *str, enum machine_mode mode)
{
{
  HOST_WIDE_INT c[2];
  HOST_WIDE_INT c[2];
  HOST_WIDE_INT ch;
  HOST_WIDE_INT ch;
  unsigned int i, j;
  unsigned int i, j;
 
 
  gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
  gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
 
 
  c[0] = 0;
  c[0] = 0;
  c[1] = 0;
  c[1] = 0;
  ch = 1;
  ch = 1;
  for (i = 0; i < GET_MODE_SIZE (mode); i++)
  for (i = 0; i < GET_MODE_SIZE (mode); i++)
    {
    {
      j = i;
      j = i;
      if (WORDS_BIG_ENDIAN)
      if (WORDS_BIG_ENDIAN)
        j = GET_MODE_SIZE (mode) - i - 1;
        j = GET_MODE_SIZE (mode) - i - 1;
      if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
      if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN
          && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
          && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
        j = j + UNITS_PER_WORD - 2 * (j % UNITS_PER_WORD) - 1;
        j = j + UNITS_PER_WORD - 2 * (j % UNITS_PER_WORD) - 1;
      j *= BITS_PER_UNIT;
      j *= BITS_PER_UNIT;
      gcc_assert (j <= 2 * HOST_BITS_PER_WIDE_INT);
      gcc_assert (j <= 2 * HOST_BITS_PER_WIDE_INT);
 
 
      if (ch)
      if (ch)
        ch = (unsigned char) str[i];
        ch = (unsigned char) str[i];
      c[j / HOST_BITS_PER_WIDE_INT] |= ch << (j % HOST_BITS_PER_WIDE_INT);
      c[j / HOST_BITS_PER_WIDE_INT] |= ch << (j % HOST_BITS_PER_WIDE_INT);
    }
    }
  return immed_double_const (c[0], c[1], mode);
  return immed_double_const (c[0], c[1], mode);
}
}
 
 
/* Cast a target constant CST to target CHAR and if that value fits into
/* Cast a target constant CST to target CHAR and if that value fits into
   host char type, return zero and put that value into variable pointed to by
   host char type, return zero and put that value into variable pointed to by
   P.  */
   P.  */
 
 
static int
static int
target_char_cast (tree cst, char *p)
target_char_cast (tree cst, char *p)
{
{
  unsigned HOST_WIDE_INT val, hostval;
  unsigned HOST_WIDE_INT val, hostval;
 
 
  if (!host_integerp (cst, 1)
  if (!host_integerp (cst, 1)
      || CHAR_TYPE_SIZE > HOST_BITS_PER_WIDE_INT)
      || CHAR_TYPE_SIZE > HOST_BITS_PER_WIDE_INT)
    return 1;
    return 1;
 
 
  val = tree_low_cst (cst, 1);
  val = tree_low_cst (cst, 1);
  if (CHAR_TYPE_SIZE < HOST_BITS_PER_WIDE_INT)
  if (CHAR_TYPE_SIZE < HOST_BITS_PER_WIDE_INT)
    val &= (((unsigned HOST_WIDE_INT) 1) << CHAR_TYPE_SIZE) - 1;
    val &= (((unsigned HOST_WIDE_INT) 1) << CHAR_TYPE_SIZE) - 1;
 
 
  hostval = val;
  hostval = val;
  if (HOST_BITS_PER_CHAR < HOST_BITS_PER_WIDE_INT)
  if (HOST_BITS_PER_CHAR < HOST_BITS_PER_WIDE_INT)
    hostval &= (((unsigned HOST_WIDE_INT) 1) << HOST_BITS_PER_CHAR) - 1;
    hostval &= (((unsigned HOST_WIDE_INT) 1) << HOST_BITS_PER_CHAR) - 1;
 
 
  if (val != hostval)
  if (val != hostval)
    return 1;
    return 1;
 
 
  *p = hostval;
  *p = hostval;
  return 0;
  return 0;
}
}
 
 
/* Similar to save_expr, but assumes that arbitrary code is not executed
/* Similar to save_expr, but assumes that arbitrary code is not executed
   in between the multiple evaluations.  In particular, we assume that a
   in between the multiple evaluations.  In particular, we assume that a
   non-addressable local variable will not be modified.  */
   non-addressable local variable will not be modified.  */
 
 
static tree
static tree
builtin_save_expr (tree exp)
builtin_save_expr (tree exp)
{
{
  if (TREE_ADDRESSABLE (exp) == 0
  if (TREE_ADDRESSABLE (exp) == 0
      && (TREE_CODE (exp) == PARM_DECL
      && (TREE_CODE (exp) == PARM_DECL
          || (TREE_CODE (exp) == VAR_DECL && !TREE_STATIC (exp))))
          || (TREE_CODE (exp) == VAR_DECL && !TREE_STATIC (exp))))
    return exp;
    return exp;
 
 
  return save_expr (exp);
  return save_expr (exp);
}
}
 
 
/* Given TEM, a pointer to a stack frame, follow the dynamic chain COUNT
/* Given TEM, a pointer to a stack frame, follow the dynamic chain COUNT
   times to get the address of either a higher stack frame, or a return
   times to get the address of either a higher stack frame, or a return
   address located within it (depending on FNDECL_CODE).  */
   address located within it (depending on FNDECL_CODE).  */
 
 
static rtx
static rtx
expand_builtin_return_addr (enum built_in_function fndecl_code, int count)
expand_builtin_return_addr (enum built_in_function fndecl_code, int count)
{
{
  int i;
  int i;
 
 
#ifdef INITIAL_FRAME_ADDRESS_RTX
#ifdef INITIAL_FRAME_ADDRESS_RTX
  rtx tem = INITIAL_FRAME_ADDRESS_RTX;
  rtx tem = INITIAL_FRAME_ADDRESS_RTX;
#else
#else
  rtx tem;
  rtx tem;
 
 
  /* For a zero count with __builtin_return_address, we don't care what
  /* For a zero count with __builtin_return_address, we don't care what
     frame address we return, because target-specific definitions will
     frame address we return, because target-specific definitions will
     override us.  Therefore frame pointer elimination is OK, and using
     override us.  Therefore frame pointer elimination is OK, and using
     the soft frame pointer is OK.
     the soft frame pointer is OK.
 
 
     For a non-zero count, or a zero count with __builtin_frame_address,
     For a non-zero count, or a zero count with __builtin_frame_address,
     we require a stable offset from the current frame pointer to the
     we require a stable offset from the current frame pointer to the
     previous one, so we must use the hard frame pointer, and
     previous one, so we must use the hard frame pointer, and
     we must disable frame pointer elimination.  */
     we must disable frame pointer elimination.  */
  if (count == 0 && fndecl_code == BUILT_IN_RETURN_ADDRESS)
  if (count == 0 && fndecl_code == BUILT_IN_RETURN_ADDRESS)
    tem = frame_pointer_rtx;
    tem = frame_pointer_rtx;
  else
  else
    {
    {
      tem = hard_frame_pointer_rtx;
      tem = hard_frame_pointer_rtx;
 
 
      /* Tell reload not to eliminate the frame pointer.  */
      /* Tell reload not to eliminate the frame pointer.  */
      current_function_accesses_prior_frames = 1;
      current_function_accesses_prior_frames = 1;
    }
    }
#endif
#endif
 
 
  /* Some machines need special handling before we can access
  /* Some machines need special handling before we can access
     arbitrary frames.  For example, on the SPARC, we must first flush
     arbitrary frames.  For example, on the SPARC, we must first flush
     all register windows to the stack.  */
     all register windows to the stack.  */
#ifdef SETUP_FRAME_ADDRESSES
#ifdef SETUP_FRAME_ADDRESSES
  if (count > 0)
  if (count > 0)
    SETUP_FRAME_ADDRESSES ();
    SETUP_FRAME_ADDRESSES ();
#endif
#endif
 
 
  /* On the SPARC, the return address is not in the frame, it is in a
  /* On the SPARC, the return address is not in the frame, it is in a
     register.  There is no way to access it off of the current frame
     register.  There is no way to access it off of the current frame
     pointer, but it can be accessed off the previous frame pointer by
     pointer, but it can be accessed off the previous frame pointer by
     reading the value from the register window save area.  */
     reading the value from the register window save area.  */
#ifdef RETURN_ADDR_IN_PREVIOUS_FRAME
#ifdef RETURN_ADDR_IN_PREVIOUS_FRAME
  if (fndecl_code == BUILT_IN_RETURN_ADDRESS)
  if (fndecl_code == BUILT_IN_RETURN_ADDRESS)
    count--;
    count--;
#endif
#endif
 
 
  /* Scan back COUNT frames to the specified frame.  */
  /* Scan back COUNT frames to the specified frame.  */
  for (i = 0; i < count; i++)
  for (i = 0; i < count; i++)
    {
    {
      /* Assume the dynamic chain pointer is in the word that the
      /* Assume the dynamic chain pointer is in the word that the
         frame address points to, unless otherwise specified.  */
         frame address points to, unless otherwise specified.  */
#ifdef DYNAMIC_CHAIN_ADDRESS
#ifdef DYNAMIC_CHAIN_ADDRESS
      tem = DYNAMIC_CHAIN_ADDRESS (tem);
      tem = DYNAMIC_CHAIN_ADDRESS (tem);
#endif
#endif
      tem = memory_address (Pmode, tem);
      tem = memory_address (Pmode, tem);
      tem = gen_frame_mem (Pmode, tem);
      tem = gen_frame_mem (Pmode, tem);
      tem = copy_to_reg (tem);
      tem = copy_to_reg (tem);
    }
    }
 
 
  /* For __builtin_frame_address, return what we've got.  But, on
  /* For __builtin_frame_address, return what we've got.  But, on
     the SPARC for example, we may have to add a bias.  */
     the SPARC for example, we may have to add a bias.  */
  if (fndecl_code == BUILT_IN_FRAME_ADDRESS)
  if (fndecl_code == BUILT_IN_FRAME_ADDRESS)
#ifdef FRAME_ADDR_RTX
#ifdef FRAME_ADDR_RTX
    return FRAME_ADDR_RTX (tem);
    return FRAME_ADDR_RTX (tem);
#else
#else
    return tem;
    return tem;
#endif
#endif
 
 
  /* For __builtin_return_address, get the return address from that frame.  */
  /* For __builtin_return_address, get the return address from that frame.  */
#ifdef RETURN_ADDR_RTX
#ifdef RETURN_ADDR_RTX
  tem = RETURN_ADDR_RTX (count, tem);
  tem = RETURN_ADDR_RTX (count, tem);
#else
#else
  tem = memory_address (Pmode,
  tem = memory_address (Pmode,
                        plus_constant (tem, GET_MODE_SIZE (Pmode)));
                        plus_constant (tem, GET_MODE_SIZE (Pmode)));
  tem = gen_frame_mem (Pmode, tem);
  tem = gen_frame_mem (Pmode, tem);
#endif
#endif
  return tem;
  return tem;
}
}
 
 
/* Alias set used for setjmp buffer.  */
/* Alias set used for setjmp buffer.  */
static HOST_WIDE_INT setjmp_alias_set = -1;
static HOST_WIDE_INT setjmp_alias_set = -1;
 
 
/* Construct the leading half of a __builtin_setjmp call.  Control will
/* Construct the leading half of a __builtin_setjmp call.  Control will
   return to RECEIVER_LABEL.  This is also called directly by the SJLJ
   return to RECEIVER_LABEL.  This is also called directly by the SJLJ
   exception handling code.  */
   exception handling code.  */
 
 
void
void
expand_builtin_setjmp_setup (rtx buf_addr, rtx receiver_label)
expand_builtin_setjmp_setup (rtx buf_addr, rtx receiver_label)
{
{
  enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
  enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
  rtx stack_save;
  rtx stack_save;
  rtx mem;
  rtx mem;
 
 
  if (setjmp_alias_set == -1)
  if (setjmp_alias_set == -1)
    setjmp_alias_set = new_alias_set ();
    setjmp_alias_set = new_alias_set ();
 
 
  buf_addr = convert_memory_address (Pmode, buf_addr);
  buf_addr = convert_memory_address (Pmode, buf_addr);
 
 
  buf_addr = force_reg (Pmode, force_operand (buf_addr, NULL_RTX));
  buf_addr = force_reg (Pmode, force_operand (buf_addr, NULL_RTX));
 
 
  /* We store the frame pointer and the address of receiver_label in
  /* We store the frame pointer and the address of receiver_label in
     the buffer and use the rest of it for the stack save area, which
     the buffer and use the rest of it for the stack save area, which
     is machine-dependent.  */
     is machine-dependent.  */
 
 
  mem = gen_rtx_MEM (Pmode, buf_addr);
  mem = gen_rtx_MEM (Pmode, buf_addr);
  set_mem_alias_set (mem, setjmp_alias_set);
  set_mem_alias_set (mem, setjmp_alias_set);
  emit_move_insn (mem, targetm.builtin_setjmp_frame_value ());
  emit_move_insn (mem, targetm.builtin_setjmp_frame_value ());
 
 
  mem = gen_rtx_MEM (Pmode, plus_constant (buf_addr, GET_MODE_SIZE (Pmode))),
  mem = gen_rtx_MEM (Pmode, plus_constant (buf_addr, GET_MODE_SIZE (Pmode))),
  set_mem_alias_set (mem, setjmp_alias_set);
  set_mem_alias_set (mem, setjmp_alias_set);
 
 
  emit_move_insn (validize_mem (mem),
  emit_move_insn (validize_mem (mem),
                  force_reg (Pmode, gen_rtx_LABEL_REF (Pmode, receiver_label)));
                  force_reg (Pmode, gen_rtx_LABEL_REF (Pmode, receiver_label)));
 
 
  stack_save = gen_rtx_MEM (sa_mode,
  stack_save = gen_rtx_MEM (sa_mode,
                            plus_constant (buf_addr,
                            plus_constant (buf_addr,
                                           2 * GET_MODE_SIZE (Pmode)));
                                           2 * GET_MODE_SIZE (Pmode)));
  set_mem_alias_set (stack_save, setjmp_alias_set);
  set_mem_alias_set (stack_save, setjmp_alias_set);
  emit_stack_save (SAVE_NONLOCAL, &stack_save, NULL_RTX);
  emit_stack_save (SAVE_NONLOCAL, &stack_save, NULL_RTX);
 
 
  /* If there is further processing to do, do it.  */
  /* If there is further processing to do, do it.  */
#ifdef HAVE_builtin_setjmp_setup
#ifdef HAVE_builtin_setjmp_setup
  if (HAVE_builtin_setjmp_setup)
  if (HAVE_builtin_setjmp_setup)
    emit_insn (gen_builtin_setjmp_setup (buf_addr));
    emit_insn (gen_builtin_setjmp_setup (buf_addr));
#endif
#endif
 
 
  /* Tell optimize_save_area_alloca that extra work is going to
  /* Tell optimize_save_area_alloca that extra work is going to
     need to go on during alloca.  */
     need to go on during alloca.  */
  current_function_calls_setjmp = 1;
  current_function_calls_setjmp = 1;
 
 
  /* Set this so all the registers get saved in our frame; we need to be
  /* Set this so all the registers get saved in our frame; we need to be
     able to copy the saved values for any registers from frames we unwind.  */
     able to copy the saved values for any registers from frames we unwind.  */
  current_function_has_nonlocal_label = 1;
  current_function_has_nonlocal_label = 1;
}
}
 
 
/* Construct the trailing part of a __builtin_setjmp call.  This is
/* Construct the trailing part of a __builtin_setjmp call.  This is
   also called directly by the SJLJ exception handling code.  */
   also called directly by the SJLJ exception handling code.  */
 
 
void
void
expand_builtin_setjmp_receiver (rtx receiver_label ATTRIBUTE_UNUSED)
expand_builtin_setjmp_receiver (rtx receiver_label ATTRIBUTE_UNUSED)
{
{
  /* Clobber the FP when we get here, so we have to make sure it's
  /* Clobber the FP when we get here, so we have to make sure it's
     marked as used by this function.  */
     marked as used by this function.  */
  emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
  emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
 
 
  /* Mark the static chain as clobbered here so life information
  /* Mark the static chain as clobbered here so life information
     doesn't get messed up for it.  */
     doesn't get messed up for it.  */
  emit_insn (gen_rtx_CLOBBER (VOIDmode, static_chain_rtx));
  emit_insn (gen_rtx_CLOBBER (VOIDmode, static_chain_rtx));
 
 
  /* Now put in the code to restore the frame pointer, and argument
  /* Now put in the code to restore the frame pointer, and argument
     pointer, if needed.  */
     pointer, if needed.  */
#ifdef HAVE_nonlocal_goto
#ifdef HAVE_nonlocal_goto
  if (! HAVE_nonlocal_goto)
  if (! HAVE_nonlocal_goto)
#endif
#endif
    {
    {
      emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
      emit_move_insn (virtual_stack_vars_rtx, hard_frame_pointer_rtx);
      /* This might change the hard frame pointer in ways that aren't
      /* This might change the hard frame pointer in ways that aren't
         apparent to early optimization passes, so force a clobber.  */
         apparent to early optimization passes, so force a clobber.  */
      emit_insn (gen_rtx_CLOBBER (VOIDmode, hard_frame_pointer_rtx));
      emit_insn (gen_rtx_CLOBBER (VOIDmode, hard_frame_pointer_rtx));
    }
    }
 
 
#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
#if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
  if (fixed_regs[ARG_POINTER_REGNUM])
  if (fixed_regs[ARG_POINTER_REGNUM])
    {
    {
#ifdef ELIMINABLE_REGS
#ifdef ELIMINABLE_REGS
      size_t i;
      size_t i;
      static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
      static const struct elims {const int from, to;} elim_regs[] = ELIMINABLE_REGS;
 
 
      for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
      for (i = 0; i < ARRAY_SIZE (elim_regs); i++)
        if (elim_regs[i].from == ARG_POINTER_REGNUM
        if (elim_regs[i].from == ARG_POINTER_REGNUM
            && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
            && elim_regs[i].to == HARD_FRAME_POINTER_REGNUM)
          break;
          break;
 
 
      if (i == ARRAY_SIZE (elim_regs))
      if (i == ARRAY_SIZE (elim_regs))
#endif
#endif
        {
        {
          /* Now restore our arg pointer from the address at which it
          /* Now restore our arg pointer from the address at which it
             was saved in our stack frame.  */
             was saved in our stack frame.  */
          emit_move_insn (virtual_incoming_args_rtx,
          emit_move_insn (virtual_incoming_args_rtx,
                          copy_to_reg (get_arg_pointer_save_area (cfun)));
                          copy_to_reg (get_arg_pointer_save_area (cfun)));
        }
        }
    }
    }
#endif
#endif
 
 
#ifdef HAVE_builtin_setjmp_receiver
#ifdef HAVE_builtin_setjmp_receiver
  if (HAVE_builtin_setjmp_receiver)
  if (HAVE_builtin_setjmp_receiver)
    emit_insn (gen_builtin_setjmp_receiver (receiver_label));
    emit_insn (gen_builtin_setjmp_receiver (receiver_label));
  else
  else
#endif
#endif
#ifdef HAVE_nonlocal_goto_receiver
#ifdef HAVE_nonlocal_goto_receiver
    if (HAVE_nonlocal_goto_receiver)
    if (HAVE_nonlocal_goto_receiver)
      emit_insn (gen_nonlocal_goto_receiver ());
      emit_insn (gen_nonlocal_goto_receiver ());
    else
    else
#endif
#endif
      { /* Nothing */ }
      { /* Nothing */ }
 
 
  /* @@@ This is a kludge.  Not all machine descriptions define a blockage
  /* @@@ This is a kludge.  Not all machine descriptions define a blockage
     insn, but we must not allow the code we just generated to be reordered
     insn, but we must not allow the code we just generated to be reordered
     by scheduling.  Specifically, the update of the frame pointer must
     by scheduling.  Specifically, the update of the frame pointer must
     happen immediately, not later.  So emit an ASM_INPUT to act as blockage
     happen immediately, not later.  So emit an ASM_INPUT to act as blockage
     insn.  */
     insn.  */
  emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
  emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
}
}
 
 
/* __builtin_longjmp is passed a pointer to an array of five words (not
/* __builtin_longjmp is passed a pointer to an array of five words (not
   all will be used on all machines).  It operates similarly to the C
   all will be used on all machines).  It operates similarly to the C
   library function of the same name, but is more efficient.  Much of
   library function of the same name, but is more efficient.  Much of
   the code below is copied from the handling of non-local gotos.  */
   the code below is copied from the handling of non-local gotos.  */
 
 
static void
static void
expand_builtin_longjmp (rtx buf_addr, rtx value)
expand_builtin_longjmp (rtx buf_addr, rtx value)
{
{
  rtx fp, lab, stack, insn, last;
  rtx fp, lab, stack, insn, last;
  enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
  enum machine_mode sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
 
 
  if (setjmp_alias_set == -1)
  if (setjmp_alias_set == -1)
    setjmp_alias_set = new_alias_set ();
    setjmp_alias_set = new_alias_set ();
 
 
  buf_addr = convert_memory_address (Pmode, buf_addr);
  buf_addr = convert_memory_address (Pmode, buf_addr);
 
 
  buf_addr = force_reg (Pmode, buf_addr);
  buf_addr = force_reg (Pmode, buf_addr);
 
 
  /* We used to store value in static_chain_rtx, but that fails if pointers
  /* We used to store value in static_chain_rtx, but that fails if pointers
     are smaller than integers.  We instead require that the user must pass
     are smaller than integers.  We instead require that the user must pass
     a second argument of 1, because that is what builtin_setjmp will
     a second argument of 1, because that is what builtin_setjmp will
     return.  This also makes EH slightly more efficient, since we are no
     return.  This also makes EH slightly more efficient, since we are no
     longer copying around a value that we don't care about.  */
     longer copying around a value that we don't care about.  */
  gcc_assert (value == const1_rtx);
  gcc_assert (value == const1_rtx);
 
 
  last = get_last_insn ();
  last = get_last_insn ();
#ifdef HAVE_builtin_longjmp
#ifdef HAVE_builtin_longjmp
  if (HAVE_builtin_longjmp)
  if (HAVE_builtin_longjmp)
    emit_insn (gen_builtin_longjmp (buf_addr));
    emit_insn (gen_builtin_longjmp (buf_addr));
  else
  else
#endif
#endif
    {
    {
      fp = gen_rtx_MEM (Pmode, buf_addr);
      fp = gen_rtx_MEM (Pmode, buf_addr);
      lab = gen_rtx_MEM (Pmode, plus_constant (buf_addr,
      lab = gen_rtx_MEM (Pmode, plus_constant (buf_addr,
                                               GET_MODE_SIZE (Pmode)));
                                               GET_MODE_SIZE (Pmode)));
 
 
      stack = gen_rtx_MEM (sa_mode, plus_constant (buf_addr,
      stack = gen_rtx_MEM (sa_mode, plus_constant (buf_addr,
                                                   2 * GET_MODE_SIZE (Pmode)));
                                                   2 * GET_MODE_SIZE (Pmode)));
      set_mem_alias_set (fp, setjmp_alias_set);
      set_mem_alias_set (fp, setjmp_alias_set);
      set_mem_alias_set (lab, setjmp_alias_set);
      set_mem_alias_set (lab, setjmp_alias_set);
      set_mem_alias_set (stack, setjmp_alias_set);
      set_mem_alias_set (stack, setjmp_alias_set);
 
 
      /* Pick up FP, label, and SP from the block and jump.  This code is
      /* Pick up FP, label, and SP from the block and jump.  This code is
         from expand_goto in stmt.c; see there for detailed comments.  */
         from expand_goto in stmt.c; see there for detailed comments.  */
#ifdef HAVE_nonlocal_goto
#ifdef HAVE_nonlocal_goto
      if (HAVE_nonlocal_goto)
      if (HAVE_nonlocal_goto)
        /* We have to pass a value to the nonlocal_goto pattern that will
        /* We have to pass a value to the nonlocal_goto pattern that will
           get copied into the static_chain pointer, but it does not matter
           get copied into the static_chain pointer, but it does not matter
           what that value is, because builtin_setjmp does not use it.  */
           what that value is, because builtin_setjmp does not use it.  */
        emit_insn (gen_nonlocal_goto (value, lab, stack, fp));
        emit_insn (gen_nonlocal_goto (value, lab, stack, fp));
      else
      else
#endif
#endif
        {
        {
          lab = copy_to_reg (lab);
          lab = copy_to_reg (lab);
 
 
          emit_insn (gen_rtx_CLOBBER (VOIDmode,
          emit_insn (gen_rtx_CLOBBER (VOIDmode,
                                      gen_rtx_MEM (BLKmode,
                                      gen_rtx_MEM (BLKmode,
                                                   gen_rtx_SCRATCH (VOIDmode))));
                                                   gen_rtx_SCRATCH (VOIDmode))));
          emit_insn (gen_rtx_CLOBBER (VOIDmode,
          emit_insn (gen_rtx_CLOBBER (VOIDmode,
                                      gen_rtx_MEM (BLKmode,
                                      gen_rtx_MEM (BLKmode,
                                                   hard_frame_pointer_rtx)));
                                                   hard_frame_pointer_rtx)));
 
 
          emit_move_insn (hard_frame_pointer_rtx, fp);
          emit_move_insn (hard_frame_pointer_rtx, fp);
          emit_stack_restore (SAVE_NONLOCAL, stack, NULL_RTX);
          emit_stack_restore (SAVE_NONLOCAL, stack, NULL_RTX);
 
 
          emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
          emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
          emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
          emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
          emit_indirect_jump (lab);
          emit_indirect_jump (lab);
        }
        }
    }
    }
 
 
  /* Search backwards and mark the jump insn as a non-local goto.
  /* Search backwards and mark the jump insn as a non-local goto.
     Note that this precludes the use of __builtin_longjmp to a
     Note that this precludes the use of __builtin_longjmp to a
     __builtin_setjmp target in the same function.  However, we've
     __builtin_setjmp target in the same function.  However, we've
     already cautioned the user that these functions are for
     already cautioned the user that these functions are for
     internal exception handling use only.  */
     internal exception handling use only.  */
  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
    {
    {
      gcc_assert (insn != last);
      gcc_assert (insn != last);
 
 
      if (JUMP_P (insn))
      if (JUMP_P (insn))
        {
        {
          REG_NOTES (insn) = alloc_EXPR_LIST (REG_NON_LOCAL_GOTO, const0_rtx,
          REG_NOTES (insn) = alloc_EXPR_LIST (REG_NON_LOCAL_GOTO, const0_rtx,
                                              REG_NOTES (insn));
                                              REG_NOTES (insn));
          break;
          break;
        }
        }
      else if (CALL_P (insn))
      else if (CALL_P (insn))
        break;
        break;
    }
    }
}
}
 
 
/* Expand a call to __builtin_nonlocal_goto.  We're passed the target label
/* Expand a call to __builtin_nonlocal_goto.  We're passed the target label
   and the address of the save area.  */
   and the address of the save area.  */
 
 
static rtx
static rtx
expand_builtin_nonlocal_goto (tree arglist)
expand_builtin_nonlocal_goto (tree arglist)
{
{
  tree t_label, t_save_area;
  tree t_label, t_save_area;
  rtx r_label, r_save_area, r_fp, r_sp, insn;
  rtx r_label, r_save_area, r_fp, r_sp, insn;
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  t_label = TREE_VALUE (arglist);
  t_label = TREE_VALUE (arglist);
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  t_save_area = TREE_VALUE (arglist);
  t_save_area = TREE_VALUE (arglist);
 
 
  r_label = expand_normal (t_label);
  r_label = expand_normal (t_label);
  r_label = convert_memory_address (Pmode, r_label);
  r_label = convert_memory_address (Pmode, r_label);
  r_save_area = expand_normal (t_save_area);
  r_save_area = expand_normal (t_save_area);
  r_save_area = convert_memory_address (Pmode, r_save_area);
  r_save_area = convert_memory_address (Pmode, r_save_area);
  r_fp = gen_rtx_MEM (Pmode, r_save_area);
  r_fp = gen_rtx_MEM (Pmode, r_save_area);
  r_sp = gen_rtx_MEM (STACK_SAVEAREA_MODE (SAVE_NONLOCAL),
  r_sp = gen_rtx_MEM (STACK_SAVEAREA_MODE (SAVE_NONLOCAL),
                      plus_constant (r_save_area, GET_MODE_SIZE (Pmode)));
                      plus_constant (r_save_area, GET_MODE_SIZE (Pmode)));
 
 
  current_function_has_nonlocal_goto = 1;
  current_function_has_nonlocal_goto = 1;
 
 
#ifdef HAVE_nonlocal_goto
#ifdef HAVE_nonlocal_goto
  /* ??? We no longer need to pass the static chain value, afaik.  */
  /* ??? We no longer need to pass the static chain value, afaik.  */
  if (HAVE_nonlocal_goto)
  if (HAVE_nonlocal_goto)
    emit_insn (gen_nonlocal_goto (const0_rtx, r_label, r_sp, r_fp));
    emit_insn (gen_nonlocal_goto (const0_rtx, r_label, r_sp, r_fp));
  else
  else
#endif
#endif
    {
    {
      r_label = copy_to_reg (r_label);
      r_label = copy_to_reg (r_label);
 
 
      emit_insn (gen_rtx_CLOBBER (VOIDmode,
      emit_insn (gen_rtx_CLOBBER (VOIDmode,
                                  gen_rtx_MEM (BLKmode,
                                  gen_rtx_MEM (BLKmode,
                                               gen_rtx_SCRATCH (VOIDmode))));
                                               gen_rtx_SCRATCH (VOIDmode))));
 
 
      emit_insn (gen_rtx_CLOBBER (VOIDmode,
      emit_insn (gen_rtx_CLOBBER (VOIDmode,
                                  gen_rtx_MEM (BLKmode,
                                  gen_rtx_MEM (BLKmode,
                                               hard_frame_pointer_rtx)));
                                               hard_frame_pointer_rtx)));
 
 
      /* Restore frame pointer for containing function.
      /* Restore frame pointer for containing function.
         This sets the actual hard register used for the frame pointer
         This sets the actual hard register used for the frame pointer
         to the location of the function's incoming static chain info.
         to the location of the function's incoming static chain info.
         The non-local goto handler will then adjust it to contain the
         The non-local goto handler will then adjust it to contain the
         proper value and reload the argument pointer, if needed.  */
         proper value and reload the argument pointer, if needed.  */
      emit_move_insn (hard_frame_pointer_rtx, r_fp);
      emit_move_insn (hard_frame_pointer_rtx, r_fp);
      emit_stack_restore (SAVE_NONLOCAL, r_sp, NULL_RTX);
      emit_stack_restore (SAVE_NONLOCAL, r_sp, NULL_RTX);
 
 
      /* USE of hard_frame_pointer_rtx added for consistency;
      /* USE of hard_frame_pointer_rtx added for consistency;
         not clear if really needed.  */
         not clear if really needed.  */
      emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
      emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
      emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
      emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));
      emit_indirect_jump (r_label);
      emit_indirect_jump (r_label);
    }
    }
 
 
  /* Search backwards to the jump insn and mark it as a
  /* Search backwards to the jump insn and mark it as a
     non-local goto.  */
     non-local goto.  */
  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
  for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
    {
    {
      if (JUMP_P (insn))
      if (JUMP_P (insn))
        {
        {
          REG_NOTES (insn) = alloc_EXPR_LIST (REG_NON_LOCAL_GOTO,
          REG_NOTES (insn) = alloc_EXPR_LIST (REG_NON_LOCAL_GOTO,
                                              const0_rtx, REG_NOTES (insn));
                                              const0_rtx, REG_NOTES (insn));
          break;
          break;
        }
        }
      else if (CALL_P (insn))
      else if (CALL_P (insn))
        break;
        break;
    }
    }
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* __builtin_update_setjmp_buf is passed a pointer to an array of five words
/* __builtin_update_setjmp_buf is passed a pointer to an array of five words
   (not all will be used on all machines) that was passed to __builtin_setjmp.
   (not all will be used on all machines) that was passed to __builtin_setjmp.
   It updates the stack pointer in that block to correspond to the current
   It updates the stack pointer in that block to correspond to the current
   stack pointer.  */
   stack pointer.  */
 
 
static void
static void
expand_builtin_update_setjmp_buf (rtx buf_addr)
expand_builtin_update_setjmp_buf (rtx buf_addr)
{
{
  enum machine_mode sa_mode = Pmode;
  enum machine_mode sa_mode = Pmode;
  rtx stack_save;
  rtx stack_save;
 
 
 
 
#ifdef HAVE_save_stack_nonlocal
#ifdef HAVE_save_stack_nonlocal
  if (HAVE_save_stack_nonlocal)
  if (HAVE_save_stack_nonlocal)
    sa_mode = insn_data[(int) CODE_FOR_save_stack_nonlocal].operand[0].mode;
    sa_mode = insn_data[(int) CODE_FOR_save_stack_nonlocal].operand[0].mode;
#endif
#endif
#ifdef STACK_SAVEAREA_MODE
#ifdef STACK_SAVEAREA_MODE
  sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
  sa_mode = STACK_SAVEAREA_MODE (SAVE_NONLOCAL);
#endif
#endif
 
 
  stack_save
  stack_save
    = gen_rtx_MEM (sa_mode,
    = gen_rtx_MEM (sa_mode,
                   memory_address
                   memory_address
                   (sa_mode,
                   (sa_mode,
                    plus_constant (buf_addr, 2 * GET_MODE_SIZE (Pmode))));
                    plus_constant (buf_addr, 2 * GET_MODE_SIZE (Pmode))));
 
 
#ifdef HAVE_setjmp
#ifdef HAVE_setjmp
  if (HAVE_setjmp)
  if (HAVE_setjmp)
    emit_insn (gen_setjmp ());
    emit_insn (gen_setjmp ());
#endif
#endif
 
 
  emit_stack_save (SAVE_NONLOCAL, &stack_save, NULL_RTX);
  emit_stack_save (SAVE_NONLOCAL, &stack_save, NULL_RTX);
}
}
 
 
/* Expand a call to __builtin_prefetch.  For a target that does not support
/* Expand a call to __builtin_prefetch.  For a target that does not support
   data prefetch, evaluate the memory address argument in case it has side
   data prefetch, evaluate the memory address argument in case it has side
   effects.  */
   effects.  */
 
 
static void
static void
expand_builtin_prefetch (tree arglist)
expand_builtin_prefetch (tree arglist)
{
{
  tree arg0, arg1, arg2;
  tree arg0, arg1, arg2;
  rtx op0, op1, op2;
  rtx op0, op1, op2;
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, 0))
  if (!validate_arglist (arglist, POINTER_TYPE, 0))
    return;
    return;
 
 
  arg0 = TREE_VALUE (arglist);
  arg0 = TREE_VALUE (arglist);
  /* Arguments 1 and 2 are optional; argument 1 (read/write) defaults to
  /* Arguments 1 and 2 are optional; argument 1 (read/write) defaults to
     zero (read) and argument 2 (locality) defaults to 3 (high degree of
     zero (read) and argument 2 (locality) defaults to 3 (high degree of
     locality).  */
     locality).  */
  if (TREE_CHAIN (arglist))
  if (TREE_CHAIN (arglist))
    {
    {
      arg1 = TREE_VALUE (TREE_CHAIN (arglist));
      arg1 = TREE_VALUE (TREE_CHAIN (arglist));
      if (TREE_CHAIN (TREE_CHAIN (arglist)))
      if (TREE_CHAIN (TREE_CHAIN (arglist)))
        arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
        arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
      else
      else
        arg2 = build_int_cst (NULL_TREE, 3);
        arg2 = build_int_cst (NULL_TREE, 3);
    }
    }
  else
  else
    {
    {
      arg1 = integer_zero_node;
      arg1 = integer_zero_node;
      arg2 = build_int_cst (NULL_TREE, 3);
      arg2 = build_int_cst (NULL_TREE, 3);
    }
    }
 
 
  /* Argument 0 is an address.  */
  /* Argument 0 is an address.  */
  op0 = expand_expr (arg0, NULL_RTX, Pmode, EXPAND_NORMAL);
  op0 = expand_expr (arg0, NULL_RTX, Pmode, EXPAND_NORMAL);
 
 
  /* Argument 1 (read/write flag) must be a compile-time constant int.  */
  /* Argument 1 (read/write flag) must be a compile-time constant int.  */
  if (TREE_CODE (arg1) != INTEGER_CST)
  if (TREE_CODE (arg1) != INTEGER_CST)
    {
    {
      error ("second argument to %<__builtin_prefetch%> must be a constant");
      error ("second argument to %<__builtin_prefetch%> must be a constant");
      arg1 = integer_zero_node;
      arg1 = integer_zero_node;
    }
    }
  op1 = expand_normal (arg1);
  op1 = expand_normal (arg1);
  /* Argument 1 must be either zero or one.  */
  /* Argument 1 must be either zero or one.  */
  if (INTVAL (op1) != 0 && INTVAL (op1) != 1)
  if (INTVAL (op1) != 0 && INTVAL (op1) != 1)
    {
    {
      warning (0, "invalid second argument to %<__builtin_prefetch%>;"
      warning (0, "invalid second argument to %<__builtin_prefetch%>;"
               " using zero");
               " using zero");
      op1 = const0_rtx;
      op1 = const0_rtx;
    }
    }
 
 
  /* Argument 2 (locality) must be a compile-time constant int.  */
  /* Argument 2 (locality) must be a compile-time constant int.  */
  if (TREE_CODE (arg2) != INTEGER_CST)
  if (TREE_CODE (arg2) != INTEGER_CST)
    {
    {
      error ("third argument to %<__builtin_prefetch%> must be a constant");
      error ("third argument to %<__builtin_prefetch%> must be a constant");
      arg2 = integer_zero_node;
      arg2 = integer_zero_node;
    }
    }
  op2 = expand_normal (arg2);
  op2 = expand_normal (arg2);
  /* Argument 2 must be 0, 1, 2, or 3.  */
  /* Argument 2 must be 0, 1, 2, or 3.  */
  if (INTVAL (op2) < 0 || INTVAL (op2) > 3)
  if (INTVAL (op2) < 0 || INTVAL (op2) > 3)
    {
    {
      warning (0, "invalid third argument to %<__builtin_prefetch%>; using zero");
      warning (0, "invalid third argument to %<__builtin_prefetch%>; using zero");
      op2 = const0_rtx;
      op2 = const0_rtx;
    }
    }
 
 
#ifdef HAVE_prefetch
#ifdef HAVE_prefetch
  if (HAVE_prefetch)
  if (HAVE_prefetch)
    {
    {
      if ((! (*insn_data[(int) CODE_FOR_prefetch].operand[0].predicate)
      if ((! (*insn_data[(int) CODE_FOR_prefetch].operand[0].predicate)
             (op0,
             (op0,
              insn_data[(int) CODE_FOR_prefetch].operand[0].mode))
              insn_data[(int) CODE_FOR_prefetch].operand[0].mode))
          || (GET_MODE (op0) != Pmode))
          || (GET_MODE (op0) != Pmode))
        {
        {
          op0 = convert_memory_address (Pmode, op0);
          op0 = convert_memory_address (Pmode, op0);
          op0 = force_reg (Pmode, op0);
          op0 = force_reg (Pmode, op0);
        }
        }
      emit_insn (gen_prefetch (op0, op1, op2));
      emit_insn (gen_prefetch (op0, op1, op2));
    }
    }
#endif
#endif
 
 
  /* Don't do anything with direct references to volatile memory, but
  /* Don't do anything with direct references to volatile memory, but
     generate code to handle other side effects.  */
     generate code to handle other side effects.  */
  if (!MEM_P (op0) && side_effects_p (op0))
  if (!MEM_P (op0) && side_effects_p (op0))
    emit_insn (op0);
    emit_insn (op0);
}
}
 
 
/* Get a MEM rtx for expression EXP which is the address of an operand
/* Get a MEM rtx for expression EXP which is the address of an operand
   to be used in a string instruction (cmpstrsi, movmemsi, ..).  LEN is
   to be used in a string instruction (cmpstrsi, movmemsi, ..).  LEN is
   the maximum length of the block of memory that might be accessed or
   the maximum length of the block of memory that might be accessed or
   NULL if unknown.  */
   NULL if unknown.  */
 
 
static rtx
static rtx
get_memory_rtx (tree exp, tree len)
get_memory_rtx (tree exp, tree len)
{
{
  rtx addr = expand_expr (exp, NULL_RTX, ptr_mode, EXPAND_NORMAL);
  rtx addr = expand_expr (exp, NULL_RTX, ptr_mode, EXPAND_NORMAL);
  rtx mem = gen_rtx_MEM (BLKmode, memory_address (BLKmode, addr));
  rtx mem = gen_rtx_MEM (BLKmode, memory_address (BLKmode, addr));
 
 
  /* Get an expression we can use to find the attributes to assign to MEM.
  /* Get an expression we can use to find the attributes to assign to MEM.
     If it is an ADDR_EXPR, use the operand.  Otherwise, dereference it if
     If it is an ADDR_EXPR, use the operand.  Otherwise, dereference it if
     we can.  First remove any nops.  */
     we can.  First remove any nops.  */
  while ((TREE_CODE (exp) == NOP_EXPR || TREE_CODE (exp) == CONVERT_EXPR
  while ((TREE_CODE (exp) == NOP_EXPR || TREE_CODE (exp) == CONVERT_EXPR
          || TREE_CODE (exp) == NON_LVALUE_EXPR)
          || TREE_CODE (exp) == NON_LVALUE_EXPR)
         && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
         && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (exp, 0))))
    exp = TREE_OPERAND (exp, 0);
    exp = TREE_OPERAND (exp, 0);
 
 
  if (TREE_CODE (exp) == ADDR_EXPR)
  if (TREE_CODE (exp) == ADDR_EXPR)
    exp = TREE_OPERAND (exp, 0);
    exp = TREE_OPERAND (exp, 0);
  else if (POINTER_TYPE_P (TREE_TYPE (exp)))
  else if (POINTER_TYPE_P (TREE_TYPE (exp)))
    exp = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (exp)), exp);
    exp = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (exp)), exp);
  else
  else
    exp = NULL;
    exp = NULL;
 
 
  /* Honor attributes derived from exp, except for the alias set
  /* Honor attributes derived from exp, except for the alias set
     (as builtin stringops may alias with anything) and the size
     (as builtin stringops may alias with anything) and the size
     (as stringops may access multiple array elements).  */
     (as stringops may access multiple array elements).  */
  if (exp)
  if (exp)
    {
    {
      set_mem_attributes (mem, exp, 0);
      set_mem_attributes (mem, exp, 0);
 
 
      /* Allow the string and memory builtins to overflow from one
      /* Allow the string and memory builtins to overflow from one
         field into another, see http://gcc.gnu.org/PR23561.
         field into another, see http://gcc.gnu.org/PR23561.
         Thus avoid COMPONENT_REFs in MEM_EXPR unless we know the whole
         Thus avoid COMPONENT_REFs in MEM_EXPR unless we know the whole
         memory accessed by the string or memory builtin will fit
         memory accessed by the string or memory builtin will fit
         within the field.  */
         within the field.  */
      if (MEM_EXPR (mem) && TREE_CODE (MEM_EXPR (mem)) == COMPONENT_REF)
      if (MEM_EXPR (mem) && TREE_CODE (MEM_EXPR (mem)) == COMPONENT_REF)
        {
        {
          tree mem_expr = MEM_EXPR (mem);
          tree mem_expr = MEM_EXPR (mem);
          HOST_WIDE_INT offset = -1, length = -1;
          HOST_WIDE_INT offset = -1, length = -1;
          tree inner = exp;
          tree inner = exp;
 
 
          while (TREE_CODE (inner) == ARRAY_REF
          while (TREE_CODE (inner) == ARRAY_REF
                 || TREE_CODE (inner) == NOP_EXPR
                 || TREE_CODE (inner) == NOP_EXPR
                 || TREE_CODE (inner) == CONVERT_EXPR
                 || TREE_CODE (inner) == CONVERT_EXPR
                 || TREE_CODE (inner) == NON_LVALUE_EXPR
                 || TREE_CODE (inner) == NON_LVALUE_EXPR
                 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
                 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
                 || TREE_CODE (inner) == SAVE_EXPR)
                 || TREE_CODE (inner) == SAVE_EXPR)
            inner = TREE_OPERAND (inner, 0);
            inner = TREE_OPERAND (inner, 0);
 
 
          gcc_assert (TREE_CODE (inner) == COMPONENT_REF);
          gcc_assert (TREE_CODE (inner) == COMPONENT_REF);
 
 
          if (MEM_OFFSET (mem)
          if (MEM_OFFSET (mem)
              && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
              && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
            offset = INTVAL (MEM_OFFSET (mem));
            offset = INTVAL (MEM_OFFSET (mem));
 
 
          if (offset >= 0 && len && host_integerp (len, 0))
          if (offset >= 0 && len && host_integerp (len, 0))
            length = tree_low_cst (len, 0);
            length = tree_low_cst (len, 0);
 
 
          while (TREE_CODE (inner) == COMPONENT_REF)
          while (TREE_CODE (inner) == COMPONENT_REF)
            {
            {
              tree field = TREE_OPERAND (inner, 1);
              tree field = TREE_OPERAND (inner, 1);
              gcc_assert (! DECL_BIT_FIELD (field));
              gcc_assert (! DECL_BIT_FIELD (field));
              gcc_assert (TREE_CODE (mem_expr) == COMPONENT_REF);
              gcc_assert (TREE_CODE (mem_expr) == COMPONENT_REF);
              gcc_assert (field == TREE_OPERAND (mem_expr, 1));
              gcc_assert (field == TREE_OPERAND (mem_expr, 1));
 
 
              if (length >= 0
              if (length >= 0
                  && TYPE_SIZE_UNIT (TREE_TYPE (inner))
                  && TYPE_SIZE_UNIT (TREE_TYPE (inner))
                  && host_integerp (TYPE_SIZE_UNIT (TREE_TYPE (inner)), 0))
                  && host_integerp (TYPE_SIZE_UNIT (TREE_TYPE (inner)), 0))
                {
                {
                  HOST_WIDE_INT size
                  HOST_WIDE_INT size
                    = tree_low_cst (TYPE_SIZE_UNIT (TREE_TYPE (inner)), 0);
                    = tree_low_cst (TYPE_SIZE_UNIT (TREE_TYPE (inner)), 0);
                  /* If we can prove the memory starting at XEXP (mem, 0)
                  /* If we can prove the memory starting at XEXP (mem, 0)
                     and ending at XEXP (mem, 0) + LENGTH will fit into
                     and ending at XEXP (mem, 0) + LENGTH will fit into
                     this field, we can keep that COMPONENT_REF in MEM_EXPR.  */
                     this field, we can keep that COMPONENT_REF in MEM_EXPR.  */
                  if (offset <= size
                  if (offset <= size
                      && length <= size
                      && length <= size
                      && offset + length <= size)
                      && offset + length <= size)
                    break;
                    break;
                }
                }
 
 
              if (offset >= 0
              if (offset >= 0
                  && host_integerp (DECL_FIELD_OFFSET (field), 0))
                  && host_integerp (DECL_FIELD_OFFSET (field), 0))
                offset += tree_low_cst (DECL_FIELD_OFFSET (field), 0)
                offset += tree_low_cst (DECL_FIELD_OFFSET (field), 0)
                          + tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
                          + tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
                            / BITS_PER_UNIT;
                            / BITS_PER_UNIT;
              else
              else
                {
                {
                  offset = -1;
                  offset = -1;
                  length = -1;
                  length = -1;
                }
                }
 
 
              mem_expr = TREE_OPERAND (mem_expr, 0);
              mem_expr = TREE_OPERAND (mem_expr, 0);
              inner = TREE_OPERAND (inner, 0);
              inner = TREE_OPERAND (inner, 0);
            }
            }
 
 
          if (mem_expr == NULL)
          if (mem_expr == NULL)
            offset = -1;
            offset = -1;
          if (mem_expr != MEM_EXPR (mem))
          if (mem_expr != MEM_EXPR (mem))
            {
            {
              set_mem_expr (mem, mem_expr);
              set_mem_expr (mem, mem_expr);
              set_mem_offset (mem, offset >= 0 ? GEN_INT (offset) : NULL_RTX);
              set_mem_offset (mem, offset >= 0 ? GEN_INT (offset) : NULL_RTX);
            }
            }
        }
        }
      set_mem_alias_set (mem, 0);
      set_mem_alias_set (mem, 0);
      set_mem_size (mem, NULL_RTX);
      set_mem_size (mem, NULL_RTX);
    }
    }
 
 
  return mem;
  return mem;
}
}


/* Built-in functions to perform an untyped call and return.  */
/* Built-in functions to perform an untyped call and return.  */
 
 
/* For each register that may be used for calling a function, this
/* For each register that may be used for calling a function, this
   gives a mode used to copy the register's value.  VOIDmode indicates
   gives a mode used to copy the register's value.  VOIDmode indicates
   the register is not used for calling a function.  If the machine
   the register is not used for calling a function.  If the machine
   has register windows, this gives only the outbound registers.
   has register windows, this gives only the outbound registers.
   INCOMING_REGNO gives the corresponding inbound register.  */
   INCOMING_REGNO gives the corresponding inbound register.  */
static enum machine_mode apply_args_mode[FIRST_PSEUDO_REGISTER];
static enum machine_mode apply_args_mode[FIRST_PSEUDO_REGISTER];
 
 
/* For each register that may be used for returning values, this gives
/* For each register that may be used for returning values, this gives
   a mode used to copy the register's value.  VOIDmode indicates the
   a mode used to copy the register's value.  VOIDmode indicates the
   register is not used for returning values.  If the machine has
   register is not used for returning values.  If the machine has
   register windows, this gives only the outbound registers.
   register windows, this gives only the outbound registers.
   INCOMING_REGNO gives the corresponding inbound register.  */
   INCOMING_REGNO gives the corresponding inbound register.  */
static enum machine_mode apply_result_mode[FIRST_PSEUDO_REGISTER];
static enum machine_mode apply_result_mode[FIRST_PSEUDO_REGISTER];
 
 
/* For each register that may be used for calling a function, this
/* For each register that may be used for calling a function, this
   gives the offset of that register into the block returned by
   gives the offset of that register into the block returned by
   __builtin_apply_args.  0 indicates that the register is not
   __builtin_apply_args.  0 indicates that the register is not
   used for calling a function.  */
   used for calling a function.  */
static int apply_args_reg_offset[FIRST_PSEUDO_REGISTER];
static int apply_args_reg_offset[FIRST_PSEUDO_REGISTER];
 
 
/* Return the size required for the block returned by __builtin_apply_args,
/* Return the size required for the block returned by __builtin_apply_args,
   and initialize apply_args_mode.  */
   and initialize apply_args_mode.  */
 
 
static int
static int
apply_args_size (void)
apply_args_size (void)
{
{
  static int size = -1;
  static int size = -1;
  int align;
  int align;
  unsigned int regno;
  unsigned int regno;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  /* The values computed by this function never change.  */
  /* The values computed by this function never change.  */
  if (size < 0)
  if (size < 0)
    {
    {
      /* The first value is the incoming arg-pointer.  */
      /* The first value is the incoming arg-pointer.  */
      size = GET_MODE_SIZE (Pmode);
      size = GET_MODE_SIZE (Pmode);
 
 
      /* The second value is the structure value address unless this is
      /* The second value is the structure value address unless this is
         passed as an "invisible" first argument.  */
         passed as an "invisible" first argument.  */
      if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0))
      if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0))
        size += GET_MODE_SIZE (Pmode);
        size += GET_MODE_SIZE (Pmode);
 
 
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
        if (FUNCTION_ARG_REGNO_P (regno))
        if (FUNCTION_ARG_REGNO_P (regno))
          {
          {
            mode = reg_raw_mode[regno];
            mode = reg_raw_mode[regno];
 
 
            gcc_assert (mode != VOIDmode);
            gcc_assert (mode != VOIDmode);
 
 
            align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
            align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
            if (size % align != 0)
            if (size % align != 0)
              size = CEIL (size, align) * align;
              size = CEIL (size, align) * align;
            apply_args_reg_offset[regno] = size;
            apply_args_reg_offset[regno] = size;
            size += GET_MODE_SIZE (mode);
            size += GET_MODE_SIZE (mode);
            apply_args_mode[regno] = mode;
            apply_args_mode[regno] = mode;
          }
          }
        else
        else
          {
          {
            apply_args_mode[regno] = VOIDmode;
            apply_args_mode[regno] = VOIDmode;
            apply_args_reg_offset[regno] = 0;
            apply_args_reg_offset[regno] = 0;
          }
          }
    }
    }
  return size;
  return size;
}
}
 
 
/* Return the size required for the block returned by __builtin_apply,
/* Return the size required for the block returned by __builtin_apply,
   and initialize apply_result_mode.  */
   and initialize apply_result_mode.  */
 
 
static int
static int
apply_result_size (void)
apply_result_size (void)
{
{
  static int size = -1;
  static int size = -1;
  int align, regno;
  int align, regno;
  enum machine_mode mode;
  enum machine_mode mode;
 
 
  /* The values computed by this function never change.  */
  /* The values computed by this function never change.  */
  if (size < 0)
  if (size < 0)
    {
    {
      size = 0;
      size = 0;
 
 
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
        if (FUNCTION_VALUE_REGNO_P (regno))
        if (FUNCTION_VALUE_REGNO_P (regno))
          {
          {
            mode = reg_raw_mode[regno];
            mode = reg_raw_mode[regno];
 
 
            gcc_assert (mode != VOIDmode);
            gcc_assert (mode != VOIDmode);
 
 
            align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
            align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
            if (size % align != 0)
            if (size % align != 0)
              size = CEIL (size, align) * align;
              size = CEIL (size, align) * align;
            size += GET_MODE_SIZE (mode);
            size += GET_MODE_SIZE (mode);
            apply_result_mode[regno] = mode;
            apply_result_mode[regno] = mode;
          }
          }
        else
        else
          apply_result_mode[regno] = VOIDmode;
          apply_result_mode[regno] = VOIDmode;
 
 
      /* Allow targets that use untyped_call and untyped_return to override
      /* Allow targets that use untyped_call and untyped_return to override
         the size so that machine-specific information can be stored here.  */
         the size so that machine-specific information can be stored here.  */
#ifdef APPLY_RESULT_SIZE
#ifdef APPLY_RESULT_SIZE
      size = APPLY_RESULT_SIZE;
      size = APPLY_RESULT_SIZE;
#endif
#endif
    }
    }
  return size;
  return size;
}
}
 
 
#if defined (HAVE_untyped_call) || defined (HAVE_untyped_return)
#if defined (HAVE_untyped_call) || defined (HAVE_untyped_return)
/* Create a vector describing the result block RESULT.  If SAVEP is true,
/* Create a vector describing the result block RESULT.  If SAVEP is true,
   the result block is used to save the values; otherwise it is used to
   the result block is used to save the values; otherwise it is used to
   restore the values.  */
   restore the values.  */
 
 
static rtx
static rtx
result_vector (int savep, rtx result)
result_vector (int savep, rtx result)
{
{
  int regno, size, align, nelts;
  int regno, size, align, nelts;
  enum machine_mode mode;
  enum machine_mode mode;
  rtx reg, mem;
  rtx reg, mem;
  rtx *savevec = alloca (FIRST_PSEUDO_REGISTER * sizeof (rtx));
  rtx *savevec = alloca (FIRST_PSEUDO_REGISTER * sizeof (rtx));
 
 
  size = nelts = 0;
  size = nelts = 0;
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if ((mode = apply_result_mode[regno]) != VOIDmode)
    if ((mode = apply_result_mode[regno]) != VOIDmode)
      {
      {
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        if (size % align != 0)
        if (size % align != 0)
          size = CEIL (size, align) * align;
          size = CEIL (size, align) * align;
        reg = gen_rtx_REG (mode, savep ? regno : INCOMING_REGNO (regno));
        reg = gen_rtx_REG (mode, savep ? regno : INCOMING_REGNO (regno));
        mem = adjust_address (result, mode, size);
        mem = adjust_address (result, mode, size);
        savevec[nelts++] = (savep
        savevec[nelts++] = (savep
                            ? gen_rtx_SET (VOIDmode, mem, reg)
                            ? gen_rtx_SET (VOIDmode, mem, reg)
                            : gen_rtx_SET (VOIDmode, reg, mem));
                            : gen_rtx_SET (VOIDmode, reg, mem));
        size += GET_MODE_SIZE (mode);
        size += GET_MODE_SIZE (mode);
      }
      }
  return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelts, savevec));
  return gen_rtx_PARALLEL (VOIDmode, gen_rtvec_v (nelts, savevec));
}
}
#endif /* HAVE_untyped_call or HAVE_untyped_return */
#endif /* HAVE_untyped_call or HAVE_untyped_return */
 
 
/* Save the state required to perform an untyped call with the same
/* Save the state required to perform an untyped call with the same
   arguments as were passed to the current function.  */
   arguments as were passed to the current function.  */
 
 
static rtx
static rtx
expand_builtin_apply_args_1 (void)
expand_builtin_apply_args_1 (void)
{
{
  rtx registers, tem;
  rtx registers, tem;
  int size, align, regno;
  int size, align, regno;
  enum machine_mode mode;
  enum machine_mode mode;
  rtx struct_incoming_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 1);
  rtx struct_incoming_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 1);
 
 
  /* Create a block where the arg-pointer, structure value address,
  /* Create a block where the arg-pointer, structure value address,
     and argument registers can be saved.  */
     and argument registers can be saved.  */
  registers = assign_stack_local (BLKmode, apply_args_size (), -1);
  registers = assign_stack_local (BLKmode, apply_args_size (), -1);
 
 
  /* Walk past the arg-pointer and structure value address.  */
  /* Walk past the arg-pointer and structure value address.  */
  size = GET_MODE_SIZE (Pmode);
  size = GET_MODE_SIZE (Pmode);
  if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0))
  if (targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0))
    size += GET_MODE_SIZE (Pmode);
    size += GET_MODE_SIZE (Pmode);
 
 
  /* Save each register used in calling a function to the block.  */
  /* Save each register used in calling a function to the block.  */
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if ((mode = apply_args_mode[regno]) != VOIDmode)
    if ((mode = apply_args_mode[regno]) != VOIDmode)
      {
      {
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        if (size % align != 0)
        if (size % align != 0)
          size = CEIL (size, align) * align;
          size = CEIL (size, align) * align;
 
 
        tem = gen_rtx_REG (mode, INCOMING_REGNO (regno));
        tem = gen_rtx_REG (mode, INCOMING_REGNO (regno));
 
 
        emit_move_insn (adjust_address (registers, mode, size), tem);
        emit_move_insn (adjust_address (registers, mode, size), tem);
        size += GET_MODE_SIZE (mode);
        size += GET_MODE_SIZE (mode);
      }
      }
 
 
  /* Save the arg pointer to the block.  */
  /* Save the arg pointer to the block.  */
  tem = copy_to_reg (virtual_incoming_args_rtx);
  tem = copy_to_reg (virtual_incoming_args_rtx);
#ifdef STACK_GROWS_DOWNWARD
#ifdef STACK_GROWS_DOWNWARD
  /* We need the pointer as the caller actually passed them to us, not
  /* We need the pointer as the caller actually passed them to us, not
     as we might have pretended they were passed.  Make sure it's a valid
     as we might have pretended they were passed.  Make sure it's a valid
     operand, as emit_move_insn isn't expected to handle a PLUS.  */
     operand, as emit_move_insn isn't expected to handle a PLUS.  */
  tem
  tem
    = force_operand (plus_constant (tem, current_function_pretend_args_size),
    = force_operand (plus_constant (tem, current_function_pretend_args_size),
                     NULL_RTX);
                     NULL_RTX);
#endif
#endif
  emit_move_insn (adjust_address (registers, Pmode, 0), tem);
  emit_move_insn (adjust_address (registers, Pmode, 0), tem);
 
 
  size = GET_MODE_SIZE (Pmode);
  size = GET_MODE_SIZE (Pmode);
 
 
  /* Save the structure value address unless this is passed as an
  /* Save the structure value address unless this is passed as an
     "invisible" first argument.  */
     "invisible" first argument.  */
  if (struct_incoming_value)
  if (struct_incoming_value)
    {
    {
      emit_move_insn (adjust_address (registers, Pmode, size),
      emit_move_insn (adjust_address (registers, Pmode, size),
                      copy_to_reg (struct_incoming_value));
                      copy_to_reg (struct_incoming_value));
      size += GET_MODE_SIZE (Pmode);
      size += GET_MODE_SIZE (Pmode);
    }
    }
 
 
  /* Return the address of the block.  */
  /* Return the address of the block.  */
  return copy_addr_to_reg (XEXP (registers, 0));
  return copy_addr_to_reg (XEXP (registers, 0));
}
}
 
 
/* __builtin_apply_args returns block of memory allocated on
/* __builtin_apply_args returns block of memory allocated on
   the stack into which is stored the arg pointer, structure
   the stack into which is stored the arg pointer, structure
   value address, static chain, and all the registers that might
   value address, static chain, and all the registers that might
   possibly be used in performing a function call.  The code is
   possibly be used in performing a function call.  The code is
   moved to the start of the function so the incoming values are
   moved to the start of the function so the incoming values are
   saved.  */
   saved.  */
 
 
static rtx
static rtx
expand_builtin_apply_args (void)
expand_builtin_apply_args (void)
{
{
  /* Don't do __builtin_apply_args more than once in a function.
  /* Don't do __builtin_apply_args more than once in a function.
     Save the result of the first call and reuse it.  */
     Save the result of the first call and reuse it.  */
  if (apply_args_value != 0)
  if (apply_args_value != 0)
    return apply_args_value;
    return apply_args_value;
  {
  {
    /* When this function is called, it means that registers must be
    /* When this function is called, it means that registers must be
       saved on entry to this function.  So we migrate the
       saved on entry to this function.  So we migrate the
       call to the first insn of this function.  */
       call to the first insn of this function.  */
    rtx temp;
    rtx temp;
    rtx seq;
    rtx seq;
 
 
    start_sequence ();
    start_sequence ();
    temp = expand_builtin_apply_args_1 ();
    temp = expand_builtin_apply_args_1 ();
    seq = get_insns ();
    seq = get_insns ();
    end_sequence ();
    end_sequence ();
 
 
    apply_args_value = temp;
    apply_args_value = temp;
 
 
    /* Put the insns after the NOTE that starts the function.
    /* Put the insns after the NOTE that starts the function.
       If this is inside a start_sequence, make the outer-level insn
       If this is inside a start_sequence, make the outer-level insn
       chain current, so the code is placed at the start of the
       chain current, so the code is placed at the start of the
       function.  */
       function.  */
    push_topmost_sequence ();
    push_topmost_sequence ();
    emit_insn_before (seq, NEXT_INSN (entry_of_function ()));
    emit_insn_before (seq, NEXT_INSN (entry_of_function ()));
    pop_topmost_sequence ();
    pop_topmost_sequence ();
    return temp;
    return temp;
  }
  }
}
}
 
 
/* Perform an untyped call and save the state required to perform an
/* Perform an untyped call and save the state required to perform an
   untyped return of whatever value was returned by the given function.  */
   untyped return of whatever value was returned by the given function.  */
 
 
static rtx
static rtx
expand_builtin_apply (rtx function, rtx arguments, rtx argsize)
expand_builtin_apply (rtx function, rtx arguments, rtx argsize)
{
{
  int size, align, regno;
  int size, align, regno;
  enum machine_mode mode;
  enum machine_mode mode;
  rtx incoming_args, result, reg, dest, src, call_insn;
  rtx incoming_args, result, reg, dest, src, call_insn;
  rtx old_stack_level = 0;
  rtx old_stack_level = 0;
  rtx call_fusage = 0;
  rtx call_fusage = 0;
  rtx struct_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0);
  rtx struct_value = targetm.calls.struct_value_rtx (cfun ? TREE_TYPE (cfun->decl) : 0, 0);
 
 
  arguments = convert_memory_address (Pmode, arguments);
  arguments = convert_memory_address (Pmode, arguments);
 
 
  /* Create a block where the return registers can be saved.  */
  /* Create a block where the return registers can be saved.  */
  result = assign_stack_local (BLKmode, apply_result_size (), -1);
  result = assign_stack_local (BLKmode, apply_result_size (), -1);
 
 
  /* Fetch the arg pointer from the ARGUMENTS block.  */
  /* Fetch the arg pointer from the ARGUMENTS block.  */
  incoming_args = gen_reg_rtx (Pmode);
  incoming_args = gen_reg_rtx (Pmode);
  emit_move_insn (incoming_args, gen_rtx_MEM (Pmode, arguments));
  emit_move_insn (incoming_args, gen_rtx_MEM (Pmode, arguments));
#ifndef STACK_GROWS_DOWNWARD
#ifndef STACK_GROWS_DOWNWARD
  incoming_args = expand_simple_binop (Pmode, MINUS, incoming_args, argsize,
  incoming_args = expand_simple_binop (Pmode, MINUS, incoming_args, argsize,
                                       incoming_args, 0, OPTAB_LIB_WIDEN);
                                       incoming_args, 0, OPTAB_LIB_WIDEN);
#endif
#endif
 
 
  /* Push a new argument block and copy the arguments.  Do not allow
  /* Push a new argument block and copy the arguments.  Do not allow
     the (potential) memcpy call below to interfere with our stack
     the (potential) memcpy call below to interfere with our stack
     manipulations.  */
     manipulations.  */
  do_pending_stack_adjust ();
  do_pending_stack_adjust ();
  NO_DEFER_POP;
  NO_DEFER_POP;
 
 
  /* Save the stack with nonlocal if available.  */
  /* Save the stack with nonlocal if available.  */
#ifdef HAVE_save_stack_nonlocal
#ifdef HAVE_save_stack_nonlocal
  if (HAVE_save_stack_nonlocal)
  if (HAVE_save_stack_nonlocal)
    emit_stack_save (SAVE_NONLOCAL, &old_stack_level, NULL_RTX);
    emit_stack_save (SAVE_NONLOCAL, &old_stack_level, NULL_RTX);
  else
  else
#endif
#endif
    emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
    emit_stack_save (SAVE_BLOCK, &old_stack_level, NULL_RTX);
 
 
  /* Allocate a block of memory onto the stack and copy the memory
  /* Allocate a block of memory onto the stack and copy the memory
     arguments to the outgoing arguments address.  */
     arguments to the outgoing arguments address.  */
  allocate_dynamic_stack_space (argsize, 0, BITS_PER_UNIT);
  allocate_dynamic_stack_space (argsize, 0, BITS_PER_UNIT);
  dest = virtual_outgoing_args_rtx;
  dest = virtual_outgoing_args_rtx;
#ifndef STACK_GROWS_DOWNWARD
#ifndef STACK_GROWS_DOWNWARD
  if (GET_CODE (argsize) == CONST_INT)
  if (GET_CODE (argsize) == CONST_INT)
    dest = plus_constant (dest, -INTVAL (argsize));
    dest = plus_constant (dest, -INTVAL (argsize));
  else
  else
    dest = gen_rtx_PLUS (Pmode, dest, negate_rtx (Pmode, argsize));
    dest = gen_rtx_PLUS (Pmode, dest, negate_rtx (Pmode, argsize));
#endif
#endif
  dest = gen_rtx_MEM (BLKmode, dest);
  dest = gen_rtx_MEM (BLKmode, dest);
  set_mem_align (dest, PARM_BOUNDARY);
  set_mem_align (dest, PARM_BOUNDARY);
  src = gen_rtx_MEM (BLKmode, incoming_args);
  src = gen_rtx_MEM (BLKmode, incoming_args);
  set_mem_align (src, PARM_BOUNDARY);
  set_mem_align (src, PARM_BOUNDARY);
  emit_block_move (dest, src, argsize, BLOCK_OP_NORMAL);
  emit_block_move (dest, src, argsize, BLOCK_OP_NORMAL);
 
 
  /* Refer to the argument block.  */
  /* Refer to the argument block.  */
  apply_args_size ();
  apply_args_size ();
  arguments = gen_rtx_MEM (BLKmode, arguments);
  arguments = gen_rtx_MEM (BLKmode, arguments);
  set_mem_align (arguments, PARM_BOUNDARY);
  set_mem_align (arguments, PARM_BOUNDARY);
 
 
  /* Walk past the arg-pointer and structure value address.  */
  /* Walk past the arg-pointer and structure value address.  */
  size = GET_MODE_SIZE (Pmode);
  size = GET_MODE_SIZE (Pmode);
  if (struct_value)
  if (struct_value)
    size += GET_MODE_SIZE (Pmode);
    size += GET_MODE_SIZE (Pmode);
 
 
  /* Restore each of the registers previously saved.  Make USE insns
  /* Restore each of the registers previously saved.  Make USE insns
     for each of these registers for use in making the call.  */
     for each of these registers for use in making the call.  */
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if ((mode = apply_args_mode[regno]) != VOIDmode)
    if ((mode = apply_args_mode[regno]) != VOIDmode)
      {
      {
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        if (size % align != 0)
        if (size % align != 0)
          size = CEIL (size, align) * align;
          size = CEIL (size, align) * align;
        reg = gen_rtx_REG (mode, regno);
        reg = gen_rtx_REG (mode, regno);
        emit_move_insn (reg, adjust_address (arguments, mode, size));
        emit_move_insn (reg, adjust_address (arguments, mode, size));
        use_reg (&call_fusage, reg);
        use_reg (&call_fusage, reg);
        size += GET_MODE_SIZE (mode);
        size += GET_MODE_SIZE (mode);
      }
      }
 
 
  /* Restore the structure value address unless this is passed as an
  /* Restore the structure value address unless this is passed as an
     "invisible" first argument.  */
     "invisible" first argument.  */
  size = GET_MODE_SIZE (Pmode);
  size = GET_MODE_SIZE (Pmode);
  if (struct_value)
  if (struct_value)
    {
    {
      rtx value = gen_reg_rtx (Pmode);
      rtx value = gen_reg_rtx (Pmode);
      emit_move_insn (value, adjust_address (arguments, Pmode, size));
      emit_move_insn (value, adjust_address (arguments, Pmode, size));
      emit_move_insn (struct_value, value);
      emit_move_insn (struct_value, value);
      if (REG_P (struct_value))
      if (REG_P (struct_value))
        use_reg (&call_fusage, struct_value);
        use_reg (&call_fusage, struct_value);
      size += GET_MODE_SIZE (Pmode);
      size += GET_MODE_SIZE (Pmode);
    }
    }
 
 
  /* All arguments and registers used for the call are set up by now!  */
  /* All arguments and registers used for the call are set up by now!  */
  function = prepare_call_address (function, NULL, &call_fusage, 0, 0);
  function = prepare_call_address (function, NULL, &call_fusage, 0, 0);
 
 
  /* Ensure address is valid.  SYMBOL_REF is already valid, so no need,
  /* Ensure address is valid.  SYMBOL_REF is already valid, so no need,
     and we don't want to load it into a register as an optimization,
     and we don't want to load it into a register as an optimization,
     because prepare_call_address already did it if it should be done.  */
     because prepare_call_address already did it if it should be done.  */
  if (GET_CODE (function) != SYMBOL_REF)
  if (GET_CODE (function) != SYMBOL_REF)
    function = memory_address (FUNCTION_MODE, function);
    function = memory_address (FUNCTION_MODE, function);
 
 
  /* Generate the actual call instruction and save the return value.  */
  /* Generate the actual call instruction and save the return value.  */
#ifdef HAVE_untyped_call
#ifdef HAVE_untyped_call
  if (HAVE_untyped_call)
  if (HAVE_untyped_call)
    emit_call_insn (gen_untyped_call (gen_rtx_MEM (FUNCTION_MODE, function),
    emit_call_insn (gen_untyped_call (gen_rtx_MEM (FUNCTION_MODE, function),
                                      result, result_vector (1, result)));
                                      result, result_vector (1, result)));
  else
  else
#endif
#endif
#ifdef HAVE_call_value
#ifdef HAVE_call_value
  if (HAVE_call_value)
  if (HAVE_call_value)
    {
    {
      rtx valreg = 0;
      rtx valreg = 0;
 
 
      /* Locate the unique return register.  It is not possible to
      /* Locate the unique return register.  It is not possible to
         express a call that sets more than one return register using
         express a call that sets more than one return register using
         call_value; use untyped_call for that.  In fact, untyped_call
         call_value; use untyped_call for that.  In fact, untyped_call
         only needs to save the return registers in the given block.  */
         only needs to save the return registers in the given block.  */
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
        if ((mode = apply_result_mode[regno]) != VOIDmode)
        if ((mode = apply_result_mode[regno]) != VOIDmode)
          {
          {
            gcc_assert (!valreg); /* HAVE_untyped_call required.  */
            gcc_assert (!valreg); /* HAVE_untyped_call required.  */
 
 
            valreg = gen_rtx_REG (mode, regno);
            valreg = gen_rtx_REG (mode, regno);
          }
          }
 
 
      emit_call_insn (GEN_CALL_VALUE (valreg,
      emit_call_insn (GEN_CALL_VALUE (valreg,
                                      gen_rtx_MEM (FUNCTION_MODE, function),
                                      gen_rtx_MEM (FUNCTION_MODE, function),
                                      const0_rtx, NULL_RTX, const0_rtx));
                                      const0_rtx, NULL_RTX, const0_rtx));
 
 
      emit_move_insn (adjust_address (result, GET_MODE (valreg), 0), valreg);
      emit_move_insn (adjust_address (result, GET_MODE (valreg), 0), valreg);
    }
    }
  else
  else
#endif
#endif
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  /* Find the CALL insn we just emitted, and attach the register usage
  /* Find the CALL insn we just emitted, and attach the register usage
     information.  */
     information.  */
  call_insn = last_call_insn ();
  call_insn = last_call_insn ();
  add_function_usage_to (call_insn, call_fusage);
  add_function_usage_to (call_insn, call_fusage);
 
 
  /* Restore the stack.  */
  /* Restore the stack.  */
#ifdef HAVE_save_stack_nonlocal
#ifdef HAVE_save_stack_nonlocal
  if (HAVE_save_stack_nonlocal)
  if (HAVE_save_stack_nonlocal)
    emit_stack_restore (SAVE_NONLOCAL, old_stack_level, NULL_RTX);
    emit_stack_restore (SAVE_NONLOCAL, old_stack_level, NULL_RTX);
  else
  else
#endif
#endif
    emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
    emit_stack_restore (SAVE_BLOCK, old_stack_level, NULL_RTX);
 
 
  OK_DEFER_POP;
  OK_DEFER_POP;
 
 
  /* Return the address of the result block.  */
  /* Return the address of the result block.  */
  result = copy_addr_to_reg (XEXP (result, 0));
  result = copy_addr_to_reg (XEXP (result, 0));
  return convert_memory_address (ptr_mode, result);
  return convert_memory_address (ptr_mode, result);
}
}
 
 
/* Perform an untyped return.  */
/* Perform an untyped return.  */
 
 
static void
static void
expand_builtin_return (rtx result)
expand_builtin_return (rtx result)
{
{
  int size, align, regno;
  int size, align, regno;
  enum machine_mode mode;
  enum machine_mode mode;
  rtx reg;
  rtx reg;
  rtx call_fusage = 0;
  rtx call_fusage = 0;
 
 
  result = convert_memory_address (Pmode, result);
  result = convert_memory_address (Pmode, result);
 
 
  apply_result_size ();
  apply_result_size ();
  result = gen_rtx_MEM (BLKmode, result);
  result = gen_rtx_MEM (BLKmode, result);
 
 
#ifdef HAVE_untyped_return
#ifdef HAVE_untyped_return
  if (HAVE_untyped_return)
  if (HAVE_untyped_return)
    {
    {
      emit_jump_insn (gen_untyped_return (result, result_vector (0, result)));
      emit_jump_insn (gen_untyped_return (result, result_vector (0, result)));
      emit_barrier ();
      emit_barrier ();
      return;
      return;
    }
    }
#endif
#endif
 
 
  /* Restore the return value and note that each value is used.  */
  /* Restore the return value and note that each value is used.  */
  size = 0;
  size = 0;
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if ((mode = apply_result_mode[regno]) != VOIDmode)
    if ((mode = apply_result_mode[regno]) != VOIDmode)
      {
      {
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        align = GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT;
        if (size % align != 0)
        if (size % align != 0)
          size = CEIL (size, align) * align;
          size = CEIL (size, align) * align;
        reg = gen_rtx_REG (mode, INCOMING_REGNO (regno));
        reg = gen_rtx_REG (mode, INCOMING_REGNO (regno));
        emit_move_insn (reg, adjust_address (result, mode, size));
        emit_move_insn (reg, adjust_address (result, mode, size));
 
 
        push_to_sequence (call_fusage);
        push_to_sequence (call_fusage);
        emit_insn (gen_rtx_USE (VOIDmode, reg));
        emit_insn (gen_rtx_USE (VOIDmode, reg));
        call_fusage = get_insns ();
        call_fusage = get_insns ();
        end_sequence ();
        end_sequence ();
        size += GET_MODE_SIZE (mode);
        size += GET_MODE_SIZE (mode);
      }
      }
 
 
  /* Put the USE insns before the return.  */
  /* Put the USE insns before the return.  */
  emit_insn (call_fusage);
  emit_insn (call_fusage);
 
 
  /* Return whatever values was restored by jumping directly to the end
  /* Return whatever values was restored by jumping directly to the end
     of the function.  */
     of the function.  */
  expand_naked_return ();
  expand_naked_return ();
}
}
 
 
/* Used by expand_builtin_classify_type and fold_builtin_classify_type.  */
/* Used by expand_builtin_classify_type and fold_builtin_classify_type.  */
 
 
static enum type_class
static enum type_class
type_to_class (tree type)
type_to_class (tree type)
{
{
  switch (TREE_CODE (type))
  switch (TREE_CODE (type))
    {
    {
    case VOID_TYPE:        return void_type_class;
    case VOID_TYPE:        return void_type_class;
    case INTEGER_TYPE:     return integer_type_class;
    case INTEGER_TYPE:     return integer_type_class;
    case ENUMERAL_TYPE:    return enumeral_type_class;
    case ENUMERAL_TYPE:    return enumeral_type_class;
    case BOOLEAN_TYPE:     return boolean_type_class;
    case BOOLEAN_TYPE:     return boolean_type_class;
    case POINTER_TYPE:     return pointer_type_class;
    case POINTER_TYPE:     return pointer_type_class;
    case REFERENCE_TYPE:   return reference_type_class;
    case REFERENCE_TYPE:   return reference_type_class;
    case OFFSET_TYPE:      return offset_type_class;
    case OFFSET_TYPE:      return offset_type_class;
    case REAL_TYPE:        return real_type_class;
    case REAL_TYPE:        return real_type_class;
    case COMPLEX_TYPE:     return complex_type_class;
    case COMPLEX_TYPE:     return complex_type_class;
    case FUNCTION_TYPE:    return function_type_class;
    case FUNCTION_TYPE:    return function_type_class;
    case METHOD_TYPE:      return method_type_class;
    case METHOD_TYPE:      return method_type_class;
    case RECORD_TYPE:      return record_type_class;
    case RECORD_TYPE:      return record_type_class;
    case UNION_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:  return union_type_class;
    case QUAL_UNION_TYPE:  return union_type_class;
    case ARRAY_TYPE:       return (TYPE_STRING_FLAG (type)
    case ARRAY_TYPE:       return (TYPE_STRING_FLAG (type)
                                   ? string_type_class : array_type_class);
                                   ? string_type_class : array_type_class);
    case LANG_TYPE:        return lang_type_class;
    case LANG_TYPE:        return lang_type_class;
    default:               return no_type_class;
    default:               return no_type_class;
    }
    }
}
}
 
 
/* Expand a call to __builtin_classify_type with arguments found in
/* Expand a call to __builtin_classify_type with arguments found in
   ARGLIST.  */
   ARGLIST.  */
 
 
static rtx
static rtx
expand_builtin_classify_type (tree arglist)
expand_builtin_classify_type (tree arglist)
{
{
  if (arglist != 0)
  if (arglist != 0)
    return GEN_INT (type_to_class (TREE_TYPE (TREE_VALUE (arglist))));
    return GEN_INT (type_to_class (TREE_TYPE (TREE_VALUE (arglist))));
  return GEN_INT (no_type_class);
  return GEN_INT (no_type_class);
}
}
 
 
/* This helper macro, meant to be used in mathfn_built_in below,
/* This helper macro, meant to be used in mathfn_built_in below,
   determines which among a set of three builtin math functions is
   determines which among a set of three builtin math functions is
   appropriate for a given type mode.  The `F' and `L' cases are
   appropriate for a given type mode.  The `F' and `L' cases are
   automatically generated from the `double' case.  */
   automatically generated from the `double' case.  */
#define CASE_MATHFN(BUILT_IN_MATHFN) \
#define CASE_MATHFN(BUILT_IN_MATHFN) \
  case BUILT_IN_MATHFN: case BUILT_IN_MATHFN##F: case BUILT_IN_MATHFN##L: \
  case BUILT_IN_MATHFN: case BUILT_IN_MATHFN##F: case BUILT_IN_MATHFN##L: \
  fcode = BUILT_IN_MATHFN; fcodef = BUILT_IN_MATHFN##F ; \
  fcode = BUILT_IN_MATHFN; fcodef = BUILT_IN_MATHFN##F ; \
  fcodel = BUILT_IN_MATHFN##L ; break;
  fcodel = BUILT_IN_MATHFN##L ; break;
 
 
/* Return mathematic function equivalent to FN but operating directly
/* Return mathematic function equivalent to FN but operating directly
   on TYPE, if available.  If we can't do the conversion, return zero.  */
   on TYPE, if available.  If we can't do the conversion, return zero.  */
tree
tree
mathfn_built_in (tree type, enum built_in_function fn)
mathfn_built_in (tree type, enum built_in_function fn)
{
{
  enum built_in_function fcode, fcodef, fcodel;
  enum built_in_function fcode, fcodef, fcodel;
 
 
  switch (fn)
  switch (fn)
    {
    {
      CASE_MATHFN (BUILT_IN_ACOS)
      CASE_MATHFN (BUILT_IN_ACOS)
      CASE_MATHFN (BUILT_IN_ACOSH)
      CASE_MATHFN (BUILT_IN_ACOSH)
      CASE_MATHFN (BUILT_IN_ASIN)
      CASE_MATHFN (BUILT_IN_ASIN)
      CASE_MATHFN (BUILT_IN_ASINH)
      CASE_MATHFN (BUILT_IN_ASINH)
      CASE_MATHFN (BUILT_IN_ATAN)
      CASE_MATHFN (BUILT_IN_ATAN)
      CASE_MATHFN (BUILT_IN_ATAN2)
      CASE_MATHFN (BUILT_IN_ATAN2)
      CASE_MATHFN (BUILT_IN_ATANH)
      CASE_MATHFN (BUILT_IN_ATANH)
      CASE_MATHFN (BUILT_IN_CBRT)
      CASE_MATHFN (BUILT_IN_CBRT)
      CASE_MATHFN (BUILT_IN_CEIL)
      CASE_MATHFN (BUILT_IN_CEIL)
      CASE_MATHFN (BUILT_IN_COPYSIGN)
      CASE_MATHFN (BUILT_IN_COPYSIGN)
      CASE_MATHFN (BUILT_IN_COS)
      CASE_MATHFN (BUILT_IN_COS)
      CASE_MATHFN (BUILT_IN_COSH)
      CASE_MATHFN (BUILT_IN_COSH)
      CASE_MATHFN (BUILT_IN_DREM)
      CASE_MATHFN (BUILT_IN_DREM)
      CASE_MATHFN (BUILT_IN_ERF)
      CASE_MATHFN (BUILT_IN_ERF)
      CASE_MATHFN (BUILT_IN_ERFC)
      CASE_MATHFN (BUILT_IN_ERFC)
      CASE_MATHFN (BUILT_IN_EXP)
      CASE_MATHFN (BUILT_IN_EXP)
      CASE_MATHFN (BUILT_IN_EXP10)
      CASE_MATHFN (BUILT_IN_EXP10)
      CASE_MATHFN (BUILT_IN_EXP2)
      CASE_MATHFN (BUILT_IN_EXP2)
      CASE_MATHFN (BUILT_IN_EXPM1)
      CASE_MATHFN (BUILT_IN_EXPM1)
      CASE_MATHFN (BUILT_IN_FABS)
      CASE_MATHFN (BUILT_IN_FABS)
      CASE_MATHFN (BUILT_IN_FDIM)
      CASE_MATHFN (BUILT_IN_FDIM)
      CASE_MATHFN (BUILT_IN_FLOOR)
      CASE_MATHFN (BUILT_IN_FLOOR)
      CASE_MATHFN (BUILT_IN_FMA)
      CASE_MATHFN (BUILT_IN_FMA)
      CASE_MATHFN (BUILT_IN_FMAX)
      CASE_MATHFN (BUILT_IN_FMAX)
      CASE_MATHFN (BUILT_IN_FMIN)
      CASE_MATHFN (BUILT_IN_FMIN)
      CASE_MATHFN (BUILT_IN_FMOD)
      CASE_MATHFN (BUILT_IN_FMOD)
      CASE_MATHFN (BUILT_IN_FREXP)
      CASE_MATHFN (BUILT_IN_FREXP)
      CASE_MATHFN (BUILT_IN_GAMMA)
      CASE_MATHFN (BUILT_IN_GAMMA)
      CASE_MATHFN (BUILT_IN_HUGE_VAL)
      CASE_MATHFN (BUILT_IN_HUGE_VAL)
      CASE_MATHFN (BUILT_IN_HYPOT)
      CASE_MATHFN (BUILT_IN_HYPOT)
      CASE_MATHFN (BUILT_IN_ILOGB)
      CASE_MATHFN (BUILT_IN_ILOGB)
      CASE_MATHFN (BUILT_IN_INF)
      CASE_MATHFN (BUILT_IN_INF)
      CASE_MATHFN (BUILT_IN_J0)
      CASE_MATHFN (BUILT_IN_J0)
      CASE_MATHFN (BUILT_IN_J1)
      CASE_MATHFN (BUILT_IN_J1)
      CASE_MATHFN (BUILT_IN_JN)
      CASE_MATHFN (BUILT_IN_JN)
      CASE_MATHFN (BUILT_IN_LCEIL)
      CASE_MATHFN (BUILT_IN_LCEIL)
      CASE_MATHFN (BUILT_IN_LDEXP)
      CASE_MATHFN (BUILT_IN_LDEXP)
      CASE_MATHFN (BUILT_IN_LFLOOR)
      CASE_MATHFN (BUILT_IN_LFLOOR)
      CASE_MATHFN (BUILT_IN_LGAMMA)
      CASE_MATHFN (BUILT_IN_LGAMMA)
      CASE_MATHFN (BUILT_IN_LLCEIL)
      CASE_MATHFN (BUILT_IN_LLCEIL)
      CASE_MATHFN (BUILT_IN_LLFLOOR)
      CASE_MATHFN (BUILT_IN_LLFLOOR)
      CASE_MATHFN (BUILT_IN_LLRINT)
      CASE_MATHFN (BUILT_IN_LLRINT)
      CASE_MATHFN (BUILT_IN_LLROUND)
      CASE_MATHFN (BUILT_IN_LLROUND)
      CASE_MATHFN (BUILT_IN_LOG)
      CASE_MATHFN (BUILT_IN_LOG)
      CASE_MATHFN (BUILT_IN_LOG10)
      CASE_MATHFN (BUILT_IN_LOG10)
      CASE_MATHFN (BUILT_IN_LOG1P)
      CASE_MATHFN (BUILT_IN_LOG1P)
      CASE_MATHFN (BUILT_IN_LOG2)
      CASE_MATHFN (BUILT_IN_LOG2)
      CASE_MATHFN (BUILT_IN_LOGB)
      CASE_MATHFN (BUILT_IN_LOGB)
      CASE_MATHFN (BUILT_IN_LRINT)
      CASE_MATHFN (BUILT_IN_LRINT)
      CASE_MATHFN (BUILT_IN_LROUND)
      CASE_MATHFN (BUILT_IN_LROUND)
      CASE_MATHFN (BUILT_IN_MODF)
      CASE_MATHFN (BUILT_IN_MODF)
      CASE_MATHFN (BUILT_IN_NAN)
      CASE_MATHFN (BUILT_IN_NAN)
      CASE_MATHFN (BUILT_IN_NANS)
      CASE_MATHFN (BUILT_IN_NANS)
      CASE_MATHFN (BUILT_IN_NEARBYINT)
      CASE_MATHFN (BUILT_IN_NEARBYINT)
      CASE_MATHFN (BUILT_IN_NEXTAFTER)
      CASE_MATHFN (BUILT_IN_NEXTAFTER)
      CASE_MATHFN (BUILT_IN_NEXTTOWARD)
      CASE_MATHFN (BUILT_IN_NEXTTOWARD)
      CASE_MATHFN (BUILT_IN_POW)
      CASE_MATHFN (BUILT_IN_POW)
      CASE_MATHFN (BUILT_IN_POWI)
      CASE_MATHFN (BUILT_IN_POWI)
      CASE_MATHFN (BUILT_IN_POW10)
      CASE_MATHFN (BUILT_IN_POW10)
      CASE_MATHFN (BUILT_IN_REMAINDER)
      CASE_MATHFN (BUILT_IN_REMAINDER)
      CASE_MATHFN (BUILT_IN_REMQUO)
      CASE_MATHFN (BUILT_IN_REMQUO)
      CASE_MATHFN (BUILT_IN_RINT)
      CASE_MATHFN (BUILT_IN_RINT)
      CASE_MATHFN (BUILT_IN_ROUND)
      CASE_MATHFN (BUILT_IN_ROUND)
      CASE_MATHFN (BUILT_IN_SCALB)
      CASE_MATHFN (BUILT_IN_SCALB)
      CASE_MATHFN (BUILT_IN_SCALBLN)
      CASE_MATHFN (BUILT_IN_SCALBLN)
      CASE_MATHFN (BUILT_IN_SCALBN)
      CASE_MATHFN (BUILT_IN_SCALBN)
      CASE_MATHFN (BUILT_IN_SIGNIFICAND)
      CASE_MATHFN (BUILT_IN_SIGNIFICAND)
      CASE_MATHFN (BUILT_IN_SIN)
      CASE_MATHFN (BUILT_IN_SIN)
      CASE_MATHFN (BUILT_IN_SINCOS)
      CASE_MATHFN (BUILT_IN_SINCOS)
      CASE_MATHFN (BUILT_IN_SINH)
      CASE_MATHFN (BUILT_IN_SINH)
      CASE_MATHFN (BUILT_IN_SQRT)
      CASE_MATHFN (BUILT_IN_SQRT)
      CASE_MATHFN (BUILT_IN_TAN)
      CASE_MATHFN (BUILT_IN_TAN)
      CASE_MATHFN (BUILT_IN_TANH)
      CASE_MATHFN (BUILT_IN_TANH)
      CASE_MATHFN (BUILT_IN_TGAMMA)
      CASE_MATHFN (BUILT_IN_TGAMMA)
      CASE_MATHFN (BUILT_IN_TRUNC)
      CASE_MATHFN (BUILT_IN_TRUNC)
      CASE_MATHFN (BUILT_IN_Y0)
      CASE_MATHFN (BUILT_IN_Y0)
      CASE_MATHFN (BUILT_IN_Y1)
      CASE_MATHFN (BUILT_IN_Y1)
      CASE_MATHFN (BUILT_IN_YN)
      CASE_MATHFN (BUILT_IN_YN)
 
 
      default:
      default:
        return 0;
        return 0;
      }
      }
 
 
  if (TYPE_MAIN_VARIANT (type) == double_type_node)
  if (TYPE_MAIN_VARIANT (type) == double_type_node)
    return implicit_built_in_decls[fcode];
    return implicit_built_in_decls[fcode];
  else if (TYPE_MAIN_VARIANT (type) == float_type_node)
  else if (TYPE_MAIN_VARIANT (type) == float_type_node)
    return implicit_built_in_decls[fcodef];
    return implicit_built_in_decls[fcodef];
  else if (TYPE_MAIN_VARIANT (type) == long_double_type_node)
  else if (TYPE_MAIN_VARIANT (type) == long_double_type_node)
    return implicit_built_in_decls[fcodel];
    return implicit_built_in_decls[fcodel];
  else
  else
    return 0;
    return 0;
}
}
 
 
/* If errno must be maintained, expand the RTL to check if the result,
/* If errno must be maintained, expand the RTL to check if the result,
   TARGET, of a built-in function call, EXP, is NaN, and if so set
   TARGET, of a built-in function call, EXP, is NaN, and if so set
   errno to EDOM.  */
   errno to EDOM.  */
 
 
static void
static void
expand_errno_check (tree exp, rtx target)
expand_errno_check (tree exp, rtx target)
{
{
  rtx lab = gen_label_rtx ();
  rtx lab = gen_label_rtx ();
 
 
  /* Test the result; if it is NaN, set errno=EDOM because
  /* Test the result; if it is NaN, set errno=EDOM because
     the argument was not in the domain.  */
     the argument was not in the domain.  */
  emit_cmp_and_jump_insns (target, target, EQ, 0, GET_MODE (target),
  emit_cmp_and_jump_insns (target, target, EQ, 0, GET_MODE (target),
                           0, lab);
                           0, lab);
 
 
#ifdef TARGET_EDOM
#ifdef TARGET_EDOM
  /* If this built-in doesn't throw an exception, set errno directly.  */
  /* If this built-in doesn't throw an exception, set errno directly.  */
  if (TREE_NOTHROW (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
  if (TREE_NOTHROW (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
    {
    {
#ifdef GEN_ERRNO_RTX
#ifdef GEN_ERRNO_RTX
      rtx errno_rtx = GEN_ERRNO_RTX;
      rtx errno_rtx = GEN_ERRNO_RTX;
#else
#else
      rtx errno_rtx
      rtx errno_rtx
          = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno"));
          = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno"));
#endif
#endif
      emit_move_insn (errno_rtx, GEN_INT (TARGET_EDOM));
      emit_move_insn (errno_rtx, GEN_INT (TARGET_EDOM));
      emit_label (lab);
      emit_label (lab);
      return;
      return;
    }
    }
#endif
#endif
 
 
  /* We can't set errno=EDOM directly; let the library call do it.
  /* We can't set errno=EDOM directly; let the library call do it.
     Pop the arguments right away in case the call gets deleted.  */
     Pop the arguments right away in case the call gets deleted.  */
  NO_DEFER_POP;
  NO_DEFER_POP;
  expand_call (exp, target, 0);
  expand_call (exp, target, 0);
  OK_DEFER_POP;
  OK_DEFER_POP;
  emit_label (lab);
  emit_label (lab);
}
}
 
 
 
 
/* Expand a call to one of the builtin math functions (sqrt, exp, or log).
/* Expand a call to one of the builtin math functions (sqrt, exp, or log).
   Return 0 if a normal call should be emitted rather than expanding the
   Return 0 if a normal call should be emitted rather than expanding the
   function in-line.  EXP is the expression that is a call to the builtin
   function in-line.  EXP is the expression that is a call to the builtin
   function; if convenient, the result should be placed in TARGET.
   function; if convenient, the result should be placed in TARGET.
   SUBTARGET may be used as the target for computing one of EXP's operands.  */
   SUBTARGET may be used as the target for computing one of EXP's operands.  */
 
 
static rtx
static rtx
expand_builtin_mathfn (tree exp, rtx target, rtx subtarget)
expand_builtin_mathfn (tree exp, rtx target, rtx subtarget)
{
{
  optab builtin_optab;
  optab builtin_optab;
  rtx op0, insns, before_call;
  rtx op0, insns, before_call;
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  enum machine_mode mode;
  enum machine_mode mode;
  bool errno_set = false;
  bool errno_set = false;
  tree arg, narg;
  tree arg, narg;
 
 
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
 
 
  switch (DECL_FUNCTION_CODE (fndecl))
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    {
    CASE_FLT_FN (BUILT_IN_SQRT):
    CASE_FLT_FN (BUILT_IN_SQRT):
      errno_set = ! tree_expr_nonnegative_p (arg);
      errno_set = ! tree_expr_nonnegative_p (arg);
      builtin_optab = sqrt_optab;
      builtin_optab = sqrt_optab;
      break;
      break;
    CASE_FLT_FN (BUILT_IN_EXP):
    CASE_FLT_FN (BUILT_IN_EXP):
      errno_set = true; builtin_optab = exp_optab; break;
      errno_set = true; builtin_optab = exp_optab; break;
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_POW10):
    CASE_FLT_FN (BUILT_IN_POW10):
      errno_set = true; builtin_optab = exp10_optab; break;
      errno_set = true; builtin_optab = exp10_optab; break;
    CASE_FLT_FN (BUILT_IN_EXP2):
    CASE_FLT_FN (BUILT_IN_EXP2):
      errno_set = true; builtin_optab = exp2_optab; break;
      errno_set = true; builtin_optab = exp2_optab; break;
    CASE_FLT_FN (BUILT_IN_EXPM1):
    CASE_FLT_FN (BUILT_IN_EXPM1):
      errno_set = true; builtin_optab = expm1_optab; break;
      errno_set = true; builtin_optab = expm1_optab; break;
    CASE_FLT_FN (BUILT_IN_LOGB):
    CASE_FLT_FN (BUILT_IN_LOGB):
      errno_set = true; builtin_optab = logb_optab; break;
      errno_set = true; builtin_optab = logb_optab; break;
    CASE_FLT_FN (BUILT_IN_ILOGB):
    CASE_FLT_FN (BUILT_IN_ILOGB):
      errno_set = true; builtin_optab = ilogb_optab; break;
      errno_set = true; builtin_optab = ilogb_optab; break;
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG):
      errno_set = true; builtin_optab = log_optab; break;
      errno_set = true; builtin_optab = log_optab; break;
    CASE_FLT_FN (BUILT_IN_LOG10):
    CASE_FLT_FN (BUILT_IN_LOG10):
      errno_set = true; builtin_optab = log10_optab; break;
      errno_set = true; builtin_optab = log10_optab; break;
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG2):
      errno_set = true; builtin_optab = log2_optab; break;
      errno_set = true; builtin_optab = log2_optab; break;
    CASE_FLT_FN (BUILT_IN_LOG1P):
    CASE_FLT_FN (BUILT_IN_LOG1P):
      errno_set = true; builtin_optab = log1p_optab; break;
      errno_set = true; builtin_optab = log1p_optab; break;
    CASE_FLT_FN (BUILT_IN_ASIN):
    CASE_FLT_FN (BUILT_IN_ASIN):
      builtin_optab = asin_optab; break;
      builtin_optab = asin_optab; break;
    CASE_FLT_FN (BUILT_IN_ACOS):
    CASE_FLT_FN (BUILT_IN_ACOS):
      builtin_optab = acos_optab; break;
      builtin_optab = acos_optab; break;
    CASE_FLT_FN (BUILT_IN_TAN):
    CASE_FLT_FN (BUILT_IN_TAN):
      builtin_optab = tan_optab; break;
      builtin_optab = tan_optab; break;
    CASE_FLT_FN (BUILT_IN_ATAN):
    CASE_FLT_FN (BUILT_IN_ATAN):
      builtin_optab = atan_optab; break;
      builtin_optab = atan_optab; break;
    CASE_FLT_FN (BUILT_IN_FLOOR):
    CASE_FLT_FN (BUILT_IN_FLOOR):
      builtin_optab = floor_optab; break;
      builtin_optab = floor_optab; break;
    CASE_FLT_FN (BUILT_IN_CEIL):
    CASE_FLT_FN (BUILT_IN_CEIL):
      builtin_optab = ceil_optab; break;
      builtin_optab = ceil_optab; break;
    CASE_FLT_FN (BUILT_IN_TRUNC):
    CASE_FLT_FN (BUILT_IN_TRUNC):
      builtin_optab = btrunc_optab; break;
      builtin_optab = btrunc_optab; break;
    CASE_FLT_FN (BUILT_IN_ROUND):
    CASE_FLT_FN (BUILT_IN_ROUND):
      builtin_optab = round_optab; break;
      builtin_optab = round_optab; break;
    CASE_FLT_FN (BUILT_IN_NEARBYINT):
    CASE_FLT_FN (BUILT_IN_NEARBYINT):
      builtin_optab = nearbyint_optab; break;
      builtin_optab = nearbyint_optab; break;
    CASE_FLT_FN (BUILT_IN_RINT):
    CASE_FLT_FN (BUILT_IN_RINT):
      builtin_optab = rint_optab; break;
      builtin_optab = rint_optab; break;
    CASE_FLT_FN (BUILT_IN_LRINT):
    CASE_FLT_FN (BUILT_IN_LRINT):
    CASE_FLT_FN (BUILT_IN_LLRINT):
    CASE_FLT_FN (BUILT_IN_LLRINT):
      builtin_optab = lrint_optab; break;
      builtin_optab = lrint_optab; break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Make a suitable register to place result in.  */
  /* Make a suitable register to place result in.  */
  mode = TYPE_MODE (TREE_TYPE (exp));
  mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  if (! flag_errno_math || ! HONOR_NANS (mode))
  if (! flag_errno_math || ! HONOR_NANS (mode))
    errno_set = false;
    errno_set = false;
 
 
  /* Before working hard, check whether the instruction is available.  */
  /* Before working hard, check whether the instruction is available.  */
  if (builtin_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
  if (builtin_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
    {
    {
      target = gen_reg_rtx (mode);
      target = gen_reg_rtx (mode);
 
 
      /* Wrap the computation of the argument in a SAVE_EXPR, as we may
      /* Wrap the computation of the argument in a SAVE_EXPR, as we may
         need to expand the argument again.  This way, we will not perform
         need to expand the argument again.  This way, we will not perform
         side-effects more the once.  */
         side-effects more the once.  */
      narg = builtin_save_expr (arg);
      narg = builtin_save_expr (arg);
      if (narg != arg)
      if (narg != arg)
        {
        {
          arg = narg;
          arg = narg;
          arglist = build_tree_list (NULL_TREE, arg);
          arglist = build_tree_list (NULL_TREE, arg);
          exp = build_function_call_expr (fndecl, arglist);
          exp = build_function_call_expr (fndecl, arglist);
        }
        }
 
 
      op0 = expand_expr (arg, subtarget, VOIDmode, 0);
      op0 = expand_expr (arg, subtarget, VOIDmode, 0);
 
 
      start_sequence ();
      start_sequence ();
 
 
      /* Compute into TARGET.
      /* Compute into TARGET.
         Set TARGET to wherever the result comes back.  */
         Set TARGET to wherever the result comes back.  */
      target = expand_unop (mode, builtin_optab, op0, target, 0);
      target = expand_unop (mode, builtin_optab, op0, target, 0);
 
 
      if (target != 0)
      if (target != 0)
        {
        {
          if (errno_set)
          if (errno_set)
            expand_errno_check (exp, target);
            expand_errno_check (exp, target);
 
 
          /* Output the entire sequence.  */
          /* Output the entire sequence.  */
          insns = get_insns ();
          insns = get_insns ();
          end_sequence ();
          end_sequence ();
          emit_insn (insns);
          emit_insn (insns);
          return target;
          return target;
        }
        }
 
 
      /* If we were unable to expand via the builtin, stop the sequence
      /* If we were unable to expand via the builtin, stop the sequence
         (without outputting the insns) and call to the library function
         (without outputting the insns) and call to the library function
         with the stabilized argument list.  */
         with the stabilized argument list.  */
      end_sequence ();
      end_sequence ();
    }
    }
 
 
  before_call = get_last_insn ();
  before_call = get_last_insn ();
 
 
  target = expand_call (exp, target, target == const0_rtx);
  target = expand_call (exp, target, target == const0_rtx);
 
 
  /* If this is a sqrt operation and we don't care about errno, try to
  /* If this is a sqrt operation and we don't care about errno, try to
     attach a REG_EQUAL note with a SQRT rtx to the emitted libcall.
     attach a REG_EQUAL note with a SQRT rtx to the emitted libcall.
     This allows the semantics of the libcall to be visible to the RTL
     This allows the semantics of the libcall to be visible to the RTL
     optimizers.  */
     optimizers.  */
  if (builtin_optab == sqrt_optab && !errno_set)
  if (builtin_optab == sqrt_optab && !errno_set)
    {
    {
      /* Search backwards through the insns emitted by expand_call looking
      /* Search backwards through the insns emitted by expand_call looking
         for the instruction with the REG_RETVAL note.  */
         for the instruction with the REG_RETVAL note.  */
      rtx last = get_last_insn ();
      rtx last = get_last_insn ();
      while (last != before_call)
      while (last != before_call)
        {
        {
          if (find_reg_note (last, REG_RETVAL, NULL))
          if (find_reg_note (last, REG_RETVAL, NULL))
            {
            {
              rtx note = find_reg_note (last, REG_EQUAL, NULL);
              rtx note = find_reg_note (last, REG_EQUAL, NULL);
              /* Check that the REQ_EQUAL note is an EXPR_LIST with
              /* Check that the REQ_EQUAL note is an EXPR_LIST with
                 two elements, i.e. symbol_ref(sqrt) and the operand.  */
                 two elements, i.e. symbol_ref(sqrt) and the operand.  */
              if (note
              if (note
                  && GET_CODE (note) == EXPR_LIST
                  && GET_CODE (note) == EXPR_LIST
                  && GET_CODE (XEXP (note, 0)) == EXPR_LIST
                  && GET_CODE (XEXP (note, 0)) == EXPR_LIST
                  && XEXP (XEXP (note, 0), 1) != NULL_RTX
                  && XEXP (XEXP (note, 0), 1) != NULL_RTX
                  && XEXP (XEXP (XEXP (note, 0), 1), 1) == NULL_RTX)
                  && XEXP (XEXP (XEXP (note, 0), 1), 1) == NULL_RTX)
                {
                {
                  rtx operand = XEXP (XEXP (XEXP (note, 0), 1), 0);
                  rtx operand = XEXP (XEXP (XEXP (note, 0), 1), 0);
                  /* Check operand is a register with expected mode.  */
                  /* Check operand is a register with expected mode.  */
                  if (operand
                  if (operand
                      && REG_P (operand)
                      && REG_P (operand)
                      && GET_MODE (operand) == mode)
                      && GET_MODE (operand) == mode)
                    {
                    {
                      /* Replace the REG_EQUAL note with a SQRT rtx.  */
                      /* Replace the REG_EQUAL note with a SQRT rtx.  */
                      rtx equiv = gen_rtx_SQRT (mode, operand);
                      rtx equiv = gen_rtx_SQRT (mode, operand);
                      set_unique_reg_note (last, REG_EQUAL, equiv);
                      set_unique_reg_note (last, REG_EQUAL, equiv);
                    }
                    }
                }
                }
              break;
              break;
            }
            }
          last = PREV_INSN (last);
          last = PREV_INSN (last);
        }
        }
    }
    }
 
 
  return target;
  return target;
}
}
 
 
/* Expand a call to the builtin binary math functions (pow and atan2).
/* Expand a call to the builtin binary math functions (pow and atan2).
   Return 0 if a normal call should be emitted rather than expanding the
   Return 0 if a normal call should be emitted rather than expanding the
   function in-line.  EXP is the expression that is a call to the builtin
   function in-line.  EXP is the expression that is a call to the builtin
   function; if convenient, the result should be placed in TARGET.
   function; if convenient, the result should be placed in TARGET.
   SUBTARGET may be used as the target for computing one of EXP's
   SUBTARGET may be used as the target for computing one of EXP's
   operands.  */
   operands.  */
 
 
static rtx
static rtx
expand_builtin_mathfn_2 (tree exp, rtx target, rtx subtarget)
expand_builtin_mathfn_2 (tree exp, rtx target, rtx subtarget)
{
{
  optab builtin_optab;
  optab builtin_optab;
  rtx op0, op1, insns;
  rtx op0, op1, insns;
  int op1_type = REAL_TYPE;
  int op1_type = REAL_TYPE;
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arg0, arg1, temp, narg;
  tree arg0, arg1, temp, narg;
  enum machine_mode mode;
  enum machine_mode mode;
  bool errno_set = true;
  bool errno_set = true;
  bool stable = true;
  bool stable = true;
 
 
  if ((DECL_FUNCTION_CODE (fndecl) == BUILT_IN_LDEXP)
  if ((DECL_FUNCTION_CODE (fndecl) == BUILT_IN_LDEXP)
      || (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_LDEXPF)
      || (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_LDEXPF)
      || (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_LDEXPL))
      || (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_LDEXPL))
    op1_type = INTEGER_TYPE;
    op1_type = INTEGER_TYPE;
 
 
  if (!validate_arglist (arglist, REAL_TYPE, op1_type, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, op1_type, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg0 = TREE_VALUE (arglist);
  arg0 = TREE_VALUE (arglist);
  arg1 = TREE_VALUE (TREE_CHAIN (arglist));
  arg1 = TREE_VALUE (TREE_CHAIN (arglist));
 
 
  switch (DECL_FUNCTION_CODE (fndecl))
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    {
    CASE_FLT_FN (BUILT_IN_POW):
    CASE_FLT_FN (BUILT_IN_POW):
      builtin_optab = pow_optab; break;
      builtin_optab = pow_optab; break;
    CASE_FLT_FN (BUILT_IN_ATAN2):
    CASE_FLT_FN (BUILT_IN_ATAN2):
      builtin_optab = atan2_optab; break;
      builtin_optab = atan2_optab; break;
    CASE_FLT_FN (BUILT_IN_LDEXP):
    CASE_FLT_FN (BUILT_IN_LDEXP):
      builtin_optab = ldexp_optab; break;
      builtin_optab = ldexp_optab; break;
    CASE_FLT_FN (BUILT_IN_FMOD):
    CASE_FLT_FN (BUILT_IN_FMOD):
      builtin_optab = fmod_optab; break;
      builtin_optab = fmod_optab; break;
    CASE_FLT_FN (BUILT_IN_DREM):
    CASE_FLT_FN (BUILT_IN_DREM):
      builtin_optab = drem_optab; break;
      builtin_optab = drem_optab; break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Make a suitable register to place result in.  */
  /* Make a suitable register to place result in.  */
  mode = TYPE_MODE (TREE_TYPE (exp));
  mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  /* Before working hard, check whether the instruction is available.  */
  /* Before working hard, check whether the instruction is available.  */
  if (builtin_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
  if (builtin_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
    return 0;
    return 0;
 
 
  target = gen_reg_rtx (mode);
  target = gen_reg_rtx (mode);
 
 
  if (! flag_errno_math || ! HONOR_NANS (mode))
  if (! flag_errno_math || ! HONOR_NANS (mode))
    errno_set = false;
    errno_set = false;
 
 
  /* Always stabilize the argument list.  */
  /* Always stabilize the argument list.  */
  narg = builtin_save_expr (arg1);
  narg = builtin_save_expr (arg1);
  if (narg != arg1)
  if (narg != arg1)
    {
    {
      arg1 = narg;
      arg1 = narg;
      temp = build_tree_list (NULL_TREE, narg);
      temp = build_tree_list (NULL_TREE, narg);
      stable = false;
      stable = false;
    }
    }
  else
  else
    temp = TREE_CHAIN (arglist);
    temp = TREE_CHAIN (arglist);
 
 
  narg = builtin_save_expr (arg0);
  narg = builtin_save_expr (arg0);
  if (narg != arg0)
  if (narg != arg0)
    {
    {
      arg0 = narg;
      arg0 = narg;
      arglist = tree_cons (NULL_TREE, narg, temp);
      arglist = tree_cons (NULL_TREE, narg, temp);
      stable = false;
      stable = false;
    }
    }
  else if (! stable)
  else if (! stable)
    arglist = tree_cons (NULL_TREE, arg0, temp);
    arglist = tree_cons (NULL_TREE, arg0, temp);
 
 
  if (! stable)
  if (! stable)
    exp = build_function_call_expr (fndecl, arglist);
    exp = build_function_call_expr (fndecl, arglist);
 
 
  op0 = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL);
  op0 = expand_expr (arg0, subtarget, VOIDmode, EXPAND_NORMAL);
  op1 = expand_normal (arg1);
  op1 = expand_normal (arg1);
 
 
  start_sequence ();
  start_sequence ();
 
 
  /* Compute into TARGET.
  /* Compute into TARGET.
     Set TARGET to wherever the result comes back.  */
     Set TARGET to wherever the result comes back.  */
  target = expand_binop (mode, builtin_optab, op0, op1,
  target = expand_binop (mode, builtin_optab, op0, op1,
                         target, 0, OPTAB_DIRECT);
                         target, 0, OPTAB_DIRECT);
 
 
  /* If we were unable to expand via the builtin, stop the sequence
  /* If we were unable to expand via the builtin, stop the sequence
     (without outputting the insns) and call to the library function
     (without outputting the insns) and call to the library function
     with the stabilized argument list.  */
     with the stabilized argument list.  */
  if (target == 0)
  if (target == 0)
    {
    {
      end_sequence ();
      end_sequence ();
      return expand_call (exp, target, target == const0_rtx);
      return expand_call (exp, target, target == const0_rtx);
    }
    }
 
 
  if (errno_set)
  if (errno_set)
    expand_errno_check (exp, target);
    expand_errno_check (exp, target);
 
 
  /* Output the entire sequence.  */
  /* Output the entire sequence.  */
  insns = get_insns ();
  insns = get_insns ();
  end_sequence ();
  end_sequence ();
  emit_insn (insns);
  emit_insn (insns);
 
 
  return target;
  return target;
}
}
 
 
/* Expand a call to the builtin sin and cos math functions.
/* Expand a call to the builtin sin and cos math functions.
   Return 0 if a normal call should be emitted rather than expanding the
   Return 0 if a normal call should be emitted rather than expanding the
   function in-line.  EXP is the expression that is a call to the builtin
   function in-line.  EXP is the expression that is a call to the builtin
   function; if convenient, the result should be placed in TARGET.
   function; if convenient, the result should be placed in TARGET.
   SUBTARGET may be used as the target for computing one of EXP's
   SUBTARGET may be used as the target for computing one of EXP's
   operands.  */
   operands.  */
 
 
static rtx
static rtx
expand_builtin_mathfn_3 (tree exp, rtx target, rtx subtarget)
expand_builtin_mathfn_3 (tree exp, rtx target, rtx subtarget)
{
{
  optab builtin_optab;
  optab builtin_optab;
  rtx op0, insns;
  rtx op0, insns;
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  enum machine_mode mode;
  enum machine_mode mode;
  tree arg, narg;
  tree arg, narg;
 
 
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
 
 
  switch (DECL_FUNCTION_CODE (fndecl))
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    {
    CASE_FLT_FN (BUILT_IN_SIN):
    CASE_FLT_FN (BUILT_IN_SIN):
    CASE_FLT_FN (BUILT_IN_COS):
    CASE_FLT_FN (BUILT_IN_COS):
      builtin_optab = sincos_optab; break;
      builtin_optab = sincos_optab; break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Make a suitable register to place result in.  */
  /* Make a suitable register to place result in.  */
  mode = TYPE_MODE (TREE_TYPE (exp));
  mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  /* Check if sincos insn is available, otherwise fallback
  /* Check if sincos insn is available, otherwise fallback
     to sin or cos insn.  */
     to sin or cos insn.  */
  if (builtin_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing) {
  if (builtin_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing) {
    switch (DECL_FUNCTION_CODE (fndecl))
    switch (DECL_FUNCTION_CODE (fndecl))
      {
      {
      CASE_FLT_FN (BUILT_IN_SIN):
      CASE_FLT_FN (BUILT_IN_SIN):
        builtin_optab = sin_optab; break;
        builtin_optab = sin_optab; break;
      CASE_FLT_FN (BUILT_IN_COS):
      CASE_FLT_FN (BUILT_IN_COS):
        builtin_optab = cos_optab; break;
        builtin_optab = cos_optab; break;
      default:
      default:
        gcc_unreachable ();
        gcc_unreachable ();
      }
      }
  }
  }
 
 
  /* Before working hard, check whether the instruction is available.  */
  /* Before working hard, check whether the instruction is available.  */
  if (builtin_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
  if (builtin_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
    {
    {
      target = gen_reg_rtx (mode);
      target = gen_reg_rtx (mode);
 
 
      /* Wrap the computation of the argument in a SAVE_EXPR, as we may
      /* Wrap the computation of the argument in a SAVE_EXPR, as we may
         need to expand the argument again.  This way, we will not perform
         need to expand the argument again.  This way, we will not perform
         side-effects more the once.  */
         side-effects more the once.  */
      narg = save_expr (arg);
      narg = save_expr (arg);
      if (narg != arg)
      if (narg != arg)
        {
        {
          arg = narg;
          arg = narg;
          arglist = build_tree_list (NULL_TREE, arg);
          arglist = build_tree_list (NULL_TREE, arg);
          exp = build_function_call_expr (fndecl, arglist);
          exp = build_function_call_expr (fndecl, arglist);
        }
        }
 
 
      op0 = expand_expr (arg, subtarget, VOIDmode, 0);
      op0 = expand_expr (arg, subtarget, VOIDmode, 0);
 
 
      start_sequence ();
      start_sequence ();
 
 
      /* Compute into TARGET.
      /* Compute into TARGET.
         Set TARGET to wherever the result comes back.  */
         Set TARGET to wherever the result comes back.  */
      if (builtin_optab == sincos_optab)
      if (builtin_optab == sincos_optab)
        {
        {
          int result;
          int result;
 
 
          switch (DECL_FUNCTION_CODE (fndecl))
          switch (DECL_FUNCTION_CODE (fndecl))
            {
            {
            CASE_FLT_FN (BUILT_IN_SIN):
            CASE_FLT_FN (BUILT_IN_SIN):
              result = expand_twoval_unop (builtin_optab, op0, 0, target, 0);
              result = expand_twoval_unop (builtin_optab, op0, 0, target, 0);
              break;
              break;
            CASE_FLT_FN (BUILT_IN_COS):
            CASE_FLT_FN (BUILT_IN_COS):
              result = expand_twoval_unop (builtin_optab, op0, target, 0, 0);
              result = expand_twoval_unop (builtin_optab, op0, target, 0, 0);
              break;
              break;
            default:
            default:
              gcc_unreachable ();
              gcc_unreachable ();
            }
            }
          gcc_assert (result);
          gcc_assert (result);
        }
        }
      else
      else
        {
        {
          target = expand_unop (mode, builtin_optab, op0, target, 0);
          target = expand_unop (mode, builtin_optab, op0, target, 0);
        }
        }
 
 
      if (target != 0)
      if (target != 0)
        {
        {
          /* Output the entire sequence.  */
          /* Output the entire sequence.  */
          insns = get_insns ();
          insns = get_insns ();
          end_sequence ();
          end_sequence ();
          emit_insn (insns);
          emit_insn (insns);
          return target;
          return target;
        }
        }
 
 
      /* If we were unable to expand via the builtin, stop the sequence
      /* If we were unable to expand via the builtin, stop the sequence
         (without outputting the insns) and call to the library function
         (without outputting the insns) and call to the library function
         with the stabilized argument list.  */
         with the stabilized argument list.  */
      end_sequence ();
      end_sequence ();
    }
    }
 
 
  target = expand_call (exp, target, target == const0_rtx);
  target = expand_call (exp, target, target == const0_rtx);
 
 
  return target;
  return target;
}
}
 
 
/* Expand a call to the builtin sincos math function.
/* Expand a call to the builtin sincos math function.
   Return 0 if a normal call should be emitted rather than expanding the
   Return 0 if a normal call should be emitted rather than expanding the
   function in-line.  EXP is the expression that is a call to the builtin
   function in-line.  EXP is the expression that is a call to the builtin
   function.  */
   function.  */
 
 
static rtx
static rtx
expand_builtin_sincos (tree exp)
expand_builtin_sincos (tree exp)
{
{
  rtx op0, op1, op2, target1, target2;
  rtx op0, op1, op2, target1, target2;
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  enum machine_mode mode;
  enum machine_mode mode;
  tree arg, sinp, cosp;
  tree arg, sinp, cosp;
  int result;
  int result;
 
 
  if (!validate_arglist (arglist, REAL_TYPE,
  if (!validate_arglist (arglist, REAL_TYPE,
                         POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  sinp = TREE_VALUE (TREE_CHAIN (arglist));
  sinp = TREE_VALUE (TREE_CHAIN (arglist));
  cosp = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  cosp = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
 
 
  /* Make a suitable register to place result in.  */
  /* Make a suitable register to place result in.  */
  mode = TYPE_MODE (TREE_TYPE (arg));
  mode = TYPE_MODE (TREE_TYPE (arg));
 
 
  /* Check if sincos insn is available, otherwise emit the call.  */
  /* Check if sincos insn is available, otherwise emit the call.  */
  if (sincos_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
  if (sincos_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
    return NULL_RTX;
    return NULL_RTX;
 
 
  target1 = gen_reg_rtx (mode);
  target1 = gen_reg_rtx (mode);
  target2 = gen_reg_rtx (mode);
  target2 = gen_reg_rtx (mode);
 
 
  op0 = expand_normal (arg);
  op0 = expand_normal (arg);
  op1 = expand_normal (build_fold_indirect_ref (sinp));
  op1 = expand_normal (build_fold_indirect_ref (sinp));
  op2 = expand_normal (build_fold_indirect_ref (cosp));
  op2 = expand_normal (build_fold_indirect_ref (cosp));
 
 
  /* Compute into target1 and target2.
  /* Compute into target1 and target2.
     Set TARGET to wherever the result comes back.  */
     Set TARGET to wherever the result comes back.  */
  result = expand_twoval_unop (sincos_optab, op0, target2, target1, 0);
  result = expand_twoval_unop (sincos_optab, op0, target2, target1, 0);
  gcc_assert (result);
  gcc_assert (result);
 
 
  /* Move target1 and target2 to the memory locations indicated
  /* Move target1 and target2 to the memory locations indicated
     by op1 and op2.  */
     by op1 and op2.  */
  emit_move_insn (op1, target1);
  emit_move_insn (op1, target1);
  emit_move_insn (op2, target2);
  emit_move_insn (op2, target2);
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* Expand a call to one of the builtin rounding functions (lfloor).
/* Expand a call to one of the builtin rounding functions (lfloor).
   If expanding via optab fails, lower expression to (int)(floor(x)).
   If expanding via optab fails, lower expression to (int)(floor(x)).
   EXP is the expression that is a call to the builtin function;
   EXP is the expression that is a call to the builtin function;
   if convenient, the result should be placed in TARGET.  SUBTARGET may
   if convenient, the result should be placed in TARGET.  SUBTARGET may
   be used as the target for computing one of EXP's operands.  */
   be used as the target for computing one of EXP's operands.  */
 
 
static rtx
static rtx
expand_builtin_int_roundingfn (tree exp, rtx target, rtx subtarget)
expand_builtin_int_roundingfn (tree exp, rtx target, rtx subtarget)
{
{
  optab builtin_optab;
  optab builtin_optab;
  rtx op0, insns, tmp;
  rtx op0, insns, tmp;
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  enum built_in_function fallback_fn;
  enum built_in_function fallback_fn;
  tree fallback_fndecl;
  tree fallback_fndecl;
  enum machine_mode mode;
  enum machine_mode mode;
  tree arg, narg;
  tree arg, narg;
 
 
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    gcc_unreachable ();
    gcc_unreachable ();
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
 
 
  switch (DECL_FUNCTION_CODE (fndecl))
  switch (DECL_FUNCTION_CODE (fndecl))
    {
    {
    CASE_FLT_FN (BUILT_IN_LCEIL):
    CASE_FLT_FN (BUILT_IN_LCEIL):
    CASE_FLT_FN (BUILT_IN_LLCEIL):
    CASE_FLT_FN (BUILT_IN_LLCEIL):
      builtin_optab = lceil_optab;
      builtin_optab = lceil_optab;
      fallback_fn = BUILT_IN_CEIL;
      fallback_fn = BUILT_IN_CEIL;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
      builtin_optab = lfloor_optab;
      builtin_optab = lfloor_optab;
      fallback_fn = BUILT_IN_FLOOR;
      fallback_fn = BUILT_IN_FLOOR;
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Make a suitable register to place result in.  */
  /* Make a suitable register to place result in.  */
  mode = TYPE_MODE (TREE_TYPE (exp));
  mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  /* Before working hard, check whether the instruction is available.  */
  /* Before working hard, check whether the instruction is available.  */
  if (builtin_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
  if (builtin_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
    {
    {
      target = gen_reg_rtx (mode);
      target = gen_reg_rtx (mode);
 
 
      /* Wrap the computation of the argument in a SAVE_EXPR, as we may
      /* Wrap the computation of the argument in a SAVE_EXPR, as we may
         need to expand the argument again.  This way, we will not perform
         need to expand the argument again.  This way, we will not perform
         side-effects more the once.  */
         side-effects more the once.  */
      narg = builtin_save_expr (arg);
      narg = builtin_save_expr (arg);
      if (narg != arg)
      if (narg != arg)
        {
        {
          arg = narg;
          arg = narg;
          arglist = build_tree_list (NULL_TREE, arg);
          arglist = build_tree_list (NULL_TREE, arg);
          exp = build_function_call_expr (fndecl, arglist);
          exp = build_function_call_expr (fndecl, arglist);
        }
        }
 
 
      op0 = expand_expr (arg, subtarget, VOIDmode, 0);
      op0 = expand_expr (arg, subtarget, VOIDmode, 0);
 
 
      start_sequence ();
      start_sequence ();
 
 
      /* Compute into TARGET.
      /* Compute into TARGET.
         Set TARGET to wherever the result comes back.  */
         Set TARGET to wherever the result comes back.  */
      target = expand_unop (mode, builtin_optab, op0, target, 0);
      target = expand_unop (mode, builtin_optab, op0, target, 0);
 
 
      if (target != 0)
      if (target != 0)
        {
        {
          /* Output the entire sequence.  */
          /* Output the entire sequence.  */
          insns = get_insns ();
          insns = get_insns ();
          end_sequence ();
          end_sequence ();
          emit_insn (insns);
          emit_insn (insns);
          return target;
          return target;
        }
        }
 
 
      /* If we were unable to expand via the builtin, stop the sequence
      /* If we were unable to expand via the builtin, stop the sequence
         (without outputting the insns).  */
         (without outputting the insns).  */
      end_sequence ();
      end_sequence ();
    }
    }
 
 
  /* Fall back to floating point rounding optab.  */
  /* Fall back to floating point rounding optab.  */
  fallback_fndecl = mathfn_built_in (TREE_TYPE (arg), fallback_fn);
  fallback_fndecl = mathfn_built_in (TREE_TYPE (arg), fallback_fn);
  /* We shouldn't get here on targets without TARGET_C99_FUNCTIONS.
  /* We shouldn't get here on targets without TARGET_C99_FUNCTIONS.
     ??? Perhaps convert (int)floorf(x) into (int)floor((double)x).  */
     ??? Perhaps convert (int)floorf(x) into (int)floor((double)x).  */
  gcc_assert (fallback_fndecl != NULL_TREE);
  gcc_assert (fallback_fndecl != NULL_TREE);
  exp = build_function_call_expr (fallback_fndecl, arglist);
  exp = build_function_call_expr (fallback_fndecl, arglist);
 
 
  tmp = expand_normal (exp);
  tmp = expand_normal (exp);
 
 
  /* Truncate the result of floating point optab to integer
  /* Truncate the result of floating point optab to integer
     via expand_fix ().  */
     via expand_fix ().  */
  target = gen_reg_rtx (mode);
  target = gen_reg_rtx (mode);
  expand_fix (target, tmp, 0);
  expand_fix (target, tmp, 0);
 
 
  return target;
  return target;
}
}
 
 
/* To evaluate powi(x,n), the floating point value x raised to the
/* To evaluate powi(x,n), the floating point value x raised to the
   constant integer exponent n, we use a hybrid algorithm that
   constant integer exponent n, we use a hybrid algorithm that
   combines the "window method" with look-up tables.  For an
   combines the "window method" with look-up tables.  For an
   introduction to exponentiation algorithms and "addition chains",
   introduction to exponentiation algorithms and "addition chains",
   see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
   see section 4.6.3, "Evaluation of Powers" of Donald E. Knuth,
   "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
   "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming",
   3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
   3rd Edition, 1998, and Daniel M. Gordon, "A Survey of Fast Exponentiation
   Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998.  */
   Methods", Journal of Algorithms, Vol. 27, pp. 129-146, 1998.  */
 
 
/* Provide a default value for POWI_MAX_MULTS, the maximum number of
/* Provide a default value for POWI_MAX_MULTS, the maximum number of
   multiplications to inline before calling the system library's pow
   multiplications to inline before calling the system library's pow
   function.  powi(x,n) requires at worst 2*bits(n)-2 multiplications,
   function.  powi(x,n) requires at worst 2*bits(n)-2 multiplications,
   so this default never requires calling pow, powf or powl.  */
   so this default never requires calling pow, powf or powl.  */
 
 
#ifndef POWI_MAX_MULTS
#ifndef POWI_MAX_MULTS
#define POWI_MAX_MULTS  (2*HOST_BITS_PER_WIDE_INT-2)
#define POWI_MAX_MULTS  (2*HOST_BITS_PER_WIDE_INT-2)
#endif
#endif
 
 
/* The size of the "optimal power tree" lookup table.  All
/* The size of the "optimal power tree" lookup table.  All
   exponents less than this value are simply looked up in the
   exponents less than this value are simply looked up in the
   powi_table below.  This threshold is also used to size the
   powi_table below.  This threshold is also used to size the
   cache of pseudo registers that hold intermediate results.  */
   cache of pseudo registers that hold intermediate results.  */
#define POWI_TABLE_SIZE 256
#define POWI_TABLE_SIZE 256
 
 
/* The size, in bits of the window, used in the "window method"
/* The size, in bits of the window, used in the "window method"
   exponentiation algorithm.  This is equivalent to a radix of
   exponentiation algorithm.  This is equivalent to a radix of
   (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method".  */
   (1<<POWI_WINDOW_SIZE) in the corresponding "m-ary method".  */
#define POWI_WINDOW_SIZE 3
#define POWI_WINDOW_SIZE 3
 
 
/* The following table is an efficient representation of an
/* The following table is an efficient representation of an
   "optimal power tree".  For each value, i, the corresponding
   "optimal power tree".  For each value, i, the corresponding
   value, j, in the table states than an optimal evaluation
   value, j, in the table states than an optimal evaluation
   sequence for calculating pow(x,i) can be found by evaluating
   sequence for calculating pow(x,i) can be found by evaluating
   pow(x,j)*pow(x,i-j).  An optimal power tree for the first
   pow(x,j)*pow(x,i-j).  An optimal power tree for the first
   100 integers is given in Knuth's "Seminumerical algorithms".  */
   100 integers is given in Knuth's "Seminumerical algorithms".  */
 
 
static const unsigned char powi_table[POWI_TABLE_SIZE] =
static const unsigned char powi_table[POWI_TABLE_SIZE] =
  {
  {
      0,   1,   1,   2,   2,   3,   3,   4,  /*   0 -   7 */
      0,   1,   1,   2,   2,   3,   3,   4,  /*   0 -   7 */
      4,   6,   5,   6,   6,  10,   7,   9,  /*   8 -  15 */
      4,   6,   5,   6,   6,  10,   7,   9,  /*   8 -  15 */
      8,  16,   9,  16,  10,  12,  11,  13,  /*  16 -  23 */
      8,  16,   9,  16,  10,  12,  11,  13,  /*  16 -  23 */
     12,  17,  13,  18,  14,  24,  15,  26,  /*  24 -  31 */
     12,  17,  13,  18,  14,  24,  15,  26,  /*  24 -  31 */
     16,  17,  17,  19,  18,  33,  19,  26,  /*  32 -  39 */
     16,  17,  17,  19,  18,  33,  19,  26,  /*  32 -  39 */
     20,  25,  21,  40,  22,  27,  23,  44,  /*  40 -  47 */
     20,  25,  21,  40,  22,  27,  23,  44,  /*  40 -  47 */
     24,  32,  25,  34,  26,  29,  27,  44,  /*  48 -  55 */
     24,  32,  25,  34,  26,  29,  27,  44,  /*  48 -  55 */
     28,  31,  29,  34,  30,  60,  31,  36,  /*  56 -  63 */
     28,  31,  29,  34,  30,  60,  31,  36,  /*  56 -  63 */
     32,  64,  33,  34,  34,  46,  35,  37,  /*  64 -  71 */
     32,  64,  33,  34,  34,  46,  35,  37,  /*  64 -  71 */
     36,  65,  37,  50,  38,  48,  39,  69,  /*  72 -  79 */
     36,  65,  37,  50,  38,  48,  39,  69,  /*  72 -  79 */
     40,  49,  41,  43,  42,  51,  43,  58,  /*  80 -  87 */
     40,  49,  41,  43,  42,  51,  43,  58,  /*  80 -  87 */
     44,  64,  45,  47,  46,  59,  47,  76,  /*  88 -  95 */
     44,  64,  45,  47,  46,  59,  47,  76,  /*  88 -  95 */
     48,  65,  49,  66,  50,  67,  51,  66,  /*  96 - 103 */
     48,  65,  49,  66,  50,  67,  51,  66,  /*  96 - 103 */
     52,  70,  53,  74,  54, 104,  55,  74,  /* 104 - 111 */
     52,  70,  53,  74,  54, 104,  55,  74,  /* 104 - 111 */
     56,  64,  57,  69,  58,  78,  59,  68,  /* 112 - 119 */
     56,  64,  57,  69,  58,  78,  59,  68,  /* 112 - 119 */
     60,  61,  61,  80,  62,  75,  63,  68,  /* 120 - 127 */
     60,  61,  61,  80,  62,  75,  63,  68,  /* 120 - 127 */
     64,  65,  65, 128,  66, 129,  67,  90,  /* 128 - 135 */
     64,  65,  65, 128,  66, 129,  67,  90,  /* 128 - 135 */
     68,  73,  69, 131,  70,  94,  71,  88,  /* 136 - 143 */
     68,  73,  69, 131,  70,  94,  71,  88,  /* 136 - 143 */
     72, 128,  73,  98,  74, 132,  75, 121,  /* 144 - 151 */
     72, 128,  73,  98,  74, 132,  75, 121,  /* 144 - 151 */
     76, 102,  77, 124,  78, 132,  79, 106,  /* 152 - 159 */
     76, 102,  77, 124,  78, 132,  79, 106,  /* 152 - 159 */
     80,  97,  81, 160,  82,  99,  83, 134,  /* 160 - 167 */
     80,  97,  81, 160,  82,  99,  83, 134,  /* 160 - 167 */
     84,  86,  85,  95,  86, 160,  87, 100,  /* 168 - 175 */
     84,  86,  85,  95,  86, 160,  87, 100,  /* 168 - 175 */
     88, 113,  89,  98,  90, 107,  91, 122,  /* 176 - 183 */
     88, 113,  89,  98,  90, 107,  91, 122,  /* 176 - 183 */
     92, 111,  93, 102,  94, 126,  95, 150,  /* 184 - 191 */
     92, 111,  93, 102,  94, 126,  95, 150,  /* 184 - 191 */
     96, 128,  97, 130,  98, 133,  99, 195,  /* 192 - 199 */
     96, 128,  97, 130,  98, 133,  99, 195,  /* 192 - 199 */
    100, 128, 101, 123, 102, 164, 103, 138,  /* 200 - 207 */
    100, 128, 101, 123, 102, 164, 103, 138,  /* 200 - 207 */
    104, 145, 105, 146, 106, 109, 107, 149,  /* 208 - 215 */
    104, 145, 105, 146, 106, 109, 107, 149,  /* 208 - 215 */
    108, 200, 109, 146, 110, 170, 111, 157,  /* 216 - 223 */
    108, 200, 109, 146, 110, 170, 111, 157,  /* 216 - 223 */
    112, 128, 113, 130, 114, 182, 115, 132,  /* 224 - 231 */
    112, 128, 113, 130, 114, 182, 115, 132,  /* 224 - 231 */
    116, 200, 117, 132, 118, 158, 119, 206,  /* 232 - 239 */
    116, 200, 117, 132, 118, 158, 119, 206,  /* 232 - 239 */
    120, 240, 121, 162, 122, 147, 123, 152,  /* 240 - 247 */
    120, 240, 121, 162, 122, 147, 123, 152,  /* 240 - 247 */
    124, 166, 125, 214, 126, 138, 127, 153,  /* 248 - 255 */
    124, 166, 125, 214, 126, 138, 127, 153,  /* 248 - 255 */
  };
  };
 
 
 
 
/* Return the number of multiplications required to calculate
/* Return the number of multiplications required to calculate
   powi(x,n) where n is less than POWI_TABLE_SIZE.  This is a
   powi(x,n) where n is less than POWI_TABLE_SIZE.  This is a
   subroutine of powi_cost.  CACHE is an array indicating
   subroutine of powi_cost.  CACHE is an array indicating
   which exponents have already been calculated.  */
   which exponents have already been calculated.  */
 
 
static int
static int
powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
powi_lookup_cost (unsigned HOST_WIDE_INT n, bool *cache)
{
{
  /* If we've already calculated this exponent, then this evaluation
  /* If we've already calculated this exponent, then this evaluation
     doesn't require any additional multiplications.  */
     doesn't require any additional multiplications.  */
  if (cache[n])
  if (cache[n])
    return 0;
    return 0;
 
 
  cache[n] = true;
  cache[n] = true;
  return powi_lookup_cost (n - powi_table[n], cache)
  return powi_lookup_cost (n - powi_table[n], cache)
         + powi_lookup_cost (powi_table[n], cache) + 1;
         + powi_lookup_cost (powi_table[n], cache) + 1;
}
}
 
 
/* Return the number of multiplications required to calculate
/* Return the number of multiplications required to calculate
   powi(x,n) for an arbitrary x, given the exponent N.  This
   powi(x,n) for an arbitrary x, given the exponent N.  This
   function needs to be kept in sync with expand_powi below.  */
   function needs to be kept in sync with expand_powi below.  */
 
 
static int
static int
powi_cost (HOST_WIDE_INT n)
powi_cost (HOST_WIDE_INT n)
{
{
  bool cache[POWI_TABLE_SIZE];
  bool cache[POWI_TABLE_SIZE];
  unsigned HOST_WIDE_INT digit;
  unsigned HOST_WIDE_INT digit;
  unsigned HOST_WIDE_INT val;
  unsigned HOST_WIDE_INT val;
  int result;
  int result;
 
 
  if (n == 0)
  if (n == 0)
    return 0;
    return 0;
 
 
  /* Ignore the reciprocal when calculating the cost.  */
  /* Ignore the reciprocal when calculating the cost.  */
  val = (n < 0) ? -n : n;
  val = (n < 0) ? -n : n;
 
 
  /* Initialize the exponent cache.  */
  /* Initialize the exponent cache.  */
  memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
  memset (cache, 0, POWI_TABLE_SIZE * sizeof (bool));
  cache[1] = true;
  cache[1] = true;
 
 
  result = 0;
  result = 0;
 
 
  while (val >= POWI_TABLE_SIZE)
  while (val >= POWI_TABLE_SIZE)
    {
    {
      if (val & 1)
      if (val & 1)
        {
        {
          digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
          digit = val & ((1 << POWI_WINDOW_SIZE) - 1);
          result += powi_lookup_cost (digit, cache)
          result += powi_lookup_cost (digit, cache)
                    + POWI_WINDOW_SIZE + 1;
                    + POWI_WINDOW_SIZE + 1;
          val >>= POWI_WINDOW_SIZE;
          val >>= POWI_WINDOW_SIZE;
        }
        }
      else
      else
        {
        {
          val >>= 1;
          val >>= 1;
          result++;
          result++;
        }
        }
    }
    }
 
 
  return result + powi_lookup_cost (val, cache);
  return result + powi_lookup_cost (val, cache);
}
}
 
 
/* Recursive subroutine of expand_powi.  This function takes the array,
/* Recursive subroutine of expand_powi.  This function takes the array,
   CACHE, of already calculated exponents and an exponent N and returns
   CACHE, of already calculated exponents and an exponent N and returns
   an RTX that corresponds to CACHE[1]**N, as calculated in mode MODE.  */
   an RTX that corresponds to CACHE[1]**N, as calculated in mode MODE.  */
 
 
static rtx
static rtx
expand_powi_1 (enum machine_mode mode, unsigned HOST_WIDE_INT n, rtx *cache)
expand_powi_1 (enum machine_mode mode, unsigned HOST_WIDE_INT n, rtx *cache)
{
{
  unsigned HOST_WIDE_INT digit;
  unsigned HOST_WIDE_INT digit;
  rtx target, result;
  rtx target, result;
  rtx op0, op1;
  rtx op0, op1;
 
 
  if (n < POWI_TABLE_SIZE)
  if (n < POWI_TABLE_SIZE)
    {
    {
      if (cache[n])
      if (cache[n])
        return cache[n];
        return cache[n];
 
 
      target = gen_reg_rtx (mode);
      target = gen_reg_rtx (mode);
      cache[n] = target;
      cache[n] = target;
 
 
      op0 = expand_powi_1 (mode, n - powi_table[n], cache);
      op0 = expand_powi_1 (mode, n - powi_table[n], cache);
      op1 = expand_powi_1 (mode, powi_table[n], cache);
      op1 = expand_powi_1 (mode, powi_table[n], cache);
    }
    }
  else if (n & 1)
  else if (n & 1)
    {
    {
      target = gen_reg_rtx (mode);
      target = gen_reg_rtx (mode);
      digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
      digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
      op0 = expand_powi_1 (mode, n - digit, cache);
      op0 = expand_powi_1 (mode, n - digit, cache);
      op1 = expand_powi_1 (mode, digit, cache);
      op1 = expand_powi_1 (mode, digit, cache);
    }
    }
  else
  else
    {
    {
      target = gen_reg_rtx (mode);
      target = gen_reg_rtx (mode);
      op0 = expand_powi_1 (mode, n >> 1, cache);
      op0 = expand_powi_1 (mode, n >> 1, cache);
      op1 = op0;
      op1 = op0;
    }
    }
 
 
  result = expand_mult (mode, op0, op1, target, 0);
  result = expand_mult (mode, op0, op1, target, 0);
  if (result != target)
  if (result != target)
    emit_move_insn (target, result);
    emit_move_insn (target, result);
  return target;
  return target;
}
}
 
 
/* Expand the RTL to evaluate powi(x,n) in mode MODE.  X is the
/* Expand the RTL to evaluate powi(x,n) in mode MODE.  X is the
   floating point operand in mode MODE, and N is the exponent.  This
   floating point operand in mode MODE, and N is the exponent.  This
   function needs to be kept in sync with powi_cost above.  */
   function needs to be kept in sync with powi_cost above.  */
 
 
static rtx
static rtx
expand_powi (rtx x, enum machine_mode mode, HOST_WIDE_INT n)
expand_powi (rtx x, enum machine_mode mode, HOST_WIDE_INT n)
{
{
  unsigned HOST_WIDE_INT val;
  unsigned HOST_WIDE_INT val;
  rtx cache[POWI_TABLE_SIZE];
  rtx cache[POWI_TABLE_SIZE];
  rtx result;
  rtx result;
 
 
  if (n == 0)
  if (n == 0)
    return CONST1_RTX (mode);
    return CONST1_RTX (mode);
 
 
  val = (n < 0) ? -n : n;
  val = (n < 0) ? -n : n;
 
 
  memset (cache, 0, sizeof (cache));
  memset (cache, 0, sizeof (cache));
  cache[1] = x;
  cache[1] = x;
 
 
  result = expand_powi_1 (mode, (n < 0) ? -n : n, cache);
  result = expand_powi_1 (mode, (n < 0) ? -n : n, cache);
 
 
  /* If the original exponent was negative, reciprocate the result.  */
  /* If the original exponent was negative, reciprocate the result.  */
  if (n < 0)
  if (n < 0)
    result = expand_binop (mode, sdiv_optab, CONST1_RTX (mode),
    result = expand_binop (mode, sdiv_optab, CONST1_RTX (mode),
                           result, NULL_RTX, 0, OPTAB_LIB_WIDEN);
                           result, NULL_RTX, 0, OPTAB_LIB_WIDEN);
 
 
  return result;
  return result;
}
}
 
 
/* Expand a call to the pow built-in mathematical function.  Return 0 if
/* Expand a call to the pow built-in mathematical function.  Return 0 if
   a normal call should be emitted rather than expanding the function
   a normal call should be emitted rather than expanding the function
   in-line.  EXP is the expression that is a call to the builtin
   in-line.  EXP is the expression that is a call to the builtin
   function; if convenient, the result should be placed in TARGET.  */
   function; if convenient, the result should be placed in TARGET.  */
 
 
static rtx
static rtx
expand_builtin_pow (tree exp, rtx target, rtx subtarget)
expand_builtin_pow (tree exp, rtx target, rtx subtarget)
{
{
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arg0, arg1;
  tree arg0, arg1;
 
 
  if (! validate_arglist (arglist, REAL_TYPE, REAL_TYPE, VOID_TYPE))
  if (! validate_arglist (arglist, REAL_TYPE, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg0 = TREE_VALUE (arglist);
  arg0 = TREE_VALUE (arglist);
  arg1 = TREE_VALUE (TREE_CHAIN (arglist));
  arg1 = TREE_VALUE (TREE_CHAIN (arglist));
 
 
  if (TREE_CODE (arg1) == REAL_CST
  if (TREE_CODE (arg1) == REAL_CST
      && ! TREE_CONSTANT_OVERFLOW (arg1))
      && ! TREE_CONSTANT_OVERFLOW (arg1))
    {
    {
      REAL_VALUE_TYPE cint;
      REAL_VALUE_TYPE cint;
      REAL_VALUE_TYPE c;
      REAL_VALUE_TYPE c;
      HOST_WIDE_INT n;
      HOST_WIDE_INT n;
 
 
      c = TREE_REAL_CST (arg1);
      c = TREE_REAL_CST (arg1);
      n = real_to_integer (&c);
      n = real_to_integer (&c);
      real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
      real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
      if (real_identical (&c, &cint))
      if (real_identical (&c, &cint))
        {
        {
          /* If the exponent is -1, 0, 1 or 2, then expand_powi is exact.
          /* If the exponent is -1, 0, 1 or 2, then expand_powi is exact.
             Otherwise, check the number of multiplications required.
             Otherwise, check the number of multiplications required.
             Note that pow never sets errno for an integer exponent.  */
             Note that pow never sets errno for an integer exponent.  */
          if ((n >= -1 && n <= 2)
          if ((n >= -1 && n <= 2)
              || (flag_unsafe_math_optimizations
              || (flag_unsafe_math_optimizations
                  && ! optimize_size
                  && ! optimize_size
                  && powi_cost (n) <= POWI_MAX_MULTS))
                  && powi_cost (n) <= POWI_MAX_MULTS))
            {
            {
              enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
              enum machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
              rtx op = expand_expr (arg0, subtarget, VOIDmode, 0);
              rtx op = expand_expr (arg0, subtarget, VOIDmode, 0);
              op = force_reg (mode, op);
              op = force_reg (mode, op);
              return expand_powi (op, mode, n);
              return expand_powi (op, mode, n);
            }
            }
        }
        }
    }
    }
 
 
  if (! flag_unsafe_math_optimizations)
  if (! flag_unsafe_math_optimizations)
    return NULL_RTX;
    return NULL_RTX;
  return expand_builtin_mathfn_2 (exp, target, subtarget);
  return expand_builtin_mathfn_2 (exp, target, subtarget);
}
}
 
 
/* Expand a call to the powi built-in mathematical function.  Return 0 if
/* Expand a call to the powi built-in mathematical function.  Return 0 if
   a normal call should be emitted rather than expanding the function
   a normal call should be emitted rather than expanding the function
   in-line.  EXP is the expression that is a call to the builtin
   in-line.  EXP is the expression that is a call to the builtin
   function; if convenient, the result should be placed in TARGET.  */
   function; if convenient, the result should be placed in TARGET.  */
 
 
static rtx
static rtx
expand_builtin_powi (tree exp, rtx target, rtx subtarget)
expand_builtin_powi (tree exp, rtx target, rtx subtarget)
{
{
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arg0, arg1;
  tree arg0, arg1;
  rtx op0, op1;
  rtx op0, op1;
  enum machine_mode mode;
  enum machine_mode mode;
  enum machine_mode mode2;
  enum machine_mode mode2;
 
 
  if (! validate_arglist (arglist, REAL_TYPE, INTEGER_TYPE, VOID_TYPE))
  if (! validate_arglist (arglist, REAL_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg0 = TREE_VALUE (arglist);
  arg0 = TREE_VALUE (arglist);
  arg1 = TREE_VALUE (TREE_CHAIN (arglist));
  arg1 = TREE_VALUE (TREE_CHAIN (arglist));
  mode = TYPE_MODE (TREE_TYPE (exp));
  mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  /* Handle constant power.  */
  /* Handle constant power.  */
 
 
  if (TREE_CODE (arg1) == INTEGER_CST
  if (TREE_CODE (arg1) == INTEGER_CST
      && ! TREE_CONSTANT_OVERFLOW (arg1))
      && ! TREE_CONSTANT_OVERFLOW (arg1))
    {
    {
      HOST_WIDE_INT n = TREE_INT_CST_LOW (arg1);
      HOST_WIDE_INT n = TREE_INT_CST_LOW (arg1);
 
 
      /* If the exponent is -1, 0, 1 or 2, then expand_powi is exact.
      /* If the exponent is -1, 0, 1 or 2, then expand_powi is exact.
         Otherwise, check the number of multiplications required.  */
         Otherwise, check the number of multiplications required.  */
      if ((TREE_INT_CST_HIGH (arg1) == 0
      if ((TREE_INT_CST_HIGH (arg1) == 0
           || TREE_INT_CST_HIGH (arg1) == -1)
           || TREE_INT_CST_HIGH (arg1) == -1)
          && ((n >= -1 && n <= 2)
          && ((n >= -1 && n <= 2)
              || (! optimize_size
              || (! optimize_size
                  && powi_cost (n) <= POWI_MAX_MULTS)))
                  && powi_cost (n) <= POWI_MAX_MULTS)))
        {
        {
          op0 = expand_expr (arg0, subtarget, VOIDmode, 0);
          op0 = expand_expr (arg0, subtarget, VOIDmode, 0);
          op0 = force_reg (mode, op0);
          op0 = force_reg (mode, op0);
          return expand_powi (op0, mode, n);
          return expand_powi (op0, mode, n);
        }
        }
    }
    }
 
 
  /* Emit a libcall to libgcc.  */
  /* Emit a libcall to libgcc.  */
 
 
  /* Mode of the 2nd argument must match that of an int. */
  /* Mode of the 2nd argument must match that of an int. */
  mode2 = mode_for_size (INT_TYPE_SIZE, MODE_INT, 0);
  mode2 = mode_for_size (INT_TYPE_SIZE, MODE_INT, 0);
 
 
  if (target == NULL_RTX)
  if (target == NULL_RTX)
    target = gen_reg_rtx (mode);
    target = gen_reg_rtx (mode);
 
 
  op0 = expand_expr (arg0, subtarget, mode, 0);
  op0 = expand_expr (arg0, subtarget, mode, 0);
  if (GET_MODE (op0) != mode)
  if (GET_MODE (op0) != mode)
    op0 = convert_to_mode (mode, op0, 0);
    op0 = convert_to_mode (mode, op0, 0);
  op1 = expand_expr (arg1, 0, mode2, 0);
  op1 = expand_expr (arg1, 0, mode2, 0);
  if (GET_MODE (op1) != mode2)
  if (GET_MODE (op1) != mode2)
    op1 = convert_to_mode (mode2, op1, 0);
    op1 = convert_to_mode (mode2, op1, 0);
 
 
  target = emit_library_call_value (powi_optab->handlers[(int) mode].libfunc,
  target = emit_library_call_value (powi_optab->handlers[(int) mode].libfunc,
                                    target, LCT_CONST_MAKE_BLOCK, mode, 2,
                                    target, LCT_CONST_MAKE_BLOCK, mode, 2,
                                    op0, mode, op1, mode2);
                                    op0, mode, op1, mode2);
 
 
  return target;
  return target;
}
}
 
 
/* Expand expression EXP which is a call to the strlen builtin.  Return 0
/* Expand expression EXP which is a call to the strlen builtin.  Return 0
   if we failed the caller should emit a normal call, otherwise
   if we failed the caller should emit a normal call, otherwise
   try to get the result in TARGET, if convenient.  */
   try to get the result in TARGET, if convenient.  */
 
 
static rtx
static rtx
expand_builtin_strlen (tree arglist, rtx target,
expand_builtin_strlen (tree arglist, rtx target,
                       enum machine_mode target_mode)
                       enum machine_mode target_mode)
{
{
  if (!validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      rtx pat;
      rtx pat;
      tree len, src = TREE_VALUE (arglist);
      tree len, src = TREE_VALUE (arglist);
      rtx result, src_reg, char_rtx, before_strlen;
      rtx result, src_reg, char_rtx, before_strlen;
      enum machine_mode insn_mode = target_mode, char_mode;
      enum machine_mode insn_mode = target_mode, char_mode;
      enum insn_code icode = CODE_FOR_nothing;
      enum insn_code icode = CODE_FOR_nothing;
      int align;
      int align;
 
 
      /* If the length can be computed at compile-time, return it.  */
      /* If the length can be computed at compile-time, return it.  */
      len = c_strlen (src, 0);
      len = c_strlen (src, 0);
      if (len)
      if (len)
        return expand_expr (len, target, target_mode, EXPAND_NORMAL);
        return expand_expr (len, target, target_mode, EXPAND_NORMAL);
 
 
      /* If the length can be computed at compile-time and is constant
      /* If the length can be computed at compile-time and is constant
         integer, but there are side-effects in src, evaluate
         integer, but there are side-effects in src, evaluate
         src for side-effects, then return len.
         src for side-effects, then return len.
         E.g. x = strlen (i++ ? "xfoo" + 1 : "bar");
         E.g. x = strlen (i++ ? "xfoo" + 1 : "bar");
         can be optimized into: i++; x = 3;  */
         can be optimized into: i++; x = 3;  */
      len = c_strlen (src, 1);
      len = c_strlen (src, 1);
      if (len && TREE_CODE (len) == INTEGER_CST)
      if (len && TREE_CODE (len) == INTEGER_CST)
        {
        {
          expand_expr (src, const0_rtx, VOIDmode, EXPAND_NORMAL);
          expand_expr (src, const0_rtx, VOIDmode, EXPAND_NORMAL);
          return expand_expr (len, target, target_mode, EXPAND_NORMAL);
          return expand_expr (len, target, target_mode, EXPAND_NORMAL);
        }
        }
 
 
      align = get_pointer_alignment (src, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
      align = get_pointer_alignment (src, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
 
 
      /* If SRC is not a pointer type, don't do this operation inline.  */
      /* If SRC is not a pointer type, don't do this operation inline.  */
      if (align == 0)
      if (align == 0)
        return 0;
        return 0;
 
 
      /* Bail out if we can't compute strlen in the right mode.  */
      /* Bail out if we can't compute strlen in the right mode.  */
      while (insn_mode != VOIDmode)
      while (insn_mode != VOIDmode)
        {
        {
          icode = strlen_optab->handlers[(int) insn_mode].insn_code;
          icode = strlen_optab->handlers[(int) insn_mode].insn_code;
          if (icode != CODE_FOR_nothing)
          if (icode != CODE_FOR_nothing)
            break;
            break;
 
 
          insn_mode = GET_MODE_WIDER_MODE (insn_mode);
          insn_mode = GET_MODE_WIDER_MODE (insn_mode);
        }
        }
      if (insn_mode == VOIDmode)
      if (insn_mode == VOIDmode)
        return 0;
        return 0;
 
 
      /* Make a place to write the result of the instruction.  */
      /* Make a place to write the result of the instruction.  */
      result = target;
      result = target;
      if (! (result != 0
      if (! (result != 0
             && REG_P (result)
             && REG_P (result)
             && GET_MODE (result) == insn_mode
             && GET_MODE (result) == insn_mode
             && REGNO (result) >= FIRST_PSEUDO_REGISTER))
             && REGNO (result) >= FIRST_PSEUDO_REGISTER))
        result = gen_reg_rtx (insn_mode);
        result = gen_reg_rtx (insn_mode);
 
 
      /* Make a place to hold the source address.  We will not expand
      /* Make a place to hold the source address.  We will not expand
         the actual source until we are sure that the expansion will
         the actual source until we are sure that the expansion will
         not fail -- there are trees that cannot be expanded twice.  */
         not fail -- there are trees that cannot be expanded twice.  */
      src_reg = gen_reg_rtx (Pmode);
      src_reg = gen_reg_rtx (Pmode);
 
 
      /* Mark the beginning of the strlen sequence so we can emit the
      /* Mark the beginning of the strlen sequence so we can emit the
         source operand later.  */
         source operand later.  */
      before_strlen = get_last_insn ();
      before_strlen = get_last_insn ();
 
 
      char_rtx = const0_rtx;
      char_rtx = const0_rtx;
      char_mode = insn_data[(int) icode].operand[2].mode;
      char_mode = insn_data[(int) icode].operand[2].mode;
      if (! (*insn_data[(int) icode].operand[2].predicate) (char_rtx,
      if (! (*insn_data[(int) icode].operand[2].predicate) (char_rtx,
                                                            char_mode))
                                                            char_mode))
        char_rtx = copy_to_mode_reg (char_mode, char_rtx);
        char_rtx = copy_to_mode_reg (char_mode, char_rtx);
 
 
      pat = GEN_FCN (icode) (result, gen_rtx_MEM (BLKmode, src_reg),
      pat = GEN_FCN (icode) (result, gen_rtx_MEM (BLKmode, src_reg),
                             char_rtx, GEN_INT (align));
                             char_rtx, GEN_INT (align));
      if (! pat)
      if (! pat)
        return 0;
        return 0;
      emit_insn (pat);
      emit_insn (pat);
 
 
      /* Now that we are assured of success, expand the source.  */
      /* Now that we are assured of success, expand the source.  */
      start_sequence ();
      start_sequence ();
      pat = expand_expr (src, src_reg, ptr_mode, EXPAND_NORMAL);
      pat = expand_expr (src, src_reg, ptr_mode, EXPAND_NORMAL);
      if (pat != src_reg)
      if (pat != src_reg)
        emit_move_insn (src_reg, pat);
        emit_move_insn (src_reg, pat);
      pat = get_insns ();
      pat = get_insns ();
      end_sequence ();
      end_sequence ();
 
 
      if (before_strlen)
      if (before_strlen)
        emit_insn_after (pat, before_strlen);
        emit_insn_after (pat, before_strlen);
      else
      else
        emit_insn_before (pat, get_insns ());
        emit_insn_before (pat, get_insns ());
 
 
      /* Return the value in the proper mode for this function.  */
      /* Return the value in the proper mode for this function.  */
      if (GET_MODE (result) == target_mode)
      if (GET_MODE (result) == target_mode)
        target = result;
        target = result;
      else if (target != 0)
      else if (target != 0)
        convert_move (target, result, 0);
        convert_move (target, result, 0);
      else
      else
        target = convert_to_mode (target_mode, result, 0);
        target = convert_to_mode (target_mode, result, 0);
 
 
      return target;
      return target;
    }
    }
}
}
 
 
/* Expand a call to the strstr builtin.  Return 0 if we failed the
/* Expand a call to the strstr builtin.  Return 0 if we failed the
   caller should emit a normal call, otherwise try to get the result
   caller should emit a normal call, otherwise try to get the result
   in TARGET, if convenient (and in mode MODE if that's convenient).  */
   in TARGET, if convenient (and in mode MODE if that's convenient).  */
 
 
static rtx
static rtx
expand_builtin_strstr (tree arglist, tree type, rtx target, enum machine_mode mode)
expand_builtin_strstr (tree arglist, tree type, rtx target, enum machine_mode mode)
{
{
  if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    {
    {
      tree result = fold_builtin_strstr (arglist, type);
      tree result = fold_builtin_strstr (arglist, type);
      if (result)
      if (result)
        return expand_expr (result, target, mode, EXPAND_NORMAL);
        return expand_expr (result, target, mode, EXPAND_NORMAL);
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Expand a call to the strchr builtin.  Return 0 if we failed the
/* Expand a call to the strchr builtin.  Return 0 if we failed the
   caller should emit a normal call, otherwise try to get the result
   caller should emit a normal call, otherwise try to get the result
   in TARGET, if convenient (and in mode MODE if that's convenient).  */
   in TARGET, if convenient (and in mode MODE if that's convenient).  */
 
 
static rtx
static rtx
expand_builtin_strchr (tree arglist, tree type, rtx target, enum machine_mode mode)
expand_builtin_strchr (tree arglist, tree type, rtx target, enum machine_mode mode)
{
{
  if (validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
  if (validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    {
    {
      tree result = fold_builtin_strchr (arglist, type);
      tree result = fold_builtin_strchr (arglist, type);
      if (result)
      if (result)
        return expand_expr (result, target, mode, EXPAND_NORMAL);
        return expand_expr (result, target, mode, EXPAND_NORMAL);
 
 
      /* FIXME: Should use strchrM optab so that ports can optimize this.  */
      /* FIXME: Should use strchrM optab so that ports can optimize this.  */
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Expand a call to the strrchr builtin.  Return 0 if we failed the
/* Expand a call to the strrchr builtin.  Return 0 if we failed the
   caller should emit a normal call, otherwise try to get the result
   caller should emit a normal call, otherwise try to get the result
   in TARGET, if convenient (and in mode MODE if that's convenient).  */
   in TARGET, if convenient (and in mode MODE if that's convenient).  */
 
 
static rtx
static rtx
expand_builtin_strrchr (tree arglist, tree type, rtx target, enum machine_mode mode)
expand_builtin_strrchr (tree arglist, tree type, rtx target, enum machine_mode mode)
{
{
  if (validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
  if (validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    {
    {
      tree result = fold_builtin_strrchr (arglist, type);
      tree result = fold_builtin_strrchr (arglist, type);
      if (result)
      if (result)
        return expand_expr (result, target, mode, EXPAND_NORMAL);
        return expand_expr (result, target, mode, EXPAND_NORMAL);
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Expand a call to the strpbrk builtin.  Return 0 if we failed the
/* Expand a call to the strpbrk builtin.  Return 0 if we failed the
   caller should emit a normal call, otherwise try to get the result
   caller should emit a normal call, otherwise try to get the result
   in TARGET, if convenient (and in mode MODE if that's convenient).  */
   in TARGET, if convenient (and in mode MODE if that's convenient).  */
 
 
static rtx
static rtx
expand_builtin_strpbrk (tree arglist, tree type, rtx target, enum machine_mode mode)
expand_builtin_strpbrk (tree arglist, tree type, rtx target, enum machine_mode mode)
{
{
  if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    {
    {
      tree result = fold_builtin_strpbrk (arglist, type);
      tree result = fold_builtin_strpbrk (arglist, type);
      if (result)
      if (result)
        return expand_expr (result, target, mode, EXPAND_NORMAL);
        return expand_expr (result, target, mode, EXPAND_NORMAL);
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Callback routine for store_by_pieces.  Read GET_MODE_BITSIZE (MODE)
/* Callback routine for store_by_pieces.  Read GET_MODE_BITSIZE (MODE)
   bytes from constant string DATA + OFFSET and return it as target
   bytes from constant string DATA + OFFSET and return it as target
   constant.  */
   constant.  */
 
 
static rtx
static rtx
builtin_memcpy_read_str (void *data, HOST_WIDE_INT offset,
builtin_memcpy_read_str (void *data, HOST_WIDE_INT offset,
                         enum machine_mode mode)
                         enum machine_mode mode)
{
{
  const char *str = (const char *) data;
  const char *str = (const char *) data;
 
 
  gcc_assert (offset >= 0
  gcc_assert (offset >= 0
              && ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
              && ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
                  <= strlen (str) + 1));
                  <= strlen (str) + 1));
 
 
  return c_readstr (str + offset, mode);
  return c_readstr (str + offset, mode);
}
}
 
 
/* Expand a call to the memcpy builtin, with arguments in ARGLIST.
/* Expand a call to the memcpy builtin, with arguments in ARGLIST.
   Return 0 if we failed, the caller should emit a normal call,
   Return 0 if we failed, the caller should emit a normal call,
   otherwise try to get the result in TARGET, if convenient (and in
   otherwise try to get the result in TARGET, if convenient (and in
   mode MODE if that's convenient).  */
   mode MODE if that's convenient).  */
static rtx
static rtx
expand_builtin_memcpy (tree exp, rtx target, enum machine_mode mode)
expand_builtin_memcpy (tree exp, rtx target, enum machine_mode mode)
{
{
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree dest = TREE_VALUE (arglist);
      tree dest = TREE_VALUE (arglist);
      tree src = TREE_VALUE (TREE_CHAIN (arglist));
      tree src = TREE_VALUE (TREE_CHAIN (arglist));
      tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
      tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
      const char *src_str;
      const char *src_str;
      unsigned int src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      unsigned int src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      unsigned int dest_align
      unsigned int dest_align
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
      rtx dest_mem, src_mem, dest_addr, len_rtx;
      rtx dest_mem, src_mem, dest_addr, len_rtx;
      tree result = fold_builtin_memory_op (arglist, TREE_TYPE (TREE_TYPE (fndecl)),
      tree result = fold_builtin_memory_op (arglist, TREE_TYPE (TREE_TYPE (fndecl)),
                                            false, /*endp=*/0);
                                            false, /*endp=*/0);
 
 
      if (result)
      if (result)
        {
        {
          while (TREE_CODE (result) == COMPOUND_EXPR)
          while (TREE_CODE (result) == COMPOUND_EXPR)
            {
            {
              expand_expr (TREE_OPERAND (result, 0), const0_rtx, VOIDmode,
              expand_expr (TREE_OPERAND (result, 0), const0_rtx, VOIDmode,
                           EXPAND_NORMAL);
                           EXPAND_NORMAL);
              result = TREE_OPERAND (result, 1);
              result = TREE_OPERAND (result, 1);
            }
            }
          return expand_expr (result, target, mode, EXPAND_NORMAL);
          return expand_expr (result, target, mode, EXPAND_NORMAL);
        }
        }
 
 
      /* If DEST is not a pointer type, call the normal function.  */
      /* If DEST is not a pointer type, call the normal function.  */
      if (dest_align == 0)
      if (dest_align == 0)
        return 0;
        return 0;
 
 
      /* If either SRC is not a pointer type, don't do this
      /* If either SRC is not a pointer type, don't do this
         operation in-line.  */
         operation in-line.  */
      if (src_align == 0)
      if (src_align == 0)
        return 0;
        return 0;
 
 
      dest_mem = get_memory_rtx (dest, len);
      dest_mem = get_memory_rtx (dest, len);
      set_mem_align (dest_mem, dest_align);
      set_mem_align (dest_mem, dest_align);
      len_rtx = expand_normal (len);
      len_rtx = expand_normal (len);
      src_str = c_getstr (src);
      src_str = c_getstr (src);
 
 
      /* If SRC is a string constant and block move would be done
      /* If SRC is a string constant and block move would be done
         by pieces, we can avoid loading the string from memory
         by pieces, we can avoid loading the string from memory
         and only stored the computed constants.  */
         and only stored the computed constants.  */
      if (src_str
      if (src_str
          && GET_CODE (len_rtx) == CONST_INT
          && GET_CODE (len_rtx) == CONST_INT
          && (unsigned HOST_WIDE_INT) INTVAL (len_rtx) <= strlen (src_str) + 1
          && (unsigned HOST_WIDE_INT) INTVAL (len_rtx) <= strlen (src_str) + 1
          && can_store_by_pieces (INTVAL (len_rtx), builtin_memcpy_read_str,
          && can_store_by_pieces (INTVAL (len_rtx), builtin_memcpy_read_str,
                                  (void *) src_str, dest_align))
                                  (void *) src_str, dest_align))
        {
        {
          dest_mem = store_by_pieces (dest_mem, INTVAL (len_rtx),
          dest_mem = store_by_pieces (dest_mem, INTVAL (len_rtx),
                                      builtin_memcpy_read_str,
                                      builtin_memcpy_read_str,
                                      (void *) src_str, dest_align, 0);
                                      (void *) src_str, dest_align, 0);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          return dest_mem;
          return dest_mem;
        }
        }
 
 
      src_mem = get_memory_rtx (src, len);
      src_mem = get_memory_rtx (src, len);
      set_mem_align (src_mem, src_align);
      set_mem_align (src_mem, src_align);
 
 
      /* Copy word part most expediently.  */
      /* Copy word part most expediently.  */
      dest_addr = emit_block_move (dest_mem, src_mem, len_rtx,
      dest_addr = emit_block_move (dest_mem, src_mem, len_rtx,
                                   CALL_EXPR_TAILCALL (exp)
                                   CALL_EXPR_TAILCALL (exp)
                                   ? BLOCK_OP_TAILCALL : BLOCK_OP_NORMAL);
                                   ? BLOCK_OP_TAILCALL : BLOCK_OP_NORMAL);
 
 
      if (dest_addr == 0)
      if (dest_addr == 0)
        {
        {
          dest_addr = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_addr = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_addr = convert_memory_address (ptr_mode, dest_addr);
          dest_addr = convert_memory_address (ptr_mode, dest_addr);
        }
        }
      return dest_addr;
      return dest_addr;
    }
    }
}
}
 
 
/* Expand a call to the mempcpy builtin, with arguments in ARGLIST.
/* Expand a call to the mempcpy builtin, with arguments in ARGLIST.
   Return 0 if we failed; the caller should emit a normal call,
   Return 0 if we failed; the caller should emit a normal call,
   otherwise try to get the result in TARGET, if convenient (and in
   otherwise try to get the result in TARGET, if convenient (and in
   mode MODE if that's convenient).  If ENDP is 0 return the
   mode MODE if that's convenient).  If ENDP is 0 return the
   destination pointer, if ENDP is 1 return the end pointer ala
   destination pointer, if ENDP is 1 return the end pointer ala
   mempcpy, and if ENDP is 2 return the end pointer minus one ala
   mempcpy, and if ENDP is 2 return the end pointer minus one ala
   stpcpy.  */
   stpcpy.  */
 
 
static rtx
static rtx
expand_builtin_mempcpy (tree arglist, tree type, rtx target, enum machine_mode mode,
expand_builtin_mempcpy (tree arglist, tree type, rtx target, enum machine_mode mode,
                        int endp)
                        int endp)
{
{
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  /* If return value is ignored, transform mempcpy into memcpy.  */
  /* If return value is ignored, transform mempcpy into memcpy.  */
  else if (target == const0_rtx)
  else if (target == const0_rtx)
    {
    {
      tree fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
      tree fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
 
 
      if (!fn)
      if (!fn)
        return 0;
        return 0;
 
 
      return expand_expr (build_function_call_expr (fn, arglist),
      return expand_expr (build_function_call_expr (fn, arglist),
                          target, mode, EXPAND_NORMAL);
                          target, mode, EXPAND_NORMAL);
    }
    }
  else
  else
    {
    {
      tree dest = TREE_VALUE (arglist);
      tree dest = TREE_VALUE (arglist);
      tree src = TREE_VALUE (TREE_CHAIN (arglist));
      tree src = TREE_VALUE (TREE_CHAIN (arglist));
      tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
      tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
      const char *src_str;
      const char *src_str;
      unsigned int src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      unsigned int src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      unsigned int dest_align
      unsigned int dest_align
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
      rtx dest_mem, src_mem, len_rtx;
      rtx dest_mem, src_mem, len_rtx;
      tree result = fold_builtin_memory_op (arglist, type, false, endp);
      tree result = fold_builtin_memory_op (arglist, type, false, endp);
 
 
      if (result)
      if (result)
        {
        {
          while (TREE_CODE (result) == COMPOUND_EXPR)
          while (TREE_CODE (result) == COMPOUND_EXPR)
            {
            {
              expand_expr (TREE_OPERAND (result, 0), const0_rtx, VOIDmode,
              expand_expr (TREE_OPERAND (result, 0), const0_rtx, VOIDmode,
                           EXPAND_NORMAL);
                           EXPAND_NORMAL);
              result = TREE_OPERAND (result, 1);
              result = TREE_OPERAND (result, 1);
            }
            }
          return expand_expr (result, target, mode, EXPAND_NORMAL);
          return expand_expr (result, target, mode, EXPAND_NORMAL);
        }
        }
 
 
      /* If either SRC or DEST is not a pointer type, don't do this
      /* If either SRC or DEST is not a pointer type, don't do this
         operation in-line.  */
         operation in-line.  */
      if (dest_align == 0 || src_align == 0)
      if (dest_align == 0 || src_align == 0)
        return 0;
        return 0;
 
 
      /* If LEN is not constant, call the normal function.  */
      /* If LEN is not constant, call the normal function.  */
      if (! host_integerp (len, 1))
      if (! host_integerp (len, 1))
        return 0;
        return 0;
 
 
      len_rtx = expand_normal (len);
      len_rtx = expand_normal (len);
      src_str = c_getstr (src);
      src_str = c_getstr (src);
 
 
      /* If SRC is a string constant and block move would be done
      /* If SRC is a string constant and block move would be done
         by pieces, we can avoid loading the string from memory
         by pieces, we can avoid loading the string from memory
         and only stored the computed constants.  */
         and only stored the computed constants.  */
      if (src_str
      if (src_str
          && GET_CODE (len_rtx) == CONST_INT
          && GET_CODE (len_rtx) == CONST_INT
          && (unsigned HOST_WIDE_INT) INTVAL (len_rtx) <= strlen (src_str) + 1
          && (unsigned HOST_WIDE_INT) INTVAL (len_rtx) <= strlen (src_str) + 1
          && can_store_by_pieces (INTVAL (len_rtx), builtin_memcpy_read_str,
          && can_store_by_pieces (INTVAL (len_rtx), builtin_memcpy_read_str,
                                  (void *) src_str, dest_align))
                                  (void *) src_str, dest_align))
        {
        {
          dest_mem = get_memory_rtx (dest, len);
          dest_mem = get_memory_rtx (dest, len);
          set_mem_align (dest_mem, dest_align);
          set_mem_align (dest_mem, dest_align);
          dest_mem = store_by_pieces (dest_mem, INTVAL (len_rtx),
          dest_mem = store_by_pieces (dest_mem, INTVAL (len_rtx),
                                      builtin_memcpy_read_str,
                                      builtin_memcpy_read_str,
                                      (void *) src_str, dest_align, endp);
                                      (void *) src_str, dest_align, endp);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          return dest_mem;
          return dest_mem;
        }
        }
 
 
      if (GET_CODE (len_rtx) == CONST_INT
      if (GET_CODE (len_rtx) == CONST_INT
          && can_move_by_pieces (INTVAL (len_rtx),
          && can_move_by_pieces (INTVAL (len_rtx),
                                 MIN (dest_align, src_align)))
                                 MIN (dest_align, src_align)))
        {
        {
          dest_mem = get_memory_rtx (dest, len);
          dest_mem = get_memory_rtx (dest, len);
          set_mem_align (dest_mem, dest_align);
          set_mem_align (dest_mem, dest_align);
          src_mem = get_memory_rtx (src, len);
          src_mem = get_memory_rtx (src, len);
          set_mem_align (src_mem, src_align);
          set_mem_align (src_mem, src_align);
          dest_mem = move_by_pieces (dest_mem, src_mem, INTVAL (len_rtx),
          dest_mem = move_by_pieces (dest_mem, src_mem, INTVAL (len_rtx),
                                     MIN (dest_align, src_align), endp);
                                     MIN (dest_align, src_align), endp);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          return dest_mem;
          return dest_mem;
        }
        }
 
 
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Expand expression EXP, which is a call to the memmove builtin.  Return 0
/* Expand expression EXP, which is a call to the memmove builtin.  Return 0
   if we failed; the caller should emit a normal call.  */
   if we failed; the caller should emit a normal call.  */
 
 
static rtx
static rtx
expand_builtin_memmove (tree arglist, tree type, rtx target,
expand_builtin_memmove (tree arglist, tree type, rtx target,
                        enum machine_mode mode, tree orig_exp)
                        enum machine_mode mode, tree orig_exp)
{
{
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree dest = TREE_VALUE (arglist);
      tree dest = TREE_VALUE (arglist);
      tree src = TREE_VALUE (TREE_CHAIN (arglist));
      tree src = TREE_VALUE (TREE_CHAIN (arglist));
      tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
      tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
 
 
      unsigned int src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      unsigned int src_align = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
      unsigned int dest_align
      unsigned int dest_align
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
      tree result = fold_builtin_memory_op (arglist, type, false, /*endp=*/3);
      tree result = fold_builtin_memory_op (arglist, type, false, /*endp=*/3);
 
 
      if (result)
      if (result)
        {
        {
          while (TREE_CODE (result) == COMPOUND_EXPR)
          while (TREE_CODE (result) == COMPOUND_EXPR)
            {
            {
              expand_expr (TREE_OPERAND (result, 0), const0_rtx, VOIDmode,
              expand_expr (TREE_OPERAND (result, 0), const0_rtx, VOIDmode,
                           EXPAND_NORMAL);
                           EXPAND_NORMAL);
              result = TREE_OPERAND (result, 1);
              result = TREE_OPERAND (result, 1);
            }
            }
          return expand_expr (result, target, mode, EXPAND_NORMAL);
          return expand_expr (result, target, mode, EXPAND_NORMAL);
        }
        }
 
 
      /* If DEST is not a pointer type, call the normal function.  */
      /* If DEST is not a pointer type, call the normal function.  */
      if (dest_align == 0)
      if (dest_align == 0)
        return 0;
        return 0;
 
 
      /* If either SRC is not a pointer type, don't do this
      /* If either SRC is not a pointer type, don't do this
         operation in-line.  */
         operation in-line.  */
      if (src_align == 0)
      if (src_align == 0)
        return 0;
        return 0;
 
 
      /* If src is categorized for a readonly section we can use
      /* If src is categorized for a readonly section we can use
         normal memcpy.  */
         normal memcpy.  */
      if (readonly_data_expr (src))
      if (readonly_data_expr (src))
        {
        {
          tree fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
          tree fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
          if (!fn)
          if (!fn)
            return 0;
            return 0;
          fn = build_function_call_expr (fn, arglist);
          fn = build_function_call_expr (fn, arglist);
          if (TREE_CODE (fn) == CALL_EXPR)
          if (TREE_CODE (fn) == CALL_EXPR)
            CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (orig_exp);
            CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (orig_exp);
          return expand_expr (fn, target, mode, EXPAND_NORMAL);
          return expand_expr (fn, target, mode, EXPAND_NORMAL);
        }
        }
 
 
      /* If length is 1 and we can expand memcpy call inline,
      /* If length is 1 and we can expand memcpy call inline,
         it is ok to use memcpy as well.  */
         it is ok to use memcpy as well.  */
      if (integer_onep (len))
      if (integer_onep (len))
        {
        {
          rtx ret = expand_builtin_mempcpy (arglist, type, target, mode,
          rtx ret = expand_builtin_mempcpy (arglist, type, target, mode,
                                            /*endp=*/0);
                                            /*endp=*/0);
          if (ret)
          if (ret)
            return ret;
            return ret;
        }
        }
 
 
      /* Otherwise, call the normal function.  */
      /* Otherwise, call the normal function.  */
      return 0;
      return 0;
   }
   }
}
}
 
 
/* Expand expression EXP, which is a call to the bcopy builtin.  Return 0
/* Expand expression EXP, which is a call to the bcopy builtin.  Return 0
   if we failed the caller should emit a normal call.  */
   if we failed the caller should emit a normal call.  */
 
 
static rtx
static rtx
expand_builtin_bcopy (tree exp)
expand_builtin_bcopy (tree exp)
{
{
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  tree type = TREE_TYPE (exp);
  tree type = TREE_TYPE (exp);
  tree src, dest, size, newarglist;
  tree src, dest, size, newarglist;
 
 
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  src = TREE_VALUE (arglist);
  src = TREE_VALUE (arglist);
  dest = TREE_VALUE (TREE_CHAIN (arglist));
  dest = TREE_VALUE (TREE_CHAIN (arglist));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
 
 
  /* New argument list transforming bcopy(ptr x, ptr y, int z) to
  /* New argument list transforming bcopy(ptr x, ptr y, int z) to
     memmove(ptr y, ptr x, size_t z).   This is done this way
     memmove(ptr y, ptr x, size_t z).   This is done this way
     so that if it isn't expanded inline, we fallback to
     so that if it isn't expanded inline, we fallback to
     calling bcopy instead of memmove.  */
     calling bcopy instead of memmove.  */
 
 
  newarglist = build_tree_list (NULL_TREE, fold_convert (sizetype, size));
  newarglist = build_tree_list (NULL_TREE, fold_convert (sizetype, size));
  newarglist = tree_cons (NULL_TREE, src, newarglist);
  newarglist = tree_cons (NULL_TREE, src, newarglist);
  newarglist = tree_cons (NULL_TREE, dest, newarglist);
  newarglist = tree_cons (NULL_TREE, dest, newarglist);
 
 
  return expand_builtin_memmove (newarglist, type, const0_rtx, VOIDmode, exp);
  return expand_builtin_memmove (newarglist, type, const0_rtx, VOIDmode, exp);
}
}
 
 
#ifndef HAVE_movstr
#ifndef HAVE_movstr
# define HAVE_movstr 0
# define HAVE_movstr 0
# define CODE_FOR_movstr CODE_FOR_nothing
# define CODE_FOR_movstr CODE_FOR_nothing
#endif
#endif
 
 
/* Expand into a movstr instruction, if one is available.  Return 0 if
/* Expand into a movstr instruction, if one is available.  Return 0 if
   we failed, the caller should emit a normal call, otherwise try to
   we failed, the caller should emit a normal call, otherwise try to
   get the result in TARGET, if convenient.  If ENDP is 0 return the
   get the result in TARGET, if convenient.  If ENDP is 0 return the
   destination pointer, if ENDP is 1 return the end pointer ala
   destination pointer, if ENDP is 1 return the end pointer ala
   mempcpy, and if ENDP is 2 return the end pointer minus one ala
   mempcpy, and if ENDP is 2 return the end pointer minus one ala
   stpcpy.  */
   stpcpy.  */
 
 
static rtx
static rtx
expand_movstr (tree dest, tree src, rtx target, int endp)
expand_movstr (tree dest, tree src, rtx target, int endp)
{
{
  rtx end;
  rtx end;
  rtx dest_mem;
  rtx dest_mem;
  rtx src_mem;
  rtx src_mem;
  rtx insn;
  rtx insn;
  const struct insn_data * data;
  const struct insn_data * data;
 
 
  if (!HAVE_movstr)
  if (!HAVE_movstr)
    return 0;
    return 0;
 
 
  dest_mem = get_memory_rtx (dest, NULL);
  dest_mem = get_memory_rtx (dest, NULL);
  src_mem = get_memory_rtx (src, NULL);
  src_mem = get_memory_rtx (src, NULL);
  if (!endp)
  if (!endp)
    {
    {
      target = force_reg (Pmode, XEXP (dest_mem, 0));
      target = force_reg (Pmode, XEXP (dest_mem, 0));
      dest_mem = replace_equiv_address (dest_mem, target);
      dest_mem = replace_equiv_address (dest_mem, target);
      end = gen_reg_rtx (Pmode);
      end = gen_reg_rtx (Pmode);
    }
    }
  else
  else
    {
    {
      if (target == 0 || target == const0_rtx)
      if (target == 0 || target == const0_rtx)
        {
        {
          end = gen_reg_rtx (Pmode);
          end = gen_reg_rtx (Pmode);
          if (target == 0)
          if (target == 0)
            target = end;
            target = end;
        }
        }
      else
      else
        end = target;
        end = target;
    }
    }
 
 
  data = insn_data + CODE_FOR_movstr;
  data = insn_data + CODE_FOR_movstr;
 
 
  if (data->operand[0].mode != VOIDmode)
  if (data->operand[0].mode != VOIDmode)
    end = gen_lowpart (data->operand[0].mode, end);
    end = gen_lowpart (data->operand[0].mode, end);
 
 
  insn = data->genfun (end, dest_mem, src_mem);
  insn = data->genfun (end, dest_mem, src_mem);
 
 
  gcc_assert (insn);
  gcc_assert (insn);
 
 
  emit_insn (insn);
  emit_insn (insn);
 
 
  /* movstr is supposed to set end to the address of the NUL
  /* movstr is supposed to set end to the address of the NUL
     terminator.  If the caller requested a mempcpy-like return value,
     terminator.  If the caller requested a mempcpy-like return value,
     adjust it.  */
     adjust it.  */
  if (endp == 1 && target != const0_rtx)
  if (endp == 1 && target != const0_rtx)
    {
    {
      rtx tem = plus_constant (gen_lowpart (GET_MODE (target), end), 1);
      rtx tem = plus_constant (gen_lowpart (GET_MODE (target), end), 1);
      emit_move_insn (target, force_operand (tem, NULL_RTX));
      emit_move_insn (target, force_operand (tem, NULL_RTX));
    }
    }
 
 
  return target;
  return target;
}
}
 
 
/* Expand expression EXP, which is a call to the strcpy builtin.  Return 0
/* Expand expression EXP, which is a call to the strcpy builtin.  Return 0
   if we failed the caller should emit a normal call, otherwise try to get
   if we failed the caller should emit a normal call, otherwise try to get
   the result in TARGET, if convenient (and in mode MODE if that's
   the result in TARGET, if convenient (and in mode MODE if that's
   convenient).  */
   convenient).  */
 
 
static rtx
static rtx
expand_builtin_strcpy (tree fndecl, tree arglist, rtx target, enum machine_mode mode)
expand_builtin_strcpy (tree fndecl, tree arglist, rtx target, enum machine_mode mode)
{
{
  if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    {
    {
      tree result = fold_builtin_strcpy (fndecl, arglist, 0);
      tree result = fold_builtin_strcpy (fndecl, arglist, 0);
      if (result)
      if (result)
        {
        {
          while (TREE_CODE (result) == COMPOUND_EXPR)
          while (TREE_CODE (result) == COMPOUND_EXPR)
            {
            {
              expand_expr (TREE_OPERAND (result, 0), const0_rtx, VOIDmode,
              expand_expr (TREE_OPERAND (result, 0), const0_rtx, VOIDmode,
                           EXPAND_NORMAL);
                           EXPAND_NORMAL);
              result = TREE_OPERAND (result, 1);
              result = TREE_OPERAND (result, 1);
            }
            }
          return expand_expr (result, target, mode, EXPAND_NORMAL);
          return expand_expr (result, target, mode, EXPAND_NORMAL);
        }
        }
 
 
      return expand_movstr (TREE_VALUE (arglist),
      return expand_movstr (TREE_VALUE (arglist),
                            TREE_VALUE (TREE_CHAIN (arglist)),
                            TREE_VALUE (TREE_CHAIN (arglist)),
                            target, /*endp=*/0);
                            target, /*endp=*/0);
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Expand a call to the stpcpy builtin, with arguments in ARGLIST.
/* Expand a call to the stpcpy builtin, with arguments in ARGLIST.
   Return 0 if we failed the caller should emit a normal call,
   Return 0 if we failed the caller should emit a normal call,
   otherwise try to get the result in TARGET, if convenient (and in
   otherwise try to get the result in TARGET, if convenient (and in
   mode MODE if that's convenient).  */
   mode MODE if that's convenient).  */
 
 
static rtx
static rtx
expand_builtin_stpcpy (tree exp, rtx target, enum machine_mode mode)
expand_builtin_stpcpy (tree exp, rtx target, enum machine_mode mode)
{
{
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  /* If return value is ignored, transform stpcpy into strcpy.  */
  /* If return value is ignored, transform stpcpy into strcpy.  */
  if (target == const0_rtx)
  if (target == const0_rtx)
    {
    {
      tree fn = implicit_built_in_decls[BUILT_IN_STRCPY];
      tree fn = implicit_built_in_decls[BUILT_IN_STRCPY];
      if (!fn)
      if (!fn)
        return 0;
        return 0;
 
 
      return expand_expr (build_function_call_expr (fn, arglist),
      return expand_expr (build_function_call_expr (fn, arglist),
                          target, mode, EXPAND_NORMAL);
                          target, mode, EXPAND_NORMAL);
    }
    }
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree dst, src, len, lenp1;
      tree dst, src, len, lenp1;
      tree narglist;
      tree narglist;
      rtx ret;
      rtx ret;
 
 
      /* Ensure we get an actual string whose length can be evaluated at
      /* Ensure we get an actual string whose length can be evaluated at
         compile-time, not an expression containing a string.  This is
         compile-time, not an expression containing a string.  This is
         because the latter will potentially produce pessimized code
         because the latter will potentially produce pessimized code
         when used to produce the return value.  */
         when used to produce the return value.  */
      src = TREE_VALUE (TREE_CHAIN (arglist));
      src = TREE_VALUE (TREE_CHAIN (arglist));
      if (! c_getstr (src) || ! (len = c_strlen (src, 0)))
      if (! c_getstr (src) || ! (len = c_strlen (src, 0)))
        return expand_movstr (TREE_VALUE (arglist),
        return expand_movstr (TREE_VALUE (arglist),
                              TREE_VALUE (TREE_CHAIN (arglist)),
                              TREE_VALUE (TREE_CHAIN (arglist)),
                              target, /*endp=*/2);
                              target, /*endp=*/2);
 
 
      dst = TREE_VALUE (arglist);
      dst = TREE_VALUE (arglist);
      lenp1 = size_binop (PLUS_EXPR, len, ssize_int (1));
      lenp1 = size_binop (PLUS_EXPR, len, ssize_int (1));
      narglist = build_tree_list (NULL_TREE, lenp1);
      narglist = build_tree_list (NULL_TREE, lenp1);
      narglist = tree_cons (NULL_TREE, src, narglist);
      narglist = tree_cons (NULL_TREE, src, narglist);
      narglist = tree_cons (NULL_TREE, dst, narglist);
      narglist = tree_cons (NULL_TREE, dst, narglist);
      ret = expand_builtin_mempcpy (narglist, TREE_TYPE (exp),
      ret = expand_builtin_mempcpy (narglist, TREE_TYPE (exp),
                                    target, mode, /*endp=*/2);
                                    target, mode, /*endp=*/2);
 
 
      if (ret)
      if (ret)
        return ret;
        return ret;
 
 
      if (TREE_CODE (len) == INTEGER_CST)
      if (TREE_CODE (len) == INTEGER_CST)
        {
        {
          rtx len_rtx = expand_normal (len);
          rtx len_rtx = expand_normal (len);
 
 
          if (GET_CODE (len_rtx) == CONST_INT)
          if (GET_CODE (len_rtx) == CONST_INT)
            {
            {
              ret = expand_builtin_strcpy (get_callee_fndecl (exp),
              ret = expand_builtin_strcpy (get_callee_fndecl (exp),
                                           arglist, target, mode);
                                           arglist, target, mode);
 
 
              if (ret)
              if (ret)
                {
                {
                  if (! target)
                  if (! target)
                    {
                    {
                      if (mode != VOIDmode)
                      if (mode != VOIDmode)
                        target = gen_reg_rtx (mode);
                        target = gen_reg_rtx (mode);
                      else
                      else
                        target = gen_reg_rtx (GET_MODE (ret));
                        target = gen_reg_rtx (GET_MODE (ret));
                    }
                    }
                  if (GET_MODE (target) != GET_MODE (ret))
                  if (GET_MODE (target) != GET_MODE (ret))
                    ret = gen_lowpart (GET_MODE (target), ret);
                    ret = gen_lowpart (GET_MODE (target), ret);
 
 
                  ret = plus_constant (ret, INTVAL (len_rtx));
                  ret = plus_constant (ret, INTVAL (len_rtx));
                  ret = emit_move_insn (target, force_operand (ret, NULL_RTX));
                  ret = emit_move_insn (target, force_operand (ret, NULL_RTX));
                  gcc_assert (ret);
                  gcc_assert (ret);
 
 
                  return target;
                  return target;
                }
                }
            }
            }
        }
        }
 
 
      return expand_movstr (TREE_VALUE (arglist),
      return expand_movstr (TREE_VALUE (arglist),
                            TREE_VALUE (TREE_CHAIN (arglist)),
                            TREE_VALUE (TREE_CHAIN (arglist)),
                            target, /*endp=*/2);
                            target, /*endp=*/2);
    }
    }
}
}
 
 
/* Callback routine for store_by_pieces.  Read GET_MODE_BITSIZE (MODE)
/* Callback routine for store_by_pieces.  Read GET_MODE_BITSIZE (MODE)
   bytes from constant string DATA + OFFSET and return it as target
   bytes from constant string DATA + OFFSET and return it as target
   constant.  */
   constant.  */
 
 
static rtx
static rtx
builtin_strncpy_read_str (void *data, HOST_WIDE_INT offset,
builtin_strncpy_read_str (void *data, HOST_WIDE_INT offset,
                          enum machine_mode mode)
                          enum machine_mode mode)
{
{
  const char *str = (const char *) data;
  const char *str = (const char *) data;
 
 
  if ((unsigned HOST_WIDE_INT) offset > strlen (str))
  if ((unsigned HOST_WIDE_INT) offset > strlen (str))
    return const0_rtx;
    return const0_rtx;
 
 
  return c_readstr (str + offset, mode);
  return c_readstr (str + offset, mode);
}
}
 
 
/* Expand expression EXP, which is a call to the strncpy builtin.  Return 0
/* Expand expression EXP, which is a call to the strncpy builtin.  Return 0
   if we failed the caller should emit a normal call.  */
   if we failed the caller should emit a normal call.  */
 
 
static rtx
static rtx
expand_builtin_strncpy (tree exp, rtx target, enum machine_mode mode)
expand_builtin_strncpy (tree exp, rtx target, enum machine_mode mode)
{
{
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  if (validate_arglist (arglist,
  if (validate_arglist (arglist,
                        POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                        POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    {
    {
      tree slen = c_strlen (TREE_VALUE (TREE_CHAIN (arglist)), 1);
      tree slen = c_strlen (TREE_VALUE (TREE_CHAIN (arglist)), 1);
      tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
      tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
      tree result = fold_builtin_strncpy (fndecl, arglist, slen);
      tree result = fold_builtin_strncpy (fndecl, arglist, slen);
 
 
      if (result)
      if (result)
        {
        {
          while (TREE_CODE (result) == COMPOUND_EXPR)
          while (TREE_CODE (result) == COMPOUND_EXPR)
            {
            {
              expand_expr (TREE_OPERAND (result, 0), const0_rtx, VOIDmode,
              expand_expr (TREE_OPERAND (result, 0), const0_rtx, VOIDmode,
                           EXPAND_NORMAL);
                           EXPAND_NORMAL);
              result = TREE_OPERAND (result, 1);
              result = TREE_OPERAND (result, 1);
            }
            }
          return expand_expr (result, target, mode, EXPAND_NORMAL);
          return expand_expr (result, target, mode, EXPAND_NORMAL);
        }
        }
 
 
      /* We must be passed a constant len and src parameter.  */
      /* We must be passed a constant len and src parameter.  */
      if (!host_integerp (len, 1) || !slen || !host_integerp (slen, 1))
      if (!host_integerp (len, 1) || !slen || !host_integerp (slen, 1))
        return 0;
        return 0;
 
 
      slen = size_binop (PLUS_EXPR, slen, ssize_int (1));
      slen = size_binop (PLUS_EXPR, slen, ssize_int (1));
 
 
      /* We're required to pad with trailing zeros if the requested
      /* We're required to pad with trailing zeros if the requested
         len is greater than strlen(s2)+1.  In that case try to
         len is greater than strlen(s2)+1.  In that case try to
         use store_by_pieces, if it fails, punt.  */
         use store_by_pieces, if it fails, punt.  */
      if (tree_int_cst_lt (slen, len))
      if (tree_int_cst_lt (slen, len))
        {
        {
          tree dest = TREE_VALUE (arglist);
          tree dest = TREE_VALUE (arglist);
          unsigned int dest_align
          unsigned int dest_align
            = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
            = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
          const char *p = c_getstr (TREE_VALUE (TREE_CHAIN (arglist)));
          const char *p = c_getstr (TREE_VALUE (TREE_CHAIN (arglist)));
          rtx dest_mem;
          rtx dest_mem;
 
 
          if (!p || dest_align == 0 || !host_integerp (len, 1)
          if (!p || dest_align == 0 || !host_integerp (len, 1)
              || !can_store_by_pieces (tree_low_cst (len, 1),
              || !can_store_by_pieces (tree_low_cst (len, 1),
                                       builtin_strncpy_read_str,
                                       builtin_strncpy_read_str,
                                       (void *) p, dest_align))
                                       (void *) p, dest_align))
            return 0;
            return 0;
 
 
          dest_mem = get_memory_rtx (dest, len);
          dest_mem = get_memory_rtx (dest, len);
          store_by_pieces (dest_mem, tree_low_cst (len, 1),
          store_by_pieces (dest_mem, tree_low_cst (len, 1),
                           builtin_strncpy_read_str,
                           builtin_strncpy_read_str,
                           (void *) p, dest_align, 0);
                           (void *) p, dest_align, 0);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          return dest_mem;
          return dest_mem;
        }
        }
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Callback routine for store_by_pieces.  Read GET_MODE_BITSIZE (MODE)
/* Callback routine for store_by_pieces.  Read GET_MODE_BITSIZE (MODE)
   bytes from constant string DATA + OFFSET and return it as target
   bytes from constant string DATA + OFFSET and return it as target
   constant.  */
   constant.  */
 
 
static rtx
static rtx
builtin_memset_read_str (void *data, HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
builtin_memset_read_str (void *data, HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
                         enum machine_mode mode)
                         enum machine_mode mode)
{
{
  const char *c = (const char *) data;
  const char *c = (const char *) data;
  char *p = alloca (GET_MODE_SIZE (mode));
  char *p = alloca (GET_MODE_SIZE (mode));
 
 
  memset (p, *c, GET_MODE_SIZE (mode));
  memset (p, *c, GET_MODE_SIZE (mode));
 
 
  return c_readstr (p, mode);
  return c_readstr (p, mode);
}
}
 
 
/* Callback routine for store_by_pieces.  Return the RTL of a register
/* Callback routine for store_by_pieces.  Return the RTL of a register
   containing GET_MODE_SIZE (MODE) consecutive copies of the unsigned
   containing GET_MODE_SIZE (MODE) consecutive copies of the unsigned
   char value given in the RTL register data.  For example, if mode is
   char value given in the RTL register data.  For example, if mode is
   4 bytes wide, return the RTL for 0x01010101*data.  */
   4 bytes wide, return the RTL for 0x01010101*data.  */
 
 
static rtx
static rtx
builtin_memset_gen_str (void *data, HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
builtin_memset_gen_str (void *data, HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
                        enum machine_mode mode)
                        enum machine_mode mode)
{
{
  rtx target, coeff;
  rtx target, coeff;
  size_t size;
  size_t size;
  char *p;
  char *p;
 
 
  size = GET_MODE_SIZE (mode);
  size = GET_MODE_SIZE (mode);
  if (size == 1)
  if (size == 1)
    return (rtx) data;
    return (rtx) data;
 
 
  p = alloca (size);
  p = alloca (size);
  memset (p, 1, size);
  memset (p, 1, size);
  coeff = c_readstr (p, mode);
  coeff = c_readstr (p, mode);
 
 
  target = convert_to_mode (mode, (rtx) data, 1);
  target = convert_to_mode (mode, (rtx) data, 1);
  target = expand_mult (mode, target, coeff, NULL_RTX, 1);
  target = expand_mult (mode, target, coeff, NULL_RTX, 1);
  return force_reg (mode, target);
  return force_reg (mode, target);
}
}
 
 
/* Expand expression EXP, which is a call to the memset builtin.  Return 0
/* Expand expression EXP, which is a call to the memset builtin.  Return 0
   if we failed the caller should emit a normal call, otherwise try to get
   if we failed the caller should emit a normal call, otherwise try to get
   the result in TARGET, if convenient (and in mode MODE if that's
   the result in TARGET, if convenient (and in mode MODE if that's
   convenient).  */
   convenient).  */
 
 
static rtx
static rtx
expand_builtin_memset (tree arglist, rtx target, enum machine_mode mode,
expand_builtin_memset (tree arglist, rtx target, enum machine_mode mode,
                       tree orig_exp)
                       tree orig_exp)
{
{
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree dest = TREE_VALUE (arglist);
      tree dest = TREE_VALUE (arglist);
      tree val = TREE_VALUE (TREE_CHAIN (arglist));
      tree val = TREE_VALUE (TREE_CHAIN (arglist));
      tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
      tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
      tree fndecl, fn;
      tree fndecl, fn;
      enum built_in_function fcode;
      enum built_in_function fcode;
      char c;
      char c;
      unsigned int dest_align;
      unsigned int dest_align;
      rtx dest_mem, dest_addr, len_rtx;
      rtx dest_mem, dest_addr, len_rtx;
 
 
      dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
      dest_align = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
 
 
      /* If DEST is not a pointer type, don't do this
      /* If DEST is not a pointer type, don't do this
         operation in-line.  */
         operation in-line.  */
      if (dest_align == 0)
      if (dest_align == 0)
        return 0;
        return 0;
 
 
      /* If the LEN parameter is zero, return DEST.  */
      /* If the LEN parameter is zero, return DEST.  */
      if (integer_zerop (len))
      if (integer_zerop (len))
        {
        {
          /* Evaluate and ignore VAL in case it has side-effects.  */
          /* Evaluate and ignore VAL in case it has side-effects.  */
          expand_expr (val, const0_rtx, VOIDmode, EXPAND_NORMAL);
          expand_expr (val, const0_rtx, VOIDmode, EXPAND_NORMAL);
          return expand_expr (dest, target, mode, EXPAND_NORMAL);
          return expand_expr (dest, target, mode, EXPAND_NORMAL);
        }
        }
 
 
      /* Stabilize the arguments in case we fail.  */
      /* Stabilize the arguments in case we fail.  */
      dest = builtin_save_expr (dest);
      dest = builtin_save_expr (dest);
      val = builtin_save_expr (val);
      val = builtin_save_expr (val);
      len = builtin_save_expr (len);
      len = builtin_save_expr (len);
 
 
      len_rtx = expand_normal (len);
      len_rtx = expand_normal (len);
      dest_mem = get_memory_rtx (dest, len);
      dest_mem = get_memory_rtx (dest, len);
 
 
      if (TREE_CODE (val) != INTEGER_CST)
      if (TREE_CODE (val) != INTEGER_CST)
        {
        {
          rtx val_rtx;
          rtx val_rtx;
 
 
          val_rtx = expand_normal (val);
          val_rtx = expand_normal (val);
          val_rtx = convert_to_mode (TYPE_MODE (unsigned_char_type_node),
          val_rtx = convert_to_mode (TYPE_MODE (unsigned_char_type_node),
                                     val_rtx, 0);
                                     val_rtx, 0);
 
 
          /* Assume that we can memset by pieces if we can store the
          /* Assume that we can memset by pieces if we can store the
           * the coefficients by pieces (in the required modes).
           * the coefficients by pieces (in the required modes).
           * We can't pass builtin_memset_gen_str as that emits RTL.  */
           * We can't pass builtin_memset_gen_str as that emits RTL.  */
          c = 1;
          c = 1;
          if (host_integerp (len, 1)
          if (host_integerp (len, 1)
              && !(optimize_size && tree_low_cst (len, 1) > 1)
              && !(optimize_size && tree_low_cst (len, 1) > 1)
              && can_store_by_pieces (tree_low_cst (len, 1),
              && can_store_by_pieces (tree_low_cst (len, 1),
                                      builtin_memset_read_str, &c, dest_align))
                                      builtin_memset_read_str, &c, dest_align))
            {
            {
              val_rtx = force_reg (TYPE_MODE (unsigned_char_type_node),
              val_rtx = force_reg (TYPE_MODE (unsigned_char_type_node),
                                   val_rtx);
                                   val_rtx);
              store_by_pieces (dest_mem, tree_low_cst (len, 1),
              store_by_pieces (dest_mem, tree_low_cst (len, 1),
                               builtin_memset_gen_str, val_rtx, dest_align, 0);
                               builtin_memset_gen_str, val_rtx, dest_align, 0);
            }
            }
          else if (!set_storage_via_setmem (dest_mem, len_rtx, val_rtx,
          else if (!set_storage_via_setmem (dest_mem, len_rtx, val_rtx,
                                            dest_align))
                                            dest_align))
            goto do_libcall;
            goto do_libcall;
 
 
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          return dest_mem;
          return dest_mem;
        }
        }
 
 
      if (target_char_cast (val, &c))
      if (target_char_cast (val, &c))
        goto do_libcall;
        goto do_libcall;
 
 
      if (c)
      if (c)
        {
        {
          if (host_integerp (len, 1)
          if (host_integerp (len, 1)
              && !(optimize_size && tree_low_cst (len, 1) > 1)
              && !(optimize_size && tree_low_cst (len, 1) > 1)
              && can_store_by_pieces (tree_low_cst (len, 1),
              && can_store_by_pieces (tree_low_cst (len, 1),
                                      builtin_memset_read_str, &c, dest_align))
                                      builtin_memset_read_str, &c, dest_align))
            store_by_pieces (dest_mem, tree_low_cst (len, 1),
            store_by_pieces (dest_mem, tree_low_cst (len, 1),
                             builtin_memset_read_str, &c, dest_align, 0);
                             builtin_memset_read_str, &c, dest_align, 0);
          else if (!set_storage_via_setmem (dest_mem, len_rtx, GEN_INT (c),
          else if (!set_storage_via_setmem (dest_mem, len_rtx, GEN_INT (c),
                                            dest_align))
                                            dest_align))
            goto do_libcall;
            goto do_libcall;
 
 
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          dest_mem = convert_memory_address (ptr_mode, dest_mem);
          return dest_mem;
          return dest_mem;
        }
        }
 
 
      set_mem_align (dest_mem, dest_align);
      set_mem_align (dest_mem, dest_align);
      dest_addr = clear_storage (dest_mem, len_rtx,
      dest_addr = clear_storage (dest_mem, len_rtx,
                                 CALL_EXPR_TAILCALL (orig_exp)
                                 CALL_EXPR_TAILCALL (orig_exp)
                                 ? BLOCK_OP_TAILCALL : BLOCK_OP_NORMAL);
                                 ? BLOCK_OP_TAILCALL : BLOCK_OP_NORMAL);
 
 
      if (dest_addr == 0)
      if (dest_addr == 0)
        {
        {
          dest_addr = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_addr = force_operand (XEXP (dest_mem, 0), NULL_RTX);
          dest_addr = convert_memory_address (ptr_mode, dest_addr);
          dest_addr = convert_memory_address (ptr_mode, dest_addr);
        }
        }
 
 
      return dest_addr;
      return dest_addr;
 
 
    do_libcall:
    do_libcall:
      fndecl = get_callee_fndecl (orig_exp);
      fndecl = get_callee_fndecl (orig_exp);
      fcode = DECL_FUNCTION_CODE (fndecl);
      fcode = DECL_FUNCTION_CODE (fndecl);
      gcc_assert (fcode == BUILT_IN_MEMSET || fcode == BUILT_IN_BZERO);
      gcc_assert (fcode == BUILT_IN_MEMSET || fcode == BUILT_IN_BZERO);
      arglist = build_tree_list (NULL_TREE, len);
      arglist = build_tree_list (NULL_TREE, len);
      if (fcode == BUILT_IN_MEMSET)
      if (fcode == BUILT_IN_MEMSET)
        arglist = tree_cons (NULL_TREE, val, arglist);
        arglist = tree_cons (NULL_TREE, val, arglist);
      arglist = tree_cons (NULL_TREE, dest, arglist);
      arglist = tree_cons (NULL_TREE, dest, arglist);
      fn = build_function_call_expr (fndecl, arglist);
      fn = build_function_call_expr (fndecl, arglist);
      if (TREE_CODE (fn) == CALL_EXPR)
      if (TREE_CODE (fn) == CALL_EXPR)
        CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (orig_exp);
        CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (orig_exp);
      return expand_call (fn, target, target == const0_rtx);
      return expand_call (fn, target, target == const0_rtx);
    }
    }
}
}
 
 
/* Expand expression EXP, which is a call to the bzero builtin.  Return 0
/* Expand expression EXP, which is a call to the bzero builtin.  Return 0
   if we failed the caller should emit a normal call.  */
   if we failed the caller should emit a normal call.  */
 
 
static rtx
static rtx
expand_builtin_bzero (tree exp)
expand_builtin_bzero (tree exp)
{
{
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  tree dest, size, newarglist;
  tree dest, size, newarglist;
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  size = TREE_VALUE (TREE_CHAIN (arglist));
  size = TREE_VALUE (TREE_CHAIN (arglist));
 
 
  /* New argument list transforming bzero(ptr x, int y) to
  /* New argument list transforming bzero(ptr x, int y) to
     memset(ptr x, int 0, size_t y).   This is done this way
     memset(ptr x, int 0, size_t y).   This is done this way
     so that if it isn't expanded inline, we fallback to
     so that if it isn't expanded inline, we fallback to
     calling bzero instead of memset.  */
     calling bzero instead of memset.  */
 
 
  newarglist = build_tree_list (NULL_TREE, fold_convert (sizetype, size));
  newarglist = build_tree_list (NULL_TREE, fold_convert (sizetype, size));
  newarglist = tree_cons (NULL_TREE, integer_zero_node, newarglist);
  newarglist = tree_cons (NULL_TREE, integer_zero_node, newarglist);
  newarglist = tree_cons (NULL_TREE, dest, newarglist);
  newarglist = tree_cons (NULL_TREE, dest, newarglist);
 
 
  return expand_builtin_memset (newarglist, const0_rtx, VOIDmode, exp);
  return expand_builtin_memset (newarglist, const0_rtx, VOIDmode, exp);
}
}
 
 
/* Expand expression EXP, which is a call to the memcmp built-in function.
/* Expand expression EXP, which is a call to the memcmp built-in function.
   ARGLIST is the argument list for this call.  Return 0 if we failed and the
   ARGLIST is the argument list for this call.  Return 0 if we failed and the
   caller should emit a normal call, otherwise try to get the result in
   caller should emit a normal call, otherwise try to get the result in
   TARGET, if convenient (and in mode MODE, if that's convenient).  */
   TARGET, if convenient (and in mode MODE, if that's convenient).  */
 
 
static rtx
static rtx
expand_builtin_memcmp (tree exp ATTRIBUTE_UNUSED, tree arglist, rtx target,
expand_builtin_memcmp (tree exp ATTRIBUTE_UNUSED, tree arglist, rtx target,
                       enum machine_mode mode)
                       enum machine_mode mode)
{
{
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree result = fold_builtin_memcmp (arglist);
      tree result = fold_builtin_memcmp (arglist);
      if (result)
      if (result)
        return expand_expr (result, target, mode, EXPAND_NORMAL);
        return expand_expr (result, target, mode, EXPAND_NORMAL);
    }
    }
 
 
#if defined HAVE_cmpmemsi || defined HAVE_cmpstrnsi
#if defined HAVE_cmpmemsi || defined HAVE_cmpstrnsi
  {
  {
    tree arg1 = TREE_VALUE (arglist);
    tree arg1 = TREE_VALUE (arglist);
    tree arg2 = TREE_VALUE (TREE_CHAIN (arglist));
    tree arg2 = TREE_VALUE (TREE_CHAIN (arglist));
    tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
    tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
    rtx arg1_rtx, arg2_rtx, arg3_rtx;
    rtx arg1_rtx, arg2_rtx, arg3_rtx;
    rtx result;
    rtx result;
    rtx insn;
    rtx insn;
 
 
    int arg1_align
    int arg1_align
      = get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
      = get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
    int arg2_align
    int arg2_align
      = get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
      = get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
    enum machine_mode insn_mode;
    enum machine_mode insn_mode;
 
 
#ifdef HAVE_cmpmemsi
#ifdef HAVE_cmpmemsi
    if (HAVE_cmpmemsi)
    if (HAVE_cmpmemsi)
      insn_mode = insn_data[(int) CODE_FOR_cmpmemsi].operand[0].mode;
      insn_mode = insn_data[(int) CODE_FOR_cmpmemsi].operand[0].mode;
    else
    else
#endif
#endif
#ifdef HAVE_cmpstrnsi
#ifdef HAVE_cmpstrnsi
    if (HAVE_cmpstrnsi)
    if (HAVE_cmpstrnsi)
      insn_mode = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode;
      insn_mode = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode;
    else
    else
#endif
#endif
      return 0;
      return 0;
 
 
    /* If we don't have POINTER_TYPE, call the function.  */
    /* If we don't have POINTER_TYPE, call the function.  */
    if (arg1_align == 0 || arg2_align == 0)
    if (arg1_align == 0 || arg2_align == 0)
      return 0;
      return 0;
 
 
    /* Make a place to write the result of the instruction.  */
    /* Make a place to write the result of the instruction.  */
    result = target;
    result = target;
    if (! (result != 0
    if (! (result != 0
           && REG_P (result) && GET_MODE (result) == insn_mode
           && REG_P (result) && GET_MODE (result) == insn_mode
           && REGNO (result) >= FIRST_PSEUDO_REGISTER))
           && REGNO (result) >= FIRST_PSEUDO_REGISTER))
      result = gen_reg_rtx (insn_mode);
      result = gen_reg_rtx (insn_mode);
 
 
    arg1_rtx = get_memory_rtx (arg1, len);
    arg1_rtx = get_memory_rtx (arg1, len);
    arg2_rtx = get_memory_rtx (arg2, len);
    arg2_rtx = get_memory_rtx (arg2, len);
    arg3_rtx = expand_normal (len);
    arg3_rtx = expand_normal (len);
 
 
    /* Set MEM_SIZE as appropriate.  */
    /* Set MEM_SIZE as appropriate.  */
    if (GET_CODE (arg3_rtx) == CONST_INT)
    if (GET_CODE (arg3_rtx) == CONST_INT)
      {
      {
        set_mem_size (arg1_rtx, arg3_rtx);
        set_mem_size (arg1_rtx, arg3_rtx);
        set_mem_size (arg2_rtx, arg3_rtx);
        set_mem_size (arg2_rtx, arg3_rtx);
      }
      }
 
 
#ifdef HAVE_cmpmemsi
#ifdef HAVE_cmpmemsi
    if (HAVE_cmpmemsi)
    if (HAVE_cmpmemsi)
      insn = gen_cmpmemsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
      insn = gen_cmpmemsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
                           GEN_INT (MIN (arg1_align, arg2_align)));
                           GEN_INT (MIN (arg1_align, arg2_align)));
    else
    else
#endif
#endif
#ifdef HAVE_cmpstrnsi
#ifdef HAVE_cmpstrnsi
    if (HAVE_cmpstrnsi)
    if (HAVE_cmpstrnsi)
      insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
      insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
                            GEN_INT (MIN (arg1_align, arg2_align)));
                            GEN_INT (MIN (arg1_align, arg2_align)));
    else
    else
#endif
#endif
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    if (insn)
    if (insn)
      emit_insn (insn);
      emit_insn (insn);
    else
    else
      emit_library_call_value (memcmp_libfunc, result, LCT_PURE_MAKE_BLOCK,
      emit_library_call_value (memcmp_libfunc, result, LCT_PURE_MAKE_BLOCK,
                               TYPE_MODE (integer_type_node), 3,
                               TYPE_MODE (integer_type_node), 3,
                               XEXP (arg1_rtx, 0), Pmode,
                               XEXP (arg1_rtx, 0), Pmode,
                               XEXP (arg2_rtx, 0), Pmode,
                               XEXP (arg2_rtx, 0), Pmode,
                               convert_to_mode (TYPE_MODE (sizetype), arg3_rtx,
                               convert_to_mode (TYPE_MODE (sizetype), arg3_rtx,
                                                TYPE_UNSIGNED (sizetype)),
                                                TYPE_UNSIGNED (sizetype)),
                               TYPE_MODE (sizetype));
                               TYPE_MODE (sizetype));
 
 
    /* Return the value in the proper mode for this function.  */
    /* Return the value in the proper mode for this function.  */
    mode = TYPE_MODE (TREE_TYPE (exp));
    mode = TYPE_MODE (TREE_TYPE (exp));
    if (GET_MODE (result) == mode)
    if (GET_MODE (result) == mode)
      return result;
      return result;
    else if (target != 0)
    else if (target != 0)
      {
      {
        convert_move (target, result, 0);
        convert_move (target, result, 0);
        return target;
        return target;
      }
      }
    else
    else
      return convert_to_mode (mode, result, 0);
      return convert_to_mode (mode, result, 0);
  }
  }
#endif
#endif
 
 
  return 0;
  return 0;
}
}
 
 
/* Expand expression EXP, which is a call to the strcmp builtin.  Return 0
/* Expand expression EXP, which is a call to the strcmp builtin.  Return 0
   if we failed the caller should emit a normal call, otherwise try to get
   if we failed the caller should emit a normal call, otherwise try to get
   the result in TARGET, if convenient.  */
   the result in TARGET, if convenient.  */
 
 
static rtx
static rtx
expand_builtin_strcmp (tree exp, rtx target, enum machine_mode mode)
expand_builtin_strcmp (tree exp, rtx target, enum machine_mode mode)
{
{
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree result = fold_builtin_strcmp (arglist);
      tree result = fold_builtin_strcmp (arglist);
      if (result)
      if (result)
        return expand_expr (result, target, mode, EXPAND_NORMAL);
        return expand_expr (result, target, mode, EXPAND_NORMAL);
    }
    }
 
 
#if defined HAVE_cmpstrsi || defined HAVE_cmpstrnsi
#if defined HAVE_cmpstrsi || defined HAVE_cmpstrnsi
  if (cmpstr_optab[SImode] != CODE_FOR_nothing
  if (cmpstr_optab[SImode] != CODE_FOR_nothing
      || cmpstrn_optab[SImode] != CODE_FOR_nothing)
      || cmpstrn_optab[SImode] != CODE_FOR_nothing)
    {
    {
      rtx arg1_rtx, arg2_rtx;
      rtx arg1_rtx, arg2_rtx;
      rtx result, insn = NULL_RTX;
      rtx result, insn = NULL_RTX;
      tree fndecl, fn;
      tree fndecl, fn;
 
 
      tree arg1 = TREE_VALUE (arglist);
      tree arg1 = TREE_VALUE (arglist);
      tree arg2 = TREE_VALUE (TREE_CHAIN (arglist));
      tree arg2 = TREE_VALUE (TREE_CHAIN (arglist));
      int arg1_align
      int arg1_align
        = get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
        = get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
      int arg2_align
      int arg2_align
        = get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
        = get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
 
 
      /* If we don't have POINTER_TYPE, call the function.  */
      /* If we don't have POINTER_TYPE, call the function.  */
      if (arg1_align == 0 || arg2_align == 0)
      if (arg1_align == 0 || arg2_align == 0)
        return 0;
        return 0;
 
 
      /* Stabilize the arguments in case gen_cmpstr(n)si fail.  */
      /* Stabilize the arguments in case gen_cmpstr(n)si fail.  */
      arg1 = builtin_save_expr (arg1);
      arg1 = builtin_save_expr (arg1);
      arg2 = builtin_save_expr (arg2);
      arg2 = builtin_save_expr (arg2);
 
 
      arg1_rtx = get_memory_rtx (arg1, NULL);
      arg1_rtx = get_memory_rtx (arg1, NULL);
      arg2_rtx = get_memory_rtx (arg2, NULL);
      arg2_rtx = get_memory_rtx (arg2, NULL);
 
 
#ifdef HAVE_cmpstrsi
#ifdef HAVE_cmpstrsi
      /* Try to call cmpstrsi.  */
      /* Try to call cmpstrsi.  */
      if (HAVE_cmpstrsi)
      if (HAVE_cmpstrsi)
        {
        {
          enum machine_mode insn_mode
          enum machine_mode insn_mode
            = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
            = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
 
 
          /* Make a place to write the result of the instruction.  */
          /* Make a place to write the result of the instruction.  */
          result = target;
          result = target;
          if (! (result != 0
          if (! (result != 0
                 && REG_P (result) && GET_MODE (result) == insn_mode
                 && REG_P (result) && GET_MODE (result) == insn_mode
                 && REGNO (result) >= FIRST_PSEUDO_REGISTER))
                 && REGNO (result) >= FIRST_PSEUDO_REGISTER))
            result = gen_reg_rtx (insn_mode);
            result = gen_reg_rtx (insn_mode);
 
 
          insn = gen_cmpstrsi (result, arg1_rtx, arg2_rtx,
          insn = gen_cmpstrsi (result, arg1_rtx, arg2_rtx,
                               GEN_INT (MIN (arg1_align, arg2_align)));
                               GEN_INT (MIN (arg1_align, arg2_align)));
        }
        }
#endif
#endif
#ifdef HAVE_cmpstrnsi
#ifdef HAVE_cmpstrnsi
      /* Try to determine at least one length and call cmpstrnsi.  */
      /* Try to determine at least one length and call cmpstrnsi.  */
      if (!insn && HAVE_cmpstrnsi)
      if (!insn && HAVE_cmpstrnsi)
        {
        {
          tree len;
          tree len;
          rtx arg3_rtx;
          rtx arg3_rtx;
 
 
          enum machine_mode insn_mode
          enum machine_mode insn_mode
            = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode;
            = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode;
          tree len1 = c_strlen (arg1, 1);
          tree len1 = c_strlen (arg1, 1);
          tree len2 = c_strlen (arg2, 1);
          tree len2 = c_strlen (arg2, 1);
 
 
          if (len1)
          if (len1)
            len1 = size_binop (PLUS_EXPR, ssize_int (1), len1);
            len1 = size_binop (PLUS_EXPR, ssize_int (1), len1);
          if (len2)
          if (len2)
            len2 = size_binop (PLUS_EXPR, ssize_int (1), len2);
            len2 = size_binop (PLUS_EXPR, ssize_int (1), len2);
 
 
          /* If we don't have a constant length for the first, use the length
          /* If we don't have a constant length for the first, use the length
             of the second, if we know it.  We don't require a constant for
             of the second, if we know it.  We don't require a constant for
             this case; some cost analysis could be done if both are available
             this case; some cost analysis could be done if both are available
             but neither is constant.  For now, assume they're equally cheap,
             but neither is constant.  For now, assume they're equally cheap,
             unless one has side effects.  If both strings have constant lengths,
             unless one has side effects.  If both strings have constant lengths,
             use the smaller.  */
             use the smaller.  */
 
 
          if (!len1)
          if (!len1)
            len = len2;
            len = len2;
          else if (!len2)
          else if (!len2)
            len = len1;
            len = len1;
          else if (TREE_SIDE_EFFECTS (len1))
          else if (TREE_SIDE_EFFECTS (len1))
            len = len2;
            len = len2;
          else if (TREE_SIDE_EFFECTS (len2))
          else if (TREE_SIDE_EFFECTS (len2))
            len = len1;
            len = len1;
          else if (TREE_CODE (len1) != INTEGER_CST)
          else if (TREE_CODE (len1) != INTEGER_CST)
            len = len2;
            len = len2;
          else if (TREE_CODE (len2) != INTEGER_CST)
          else if (TREE_CODE (len2) != INTEGER_CST)
            len = len1;
            len = len1;
          else if (tree_int_cst_lt (len1, len2))
          else if (tree_int_cst_lt (len1, len2))
            len = len1;
            len = len1;
          else
          else
            len = len2;
            len = len2;
 
 
          /* If both arguments have side effects, we cannot optimize.  */
          /* If both arguments have side effects, we cannot optimize.  */
          if (!len || TREE_SIDE_EFFECTS (len))
          if (!len || TREE_SIDE_EFFECTS (len))
            goto do_libcall;
            goto do_libcall;
 
 
          arg3_rtx = expand_normal (len);
          arg3_rtx = expand_normal (len);
 
 
          /* Make a place to write the result of the instruction.  */
          /* Make a place to write the result of the instruction.  */
          result = target;
          result = target;
          if (! (result != 0
          if (! (result != 0
                 && REG_P (result) && GET_MODE (result) == insn_mode
                 && REG_P (result) && GET_MODE (result) == insn_mode
                 && REGNO (result) >= FIRST_PSEUDO_REGISTER))
                 && REGNO (result) >= FIRST_PSEUDO_REGISTER))
            result = gen_reg_rtx (insn_mode);
            result = gen_reg_rtx (insn_mode);
 
 
          insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
          insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
                                GEN_INT (MIN (arg1_align, arg2_align)));
                                GEN_INT (MIN (arg1_align, arg2_align)));
        }
        }
#endif
#endif
 
 
      if (insn)
      if (insn)
        {
        {
          emit_insn (insn);
          emit_insn (insn);
 
 
          /* Return the value in the proper mode for this function.  */
          /* Return the value in the proper mode for this function.  */
          mode = TYPE_MODE (TREE_TYPE (exp));
          mode = TYPE_MODE (TREE_TYPE (exp));
          if (GET_MODE (result) == mode)
          if (GET_MODE (result) == mode)
            return result;
            return result;
          if (target == 0)
          if (target == 0)
            return convert_to_mode (mode, result, 0);
            return convert_to_mode (mode, result, 0);
          convert_move (target, result, 0);
          convert_move (target, result, 0);
          return target;
          return target;
        }
        }
 
 
      /* Expand the library call ourselves using a stabilized argument
      /* Expand the library call ourselves using a stabilized argument
         list to avoid re-evaluating the function's arguments twice.  */
         list to avoid re-evaluating the function's arguments twice.  */
#ifdef HAVE_cmpstrnsi
#ifdef HAVE_cmpstrnsi
    do_libcall:
    do_libcall:
#endif
#endif
      arglist = build_tree_list (NULL_TREE, arg2);
      arglist = build_tree_list (NULL_TREE, arg2);
      arglist = tree_cons (NULL_TREE, arg1, arglist);
      arglist = tree_cons (NULL_TREE, arg1, arglist);
      fndecl = get_callee_fndecl (exp);
      fndecl = get_callee_fndecl (exp);
      fn = build_function_call_expr (fndecl, arglist);
      fn = build_function_call_expr (fndecl, arglist);
      if (TREE_CODE (fn) == CALL_EXPR)
      if (TREE_CODE (fn) == CALL_EXPR)
        CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
        CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
      return expand_call (fn, target, target == const0_rtx);
      return expand_call (fn, target, target == const0_rtx);
    }
    }
#endif
#endif
  return 0;
  return 0;
}
}
 
 
/* Expand expression EXP, which is a call to the strncmp builtin.  Return 0
/* Expand expression EXP, which is a call to the strncmp builtin.  Return 0
   if we failed the caller should emit a normal call, otherwise try to get
   if we failed the caller should emit a normal call, otherwise try to get
   the result in TARGET, if convenient.  */
   the result in TARGET, if convenient.  */
 
 
static rtx
static rtx
expand_builtin_strncmp (tree exp, rtx target, enum machine_mode mode)
expand_builtin_strncmp (tree exp, rtx target, enum machine_mode mode)
{
{
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
 
 
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree result = fold_builtin_strncmp (arglist);
      tree result = fold_builtin_strncmp (arglist);
      if (result)
      if (result)
        return expand_expr (result, target, mode, EXPAND_NORMAL);
        return expand_expr (result, target, mode, EXPAND_NORMAL);
    }
    }
 
 
  /* If c_strlen can determine an expression for one of the string
  /* If c_strlen can determine an expression for one of the string
     lengths, and it doesn't have side effects, then emit cmpstrnsi
     lengths, and it doesn't have side effects, then emit cmpstrnsi
     using length MIN(strlen(string)+1, arg3).  */
     using length MIN(strlen(string)+1, arg3).  */
#ifdef HAVE_cmpstrnsi
#ifdef HAVE_cmpstrnsi
  if (HAVE_cmpstrnsi)
  if (HAVE_cmpstrnsi)
  {
  {
    tree arg1 = TREE_VALUE (arglist);
    tree arg1 = TREE_VALUE (arglist);
    tree arg2 = TREE_VALUE (TREE_CHAIN (arglist));
    tree arg2 = TREE_VALUE (TREE_CHAIN (arglist));
    tree arg3 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
    tree arg3 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
    tree len, len1, len2;
    tree len, len1, len2;
    rtx arg1_rtx, arg2_rtx, arg3_rtx;
    rtx arg1_rtx, arg2_rtx, arg3_rtx;
    rtx result, insn;
    rtx result, insn;
    tree fndecl, fn;
    tree fndecl, fn;
 
 
    int arg1_align
    int arg1_align
      = get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
      = get_pointer_alignment (arg1, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
    int arg2_align
    int arg2_align
      = get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
      = get_pointer_alignment (arg2, BIGGEST_ALIGNMENT) / BITS_PER_UNIT;
    enum machine_mode insn_mode
    enum machine_mode insn_mode
      = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode;
      = insn_data[(int) CODE_FOR_cmpstrnsi].operand[0].mode;
 
 
    len1 = c_strlen (arg1, 1);
    len1 = c_strlen (arg1, 1);
    len2 = c_strlen (arg2, 1);
    len2 = c_strlen (arg2, 1);
 
 
    if (len1)
    if (len1)
      len1 = size_binop (PLUS_EXPR, ssize_int (1), len1);
      len1 = size_binop (PLUS_EXPR, ssize_int (1), len1);
    if (len2)
    if (len2)
      len2 = size_binop (PLUS_EXPR, ssize_int (1), len2);
      len2 = size_binop (PLUS_EXPR, ssize_int (1), len2);
 
 
    /* If we don't have a constant length for the first, use the length
    /* If we don't have a constant length for the first, use the length
       of the second, if we know it.  We don't require a constant for
       of the second, if we know it.  We don't require a constant for
       this case; some cost analysis could be done if both are available
       this case; some cost analysis could be done if both are available
       but neither is constant.  For now, assume they're equally cheap,
       but neither is constant.  For now, assume they're equally cheap,
       unless one has side effects.  If both strings have constant lengths,
       unless one has side effects.  If both strings have constant lengths,
       use the smaller.  */
       use the smaller.  */
 
 
    if (!len1)
    if (!len1)
      len = len2;
      len = len2;
    else if (!len2)
    else if (!len2)
      len = len1;
      len = len1;
    else if (TREE_SIDE_EFFECTS (len1))
    else if (TREE_SIDE_EFFECTS (len1))
      len = len2;
      len = len2;
    else if (TREE_SIDE_EFFECTS (len2))
    else if (TREE_SIDE_EFFECTS (len2))
      len = len1;
      len = len1;
    else if (TREE_CODE (len1) != INTEGER_CST)
    else if (TREE_CODE (len1) != INTEGER_CST)
      len = len2;
      len = len2;
    else if (TREE_CODE (len2) != INTEGER_CST)
    else if (TREE_CODE (len2) != INTEGER_CST)
      len = len1;
      len = len1;
    else if (tree_int_cst_lt (len1, len2))
    else if (tree_int_cst_lt (len1, len2))
      len = len1;
      len = len1;
    else
    else
      len = len2;
      len = len2;
 
 
    /* If both arguments have side effects, we cannot optimize.  */
    /* If both arguments have side effects, we cannot optimize.  */
    if (!len || TREE_SIDE_EFFECTS (len))
    if (!len || TREE_SIDE_EFFECTS (len))
      return 0;
      return 0;
 
 
    /* The actual new length parameter is MIN(len,arg3).  */
    /* The actual new length parameter is MIN(len,arg3).  */
    len = fold_build2 (MIN_EXPR, TREE_TYPE (len), len,
    len = fold_build2 (MIN_EXPR, TREE_TYPE (len), len,
                       fold_convert (TREE_TYPE (len), arg3));
                       fold_convert (TREE_TYPE (len), arg3));
 
 
    /* If we don't have POINTER_TYPE, call the function.  */
    /* If we don't have POINTER_TYPE, call the function.  */
    if (arg1_align == 0 || arg2_align == 0)
    if (arg1_align == 0 || arg2_align == 0)
      return 0;
      return 0;
 
 
    /* Make a place to write the result of the instruction.  */
    /* Make a place to write the result of the instruction.  */
    result = target;
    result = target;
    if (! (result != 0
    if (! (result != 0
           && REG_P (result) && GET_MODE (result) == insn_mode
           && REG_P (result) && GET_MODE (result) == insn_mode
           && REGNO (result) >= FIRST_PSEUDO_REGISTER))
           && REGNO (result) >= FIRST_PSEUDO_REGISTER))
      result = gen_reg_rtx (insn_mode);
      result = gen_reg_rtx (insn_mode);
 
 
    /* Stabilize the arguments in case gen_cmpstrnsi fails.  */
    /* Stabilize the arguments in case gen_cmpstrnsi fails.  */
    arg1 = builtin_save_expr (arg1);
    arg1 = builtin_save_expr (arg1);
    arg2 = builtin_save_expr (arg2);
    arg2 = builtin_save_expr (arg2);
    len = builtin_save_expr (len);
    len = builtin_save_expr (len);
 
 
    arg1_rtx = get_memory_rtx (arg1, len);
    arg1_rtx = get_memory_rtx (arg1, len);
    arg2_rtx = get_memory_rtx (arg2, len);
    arg2_rtx = get_memory_rtx (arg2, len);
    arg3_rtx = expand_normal (len);
    arg3_rtx = expand_normal (len);
    insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
    insn = gen_cmpstrnsi (result, arg1_rtx, arg2_rtx, arg3_rtx,
                          GEN_INT (MIN (arg1_align, arg2_align)));
                          GEN_INT (MIN (arg1_align, arg2_align)));
    if (insn)
    if (insn)
      {
      {
        emit_insn (insn);
        emit_insn (insn);
 
 
        /* Return the value in the proper mode for this function.  */
        /* Return the value in the proper mode for this function.  */
        mode = TYPE_MODE (TREE_TYPE (exp));
        mode = TYPE_MODE (TREE_TYPE (exp));
        if (GET_MODE (result) == mode)
        if (GET_MODE (result) == mode)
          return result;
          return result;
        if (target == 0)
        if (target == 0)
          return convert_to_mode (mode, result, 0);
          return convert_to_mode (mode, result, 0);
        convert_move (target, result, 0);
        convert_move (target, result, 0);
        return target;
        return target;
      }
      }
 
 
    /* Expand the library call ourselves using a stabilized argument
    /* Expand the library call ourselves using a stabilized argument
       list to avoid re-evaluating the function's arguments twice.  */
       list to avoid re-evaluating the function's arguments twice.  */
    arglist = build_tree_list (NULL_TREE, len);
    arglist = build_tree_list (NULL_TREE, len);
    arglist = tree_cons (NULL_TREE, arg2, arglist);
    arglist = tree_cons (NULL_TREE, arg2, arglist);
    arglist = tree_cons (NULL_TREE, arg1, arglist);
    arglist = tree_cons (NULL_TREE, arg1, arglist);
    fndecl = get_callee_fndecl (exp);
    fndecl = get_callee_fndecl (exp);
    fn = build_function_call_expr (fndecl, arglist);
    fn = build_function_call_expr (fndecl, arglist);
    if (TREE_CODE (fn) == CALL_EXPR)
    if (TREE_CODE (fn) == CALL_EXPR)
      CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
      CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
    return expand_call (fn, target, target == const0_rtx);
    return expand_call (fn, target, target == const0_rtx);
  }
  }
#endif
#endif
  return 0;
  return 0;
}
}
 
 
/* Expand expression EXP, which is a call to the strcat builtin.
/* Expand expression EXP, which is a call to the strcat builtin.
   Return 0 if we failed the caller should emit a normal call,
   Return 0 if we failed the caller should emit a normal call,
   otherwise try to get the result in TARGET, if convenient.  */
   otherwise try to get the result in TARGET, if convenient.  */
 
 
static rtx
static rtx
expand_builtin_strcat (tree fndecl, tree arglist, rtx target, enum machine_mode mode)
expand_builtin_strcat (tree fndecl, tree arglist, rtx target, enum machine_mode mode)
{
{
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree dst = TREE_VALUE (arglist),
      tree dst = TREE_VALUE (arglist),
      src = TREE_VALUE (TREE_CHAIN (arglist));
      src = TREE_VALUE (TREE_CHAIN (arglist));
      const char *p = c_getstr (src);
      const char *p = c_getstr (src);
 
 
      /* If the string length is zero, return the dst parameter.  */
      /* If the string length is zero, return the dst parameter.  */
      if (p && *p == '\0')
      if (p && *p == '\0')
        return expand_expr (dst, target, mode, EXPAND_NORMAL);
        return expand_expr (dst, target, mode, EXPAND_NORMAL);
 
 
      if (!optimize_size)
      if (!optimize_size)
        {
        {
          /* See if we can store by pieces into (dst + strlen(dst)).  */
          /* See if we can store by pieces into (dst + strlen(dst)).  */
          tree newsrc, newdst,
          tree newsrc, newdst,
            strlen_fn = implicit_built_in_decls[BUILT_IN_STRLEN];
            strlen_fn = implicit_built_in_decls[BUILT_IN_STRLEN];
          rtx insns;
          rtx insns;
 
 
          /* Stabilize the argument list.  */
          /* Stabilize the argument list.  */
          newsrc = builtin_save_expr (src);
          newsrc = builtin_save_expr (src);
          if (newsrc != src)
          if (newsrc != src)
            arglist = build_tree_list (NULL_TREE, newsrc);
            arglist = build_tree_list (NULL_TREE, newsrc);
          else
          else
            arglist = TREE_CHAIN (arglist); /* Reusing arglist if safe.  */
            arglist = TREE_CHAIN (arglist); /* Reusing arglist if safe.  */
 
 
          dst = builtin_save_expr (dst);
          dst = builtin_save_expr (dst);
 
 
          start_sequence ();
          start_sequence ();
 
 
          /* Create strlen (dst).  */
          /* Create strlen (dst).  */
          newdst =
          newdst =
            build_function_call_expr (strlen_fn,
            build_function_call_expr (strlen_fn,
                                      build_tree_list (NULL_TREE, dst));
                                      build_tree_list (NULL_TREE, dst));
          /* Create (dst + (cast) strlen (dst)).  */
          /* Create (dst + (cast) strlen (dst)).  */
          newdst = fold_convert (TREE_TYPE (dst), newdst);
          newdst = fold_convert (TREE_TYPE (dst), newdst);
          newdst = fold_build2 (PLUS_EXPR, TREE_TYPE (dst), dst, newdst);
          newdst = fold_build2 (PLUS_EXPR, TREE_TYPE (dst), dst, newdst);
 
 
          newdst = builtin_save_expr (newdst);
          newdst = builtin_save_expr (newdst);
          arglist = tree_cons (NULL_TREE, newdst, arglist);
          arglist = tree_cons (NULL_TREE, newdst, arglist);
 
 
          if (!expand_builtin_strcpy (fndecl, arglist, target, mode))
          if (!expand_builtin_strcpy (fndecl, arglist, target, mode))
            {
            {
              end_sequence (); /* Stop sequence.  */
              end_sequence (); /* Stop sequence.  */
              return 0;
              return 0;
            }
            }
 
 
          /* Output the entire sequence.  */
          /* Output the entire sequence.  */
          insns = get_insns ();
          insns = get_insns ();
          end_sequence ();
          end_sequence ();
          emit_insn (insns);
          emit_insn (insns);
 
 
          return expand_expr (dst, target, mode, EXPAND_NORMAL);
          return expand_expr (dst, target, mode, EXPAND_NORMAL);
        }
        }
 
 
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Expand expression EXP, which is a call to the strncat builtin.
/* Expand expression EXP, which is a call to the strncat builtin.
   Return 0 if we failed the caller should emit a normal call,
   Return 0 if we failed the caller should emit a normal call,
   otherwise try to get the result in TARGET, if convenient.  */
   otherwise try to get the result in TARGET, if convenient.  */
 
 
static rtx
static rtx
expand_builtin_strncat (tree arglist, rtx target, enum machine_mode mode)
expand_builtin_strncat (tree arglist, rtx target, enum machine_mode mode)
{
{
  if (validate_arglist (arglist,
  if (validate_arglist (arglist,
                        POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                        POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    {
    {
      tree result = fold_builtin_strncat (arglist);
      tree result = fold_builtin_strncat (arglist);
      if (result)
      if (result)
        return expand_expr (result, target, mode, EXPAND_NORMAL);
        return expand_expr (result, target, mode, EXPAND_NORMAL);
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Expand expression EXP, which is a call to the strspn builtin.
/* Expand expression EXP, which is a call to the strspn builtin.
   Return 0 if we failed the caller should emit a normal call,
   Return 0 if we failed the caller should emit a normal call,
   otherwise try to get the result in TARGET, if convenient.  */
   otherwise try to get the result in TARGET, if convenient.  */
 
 
static rtx
static rtx
expand_builtin_strspn (tree arglist, rtx target, enum machine_mode mode)
expand_builtin_strspn (tree arglist, rtx target, enum machine_mode mode)
{
{
  if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    {
    {
      tree result = fold_builtin_strspn (arglist);
      tree result = fold_builtin_strspn (arglist);
      if (result)
      if (result)
        return expand_expr (result, target, mode, EXPAND_NORMAL);
        return expand_expr (result, target, mode, EXPAND_NORMAL);
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Expand expression EXP, which is a call to the strcspn builtin.
/* Expand expression EXP, which is a call to the strcspn builtin.
   Return 0 if we failed the caller should emit a normal call,
   Return 0 if we failed the caller should emit a normal call,
   otherwise try to get the result in TARGET, if convenient.  */
   otherwise try to get the result in TARGET, if convenient.  */
 
 
static rtx
static rtx
expand_builtin_strcspn (tree arglist, rtx target, enum machine_mode mode)
expand_builtin_strcspn (tree arglist, rtx target, enum machine_mode mode)
{
{
  if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    {
    {
      tree result = fold_builtin_strcspn (arglist);
      tree result = fold_builtin_strcspn (arglist);
      if (result)
      if (result)
        return expand_expr (result, target, mode, EXPAND_NORMAL);
        return expand_expr (result, target, mode, EXPAND_NORMAL);
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Expand a call to __builtin_saveregs, generating the result in TARGET,
/* Expand a call to __builtin_saveregs, generating the result in TARGET,
   if that's convenient.  */
   if that's convenient.  */
 
 
rtx
rtx
expand_builtin_saveregs (void)
expand_builtin_saveregs (void)
{
{
  rtx val, seq;
  rtx val, seq;
 
 
  /* Don't do __builtin_saveregs more than once in a function.
  /* Don't do __builtin_saveregs more than once in a function.
     Save the result of the first call and reuse it.  */
     Save the result of the first call and reuse it.  */
  if (saveregs_value != 0)
  if (saveregs_value != 0)
    return saveregs_value;
    return saveregs_value;
 
 
  /* When this function is called, it means that registers must be
  /* When this function is called, it means that registers must be
     saved on entry to this function.  So we migrate the call to the
     saved on entry to this function.  So we migrate the call to the
     first insn of this function.  */
     first insn of this function.  */
 
 
  start_sequence ();
  start_sequence ();
 
 
  /* Do whatever the machine needs done in this case.  */
  /* Do whatever the machine needs done in this case.  */
  val = targetm.calls.expand_builtin_saveregs ();
  val = targetm.calls.expand_builtin_saveregs ();
 
 
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
 
 
  saveregs_value = val;
  saveregs_value = val;
 
 
  /* Put the insns after the NOTE that starts the function.  If this
  /* Put the insns after the NOTE that starts the function.  If this
     is inside a start_sequence, make the outer-level insn chain current, so
     is inside a start_sequence, make the outer-level insn chain current, so
     the code is placed at the start of the function.  */
     the code is placed at the start of the function.  */
  push_topmost_sequence ();
  push_topmost_sequence ();
  emit_insn_after (seq, entry_of_function ());
  emit_insn_after (seq, entry_of_function ());
  pop_topmost_sequence ();
  pop_topmost_sequence ();
 
 
  return val;
  return val;
}
}
 
 
/* __builtin_args_info (N) returns word N of the arg space info
/* __builtin_args_info (N) returns word N of the arg space info
   for the current function.  The number and meanings of words
   for the current function.  The number and meanings of words
   is controlled by the definition of CUMULATIVE_ARGS.  */
   is controlled by the definition of CUMULATIVE_ARGS.  */
 
 
static rtx
static rtx
expand_builtin_args_info (tree arglist)
expand_builtin_args_info (tree arglist)
{
{
  int nwords = sizeof (CUMULATIVE_ARGS) / sizeof (int);
  int nwords = sizeof (CUMULATIVE_ARGS) / sizeof (int);
  int *word_ptr = (int *) &current_function_args_info;
  int *word_ptr = (int *) &current_function_args_info;
 
 
  gcc_assert (sizeof (CUMULATIVE_ARGS) % sizeof (int) == 0);
  gcc_assert (sizeof (CUMULATIVE_ARGS) % sizeof (int) == 0);
 
 
  if (arglist != 0)
  if (arglist != 0)
    {
    {
      if (!host_integerp (TREE_VALUE (arglist), 0))
      if (!host_integerp (TREE_VALUE (arglist), 0))
        error ("argument of %<__builtin_args_info%> must be constant");
        error ("argument of %<__builtin_args_info%> must be constant");
      else
      else
        {
        {
          HOST_WIDE_INT wordnum = tree_low_cst (TREE_VALUE (arglist), 0);
          HOST_WIDE_INT wordnum = tree_low_cst (TREE_VALUE (arglist), 0);
 
 
          if (wordnum < 0 || wordnum >= nwords)
          if (wordnum < 0 || wordnum >= nwords)
            error ("argument of %<__builtin_args_info%> out of range");
            error ("argument of %<__builtin_args_info%> out of range");
          else
          else
            return GEN_INT (word_ptr[wordnum]);
            return GEN_INT (word_ptr[wordnum]);
        }
        }
    }
    }
  else
  else
    error ("missing argument in %<__builtin_args_info%>");
    error ("missing argument in %<__builtin_args_info%>");
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* Expand a call to __builtin_next_arg.  */
/* Expand a call to __builtin_next_arg.  */
 
 
static rtx
static rtx
expand_builtin_next_arg (void)
expand_builtin_next_arg (void)
{
{
  /* Checking arguments is already done in fold_builtin_next_arg
  /* Checking arguments is already done in fold_builtin_next_arg
     that must be called before this function.  */
     that must be called before this function.  */
  return expand_binop (Pmode, add_optab,
  return expand_binop (Pmode, add_optab,
                       current_function_internal_arg_pointer,
                       current_function_internal_arg_pointer,
                       current_function_arg_offset_rtx,
                       current_function_arg_offset_rtx,
                       NULL_RTX, 0, OPTAB_LIB_WIDEN);
                       NULL_RTX, 0, OPTAB_LIB_WIDEN);
}
}
 
 
/* Make it easier for the backends by protecting the valist argument
/* Make it easier for the backends by protecting the valist argument
   from multiple evaluations.  */
   from multiple evaluations.  */
 
 
static tree
static tree
stabilize_va_list (tree valist, int needs_lvalue)
stabilize_va_list (tree valist, int needs_lvalue)
{
{
  if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
  if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
    {
    {
      if (TREE_SIDE_EFFECTS (valist))
      if (TREE_SIDE_EFFECTS (valist))
        valist = save_expr (valist);
        valist = save_expr (valist);
 
 
      /* For this case, the backends will be expecting a pointer to
      /* For this case, the backends will be expecting a pointer to
         TREE_TYPE (va_list_type_node), but it's possible we've
         TREE_TYPE (va_list_type_node), but it's possible we've
         actually been given an array (an actual va_list_type_node).
         actually been given an array (an actual va_list_type_node).
         So fix it.  */
         So fix it.  */
      if (TREE_CODE (TREE_TYPE (valist)) == ARRAY_TYPE)
      if (TREE_CODE (TREE_TYPE (valist)) == ARRAY_TYPE)
        {
        {
          tree p1 = build_pointer_type (TREE_TYPE (va_list_type_node));
          tree p1 = build_pointer_type (TREE_TYPE (va_list_type_node));
          valist = build_fold_addr_expr_with_type (valist, p1);
          valist = build_fold_addr_expr_with_type (valist, p1);
        }
        }
    }
    }
  else
  else
    {
    {
      tree pt;
      tree pt;
 
 
      if (! needs_lvalue)
      if (! needs_lvalue)
        {
        {
          if (! TREE_SIDE_EFFECTS (valist))
          if (! TREE_SIDE_EFFECTS (valist))
            return valist;
            return valist;
 
 
          pt = build_pointer_type (va_list_type_node);
          pt = build_pointer_type (va_list_type_node);
          valist = fold_build1 (ADDR_EXPR, pt, valist);
          valist = fold_build1 (ADDR_EXPR, pt, valist);
          TREE_SIDE_EFFECTS (valist) = 1;
          TREE_SIDE_EFFECTS (valist) = 1;
        }
        }
 
 
      if (TREE_SIDE_EFFECTS (valist))
      if (TREE_SIDE_EFFECTS (valist))
        valist = save_expr (valist);
        valist = save_expr (valist);
      valist = build_fold_indirect_ref (valist);
      valist = build_fold_indirect_ref (valist);
    }
    }
 
 
  return valist;
  return valist;
}
}
 
 
/* The "standard" definition of va_list is void*.  */
/* The "standard" definition of va_list is void*.  */
 
 
tree
tree
std_build_builtin_va_list (void)
std_build_builtin_va_list (void)
{
{
  return ptr_type_node;
  return ptr_type_node;
}
}
 
 
/* The "standard" implementation of va_start: just assign `nextarg' to
/* The "standard" implementation of va_start: just assign `nextarg' to
   the variable.  */
   the variable.  */
 
 
void
void
std_expand_builtin_va_start (tree valist, rtx nextarg)
std_expand_builtin_va_start (tree valist, rtx nextarg)
{
{
  tree t;
  tree t;
 
 
  t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist,
  t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist,
              make_tree (ptr_type_node, nextarg));
              make_tree (ptr_type_node, nextarg));
  TREE_SIDE_EFFECTS (t) = 1;
  TREE_SIDE_EFFECTS (t) = 1;
 
 
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
}
 
 
/* Expand ARGLIST, from a call to __builtin_va_start.  */
/* Expand ARGLIST, from a call to __builtin_va_start.  */
 
 
static rtx
static rtx
expand_builtin_va_start (tree arglist)
expand_builtin_va_start (tree arglist)
{
{
  rtx nextarg;
  rtx nextarg;
  tree chain, valist;
  tree chain, valist;
 
 
  chain = TREE_CHAIN (arglist);
  chain = TREE_CHAIN (arglist);
 
 
  if (!chain)
  if (!chain)
    {
    {
      error ("too few arguments to function %<va_start%>");
      error ("too few arguments to function %<va_start%>");
      return const0_rtx;
      return const0_rtx;
    }
    }
 
 
  if (fold_builtin_next_arg (chain))
  if (fold_builtin_next_arg (chain))
    return const0_rtx;
    return const0_rtx;
 
 
  nextarg = expand_builtin_next_arg ();
  nextarg = expand_builtin_next_arg ();
  valist = stabilize_va_list (TREE_VALUE (arglist), 1);
  valist = stabilize_va_list (TREE_VALUE (arglist), 1);
 
 
#ifdef EXPAND_BUILTIN_VA_START
#ifdef EXPAND_BUILTIN_VA_START
  EXPAND_BUILTIN_VA_START (valist, nextarg);
  EXPAND_BUILTIN_VA_START (valist, nextarg);
#else
#else
  std_expand_builtin_va_start (valist, nextarg);
  std_expand_builtin_va_start (valist, nextarg);
#endif
#endif
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* The "standard" implementation of va_arg: read the value from the
/* The "standard" implementation of va_arg: read the value from the
   current (padded) address and increment by the (padded) size.  */
   current (padded) address and increment by the (padded) size.  */
 
 
tree
tree
std_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p, tree *post_p)
std_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p, tree *post_p)
{
{
  tree addr, t, type_size, rounded_size, valist_tmp;
  tree addr, t, type_size, rounded_size, valist_tmp;
  unsigned HOST_WIDE_INT align, boundary;
  unsigned HOST_WIDE_INT align, boundary;
  bool indirect;
  bool indirect;
 
 
#ifdef ARGS_GROW_DOWNWARD
#ifdef ARGS_GROW_DOWNWARD
  /* All of the alignment and movement below is for args-grow-up machines.
  /* All of the alignment and movement below is for args-grow-up machines.
     As of 2004, there are only 3 ARGS_GROW_DOWNWARD targets, and they all
     As of 2004, there are only 3 ARGS_GROW_DOWNWARD targets, and they all
     implement their own specialized gimplify_va_arg_expr routines.  */
     implement their own specialized gimplify_va_arg_expr routines.  */
  gcc_unreachable ();
  gcc_unreachable ();
#endif
#endif
 
 
  indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
  indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
  if (indirect)
  if (indirect)
    type = build_pointer_type (type);
    type = build_pointer_type (type);
 
 
  align = PARM_BOUNDARY / BITS_PER_UNIT;
  align = PARM_BOUNDARY / BITS_PER_UNIT;
  boundary = FUNCTION_ARG_BOUNDARY (TYPE_MODE (type), type) / BITS_PER_UNIT;
  boundary = FUNCTION_ARG_BOUNDARY (TYPE_MODE (type), type) / BITS_PER_UNIT;
 
 
  /* Hoist the valist value into a temporary for the moment.  */
  /* Hoist the valist value into a temporary for the moment.  */
  valist_tmp = get_initialized_tmp_var (valist, pre_p, NULL);
  valist_tmp = get_initialized_tmp_var (valist, pre_p, NULL);
 
 
  /* va_list pointer is aligned to PARM_BOUNDARY.  If argument actually
  /* va_list pointer is aligned to PARM_BOUNDARY.  If argument actually
     requires greater alignment, we must perform dynamic alignment.  */
     requires greater alignment, we must perform dynamic alignment.  */
  if (boundary > align
  if (boundary > align
      && !integer_zerop (TYPE_SIZE (type)))
      && !integer_zerop (TYPE_SIZE (type)))
    {
    {
      t = fold_convert (TREE_TYPE (valist), size_int (boundary - 1));
      t = fold_convert (TREE_TYPE (valist), size_int (boundary - 1));
      t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
      t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
                  build2 (PLUS_EXPR, TREE_TYPE (valist), valist_tmp, t));
                  build2 (PLUS_EXPR, TREE_TYPE (valist), valist_tmp, t));
      gimplify_and_add (t, pre_p);
      gimplify_and_add (t, pre_p);
 
 
      t = fold_convert (TREE_TYPE (valist), size_int (-boundary));
      t = fold_convert (TREE_TYPE (valist), size_int (-boundary));
      t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
      t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist_tmp,
                  build2 (BIT_AND_EXPR, TREE_TYPE (valist), valist_tmp, t));
                  build2 (BIT_AND_EXPR, TREE_TYPE (valist), valist_tmp, t));
      gimplify_and_add (t, pre_p);
      gimplify_and_add (t, pre_p);
    }
    }
  else
  else
    boundary = align;
    boundary = align;
 
 
  /* If the actual alignment is less than the alignment of the type,
  /* If the actual alignment is less than the alignment of the type,
     adjust the type accordingly so that we don't assume strict alignment
     adjust the type accordingly so that we don't assume strict alignment
     when deferencing the pointer.  */
     when deferencing the pointer.  */
  boundary *= BITS_PER_UNIT;
  boundary *= BITS_PER_UNIT;
  if (boundary < TYPE_ALIGN (type))
  if (boundary < TYPE_ALIGN (type))
    {
    {
      type = build_variant_type_copy (type);
      type = build_variant_type_copy (type);
      TYPE_ALIGN (type) = boundary;
      TYPE_ALIGN (type) = boundary;
    }
    }
 
 
  /* Compute the rounded size of the type.  */
  /* Compute the rounded size of the type.  */
  type_size = size_in_bytes (type);
  type_size = size_in_bytes (type);
  rounded_size = round_up (type_size, align);
  rounded_size = round_up (type_size, align);
 
 
  /* Reduce rounded_size so it's sharable with the postqueue.  */
  /* Reduce rounded_size so it's sharable with the postqueue.  */
  gimplify_expr (&rounded_size, pre_p, post_p, is_gimple_val, fb_rvalue);
  gimplify_expr (&rounded_size, pre_p, post_p, is_gimple_val, fb_rvalue);
 
 
  /* Get AP.  */
  /* Get AP.  */
  addr = valist_tmp;
  addr = valist_tmp;
  if (PAD_VARARGS_DOWN && !integer_zerop (rounded_size))
  if (PAD_VARARGS_DOWN && !integer_zerop (rounded_size))
    {
    {
      /* Small args are padded downward.  */
      /* Small args are padded downward.  */
      t = fold_build2 (GT_EXPR, sizetype, rounded_size, size_int (align));
      t = fold_build2 (GT_EXPR, sizetype, rounded_size, size_int (align));
      t = fold_build3 (COND_EXPR, sizetype, t, size_zero_node,
      t = fold_build3 (COND_EXPR, sizetype, t, size_zero_node,
                       size_binop (MINUS_EXPR, rounded_size, type_size));
                       size_binop (MINUS_EXPR, rounded_size, type_size));
      t = fold_convert (TREE_TYPE (addr), t);
      t = fold_convert (TREE_TYPE (addr), t);
      addr = fold_build2 (PLUS_EXPR, TREE_TYPE (addr), addr, t);
      addr = fold_build2 (PLUS_EXPR, TREE_TYPE (addr), addr, t);
    }
    }
 
 
  /* Compute new value for AP.  */
  /* Compute new value for AP.  */
  t = fold_convert (TREE_TYPE (valist), rounded_size);
  t = fold_convert (TREE_TYPE (valist), rounded_size);
  t = build2 (PLUS_EXPR, TREE_TYPE (valist), valist_tmp, t);
  t = build2 (PLUS_EXPR, TREE_TYPE (valist), valist_tmp, t);
  t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
  t = build2 (MODIFY_EXPR, TREE_TYPE (valist), valist, t);
  gimplify_and_add (t, pre_p);
  gimplify_and_add (t, pre_p);
 
 
  addr = fold_convert (build_pointer_type (type), addr);
  addr = fold_convert (build_pointer_type (type), addr);
 
 
  if (indirect)
  if (indirect)
    addr = build_va_arg_indirect_ref (addr);
    addr = build_va_arg_indirect_ref (addr);
 
 
  return build_va_arg_indirect_ref (addr);
  return build_va_arg_indirect_ref (addr);
}
}
 
 
/* Build an indirect-ref expression over the given TREE, which represents a
/* Build an indirect-ref expression over the given TREE, which represents a
   piece of a va_arg() expansion.  */
   piece of a va_arg() expansion.  */
tree
tree
build_va_arg_indirect_ref (tree addr)
build_va_arg_indirect_ref (tree addr)
{
{
  addr = build_fold_indirect_ref (addr);
  addr = build_fold_indirect_ref (addr);
 
 
  if (flag_mudflap) /* Don't instrument va_arg INDIRECT_REF.  */
  if (flag_mudflap) /* Don't instrument va_arg INDIRECT_REF.  */
    mf_mark (addr);
    mf_mark (addr);
 
 
  return addr;
  return addr;
}
}
 
 
/* Return a dummy expression of type TYPE in order to keep going after an
/* Return a dummy expression of type TYPE in order to keep going after an
   error.  */
   error.  */
 
 
static tree
static tree
dummy_object (tree type)
dummy_object (tree type)
{
{
  tree t = build_int_cst (build_pointer_type (type), 0);
  tree t = build_int_cst (build_pointer_type (type), 0);
  return build1 (INDIRECT_REF, type, t);
  return build1 (INDIRECT_REF, type, t);
}
}
 
 
/* Gimplify __builtin_va_arg, aka VA_ARG_EXPR, which is not really a
/* Gimplify __builtin_va_arg, aka VA_ARG_EXPR, which is not really a
   builtin function, but a very special sort of operator.  */
   builtin function, but a very special sort of operator.  */
 
 
enum gimplify_status
enum gimplify_status
gimplify_va_arg_expr (tree *expr_p, tree *pre_p, tree *post_p)
gimplify_va_arg_expr (tree *expr_p, tree *pre_p, tree *post_p)
{
{
  tree promoted_type, want_va_type, have_va_type;
  tree promoted_type, want_va_type, have_va_type;
  tree valist = TREE_OPERAND (*expr_p, 0);
  tree valist = TREE_OPERAND (*expr_p, 0);
  tree type = TREE_TYPE (*expr_p);
  tree type = TREE_TYPE (*expr_p);
  tree t;
  tree t;
 
 
  /* Verify that valist is of the proper type.  */
  /* Verify that valist is of the proper type.  */
  want_va_type = va_list_type_node;
  want_va_type = va_list_type_node;
  have_va_type = TREE_TYPE (valist);
  have_va_type = TREE_TYPE (valist);
 
 
  if (have_va_type == error_mark_node)
  if (have_va_type == error_mark_node)
    return GS_ERROR;
    return GS_ERROR;
 
 
  if (TREE_CODE (want_va_type) == ARRAY_TYPE)
  if (TREE_CODE (want_va_type) == ARRAY_TYPE)
    {
    {
      /* If va_list is an array type, the argument may have decayed
      /* If va_list is an array type, the argument may have decayed
         to a pointer type, e.g. by being passed to another function.
         to a pointer type, e.g. by being passed to another function.
         In that case, unwrap both types so that we can compare the
         In that case, unwrap both types so that we can compare the
         underlying records.  */
         underlying records.  */
      if (TREE_CODE (have_va_type) == ARRAY_TYPE
      if (TREE_CODE (have_va_type) == ARRAY_TYPE
          || POINTER_TYPE_P (have_va_type))
          || POINTER_TYPE_P (have_va_type))
        {
        {
          want_va_type = TREE_TYPE (want_va_type);
          want_va_type = TREE_TYPE (want_va_type);
          have_va_type = TREE_TYPE (have_va_type);
          have_va_type = TREE_TYPE (have_va_type);
        }
        }
    }
    }
 
 
  if (TYPE_MAIN_VARIANT (want_va_type) != TYPE_MAIN_VARIANT (have_va_type))
  if (TYPE_MAIN_VARIANT (want_va_type) != TYPE_MAIN_VARIANT (have_va_type))
    {
    {
      error ("first argument to %<va_arg%> not of type %<va_list%>");
      error ("first argument to %<va_arg%> not of type %<va_list%>");
      return GS_ERROR;
      return GS_ERROR;
    }
    }
 
 
  /* Generate a diagnostic for requesting data of a type that cannot
  /* Generate a diagnostic for requesting data of a type that cannot
     be passed through `...' due to type promotion at the call site.  */
     be passed through `...' due to type promotion at the call site.  */
  else if ((promoted_type = lang_hooks.types.type_promotes_to (type))
  else if ((promoted_type = lang_hooks.types.type_promotes_to (type))
           != type)
           != type)
    {
    {
      static bool gave_help;
      static bool gave_help;
 
 
      /* Unfortunately, this is merely undefined, rather than a constraint
      /* Unfortunately, this is merely undefined, rather than a constraint
         violation, so we cannot make this an error.  If this call is never
         violation, so we cannot make this an error.  If this call is never
         executed, the program is still strictly conforming.  */
         executed, the program is still strictly conforming.  */
      warning (0, "%qT is promoted to %qT when passed through %<...%>",
      warning (0, "%qT is promoted to %qT when passed through %<...%>",
               type, promoted_type);
               type, promoted_type);
      if (! gave_help)
      if (! gave_help)
        {
        {
          gave_help = true;
          gave_help = true;
          warning (0, "(so you should pass %qT not %qT to %<va_arg%>)",
          warning (0, "(so you should pass %qT not %qT to %<va_arg%>)",
                   promoted_type, type);
                   promoted_type, type);
        }
        }
 
 
      /* We can, however, treat "undefined" any way we please.
      /* We can, however, treat "undefined" any way we please.
         Call abort to encourage the user to fix the program.  */
         Call abort to encourage the user to fix the program.  */
      inform ("if this code is reached, the program will abort");
      inform ("if this code is reached, the program will abort");
      t = build_function_call_expr (implicit_built_in_decls[BUILT_IN_TRAP],
      t = build_function_call_expr (implicit_built_in_decls[BUILT_IN_TRAP],
                                    NULL);
                                    NULL);
      append_to_statement_list (t, pre_p);
      append_to_statement_list (t, pre_p);
 
 
      /* This is dead code, but go ahead and finish so that the
      /* This is dead code, but go ahead and finish so that the
         mode of the result comes out right.  */
         mode of the result comes out right.  */
      *expr_p = dummy_object (type);
      *expr_p = dummy_object (type);
      return GS_ALL_DONE;
      return GS_ALL_DONE;
    }
    }
  else
  else
    {
    {
      /* Make it easier for the backends by protecting the valist argument
      /* Make it easier for the backends by protecting the valist argument
         from multiple evaluations.  */
         from multiple evaluations.  */
      if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
      if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
        {
        {
          /* For this case, the backends will be expecting a pointer to
          /* For this case, the backends will be expecting a pointer to
             TREE_TYPE (va_list_type_node), but it's possible we've
             TREE_TYPE (va_list_type_node), but it's possible we've
             actually been given an array (an actual va_list_type_node).
             actually been given an array (an actual va_list_type_node).
             So fix it.  */
             So fix it.  */
          if (TREE_CODE (TREE_TYPE (valist)) == ARRAY_TYPE)
          if (TREE_CODE (TREE_TYPE (valist)) == ARRAY_TYPE)
            {
            {
              tree p1 = build_pointer_type (TREE_TYPE (va_list_type_node));
              tree p1 = build_pointer_type (TREE_TYPE (va_list_type_node));
              valist = build_fold_addr_expr_with_type (valist, p1);
              valist = build_fold_addr_expr_with_type (valist, p1);
            }
            }
          gimplify_expr (&valist, pre_p, post_p, is_gimple_val, fb_rvalue);
          gimplify_expr (&valist, pre_p, post_p, is_gimple_val, fb_rvalue);
        }
        }
      else
      else
        gimplify_expr (&valist, pre_p, post_p, is_gimple_min_lval, fb_lvalue);
        gimplify_expr (&valist, pre_p, post_p, is_gimple_min_lval, fb_lvalue);
 
 
      if (!targetm.gimplify_va_arg_expr)
      if (!targetm.gimplify_va_arg_expr)
        /* FIXME:Once most targets are converted we should merely
        /* FIXME:Once most targets are converted we should merely
           assert this is non-null.  */
           assert this is non-null.  */
        return GS_ALL_DONE;
        return GS_ALL_DONE;
 
 
      *expr_p = targetm.gimplify_va_arg_expr (valist, type, pre_p, post_p);
      *expr_p = targetm.gimplify_va_arg_expr (valist, type, pre_p, post_p);
      return GS_OK;
      return GS_OK;
    }
    }
}
}
 
 
/* Expand ARGLIST, from a call to __builtin_va_end.  */
/* Expand ARGLIST, from a call to __builtin_va_end.  */
 
 
static rtx
static rtx
expand_builtin_va_end (tree arglist)
expand_builtin_va_end (tree arglist)
{
{
  tree valist = TREE_VALUE (arglist);
  tree valist = TREE_VALUE (arglist);
 
 
  /* Evaluate for side effects, if needed.  I hate macros that don't
  /* Evaluate for side effects, if needed.  I hate macros that don't
     do that.  */
     do that.  */
  if (TREE_SIDE_EFFECTS (valist))
  if (TREE_SIDE_EFFECTS (valist))
    expand_expr (valist, const0_rtx, VOIDmode, EXPAND_NORMAL);
    expand_expr (valist, const0_rtx, VOIDmode, EXPAND_NORMAL);
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* Expand ARGLIST, from a call to __builtin_va_copy.  We do this as a
/* Expand ARGLIST, from a call to __builtin_va_copy.  We do this as a
   builtin rather than just as an assignment in stdarg.h because of the
   builtin rather than just as an assignment in stdarg.h because of the
   nastiness of array-type va_list types.  */
   nastiness of array-type va_list types.  */
 
 
static rtx
static rtx
expand_builtin_va_copy (tree arglist)
expand_builtin_va_copy (tree arglist)
{
{
  tree dst, src, t;
  tree dst, src, t;
 
 
  dst = TREE_VALUE (arglist);
  dst = TREE_VALUE (arglist);
  src = TREE_VALUE (TREE_CHAIN (arglist));
  src = TREE_VALUE (TREE_CHAIN (arglist));
 
 
  dst = stabilize_va_list (dst, 1);
  dst = stabilize_va_list (dst, 1);
  src = stabilize_va_list (src, 0);
  src = stabilize_va_list (src, 0);
 
 
  if (TREE_CODE (va_list_type_node) != ARRAY_TYPE)
  if (TREE_CODE (va_list_type_node) != ARRAY_TYPE)
    {
    {
      t = build2 (MODIFY_EXPR, va_list_type_node, dst, src);
      t = build2 (MODIFY_EXPR, va_list_type_node, dst, src);
      TREE_SIDE_EFFECTS (t) = 1;
      TREE_SIDE_EFFECTS (t) = 1;
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
      expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
    }
    }
  else
  else
    {
    {
      rtx dstb, srcb, size;
      rtx dstb, srcb, size;
 
 
      /* Evaluate to pointers.  */
      /* Evaluate to pointers.  */
      dstb = expand_expr (dst, NULL_RTX, Pmode, EXPAND_NORMAL);
      dstb = expand_expr (dst, NULL_RTX, Pmode, EXPAND_NORMAL);
      srcb = expand_expr (src, NULL_RTX, Pmode, EXPAND_NORMAL);
      srcb = expand_expr (src, NULL_RTX, Pmode, EXPAND_NORMAL);
      size = expand_expr (TYPE_SIZE_UNIT (va_list_type_node), NULL_RTX,
      size = expand_expr (TYPE_SIZE_UNIT (va_list_type_node), NULL_RTX,
                          VOIDmode, EXPAND_NORMAL);
                          VOIDmode, EXPAND_NORMAL);
 
 
      dstb = convert_memory_address (Pmode, dstb);
      dstb = convert_memory_address (Pmode, dstb);
      srcb = convert_memory_address (Pmode, srcb);
      srcb = convert_memory_address (Pmode, srcb);
 
 
      /* "Dereference" to BLKmode memories.  */
      /* "Dereference" to BLKmode memories.  */
      dstb = gen_rtx_MEM (BLKmode, dstb);
      dstb = gen_rtx_MEM (BLKmode, dstb);
      set_mem_alias_set (dstb, get_alias_set (TREE_TYPE (TREE_TYPE (dst))));
      set_mem_alias_set (dstb, get_alias_set (TREE_TYPE (TREE_TYPE (dst))));
      set_mem_align (dstb, TYPE_ALIGN (va_list_type_node));
      set_mem_align (dstb, TYPE_ALIGN (va_list_type_node));
      srcb = gen_rtx_MEM (BLKmode, srcb);
      srcb = gen_rtx_MEM (BLKmode, srcb);
      set_mem_alias_set (srcb, get_alias_set (TREE_TYPE (TREE_TYPE (src))));
      set_mem_alias_set (srcb, get_alias_set (TREE_TYPE (TREE_TYPE (src))));
      set_mem_align (srcb, TYPE_ALIGN (va_list_type_node));
      set_mem_align (srcb, TYPE_ALIGN (va_list_type_node));
 
 
      /* Copy.  */
      /* Copy.  */
      emit_block_move (dstb, srcb, size, BLOCK_OP_NORMAL);
      emit_block_move (dstb, srcb, size, BLOCK_OP_NORMAL);
    }
    }
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* Expand a call to one of the builtin functions __builtin_frame_address or
/* Expand a call to one of the builtin functions __builtin_frame_address or
   __builtin_return_address.  */
   __builtin_return_address.  */
 
 
static rtx
static rtx
expand_builtin_frame_address (tree fndecl, tree arglist)
expand_builtin_frame_address (tree fndecl, tree arglist)
{
{
  /* The argument must be a nonnegative integer constant.
  /* The argument must be a nonnegative integer constant.
     It counts the number of frames to scan up the stack.
     It counts the number of frames to scan up the stack.
     The value is the return address saved in that frame.  */
     The value is the return address saved in that frame.  */
  if (arglist == 0)
  if (arglist == 0)
    /* Warning about missing arg was already issued.  */
    /* Warning about missing arg was already issued.  */
    return const0_rtx;
    return const0_rtx;
  else if (! host_integerp (TREE_VALUE (arglist), 1))
  else if (! host_integerp (TREE_VALUE (arglist), 1))
    {
    {
      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
        error ("invalid argument to %<__builtin_frame_address%>");
        error ("invalid argument to %<__builtin_frame_address%>");
      else
      else
        error ("invalid argument to %<__builtin_return_address%>");
        error ("invalid argument to %<__builtin_return_address%>");
      return const0_rtx;
      return const0_rtx;
    }
    }
  else
  else
    {
    {
      rtx tem
      rtx tem
        = expand_builtin_return_addr (DECL_FUNCTION_CODE (fndecl),
        = expand_builtin_return_addr (DECL_FUNCTION_CODE (fndecl),
                                      tree_low_cst (TREE_VALUE (arglist), 1));
                                      tree_low_cst (TREE_VALUE (arglist), 1));
 
 
      /* Some ports cannot access arbitrary stack frames.  */
      /* Some ports cannot access arbitrary stack frames.  */
      if (tem == NULL)
      if (tem == NULL)
        {
        {
          if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
          if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
            warning (0, "unsupported argument to %<__builtin_frame_address%>");
            warning (0, "unsupported argument to %<__builtin_frame_address%>");
          else
          else
            warning (0, "unsupported argument to %<__builtin_return_address%>");
            warning (0, "unsupported argument to %<__builtin_return_address%>");
          return const0_rtx;
          return const0_rtx;
        }
        }
 
 
      /* For __builtin_frame_address, return what we've got.  */
      /* For __builtin_frame_address, return what we've got.  */
      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
      if (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FRAME_ADDRESS)
        return tem;
        return tem;
 
 
      if (!REG_P (tem)
      if (!REG_P (tem)
          && ! CONSTANT_P (tem))
          && ! CONSTANT_P (tem))
        tem = copy_to_mode_reg (Pmode, tem);
        tem = copy_to_mode_reg (Pmode, tem);
      return tem;
      return tem;
    }
    }
}
}
 
 
/* Expand a call to the alloca builtin, with arguments ARGLIST.  Return 0 if
/* Expand a call to the alloca builtin, with arguments ARGLIST.  Return 0 if
   we failed and the caller should emit a normal call, otherwise try to get
   we failed and the caller should emit a normal call, otherwise try to get
   the result in TARGET, if convenient.  */
   the result in TARGET, if convenient.  */
 
 
static rtx
static rtx
expand_builtin_alloca (tree arglist, rtx target)
expand_builtin_alloca (tree arglist, rtx target)
{
{
  rtx op0;
  rtx op0;
  rtx result;
  rtx result;
 
 
  /* In -fmudflap-instrumented code, alloca() and __builtin_alloca()
  /* In -fmudflap-instrumented code, alloca() and __builtin_alloca()
     should always expand to function calls.  These can be intercepted
     should always expand to function calls.  These can be intercepted
     in libmudflap.  */
     in libmudflap.  */
  if (flag_mudflap)
  if (flag_mudflap)
    return 0;
    return 0;
 
 
  if (!validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  /* Compute the argument.  */
  /* Compute the argument.  */
  op0 = expand_normal (TREE_VALUE (arglist));
  op0 = expand_normal (TREE_VALUE (arglist));
 
 
  /* Allocate the desired space.  */
  /* Allocate the desired space.  */
  result = allocate_dynamic_stack_space (op0, target, BITS_PER_UNIT);
  result = allocate_dynamic_stack_space (op0, target, BITS_PER_UNIT);
  result = convert_memory_address (ptr_mode, result);
  result = convert_memory_address (ptr_mode, result);
 
 
  return result;
  return result;
}
}
 
 
/* Expand a call to a unary builtin.  The arguments are in ARGLIST.
/* Expand a call to a unary builtin.  The arguments are in ARGLIST.
   Return 0 if a normal call should be emitted rather than expanding the
   Return 0 if a normal call should be emitted rather than expanding the
   function in-line.  If convenient, the result should be placed in TARGET.
   function in-line.  If convenient, the result should be placed in TARGET.
   SUBTARGET may be used as the target for computing one of EXP's operands.  */
   SUBTARGET may be used as the target for computing one of EXP's operands.  */
 
 
static rtx
static rtx
expand_builtin_unop (enum machine_mode target_mode, tree arglist, rtx target,
expand_builtin_unop (enum machine_mode target_mode, tree arglist, rtx target,
                     rtx subtarget, optab op_optab)
                     rtx subtarget, optab op_optab)
{
{
  rtx op0;
  rtx op0;
  if (!validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  /* Compute the argument.  */
  /* Compute the argument.  */
  op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0);
  op0 = expand_expr (TREE_VALUE (arglist), subtarget, VOIDmode, 0);
  /* Compute op, into TARGET if possible.
  /* Compute op, into TARGET if possible.
     Set TARGET to wherever the result comes back.  */
     Set TARGET to wherever the result comes back.  */
  target = expand_unop (TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist))),
  target = expand_unop (TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist))),
                        op_optab, op0, target, 1);
                        op_optab, op0, target, 1);
  gcc_assert (target);
  gcc_assert (target);
 
 
  return convert_to_mode (target_mode, target, 0);
  return convert_to_mode (target_mode, target, 0);
}
}
 
 
/* If the string passed to fputs is a constant and is one character
/* If the string passed to fputs is a constant and is one character
   long, we attempt to transform this call into __builtin_fputc().  */
   long, we attempt to transform this call into __builtin_fputc().  */
 
 
static rtx
static rtx
expand_builtin_fputs (tree arglist, rtx target, bool unlocked)
expand_builtin_fputs (tree arglist, rtx target, bool unlocked)
{
{
  /* Verify the arguments in the original call.  */
  /* Verify the arguments in the original call.  */
  if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    {
    {
      tree result = fold_builtin_fputs (arglist, (target == const0_rtx),
      tree result = fold_builtin_fputs (arglist, (target == const0_rtx),
                                        unlocked, NULL_TREE);
                                        unlocked, NULL_TREE);
      if (result)
      if (result)
        return expand_expr (result, target, VOIDmode, EXPAND_NORMAL);
        return expand_expr (result, target, VOIDmode, EXPAND_NORMAL);
    }
    }
  return 0;
  return 0;
}
}
 
 
/* Expand a call to __builtin_expect.  We return our argument and emit a
/* Expand a call to __builtin_expect.  We return our argument and emit a
   NOTE_INSN_EXPECTED_VALUE note.  This is the expansion of __builtin_expect in
   NOTE_INSN_EXPECTED_VALUE note.  This is the expansion of __builtin_expect in
   a non-jump context.  */
   a non-jump context.  */
 
 
static rtx
static rtx
expand_builtin_expect (tree arglist, rtx target)
expand_builtin_expect (tree arglist, rtx target)
{
{
  tree exp, c;
  tree exp, c;
  rtx note, rtx_c;
  rtx note, rtx_c;
 
 
  if (arglist == NULL_TREE
  if (arglist == NULL_TREE
      || TREE_CHAIN (arglist) == NULL_TREE)
      || TREE_CHAIN (arglist) == NULL_TREE)
    return const0_rtx;
    return const0_rtx;
  exp = TREE_VALUE (arglist);
  exp = TREE_VALUE (arglist);
  c = TREE_VALUE (TREE_CHAIN (arglist));
  c = TREE_VALUE (TREE_CHAIN (arglist));
 
 
  if (TREE_CODE (c) != INTEGER_CST)
  if (TREE_CODE (c) != INTEGER_CST)
    {
    {
      error ("second argument to %<__builtin_expect%> must be a constant");
      error ("second argument to %<__builtin_expect%> must be a constant");
      c = integer_zero_node;
      c = integer_zero_node;
    }
    }
 
 
  target = expand_expr (exp, target, VOIDmode, EXPAND_NORMAL);
  target = expand_expr (exp, target, VOIDmode, EXPAND_NORMAL);
 
 
  /* Don't bother with expected value notes for integral constants.  */
  /* Don't bother with expected value notes for integral constants.  */
  if (flag_guess_branch_prob && GET_CODE (target) != CONST_INT)
  if (flag_guess_branch_prob && GET_CODE (target) != CONST_INT)
    {
    {
      /* We do need to force this into a register so that we can be
      /* We do need to force this into a register so that we can be
         moderately sure to be able to correctly interpret the branch
         moderately sure to be able to correctly interpret the branch
         condition later.  */
         condition later.  */
      target = force_reg (GET_MODE (target), target);
      target = force_reg (GET_MODE (target), target);
 
 
      rtx_c = expand_expr (c, NULL_RTX, GET_MODE (target), EXPAND_NORMAL);
      rtx_c = expand_expr (c, NULL_RTX, GET_MODE (target), EXPAND_NORMAL);
 
 
      note = emit_note (NOTE_INSN_EXPECTED_VALUE);
      note = emit_note (NOTE_INSN_EXPECTED_VALUE);
      NOTE_EXPECTED_VALUE (note) = gen_rtx_EQ (VOIDmode, target, rtx_c);
      NOTE_EXPECTED_VALUE (note) = gen_rtx_EQ (VOIDmode, target, rtx_c);
    }
    }
 
 
  return target;
  return target;
}
}
 
 
/* Like expand_builtin_expect, except do this in a jump context.  This is
/* Like expand_builtin_expect, except do this in a jump context.  This is
   called from do_jump if the conditional is a __builtin_expect.  Return either
   called from do_jump if the conditional is a __builtin_expect.  Return either
   a list of insns to emit the jump or NULL if we cannot optimize
   a list of insns to emit the jump or NULL if we cannot optimize
   __builtin_expect.  We need to optimize this at jump time so that machines
   __builtin_expect.  We need to optimize this at jump time so that machines
   like the PowerPC don't turn the test into a SCC operation, and then jump
   like the PowerPC don't turn the test into a SCC operation, and then jump
   based on the test being 0/1.  */
   based on the test being 0/1.  */
 
 
rtx
rtx
expand_builtin_expect_jump (tree exp, rtx if_false_label, rtx if_true_label)
expand_builtin_expect_jump (tree exp, rtx if_false_label, rtx if_true_label)
{
{
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arg0 = TREE_VALUE (arglist);
  tree arg0 = TREE_VALUE (arglist);
  tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
  tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
  rtx ret = NULL_RTX;
  rtx ret = NULL_RTX;
 
 
  /* Only handle __builtin_expect (test, 0) and
  /* Only handle __builtin_expect (test, 0) and
     __builtin_expect (test, 1).  */
     __builtin_expect (test, 1).  */
  if (TREE_CODE (TREE_TYPE (arg1)) == INTEGER_TYPE
  if (TREE_CODE (TREE_TYPE (arg1)) == INTEGER_TYPE
      && (integer_zerop (arg1) || integer_onep (arg1)))
      && (integer_zerop (arg1) || integer_onep (arg1)))
    {
    {
      rtx insn, drop_through_label, temp;
      rtx insn, drop_through_label, temp;
 
 
      /* Expand the jump insns.  */
      /* Expand the jump insns.  */
      start_sequence ();
      start_sequence ();
      do_jump (arg0, if_false_label, if_true_label);
      do_jump (arg0, if_false_label, if_true_label);
      ret = get_insns ();
      ret = get_insns ();
 
 
      drop_through_label = get_last_insn ();
      drop_through_label = get_last_insn ();
      if (drop_through_label && NOTE_P (drop_through_label))
      if (drop_through_label && NOTE_P (drop_through_label))
        drop_through_label = prev_nonnote_insn (drop_through_label);
        drop_through_label = prev_nonnote_insn (drop_through_label);
      if (drop_through_label && !LABEL_P (drop_through_label))
      if (drop_through_label && !LABEL_P (drop_through_label))
        drop_through_label = NULL_RTX;
        drop_through_label = NULL_RTX;
      end_sequence ();
      end_sequence ();
 
 
      if (! if_true_label)
      if (! if_true_label)
        if_true_label = drop_through_label;
        if_true_label = drop_through_label;
      if (! if_false_label)
      if (! if_false_label)
        if_false_label = drop_through_label;
        if_false_label = drop_through_label;
 
 
      /* Go through and add the expect's to each of the conditional jumps.  */
      /* Go through and add the expect's to each of the conditional jumps.  */
      insn = ret;
      insn = ret;
      while (insn != NULL_RTX)
      while (insn != NULL_RTX)
        {
        {
          rtx next = NEXT_INSN (insn);
          rtx next = NEXT_INSN (insn);
 
 
          if (JUMP_P (insn) && any_condjump_p (insn))
          if (JUMP_P (insn) && any_condjump_p (insn))
            {
            {
              rtx ifelse = SET_SRC (pc_set (insn));
              rtx ifelse = SET_SRC (pc_set (insn));
              rtx then_dest = XEXP (ifelse, 1);
              rtx then_dest = XEXP (ifelse, 1);
              rtx else_dest = XEXP (ifelse, 2);
              rtx else_dest = XEXP (ifelse, 2);
              int taken = -1;
              int taken = -1;
 
 
              /* First check if we recognize any of the labels.  */
              /* First check if we recognize any of the labels.  */
              if (GET_CODE (then_dest) == LABEL_REF
              if (GET_CODE (then_dest) == LABEL_REF
                  && XEXP (then_dest, 0) == if_true_label)
                  && XEXP (then_dest, 0) == if_true_label)
                taken = 1;
                taken = 1;
              else if (GET_CODE (then_dest) == LABEL_REF
              else if (GET_CODE (then_dest) == LABEL_REF
                       && XEXP (then_dest, 0) == if_false_label)
                       && XEXP (then_dest, 0) == if_false_label)
                taken = 0;
                taken = 0;
              else if (GET_CODE (else_dest) == LABEL_REF
              else if (GET_CODE (else_dest) == LABEL_REF
                       && XEXP (else_dest, 0) == if_false_label)
                       && XEXP (else_dest, 0) == if_false_label)
                taken = 1;
                taken = 1;
              else if (GET_CODE (else_dest) == LABEL_REF
              else if (GET_CODE (else_dest) == LABEL_REF
                       && XEXP (else_dest, 0) == if_true_label)
                       && XEXP (else_dest, 0) == if_true_label)
                taken = 0;
                taken = 0;
              /* Otherwise check where we drop through.  */
              /* Otherwise check where we drop through.  */
              else if (else_dest == pc_rtx)
              else if (else_dest == pc_rtx)
                {
                {
                  if (next && NOTE_P (next))
                  if (next && NOTE_P (next))
                    next = next_nonnote_insn (next);
                    next = next_nonnote_insn (next);
 
 
                  if (next && JUMP_P (next)
                  if (next && JUMP_P (next)
                      && any_uncondjump_p (next))
                      && any_uncondjump_p (next))
                    temp = XEXP (SET_SRC (pc_set (next)), 0);
                    temp = XEXP (SET_SRC (pc_set (next)), 0);
                  else
                  else
                    temp = next;
                    temp = next;
 
 
                  /* TEMP is either a CODE_LABEL, NULL_RTX or something
                  /* TEMP is either a CODE_LABEL, NULL_RTX or something
                     else that can't possibly match either target label.  */
                     else that can't possibly match either target label.  */
                  if (temp == if_false_label)
                  if (temp == if_false_label)
                    taken = 1;
                    taken = 1;
                  else if (temp == if_true_label)
                  else if (temp == if_true_label)
                    taken = 0;
                    taken = 0;
                }
                }
              else if (then_dest == pc_rtx)
              else if (then_dest == pc_rtx)
                {
                {
                  if (next && NOTE_P (next))
                  if (next && NOTE_P (next))
                    next = next_nonnote_insn (next);
                    next = next_nonnote_insn (next);
 
 
                  if (next && JUMP_P (next)
                  if (next && JUMP_P (next)
                      && any_uncondjump_p (next))
                      && any_uncondjump_p (next))
                    temp = XEXP (SET_SRC (pc_set (next)), 0);
                    temp = XEXP (SET_SRC (pc_set (next)), 0);
                  else
                  else
                    temp = next;
                    temp = next;
 
 
                  if (temp == if_false_label)
                  if (temp == if_false_label)
                    taken = 0;
                    taken = 0;
                  else if (temp == if_true_label)
                  else if (temp == if_true_label)
                    taken = 1;
                    taken = 1;
                }
                }
 
 
              if (taken != -1)
              if (taken != -1)
                {
                {
                  /* If the test is expected to fail, reverse the
                  /* If the test is expected to fail, reverse the
                     probabilities.  */
                     probabilities.  */
                  if (integer_zerop (arg1))
                  if (integer_zerop (arg1))
                    taken = 1 - taken;
                    taken = 1 - taken;
                  predict_insn_def (insn, PRED_BUILTIN_EXPECT, taken);
                  predict_insn_def (insn, PRED_BUILTIN_EXPECT, taken);
                }
                }
            }
            }
 
 
          insn = next;
          insn = next;
        }
        }
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
void
void
expand_builtin_trap (void)
expand_builtin_trap (void)
{
{
#ifdef HAVE_trap
#ifdef HAVE_trap
  if (HAVE_trap)
  if (HAVE_trap)
    emit_insn (gen_trap ());
    emit_insn (gen_trap ());
  else
  else
#endif
#endif
    emit_library_call (abort_libfunc, LCT_NORETURN, VOIDmode, 0);
    emit_library_call (abort_libfunc, LCT_NORETURN, VOIDmode, 0);
  emit_barrier ();
  emit_barrier ();
}
}
 
 
/* Expand a call to fabs, fabsf or fabsl with arguments ARGLIST.
/* Expand a call to fabs, fabsf or fabsl with arguments ARGLIST.
   Return 0 if a normal call should be emitted rather than expanding
   Return 0 if a normal call should be emitted rather than expanding
   the function inline.  If convenient, the result should be placed
   the function inline.  If convenient, the result should be placed
   in TARGET.  SUBTARGET may be used as the target for computing
   in TARGET.  SUBTARGET may be used as the target for computing
   the operand.  */
   the operand.  */
 
 
static rtx
static rtx
expand_builtin_fabs (tree arglist, rtx target, rtx subtarget)
expand_builtin_fabs (tree arglist, rtx target, rtx subtarget)
{
{
  enum machine_mode mode;
  enum machine_mode mode;
  tree arg;
  tree arg;
  rtx op0;
  rtx op0;
 
 
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  mode = TYPE_MODE (TREE_TYPE (arg));
  mode = TYPE_MODE (TREE_TYPE (arg));
  op0 = expand_expr (arg, subtarget, VOIDmode, 0);
  op0 = expand_expr (arg, subtarget, VOIDmode, 0);
  return expand_abs (mode, op0, target, 0, safe_from_p (target, arg, 1));
  return expand_abs (mode, op0, target, 0, safe_from_p (target, arg, 1));
}
}
 
 
/* Expand a call to copysign, copysignf, or copysignl with arguments ARGLIST.
/* Expand a call to copysign, copysignf, or copysignl with arguments ARGLIST.
   Return NULL is a normal call should be emitted rather than expanding the
   Return NULL is a normal call should be emitted rather than expanding the
   function inline.  If convenient, the result should be placed in TARGET.
   function inline.  If convenient, the result should be placed in TARGET.
   SUBTARGET may be used as the target for computing the operand.  */
   SUBTARGET may be used as the target for computing the operand.  */
 
 
static rtx
static rtx
expand_builtin_copysign (tree arglist, rtx target, rtx subtarget)
expand_builtin_copysign (tree arglist, rtx target, rtx subtarget)
{
{
  rtx op0, op1;
  rtx op0, op1;
  tree arg;
  tree arg;
 
 
  if (!validate_arglist (arglist, REAL_TYPE, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
  op0 = expand_expr (arg, subtarget, VOIDmode, EXPAND_NORMAL);
 
 
  arg = TREE_VALUE (TREE_CHAIN (arglist));
  arg = TREE_VALUE (TREE_CHAIN (arglist));
  op1 = expand_normal (arg);
  op1 = expand_normal (arg);
 
 
  return expand_copysign (op0, op1, target);
  return expand_copysign (op0, op1, target);
}
}
 
 
/* Create a new constant string literal and return a char* pointer to it.
/* Create a new constant string literal and return a char* pointer to it.
   The STRING_CST value is the LEN characters at STR.  */
   The STRING_CST value is the LEN characters at STR.  */
tree
tree
build_string_literal (int len, const char *str)
build_string_literal (int len, const char *str)
{
{
  tree t, elem, index, type;
  tree t, elem, index, type;
 
 
  t = build_string (len, str);
  t = build_string (len, str);
  elem = build_type_variant (char_type_node, 1, 0);
  elem = build_type_variant (char_type_node, 1, 0);
  index = build_index_type (build_int_cst (NULL_TREE, len - 1));
  index = build_index_type (build_int_cst (NULL_TREE, len - 1));
  type = build_array_type (elem, index);
  type = build_array_type (elem, index);
  TREE_TYPE (t) = type;
  TREE_TYPE (t) = type;
  TREE_CONSTANT (t) = 1;
  TREE_CONSTANT (t) = 1;
  TREE_INVARIANT (t) = 1;
  TREE_INVARIANT (t) = 1;
  TREE_READONLY (t) = 1;
  TREE_READONLY (t) = 1;
  TREE_STATIC (t) = 1;
  TREE_STATIC (t) = 1;
 
 
  type = build_pointer_type (type);
  type = build_pointer_type (type);
  t = build1 (ADDR_EXPR, type, t);
  t = build1 (ADDR_EXPR, type, t);
 
 
  type = build_pointer_type (elem);
  type = build_pointer_type (elem);
  t = build1 (NOP_EXPR, type, t);
  t = build1 (NOP_EXPR, type, t);
  return t;
  return t;
}
}
 
 
/* Expand EXP, a call to printf or printf_unlocked.
/* Expand EXP, a call to printf or printf_unlocked.
   Return 0 if a normal call should be emitted rather than transforming
   Return 0 if a normal call should be emitted rather than transforming
   the function inline.  If convenient, the result should be placed in
   the function inline.  If convenient, the result should be placed in
   TARGET with mode MODE.  UNLOCKED indicates this is a printf_unlocked
   TARGET with mode MODE.  UNLOCKED indicates this is a printf_unlocked
   call.  */
   call.  */
static rtx
static rtx
expand_builtin_printf (tree exp, rtx target, enum machine_mode mode,
expand_builtin_printf (tree exp, rtx target, enum machine_mode mode,
                       bool unlocked)
                       bool unlocked)
{
{
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  /* If we're using an unlocked function, assume the other unlocked
  /* If we're using an unlocked function, assume the other unlocked
     functions exist explicitly.  */
     functions exist explicitly.  */
  tree const fn_putchar = unlocked ? built_in_decls[BUILT_IN_PUTCHAR_UNLOCKED]
  tree const fn_putchar = unlocked ? built_in_decls[BUILT_IN_PUTCHAR_UNLOCKED]
    : implicit_built_in_decls[BUILT_IN_PUTCHAR];
    : implicit_built_in_decls[BUILT_IN_PUTCHAR];
  tree const fn_puts = unlocked ? built_in_decls[BUILT_IN_PUTS_UNLOCKED]
  tree const fn_puts = unlocked ? built_in_decls[BUILT_IN_PUTS_UNLOCKED]
    : implicit_built_in_decls[BUILT_IN_PUTS];
    : implicit_built_in_decls[BUILT_IN_PUTS];
  const char *fmt_str;
  const char *fmt_str;
  tree fn, fmt, arg;
  tree fn, fmt, arg;
 
 
  /* If the return value is used, don't do the transformation.  */
  /* If the return value is used, don't do the transformation.  */
  if (target != const0_rtx)
  if (target != const0_rtx)
    return 0;
    return 0;
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  fmt = TREE_VALUE (arglist);
  fmt = TREE_VALUE (arglist);
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str == NULL)
  if (fmt_str == NULL)
    return 0;
    return 0;
 
 
  if (!init_target_chars())
  if (!init_target_chars())
    return 0;
    return 0;
 
 
  /* If the format specifier was "%s\n", call __builtin_puts(arg).  */
  /* If the format specifier was "%s\n", call __builtin_puts(arg).  */
  if (strcmp (fmt_str, target_percent_s_newline) == 0)
  if (strcmp (fmt_str, target_percent_s_newline) == 0)
    {
    {
      if (! arglist
      if (! arglist
          || ! POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (arglist)))
          || ! POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (arglist)))
          || TREE_CHAIN (arglist))
          || TREE_CHAIN (arglist))
        return 0;
        return 0;
      fn = fn_puts;
      fn = fn_puts;
    }
    }
  /* If the format specifier was "%c", call __builtin_putchar(arg).  */
  /* If the format specifier was "%c", call __builtin_putchar(arg).  */
  else if (strcmp (fmt_str, target_percent_c) == 0)
  else if (strcmp (fmt_str, target_percent_c) == 0)
    {
    {
      if (! arglist
      if (! arglist
          || TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != INTEGER_TYPE
          || TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != INTEGER_TYPE
          || TREE_CHAIN (arglist))
          || TREE_CHAIN (arglist))
        return 0;
        return 0;
      fn = fn_putchar;
      fn = fn_putchar;
    }
    }
  else
  else
    {
    {
      /* We can't handle anything else with % args or %% ... yet.  */
      /* We can't handle anything else with % args or %% ... yet.  */
      if (strchr (fmt_str, target_percent))
      if (strchr (fmt_str, target_percent))
        return 0;
        return 0;
 
 
      if (arglist)
      if (arglist)
        return 0;
        return 0;
 
 
      /* If the format specifier was "", printf does nothing.  */
      /* If the format specifier was "", printf does nothing.  */
      if (fmt_str[0] == '\0')
      if (fmt_str[0] == '\0')
        return const0_rtx;
        return const0_rtx;
      /* If the format specifier has length of 1, call putchar.  */
      /* If the format specifier has length of 1, call putchar.  */
      if (fmt_str[1] == '\0')
      if (fmt_str[1] == '\0')
        {
        {
          /* Given printf("c"), (where c is any one character,)
          /* Given printf("c"), (where c is any one character,)
             convert "c"[0] to an int and pass that to the replacement
             convert "c"[0] to an int and pass that to the replacement
             function.  */
             function.  */
          arg = build_int_cst (NULL_TREE, fmt_str[0]);
          arg = build_int_cst (NULL_TREE, fmt_str[0]);
          arglist = build_tree_list (NULL_TREE, arg);
          arglist = build_tree_list (NULL_TREE, arg);
          fn = fn_putchar;
          fn = fn_putchar;
        }
        }
      else
      else
        {
        {
          /* If the format specifier was "string\n", call puts("string").  */
          /* If the format specifier was "string\n", call puts("string").  */
          size_t len = strlen (fmt_str);
          size_t len = strlen (fmt_str);
          if ((unsigned char)fmt_str[len - 1] == target_newline)
          if ((unsigned char)fmt_str[len - 1] == target_newline)
            {
            {
              /* Create a NUL-terminated string that's one char shorter
              /* Create a NUL-terminated string that's one char shorter
                 than the original, stripping off the trailing '\n'.  */
                 than the original, stripping off the trailing '\n'.  */
              char *newstr = alloca (len);
              char *newstr = alloca (len);
              memcpy (newstr, fmt_str, len - 1);
              memcpy (newstr, fmt_str, len - 1);
              newstr[len - 1] = 0;
              newstr[len - 1] = 0;
 
 
              arg = build_string_literal (len, newstr);
              arg = build_string_literal (len, newstr);
              arglist = build_tree_list (NULL_TREE, arg);
              arglist = build_tree_list (NULL_TREE, arg);
              fn = fn_puts;
              fn = fn_puts;
            }
            }
          else
          else
            /* We'd like to arrange to call fputs(string,stdout) here,
            /* We'd like to arrange to call fputs(string,stdout) here,
               but we need stdout and don't have a way to get it yet.  */
               but we need stdout and don't have a way to get it yet.  */
            return 0;
            return 0;
        }
        }
    }
    }
 
 
  if (!fn)
  if (!fn)
    return 0;
    return 0;
  fn = build_function_call_expr (fn, arglist);
  fn = build_function_call_expr (fn, arglist);
  if (TREE_CODE (fn) == CALL_EXPR)
  if (TREE_CODE (fn) == CALL_EXPR)
    CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
    CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
  return expand_expr (fn, target, mode, EXPAND_NORMAL);
  return expand_expr (fn, target, mode, EXPAND_NORMAL);
}
}
 
 
/* Expand EXP, a call to fprintf or fprintf_unlocked.
/* Expand EXP, a call to fprintf or fprintf_unlocked.
   Return 0 if a normal call should be emitted rather than transforming
   Return 0 if a normal call should be emitted rather than transforming
   the function inline.  If convenient, the result should be placed in
   the function inline.  If convenient, the result should be placed in
   TARGET with mode MODE.  UNLOCKED indicates this is a fprintf_unlocked
   TARGET with mode MODE.  UNLOCKED indicates this is a fprintf_unlocked
   call.  */
   call.  */
static rtx
static rtx
expand_builtin_fprintf (tree exp, rtx target, enum machine_mode mode,
expand_builtin_fprintf (tree exp, rtx target, enum machine_mode mode,
                        bool unlocked)
                        bool unlocked)
{
{
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  /* If we're using an unlocked function, assume the other unlocked
  /* If we're using an unlocked function, assume the other unlocked
     functions exist explicitly.  */
     functions exist explicitly.  */
  tree const fn_fputc = unlocked ? built_in_decls[BUILT_IN_FPUTC_UNLOCKED]
  tree const fn_fputc = unlocked ? built_in_decls[BUILT_IN_FPUTC_UNLOCKED]
    : implicit_built_in_decls[BUILT_IN_FPUTC];
    : implicit_built_in_decls[BUILT_IN_FPUTC];
  tree const fn_fputs = unlocked ? built_in_decls[BUILT_IN_FPUTS_UNLOCKED]
  tree const fn_fputs = unlocked ? built_in_decls[BUILT_IN_FPUTS_UNLOCKED]
    : implicit_built_in_decls[BUILT_IN_FPUTS];
    : implicit_built_in_decls[BUILT_IN_FPUTS];
  const char *fmt_str;
  const char *fmt_str;
  tree fn, fmt, fp, arg;
  tree fn, fmt, fp, arg;
 
 
  /* If the return value is used, don't do the transformation.  */
  /* If the return value is used, don't do the transformation.  */
  if (target != const0_rtx)
  if (target != const0_rtx)
    return 0;
    return 0;
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  fp = TREE_VALUE (arglist);
  fp = TREE_VALUE (arglist);
  if (! POINTER_TYPE_P (TREE_TYPE (fp)))
  if (! POINTER_TYPE_P (TREE_TYPE (fp)))
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  fmt = TREE_VALUE (arglist);
  fmt = TREE_VALUE (arglist);
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str == NULL)
  if (fmt_str == NULL)
    return 0;
    return 0;
 
 
  if (!init_target_chars())
  if (!init_target_chars())
    return 0;
    return 0;
 
 
  /* If the format specifier was "%s", call __builtin_fputs(arg,fp).  */
  /* If the format specifier was "%s", call __builtin_fputs(arg,fp).  */
  if (strcmp (fmt_str, target_percent_s) == 0)
  if (strcmp (fmt_str, target_percent_s) == 0)
    {
    {
      if (! arglist
      if (! arglist
          || ! POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (arglist)))
          || ! POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (arglist)))
          || TREE_CHAIN (arglist))
          || TREE_CHAIN (arglist))
        return 0;
        return 0;
      arg = TREE_VALUE (arglist);
      arg = TREE_VALUE (arglist);
      arglist = build_tree_list (NULL_TREE, fp);
      arglist = build_tree_list (NULL_TREE, fp);
      arglist = tree_cons (NULL_TREE, arg, arglist);
      arglist = tree_cons (NULL_TREE, arg, arglist);
      fn = fn_fputs;
      fn = fn_fputs;
    }
    }
  /* If the format specifier was "%c", call __builtin_fputc(arg,fp).  */
  /* If the format specifier was "%c", call __builtin_fputc(arg,fp).  */
  else if (strcmp (fmt_str, target_percent_c) == 0)
  else if (strcmp (fmt_str, target_percent_c) == 0)
    {
    {
      if (! arglist
      if (! arglist
          || TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != INTEGER_TYPE
          || TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != INTEGER_TYPE
          || TREE_CHAIN (arglist))
          || TREE_CHAIN (arglist))
        return 0;
        return 0;
      arg = TREE_VALUE (arglist);
      arg = TREE_VALUE (arglist);
      arglist = build_tree_list (NULL_TREE, fp);
      arglist = build_tree_list (NULL_TREE, fp);
      arglist = tree_cons (NULL_TREE, arg, arglist);
      arglist = tree_cons (NULL_TREE, arg, arglist);
      fn = fn_fputc;
      fn = fn_fputc;
    }
    }
  else
  else
    {
    {
      /* We can't handle anything else with % args or %% ... yet.  */
      /* We can't handle anything else with % args or %% ... yet.  */
      if (strchr (fmt_str, target_percent))
      if (strchr (fmt_str, target_percent))
        return 0;
        return 0;
 
 
      if (arglist)
      if (arglist)
        return 0;
        return 0;
 
 
      /* If the format specifier was "", fprintf does nothing.  */
      /* If the format specifier was "", fprintf does nothing.  */
      if (fmt_str[0] == '\0')
      if (fmt_str[0] == '\0')
        {
        {
          /* Evaluate and ignore FILE* argument for side-effects.  */
          /* Evaluate and ignore FILE* argument for side-effects.  */
          expand_expr (fp, const0_rtx, VOIDmode, EXPAND_NORMAL);
          expand_expr (fp, const0_rtx, VOIDmode, EXPAND_NORMAL);
          return const0_rtx;
          return const0_rtx;
        }
        }
 
 
      /* When "string" doesn't contain %, replace all cases of
      /* When "string" doesn't contain %, replace all cases of
         fprintf(stream,string) with fputs(string,stream).  The fputs
         fprintf(stream,string) with fputs(string,stream).  The fputs
         builtin will take care of special cases like length == 1.  */
         builtin will take care of special cases like length == 1.  */
      arglist = build_tree_list (NULL_TREE, fp);
      arglist = build_tree_list (NULL_TREE, fp);
      arglist = tree_cons (NULL_TREE, fmt, arglist);
      arglist = tree_cons (NULL_TREE, fmt, arglist);
      fn = fn_fputs;
      fn = fn_fputs;
    }
    }
 
 
  if (!fn)
  if (!fn)
    return 0;
    return 0;
  fn = build_function_call_expr (fn, arglist);
  fn = build_function_call_expr (fn, arglist);
  if (TREE_CODE (fn) == CALL_EXPR)
  if (TREE_CODE (fn) == CALL_EXPR)
    CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
    CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
  return expand_expr (fn, target, mode, EXPAND_NORMAL);
  return expand_expr (fn, target, mode, EXPAND_NORMAL);
}
}
 
 
/* Expand a call to sprintf with argument list ARGLIST.  Return 0 if
/* Expand a call to sprintf with argument list ARGLIST.  Return 0 if
   a normal call should be emitted rather than expanding the function
   a normal call should be emitted rather than expanding the function
   inline.  If convenient, the result should be placed in TARGET with
   inline.  If convenient, the result should be placed in TARGET with
   mode MODE.  */
   mode MODE.  */
 
 
static rtx
static rtx
expand_builtin_sprintf (tree arglist, rtx target, enum machine_mode mode)
expand_builtin_sprintf (tree arglist, rtx target, enum machine_mode mode)
{
{
  tree orig_arglist, dest, fmt;
  tree orig_arglist, dest, fmt;
  const char *fmt_str;
  const char *fmt_str;
 
 
  orig_arglist = arglist;
  orig_arglist = arglist;
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  if (! POINTER_TYPE_P (TREE_TYPE (dest)))
  if (! POINTER_TYPE_P (TREE_TYPE (dest)))
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  fmt = TREE_VALUE (arglist);
  fmt = TREE_VALUE (arglist);
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str == NULL)
  if (fmt_str == NULL)
    return 0;
    return 0;
 
 
  if (!init_target_chars())
  if (!init_target_chars())
    return 0;
    return 0;
 
 
  /* If the format doesn't contain % args or %%, use strcpy.  */
  /* If the format doesn't contain % args or %%, use strcpy.  */
  if (strchr (fmt_str, target_percent) == 0)
  if (strchr (fmt_str, target_percent) == 0)
    {
    {
      tree fn = implicit_built_in_decls[BUILT_IN_STRCPY];
      tree fn = implicit_built_in_decls[BUILT_IN_STRCPY];
      tree exp;
      tree exp;
 
 
      if (arglist || ! fn)
      if (arglist || ! fn)
        return 0;
        return 0;
      expand_expr (build_function_call_expr (fn, orig_arglist),
      expand_expr (build_function_call_expr (fn, orig_arglist),
                   const0_rtx, VOIDmode, EXPAND_NORMAL);
                   const0_rtx, VOIDmode, EXPAND_NORMAL);
      if (target == const0_rtx)
      if (target == const0_rtx)
        return const0_rtx;
        return const0_rtx;
      exp = build_int_cst (NULL_TREE, strlen (fmt_str));
      exp = build_int_cst (NULL_TREE, strlen (fmt_str));
      return expand_expr (exp, target, mode, EXPAND_NORMAL);
      return expand_expr (exp, target, mode, EXPAND_NORMAL);
    }
    }
  /* If the format is "%s", use strcpy if the result isn't used.  */
  /* If the format is "%s", use strcpy if the result isn't used.  */
  else if (strcmp (fmt_str, target_percent_s) == 0)
  else if (strcmp (fmt_str, target_percent_s) == 0)
    {
    {
      tree fn, arg, len;
      tree fn, arg, len;
      fn = implicit_built_in_decls[BUILT_IN_STRCPY];
      fn = implicit_built_in_decls[BUILT_IN_STRCPY];
 
 
      if (! fn)
      if (! fn)
        return 0;
        return 0;
 
 
      if (! arglist || TREE_CHAIN (arglist))
      if (! arglist || TREE_CHAIN (arglist))
        return 0;
        return 0;
      arg = TREE_VALUE (arglist);
      arg = TREE_VALUE (arglist);
      if (! POINTER_TYPE_P (TREE_TYPE (arg)))
      if (! POINTER_TYPE_P (TREE_TYPE (arg)))
        return 0;
        return 0;
 
 
      if (target != const0_rtx)
      if (target != const0_rtx)
        {
        {
          len = c_strlen (arg, 1);
          len = c_strlen (arg, 1);
          if (! len || TREE_CODE (len) != INTEGER_CST)
          if (! len || TREE_CODE (len) != INTEGER_CST)
            return 0;
            return 0;
        }
        }
      else
      else
        len = NULL_TREE;
        len = NULL_TREE;
 
 
      arglist = build_tree_list (NULL_TREE, arg);
      arglist = build_tree_list (NULL_TREE, arg);
      arglist = tree_cons (NULL_TREE, dest, arglist);
      arglist = tree_cons (NULL_TREE, dest, arglist);
      expand_expr (build_function_call_expr (fn, arglist),
      expand_expr (build_function_call_expr (fn, arglist),
                   const0_rtx, VOIDmode, EXPAND_NORMAL);
                   const0_rtx, VOIDmode, EXPAND_NORMAL);
 
 
      if (target == const0_rtx)
      if (target == const0_rtx)
        return const0_rtx;
        return const0_rtx;
      return expand_expr (len, target, mode, EXPAND_NORMAL);
      return expand_expr (len, target, mode, EXPAND_NORMAL);
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Expand a call to either the entry or exit function profiler.  */
/* Expand a call to either the entry or exit function profiler.  */
 
 
static rtx
static rtx
expand_builtin_profile_func (bool exitp)
expand_builtin_profile_func (bool exitp)
{
{
  rtx this, which;
  rtx this, which;
 
 
  this = DECL_RTL (current_function_decl);
  this = DECL_RTL (current_function_decl);
  gcc_assert (MEM_P (this));
  gcc_assert (MEM_P (this));
  this = XEXP (this, 0);
  this = XEXP (this, 0);
 
 
  if (exitp)
  if (exitp)
    which = profile_function_exit_libfunc;
    which = profile_function_exit_libfunc;
  else
  else
    which = profile_function_entry_libfunc;
    which = profile_function_entry_libfunc;
 
 
  emit_library_call (which, LCT_NORMAL, VOIDmode, 2, this, Pmode,
  emit_library_call (which, LCT_NORMAL, VOIDmode, 2, this, Pmode,
                     expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
                     expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
                                                 0),
                                                 0),
                     Pmode);
                     Pmode);
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
/* Given a trampoline address, make sure it satisfies TRAMPOLINE_ALIGNMENT.  */
/* Given a trampoline address, make sure it satisfies TRAMPOLINE_ALIGNMENT.  */
 
 
static rtx
static rtx
round_trampoline_addr (rtx tramp)
round_trampoline_addr (rtx tramp)
{
{
  rtx temp, addend, mask;
  rtx temp, addend, mask;
 
 
  /* If we don't need too much alignment, we'll have been guaranteed
  /* If we don't need too much alignment, we'll have been guaranteed
     proper alignment by get_trampoline_type.  */
     proper alignment by get_trampoline_type.  */
  if (TRAMPOLINE_ALIGNMENT <= STACK_BOUNDARY)
  if (TRAMPOLINE_ALIGNMENT <= STACK_BOUNDARY)
    return tramp;
    return tramp;
 
 
  /* Round address up to desired boundary.  */
  /* Round address up to desired boundary.  */
  temp = gen_reg_rtx (Pmode);
  temp = gen_reg_rtx (Pmode);
  addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
  addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
  mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
  mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
 
 
  temp  = expand_simple_binop (Pmode, PLUS, tramp, addend,
  temp  = expand_simple_binop (Pmode, PLUS, tramp, addend,
                               temp, 0, OPTAB_LIB_WIDEN);
                               temp, 0, OPTAB_LIB_WIDEN);
  tramp = expand_simple_binop (Pmode, AND, temp, mask,
  tramp = expand_simple_binop (Pmode, AND, temp, mask,
                               temp, 0, OPTAB_LIB_WIDEN);
                               temp, 0, OPTAB_LIB_WIDEN);
 
 
  return tramp;
  return tramp;
}
}
 
 
static rtx
static rtx
expand_builtin_init_trampoline (tree arglist)
expand_builtin_init_trampoline (tree arglist)
{
{
  tree t_tramp, t_func, t_chain;
  tree t_tramp, t_func, t_chain;
  rtx r_tramp, r_func, r_chain;
  rtx r_tramp, r_func, r_chain;
#ifdef TRAMPOLINE_TEMPLATE
#ifdef TRAMPOLINE_TEMPLATE
  rtx blktramp;
  rtx blktramp;
#endif
#endif
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE,
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE,
                         POINTER_TYPE, VOID_TYPE))
                         POINTER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  t_tramp = TREE_VALUE (arglist);
  t_tramp = TREE_VALUE (arglist);
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  t_func = TREE_VALUE (arglist);
  t_func = TREE_VALUE (arglist);
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  t_chain = TREE_VALUE (arglist);
  t_chain = TREE_VALUE (arglist);
 
 
  r_tramp = expand_normal (t_tramp);
  r_tramp = expand_normal (t_tramp);
  r_func = expand_normal (t_func);
  r_func = expand_normal (t_func);
  r_chain = expand_normal (t_chain);
  r_chain = expand_normal (t_chain);
 
 
  /* Generate insns to initialize the trampoline.  */
  /* Generate insns to initialize the trampoline.  */
  r_tramp = round_trampoline_addr (r_tramp);
  r_tramp = round_trampoline_addr (r_tramp);
#ifdef TRAMPOLINE_TEMPLATE
#ifdef TRAMPOLINE_TEMPLATE
  blktramp = gen_rtx_MEM (BLKmode, r_tramp);
  blktramp = gen_rtx_MEM (BLKmode, r_tramp);
  set_mem_align (blktramp, TRAMPOLINE_ALIGNMENT);
  set_mem_align (blktramp, TRAMPOLINE_ALIGNMENT);
  emit_block_move (blktramp, assemble_trampoline_template (),
  emit_block_move (blktramp, assemble_trampoline_template (),
                   GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
                   GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
#endif
#endif
  trampolines_created = 1;
  trampolines_created = 1;
  INITIALIZE_TRAMPOLINE (r_tramp, r_func, r_chain);
  INITIALIZE_TRAMPOLINE (r_tramp, r_func, r_chain);
 
 
  return const0_rtx;
  return const0_rtx;
}
}
 
 
static rtx
static rtx
expand_builtin_adjust_trampoline (tree arglist)
expand_builtin_adjust_trampoline (tree arglist)
{
{
  rtx tramp;
  rtx tramp;
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
    return NULL_RTX;
    return NULL_RTX;
 
 
  tramp = expand_normal (TREE_VALUE (arglist));
  tramp = expand_normal (TREE_VALUE (arglist));
  tramp = round_trampoline_addr (tramp);
  tramp = round_trampoline_addr (tramp);
#ifdef TRAMPOLINE_ADJUST_ADDRESS
#ifdef TRAMPOLINE_ADJUST_ADDRESS
  TRAMPOLINE_ADJUST_ADDRESS (tramp);
  TRAMPOLINE_ADJUST_ADDRESS (tramp);
#endif
#endif
 
 
  return tramp;
  return tramp;
}
}
 
 
/* Expand a call to the built-in signbit, signbitf or signbitl function.
/* Expand a call to the built-in signbit, signbitf or signbitl function.
   Return NULL_RTX if a normal call should be emitted rather than expanding
   Return NULL_RTX if a normal call should be emitted rather than expanding
   the function in-line.  EXP is the expression that is a call to the builtin
   the function in-line.  EXP is the expression that is a call to the builtin
   function; if convenient, the result should be placed in TARGET.  */
   function; if convenient, the result should be placed in TARGET.  */
 
 
static rtx
static rtx
expand_builtin_signbit (tree exp, rtx target)
expand_builtin_signbit (tree exp, rtx target)
{
{
  const struct real_format *fmt;
  const struct real_format *fmt;
  enum machine_mode fmode, imode, rmode;
  enum machine_mode fmode, imode, rmode;
  HOST_WIDE_INT hi, lo;
  HOST_WIDE_INT hi, lo;
  tree arg, arglist;
  tree arg, arglist;
  int word, bitpos;
  int word, bitpos;
  rtx temp;
  rtx temp;
 
 
  arglist = TREE_OPERAND (exp, 1);
  arglist = TREE_OPERAND (exp, 1);
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  fmode = TYPE_MODE (TREE_TYPE (arg));
  fmode = TYPE_MODE (TREE_TYPE (arg));
  rmode = TYPE_MODE (TREE_TYPE (exp));
  rmode = TYPE_MODE (TREE_TYPE (exp));
  fmt = REAL_MODE_FORMAT (fmode);
  fmt = REAL_MODE_FORMAT (fmode);
 
 
  /* For floating point formats without a sign bit, implement signbit
  /* For floating point formats without a sign bit, implement signbit
     as "ARG < 0.0".  */
     as "ARG < 0.0".  */
  bitpos = fmt->signbit_ro;
  bitpos = fmt->signbit_ro;
  if (bitpos < 0)
  if (bitpos < 0)
  {
  {
    /* But we can't do this if the format supports signed zero.  */
    /* But we can't do this if the format supports signed zero.  */
    if (fmt->has_signed_zero && HONOR_SIGNED_ZEROS (fmode))
    if (fmt->has_signed_zero && HONOR_SIGNED_ZEROS (fmode))
      return 0;
      return 0;
 
 
    arg = fold_build2 (LT_EXPR, TREE_TYPE (exp), arg,
    arg = fold_build2 (LT_EXPR, TREE_TYPE (exp), arg,
                       build_real (TREE_TYPE (arg), dconst0));
                       build_real (TREE_TYPE (arg), dconst0));
    return expand_expr (arg, target, VOIDmode, EXPAND_NORMAL);
    return expand_expr (arg, target, VOIDmode, EXPAND_NORMAL);
  }
  }
 
 
  temp = expand_normal (arg);
  temp = expand_normal (arg);
  if (GET_MODE_SIZE (fmode) <= UNITS_PER_WORD)
  if (GET_MODE_SIZE (fmode) <= UNITS_PER_WORD)
    {
    {
      imode = int_mode_for_mode (fmode);
      imode = int_mode_for_mode (fmode);
      if (imode == BLKmode)
      if (imode == BLKmode)
        return 0;
        return 0;
      temp = gen_lowpart (imode, temp);
      temp = gen_lowpart (imode, temp);
    }
    }
  else
  else
    {
    {
      imode = word_mode;
      imode = word_mode;
      /* Handle targets with different FP word orders.  */
      /* Handle targets with different FP word orders.  */
      if (FLOAT_WORDS_BIG_ENDIAN)
      if (FLOAT_WORDS_BIG_ENDIAN)
        word = (GET_MODE_BITSIZE (fmode) - bitpos) / BITS_PER_WORD;
        word = (GET_MODE_BITSIZE (fmode) - bitpos) / BITS_PER_WORD;
      else
      else
        word = bitpos / BITS_PER_WORD;
        word = bitpos / BITS_PER_WORD;
      temp = operand_subword_force (temp, word, fmode);
      temp = operand_subword_force (temp, word, fmode);
      bitpos = bitpos % BITS_PER_WORD;
      bitpos = bitpos % BITS_PER_WORD;
    }
    }
 
 
  /* Force the intermediate word_mode (or narrower) result into a
  /* Force the intermediate word_mode (or narrower) result into a
     register.  This avoids attempting to create paradoxical SUBREGs
     register.  This avoids attempting to create paradoxical SUBREGs
     of floating point modes below.  */
     of floating point modes below.  */
  temp = force_reg (imode, temp);
  temp = force_reg (imode, temp);
 
 
  /* If the bitpos is within the "result mode" lowpart, the operation
  /* If the bitpos is within the "result mode" lowpart, the operation
     can be implement with a single bitwise AND.  Otherwise, we need
     can be implement with a single bitwise AND.  Otherwise, we need
     a right shift and an AND.  */
     a right shift and an AND.  */
 
 
  if (bitpos < GET_MODE_BITSIZE (rmode))
  if (bitpos < GET_MODE_BITSIZE (rmode))
    {
    {
      if (bitpos < HOST_BITS_PER_WIDE_INT)
      if (bitpos < HOST_BITS_PER_WIDE_INT)
        {
        {
          hi = 0;
          hi = 0;
          lo = (HOST_WIDE_INT) 1 << bitpos;
          lo = (HOST_WIDE_INT) 1 << bitpos;
        }
        }
      else
      else
        {
        {
          hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
          hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
          lo = 0;
          lo = 0;
        }
        }
 
 
      if (imode != rmode)
      if (imode != rmode)
        temp = gen_lowpart (rmode, temp);
        temp = gen_lowpart (rmode, temp);
      temp = expand_binop (rmode, and_optab, temp,
      temp = expand_binop (rmode, and_optab, temp,
                           immed_double_const (lo, hi, rmode),
                           immed_double_const (lo, hi, rmode),
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
    }
    }
  else
  else
    {
    {
      /* Perform a logical right shift to place the signbit in the least
      /* Perform a logical right shift to place the signbit in the least
         significant bit, then truncate the result to the desired mode
         significant bit, then truncate the result to the desired mode
         and mask just this bit.  */
         and mask just this bit.  */
      temp = expand_shift (RSHIFT_EXPR, imode, temp,
      temp = expand_shift (RSHIFT_EXPR, imode, temp,
                           build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
                           build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
      temp = gen_lowpart (rmode, temp);
      temp = gen_lowpart (rmode, temp);
      temp = expand_binop (rmode, and_optab, temp, const1_rtx,
      temp = expand_binop (rmode, and_optab, temp, const1_rtx,
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
                           NULL_RTX, 1, OPTAB_LIB_WIDEN);
    }
    }
 
 
  return temp;
  return temp;
}
}
 
 
/* Expand fork or exec calls.  TARGET is the desired target of the
/* Expand fork or exec calls.  TARGET is the desired target of the
   call.  ARGLIST is the list of arguments of the call.  FN is the
   call.  ARGLIST is the list of arguments of the call.  FN is the
   identificator of the actual function.  IGNORE is nonzero if the
   identificator of the actual function.  IGNORE is nonzero if the
   value is to be ignored.  */
   value is to be ignored.  */
 
 
static rtx
static rtx
expand_builtin_fork_or_exec (tree fn, tree arglist, rtx target, int ignore)
expand_builtin_fork_or_exec (tree fn, tree arglist, rtx target, int ignore)
{
{
  tree id, decl;
  tree id, decl;
  tree call;
  tree call;
 
 
  /* If we are not profiling, just call the function.  */
  /* If we are not profiling, just call the function.  */
  if (!profile_arc_flag)
  if (!profile_arc_flag)
    return NULL_RTX;
    return NULL_RTX;
 
 
  /* Otherwise call the wrapper.  This should be equivalent for the rest of
  /* Otherwise call the wrapper.  This should be equivalent for the rest of
     compiler, so the code does not diverge, and the wrapper may run the
     compiler, so the code does not diverge, and the wrapper may run the
     code necessary for keeping the profiling sane.  */
     code necessary for keeping the profiling sane.  */
 
 
  switch (DECL_FUNCTION_CODE (fn))
  switch (DECL_FUNCTION_CODE (fn))
    {
    {
    case BUILT_IN_FORK:
    case BUILT_IN_FORK:
      id = get_identifier ("__gcov_fork");
      id = get_identifier ("__gcov_fork");
      break;
      break;
 
 
    case BUILT_IN_EXECL:
    case BUILT_IN_EXECL:
      id = get_identifier ("__gcov_execl");
      id = get_identifier ("__gcov_execl");
      break;
      break;
 
 
    case BUILT_IN_EXECV:
    case BUILT_IN_EXECV:
      id = get_identifier ("__gcov_execv");
      id = get_identifier ("__gcov_execv");
      break;
      break;
 
 
    case BUILT_IN_EXECLP:
    case BUILT_IN_EXECLP:
      id = get_identifier ("__gcov_execlp");
      id = get_identifier ("__gcov_execlp");
      break;
      break;
 
 
    case BUILT_IN_EXECLE:
    case BUILT_IN_EXECLE:
      id = get_identifier ("__gcov_execle");
      id = get_identifier ("__gcov_execle");
      break;
      break;
 
 
    case BUILT_IN_EXECVP:
    case BUILT_IN_EXECVP:
      id = get_identifier ("__gcov_execvp");
      id = get_identifier ("__gcov_execvp");
      break;
      break;
 
 
    case BUILT_IN_EXECVE:
    case BUILT_IN_EXECVE:
      id = get_identifier ("__gcov_execve");
      id = get_identifier ("__gcov_execve");
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  decl = build_decl (FUNCTION_DECL, id, TREE_TYPE (fn));
  decl = build_decl (FUNCTION_DECL, id, TREE_TYPE (fn));
  DECL_EXTERNAL (decl) = 1;
  DECL_EXTERNAL (decl) = 1;
  TREE_PUBLIC (decl) = 1;
  TREE_PUBLIC (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  TREE_NOTHROW (decl) = 1;
  TREE_NOTHROW (decl) = 1;
  DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
  DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
  DECL_VISIBILITY_SPECIFIED (decl) = 1;
  DECL_VISIBILITY_SPECIFIED (decl) = 1;
  call = build_function_call_expr (decl, arglist);
  call = build_function_call_expr (decl, arglist);
 
 
  return expand_call (call, target, ignore);
  return expand_call (call, target, ignore);
}
}
 
 


/* Reconstitute a mode for a __sync intrinsic operation.  Since the type of
/* Reconstitute a mode for a __sync intrinsic operation.  Since the type of
   the pointer in these functions is void*, the tree optimizers may remove
   the pointer in these functions is void*, the tree optimizers may remove
   casts.  The mode computed in expand_builtin isn't reliable either, due
   casts.  The mode computed in expand_builtin isn't reliable either, due
   to __sync_bool_compare_and_swap.
   to __sync_bool_compare_and_swap.
 
 
   FCODE_DIFF should be fcode - base, where base is the FOO_1 code for the
   FCODE_DIFF should be fcode - base, where base is the FOO_1 code for the
   group of builtins.  This gives us log2 of the mode size.  */
   group of builtins.  This gives us log2 of the mode size.  */
 
 
static inline enum machine_mode
static inline enum machine_mode
get_builtin_sync_mode (int fcode_diff)
get_builtin_sync_mode (int fcode_diff)
{
{
  /* The size is not negotiable, so ask not to get BLKmode in return
  /* The size is not negotiable, so ask not to get BLKmode in return
     if the target indicates that a smaller size would be better.  */
     if the target indicates that a smaller size would be better.  */
  return mode_for_size (BITS_PER_UNIT << fcode_diff, MODE_INT, 0);
  return mode_for_size (BITS_PER_UNIT << fcode_diff, MODE_INT, 0);
}
}
 
 
/* Expand the memory expression LOC and return the appropriate memory operand
/* Expand the memory expression LOC and return the appropriate memory operand
   for the builtin_sync operations.  */
   for the builtin_sync operations.  */
 
 
static rtx
static rtx
get_builtin_sync_mem (tree loc, enum machine_mode mode)
get_builtin_sync_mem (tree loc, enum machine_mode mode)
{
{
  rtx addr, mem;
  rtx addr, mem;
 
 
  addr = expand_expr (loc, NULL, Pmode, EXPAND_SUM);
  addr = expand_expr (loc, NULL, Pmode, EXPAND_SUM);
 
 
  /* Note that we explicitly do not want any alias information for this
  /* Note that we explicitly do not want any alias information for this
     memory, so that we kill all other live memories.  Otherwise we don't
     memory, so that we kill all other live memories.  Otherwise we don't
     satisfy the full barrier semantics of the intrinsic.  */
     satisfy the full barrier semantics of the intrinsic.  */
  mem = validize_mem (gen_rtx_MEM (mode, addr));
  mem = validize_mem (gen_rtx_MEM (mode, addr));
 
 
  set_mem_align (mem, get_pointer_alignment (loc, BIGGEST_ALIGNMENT));
  set_mem_align (mem, get_pointer_alignment (loc, BIGGEST_ALIGNMENT));
  set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);
  set_mem_alias_set (mem, ALIAS_SET_MEMORY_BARRIER);
  MEM_VOLATILE_P (mem) = 1;
  MEM_VOLATILE_P (mem) = 1;
 
 
  return mem;
  return mem;
}
}
 
 
/* Expand the __sync_xxx_and_fetch and __sync_fetch_and_xxx intrinsics.
/* Expand the __sync_xxx_and_fetch and __sync_fetch_and_xxx intrinsics.
   ARGLIST is the operands list to the function.  CODE is the rtx code
   ARGLIST is the operands list to the function.  CODE is the rtx code
   that corresponds to the arithmetic or logical operation from the name;
   that corresponds to the arithmetic or logical operation from the name;
   an exception here is that NOT actually means NAND.  TARGET is an optional
   an exception here is that NOT actually means NAND.  TARGET is an optional
   place for us to store the results; AFTER is true if this is the
   place for us to store the results; AFTER is true if this is the
   fetch_and_xxx form.  IGNORE is true if we don't actually care about
   fetch_and_xxx form.  IGNORE is true if we don't actually care about
   the result of the operation at all.  */
   the result of the operation at all.  */
 
 
static rtx
static rtx
expand_builtin_sync_operation (enum machine_mode mode, tree arglist,
expand_builtin_sync_operation (enum machine_mode mode, tree arglist,
                               enum rtx_code code, bool after,
                               enum rtx_code code, bool after,
                               rtx target, bool ignore)
                               rtx target, bool ignore)
{
{
  rtx val, mem;
  rtx val, mem;
  enum machine_mode old_mode;
  enum machine_mode old_mode;
 
 
  /* Expand the operands.  */
  /* Expand the operands.  */
  mem = get_builtin_sync_mem (TREE_VALUE (arglist), mode);
  mem = get_builtin_sync_mem (TREE_VALUE (arglist), mode);
 
 
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  val = expand_expr (TREE_VALUE (arglist), NULL, mode, EXPAND_NORMAL);
  val = expand_expr (TREE_VALUE (arglist), NULL, mode, EXPAND_NORMAL);
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
     of CONST_INTs, where we know the old_mode only from the call argument.  */
     of CONST_INTs, where we know the old_mode only from the call argument.  */
  old_mode = GET_MODE (val);
  old_mode = GET_MODE (val);
  if (old_mode == VOIDmode)
  if (old_mode == VOIDmode)
    old_mode = TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist)));
    old_mode = TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist)));
  val = convert_modes (mode, old_mode, val, 1);
  val = convert_modes (mode, old_mode, val, 1);
 
 
  if (ignore)
  if (ignore)
    return expand_sync_operation (mem, val, code);
    return expand_sync_operation (mem, val, code);
  else
  else
    return expand_sync_fetch_operation (mem, val, code, after, target);
    return expand_sync_fetch_operation (mem, val, code, after, target);
}
}
 
 
/* Expand the __sync_val_compare_and_swap and __sync_bool_compare_and_swap
/* Expand the __sync_val_compare_and_swap and __sync_bool_compare_and_swap
   intrinsics.  ARGLIST is the operands list to the function.  IS_BOOL is
   intrinsics.  ARGLIST is the operands list to the function.  IS_BOOL is
   true if this is the boolean form.  TARGET is a place for us to store the
   true if this is the boolean form.  TARGET is a place for us to store the
   results; this is NOT optional if IS_BOOL is true.  */
   results; this is NOT optional if IS_BOOL is true.  */
 
 
static rtx
static rtx
expand_builtin_compare_and_swap (enum machine_mode mode, tree arglist,
expand_builtin_compare_and_swap (enum machine_mode mode, tree arglist,
                                 bool is_bool, rtx target)
                                 bool is_bool, rtx target)
{
{
  rtx old_val, new_val, mem;
  rtx old_val, new_val, mem;
  enum machine_mode old_mode;
  enum machine_mode old_mode;
 
 
  /* Expand the operands.  */
  /* Expand the operands.  */
  mem = get_builtin_sync_mem (TREE_VALUE (arglist), mode);
  mem = get_builtin_sync_mem (TREE_VALUE (arglist), mode);
 
 
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  old_val = expand_expr (TREE_VALUE (arglist), NULL, mode, EXPAND_NORMAL);
  old_val = expand_expr (TREE_VALUE (arglist), NULL, mode, EXPAND_NORMAL);
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
     of CONST_INTs, where we know the old_mode only from the call argument.  */
     of CONST_INTs, where we know the old_mode only from the call argument.  */
  old_mode = GET_MODE (old_val);
  old_mode = GET_MODE (old_val);
  if (old_mode == VOIDmode)
  if (old_mode == VOIDmode)
    old_mode = TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist)));
    old_mode = TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist)));
  old_val = convert_modes (mode, old_mode, old_val, 1);
  old_val = convert_modes (mode, old_mode, old_val, 1);
 
 
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  new_val = expand_expr (TREE_VALUE (arglist), NULL, mode, EXPAND_NORMAL);
  new_val = expand_expr (TREE_VALUE (arglist), NULL, mode, EXPAND_NORMAL);
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
     of CONST_INTs, where we know the old_mode only from the call argument.  */
     of CONST_INTs, where we know the old_mode only from the call argument.  */
  old_mode = GET_MODE (new_val);
  old_mode = GET_MODE (new_val);
  if (old_mode == VOIDmode)
  if (old_mode == VOIDmode)
    old_mode = TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist)));
    old_mode = TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist)));
  new_val = convert_modes (mode, old_mode, new_val, 1);
  new_val = convert_modes (mode, old_mode, new_val, 1);
 
 
  if (is_bool)
  if (is_bool)
    return expand_bool_compare_and_swap (mem, old_val, new_val, target);
    return expand_bool_compare_and_swap (mem, old_val, new_val, target);
  else
  else
    return expand_val_compare_and_swap (mem, old_val, new_val, target);
    return expand_val_compare_and_swap (mem, old_val, new_val, target);
}
}
 
 
/* Expand the __sync_lock_test_and_set intrinsic.  Note that the most
/* Expand the __sync_lock_test_and_set intrinsic.  Note that the most
   general form is actually an atomic exchange, and some targets only
   general form is actually an atomic exchange, and some targets only
   support a reduced form with the second argument being a constant 1.
   support a reduced form with the second argument being a constant 1.
   ARGLIST is the operands list to the function; TARGET is an optional
   ARGLIST is the operands list to the function; TARGET is an optional
   place for us to store the results.  */
   place for us to store the results.  */
 
 
static rtx
static rtx
expand_builtin_lock_test_and_set (enum machine_mode mode, tree arglist,
expand_builtin_lock_test_and_set (enum machine_mode mode, tree arglist,
                                  rtx target)
                                  rtx target)
{
{
  rtx val, mem;
  rtx val, mem;
  enum machine_mode old_mode;
  enum machine_mode old_mode;
 
 
  /* Expand the operands.  */
  /* Expand the operands.  */
  mem = get_builtin_sync_mem (TREE_VALUE (arglist), mode);
  mem = get_builtin_sync_mem (TREE_VALUE (arglist), mode);
 
 
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  val = expand_expr (TREE_VALUE (arglist), NULL, mode, EXPAND_NORMAL);
  val = expand_expr (TREE_VALUE (arglist), NULL, mode, EXPAND_NORMAL);
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
  /* If VAL is promoted to a wider mode, convert it back to MODE.  Take care
     of CONST_INTs, where we know the old_mode only from the call argument.  */
     of CONST_INTs, where we know the old_mode only from the call argument.  */
  old_mode = GET_MODE (val);
  old_mode = GET_MODE (val);
  if (old_mode == VOIDmode)
  if (old_mode == VOIDmode)
    old_mode = TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist)));
    old_mode = TYPE_MODE (TREE_TYPE (TREE_VALUE (arglist)));
  val = convert_modes (mode, old_mode, val, 1);
  val = convert_modes (mode, old_mode, val, 1);
 
 
  return expand_sync_lock_test_and_set (mem, val, target);
  return expand_sync_lock_test_and_set (mem, val, target);
}
}
 
 
/* Expand the __sync_synchronize intrinsic.  */
/* Expand the __sync_synchronize intrinsic.  */
 
 
static void
static void
expand_builtin_synchronize (void)
expand_builtin_synchronize (void)
{
{
  tree x;
  tree x;
 
 
#ifdef HAVE_memory_barrier
#ifdef HAVE_memory_barrier
  if (HAVE_memory_barrier)
  if (HAVE_memory_barrier)
    {
    {
      emit_insn (gen_memory_barrier ());
      emit_insn (gen_memory_barrier ());
      return;
      return;
    }
    }
#endif
#endif
 
 
  /* If no explicit memory barrier instruction is available, create an
  /* If no explicit memory barrier instruction is available, create an
     empty asm stmt with a memory clobber.  */
     empty asm stmt with a memory clobber.  */
  x = build4 (ASM_EXPR, void_type_node, build_string (0, ""), NULL, NULL,
  x = build4 (ASM_EXPR, void_type_node, build_string (0, ""), NULL, NULL,
              tree_cons (NULL, build_string (6, "memory"), NULL));
              tree_cons (NULL, build_string (6, "memory"), NULL));
  ASM_VOLATILE_P (x) = 1;
  ASM_VOLATILE_P (x) = 1;
  expand_asm_expr (x);
  expand_asm_expr (x);
}
}
 
 
/* Expand the __sync_lock_release intrinsic.  ARGLIST is the operands list
/* Expand the __sync_lock_release intrinsic.  ARGLIST is the operands list
   to the function.  */
   to the function.  */
 
 
static void
static void
expand_builtin_lock_release (enum machine_mode mode, tree arglist)
expand_builtin_lock_release (enum machine_mode mode, tree arglist)
{
{
  enum insn_code icode;
  enum insn_code icode;
  rtx mem, insn;
  rtx mem, insn;
  rtx val = const0_rtx;
  rtx val = const0_rtx;
 
 
  /* Expand the operands.  */
  /* Expand the operands.  */
  mem = get_builtin_sync_mem (TREE_VALUE (arglist), mode);
  mem = get_builtin_sync_mem (TREE_VALUE (arglist), mode);
 
 
  /* If there is an explicit operation in the md file, use it.  */
  /* If there is an explicit operation in the md file, use it.  */
  icode = sync_lock_release[mode];
  icode = sync_lock_release[mode];
  if (icode != CODE_FOR_nothing)
  if (icode != CODE_FOR_nothing)
    {
    {
      if (!insn_data[icode].operand[1].predicate (val, mode))
      if (!insn_data[icode].operand[1].predicate (val, mode))
        val = force_reg (mode, val);
        val = force_reg (mode, val);
 
 
      insn = GEN_FCN (icode) (mem, val);
      insn = GEN_FCN (icode) (mem, val);
      if (insn)
      if (insn)
        {
        {
          emit_insn (insn);
          emit_insn (insn);
          return;
          return;
        }
        }
    }
    }
 
 
  /* Otherwise we can implement this operation by emitting a barrier
  /* Otherwise we can implement this operation by emitting a barrier
     followed by a store of zero.  */
     followed by a store of zero.  */
  expand_builtin_synchronize ();
  expand_builtin_synchronize ();
  emit_move_insn (mem, val);
  emit_move_insn (mem, val);
}
}


/* Expand an expression EXP that calls a built-in function,
/* Expand an expression EXP that calls a built-in function,
   with result going to TARGET if that's convenient
   with result going to TARGET if that's convenient
   (and in mode MODE if that's convenient).
   (and in mode MODE if that's convenient).
   SUBTARGET may be used as the target for computing one of EXP's operands.
   SUBTARGET may be used as the target for computing one of EXP's operands.
   IGNORE is nonzero if the value is to be ignored.  */
   IGNORE is nonzero if the value is to be ignored.  */
 
 
rtx
rtx
expand_builtin (tree exp, rtx target, rtx subtarget, enum machine_mode mode,
expand_builtin (tree exp, rtx target, rtx subtarget, enum machine_mode mode,
                int ignore)
                int ignore)
{
{
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum machine_mode target_mode = TYPE_MODE (TREE_TYPE (exp));
  enum machine_mode target_mode = TYPE_MODE (TREE_TYPE (exp));
 
 
  if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
  if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
    return targetm.expand_builtin (exp, target, subtarget, mode, ignore);
    return targetm.expand_builtin (exp, target, subtarget, mode, ignore);
 
 
  /* When not optimizing, generate calls to library functions for a certain
  /* When not optimizing, generate calls to library functions for a certain
     set of builtins.  */
     set of builtins.  */
  if (!optimize
  if (!optimize
      && !called_as_built_in (fndecl)
      && !called_as_built_in (fndecl)
      && DECL_ASSEMBLER_NAME_SET_P (fndecl)
      && DECL_ASSEMBLER_NAME_SET_P (fndecl)
      && fcode != BUILT_IN_ALLOCA)
      && fcode != BUILT_IN_ALLOCA)
    return expand_call (exp, target, ignore);
    return expand_call (exp, target, ignore);
 
 
  /* The built-in function expanders test for target == const0_rtx
  /* The built-in function expanders test for target == const0_rtx
     to determine whether the function's result will be ignored.  */
     to determine whether the function's result will be ignored.  */
  if (ignore)
  if (ignore)
    target = const0_rtx;
    target = const0_rtx;
 
 
  /* If the result of a pure or const built-in function is ignored, and
  /* If the result of a pure or const built-in function is ignored, and
     none of its arguments are volatile, we can avoid expanding the
     none of its arguments are volatile, we can avoid expanding the
     built-in call and just evaluate the arguments for side-effects.  */
     built-in call and just evaluate the arguments for side-effects.  */
  if (target == const0_rtx
  if (target == const0_rtx
      && (DECL_IS_PURE (fndecl) || TREE_READONLY (fndecl)))
      && (DECL_IS_PURE (fndecl) || TREE_READONLY (fndecl)))
    {
    {
      bool volatilep = false;
      bool volatilep = false;
      tree arg;
      tree arg;
 
 
      for (arg = arglist; arg; arg = TREE_CHAIN (arg))
      for (arg = arglist; arg; arg = TREE_CHAIN (arg))
        if (TREE_THIS_VOLATILE (TREE_VALUE (arg)))
        if (TREE_THIS_VOLATILE (TREE_VALUE (arg)))
          {
          {
            volatilep = true;
            volatilep = true;
            break;
            break;
          }
          }
 
 
      if (! volatilep)
      if (! volatilep)
        {
        {
          for (arg = arglist; arg; arg = TREE_CHAIN (arg))
          for (arg = arglist; arg; arg = TREE_CHAIN (arg))
            expand_expr (TREE_VALUE (arg), const0_rtx,
            expand_expr (TREE_VALUE (arg), const0_rtx,
                         VOIDmode, EXPAND_NORMAL);
                         VOIDmode, EXPAND_NORMAL);
          return const0_rtx;
          return const0_rtx;
        }
        }
    }
    }
 
 
  switch (fcode)
  switch (fcode)
    {
    {
    CASE_FLT_FN (BUILT_IN_FABS):
    CASE_FLT_FN (BUILT_IN_FABS):
      target = expand_builtin_fabs (arglist, target, subtarget);
      target = expand_builtin_fabs (arglist, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_COPYSIGN):
    CASE_FLT_FN (BUILT_IN_COPYSIGN):
      target = expand_builtin_copysign (arglist, target, subtarget);
      target = expand_builtin_copysign (arglist, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
      /* Just do a normal library call if we were unable to fold
      /* Just do a normal library call if we were unable to fold
         the values.  */
         the values.  */
    CASE_FLT_FN (BUILT_IN_CABS):
    CASE_FLT_FN (BUILT_IN_CABS):
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_EXP):
    CASE_FLT_FN (BUILT_IN_EXP):
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_POW10):
    CASE_FLT_FN (BUILT_IN_POW10):
    CASE_FLT_FN (BUILT_IN_EXP2):
    CASE_FLT_FN (BUILT_IN_EXP2):
    CASE_FLT_FN (BUILT_IN_EXPM1):
    CASE_FLT_FN (BUILT_IN_EXPM1):
    CASE_FLT_FN (BUILT_IN_LOGB):
    CASE_FLT_FN (BUILT_IN_LOGB):
    CASE_FLT_FN (BUILT_IN_ILOGB):
    CASE_FLT_FN (BUILT_IN_ILOGB):
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG10):
    CASE_FLT_FN (BUILT_IN_LOG10):
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG1P):
    CASE_FLT_FN (BUILT_IN_LOG1P):
    CASE_FLT_FN (BUILT_IN_TAN):
    CASE_FLT_FN (BUILT_IN_TAN):
    CASE_FLT_FN (BUILT_IN_ASIN):
    CASE_FLT_FN (BUILT_IN_ASIN):
    CASE_FLT_FN (BUILT_IN_ACOS):
    CASE_FLT_FN (BUILT_IN_ACOS):
    CASE_FLT_FN (BUILT_IN_ATAN):
    CASE_FLT_FN (BUILT_IN_ATAN):
      /* Treat these like sqrt only if unsafe math optimizations are allowed,
      /* Treat these like sqrt only if unsafe math optimizations are allowed,
         because of possible accuracy problems.  */
         because of possible accuracy problems.  */
      if (! flag_unsafe_math_optimizations)
      if (! flag_unsafe_math_optimizations)
        break;
        break;
    CASE_FLT_FN (BUILT_IN_SQRT):
    CASE_FLT_FN (BUILT_IN_SQRT):
    CASE_FLT_FN (BUILT_IN_FLOOR):
    CASE_FLT_FN (BUILT_IN_FLOOR):
    CASE_FLT_FN (BUILT_IN_CEIL):
    CASE_FLT_FN (BUILT_IN_CEIL):
    CASE_FLT_FN (BUILT_IN_TRUNC):
    CASE_FLT_FN (BUILT_IN_TRUNC):
    CASE_FLT_FN (BUILT_IN_ROUND):
    CASE_FLT_FN (BUILT_IN_ROUND):
    CASE_FLT_FN (BUILT_IN_NEARBYINT):
    CASE_FLT_FN (BUILT_IN_NEARBYINT):
    CASE_FLT_FN (BUILT_IN_RINT):
    CASE_FLT_FN (BUILT_IN_RINT):
    CASE_FLT_FN (BUILT_IN_LRINT):
    CASE_FLT_FN (BUILT_IN_LRINT):
    CASE_FLT_FN (BUILT_IN_LLRINT):
    CASE_FLT_FN (BUILT_IN_LLRINT):
      target = expand_builtin_mathfn (exp, target, subtarget);
      target = expand_builtin_mathfn (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_LCEIL):
    CASE_FLT_FN (BUILT_IN_LCEIL):
    CASE_FLT_FN (BUILT_IN_LLCEIL):
    CASE_FLT_FN (BUILT_IN_LLCEIL):
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
      target = expand_builtin_int_roundingfn (exp, target, subtarget);
      target = expand_builtin_int_roundingfn (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_POW):
    CASE_FLT_FN (BUILT_IN_POW):
      target = expand_builtin_pow (exp, target, subtarget);
      target = expand_builtin_pow (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_POWI):
    CASE_FLT_FN (BUILT_IN_POWI):
      target = expand_builtin_powi (exp, target, subtarget);
      target = expand_builtin_powi (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_ATAN2):
    CASE_FLT_FN (BUILT_IN_ATAN2):
    CASE_FLT_FN (BUILT_IN_LDEXP):
    CASE_FLT_FN (BUILT_IN_LDEXP):
    CASE_FLT_FN (BUILT_IN_FMOD):
    CASE_FLT_FN (BUILT_IN_FMOD):
    CASE_FLT_FN (BUILT_IN_DREM):
    CASE_FLT_FN (BUILT_IN_DREM):
      if (! flag_unsafe_math_optimizations)
      if (! flag_unsafe_math_optimizations)
        break;
        break;
      target = expand_builtin_mathfn_2 (exp, target, subtarget);
      target = expand_builtin_mathfn_2 (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_SIN):
    CASE_FLT_FN (BUILT_IN_SIN):
    CASE_FLT_FN (BUILT_IN_COS):
    CASE_FLT_FN (BUILT_IN_COS):
      if (! flag_unsafe_math_optimizations)
      if (! flag_unsafe_math_optimizations)
        break;
        break;
      target = expand_builtin_mathfn_3 (exp, target, subtarget);
      target = expand_builtin_mathfn_3 (exp, target, subtarget);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_SINCOS):
    CASE_FLT_FN (BUILT_IN_SINCOS):
      if (! flag_unsafe_math_optimizations)
      if (! flag_unsafe_math_optimizations)
        break;
        break;
      target = expand_builtin_sincos (exp);
      target = expand_builtin_sincos (exp);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_APPLY_ARGS:
    case BUILT_IN_APPLY_ARGS:
      return expand_builtin_apply_args ();
      return expand_builtin_apply_args ();
 
 
      /* __builtin_apply (FUNCTION, ARGUMENTS, ARGSIZE) invokes
      /* __builtin_apply (FUNCTION, ARGUMENTS, ARGSIZE) invokes
         FUNCTION with a copy of the parameters described by
         FUNCTION with a copy of the parameters described by
         ARGUMENTS, and ARGSIZE.  It returns a block of memory
         ARGUMENTS, and ARGSIZE.  It returns a block of memory
         allocated on the stack into which is stored all the registers
         allocated on the stack into which is stored all the registers
         that might possibly be used for returning the result of a
         that might possibly be used for returning the result of a
         function.  ARGUMENTS is the value returned by
         function.  ARGUMENTS is the value returned by
         __builtin_apply_args.  ARGSIZE is the number of bytes of
         __builtin_apply_args.  ARGSIZE is the number of bytes of
         arguments that must be copied.  ??? How should this value be
         arguments that must be copied.  ??? How should this value be
         computed?  We'll also need a safe worst case value for varargs
         computed?  We'll also need a safe worst case value for varargs
         functions.  */
         functions.  */
    case BUILT_IN_APPLY:
    case BUILT_IN_APPLY:
      if (!validate_arglist (arglist, POINTER_TYPE,
      if (!validate_arglist (arglist, POINTER_TYPE,
                             POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)
                             POINTER_TYPE, INTEGER_TYPE, VOID_TYPE)
          && !validate_arglist (arglist, REFERENCE_TYPE,
          && !validate_arglist (arglist, REFERENCE_TYPE,
                                POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                                POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
        return const0_rtx;
        return const0_rtx;
      else
      else
        {
        {
          int i;
          int i;
          tree t;
          tree t;
          rtx ops[3];
          rtx ops[3];
 
 
          for (t = arglist, i = 0; t; t = TREE_CHAIN (t), i++)
          for (t = arglist, i = 0; t; t = TREE_CHAIN (t), i++)
            ops[i] = expand_normal (TREE_VALUE (t));
            ops[i] = expand_normal (TREE_VALUE (t));
 
 
          return expand_builtin_apply (ops[0], ops[1], ops[2]);
          return expand_builtin_apply (ops[0], ops[1], ops[2]);
        }
        }
 
 
      /* __builtin_return (RESULT) causes the function to return the
      /* __builtin_return (RESULT) causes the function to return the
         value described by RESULT.  RESULT is address of the block of
         value described by RESULT.  RESULT is address of the block of
         memory returned by __builtin_apply.  */
         memory returned by __builtin_apply.  */
    case BUILT_IN_RETURN:
    case BUILT_IN_RETURN:
      if (validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
      if (validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
        expand_builtin_return (expand_normal (TREE_VALUE (arglist)));
        expand_builtin_return (expand_normal (TREE_VALUE (arglist)));
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_SAVEREGS:
    case BUILT_IN_SAVEREGS:
      return expand_builtin_saveregs ();
      return expand_builtin_saveregs ();
 
 
    case BUILT_IN_ARGS_INFO:
    case BUILT_IN_ARGS_INFO:
      return expand_builtin_args_info (arglist);
      return expand_builtin_args_info (arglist);
 
 
      /* Return the address of the first anonymous stack arg.  */
      /* Return the address of the first anonymous stack arg.  */
    case BUILT_IN_NEXT_ARG:
    case BUILT_IN_NEXT_ARG:
      if (fold_builtin_next_arg (arglist))
      if (fold_builtin_next_arg (arglist))
        return const0_rtx;
        return const0_rtx;
      return expand_builtin_next_arg ();
      return expand_builtin_next_arg ();
 
 
    case BUILT_IN_CLASSIFY_TYPE:
    case BUILT_IN_CLASSIFY_TYPE:
      return expand_builtin_classify_type (arglist);
      return expand_builtin_classify_type (arglist);
 
 
    case BUILT_IN_CONSTANT_P:
    case BUILT_IN_CONSTANT_P:
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_FRAME_ADDRESS:
    case BUILT_IN_FRAME_ADDRESS:
    case BUILT_IN_RETURN_ADDRESS:
    case BUILT_IN_RETURN_ADDRESS:
      return expand_builtin_frame_address (fndecl, arglist);
      return expand_builtin_frame_address (fndecl, arglist);
 
 
    /* Returns the address of the area where the structure is returned.
    /* Returns the address of the area where the structure is returned.
       0 otherwise.  */
       0 otherwise.  */
    case BUILT_IN_AGGREGATE_INCOMING_ADDRESS:
    case BUILT_IN_AGGREGATE_INCOMING_ADDRESS:
      if (arglist != 0
      if (arglist != 0
          || ! AGGREGATE_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl)))
          || ! AGGREGATE_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl)))
          || !MEM_P (DECL_RTL (DECL_RESULT (current_function_decl))))
          || !MEM_P (DECL_RTL (DECL_RESULT (current_function_decl))))
        return const0_rtx;
        return const0_rtx;
      else
      else
        return XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
        return XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
 
 
    case BUILT_IN_ALLOCA:
    case BUILT_IN_ALLOCA:
      target = expand_builtin_alloca (arglist, target);
      target = expand_builtin_alloca (arglist, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STACK_SAVE:
    case BUILT_IN_STACK_SAVE:
      return expand_stack_save ();
      return expand_stack_save ();
 
 
    case BUILT_IN_STACK_RESTORE:
    case BUILT_IN_STACK_RESTORE:
      expand_stack_restore (TREE_VALUE (arglist));
      expand_stack_restore (TREE_VALUE (arglist));
      return const0_rtx;
      return const0_rtx;
 
 
    CASE_INT_FN (BUILT_IN_FFS):
    CASE_INT_FN (BUILT_IN_FFS):
    case BUILT_IN_FFSIMAX:
    case BUILT_IN_FFSIMAX:
      target = expand_builtin_unop (target_mode, arglist, target,
      target = expand_builtin_unop (target_mode, arglist, target,
                                    subtarget, ffs_optab);
                                    subtarget, ffs_optab);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_INT_FN (BUILT_IN_CLZ):
    CASE_INT_FN (BUILT_IN_CLZ):
    case BUILT_IN_CLZIMAX:
    case BUILT_IN_CLZIMAX:
      target = expand_builtin_unop (target_mode, arglist, target,
      target = expand_builtin_unop (target_mode, arglist, target,
                                    subtarget, clz_optab);
                                    subtarget, clz_optab);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_INT_FN (BUILT_IN_CTZ):
    CASE_INT_FN (BUILT_IN_CTZ):
    case BUILT_IN_CTZIMAX:
    case BUILT_IN_CTZIMAX:
      target = expand_builtin_unop (target_mode, arglist, target,
      target = expand_builtin_unop (target_mode, arglist, target,
                                    subtarget, ctz_optab);
                                    subtarget, ctz_optab);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_INT_FN (BUILT_IN_POPCOUNT):
    CASE_INT_FN (BUILT_IN_POPCOUNT):
    case BUILT_IN_POPCOUNTIMAX:
    case BUILT_IN_POPCOUNTIMAX:
      target = expand_builtin_unop (target_mode, arglist, target,
      target = expand_builtin_unop (target_mode, arglist, target,
                                    subtarget, popcount_optab);
                                    subtarget, popcount_optab);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_INT_FN (BUILT_IN_PARITY):
    CASE_INT_FN (BUILT_IN_PARITY):
    case BUILT_IN_PARITYIMAX:
    case BUILT_IN_PARITYIMAX:
      target = expand_builtin_unop (target_mode, arglist, target,
      target = expand_builtin_unop (target_mode, arglist, target,
                                    subtarget, parity_optab);
                                    subtarget, parity_optab);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRLEN:
    case BUILT_IN_STRLEN:
      target = expand_builtin_strlen (arglist, target, target_mode);
      target = expand_builtin_strlen (arglist, target, target_mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRCPY:
    case BUILT_IN_STRCPY:
      target = expand_builtin_strcpy (fndecl, arglist, target, mode);
      target = expand_builtin_strcpy (fndecl, arglist, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRNCPY:
    case BUILT_IN_STRNCPY:
      target = expand_builtin_strncpy (exp, target, mode);
      target = expand_builtin_strncpy (exp, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STPCPY:
    case BUILT_IN_STPCPY:
      target = expand_builtin_stpcpy (exp, target, mode);
      target = expand_builtin_stpcpy (exp, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRCAT:
    case BUILT_IN_STRCAT:
      target = expand_builtin_strcat (fndecl, arglist, target, mode);
      target = expand_builtin_strcat (fndecl, arglist, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRNCAT:
    case BUILT_IN_STRNCAT:
      target = expand_builtin_strncat (arglist, target, mode);
      target = expand_builtin_strncat (arglist, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRSPN:
    case BUILT_IN_STRSPN:
      target = expand_builtin_strspn (arglist, target, mode);
      target = expand_builtin_strspn (arglist, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRCSPN:
    case BUILT_IN_STRCSPN:
      target = expand_builtin_strcspn (arglist, target, mode);
      target = expand_builtin_strcspn (arglist, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRSTR:
    case BUILT_IN_STRSTR:
      target = expand_builtin_strstr (arglist, TREE_TYPE (exp), target, mode);
      target = expand_builtin_strstr (arglist, TREE_TYPE (exp), target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRPBRK:
    case BUILT_IN_STRPBRK:
      target = expand_builtin_strpbrk (arglist, TREE_TYPE (exp), target, mode);
      target = expand_builtin_strpbrk (arglist, TREE_TYPE (exp), target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_INDEX:
    case BUILT_IN_INDEX:
    case BUILT_IN_STRCHR:
    case BUILT_IN_STRCHR:
      target = expand_builtin_strchr (arglist, TREE_TYPE (exp), target, mode);
      target = expand_builtin_strchr (arglist, TREE_TYPE (exp), target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_RINDEX:
    case BUILT_IN_RINDEX:
    case BUILT_IN_STRRCHR:
    case BUILT_IN_STRRCHR:
      target = expand_builtin_strrchr (arglist, TREE_TYPE (exp), target, mode);
      target = expand_builtin_strrchr (arglist, TREE_TYPE (exp), target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_MEMCPY:
    case BUILT_IN_MEMCPY:
      target = expand_builtin_memcpy (exp, target, mode);
      target = expand_builtin_memcpy (exp, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_MEMPCPY:
    case BUILT_IN_MEMPCPY:
      target = expand_builtin_mempcpy (arglist, TREE_TYPE (exp), target, mode, /*endp=*/ 1);
      target = expand_builtin_mempcpy (arglist, TREE_TYPE (exp), target, mode, /*endp=*/ 1);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_MEMMOVE:
    case BUILT_IN_MEMMOVE:
      target = expand_builtin_memmove (arglist, TREE_TYPE (exp), target,
      target = expand_builtin_memmove (arglist, TREE_TYPE (exp), target,
                                       mode, exp);
                                       mode, exp);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_BCOPY:
    case BUILT_IN_BCOPY:
      target = expand_builtin_bcopy (exp);
      target = expand_builtin_bcopy (exp);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_MEMSET:
    case BUILT_IN_MEMSET:
      target = expand_builtin_memset (arglist, target, mode, exp);
      target = expand_builtin_memset (arglist, target, mode, exp);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_BZERO:
    case BUILT_IN_BZERO:
      target = expand_builtin_bzero (exp);
      target = expand_builtin_bzero (exp);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRCMP:
    case BUILT_IN_STRCMP:
      target = expand_builtin_strcmp (exp, target, mode);
      target = expand_builtin_strcmp (exp, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRNCMP:
    case BUILT_IN_STRNCMP:
      target = expand_builtin_strncmp (exp, target, mode);
      target = expand_builtin_strncmp (exp, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_BCMP:
    case BUILT_IN_BCMP:
    case BUILT_IN_MEMCMP:
    case BUILT_IN_MEMCMP:
      target = expand_builtin_memcmp (exp, arglist, target, mode);
      target = expand_builtin_memcmp (exp, arglist, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_SETJMP:
    case BUILT_IN_SETJMP:
      /* This should have been lowered to the builtins below.  */
      /* This should have been lowered to the builtins below.  */
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    case BUILT_IN_SETJMP_SETUP:
    case BUILT_IN_SETJMP_SETUP:
      /* __builtin_setjmp_setup is passed a pointer to an array of five words
      /* __builtin_setjmp_setup is passed a pointer to an array of five words
          and the receiver label.  */
          and the receiver label.  */
      if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
      if (validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
        {
        {
          rtx buf_addr = expand_expr (TREE_VALUE (arglist), subtarget,
          rtx buf_addr = expand_expr (TREE_VALUE (arglist), subtarget,
                                      VOIDmode, EXPAND_NORMAL);
                                      VOIDmode, EXPAND_NORMAL);
          tree label = TREE_OPERAND (TREE_VALUE (TREE_CHAIN (arglist)), 0);
          tree label = TREE_OPERAND (TREE_VALUE (TREE_CHAIN (arglist)), 0);
          rtx label_r = label_rtx (label);
          rtx label_r = label_rtx (label);
 
 
          /* This is copied from the handling of non-local gotos.  */
          /* This is copied from the handling of non-local gotos.  */
          expand_builtin_setjmp_setup (buf_addr, label_r);
          expand_builtin_setjmp_setup (buf_addr, label_r);
          nonlocal_goto_handler_labels
          nonlocal_goto_handler_labels
            = gen_rtx_EXPR_LIST (VOIDmode, label_r,
            = gen_rtx_EXPR_LIST (VOIDmode, label_r,
                                 nonlocal_goto_handler_labels);
                                 nonlocal_goto_handler_labels);
          /* ??? Do not let expand_label treat us as such since we would
          /* ??? Do not let expand_label treat us as such since we would
             not want to be both on the list of non-local labels and on
             not want to be both on the list of non-local labels and on
             the list of forced labels.  */
             the list of forced labels.  */
          FORCED_LABEL (label) = 0;
          FORCED_LABEL (label) = 0;
          return const0_rtx;
          return const0_rtx;
        }
        }
      break;
      break;
 
 
    case BUILT_IN_SETJMP_DISPATCHER:
    case BUILT_IN_SETJMP_DISPATCHER:
       /* __builtin_setjmp_dispatcher is passed the dispatcher label.  */
       /* __builtin_setjmp_dispatcher is passed the dispatcher label.  */
      if (validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
      if (validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
        {
        {
          tree label = TREE_OPERAND (TREE_VALUE (arglist), 0);
          tree label = TREE_OPERAND (TREE_VALUE (arglist), 0);
          rtx label_r = label_rtx (label);
          rtx label_r = label_rtx (label);
 
 
          /* Remove the dispatcher label from the list of non-local labels
          /* Remove the dispatcher label from the list of non-local labels
             since the receiver labels have been added to it above.  */
             since the receiver labels have been added to it above.  */
          remove_node_from_expr_list (label_r, &nonlocal_goto_handler_labels);
          remove_node_from_expr_list (label_r, &nonlocal_goto_handler_labels);
          return const0_rtx;
          return const0_rtx;
        }
        }
      break;
      break;
 
 
    case BUILT_IN_SETJMP_RECEIVER:
    case BUILT_IN_SETJMP_RECEIVER:
       /* __builtin_setjmp_receiver is passed the receiver label.  */
       /* __builtin_setjmp_receiver is passed the receiver label.  */
      if (validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
      if (validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
        {
        {
          tree label = TREE_OPERAND (TREE_VALUE (arglist), 0);
          tree label = TREE_OPERAND (TREE_VALUE (arglist), 0);
          rtx label_r = label_rtx (label);
          rtx label_r = label_rtx (label);
 
 
          expand_builtin_setjmp_receiver (label_r);
          expand_builtin_setjmp_receiver (label_r);
          return const0_rtx;
          return const0_rtx;
        }
        }
      break;
      break;
 
 
      /* __builtin_longjmp is passed a pointer to an array of five words.
      /* __builtin_longjmp is passed a pointer to an array of five words.
         It's similar to the C library longjmp function but works with
         It's similar to the C library longjmp function but works with
         __builtin_setjmp above.  */
         __builtin_setjmp above.  */
    case BUILT_IN_LONGJMP:
    case BUILT_IN_LONGJMP:
      if (validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
      if (validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
        {
        {
          rtx buf_addr = expand_expr (TREE_VALUE (arglist), subtarget,
          rtx buf_addr = expand_expr (TREE_VALUE (arglist), subtarget,
                                      VOIDmode, EXPAND_NORMAL);
                                      VOIDmode, EXPAND_NORMAL);
          rtx value = expand_normal (TREE_VALUE (TREE_CHAIN (arglist)));
          rtx value = expand_normal (TREE_VALUE (TREE_CHAIN (arglist)));
 
 
          if (value != const1_rtx)
          if (value != const1_rtx)
            {
            {
              error ("%<__builtin_longjmp%> second argument must be 1");
              error ("%<__builtin_longjmp%> second argument must be 1");
              return const0_rtx;
              return const0_rtx;
            }
            }
 
 
          expand_builtin_longjmp (buf_addr, value);
          expand_builtin_longjmp (buf_addr, value);
          return const0_rtx;
          return const0_rtx;
        }
        }
      break;
      break;
 
 
    case BUILT_IN_NONLOCAL_GOTO:
    case BUILT_IN_NONLOCAL_GOTO:
      target = expand_builtin_nonlocal_goto (arglist);
      target = expand_builtin_nonlocal_goto (arglist);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
      /* This updates the setjmp buffer that is its argument with the value
      /* This updates the setjmp buffer that is its argument with the value
         of the current stack pointer.  */
         of the current stack pointer.  */
    case BUILT_IN_UPDATE_SETJMP_BUF:
    case BUILT_IN_UPDATE_SETJMP_BUF:
      if (validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
      if (validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
        {
        {
          rtx buf_addr
          rtx buf_addr
            = expand_normal (TREE_VALUE (arglist));
            = expand_normal (TREE_VALUE (arglist));
 
 
          expand_builtin_update_setjmp_buf (buf_addr);
          expand_builtin_update_setjmp_buf (buf_addr);
          return const0_rtx;
          return const0_rtx;
        }
        }
      break;
      break;
 
 
    case BUILT_IN_TRAP:
    case BUILT_IN_TRAP:
      expand_builtin_trap ();
      expand_builtin_trap ();
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_PRINTF:
    case BUILT_IN_PRINTF:
      target = expand_builtin_printf (exp, target, mode, false);
      target = expand_builtin_printf (exp, target, mode, false);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_PRINTF_UNLOCKED:
    case BUILT_IN_PRINTF_UNLOCKED:
      target = expand_builtin_printf (exp, target, mode, true);
      target = expand_builtin_printf (exp, target, mode, true);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FPUTS:
    case BUILT_IN_FPUTS:
      target = expand_builtin_fputs (arglist, target, false);
      target = expand_builtin_fputs (arglist, target, false);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
    case BUILT_IN_FPUTS_UNLOCKED:
    case BUILT_IN_FPUTS_UNLOCKED:
      target = expand_builtin_fputs (arglist, target, true);
      target = expand_builtin_fputs (arglist, target, true);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FPRINTF:
    case BUILT_IN_FPRINTF:
      target = expand_builtin_fprintf (exp, target, mode, false);
      target = expand_builtin_fprintf (exp, target, mode, false);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FPRINTF_UNLOCKED:
    case BUILT_IN_FPRINTF_UNLOCKED:
      target = expand_builtin_fprintf (exp, target, mode, true);
      target = expand_builtin_fprintf (exp, target, mode, true);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_SPRINTF:
    case BUILT_IN_SPRINTF:
      target = expand_builtin_sprintf (arglist, target, mode);
      target = expand_builtin_sprintf (arglist, target, mode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_SIGNBIT):
    CASE_FLT_FN (BUILT_IN_SIGNBIT):
      target = expand_builtin_signbit (exp, target);
      target = expand_builtin_signbit (exp, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
      /* Various hooks for the DWARF 2 __throw routine.  */
      /* Various hooks for the DWARF 2 __throw routine.  */
    case BUILT_IN_UNWIND_INIT:
    case BUILT_IN_UNWIND_INIT:
      expand_builtin_unwind_init ();
      expand_builtin_unwind_init ();
      return const0_rtx;
      return const0_rtx;
    case BUILT_IN_DWARF_CFA:
    case BUILT_IN_DWARF_CFA:
      return virtual_cfa_rtx;
      return virtual_cfa_rtx;
#ifdef DWARF2_UNWIND_INFO
#ifdef DWARF2_UNWIND_INFO
    case BUILT_IN_DWARF_SP_COLUMN:
    case BUILT_IN_DWARF_SP_COLUMN:
      return expand_builtin_dwarf_sp_column ();
      return expand_builtin_dwarf_sp_column ();
    case BUILT_IN_INIT_DWARF_REG_SIZES:
    case BUILT_IN_INIT_DWARF_REG_SIZES:
      expand_builtin_init_dwarf_reg_sizes (TREE_VALUE (arglist));
      expand_builtin_init_dwarf_reg_sizes (TREE_VALUE (arglist));
      return const0_rtx;
      return const0_rtx;
#endif
#endif
    case BUILT_IN_FROB_RETURN_ADDR:
    case BUILT_IN_FROB_RETURN_ADDR:
      return expand_builtin_frob_return_addr (TREE_VALUE (arglist));
      return expand_builtin_frob_return_addr (TREE_VALUE (arglist));
    case BUILT_IN_EXTRACT_RETURN_ADDR:
    case BUILT_IN_EXTRACT_RETURN_ADDR:
      return expand_builtin_extract_return_addr (TREE_VALUE (arglist));
      return expand_builtin_extract_return_addr (TREE_VALUE (arglist));
    case BUILT_IN_EH_RETURN:
    case BUILT_IN_EH_RETURN:
      expand_builtin_eh_return (TREE_VALUE (arglist),
      expand_builtin_eh_return (TREE_VALUE (arglist),
                                TREE_VALUE (TREE_CHAIN (arglist)));
                                TREE_VALUE (TREE_CHAIN (arglist)));
      return const0_rtx;
      return const0_rtx;
#ifdef EH_RETURN_DATA_REGNO
#ifdef EH_RETURN_DATA_REGNO
    case BUILT_IN_EH_RETURN_DATA_REGNO:
    case BUILT_IN_EH_RETURN_DATA_REGNO:
      return expand_builtin_eh_return_data_regno (arglist);
      return expand_builtin_eh_return_data_regno (arglist);
#endif
#endif
    case BUILT_IN_EXTEND_POINTER:
    case BUILT_IN_EXTEND_POINTER:
      return expand_builtin_extend_pointer (TREE_VALUE (arglist));
      return expand_builtin_extend_pointer (TREE_VALUE (arglist));
 
 
    case BUILT_IN_VA_START:
    case BUILT_IN_VA_START:
    case BUILT_IN_STDARG_START:
    case BUILT_IN_STDARG_START:
      return expand_builtin_va_start (arglist);
      return expand_builtin_va_start (arglist);
    case BUILT_IN_VA_END:
    case BUILT_IN_VA_END:
      return expand_builtin_va_end (arglist);
      return expand_builtin_va_end (arglist);
    case BUILT_IN_VA_COPY:
    case BUILT_IN_VA_COPY:
      return expand_builtin_va_copy (arglist);
      return expand_builtin_va_copy (arglist);
    case BUILT_IN_EXPECT:
    case BUILT_IN_EXPECT:
      return expand_builtin_expect (arglist, target);
      return expand_builtin_expect (arglist, target);
    case BUILT_IN_PREFETCH:
    case BUILT_IN_PREFETCH:
      expand_builtin_prefetch (arglist);
      expand_builtin_prefetch (arglist);
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_PROFILE_FUNC_ENTER:
    case BUILT_IN_PROFILE_FUNC_ENTER:
      return expand_builtin_profile_func (false);
      return expand_builtin_profile_func (false);
    case BUILT_IN_PROFILE_FUNC_EXIT:
    case BUILT_IN_PROFILE_FUNC_EXIT:
      return expand_builtin_profile_func (true);
      return expand_builtin_profile_func (true);
 
 
    case BUILT_IN_INIT_TRAMPOLINE:
    case BUILT_IN_INIT_TRAMPOLINE:
      return expand_builtin_init_trampoline (arglist);
      return expand_builtin_init_trampoline (arglist);
    case BUILT_IN_ADJUST_TRAMPOLINE:
    case BUILT_IN_ADJUST_TRAMPOLINE:
      return expand_builtin_adjust_trampoline (arglist);
      return expand_builtin_adjust_trampoline (arglist);
 
 
    case BUILT_IN_FORK:
    case BUILT_IN_FORK:
    case BUILT_IN_EXECL:
    case BUILT_IN_EXECL:
    case BUILT_IN_EXECV:
    case BUILT_IN_EXECV:
    case BUILT_IN_EXECLP:
    case BUILT_IN_EXECLP:
    case BUILT_IN_EXECLE:
    case BUILT_IN_EXECLE:
    case BUILT_IN_EXECVP:
    case BUILT_IN_EXECVP:
    case BUILT_IN_EXECVE:
    case BUILT_IN_EXECVE:
      target = expand_builtin_fork_or_exec (fndecl, arglist, target, ignore);
      target = expand_builtin_fork_or_exec (fndecl, arglist, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FETCH_AND_ADD_1:
    case BUILT_IN_FETCH_AND_ADD_1:
    case BUILT_IN_FETCH_AND_ADD_2:
    case BUILT_IN_FETCH_AND_ADD_2:
    case BUILT_IN_FETCH_AND_ADD_4:
    case BUILT_IN_FETCH_AND_ADD_4:
    case BUILT_IN_FETCH_AND_ADD_8:
    case BUILT_IN_FETCH_AND_ADD_8:
    case BUILT_IN_FETCH_AND_ADD_16:
    case BUILT_IN_FETCH_AND_ADD_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_ADD_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_ADD_1);
      target = expand_builtin_sync_operation (mode, arglist, PLUS,
      target = expand_builtin_sync_operation (mode, arglist, PLUS,
                                              false, target, ignore);
                                              false, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FETCH_AND_SUB_1:
    case BUILT_IN_FETCH_AND_SUB_1:
    case BUILT_IN_FETCH_AND_SUB_2:
    case BUILT_IN_FETCH_AND_SUB_2:
    case BUILT_IN_FETCH_AND_SUB_4:
    case BUILT_IN_FETCH_AND_SUB_4:
    case BUILT_IN_FETCH_AND_SUB_8:
    case BUILT_IN_FETCH_AND_SUB_8:
    case BUILT_IN_FETCH_AND_SUB_16:
    case BUILT_IN_FETCH_AND_SUB_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_SUB_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_SUB_1);
      target = expand_builtin_sync_operation (mode, arglist, MINUS,
      target = expand_builtin_sync_operation (mode, arglist, MINUS,
                                              false, target, ignore);
                                              false, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FETCH_AND_OR_1:
    case BUILT_IN_FETCH_AND_OR_1:
    case BUILT_IN_FETCH_AND_OR_2:
    case BUILT_IN_FETCH_AND_OR_2:
    case BUILT_IN_FETCH_AND_OR_4:
    case BUILT_IN_FETCH_AND_OR_4:
    case BUILT_IN_FETCH_AND_OR_8:
    case BUILT_IN_FETCH_AND_OR_8:
    case BUILT_IN_FETCH_AND_OR_16:
    case BUILT_IN_FETCH_AND_OR_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_OR_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_OR_1);
      target = expand_builtin_sync_operation (mode, arglist, IOR,
      target = expand_builtin_sync_operation (mode, arglist, IOR,
                                              false, target, ignore);
                                              false, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FETCH_AND_AND_1:
    case BUILT_IN_FETCH_AND_AND_1:
    case BUILT_IN_FETCH_AND_AND_2:
    case BUILT_IN_FETCH_AND_AND_2:
    case BUILT_IN_FETCH_AND_AND_4:
    case BUILT_IN_FETCH_AND_AND_4:
    case BUILT_IN_FETCH_AND_AND_8:
    case BUILT_IN_FETCH_AND_AND_8:
    case BUILT_IN_FETCH_AND_AND_16:
    case BUILT_IN_FETCH_AND_AND_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_AND_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_AND_1);
      target = expand_builtin_sync_operation (mode, arglist, AND,
      target = expand_builtin_sync_operation (mode, arglist, AND,
                                              false, target, ignore);
                                              false, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FETCH_AND_XOR_1:
    case BUILT_IN_FETCH_AND_XOR_1:
    case BUILT_IN_FETCH_AND_XOR_2:
    case BUILT_IN_FETCH_AND_XOR_2:
    case BUILT_IN_FETCH_AND_XOR_4:
    case BUILT_IN_FETCH_AND_XOR_4:
    case BUILT_IN_FETCH_AND_XOR_8:
    case BUILT_IN_FETCH_AND_XOR_8:
    case BUILT_IN_FETCH_AND_XOR_16:
    case BUILT_IN_FETCH_AND_XOR_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_XOR_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_XOR_1);
      target = expand_builtin_sync_operation (mode, arglist, XOR,
      target = expand_builtin_sync_operation (mode, arglist, XOR,
                                              false, target, ignore);
                                              false, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_FETCH_AND_NAND_1:
    case BUILT_IN_FETCH_AND_NAND_1:
    case BUILT_IN_FETCH_AND_NAND_2:
    case BUILT_IN_FETCH_AND_NAND_2:
    case BUILT_IN_FETCH_AND_NAND_4:
    case BUILT_IN_FETCH_AND_NAND_4:
    case BUILT_IN_FETCH_AND_NAND_8:
    case BUILT_IN_FETCH_AND_NAND_8:
    case BUILT_IN_FETCH_AND_NAND_16:
    case BUILT_IN_FETCH_AND_NAND_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_NAND_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_FETCH_AND_NAND_1);
      target = expand_builtin_sync_operation (mode, arglist, NOT,
      target = expand_builtin_sync_operation (mode, arglist, NOT,
                                              false, target, ignore);
                                              false, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_ADD_AND_FETCH_1:
    case BUILT_IN_ADD_AND_FETCH_1:
    case BUILT_IN_ADD_AND_FETCH_2:
    case BUILT_IN_ADD_AND_FETCH_2:
    case BUILT_IN_ADD_AND_FETCH_4:
    case BUILT_IN_ADD_AND_FETCH_4:
    case BUILT_IN_ADD_AND_FETCH_8:
    case BUILT_IN_ADD_AND_FETCH_8:
    case BUILT_IN_ADD_AND_FETCH_16:
    case BUILT_IN_ADD_AND_FETCH_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_ADD_AND_FETCH_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_ADD_AND_FETCH_1);
      target = expand_builtin_sync_operation (mode, arglist, PLUS,
      target = expand_builtin_sync_operation (mode, arglist, PLUS,
                                              true, target, ignore);
                                              true, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_SUB_AND_FETCH_1:
    case BUILT_IN_SUB_AND_FETCH_1:
    case BUILT_IN_SUB_AND_FETCH_2:
    case BUILT_IN_SUB_AND_FETCH_2:
    case BUILT_IN_SUB_AND_FETCH_4:
    case BUILT_IN_SUB_AND_FETCH_4:
    case BUILT_IN_SUB_AND_FETCH_8:
    case BUILT_IN_SUB_AND_FETCH_8:
    case BUILT_IN_SUB_AND_FETCH_16:
    case BUILT_IN_SUB_AND_FETCH_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_SUB_AND_FETCH_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_SUB_AND_FETCH_1);
      target = expand_builtin_sync_operation (mode, arglist, MINUS,
      target = expand_builtin_sync_operation (mode, arglist, MINUS,
                                              true, target, ignore);
                                              true, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_OR_AND_FETCH_1:
    case BUILT_IN_OR_AND_FETCH_1:
    case BUILT_IN_OR_AND_FETCH_2:
    case BUILT_IN_OR_AND_FETCH_2:
    case BUILT_IN_OR_AND_FETCH_4:
    case BUILT_IN_OR_AND_FETCH_4:
    case BUILT_IN_OR_AND_FETCH_8:
    case BUILT_IN_OR_AND_FETCH_8:
    case BUILT_IN_OR_AND_FETCH_16:
    case BUILT_IN_OR_AND_FETCH_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_OR_AND_FETCH_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_OR_AND_FETCH_1);
      target = expand_builtin_sync_operation (mode, arglist, IOR,
      target = expand_builtin_sync_operation (mode, arglist, IOR,
                                              true, target, ignore);
                                              true, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_AND_AND_FETCH_1:
    case BUILT_IN_AND_AND_FETCH_1:
    case BUILT_IN_AND_AND_FETCH_2:
    case BUILT_IN_AND_AND_FETCH_2:
    case BUILT_IN_AND_AND_FETCH_4:
    case BUILT_IN_AND_AND_FETCH_4:
    case BUILT_IN_AND_AND_FETCH_8:
    case BUILT_IN_AND_AND_FETCH_8:
    case BUILT_IN_AND_AND_FETCH_16:
    case BUILT_IN_AND_AND_FETCH_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_AND_AND_FETCH_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_AND_AND_FETCH_1);
      target = expand_builtin_sync_operation (mode, arglist, AND,
      target = expand_builtin_sync_operation (mode, arglist, AND,
                                              true, target, ignore);
                                              true, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_XOR_AND_FETCH_1:
    case BUILT_IN_XOR_AND_FETCH_1:
    case BUILT_IN_XOR_AND_FETCH_2:
    case BUILT_IN_XOR_AND_FETCH_2:
    case BUILT_IN_XOR_AND_FETCH_4:
    case BUILT_IN_XOR_AND_FETCH_4:
    case BUILT_IN_XOR_AND_FETCH_8:
    case BUILT_IN_XOR_AND_FETCH_8:
    case BUILT_IN_XOR_AND_FETCH_16:
    case BUILT_IN_XOR_AND_FETCH_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_XOR_AND_FETCH_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_XOR_AND_FETCH_1);
      target = expand_builtin_sync_operation (mode, arglist, XOR,
      target = expand_builtin_sync_operation (mode, arglist, XOR,
                                              true, target, ignore);
                                              true, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_NAND_AND_FETCH_1:
    case BUILT_IN_NAND_AND_FETCH_1:
    case BUILT_IN_NAND_AND_FETCH_2:
    case BUILT_IN_NAND_AND_FETCH_2:
    case BUILT_IN_NAND_AND_FETCH_4:
    case BUILT_IN_NAND_AND_FETCH_4:
    case BUILT_IN_NAND_AND_FETCH_8:
    case BUILT_IN_NAND_AND_FETCH_8:
    case BUILT_IN_NAND_AND_FETCH_16:
    case BUILT_IN_NAND_AND_FETCH_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_NAND_AND_FETCH_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_NAND_AND_FETCH_1);
      target = expand_builtin_sync_operation (mode, arglist, NOT,
      target = expand_builtin_sync_operation (mode, arglist, NOT,
                                              true, target, ignore);
                                              true, target, ignore);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_1:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_1:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_2:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_2:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_4:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_4:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_8:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_8:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_16:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_16:
      if (mode == VOIDmode)
      if (mode == VOIDmode)
        mode = TYPE_MODE (boolean_type_node);
        mode = TYPE_MODE (boolean_type_node);
      if (!target || !register_operand (target, mode))
      if (!target || !register_operand (target, mode))
        target = gen_reg_rtx (mode);
        target = gen_reg_rtx (mode);
 
 
      mode = get_builtin_sync_mode (fcode - BUILT_IN_BOOL_COMPARE_AND_SWAP_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_BOOL_COMPARE_AND_SWAP_1);
      target = expand_builtin_compare_and_swap (mode, arglist, true, target);
      target = expand_builtin_compare_and_swap (mode, arglist, true, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_VAL_COMPARE_AND_SWAP_1:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_1:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_2:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_2:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_4:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_4:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_8:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_8:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_16:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_VAL_COMPARE_AND_SWAP_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_VAL_COMPARE_AND_SWAP_1);
      target = expand_builtin_compare_and_swap (mode, arglist, false, target);
      target = expand_builtin_compare_and_swap (mode, arglist, false, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_LOCK_TEST_AND_SET_1:
    case BUILT_IN_LOCK_TEST_AND_SET_1:
    case BUILT_IN_LOCK_TEST_AND_SET_2:
    case BUILT_IN_LOCK_TEST_AND_SET_2:
    case BUILT_IN_LOCK_TEST_AND_SET_4:
    case BUILT_IN_LOCK_TEST_AND_SET_4:
    case BUILT_IN_LOCK_TEST_AND_SET_8:
    case BUILT_IN_LOCK_TEST_AND_SET_8:
    case BUILT_IN_LOCK_TEST_AND_SET_16:
    case BUILT_IN_LOCK_TEST_AND_SET_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_LOCK_TEST_AND_SET_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_LOCK_TEST_AND_SET_1);
      target = expand_builtin_lock_test_and_set (mode, arglist, target);
      target = expand_builtin_lock_test_and_set (mode, arglist, target);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_LOCK_RELEASE_1:
    case BUILT_IN_LOCK_RELEASE_1:
    case BUILT_IN_LOCK_RELEASE_2:
    case BUILT_IN_LOCK_RELEASE_2:
    case BUILT_IN_LOCK_RELEASE_4:
    case BUILT_IN_LOCK_RELEASE_4:
    case BUILT_IN_LOCK_RELEASE_8:
    case BUILT_IN_LOCK_RELEASE_8:
    case BUILT_IN_LOCK_RELEASE_16:
    case BUILT_IN_LOCK_RELEASE_16:
      mode = get_builtin_sync_mode (fcode - BUILT_IN_LOCK_RELEASE_1);
      mode = get_builtin_sync_mode (fcode - BUILT_IN_LOCK_RELEASE_1);
      expand_builtin_lock_release (mode, arglist);
      expand_builtin_lock_release (mode, arglist);
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_SYNCHRONIZE:
    case BUILT_IN_SYNCHRONIZE:
      expand_builtin_synchronize ();
      expand_builtin_synchronize ();
      return const0_rtx;
      return const0_rtx;
 
 
    case BUILT_IN_OBJECT_SIZE:
    case BUILT_IN_OBJECT_SIZE:
      return expand_builtin_object_size (exp);
      return expand_builtin_object_size (exp);
 
 
    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMPCPY_CHK:
    case BUILT_IN_MEMPCPY_CHK:
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_MEMSET_CHK:
    case BUILT_IN_MEMSET_CHK:
      target = expand_builtin_memory_chk (exp, target, mode, fcode);
      target = expand_builtin_memory_chk (exp, target, mode, fcode);
      if (target)
      if (target)
        return target;
        return target;
      break;
      break;
 
 
    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
    case BUILT_IN_STRNCPY_CHK:
    case BUILT_IN_STRNCPY_CHK:
    case BUILT_IN_STRCAT_CHK:
    case BUILT_IN_STRCAT_CHK:
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
      maybe_emit_chk_warning (exp, fcode);
      maybe_emit_chk_warning (exp, fcode);
      break;
      break;
 
 
    case BUILT_IN_SPRINTF_CHK:
    case BUILT_IN_SPRINTF_CHK:
    case BUILT_IN_VSPRINTF_CHK:
    case BUILT_IN_VSPRINTF_CHK:
      maybe_emit_sprintf_chk_warning (exp, fcode);
      maybe_emit_sprintf_chk_warning (exp, fcode);
      break;
      break;
 
 
    default:    /* just do library call, if unknown builtin */
    default:    /* just do library call, if unknown builtin */
      break;
      break;
    }
    }
 
 
  /* The switch statement above can drop through to cause the function
  /* The switch statement above can drop through to cause the function
     to be called normally.  */
     to be called normally.  */
  return expand_call (exp, target, ignore);
  return expand_call (exp, target, ignore);
}
}
 
 
/* Determine whether a tree node represents a call to a built-in
/* Determine whether a tree node represents a call to a built-in
   function.  If the tree T is a call to a built-in function with
   function.  If the tree T is a call to a built-in function with
   the right number of arguments of the appropriate types, return
   the right number of arguments of the appropriate types, return
   the DECL_FUNCTION_CODE of the call, e.g. BUILT_IN_SQRT.
   the DECL_FUNCTION_CODE of the call, e.g. BUILT_IN_SQRT.
   Otherwise the return value is END_BUILTINS.  */
   Otherwise the return value is END_BUILTINS.  */
 
 
enum built_in_function
enum built_in_function
builtin_mathfn_code (tree t)
builtin_mathfn_code (tree t)
{
{
  tree fndecl, arglist, parmlist;
  tree fndecl, arglist, parmlist;
  tree argtype, parmtype;
  tree argtype, parmtype;
 
 
  if (TREE_CODE (t) != CALL_EXPR
  if (TREE_CODE (t) != CALL_EXPR
      || TREE_CODE (TREE_OPERAND (t, 0)) != ADDR_EXPR)
      || TREE_CODE (TREE_OPERAND (t, 0)) != ADDR_EXPR)
    return END_BUILTINS;
    return END_BUILTINS;
 
 
  fndecl = get_callee_fndecl (t);
  fndecl = get_callee_fndecl (t);
  if (fndecl == NULL_TREE
  if (fndecl == NULL_TREE
      || TREE_CODE (fndecl) != FUNCTION_DECL
      || TREE_CODE (fndecl) != FUNCTION_DECL
      || ! DECL_BUILT_IN (fndecl)
      || ! DECL_BUILT_IN (fndecl)
      || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
      || DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
    return END_BUILTINS;
    return END_BUILTINS;
 
 
  arglist = TREE_OPERAND (t, 1);
  arglist = TREE_OPERAND (t, 1);
  parmlist = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
  parmlist = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
  for (; parmlist; parmlist = TREE_CHAIN (parmlist))
  for (; parmlist; parmlist = TREE_CHAIN (parmlist))
    {
    {
      /* If a function doesn't take a variable number of arguments,
      /* If a function doesn't take a variable number of arguments,
         the last element in the list will have type `void'.  */
         the last element in the list will have type `void'.  */
      parmtype = TREE_VALUE (parmlist);
      parmtype = TREE_VALUE (parmlist);
      if (VOID_TYPE_P (parmtype))
      if (VOID_TYPE_P (parmtype))
        {
        {
          if (arglist)
          if (arglist)
            return END_BUILTINS;
            return END_BUILTINS;
          return DECL_FUNCTION_CODE (fndecl);
          return DECL_FUNCTION_CODE (fndecl);
        }
        }
 
 
      if (! arglist)
      if (! arglist)
        return END_BUILTINS;
        return END_BUILTINS;
 
 
      argtype = TREE_TYPE (TREE_VALUE (arglist));
      argtype = TREE_TYPE (TREE_VALUE (arglist));
 
 
      if (SCALAR_FLOAT_TYPE_P (parmtype))
      if (SCALAR_FLOAT_TYPE_P (parmtype))
        {
        {
          if (! SCALAR_FLOAT_TYPE_P (argtype))
          if (! SCALAR_FLOAT_TYPE_P (argtype))
            return END_BUILTINS;
            return END_BUILTINS;
        }
        }
      else if (COMPLEX_FLOAT_TYPE_P (parmtype))
      else if (COMPLEX_FLOAT_TYPE_P (parmtype))
        {
        {
          if (! COMPLEX_FLOAT_TYPE_P (argtype))
          if (! COMPLEX_FLOAT_TYPE_P (argtype))
            return END_BUILTINS;
            return END_BUILTINS;
        }
        }
      else if (POINTER_TYPE_P (parmtype))
      else if (POINTER_TYPE_P (parmtype))
        {
        {
          if (! POINTER_TYPE_P (argtype))
          if (! POINTER_TYPE_P (argtype))
            return END_BUILTINS;
            return END_BUILTINS;
        }
        }
      else if (INTEGRAL_TYPE_P (parmtype))
      else if (INTEGRAL_TYPE_P (parmtype))
        {
        {
          if (! INTEGRAL_TYPE_P (argtype))
          if (! INTEGRAL_TYPE_P (argtype))
            return END_BUILTINS;
            return END_BUILTINS;
        }
        }
      else
      else
        return END_BUILTINS;
        return END_BUILTINS;
 
 
      arglist = TREE_CHAIN (arglist);
      arglist = TREE_CHAIN (arglist);
    }
    }
 
 
  /* Variable-length argument list.  */
  /* Variable-length argument list.  */
  return DECL_FUNCTION_CODE (fndecl);
  return DECL_FUNCTION_CODE (fndecl);
}
}
 
 
/* Fold a call to __builtin_constant_p, if we know it will evaluate to a
/* Fold a call to __builtin_constant_p, if we know it will evaluate to a
   constant.  ARGLIST is the argument list of the call.  */
   constant.  ARGLIST is the argument list of the call.  */
 
 
static tree
static tree
fold_builtin_constant_p (tree arglist)
fold_builtin_constant_p (tree arglist)
{
{
  if (arglist == 0)
  if (arglist == 0)
    return 0;
    return 0;
 
 
  arglist = TREE_VALUE (arglist);
  arglist = TREE_VALUE (arglist);
 
 
  /* We return 1 for a numeric type that's known to be a constant
  /* We return 1 for a numeric type that's known to be a constant
     value at compile-time or for an aggregate type that's a
     value at compile-time or for an aggregate type that's a
     literal constant.  */
     literal constant.  */
  STRIP_NOPS (arglist);
  STRIP_NOPS (arglist);
 
 
  /* If we know this is a constant, emit the constant of one.  */
  /* If we know this is a constant, emit the constant of one.  */
  if (CONSTANT_CLASS_P (arglist)
  if (CONSTANT_CLASS_P (arglist)
      || (TREE_CODE (arglist) == CONSTRUCTOR
      || (TREE_CODE (arglist) == CONSTRUCTOR
          && TREE_CONSTANT (arglist)))
          && TREE_CONSTANT (arglist)))
    return integer_one_node;
    return integer_one_node;
  if (TREE_CODE (arglist) == ADDR_EXPR)
  if (TREE_CODE (arglist) == ADDR_EXPR)
    {
    {
       tree op = TREE_OPERAND (arglist, 0);
       tree op = TREE_OPERAND (arglist, 0);
       if (TREE_CODE (op) == STRING_CST
       if (TREE_CODE (op) == STRING_CST
           || (TREE_CODE (op) == ARRAY_REF
           || (TREE_CODE (op) == ARRAY_REF
               && integer_zerop (TREE_OPERAND (op, 1))
               && integer_zerop (TREE_OPERAND (op, 1))
               && TREE_CODE (TREE_OPERAND (op, 0)) == STRING_CST))
               && TREE_CODE (TREE_OPERAND (op, 0)) == STRING_CST))
         return integer_one_node;
         return integer_one_node;
    }
    }
 
 
  /* If this expression has side effects, show we don't know it to be a
  /* If this expression has side effects, show we don't know it to be a
     constant.  Likewise if it's a pointer or aggregate type since in
     constant.  Likewise if it's a pointer or aggregate type since in
     those case we only want literals, since those are only optimized
     those case we only want literals, since those are only optimized
     when generating RTL, not later.
     when generating RTL, not later.
     And finally, if we are compiling an initializer, not code, we
     And finally, if we are compiling an initializer, not code, we
     need to return a definite result now; there's not going to be any
     need to return a definite result now; there's not going to be any
     more optimization done.  */
     more optimization done.  */
  if (TREE_SIDE_EFFECTS (arglist)
  if (TREE_SIDE_EFFECTS (arglist)
      || AGGREGATE_TYPE_P (TREE_TYPE (arglist))
      || AGGREGATE_TYPE_P (TREE_TYPE (arglist))
      || POINTER_TYPE_P (TREE_TYPE (arglist))
      || POINTER_TYPE_P (TREE_TYPE (arglist))
      || cfun == 0
      || cfun == 0
      || folding_initializer)
      || folding_initializer)
    return integer_zero_node;
    return integer_zero_node;
 
 
  return 0;
  return 0;
}
}
 
 
/* Fold a call to __builtin_expect, if we expect that a comparison against
/* Fold a call to __builtin_expect, if we expect that a comparison against
   the argument will fold to a constant.  In practice, this means a true
   the argument will fold to a constant.  In practice, this means a true
   constant or the address of a non-weak symbol.  ARGLIST is the argument
   constant or the address of a non-weak symbol.  ARGLIST is the argument
   list of the call.  */
   list of the call.  */
 
 
static tree
static tree
fold_builtin_expect (tree arglist)
fold_builtin_expect (tree arglist)
{
{
  tree arg, inner;
  tree arg, inner;
 
 
  if (arglist == 0)
  if (arglist == 0)
    return 0;
    return 0;
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
 
 
  /* If the argument isn't invariant, then there's nothing we can do.  */
  /* If the argument isn't invariant, then there's nothing we can do.  */
  if (!TREE_INVARIANT (arg))
  if (!TREE_INVARIANT (arg))
    return 0;
    return 0;
 
 
  /* If we're looking at an address of a weak decl, then do not fold.  */
  /* If we're looking at an address of a weak decl, then do not fold.  */
  inner = arg;
  inner = arg;
  STRIP_NOPS (inner);
  STRIP_NOPS (inner);
  if (TREE_CODE (inner) == ADDR_EXPR)
  if (TREE_CODE (inner) == ADDR_EXPR)
    {
    {
      do
      do
        {
        {
          inner = TREE_OPERAND (inner, 0);
          inner = TREE_OPERAND (inner, 0);
        }
        }
      while (TREE_CODE (inner) == COMPONENT_REF
      while (TREE_CODE (inner) == COMPONENT_REF
             || TREE_CODE (inner) == ARRAY_REF);
             || TREE_CODE (inner) == ARRAY_REF);
      if (DECL_P (inner) && DECL_WEAK (inner))
      if (DECL_P (inner) && DECL_WEAK (inner))
        return 0;
        return 0;
    }
    }
 
 
  /* Otherwise, ARG already has the proper type for the return value.  */
  /* Otherwise, ARG already has the proper type for the return value.  */
  return arg;
  return arg;
}
}
 
 
/* Fold a call to __builtin_classify_type.  */
/* Fold a call to __builtin_classify_type.  */
 
 
static tree
static tree
fold_builtin_classify_type (tree arglist)
fold_builtin_classify_type (tree arglist)
{
{
  if (arglist == 0)
  if (arglist == 0)
    return build_int_cst (NULL_TREE, no_type_class);
    return build_int_cst (NULL_TREE, no_type_class);
 
 
  return build_int_cst (NULL_TREE,
  return build_int_cst (NULL_TREE,
                        type_to_class (TREE_TYPE (TREE_VALUE (arglist))));
                        type_to_class (TREE_TYPE (TREE_VALUE (arglist))));
}
}
 
 
/* Fold a call to __builtin_strlen.  */
/* Fold a call to __builtin_strlen.  */
 
 
static tree
static tree
fold_builtin_strlen (tree arglist)
fold_builtin_strlen (tree arglist)
{
{
  if (!validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
  else
  else
    {
    {
      tree len = c_strlen (TREE_VALUE (arglist), 0);
      tree len = c_strlen (TREE_VALUE (arglist), 0);
 
 
      if (len)
      if (len)
        {
        {
          /* Convert from the internal "sizetype" type to "size_t".  */
          /* Convert from the internal "sizetype" type to "size_t".  */
          if (size_type_node)
          if (size_type_node)
            len = fold_convert (size_type_node, len);
            len = fold_convert (size_type_node, len);
          return len;
          return len;
        }
        }
 
 
      return NULL_TREE;
      return NULL_TREE;
    }
    }
}
}
 
 
/* Fold a call to __builtin_inf or __builtin_huge_val.  */
/* Fold a call to __builtin_inf or __builtin_huge_val.  */
 
 
static tree
static tree
fold_builtin_inf (tree type, int warn)
fold_builtin_inf (tree type, int warn)
{
{
  REAL_VALUE_TYPE real;
  REAL_VALUE_TYPE real;
 
 
  /* __builtin_inff is intended to be usable to define INFINITY on all
  /* __builtin_inff is intended to be usable to define INFINITY on all
     targets.  If an infinity is not available, INFINITY expands "to a
     targets.  If an infinity is not available, INFINITY expands "to a
     positive constant of type float that overflows at translation
     positive constant of type float that overflows at translation
     time", footnote "In this case, using INFINITY will violate the
     time", footnote "In this case, using INFINITY will violate the
     constraint in 6.4.4 and thus require a diagnostic." (C99 7.12#4).
     constraint in 6.4.4 and thus require a diagnostic." (C99 7.12#4).
     Thus we pedwarn to ensure this constraint violation is
     Thus we pedwarn to ensure this constraint violation is
     diagnosed.  */
     diagnosed.  */
  if (!MODE_HAS_INFINITIES (TYPE_MODE (type)) && warn)
  if (!MODE_HAS_INFINITIES (TYPE_MODE (type)) && warn)
    pedwarn ("target format does not support infinity");
    pedwarn ("target format does not support infinity");
 
 
  real_inf (&real);
  real_inf (&real);
  return build_real (type, real);
  return build_real (type, real);
}
}
 
 
/* Fold a call to __builtin_nan or __builtin_nans.  */
/* Fold a call to __builtin_nan or __builtin_nans.  */
 
 
static tree
static tree
fold_builtin_nan (tree arglist, tree type, int quiet)
fold_builtin_nan (tree arglist, tree type, int quiet)
{
{
  REAL_VALUE_TYPE real;
  REAL_VALUE_TYPE real;
  const char *str;
  const char *str;
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  str = c_getstr (TREE_VALUE (arglist));
  str = c_getstr (TREE_VALUE (arglist));
  if (!str)
  if (!str)
    return 0;
    return 0;
 
 
  if (!real_nan (&real, str, quiet, TYPE_MODE (type)))
  if (!real_nan (&real, str, quiet, TYPE_MODE (type)))
    return 0;
    return 0;
 
 
  return build_real (type, real);
  return build_real (type, real);
}
}
 
 
/* Return true if the floating point expression T has an integer value.
/* Return true if the floating point expression T has an integer value.
   We also allow +Inf, -Inf and NaN to be considered integer values.  */
   We also allow +Inf, -Inf and NaN to be considered integer values.  */
 
 
static bool
static bool
integer_valued_real_p (tree t)
integer_valued_real_p (tree t)
{
{
  switch (TREE_CODE (t))
  switch (TREE_CODE (t))
    {
    {
    case FLOAT_EXPR:
    case FLOAT_EXPR:
      return true;
      return true;
 
 
    case ABS_EXPR:
    case ABS_EXPR:
    case SAVE_EXPR:
    case SAVE_EXPR:
    case NON_LVALUE_EXPR:
    case NON_LVALUE_EXPR:
      return integer_valued_real_p (TREE_OPERAND (t, 0));
      return integer_valued_real_p (TREE_OPERAND (t, 0));
 
 
    case COMPOUND_EXPR:
    case COMPOUND_EXPR:
    case MODIFY_EXPR:
    case MODIFY_EXPR:
    case BIND_EXPR:
    case BIND_EXPR:
      return integer_valued_real_p (TREE_OPERAND (t, 1));
      return integer_valued_real_p (TREE_OPERAND (t, 1));
 
 
    case PLUS_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
    case MINUS_EXPR:
    case MULT_EXPR:
    case MULT_EXPR:
    case MIN_EXPR:
    case MIN_EXPR:
    case MAX_EXPR:
    case MAX_EXPR:
      return integer_valued_real_p (TREE_OPERAND (t, 0))
      return integer_valued_real_p (TREE_OPERAND (t, 0))
             && integer_valued_real_p (TREE_OPERAND (t, 1));
             && integer_valued_real_p (TREE_OPERAND (t, 1));
 
 
    case COND_EXPR:
    case COND_EXPR:
      return integer_valued_real_p (TREE_OPERAND (t, 1))
      return integer_valued_real_p (TREE_OPERAND (t, 1))
             && integer_valued_real_p (TREE_OPERAND (t, 2));
             && integer_valued_real_p (TREE_OPERAND (t, 2));
 
 
    case REAL_CST:
    case REAL_CST:
      if (! TREE_CONSTANT_OVERFLOW (t))
      if (! TREE_CONSTANT_OVERFLOW (t))
      {
      {
        REAL_VALUE_TYPE c, cint;
        REAL_VALUE_TYPE c, cint;
 
 
        c = TREE_REAL_CST (t);
        c = TREE_REAL_CST (t);
        real_trunc (&cint, TYPE_MODE (TREE_TYPE (t)), &c);
        real_trunc (&cint, TYPE_MODE (TREE_TYPE (t)), &c);
        return real_identical (&c, &cint);
        return real_identical (&c, &cint);
      }
      }
      break;
      break;
 
 
    case NOP_EXPR:
    case NOP_EXPR:
      {
      {
        tree type = TREE_TYPE (TREE_OPERAND (t, 0));
        tree type = TREE_TYPE (TREE_OPERAND (t, 0));
        if (TREE_CODE (type) == INTEGER_TYPE)
        if (TREE_CODE (type) == INTEGER_TYPE)
          return true;
          return true;
        if (TREE_CODE (type) == REAL_TYPE)
        if (TREE_CODE (type) == REAL_TYPE)
          return integer_valued_real_p (TREE_OPERAND (t, 0));
          return integer_valued_real_p (TREE_OPERAND (t, 0));
        break;
        break;
      }
      }
 
 
    case CALL_EXPR:
    case CALL_EXPR:
      switch (builtin_mathfn_code (t))
      switch (builtin_mathfn_code (t))
        {
        {
        CASE_FLT_FN (BUILT_IN_CEIL):
        CASE_FLT_FN (BUILT_IN_CEIL):
        CASE_FLT_FN (BUILT_IN_FLOOR):
        CASE_FLT_FN (BUILT_IN_FLOOR):
        CASE_FLT_FN (BUILT_IN_NEARBYINT):
        CASE_FLT_FN (BUILT_IN_NEARBYINT):
        CASE_FLT_FN (BUILT_IN_RINT):
        CASE_FLT_FN (BUILT_IN_RINT):
        CASE_FLT_FN (BUILT_IN_ROUND):
        CASE_FLT_FN (BUILT_IN_ROUND):
        CASE_FLT_FN (BUILT_IN_TRUNC):
        CASE_FLT_FN (BUILT_IN_TRUNC):
          return true;
          return true;
 
 
        default:
        default:
          break;
          break;
        }
        }
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
  return false;
  return false;
}
}
 
 
/* EXP is assumed to be builtin call where truncation can be propagated
/* EXP is assumed to be builtin call where truncation can be propagated
   across (for instance floor((double)f) == (double)floorf (f).
   across (for instance floor((double)f) == (double)floorf (f).
   Do the transformation.  */
   Do the transformation.  */
 
 
static tree
static tree
fold_trunc_transparent_mathfn (tree fndecl, tree arglist)
fold_trunc_transparent_mathfn (tree fndecl, tree arglist)
{
{
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  tree arg;
  tree arg;
 
 
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  /* Integer rounding functions are idempotent.  */
  /* Integer rounding functions are idempotent.  */
  if (fcode == builtin_mathfn_code (arg))
  if (fcode == builtin_mathfn_code (arg))
    return arg;
    return arg;
 
 
  /* If argument is already integer valued, and we don't need to worry
  /* If argument is already integer valued, and we don't need to worry
     about setting errno, there's no need to perform rounding.  */
     about setting errno, there's no need to perform rounding.  */
  if (! flag_errno_math && integer_valued_real_p (arg))
  if (! flag_errno_math && integer_valued_real_p (arg))
    return arg;
    return arg;
 
 
  if (optimize)
  if (optimize)
    {
    {
      tree arg0 = strip_float_extensions (arg);
      tree arg0 = strip_float_extensions (arg);
      tree ftype = TREE_TYPE (TREE_TYPE (fndecl));
      tree ftype = TREE_TYPE (TREE_TYPE (fndecl));
      tree newtype = TREE_TYPE (arg0);
      tree newtype = TREE_TYPE (arg0);
      tree decl;
      tree decl;
 
 
      if (TYPE_PRECISION (newtype) < TYPE_PRECISION (ftype)
      if (TYPE_PRECISION (newtype) < TYPE_PRECISION (ftype)
          && (decl = mathfn_built_in (newtype, fcode)))
          && (decl = mathfn_built_in (newtype, fcode)))
        {
        {
          arglist =
          arglist =
            build_tree_list (NULL_TREE, fold_convert (newtype, arg0));
            build_tree_list (NULL_TREE, fold_convert (newtype, arg0));
          return fold_convert (ftype,
          return fold_convert (ftype,
                               build_function_call_expr (decl, arglist));
                               build_function_call_expr (decl, arglist));
        }
        }
    }
    }
  return 0;
  return 0;
}
}
 
 
/* EXP is assumed to be builtin call which can narrow the FP type of
/* EXP is assumed to be builtin call which can narrow the FP type of
   the argument, for instance lround((double)f) -> lroundf (f).  */
   the argument, for instance lround((double)f) -> lroundf (f).  */
 
 
static tree
static tree
fold_fixed_mathfn (tree fndecl, tree arglist)
fold_fixed_mathfn (tree fndecl, tree arglist)
{
{
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
  tree arg;
  tree arg;
 
 
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
 
 
  /* If argument is already integer valued, and we don't need to worry
  /* If argument is already integer valued, and we don't need to worry
     about setting errno, there's no need to perform rounding.  */
     about setting errno, there's no need to perform rounding.  */
  if (! flag_errno_math && integer_valued_real_p (arg))
  if (! flag_errno_math && integer_valued_real_p (arg))
    return fold_build1 (FIX_TRUNC_EXPR, TREE_TYPE (TREE_TYPE (fndecl)), arg);
    return fold_build1 (FIX_TRUNC_EXPR, TREE_TYPE (TREE_TYPE (fndecl)), arg);
 
 
  if (optimize)
  if (optimize)
    {
    {
      tree ftype = TREE_TYPE (arg);
      tree ftype = TREE_TYPE (arg);
      tree arg0 = strip_float_extensions (arg);
      tree arg0 = strip_float_extensions (arg);
      tree newtype = TREE_TYPE (arg0);
      tree newtype = TREE_TYPE (arg0);
      tree decl;
      tree decl;
 
 
      if (TYPE_PRECISION (newtype) < TYPE_PRECISION (ftype)
      if (TYPE_PRECISION (newtype) < TYPE_PRECISION (ftype)
          && (decl = mathfn_built_in (newtype, fcode)))
          && (decl = mathfn_built_in (newtype, fcode)))
        {
        {
          arglist =
          arglist =
            build_tree_list (NULL_TREE, fold_convert (newtype, arg0));
            build_tree_list (NULL_TREE, fold_convert (newtype, arg0));
          return build_function_call_expr (decl, arglist);
          return build_function_call_expr (decl, arglist);
        }
        }
    }
    }
 
 
  /* Canonicalize llround (x) to lround (x) on LP64 targets where
  /* Canonicalize llround (x) to lround (x) on LP64 targets where
     sizeof (long long) == sizeof (long).  */
     sizeof (long long) == sizeof (long).  */
  if (TYPE_PRECISION (long_long_integer_type_node)
  if (TYPE_PRECISION (long_long_integer_type_node)
      == TYPE_PRECISION (long_integer_type_node))
      == TYPE_PRECISION (long_integer_type_node))
    {
    {
      tree newfn = NULL_TREE;
      tree newfn = NULL_TREE;
      switch (fcode)
      switch (fcode)
        {
        {
        CASE_FLT_FN (BUILT_IN_LLCEIL):
        CASE_FLT_FN (BUILT_IN_LLCEIL):
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LCEIL);
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LCEIL);
          break;
          break;
 
 
        CASE_FLT_FN (BUILT_IN_LLFLOOR):
        CASE_FLT_FN (BUILT_IN_LLFLOOR):
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LFLOOR);
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LFLOOR);
          break;
          break;
 
 
        CASE_FLT_FN (BUILT_IN_LLROUND):
        CASE_FLT_FN (BUILT_IN_LLROUND):
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LROUND);
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LROUND);
          break;
          break;
 
 
        CASE_FLT_FN (BUILT_IN_LLRINT):
        CASE_FLT_FN (BUILT_IN_LLRINT):
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LRINT);
          newfn = mathfn_built_in (TREE_TYPE (arg), BUILT_IN_LRINT);
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
 
 
      if (newfn)
      if (newfn)
        {
        {
          tree newcall = build_function_call_expr (newfn, arglist);
          tree newcall = build_function_call_expr (newfn, arglist);
          return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)), newcall);
          return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)), newcall);
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Fold function call to builtin cabs, cabsf or cabsl.  ARGLIST
/* Fold function call to builtin cabs, cabsf or cabsl.  ARGLIST
   is the argument list, TYPE is the return type and FNDECL is the
   is the argument list, TYPE is the return type and FNDECL is the
   original function DECL.  Return NULL_TREE if no if no simplification
   original function DECL.  Return NULL_TREE if no if no simplification
   can be made.  */
   can be made.  */
 
 
static tree
static tree
fold_builtin_cabs (tree arglist, tree type, tree fndecl)
fold_builtin_cabs (tree arglist, tree type, tree fndecl)
{
{
  tree arg;
  tree arg;
 
 
  if (!arglist || TREE_CHAIN (arglist))
  if (!arglist || TREE_CHAIN (arglist))
    return NULL_TREE;
    return NULL_TREE;
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  if (TREE_CODE (TREE_TYPE (arg)) != COMPLEX_TYPE
  if (TREE_CODE (TREE_TYPE (arg)) != COMPLEX_TYPE
      || TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) != REAL_TYPE)
      || TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) != REAL_TYPE)
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Evaluate cabs of a constant at compile-time.  */
  /* Evaluate cabs of a constant at compile-time.  */
  if (flag_unsafe_math_optimizations
  if (flag_unsafe_math_optimizations
      && TREE_CODE (arg) == COMPLEX_CST
      && TREE_CODE (arg) == COMPLEX_CST
      && TREE_CODE (TREE_REALPART (arg)) == REAL_CST
      && TREE_CODE (TREE_REALPART (arg)) == REAL_CST
      && TREE_CODE (TREE_IMAGPART (arg)) == REAL_CST
      && TREE_CODE (TREE_IMAGPART (arg)) == REAL_CST
      && ! TREE_CONSTANT_OVERFLOW (TREE_REALPART (arg))
      && ! TREE_CONSTANT_OVERFLOW (TREE_REALPART (arg))
      && ! TREE_CONSTANT_OVERFLOW (TREE_IMAGPART (arg)))
      && ! TREE_CONSTANT_OVERFLOW (TREE_IMAGPART (arg)))
    {
    {
      REAL_VALUE_TYPE r, i;
      REAL_VALUE_TYPE r, i;
 
 
      r = TREE_REAL_CST (TREE_REALPART (arg));
      r = TREE_REAL_CST (TREE_REALPART (arg));
      i = TREE_REAL_CST (TREE_IMAGPART (arg));
      i = TREE_REAL_CST (TREE_IMAGPART (arg));
 
 
      real_arithmetic (&r, MULT_EXPR, &r, &r);
      real_arithmetic (&r, MULT_EXPR, &r, &r);
      real_arithmetic (&i, MULT_EXPR, &i, &i);
      real_arithmetic (&i, MULT_EXPR, &i, &i);
      real_arithmetic (&r, PLUS_EXPR, &r, &i);
      real_arithmetic (&r, PLUS_EXPR, &r, &i);
      if (real_sqrt (&r, TYPE_MODE (type), &r)
      if (real_sqrt (&r, TYPE_MODE (type), &r)
          || ! flag_trapping_math)
          || ! flag_trapping_math)
        return build_real (type, r);
        return build_real (type, r);
    }
    }
 
 
  /* If either part is zero, cabs is fabs of the other.  */
  /* If either part is zero, cabs is fabs of the other.  */
  if (TREE_CODE (arg) == COMPLEX_EXPR
  if (TREE_CODE (arg) == COMPLEX_EXPR
      && real_zerop (TREE_OPERAND (arg, 0)))
      && real_zerop (TREE_OPERAND (arg, 0)))
    return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg, 1));
    return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg, 1));
  if (TREE_CODE (arg) == COMPLEX_EXPR
  if (TREE_CODE (arg) == COMPLEX_EXPR
      && real_zerop (TREE_OPERAND (arg, 1)))
      && real_zerop (TREE_OPERAND (arg, 1)))
    return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg, 0));
    return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg, 0));
 
 
  /* Optimize cabs(-z) and cabs(conj(z)) as cabs(z).  */
  /* Optimize cabs(-z) and cabs(conj(z)) as cabs(z).  */
  if (TREE_CODE (arg) == NEGATE_EXPR
  if (TREE_CODE (arg) == NEGATE_EXPR
      || TREE_CODE (arg) == CONJ_EXPR)
      || TREE_CODE (arg) == CONJ_EXPR)
    {
    {
      tree arglist = build_tree_list (NULL_TREE, TREE_OPERAND (arg, 0));
      tree arglist = build_tree_list (NULL_TREE, TREE_OPERAND (arg, 0));
      return build_function_call_expr (fndecl, arglist);
      return build_function_call_expr (fndecl, arglist);
    }
    }
 
 
  /* Don't do this when optimizing for size.  */
  /* Don't do this when optimizing for size.  */
  if (flag_unsafe_math_optimizations
  if (flag_unsafe_math_optimizations
      && optimize && !optimize_size)
      && optimize && !optimize_size)
    {
    {
      tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
      tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
 
 
      if (sqrtfn != NULL_TREE)
      if (sqrtfn != NULL_TREE)
        {
        {
          tree rpart, ipart, result, arglist;
          tree rpart, ipart, result, arglist;
 
 
          arg = builtin_save_expr (arg);
          arg = builtin_save_expr (arg);
 
 
          rpart = fold_build1 (REALPART_EXPR, type, arg);
          rpart = fold_build1 (REALPART_EXPR, type, arg);
          ipart = fold_build1 (IMAGPART_EXPR, type, arg);
          ipart = fold_build1 (IMAGPART_EXPR, type, arg);
 
 
          rpart = builtin_save_expr (rpart);
          rpart = builtin_save_expr (rpart);
          ipart = builtin_save_expr (ipart);
          ipart = builtin_save_expr (ipart);
 
 
          result = fold_build2 (PLUS_EXPR, type,
          result = fold_build2 (PLUS_EXPR, type,
                                fold_build2 (MULT_EXPR, type,
                                fold_build2 (MULT_EXPR, type,
                                             rpart, rpart),
                                             rpart, rpart),
                                fold_build2 (MULT_EXPR, type,
                                fold_build2 (MULT_EXPR, type,
                                             ipart, ipart));
                                             ipart, ipart));
 
 
          arglist = build_tree_list (NULL_TREE, result);
          arglist = build_tree_list (NULL_TREE, result);
          return build_function_call_expr (sqrtfn, arglist);
          return build_function_call_expr (sqrtfn, arglist);
        }
        }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a builtin function call to sqrt, sqrtf, or sqrtl.  Return
/* Fold a builtin function call to sqrt, sqrtf, or sqrtl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_sqrt (tree arglist, tree type)
fold_builtin_sqrt (tree arglist, tree type)
{
{
 
 
  enum built_in_function fcode;
  enum built_in_function fcode;
  tree arg = TREE_VALUE (arglist);
  tree arg = TREE_VALUE (arglist);
 
 
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize sqrt of constant value.  */
  /* Optimize sqrt of constant value.  */
  if (TREE_CODE (arg) == REAL_CST
  if (TREE_CODE (arg) == REAL_CST
      && ! TREE_CONSTANT_OVERFLOW (arg))
      && ! TREE_CONSTANT_OVERFLOW (arg))
    {
    {
      REAL_VALUE_TYPE r, x;
      REAL_VALUE_TYPE r, x;
 
 
      x = TREE_REAL_CST (arg);
      x = TREE_REAL_CST (arg);
      if (real_sqrt (&r, TYPE_MODE (type), &x)
      if (real_sqrt (&r, TYPE_MODE (type), &x)
          || (!flag_trapping_math && !flag_errno_math))
          || (!flag_trapping_math && !flag_errno_math))
        return build_real (type, r);
        return build_real (type, r);
    }
    }
 
 
  /* Optimize sqrt(expN(x)) = expN(x*0.5).  */
  /* Optimize sqrt(expN(x)) = expN(x*0.5).  */
  fcode = builtin_mathfn_code (arg);
  fcode = builtin_mathfn_code (arg);
  if (flag_unsafe_math_optimizations && BUILTIN_EXPONENT_P (fcode))
  if (flag_unsafe_math_optimizations && BUILTIN_EXPONENT_P (fcode))
    {
    {
      tree expfn = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
      tree expfn = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
      arg = fold_build2 (MULT_EXPR, type,
      arg = fold_build2 (MULT_EXPR, type,
                         TREE_VALUE (TREE_OPERAND (arg, 1)),
                         TREE_VALUE (TREE_OPERAND (arg, 1)),
                         build_real (type, dconsthalf));
                         build_real (type, dconsthalf));
      arglist = build_tree_list (NULL_TREE, arg);
      arglist = build_tree_list (NULL_TREE, arg);
      return build_function_call_expr (expfn, arglist);
      return build_function_call_expr (expfn, arglist);
    }
    }
 
 
  /* Optimize sqrt(Nroot(x)) -> pow(x,1/(2*N)).  */
  /* Optimize sqrt(Nroot(x)) -> pow(x,1/(2*N)).  */
  if (flag_unsafe_math_optimizations && BUILTIN_ROOT_P (fcode))
  if (flag_unsafe_math_optimizations && BUILTIN_ROOT_P (fcode))
    {
    {
      tree powfn = mathfn_built_in (type, BUILT_IN_POW);
      tree powfn = mathfn_built_in (type, BUILT_IN_POW);
 
 
      if (powfn)
      if (powfn)
        {
        {
          tree arg0 = TREE_VALUE (TREE_OPERAND (arg, 1));
          tree arg0 = TREE_VALUE (TREE_OPERAND (arg, 1));
          tree tree_root;
          tree tree_root;
          /* The inner root was either sqrt or cbrt.  */
          /* The inner root was either sqrt or cbrt.  */
          REAL_VALUE_TYPE dconstroot =
          REAL_VALUE_TYPE dconstroot =
            BUILTIN_SQRT_P (fcode) ? dconsthalf : dconstthird;
            BUILTIN_SQRT_P (fcode) ? dconsthalf : dconstthird;
 
 
          /* Adjust for the outer root.  */
          /* Adjust for the outer root.  */
          SET_REAL_EXP (&dconstroot, REAL_EXP (&dconstroot) - 1);
          SET_REAL_EXP (&dconstroot, REAL_EXP (&dconstroot) - 1);
          dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
          dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
          tree_root = build_real (type, dconstroot);
          tree_root = build_real (type, dconstroot);
          arglist = tree_cons (NULL_TREE, arg0,
          arglist = tree_cons (NULL_TREE, arg0,
                               build_tree_list (NULL_TREE, tree_root));
                               build_tree_list (NULL_TREE, tree_root));
          return build_function_call_expr (powfn, arglist);
          return build_function_call_expr (powfn, arglist);
        }
        }
    }
    }
 
 
  /* Optimize sqrt(pow(x,y)) = pow(|x|,y*0.5).  */
  /* Optimize sqrt(pow(x,y)) = pow(|x|,y*0.5).  */
  if (flag_unsafe_math_optimizations
  if (flag_unsafe_math_optimizations
      && (fcode == BUILT_IN_POW
      && (fcode == BUILT_IN_POW
          || fcode == BUILT_IN_POWF
          || fcode == BUILT_IN_POWF
          || fcode == BUILT_IN_POWL))
          || fcode == BUILT_IN_POWL))
    {
    {
      tree powfn = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
      tree powfn = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
      tree arg0 = TREE_VALUE (TREE_OPERAND (arg, 1));
      tree arg0 = TREE_VALUE (TREE_OPERAND (arg, 1));
      tree arg1 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg, 1)));
      tree arg1 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg, 1)));
      tree narg1;
      tree narg1;
      if (!tree_expr_nonnegative_p (arg0))
      if (!tree_expr_nonnegative_p (arg0))
        arg0 = build1 (ABS_EXPR, type, arg0);
        arg0 = build1 (ABS_EXPR, type, arg0);
      narg1 = fold_build2 (MULT_EXPR, type, arg1,
      narg1 = fold_build2 (MULT_EXPR, type, arg1,
                           build_real (type, dconsthalf));
                           build_real (type, dconsthalf));
      arglist = tree_cons (NULL_TREE, arg0,
      arglist = tree_cons (NULL_TREE, arg0,
                           build_tree_list (NULL_TREE, narg1));
                           build_tree_list (NULL_TREE, narg1));
      return build_function_call_expr (powfn, arglist);
      return build_function_call_expr (powfn, arglist);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a builtin function call to cbrt, cbrtf, or cbrtl.  Return
/* Fold a builtin function call to cbrt, cbrtf, or cbrtl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
static tree
static tree
fold_builtin_cbrt (tree arglist, tree type)
fold_builtin_cbrt (tree arglist, tree type)
{
{
  tree arg = TREE_VALUE (arglist);
  tree arg = TREE_VALUE (arglist);
  const enum built_in_function fcode = builtin_mathfn_code (arg);
  const enum built_in_function fcode = builtin_mathfn_code (arg);
 
 
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize cbrt of constant value.  */
  /* Optimize cbrt of constant value.  */
  if (real_zerop (arg) || real_onep (arg) || real_minus_onep (arg))
  if (real_zerop (arg) || real_onep (arg) || real_minus_onep (arg))
    return arg;
    return arg;
 
 
  if (flag_unsafe_math_optimizations)
  if (flag_unsafe_math_optimizations)
    {
    {
      /* Optimize cbrt(expN(x)) -> expN(x/3).  */
      /* Optimize cbrt(expN(x)) -> expN(x/3).  */
      if (BUILTIN_EXPONENT_P (fcode))
      if (BUILTIN_EXPONENT_P (fcode))
        {
        {
          tree expfn = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
          tree expfn = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
          const REAL_VALUE_TYPE third_trunc =
          const REAL_VALUE_TYPE third_trunc =
            real_value_truncate (TYPE_MODE (type), dconstthird);
            real_value_truncate (TYPE_MODE (type), dconstthird);
          arg = fold_build2 (MULT_EXPR, type,
          arg = fold_build2 (MULT_EXPR, type,
                             TREE_VALUE (TREE_OPERAND (arg, 1)),
                             TREE_VALUE (TREE_OPERAND (arg, 1)),
                             build_real (type, third_trunc));
                             build_real (type, third_trunc));
          arglist = build_tree_list (NULL_TREE, arg);
          arglist = build_tree_list (NULL_TREE, arg);
          return build_function_call_expr (expfn, arglist);
          return build_function_call_expr (expfn, arglist);
        }
        }
 
 
      /* Optimize cbrt(sqrt(x)) -> pow(x,1/6).  */
      /* Optimize cbrt(sqrt(x)) -> pow(x,1/6).  */
      if (BUILTIN_SQRT_P (fcode))
      if (BUILTIN_SQRT_P (fcode))
        {
        {
          tree powfn = mathfn_built_in (type, BUILT_IN_POW);
          tree powfn = mathfn_built_in (type, BUILT_IN_POW);
 
 
          if (powfn)
          if (powfn)
            {
            {
              tree arg0 = TREE_VALUE (TREE_OPERAND (arg, 1));
              tree arg0 = TREE_VALUE (TREE_OPERAND (arg, 1));
              tree tree_root;
              tree tree_root;
              REAL_VALUE_TYPE dconstroot = dconstthird;
              REAL_VALUE_TYPE dconstroot = dconstthird;
 
 
              SET_REAL_EXP (&dconstroot, REAL_EXP (&dconstroot) - 1);
              SET_REAL_EXP (&dconstroot, REAL_EXP (&dconstroot) - 1);
              dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
              dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
              tree_root = build_real (type, dconstroot);
              tree_root = build_real (type, dconstroot);
              arglist = tree_cons (NULL_TREE, arg0,
              arglist = tree_cons (NULL_TREE, arg0,
                                   build_tree_list (NULL_TREE, tree_root));
                                   build_tree_list (NULL_TREE, tree_root));
              return build_function_call_expr (powfn, arglist);
              return build_function_call_expr (powfn, arglist);
            }
            }
        }
        }
 
 
      /* Optimize cbrt(cbrt(x)) -> pow(x,1/9) iff x is nonnegative.  */
      /* Optimize cbrt(cbrt(x)) -> pow(x,1/9) iff x is nonnegative.  */
      if (BUILTIN_CBRT_P (fcode))
      if (BUILTIN_CBRT_P (fcode))
        {
        {
          tree arg0 = TREE_VALUE (TREE_OPERAND (arg, 1));
          tree arg0 = TREE_VALUE (TREE_OPERAND (arg, 1));
          if (tree_expr_nonnegative_p (arg0))
          if (tree_expr_nonnegative_p (arg0))
            {
            {
              tree powfn = mathfn_built_in (type, BUILT_IN_POW);
              tree powfn = mathfn_built_in (type, BUILT_IN_POW);
 
 
              if (powfn)
              if (powfn)
                {
                {
                  tree tree_root;
                  tree tree_root;
                  REAL_VALUE_TYPE dconstroot;
                  REAL_VALUE_TYPE dconstroot;
 
 
                  real_arithmetic (&dconstroot, MULT_EXPR, &dconstthird, &dconstthird);
                  real_arithmetic (&dconstroot, MULT_EXPR, &dconstthird, &dconstthird);
                  dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
                  dconstroot = real_value_truncate (TYPE_MODE (type), dconstroot);
                  tree_root = build_real (type, dconstroot);
                  tree_root = build_real (type, dconstroot);
                  arglist = tree_cons (NULL_TREE, arg0,
                  arglist = tree_cons (NULL_TREE, arg0,
                                       build_tree_list (NULL_TREE, tree_root));
                                       build_tree_list (NULL_TREE, tree_root));
                  return build_function_call_expr (powfn, arglist);
                  return build_function_call_expr (powfn, arglist);
                }
                }
            }
            }
        }
        }
 
 
      /* Optimize cbrt(pow(x,y)) -> pow(x,y/3) iff x is nonnegative.  */
      /* Optimize cbrt(pow(x,y)) -> pow(x,y/3) iff x is nonnegative.  */
      if (fcode == BUILT_IN_POW || fcode == BUILT_IN_POWF
      if (fcode == BUILT_IN_POW || fcode == BUILT_IN_POWF
          || fcode == BUILT_IN_POWL)
          || fcode == BUILT_IN_POWL)
        {
        {
          tree arg00 = TREE_VALUE (TREE_OPERAND (arg, 1));
          tree arg00 = TREE_VALUE (TREE_OPERAND (arg, 1));
          tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg, 1)));
          tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg, 1)));
          if (tree_expr_nonnegative_p (arg00))
          if (tree_expr_nonnegative_p (arg00))
            {
            {
              tree powfn = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
              tree powfn = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
              const REAL_VALUE_TYPE dconstroot
              const REAL_VALUE_TYPE dconstroot
                = real_value_truncate (TYPE_MODE (type), dconstthird);
                = real_value_truncate (TYPE_MODE (type), dconstthird);
              tree narg01 = fold_build2 (MULT_EXPR, type, arg01,
              tree narg01 = fold_build2 (MULT_EXPR, type, arg01,
                                         build_real (type, dconstroot));
                                         build_real (type, dconstroot));
              arglist = tree_cons (NULL_TREE, arg00,
              arglist = tree_cons (NULL_TREE, arg00,
                                   build_tree_list (NULL_TREE, narg01));
                                   build_tree_list (NULL_TREE, narg01));
              return build_function_call_expr (powfn, arglist);
              return build_function_call_expr (powfn, arglist);
            }
            }
        }
        }
    }
    }
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin sin, sinf, or sinl.  Return
/* Fold function call to builtin sin, sinf, or sinl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
static tree
static tree
fold_builtin_sin (tree arglist)
fold_builtin_sin (tree arglist)
{
{
  tree arg = TREE_VALUE (arglist);
  tree arg = TREE_VALUE (arglist);
 
 
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize sin (0.0) = 0.0.  */
  /* Optimize sin (0.0) = 0.0.  */
  if (real_zerop (arg))
  if (real_zerop (arg))
    return arg;
    return arg;
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin cos, cosf, or cosl.  Return
/* Fold function call to builtin cos, cosf, or cosl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
static tree
static tree
fold_builtin_cos (tree arglist, tree type, tree fndecl)
fold_builtin_cos (tree arglist, tree type, tree fndecl)
{
{
  tree arg = TREE_VALUE (arglist);
  tree arg = TREE_VALUE (arglist);
 
 
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize cos (0.0) = 1.0.  */
  /* Optimize cos (0.0) = 1.0.  */
  if (real_zerop (arg))
  if (real_zerop (arg))
    return build_real (type, dconst1);
    return build_real (type, dconst1);
 
 
  /* Optimize cos(-x) into cos (x).  */
  /* Optimize cos(-x) into cos (x).  */
  if (TREE_CODE (arg) == NEGATE_EXPR)
  if (TREE_CODE (arg) == NEGATE_EXPR)
    {
    {
      tree args = build_tree_list (NULL_TREE,
      tree args = build_tree_list (NULL_TREE,
                                   TREE_OPERAND (arg, 0));
                                   TREE_OPERAND (arg, 0));
      return build_function_call_expr (fndecl, args);
      return build_function_call_expr (fndecl, args);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin tan, tanf, or tanl.  Return
/* Fold function call to builtin tan, tanf, or tanl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
static tree
static tree
fold_builtin_tan (tree arglist)
fold_builtin_tan (tree arglist)
{
{
  enum built_in_function fcode;
  enum built_in_function fcode;
  tree arg = TREE_VALUE (arglist);
  tree arg = TREE_VALUE (arglist);
 
 
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize tan(0.0) = 0.0.  */
  /* Optimize tan(0.0) = 0.0.  */
  if (real_zerop (arg))
  if (real_zerop (arg))
    return arg;
    return arg;
 
 
  /* Optimize tan(atan(x)) = x.  */
  /* Optimize tan(atan(x)) = x.  */
  fcode = builtin_mathfn_code (arg);
  fcode = builtin_mathfn_code (arg);
  if (flag_unsafe_math_optimizations
  if (flag_unsafe_math_optimizations
      && (fcode == BUILT_IN_ATAN
      && (fcode == BUILT_IN_ATAN
          || fcode == BUILT_IN_ATANF
          || fcode == BUILT_IN_ATANF
          || fcode == BUILT_IN_ATANL))
          || fcode == BUILT_IN_ATANL))
    return TREE_VALUE (TREE_OPERAND (arg, 1));
    return TREE_VALUE (TREE_OPERAND (arg, 1));
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin atan, atanf, or atanl.  Return
/* Fold function call to builtin atan, atanf, or atanl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_atan (tree arglist, tree type)
fold_builtin_atan (tree arglist, tree type)
{
{
 
 
  tree arg = TREE_VALUE (arglist);
  tree arg = TREE_VALUE (arglist);
 
 
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize atan(0.0) = 0.0.  */
  /* Optimize atan(0.0) = 0.0.  */
  if (real_zerop (arg))
  if (real_zerop (arg))
    return arg;
    return arg;
 
 
  /* Optimize atan(1.0) = pi/4.  */
  /* Optimize atan(1.0) = pi/4.  */
  if (real_onep (arg))
  if (real_onep (arg))
    {
    {
      REAL_VALUE_TYPE cst;
      REAL_VALUE_TYPE cst;
 
 
      real_convert (&cst, TYPE_MODE (type), &dconstpi);
      real_convert (&cst, TYPE_MODE (type), &dconstpi);
      SET_REAL_EXP (&cst, REAL_EXP (&cst) - 2);
      SET_REAL_EXP (&cst, REAL_EXP (&cst) - 2);
      return build_real (type, cst);
      return build_real (type, cst);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin trunc, truncf or truncl.  Return
/* Fold function call to builtin trunc, truncf or truncl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_trunc (tree fndecl, tree arglist)
fold_builtin_trunc (tree fndecl, tree arglist)
{
{
  tree arg;
  tree arg;
 
 
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  /* Optimize trunc of constant value.  */
  /* Optimize trunc of constant value.  */
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  if (TREE_CODE (arg) == REAL_CST && ! TREE_CONSTANT_OVERFLOW (arg))
  if (TREE_CODE (arg) == REAL_CST && ! TREE_CONSTANT_OVERFLOW (arg))
    {
    {
      REAL_VALUE_TYPE r, x;
      REAL_VALUE_TYPE r, x;
      tree type = TREE_TYPE (TREE_TYPE (fndecl));
      tree type = TREE_TYPE (TREE_TYPE (fndecl));
 
 
      x = TREE_REAL_CST (arg);
      x = TREE_REAL_CST (arg);
      real_trunc (&r, TYPE_MODE (type), &x);
      real_trunc (&r, TYPE_MODE (type), &x);
      return build_real (type, r);
      return build_real (type, r);
    }
    }
 
 
  return fold_trunc_transparent_mathfn (fndecl, arglist);
  return fold_trunc_transparent_mathfn (fndecl, arglist);
}
}
 
 
/* Fold function call to builtin floor, floorf or floorl.  Return
/* Fold function call to builtin floor, floorf or floorl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_floor (tree fndecl, tree arglist)
fold_builtin_floor (tree fndecl, tree arglist)
{
{
  tree arg;
  tree arg;
 
 
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  /* Optimize floor of constant value.  */
  /* Optimize floor of constant value.  */
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  if (TREE_CODE (arg) == REAL_CST && ! TREE_CONSTANT_OVERFLOW (arg))
  if (TREE_CODE (arg) == REAL_CST && ! TREE_CONSTANT_OVERFLOW (arg))
    {
    {
      REAL_VALUE_TYPE x;
      REAL_VALUE_TYPE x;
 
 
      x = TREE_REAL_CST (arg);
      x = TREE_REAL_CST (arg);
      if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math)
      if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math)
        {
        {
          tree type = TREE_TYPE (TREE_TYPE (fndecl));
          tree type = TREE_TYPE (TREE_TYPE (fndecl));
          REAL_VALUE_TYPE r;
          REAL_VALUE_TYPE r;
 
 
          real_floor (&r, TYPE_MODE (type), &x);
          real_floor (&r, TYPE_MODE (type), &x);
          return build_real (type, r);
          return build_real (type, r);
        }
        }
    }
    }
 
 
  return fold_trunc_transparent_mathfn (fndecl, arglist);
  return fold_trunc_transparent_mathfn (fndecl, arglist);
}
}
 
 
/* Fold function call to builtin ceil, ceilf or ceill.  Return
/* Fold function call to builtin ceil, ceilf or ceill.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_ceil (tree fndecl, tree arglist)
fold_builtin_ceil (tree fndecl, tree arglist)
{
{
  tree arg;
  tree arg;
 
 
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  /* Optimize ceil of constant value.  */
  /* Optimize ceil of constant value.  */
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  if (TREE_CODE (arg) == REAL_CST && ! TREE_CONSTANT_OVERFLOW (arg))
  if (TREE_CODE (arg) == REAL_CST && ! TREE_CONSTANT_OVERFLOW (arg))
    {
    {
      REAL_VALUE_TYPE x;
      REAL_VALUE_TYPE x;
 
 
      x = TREE_REAL_CST (arg);
      x = TREE_REAL_CST (arg);
      if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math)
      if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math)
        {
        {
          tree type = TREE_TYPE (TREE_TYPE (fndecl));
          tree type = TREE_TYPE (TREE_TYPE (fndecl));
          REAL_VALUE_TYPE r;
          REAL_VALUE_TYPE r;
 
 
          real_ceil (&r, TYPE_MODE (type), &x);
          real_ceil (&r, TYPE_MODE (type), &x);
          return build_real (type, r);
          return build_real (type, r);
        }
        }
    }
    }
 
 
  return fold_trunc_transparent_mathfn (fndecl, arglist);
  return fold_trunc_transparent_mathfn (fndecl, arglist);
}
}
 
 
/* Fold function call to builtin round, roundf or roundl.  Return
/* Fold function call to builtin round, roundf or roundl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_round (tree fndecl, tree arglist)
fold_builtin_round (tree fndecl, tree arglist)
{
{
  tree arg;
  tree arg;
 
 
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  /* Optimize round of constant value.  */
  /* Optimize round of constant value.  */
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  if (TREE_CODE (arg) == REAL_CST && ! TREE_CONSTANT_OVERFLOW (arg))
  if (TREE_CODE (arg) == REAL_CST && ! TREE_CONSTANT_OVERFLOW (arg))
    {
    {
      REAL_VALUE_TYPE x;
      REAL_VALUE_TYPE x;
 
 
      x = TREE_REAL_CST (arg);
      x = TREE_REAL_CST (arg);
      if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math)
      if (! REAL_VALUE_ISNAN (x) || ! flag_errno_math)
        {
        {
          tree type = TREE_TYPE (TREE_TYPE (fndecl));
          tree type = TREE_TYPE (TREE_TYPE (fndecl));
          REAL_VALUE_TYPE r;
          REAL_VALUE_TYPE r;
 
 
          real_round (&r, TYPE_MODE (type), &x);
          real_round (&r, TYPE_MODE (type), &x);
          return build_real (type, r);
          return build_real (type, r);
        }
        }
    }
    }
 
 
  return fold_trunc_transparent_mathfn (fndecl, arglist);
  return fold_trunc_transparent_mathfn (fndecl, arglist);
}
}
 
 
/* Fold function call to builtin lround, lroundf or lroundl (or the
/* Fold function call to builtin lround, lroundf or lroundl (or the
   corresponding long long versions) and other rounding functions.
   corresponding long long versions) and other rounding functions.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_int_roundingfn (tree fndecl, tree arglist)
fold_builtin_int_roundingfn (tree fndecl, tree arglist)
{
{
  tree arg;
  tree arg;
 
 
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (! validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  /* Optimize lround of constant value.  */
  /* Optimize lround of constant value.  */
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  if (TREE_CODE (arg) == REAL_CST && ! TREE_CONSTANT_OVERFLOW (arg))
  if (TREE_CODE (arg) == REAL_CST && ! TREE_CONSTANT_OVERFLOW (arg))
    {
    {
      const REAL_VALUE_TYPE x = TREE_REAL_CST (arg);
      const REAL_VALUE_TYPE x = TREE_REAL_CST (arg);
 
 
      if (! REAL_VALUE_ISNAN (x) && ! REAL_VALUE_ISINF (x))
      if (! REAL_VALUE_ISNAN (x) && ! REAL_VALUE_ISINF (x))
        {
        {
          tree itype = TREE_TYPE (TREE_TYPE (fndecl));
          tree itype = TREE_TYPE (TREE_TYPE (fndecl));
          tree ftype = TREE_TYPE (arg), result;
          tree ftype = TREE_TYPE (arg), result;
          HOST_WIDE_INT hi, lo;
          HOST_WIDE_INT hi, lo;
          REAL_VALUE_TYPE r;
          REAL_VALUE_TYPE r;
 
 
          switch (DECL_FUNCTION_CODE (fndecl))
          switch (DECL_FUNCTION_CODE (fndecl))
            {
            {
            CASE_FLT_FN (BUILT_IN_LFLOOR):
            CASE_FLT_FN (BUILT_IN_LFLOOR):
            CASE_FLT_FN (BUILT_IN_LLFLOOR):
            CASE_FLT_FN (BUILT_IN_LLFLOOR):
              real_floor (&r, TYPE_MODE (ftype), &x);
              real_floor (&r, TYPE_MODE (ftype), &x);
              break;
              break;
 
 
            CASE_FLT_FN (BUILT_IN_LCEIL):
            CASE_FLT_FN (BUILT_IN_LCEIL):
            CASE_FLT_FN (BUILT_IN_LLCEIL):
            CASE_FLT_FN (BUILT_IN_LLCEIL):
              real_ceil (&r, TYPE_MODE (ftype), &x);
              real_ceil (&r, TYPE_MODE (ftype), &x);
              break;
              break;
 
 
            CASE_FLT_FN (BUILT_IN_LROUND):
            CASE_FLT_FN (BUILT_IN_LROUND):
            CASE_FLT_FN (BUILT_IN_LLROUND):
            CASE_FLT_FN (BUILT_IN_LLROUND):
              real_round (&r, TYPE_MODE (ftype), &x);
              real_round (&r, TYPE_MODE (ftype), &x);
              break;
              break;
 
 
            default:
            default:
              gcc_unreachable ();
              gcc_unreachable ();
            }
            }
 
 
          REAL_VALUE_TO_INT (&lo, &hi, r);
          REAL_VALUE_TO_INT (&lo, &hi, r);
          result = build_int_cst_wide (NULL_TREE, lo, hi);
          result = build_int_cst_wide (NULL_TREE, lo, hi);
          if (int_fits_type_p (result, itype))
          if (int_fits_type_p (result, itype))
            return fold_convert (itype, result);
            return fold_convert (itype, result);
        }
        }
    }
    }
 
 
  return fold_fixed_mathfn (fndecl, arglist);
  return fold_fixed_mathfn (fndecl, arglist);
}
}
 
 
/* Fold function call to builtin ffs, clz, ctz, popcount and parity
/* Fold function call to builtin ffs, clz, ctz, popcount and parity
   and their long and long long variants (i.e. ffsl and ffsll).
   and their long and long long variants (i.e. ffsl and ffsll).
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_bitop (tree fndecl, tree arglist)
fold_builtin_bitop (tree fndecl, tree arglist)
{
{
  tree arg;
  tree arg;
 
 
  if (! validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
  if (! validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize for constant argument.  */
  /* Optimize for constant argument.  */
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  if (TREE_CODE (arg) == INTEGER_CST && ! TREE_CONSTANT_OVERFLOW (arg))
  if (TREE_CODE (arg) == INTEGER_CST && ! TREE_CONSTANT_OVERFLOW (arg))
    {
    {
      HOST_WIDE_INT hi, width, result;
      HOST_WIDE_INT hi, width, result;
      unsigned HOST_WIDE_INT lo;
      unsigned HOST_WIDE_INT lo;
      tree type;
      tree type;
 
 
      type = TREE_TYPE (arg);
      type = TREE_TYPE (arg);
      width = TYPE_PRECISION (type);
      width = TYPE_PRECISION (type);
      lo = TREE_INT_CST_LOW (arg);
      lo = TREE_INT_CST_LOW (arg);
 
 
      /* Clear all the bits that are beyond the type's precision.  */
      /* Clear all the bits that are beyond the type's precision.  */
      if (width > HOST_BITS_PER_WIDE_INT)
      if (width > HOST_BITS_PER_WIDE_INT)
        {
        {
          hi = TREE_INT_CST_HIGH (arg);
          hi = TREE_INT_CST_HIGH (arg);
          if (width < 2 * HOST_BITS_PER_WIDE_INT)
          if (width < 2 * HOST_BITS_PER_WIDE_INT)
            hi &= ~((HOST_WIDE_INT) (-1) >> (width - HOST_BITS_PER_WIDE_INT));
            hi &= ~((HOST_WIDE_INT) (-1) >> (width - HOST_BITS_PER_WIDE_INT));
        }
        }
      else
      else
        {
        {
          hi = 0;
          hi = 0;
          if (width < HOST_BITS_PER_WIDE_INT)
          if (width < HOST_BITS_PER_WIDE_INT)
            lo &= ~((unsigned HOST_WIDE_INT) (-1) << width);
            lo &= ~((unsigned HOST_WIDE_INT) (-1) << width);
        }
        }
 
 
      switch (DECL_FUNCTION_CODE (fndecl))
      switch (DECL_FUNCTION_CODE (fndecl))
        {
        {
        CASE_INT_FN (BUILT_IN_FFS):
        CASE_INT_FN (BUILT_IN_FFS):
          if (lo != 0)
          if (lo != 0)
            result = exact_log2 (lo & -lo) + 1;
            result = exact_log2 (lo & -lo) + 1;
          else if (hi != 0)
          else if (hi != 0)
            result = HOST_BITS_PER_WIDE_INT + exact_log2 (hi & -hi) + 1;
            result = HOST_BITS_PER_WIDE_INT + exact_log2 (hi & -hi) + 1;
          else
          else
            result = 0;
            result = 0;
          break;
          break;
 
 
        CASE_INT_FN (BUILT_IN_CLZ):
        CASE_INT_FN (BUILT_IN_CLZ):
          if (hi != 0)
          if (hi != 0)
            result = width - floor_log2 (hi) - 1 - HOST_BITS_PER_WIDE_INT;
            result = width - floor_log2 (hi) - 1 - HOST_BITS_PER_WIDE_INT;
          else if (lo != 0)
          else if (lo != 0)
            result = width - floor_log2 (lo) - 1;
            result = width - floor_log2 (lo) - 1;
          else if (! CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (type), result))
          else if (! CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (type), result))
            result = width;
            result = width;
          break;
          break;
 
 
        CASE_INT_FN (BUILT_IN_CTZ):
        CASE_INT_FN (BUILT_IN_CTZ):
          if (lo != 0)
          if (lo != 0)
            result = exact_log2 (lo & -lo);
            result = exact_log2 (lo & -lo);
          else if (hi != 0)
          else if (hi != 0)
            result = HOST_BITS_PER_WIDE_INT + exact_log2 (hi & -hi);
            result = HOST_BITS_PER_WIDE_INT + exact_log2 (hi & -hi);
          else if (! CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (type), result))
          else if (! CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (type), result))
            result = width;
            result = width;
          break;
          break;
 
 
        CASE_INT_FN (BUILT_IN_POPCOUNT):
        CASE_INT_FN (BUILT_IN_POPCOUNT):
          result = 0;
          result = 0;
          while (lo)
          while (lo)
            result++, lo &= lo - 1;
            result++, lo &= lo - 1;
          while (hi)
          while (hi)
            result++, hi &= hi - 1;
            result++, hi &= hi - 1;
          break;
          break;
 
 
        CASE_INT_FN (BUILT_IN_PARITY):
        CASE_INT_FN (BUILT_IN_PARITY):
          result = 0;
          result = 0;
          while (lo)
          while (lo)
            result++, lo &= lo - 1;
            result++, lo &= lo - 1;
          while (hi)
          while (hi)
            result++, hi &= hi - 1;
            result++, hi &= hi - 1;
          result &= 1;
          result &= 1;
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
 
 
      return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), result);
      return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), result);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Return true if EXPR is the real constant contained in VALUE.  */
/* Return true if EXPR is the real constant contained in VALUE.  */
 
 
static bool
static bool
real_dconstp (tree expr, const REAL_VALUE_TYPE *value)
real_dconstp (tree expr, const REAL_VALUE_TYPE *value)
{
{
  STRIP_NOPS (expr);
  STRIP_NOPS (expr);
 
 
  return ((TREE_CODE (expr) == REAL_CST
  return ((TREE_CODE (expr) == REAL_CST
           && ! TREE_CONSTANT_OVERFLOW (expr)
           && ! TREE_CONSTANT_OVERFLOW (expr)
           && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), *value))
           && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), *value))
          || (TREE_CODE (expr) == COMPLEX_CST
          || (TREE_CODE (expr) == COMPLEX_CST
              && real_dconstp (TREE_REALPART (expr), value)
              && real_dconstp (TREE_REALPART (expr), value)
              && real_zerop (TREE_IMAGPART (expr))));
              && real_zerop (TREE_IMAGPART (expr))));
}
}
 
 
/* A subroutine of fold_builtin to fold the various logarithmic
/* A subroutine of fold_builtin to fold the various logarithmic
   functions.  EXP is the CALL_EXPR of a call to a builtin logN
   functions.  EXP is the CALL_EXPR of a call to a builtin logN
   function.  VALUE is the base of the logN function.  */
   function.  VALUE is the base of the logN function.  */
 
 
static tree
static tree
fold_builtin_logarithm (tree fndecl, tree arglist,
fold_builtin_logarithm (tree fndecl, tree arglist,
                        const REAL_VALUE_TYPE *value)
                        const REAL_VALUE_TYPE *value)
{
{
  if (validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    {
    {
      tree type = TREE_TYPE (TREE_TYPE (fndecl));
      tree type = TREE_TYPE (TREE_TYPE (fndecl));
      tree arg = TREE_VALUE (arglist);
      tree arg = TREE_VALUE (arglist);
      const enum built_in_function fcode = builtin_mathfn_code (arg);
      const enum built_in_function fcode = builtin_mathfn_code (arg);
 
 
      /* Optimize logN(1.0) = 0.0.  */
      /* Optimize logN(1.0) = 0.0.  */
      if (real_onep (arg))
      if (real_onep (arg))
        return build_real (type, dconst0);
        return build_real (type, dconst0);
 
 
      /* Optimize logN(N) = 1.0.  If N can't be truncated to MODE
      /* Optimize logN(N) = 1.0.  If N can't be truncated to MODE
         exactly, then only do this if flag_unsafe_math_optimizations.  */
         exactly, then only do this if flag_unsafe_math_optimizations.  */
      if (exact_real_truncate (TYPE_MODE (type), value)
      if (exact_real_truncate (TYPE_MODE (type), value)
          || flag_unsafe_math_optimizations)
          || flag_unsafe_math_optimizations)
        {
        {
          const REAL_VALUE_TYPE value_truncate =
          const REAL_VALUE_TYPE value_truncate =
            real_value_truncate (TYPE_MODE (type), *value);
            real_value_truncate (TYPE_MODE (type), *value);
          if (real_dconstp (arg, &value_truncate))
          if (real_dconstp (arg, &value_truncate))
            return build_real (type, dconst1);
            return build_real (type, dconst1);
        }
        }
 
 
      /* Special case, optimize logN(expN(x)) = x.  */
      /* Special case, optimize logN(expN(x)) = x.  */
      if (flag_unsafe_math_optimizations
      if (flag_unsafe_math_optimizations
          && ((value == &dconste
          && ((value == &dconste
               && (fcode == BUILT_IN_EXP
               && (fcode == BUILT_IN_EXP
                   || fcode == BUILT_IN_EXPF
                   || fcode == BUILT_IN_EXPF
                   || fcode == BUILT_IN_EXPL))
                   || fcode == BUILT_IN_EXPL))
              || (value == &dconst2
              || (value == &dconst2
                  && (fcode == BUILT_IN_EXP2
                  && (fcode == BUILT_IN_EXP2
                      || fcode == BUILT_IN_EXP2F
                      || fcode == BUILT_IN_EXP2F
                      || fcode == BUILT_IN_EXP2L))
                      || fcode == BUILT_IN_EXP2L))
              || (value == &dconst10 && (BUILTIN_EXP10_P (fcode)))))
              || (value == &dconst10 && (BUILTIN_EXP10_P (fcode)))))
        return fold_convert (type, TREE_VALUE (TREE_OPERAND (arg, 1)));
        return fold_convert (type, TREE_VALUE (TREE_OPERAND (arg, 1)));
 
 
      /* Optimize logN(func()) for various exponential functions.  We
      /* Optimize logN(func()) for various exponential functions.  We
         want to determine the value "x" and the power "exponent" in
         want to determine the value "x" and the power "exponent" in
         order to transform logN(x**exponent) into exponent*logN(x).  */
         order to transform logN(x**exponent) into exponent*logN(x).  */
      if (flag_unsafe_math_optimizations)
      if (flag_unsafe_math_optimizations)
        {
        {
          tree exponent = 0, x = 0;
          tree exponent = 0, x = 0;
 
 
          switch (fcode)
          switch (fcode)
          {
          {
          CASE_FLT_FN (BUILT_IN_EXP):
          CASE_FLT_FN (BUILT_IN_EXP):
            /* Prepare to do logN(exp(exponent) -> exponent*logN(e).  */
            /* Prepare to do logN(exp(exponent) -> exponent*logN(e).  */
            x = build_real (type,
            x = build_real (type,
                            real_value_truncate (TYPE_MODE (type), dconste));
                            real_value_truncate (TYPE_MODE (type), dconste));
            exponent = TREE_VALUE (TREE_OPERAND (arg, 1));
            exponent = TREE_VALUE (TREE_OPERAND (arg, 1));
            break;
            break;
          CASE_FLT_FN (BUILT_IN_EXP2):
          CASE_FLT_FN (BUILT_IN_EXP2):
            /* Prepare to do logN(exp2(exponent) -> exponent*logN(2).  */
            /* Prepare to do logN(exp2(exponent) -> exponent*logN(2).  */
            x = build_real (type, dconst2);
            x = build_real (type, dconst2);
            exponent = TREE_VALUE (TREE_OPERAND (arg, 1));
            exponent = TREE_VALUE (TREE_OPERAND (arg, 1));
            break;
            break;
          CASE_FLT_FN (BUILT_IN_EXP10):
          CASE_FLT_FN (BUILT_IN_EXP10):
          CASE_FLT_FN (BUILT_IN_POW10):
          CASE_FLT_FN (BUILT_IN_POW10):
            /* Prepare to do logN(exp10(exponent) -> exponent*logN(10).  */
            /* Prepare to do logN(exp10(exponent) -> exponent*logN(10).  */
            x = build_real (type, dconst10);
            x = build_real (type, dconst10);
            exponent = TREE_VALUE (TREE_OPERAND (arg, 1));
            exponent = TREE_VALUE (TREE_OPERAND (arg, 1));
            break;
            break;
          CASE_FLT_FN (BUILT_IN_SQRT):
          CASE_FLT_FN (BUILT_IN_SQRT):
            /* Prepare to do logN(sqrt(x) -> 0.5*logN(x).  */
            /* Prepare to do logN(sqrt(x) -> 0.5*logN(x).  */
            x = TREE_VALUE (TREE_OPERAND (arg, 1));
            x = TREE_VALUE (TREE_OPERAND (arg, 1));
            exponent = build_real (type, dconsthalf);
            exponent = build_real (type, dconsthalf);
            break;
            break;
          CASE_FLT_FN (BUILT_IN_CBRT):
          CASE_FLT_FN (BUILT_IN_CBRT):
            /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x).  */
            /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x).  */
            x = TREE_VALUE (TREE_OPERAND (arg, 1));
            x = TREE_VALUE (TREE_OPERAND (arg, 1));
            exponent = build_real (type, real_value_truncate (TYPE_MODE (type),
            exponent = build_real (type, real_value_truncate (TYPE_MODE (type),
                                                              dconstthird));
                                                              dconstthird));
            break;
            break;
          CASE_FLT_FN (BUILT_IN_POW):
          CASE_FLT_FN (BUILT_IN_POW):
            /* Prepare to do logN(pow(x,exponent) -> exponent*logN(x).  */
            /* Prepare to do logN(pow(x,exponent) -> exponent*logN(x).  */
            x = TREE_VALUE (TREE_OPERAND (arg, 1));
            x = TREE_VALUE (TREE_OPERAND (arg, 1));
            exponent = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg, 1)));
            exponent = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg, 1)));
            break;
            break;
          default:
          default:
            break;
            break;
          }
          }
 
 
          /* Now perform the optimization.  */
          /* Now perform the optimization.  */
          if (x && exponent)
          if (x && exponent)
            {
            {
              tree logfn;
              tree logfn;
              arglist = build_tree_list (NULL_TREE, x);
              arglist = build_tree_list (NULL_TREE, x);
              logfn = build_function_call_expr (fndecl, arglist);
              logfn = build_function_call_expr (fndecl, arglist);
              return fold_build2 (MULT_EXPR, type, exponent, logfn);
              return fold_build2 (MULT_EXPR, type, exponent, logfn);
            }
            }
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Fold a builtin function call to pow, powf, or powl.  Return
/* Fold a builtin function call to pow, powf, or powl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
static tree
static tree
fold_builtin_pow (tree fndecl, tree arglist, tree type)
fold_builtin_pow (tree fndecl, tree arglist, tree type)
{
{
  tree arg0 = TREE_VALUE (arglist);
  tree arg0 = TREE_VALUE (arglist);
  tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
  tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
 
 
  if (!validate_arglist (arglist, REAL_TYPE, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, REAL_TYPE, VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize pow(1.0,y) = 1.0.  */
  /* Optimize pow(1.0,y) = 1.0.  */
  if (real_onep (arg0))
  if (real_onep (arg0))
    return omit_one_operand (type, build_real (type, dconst1), arg1);
    return omit_one_operand (type, build_real (type, dconst1), arg1);
 
 
  if (TREE_CODE (arg1) == REAL_CST
  if (TREE_CODE (arg1) == REAL_CST
      && ! TREE_CONSTANT_OVERFLOW (arg1))
      && ! TREE_CONSTANT_OVERFLOW (arg1))
    {
    {
      REAL_VALUE_TYPE cint;
      REAL_VALUE_TYPE cint;
      REAL_VALUE_TYPE c;
      REAL_VALUE_TYPE c;
      HOST_WIDE_INT n;
      HOST_WIDE_INT n;
 
 
      c = TREE_REAL_CST (arg1);
      c = TREE_REAL_CST (arg1);
 
 
      /* Optimize pow(x,0.0) = 1.0.  */
      /* Optimize pow(x,0.0) = 1.0.  */
      if (REAL_VALUES_EQUAL (c, dconst0))
      if (REAL_VALUES_EQUAL (c, dconst0))
        return omit_one_operand (type, build_real (type, dconst1),
        return omit_one_operand (type, build_real (type, dconst1),
                                 arg0);
                                 arg0);
 
 
      /* Optimize pow(x,1.0) = x.  */
      /* Optimize pow(x,1.0) = x.  */
      if (REAL_VALUES_EQUAL (c, dconst1))
      if (REAL_VALUES_EQUAL (c, dconst1))
        return arg0;
        return arg0;
 
 
      /* Optimize pow(x,-1.0) = 1.0/x.  */
      /* Optimize pow(x,-1.0) = 1.0/x.  */
      if (REAL_VALUES_EQUAL (c, dconstm1))
      if (REAL_VALUES_EQUAL (c, dconstm1))
        return fold_build2 (RDIV_EXPR, type,
        return fold_build2 (RDIV_EXPR, type,
                            build_real (type, dconst1), arg0);
                            build_real (type, dconst1), arg0);
 
 
      /* Optimize pow(x,0.5) = sqrt(x).  */
      /* Optimize pow(x,0.5) = sqrt(x).  */
      if (flag_unsafe_math_optimizations
      if (flag_unsafe_math_optimizations
          && REAL_VALUES_EQUAL (c, dconsthalf))
          && REAL_VALUES_EQUAL (c, dconsthalf))
        {
        {
          tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
          tree sqrtfn = mathfn_built_in (type, BUILT_IN_SQRT);
 
 
          if (sqrtfn != NULL_TREE)
          if (sqrtfn != NULL_TREE)
            {
            {
              tree arglist = build_tree_list (NULL_TREE, arg0);
              tree arglist = build_tree_list (NULL_TREE, arg0);
              return build_function_call_expr (sqrtfn, arglist);
              return build_function_call_expr (sqrtfn, arglist);
            }
            }
        }
        }
 
 
      /* Check for an integer exponent.  */
      /* Check for an integer exponent.  */
      n = real_to_integer (&c);
      n = real_to_integer (&c);
      real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
      real_from_integer (&cint, VOIDmode, n, n < 0 ? -1 : 0, 0);
      if (real_identical (&c, &cint))
      if (real_identical (&c, &cint))
        {
        {
          /* Attempt to evaluate pow at compile-time.  */
          /* Attempt to evaluate pow at compile-time.  */
          if (TREE_CODE (arg0) == REAL_CST
          if (TREE_CODE (arg0) == REAL_CST
              && ! TREE_CONSTANT_OVERFLOW (arg0))
              && ! TREE_CONSTANT_OVERFLOW (arg0))
            {
            {
              REAL_VALUE_TYPE x;
              REAL_VALUE_TYPE x;
              bool inexact;
              bool inexact;
 
 
              x = TREE_REAL_CST (arg0);
              x = TREE_REAL_CST (arg0);
              inexact = real_powi (&x, TYPE_MODE (type), &x, n);
              inexact = real_powi (&x, TYPE_MODE (type), &x, n);
              if (flag_unsafe_math_optimizations || !inexact)
              if (flag_unsafe_math_optimizations || !inexact)
                return build_real (type, x);
                return build_real (type, x);
            }
            }
 
 
          /* Strip sign ops from even integer powers.  */
          /* Strip sign ops from even integer powers.  */
          if ((n & 1) == 0 && flag_unsafe_math_optimizations)
          if ((n & 1) == 0 && flag_unsafe_math_optimizations)
            {
            {
              tree narg0 = fold_strip_sign_ops (arg0);
              tree narg0 = fold_strip_sign_ops (arg0);
              if (narg0)
              if (narg0)
                {
                {
                  arglist = build_tree_list (NULL_TREE, arg1);
                  arglist = build_tree_list (NULL_TREE, arg1);
                  arglist = tree_cons (NULL_TREE, narg0, arglist);
                  arglist = tree_cons (NULL_TREE, narg0, arglist);
                  return build_function_call_expr (fndecl, arglist);
                  return build_function_call_expr (fndecl, arglist);
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  if (flag_unsafe_math_optimizations)
  if (flag_unsafe_math_optimizations)
    {
    {
      const enum built_in_function fcode = builtin_mathfn_code (arg0);
      const enum built_in_function fcode = builtin_mathfn_code (arg0);
 
 
      /* Optimize pow(expN(x),y) = expN(x*y).  */
      /* Optimize pow(expN(x),y) = expN(x*y).  */
      if (BUILTIN_EXPONENT_P (fcode))
      if (BUILTIN_EXPONENT_P (fcode))
        {
        {
          tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
          tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
          tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
          tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
          arg = fold_build2 (MULT_EXPR, type, arg, arg1);
          arg = fold_build2 (MULT_EXPR, type, arg, arg1);
          arglist = build_tree_list (NULL_TREE, arg);
          arglist = build_tree_list (NULL_TREE, arg);
          return build_function_call_expr (expfn, arglist);
          return build_function_call_expr (expfn, arglist);
        }
        }
 
 
      /* Optimize pow(sqrt(x),y) = pow(x,y*0.5).  */
      /* Optimize pow(sqrt(x),y) = pow(x,y*0.5).  */
      if (BUILTIN_SQRT_P (fcode))
      if (BUILTIN_SQRT_P (fcode))
        {
        {
          tree narg0 = TREE_VALUE (TREE_OPERAND (arg0, 1));
          tree narg0 = TREE_VALUE (TREE_OPERAND (arg0, 1));
          tree narg1 = fold_build2 (MULT_EXPR, type, arg1,
          tree narg1 = fold_build2 (MULT_EXPR, type, arg1,
                                    build_real (type, dconsthalf));
                                    build_real (type, dconsthalf));
 
 
          arglist = tree_cons (NULL_TREE, narg0,
          arglist = tree_cons (NULL_TREE, narg0,
                               build_tree_list (NULL_TREE, narg1));
                               build_tree_list (NULL_TREE, narg1));
          return build_function_call_expr (fndecl, arglist);
          return build_function_call_expr (fndecl, arglist);
        }
        }
 
 
      /* Optimize pow(cbrt(x),y) = pow(x,y/3) iff x is nonnegative.  */
      /* Optimize pow(cbrt(x),y) = pow(x,y/3) iff x is nonnegative.  */
      if (BUILTIN_CBRT_P (fcode))
      if (BUILTIN_CBRT_P (fcode))
        {
        {
          tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
          tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
          if (tree_expr_nonnegative_p (arg))
          if (tree_expr_nonnegative_p (arg))
            {
            {
              const REAL_VALUE_TYPE dconstroot
              const REAL_VALUE_TYPE dconstroot
                = real_value_truncate (TYPE_MODE (type), dconstthird);
                = real_value_truncate (TYPE_MODE (type), dconstthird);
              tree narg1 = fold_build2 (MULT_EXPR, type, arg1,
              tree narg1 = fold_build2 (MULT_EXPR, type, arg1,
                                        build_real (type, dconstroot));
                                        build_real (type, dconstroot));
              arglist = tree_cons (NULL_TREE, arg,
              arglist = tree_cons (NULL_TREE, arg,
                                   build_tree_list (NULL_TREE, narg1));
                                   build_tree_list (NULL_TREE, narg1));
              return build_function_call_expr (fndecl, arglist);
              return build_function_call_expr (fndecl, arglist);
            }
            }
        }
        }
 
 
      /* Optimize pow(pow(x,y),z) = pow(x,y*z).  */
      /* Optimize pow(pow(x,y),z) = pow(x,y*z).  */
      if (fcode == BUILT_IN_POW || fcode == BUILT_IN_POWF
      if (fcode == BUILT_IN_POW || fcode == BUILT_IN_POWF
           || fcode == BUILT_IN_POWL)
           || fcode == BUILT_IN_POWL)
        {
        {
          tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
          tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
          tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0, 1)));
          tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0, 1)));
          tree narg1 = fold_build2 (MULT_EXPR, type, arg01, arg1);
          tree narg1 = fold_build2 (MULT_EXPR, type, arg01, arg1);
          arglist = tree_cons (NULL_TREE, arg00,
          arglist = tree_cons (NULL_TREE, arg00,
                               build_tree_list (NULL_TREE, narg1));
                               build_tree_list (NULL_TREE, narg1));
          return build_function_call_expr (fndecl, arglist);
          return build_function_call_expr (fndecl, arglist);
        }
        }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a builtin function call to powi, powif, or powil.  Return
/* Fold a builtin function call to powi, powif, or powil.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
static tree
static tree
fold_builtin_powi (tree fndecl ATTRIBUTE_UNUSED, tree arglist, tree type)
fold_builtin_powi (tree fndecl ATTRIBUTE_UNUSED, tree arglist, tree type)
{
{
  tree arg0 = TREE_VALUE (arglist);
  tree arg0 = TREE_VALUE (arglist);
  tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
  tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
 
 
  if (!validate_arglist (arglist, REAL_TYPE, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, INTEGER_TYPE, VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Optimize pow(1.0,y) = 1.0.  */
  /* Optimize pow(1.0,y) = 1.0.  */
  if (real_onep (arg0))
  if (real_onep (arg0))
    return omit_one_operand (type, build_real (type, dconst1), arg1);
    return omit_one_operand (type, build_real (type, dconst1), arg1);
 
 
  if (host_integerp (arg1, 0))
  if (host_integerp (arg1, 0))
    {
    {
      HOST_WIDE_INT c = TREE_INT_CST_LOW (arg1);
      HOST_WIDE_INT c = TREE_INT_CST_LOW (arg1);
 
 
      /* Evaluate powi at compile-time.  */
      /* Evaluate powi at compile-time.  */
      if (TREE_CODE (arg0) == REAL_CST
      if (TREE_CODE (arg0) == REAL_CST
          && ! TREE_CONSTANT_OVERFLOW (arg0))
          && ! TREE_CONSTANT_OVERFLOW (arg0))
        {
        {
          REAL_VALUE_TYPE x;
          REAL_VALUE_TYPE x;
          x = TREE_REAL_CST (arg0);
          x = TREE_REAL_CST (arg0);
          real_powi (&x, TYPE_MODE (type), &x, c);
          real_powi (&x, TYPE_MODE (type), &x, c);
          return build_real (type, x);
          return build_real (type, x);
        }
        }
 
 
      /* Optimize pow(x,0) = 1.0.  */
      /* Optimize pow(x,0) = 1.0.  */
      if (c == 0)
      if (c == 0)
        return omit_one_operand (type, build_real (type, dconst1),
        return omit_one_operand (type, build_real (type, dconst1),
                                 arg0);
                                 arg0);
 
 
      /* Optimize pow(x,1) = x.  */
      /* Optimize pow(x,1) = x.  */
      if (c == 1)
      if (c == 1)
        return arg0;
        return arg0;
 
 
      /* Optimize pow(x,-1) = 1.0/x.  */
      /* Optimize pow(x,-1) = 1.0/x.  */
      if (c == -1)
      if (c == -1)
        return fold_build2 (RDIV_EXPR, type,
        return fold_build2 (RDIV_EXPR, type,
                           build_real (type, dconst1), arg0);
                           build_real (type, dconst1), arg0);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* A subroutine of fold_builtin to fold the various exponent
/* A subroutine of fold_builtin to fold the various exponent
   functions.  EXP is the CALL_EXPR of a call to a builtin function.
   functions.  EXP is the CALL_EXPR of a call to a builtin function.
   VALUE is the value which will be raised to a power.  */
   VALUE is the value which will be raised to a power.  */
 
 
static tree
static tree
fold_builtin_exponent (tree fndecl, tree arglist,
fold_builtin_exponent (tree fndecl, tree arglist,
                       const REAL_VALUE_TYPE *value)
                       const REAL_VALUE_TYPE *value)
{
{
  if (validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    {
    {
      tree type = TREE_TYPE (TREE_TYPE (fndecl));
      tree type = TREE_TYPE (TREE_TYPE (fndecl));
      tree arg = TREE_VALUE (arglist);
      tree arg = TREE_VALUE (arglist);
 
 
      /* Optimize exp*(0.0) = 1.0.  */
      /* Optimize exp*(0.0) = 1.0.  */
      if (real_zerop (arg))
      if (real_zerop (arg))
        return build_real (type, dconst1);
        return build_real (type, dconst1);
 
 
      /* Optimize expN(1.0) = N.  */
      /* Optimize expN(1.0) = N.  */
      if (real_onep (arg))
      if (real_onep (arg))
        {
        {
          REAL_VALUE_TYPE cst;
          REAL_VALUE_TYPE cst;
 
 
          real_convert (&cst, TYPE_MODE (type), value);
          real_convert (&cst, TYPE_MODE (type), value);
          return build_real (type, cst);
          return build_real (type, cst);
        }
        }
 
 
      /* Attempt to evaluate expN(integer) at compile-time.  */
      /* Attempt to evaluate expN(integer) at compile-time.  */
      if (flag_unsafe_math_optimizations
      if (flag_unsafe_math_optimizations
          && TREE_CODE (arg) == REAL_CST
          && TREE_CODE (arg) == REAL_CST
          && ! TREE_CONSTANT_OVERFLOW (arg))
          && ! TREE_CONSTANT_OVERFLOW (arg))
        {
        {
          REAL_VALUE_TYPE cint;
          REAL_VALUE_TYPE cint;
          REAL_VALUE_TYPE c;
          REAL_VALUE_TYPE c;
          HOST_WIDE_INT n;
          HOST_WIDE_INT n;
 
 
          c = TREE_REAL_CST (arg);
          c = TREE_REAL_CST (arg);
          n = real_to_integer (&c);
          n = real_to_integer (&c);
          real_from_integer (&cint, VOIDmode, n,
          real_from_integer (&cint, VOIDmode, n,
                             n < 0 ? -1 : 0, 0);
                             n < 0 ? -1 : 0, 0);
          if (real_identical (&c, &cint))
          if (real_identical (&c, &cint))
            {
            {
              REAL_VALUE_TYPE x;
              REAL_VALUE_TYPE x;
 
 
              real_powi (&x, TYPE_MODE (type), value, n);
              real_powi (&x, TYPE_MODE (type), value, n);
              return build_real (type, x);
              return build_real (type, x);
            }
            }
        }
        }
 
 
      /* Optimize expN(logN(x)) = x.  */
      /* Optimize expN(logN(x)) = x.  */
      if (flag_unsafe_math_optimizations)
      if (flag_unsafe_math_optimizations)
        {
        {
          const enum built_in_function fcode = builtin_mathfn_code (arg);
          const enum built_in_function fcode = builtin_mathfn_code (arg);
 
 
          if ((value == &dconste
          if ((value == &dconste
               && (fcode == BUILT_IN_LOG
               && (fcode == BUILT_IN_LOG
                   || fcode == BUILT_IN_LOGF
                   || fcode == BUILT_IN_LOGF
                   || fcode == BUILT_IN_LOGL))
                   || fcode == BUILT_IN_LOGL))
              || (value == &dconst2
              || (value == &dconst2
                  && (fcode == BUILT_IN_LOG2
                  && (fcode == BUILT_IN_LOG2
                      || fcode == BUILT_IN_LOG2F
                      || fcode == BUILT_IN_LOG2F
                      || fcode == BUILT_IN_LOG2L))
                      || fcode == BUILT_IN_LOG2L))
              || (value == &dconst10
              || (value == &dconst10
                  && (fcode == BUILT_IN_LOG10
                  && (fcode == BUILT_IN_LOG10
                      || fcode == BUILT_IN_LOG10F
                      || fcode == BUILT_IN_LOG10F
                      || fcode == BUILT_IN_LOG10L)))
                      || fcode == BUILT_IN_LOG10L)))
            return fold_convert (type, TREE_VALUE (TREE_OPERAND (arg, 1)));
            return fold_convert (type, TREE_VALUE (TREE_OPERAND (arg, 1)));
        }
        }
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Return true if VAR is a VAR_DECL or a component thereof.  */
/* Return true if VAR is a VAR_DECL or a component thereof.  */
 
 
static bool
static bool
var_decl_component_p (tree var)
var_decl_component_p (tree var)
{
{
  tree inner = var;
  tree inner = var;
  while (handled_component_p (inner))
  while (handled_component_p (inner))
    inner = TREE_OPERAND (inner, 0);
    inner = TREE_OPERAND (inner, 0);
  return SSA_VAR_P (inner);
  return SSA_VAR_P (inner);
}
}
 
 
/* Fold function call to builtin memset.  Return
/* Fold function call to builtin memset.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_memset (tree arglist, tree type, bool ignore)
fold_builtin_memset (tree arglist, tree type, bool ignore)
{
{
  tree dest, c, len, var, ret;
  tree dest, c, len, var, ret;
  unsigned HOST_WIDE_INT length, cval;
  unsigned HOST_WIDE_INT length, cval;
 
 
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  c = TREE_VALUE (TREE_CHAIN (arglist));
  c = TREE_VALUE (TREE_CHAIN (arglist));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
 
 
  if (! host_integerp (len, 1))
  if (! host_integerp (len, 1))
    return 0;
    return 0;
 
 
  /* If the LEN parameter is zero, return DEST.  */
  /* If the LEN parameter is zero, return DEST.  */
  if (integer_zerop (len))
  if (integer_zerop (len))
    return omit_one_operand (type, dest, c);
    return omit_one_operand (type, dest, c);
 
 
  if (! host_integerp (c, 1) || TREE_SIDE_EFFECTS (dest))
  if (! host_integerp (c, 1) || TREE_SIDE_EFFECTS (dest))
    return 0;
    return 0;
 
 
  var = dest;
  var = dest;
  STRIP_NOPS (var);
  STRIP_NOPS (var);
  if (TREE_CODE (var) != ADDR_EXPR)
  if (TREE_CODE (var) != ADDR_EXPR)
    return 0;
    return 0;
 
 
  var = TREE_OPERAND (var, 0);
  var = TREE_OPERAND (var, 0);
  if (TREE_THIS_VOLATILE (var))
  if (TREE_THIS_VOLATILE (var))
    return 0;
    return 0;
 
 
  if (!INTEGRAL_TYPE_P (TREE_TYPE (var))
  if (!INTEGRAL_TYPE_P (TREE_TYPE (var))
      && !POINTER_TYPE_P (TREE_TYPE (var)))
      && !POINTER_TYPE_P (TREE_TYPE (var)))
    return 0;
    return 0;
 
 
  if (! var_decl_component_p (var))
  if (! var_decl_component_p (var))
    return 0;
    return 0;
 
 
  length = tree_low_cst (len, 1);
  length = tree_low_cst (len, 1);
  if (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (var))) != length
  if (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (var))) != length
      || get_pointer_alignment (dest, BIGGEST_ALIGNMENT) / BITS_PER_UNIT
      || get_pointer_alignment (dest, BIGGEST_ALIGNMENT) / BITS_PER_UNIT
         < (int) length)
         < (int) length)
    return 0;
    return 0;
 
 
  if (length > HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT)
  if (length > HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT)
    return 0;
    return 0;
 
 
  if (integer_zerop (c))
  if (integer_zerop (c))
    cval = 0;
    cval = 0;
  else
  else
    {
    {
      if (CHAR_BIT != 8 || BITS_PER_UNIT != 8 || HOST_BITS_PER_WIDE_INT > 64)
      if (CHAR_BIT != 8 || BITS_PER_UNIT != 8 || HOST_BITS_PER_WIDE_INT > 64)
        return 0;
        return 0;
 
 
      cval = tree_low_cst (c, 1);
      cval = tree_low_cst (c, 1);
      cval &= 0xff;
      cval &= 0xff;
      cval |= cval << 8;
      cval |= cval << 8;
      cval |= cval << 16;
      cval |= cval << 16;
      cval |= (cval << 31) << 1;
      cval |= (cval << 31) << 1;
    }
    }
 
 
  ret = build_int_cst_type (TREE_TYPE (var), cval);
  ret = build_int_cst_type (TREE_TYPE (var), cval);
  ret = build2 (MODIFY_EXPR, TREE_TYPE (var), var, ret);
  ret = build2 (MODIFY_EXPR, TREE_TYPE (var), var, ret);
  if (ignore)
  if (ignore)
    return ret;
    return ret;
 
 
  return omit_one_operand (type, dest, ret);
  return omit_one_operand (type, dest, ret);
}
}
 
 
/* Fold function call to builtin memset.  Return
/* Fold function call to builtin memset.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_bzero (tree arglist, bool ignore)
fold_builtin_bzero (tree arglist, bool ignore)
{
{
  tree dest, size, newarglist;
  tree dest, size, newarglist;
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  if (!ignore)
  if (!ignore)
    return 0;
    return 0;
 
 
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  size = TREE_VALUE (TREE_CHAIN (arglist));
  size = TREE_VALUE (TREE_CHAIN (arglist));
 
 
  /* New argument list transforming bzero(ptr x, int y) to
  /* New argument list transforming bzero(ptr x, int y) to
     memset(ptr x, int 0, size_t y).   This is done this way
     memset(ptr x, int 0, size_t y).   This is done this way
     so that if it isn't expanded inline, we fallback to
     so that if it isn't expanded inline, we fallback to
     calling bzero instead of memset.  */
     calling bzero instead of memset.  */
 
 
  newarglist = build_tree_list (NULL_TREE, fold_convert (sizetype, size));
  newarglist = build_tree_list (NULL_TREE, fold_convert (sizetype, size));
  newarglist = tree_cons (NULL_TREE, integer_zero_node, newarglist);
  newarglist = tree_cons (NULL_TREE, integer_zero_node, newarglist);
  newarglist = tree_cons (NULL_TREE, dest, newarglist);
  newarglist = tree_cons (NULL_TREE, dest, newarglist);
  return fold_builtin_memset (newarglist, void_type_node, ignore);
  return fold_builtin_memset (newarglist, void_type_node, ignore);
}
}
 
 
/* Fold function call to builtin mem{{,p}cpy,move}.  Return
/* Fold function call to builtin mem{{,p}cpy,move}.  Return
   NULL_TREE if no simplification can be made.
   NULL_TREE if no simplification can be made.
   If ENDP is 0, return DEST (like memcpy).
   If ENDP is 0, return DEST (like memcpy).
   If ENDP is 1, return DEST+LEN (like mempcpy).
   If ENDP is 1, return DEST+LEN (like mempcpy).
   If ENDP is 2, return DEST+LEN-1 (like stpcpy).
   If ENDP is 2, return DEST+LEN-1 (like stpcpy).
   If ENDP is 3, return DEST, additionally *SRC and *DEST may overlap
   If ENDP is 3, return DEST, additionally *SRC and *DEST may overlap
   (memmove).   */
   (memmove).   */
 
 
static tree
static tree
fold_builtin_memory_op (tree arglist, tree type, bool ignore, int endp)
fold_builtin_memory_op (tree arglist, tree type, bool ignore, int endp)
{
{
  tree dest, src, len, destvar, srcvar, expr;
  tree dest, src, len, destvar, srcvar, expr;
  unsigned HOST_WIDE_INT length;
  unsigned HOST_WIDE_INT length;
 
 
  if (! validate_arglist (arglist,
  if (! validate_arglist (arglist,
                          POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                          POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  src = TREE_VALUE (TREE_CHAIN (arglist));
  src = TREE_VALUE (TREE_CHAIN (arglist));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
 
 
  /* If the LEN parameter is zero, return DEST.  */
  /* If the LEN parameter is zero, return DEST.  */
  if (integer_zerop (len))
  if (integer_zerop (len))
    return omit_one_operand (type, dest, src);
    return omit_one_operand (type, dest, src);
 
 
  /* If SRC and DEST are the same (and not volatile), return
  /* If SRC and DEST are the same (and not volatile), return
     DEST{,+LEN,+LEN-1}.  */
     DEST{,+LEN,+LEN-1}.  */
  if (operand_equal_p (src, dest, 0))
  if (operand_equal_p (src, dest, 0))
    expr = len;
    expr = len;
  else
  else
    {
    {
      if (! host_integerp (len, 1))
      if (! host_integerp (len, 1))
        return 0;
        return 0;
 
 
      if (TREE_SIDE_EFFECTS (dest) || TREE_SIDE_EFFECTS (src))
      if (TREE_SIDE_EFFECTS (dest) || TREE_SIDE_EFFECTS (src))
        return 0;
        return 0;
 
 
      destvar = dest;
      destvar = dest;
      STRIP_NOPS (destvar);
      STRIP_NOPS (destvar);
      if (TREE_CODE (destvar) != ADDR_EXPR)
      if (TREE_CODE (destvar) != ADDR_EXPR)
        return 0;
        return 0;
 
 
      destvar = TREE_OPERAND (destvar, 0);
      destvar = TREE_OPERAND (destvar, 0);
      if (TREE_THIS_VOLATILE (destvar))
      if (TREE_THIS_VOLATILE (destvar))
        return 0;
        return 0;
 
 
      if (!INTEGRAL_TYPE_P (TREE_TYPE (destvar))
      if (!INTEGRAL_TYPE_P (TREE_TYPE (destvar))
          && !POINTER_TYPE_P (TREE_TYPE (destvar))
          && !POINTER_TYPE_P (TREE_TYPE (destvar))
          && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (destvar)))
          && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (destvar)))
        return 0;
        return 0;
 
 
      if (! var_decl_component_p (destvar))
      if (! var_decl_component_p (destvar))
        return 0;
        return 0;
 
 
      srcvar = src;
      srcvar = src;
      STRIP_NOPS (srcvar);
      STRIP_NOPS (srcvar);
      if (TREE_CODE (srcvar) != ADDR_EXPR)
      if (TREE_CODE (srcvar) != ADDR_EXPR)
        return 0;
        return 0;
 
 
      srcvar = TREE_OPERAND (srcvar, 0);
      srcvar = TREE_OPERAND (srcvar, 0);
      if (TREE_THIS_VOLATILE (srcvar))
      if (TREE_THIS_VOLATILE (srcvar))
        return 0;
        return 0;
 
 
      if (!INTEGRAL_TYPE_P (TREE_TYPE (srcvar))
      if (!INTEGRAL_TYPE_P (TREE_TYPE (srcvar))
          && !POINTER_TYPE_P (TREE_TYPE (srcvar))
          && !POINTER_TYPE_P (TREE_TYPE (srcvar))
          && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (srcvar)))
          && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (srcvar)))
        return 0;
        return 0;
 
 
      if (! var_decl_component_p (srcvar))
      if (! var_decl_component_p (srcvar))
        return 0;
        return 0;
 
 
      length = tree_low_cst (len, 1);
      length = tree_low_cst (len, 1);
      if (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (destvar))) != length
      if (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (destvar))) != length
          || get_pointer_alignment (dest, BIGGEST_ALIGNMENT) / BITS_PER_UNIT
          || get_pointer_alignment (dest, BIGGEST_ALIGNMENT) / BITS_PER_UNIT
             < (int) length
             < (int) length
          || GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (srcvar))) != length
          || GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (srcvar))) != length
          || get_pointer_alignment (src, BIGGEST_ALIGNMENT) / BITS_PER_UNIT
          || get_pointer_alignment (src, BIGGEST_ALIGNMENT) / BITS_PER_UNIT
             < (int) length)
             < (int) length)
        return 0;
        return 0;
 
 
      if ((INTEGRAL_TYPE_P (TREE_TYPE (srcvar))
      if ((INTEGRAL_TYPE_P (TREE_TYPE (srcvar))
           || POINTER_TYPE_P (TREE_TYPE (srcvar)))
           || POINTER_TYPE_P (TREE_TYPE (srcvar)))
          && (INTEGRAL_TYPE_P (TREE_TYPE (destvar))
          && (INTEGRAL_TYPE_P (TREE_TYPE (destvar))
              || POINTER_TYPE_P (TREE_TYPE (destvar))))
              || POINTER_TYPE_P (TREE_TYPE (destvar))))
        expr = fold_convert (TREE_TYPE (destvar), srcvar);
        expr = fold_convert (TREE_TYPE (destvar), srcvar);
      else
      else
        expr = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (destvar), srcvar);
        expr = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (destvar), srcvar);
      expr = build2 (MODIFY_EXPR, TREE_TYPE (destvar), destvar, expr);
      expr = build2 (MODIFY_EXPR, TREE_TYPE (destvar), destvar, expr);
    }
    }
 
 
  if (ignore)
  if (ignore)
    return expr;
    return expr;
 
 
  if (endp == 0 || endp == 3)
  if (endp == 0 || endp == 3)
    return omit_one_operand (type, dest, expr);
    return omit_one_operand (type, dest, expr);
 
 
  if (expr == len)
  if (expr == len)
    expr = 0;
    expr = 0;
 
 
  if (endp == 2)
  if (endp == 2)
    len = fold_build2 (MINUS_EXPR, TREE_TYPE (len), len,
    len = fold_build2 (MINUS_EXPR, TREE_TYPE (len), len,
                       ssize_int (1));
                       ssize_int (1));
 
 
  len = fold_convert (TREE_TYPE (dest), len);
  len = fold_convert (TREE_TYPE (dest), len);
  dest = fold_build2 (PLUS_EXPR, TREE_TYPE (dest), dest, len);
  dest = fold_build2 (PLUS_EXPR, TREE_TYPE (dest), dest, len);
  dest = fold_convert (type, dest);
  dest = fold_convert (type, dest);
  if (expr)
  if (expr)
    dest = omit_one_operand (type, dest, expr);
    dest = omit_one_operand (type, dest, expr);
  return dest;
  return dest;
}
}
 
 
/* Fold function call to builtin bcopy.  Return NULL_TREE if no
/* Fold function call to builtin bcopy.  Return NULL_TREE if no
   simplification can be made.  */
   simplification can be made.  */
 
 
static tree
static tree
fold_builtin_bcopy (tree arglist, bool ignore)
fold_builtin_bcopy (tree arglist, bool ignore)
{
{
  tree src, dest, size, newarglist;
  tree src, dest, size, newarglist;
 
 
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  if (! ignore)
  if (! ignore)
    return 0;
    return 0;
 
 
  src = TREE_VALUE (arglist);
  src = TREE_VALUE (arglist);
  dest = TREE_VALUE (TREE_CHAIN (arglist));
  dest = TREE_VALUE (TREE_CHAIN (arglist));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
 
 
  /* New argument list transforming bcopy(ptr x, ptr y, int z) to
  /* New argument list transforming bcopy(ptr x, ptr y, int z) to
     memmove(ptr y, ptr x, size_t z).   This is done this way
     memmove(ptr y, ptr x, size_t z).   This is done this way
     so that if it isn't expanded inline, we fallback to
     so that if it isn't expanded inline, we fallback to
     calling bcopy instead of memmove.  */
     calling bcopy instead of memmove.  */
 
 
  newarglist = build_tree_list (NULL_TREE, fold_convert (sizetype, size));
  newarglist = build_tree_list (NULL_TREE, fold_convert (sizetype, size));
  newarglist = tree_cons (NULL_TREE, src, newarglist);
  newarglist = tree_cons (NULL_TREE, src, newarglist);
  newarglist = tree_cons (NULL_TREE, dest, newarglist);
  newarglist = tree_cons (NULL_TREE, dest, newarglist);
 
 
  return fold_builtin_memory_op (newarglist, void_type_node, true, /*endp=*/3);
  return fold_builtin_memory_op (newarglist, void_type_node, true, /*endp=*/3);
}
}
 
 
/* Fold function call to builtin strcpy.  If LEN is not NULL, it represents
/* Fold function call to builtin strcpy.  If LEN is not NULL, it represents
   the length of the string to be copied.  Return NULL_TREE if no
   the length of the string to be copied.  Return NULL_TREE if no
   simplification can be made.  */
   simplification can be made.  */
 
 
tree
tree
fold_builtin_strcpy (tree fndecl, tree arglist, tree len)
fold_builtin_strcpy (tree fndecl, tree arglist, tree len)
{
{
  tree dest, src, fn;
  tree dest, src, fn;
 
 
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  src = TREE_VALUE (TREE_CHAIN (arglist));
  src = TREE_VALUE (TREE_CHAIN (arglist));
 
 
  /* If SRC and DEST are the same (and not volatile), return DEST.  */
  /* If SRC and DEST are the same (and not volatile), return DEST.  */
  if (operand_equal_p (src, dest, 0))
  if (operand_equal_p (src, dest, 0))
    return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)), dest);
    return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)), dest);
 
 
  if (optimize_size)
  if (optimize_size)
    return 0;
    return 0;
 
 
  fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
  fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
  if (!fn)
  if (!fn)
    return 0;
    return 0;
 
 
  if (!len)
  if (!len)
    {
    {
      len = c_strlen (src, 1);
      len = c_strlen (src, 1);
      if (! len || TREE_SIDE_EFFECTS (len))
      if (! len || TREE_SIDE_EFFECTS (len))
        return 0;
        return 0;
    }
    }
 
 
  len = size_binop (PLUS_EXPR, len, ssize_int (1));
  len = size_binop (PLUS_EXPR, len, ssize_int (1));
  arglist = build_tree_list (NULL_TREE, len);
  arglist = build_tree_list (NULL_TREE, len);
  arglist = tree_cons (NULL_TREE, src, arglist);
  arglist = tree_cons (NULL_TREE, src, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
  return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)),
  return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)),
                       build_function_call_expr (fn, arglist));
                       build_function_call_expr (fn, arglist));
}
}
 
 
/* Fold function call to builtin strncpy.  If SLEN is not NULL, it represents
/* Fold function call to builtin strncpy.  If SLEN is not NULL, it represents
   the length of the source string.  Return NULL_TREE if no simplification
   the length of the source string.  Return NULL_TREE if no simplification
   can be made.  */
   can be made.  */
 
 
tree
tree
fold_builtin_strncpy (tree fndecl, tree arglist, tree slen)
fold_builtin_strncpy (tree fndecl, tree arglist, tree slen)
{
{
  tree dest, src, len, fn;
  tree dest, src, len, fn;
 
 
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  src = TREE_VALUE (TREE_CHAIN (arglist));
  src = TREE_VALUE (TREE_CHAIN (arglist));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
 
 
  /* If the LEN parameter is zero, return DEST.  */
  /* If the LEN parameter is zero, return DEST.  */
  if (integer_zerop (len))
  if (integer_zerop (len))
    return omit_one_operand (TREE_TYPE (TREE_TYPE (fndecl)), dest, src);
    return omit_one_operand (TREE_TYPE (TREE_TYPE (fndecl)), dest, src);
 
 
  /* We can't compare slen with len as constants below if len is not a
  /* We can't compare slen with len as constants below if len is not a
     constant.  */
     constant.  */
  if (len == 0 || TREE_CODE (len) != INTEGER_CST)
  if (len == 0 || TREE_CODE (len) != INTEGER_CST)
    return 0;
    return 0;
 
 
  if (!slen)
  if (!slen)
    slen = c_strlen (src, 1);
    slen = c_strlen (src, 1);
 
 
  /* Now, we must be passed a constant src ptr parameter.  */
  /* Now, we must be passed a constant src ptr parameter.  */
  if (slen == 0 || TREE_CODE (slen) != INTEGER_CST)
  if (slen == 0 || TREE_CODE (slen) != INTEGER_CST)
    return 0;
    return 0;
 
 
  slen = size_binop (PLUS_EXPR, slen, ssize_int (1));
  slen = size_binop (PLUS_EXPR, slen, ssize_int (1));
 
 
  /* We do not support simplification of this case, though we do
  /* We do not support simplification of this case, though we do
     support it when expanding trees into RTL.  */
     support it when expanding trees into RTL.  */
  /* FIXME: generate a call to __builtin_memset.  */
  /* FIXME: generate a call to __builtin_memset.  */
  if (tree_int_cst_lt (slen, len))
  if (tree_int_cst_lt (slen, len))
    return 0;
    return 0;
 
 
  /* OK transform into builtin memcpy.  */
  /* OK transform into builtin memcpy.  */
  fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
  fn = implicit_built_in_decls[BUILT_IN_MEMCPY];
  if (!fn)
  if (!fn)
    return 0;
    return 0;
  return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)),
  return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)),
                       build_function_call_expr (fn, arglist));
                       build_function_call_expr (fn, arglist));
}
}
 
 
/* Fold function call to builtin memcmp.  Return
/* Fold function call to builtin memcmp.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_memcmp (tree arglist)
fold_builtin_memcmp (tree arglist)
{
{
  tree arg1, arg2, len;
  tree arg1, arg2, len;
  const char *p1, *p2;
  const char *p1, *p2;
 
 
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg1 = TREE_VALUE (arglist);
  arg1 = TREE_VALUE (arglist);
  arg2 = TREE_VALUE (TREE_CHAIN (arglist));
  arg2 = TREE_VALUE (TREE_CHAIN (arglist));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
 
 
  /* If the LEN parameter is zero, return zero.  */
  /* If the LEN parameter is zero, return zero.  */
  if (integer_zerop (len))
  if (integer_zerop (len))
    return omit_two_operands (integer_type_node, integer_zero_node,
    return omit_two_operands (integer_type_node, integer_zero_node,
                              arg1, arg2);
                              arg1, arg2);
 
 
  /* If ARG1 and ARG2 are the same (and not volatile), return zero.  */
  /* If ARG1 and ARG2 are the same (and not volatile), return zero.  */
  if (operand_equal_p (arg1, arg2, 0))
  if (operand_equal_p (arg1, arg2, 0))
    return omit_one_operand (integer_type_node, integer_zero_node, len);
    return omit_one_operand (integer_type_node, integer_zero_node, len);
 
 
  p1 = c_getstr (arg1);
  p1 = c_getstr (arg1);
  p2 = c_getstr (arg2);
  p2 = c_getstr (arg2);
 
 
  /* If all arguments are constant, and the value of len is not greater
  /* If all arguments are constant, and the value of len is not greater
     than the lengths of arg1 and arg2, evaluate at compile-time.  */
     than the lengths of arg1 and arg2, evaluate at compile-time.  */
  if (host_integerp (len, 1) && p1 && p2
  if (host_integerp (len, 1) && p1 && p2
      && compare_tree_int (len, strlen (p1) + 1) <= 0
      && compare_tree_int (len, strlen (p1) + 1) <= 0
      && compare_tree_int (len, strlen (p2) + 1) <= 0)
      && compare_tree_int (len, strlen (p2) + 1) <= 0)
    {
    {
      const int r = memcmp (p1, p2, tree_low_cst (len, 1));
      const int r = memcmp (p1, p2, tree_low_cst (len, 1));
 
 
      if (r > 0)
      if (r > 0)
        return integer_one_node;
        return integer_one_node;
      else if (r < 0)
      else if (r < 0)
        return integer_minus_one_node;
        return integer_minus_one_node;
      else
      else
        return integer_zero_node;
        return integer_zero_node;
    }
    }
 
 
  /* If len parameter is one, return an expression corresponding to
  /* If len parameter is one, return an expression corresponding to
     (*(const unsigned char*)arg1 - (const unsigned char*)arg2).  */
     (*(const unsigned char*)arg1 - (const unsigned char*)arg2).  */
  if (host_integerp (len, 1) && tree_low_cst (len, 1) == 1)
  if (host_integerp (len, 1) && tree_low_cst (len, 1) == 1)
    {
    {
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_ptr_node
      tree cst_uchar_ptr_node
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
 
 
      tree ind1 = fold_convert (integer_type_node,
      tree ind1 = fold_convert (integer_type_node,
                                build1 (INDIRECT_REF, cst_uchar_node,
                                build1 (INDIRECT_REF, cst_uchar_node,
                                        fold_convert (cst_uchar_ptr_node,
                                        fold_convert (cst_uchar_ptr_node,
                                                      arg1)));
                                                      arg1)));
      tree ind2 = fold_convert (integer_type_node,
      tree ind2 = fold_convert (integer_type_node,
                                build1 (INDIRECT_REF, cst_uchar_node,
                                build1 (INDIRECT_REF, cst_uchar_node,
                                        fold_convert (cst_uchar_ptr_node,
                                        fold_convert (cst_uchar_ptr_node,
                                                      arg2)));
                                                      arg2)));
      return fold_build2 (MINUS_EXPR, integer_type_node, ind1, ind2);
      return fold_build2 (MINUS_EXPR, integer_type_node, ind1, ind2);
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Fold function call to builtin strcmp.  Return
/* Fold function call to builtin strcmp.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_strcmp (tree arglist)
fold_builtin_strcmp (tree arglist)
{
{
  tree arg1, arg2;
  tree arg1, arg2;
  const char *p1, *p2;
  const char *p1, *p2;
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg1 = TREE_VALUE (arglist);
  arg1 = TREE_VALUE (arglist);
  arg2 = TREE_VALUE (TREE_CHAIN (arglist));
  arg2 = TREE_VALUE (TREE_CHAIN (arglist));
 
 
  /* If ARG1 and ARG2 are the same (and not volatile), return zero.  */
  /* If ARG1 and ARG2 are the same (and not volatile), return zero.  */
  if (operand_equal_p (arg1, arg2, 0))
  if (operand_equal_p (arg1, arg2, 0))
    return integer_zero_node;
    return integer_zero_node;
 
 
  p1 = c_getstr (arg1);
  p1 = c_getstr (arg1);
  p2 = c_getstr (arg2);
  p2 = c_getstr (arg2);
 
 
  if (p1 && p2)
  if (p1 && p2)
    {
    {
      const int i = strcmp (p1, p2);
      const int i = strcmp (p1, p2);
      if (i < 0)
      if (i < 0)
        return integer_minus_one_node;
        return integer_minus_one_node;
      else if (i > 0)
      else if (i > 0)
        return integer_one_node;
        return integer_one_node;
      else
      else
        return integer_zero_node;
        return integer_zero_node;
    }
    }
 
 
  /* If the second arg is "", return *(const unsigned char*)arg1.  */
  /* If the second arg is "", return *(const unsigned char*)arg1.  */
  if (p2 && *p2 == '\0')
  if (p2 && *p2 == '\0')
    {
    {
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_ptr_node
      tree cst_uchar_ptr_node
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
 
 
      return fold_convert (integer_type_node,
      return fold_convert (integer_type_node,
                           build1 (INDIRECT_REF, cst_uchar_node,
                           build1 (INDIRECT_REF, cst_uchar_node,
                                   fold_convert (cst_uchar_ptr_node,
                                   fold_convert (cst_uchar_ptr_node,
                                                 arg1)));
                                                 arg1)));
    }
    }
 
 
  /* If the first arg is "", return -*(const unsigned char*)arg2.  */
  /* If the first arg is "", return -*(const unsigned char*)arg2.  */
  if (p1 && *p1 == '\0')
  if (p1 && *p1 == '\0')
    {
    {
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_ptr_node
      tree cst_uchar_ptr_node
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
 
 
      tree temp = fold_convert (integer_type_node,
      tree temp = fold_convert (integer_type_node,
                                build1 (INDIRECT_REF, cst_uchar_node,
                                build1 (INDIRECT_REF, cst_uchar_node,
                                        fold_convert (cst_uchar_ptr_node,
                                        fold_convert (cst_uchar_ptr_node,
                                                      arg2)));
                                                      arg2)));
      return fold_build1 (NEGATE_EXPR, integer_type_node, temp);
      return fold_build1 (NEGATE_EXPR, integer_type_node, temp);
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Fold function call to builtin strncmp.  Return
/* Fold function call to builtin strncmp.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_strncmp (tree arglist)
fold_builtin_strncmp (tree arglist)
{
{
  tree arg1, arg2, len;
  tree arg1, arg2, len;
  const char *p1, *p2;
  const char *p1, *p2;
 
 
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg1 = TREE_VALUE (arglist);
  arg1 = TREE_VALUE (arglist);
  arg2 = TREE_VALUE (TREE_CHAIN (arglist));
  arg2 = TREE_VALUE (TREE_CHAIN (arglist));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
 
 
  /* If the LEN parameter is zero, return zero.  */
  /* If the LEN parameter is zero, return zero.  */
  if (integer_zerop (len))
  if (integer_zerop (len))
    return omit_two_operands (integer_type_node, integer_zero_node,
    return omit_two_operands (integer_type_node, integer_zero_node,
                              arg1, arg2);
                              arg1, arg2);
 
 
  /* If ARG1 and ARG2 are the same (and not volatile), return zero.  */
  /* If ARG1 and ARG2 are the same (and not volatile), return zero.  */
  if (operand_equal_p (arg1, arg2, 0))
  if (operand_equal_p (arg1, arg2, 0))
    return omit_one_operand (integer_type_node, integer_zero_node, len);
    return omit_one_operand (integer_type_node, integer_zero_node, len);
 
 
  p1 = c_getstr (arg1);
  p1 = c_getstr (arg1);
  p2 = c_getstr (arg2);
  p2 = c_getstr (arg2);
 
 
  if (host_integerp (len, 1) && p1 && p2)
  if (host_integerp (len, 1) && p1 && p2)
    {
    {
      const int i = strncmp (p1, p2, tree_low_cst (len, 1));
      const int i = strncmp (p1, p2, tree_low_cst (len, 1));
      if (i > 0)
      if (i > 0)
        return integer_one_node;
        return integer_one_node;
      else if (i < 0)
      else if (i < 0)
        return integer_minus_one_node;
        return integer_minus_one_node;
      else
      else
        return integer_zero_node;
        return integer_zero_node;
    }
    }
 
 
  /* If the second arg is "", and the length is greater than zero,
  /* If the second arg is "", and the length is greater than zero,
     return *(const unsigned char*)arg1.  */
     return *(const unsigned char*)arg1.  */
  if (p2 && *p2 == '\0'
  if (p2 && *p2 == '\0'
      && TREE_CODE (len) == INTEGER_CST
      && TREE_CODE (len) == INTEGER_CST
      && tree_int_cst_sgn (len) == 1)
      && tree_int_cst_sgn (len) == 1)
    {
    {
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_ptr_node
      tree cst_uchar_ptr_node
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
 
 
      return fold_convert (integer_type_node,
      return fold_convert (integer_type_node,
                           build1 (INDIRECT_REF, cst_uchar_node,
                           build1 (INDIRECT_REF, cst_uchar_node,
                                   fold_convert (cst_uchar_ptr_node,
                                   fold_convert (cst_uchar_ptr_node,
                                                 arg1)));
                                                 arg1)));
    }
    }
 
 
  /* If the first arg is "", and the length is greater than zero,
  /* If the first arg is "", and the length is greater than zero,
     return -*(const unsigned char*)arg2.  */
     return -*(const unsigned char*)arg2.  */
  if (p1 && *p1 == '\0'
  if (p1 && *p1 == '\0'
      && TREE_CODE (len) == INTEGER_CST
      && TREE_CODE (len) == INTEGER_CST
      && tree_int_cst_sgn (len) == 1)
      && tree_int_cst_sgn (len) == 1)
    {
    {
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_ptr_node
      tree cst_uchar_ptr_node
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
 
 
      tree temp = fold_convert (integer_type_node,
      tree temp = fold_convert (integer_type_node,
                                build1 (INDIRECT_REF, cst_uchar_node,
                                build1 (INDIRECT_REF, cst_uchar_node,
                                        fold_convert (cst_uchar_ptr_node,
                                        fold_convert (cst_uchar_ptr_node,
                                                      arg2)));
                                                      arg2)));
      return fold_build1 (NEGATE_EXPR, integer_type_node, temp);
      return fold_build1 (NEGATE_EXPR, integer_type_node, temp);
    }
    }
 
 
  /* If len parameter is one, return an expression corresponding to
  /* If len parameter is one, return an expression corresponding to
     (*(const unsigned char*)arg1 - (const unsigned char*)arg2).  */
     (*(const unsigned char*)arg1 - (const unsigned char*)arg2).  */
  if (host_integerp (len, 1) && tree_low_cst (len, 1) == 1)
  if (host_integerp (len, 1) && tree_low_cst (len, 1) == 1)
    {
    {
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
      tree cst_uchar_ptr_node
      tree cst_uchar_ptr_node
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
        = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
 
 
      tree ind1 = fold_convert (integer_type_node,
      tree ind1 = fold_convert (integer_type_node,
                                build1 (INDIRECT_REF, cst_uchar_node,
                                build1 (INDIRECT_REF, cst_uchar_node,
                                        fold_convert (cst_uchar_ptr_node,
                                        fold_convert (cst_uchar_ptr_node,
                                                      arg1)));
                                                      arg1)));
      tree ind2 = fold_convert (integer_type_node,
      tree ind2 = fold_convert (integer_type_node,
                                build1 (INDIRECT_REF, cst_uchar_node,
                                build1 (INDIRECT_REF, cst_uchar_node,
                                        fold_convert (cst_uchar_ptr_node,
                                        fold_convert (cst_uchar_ptr_node,
                                                      arg2)));
                                                      arg2)));
      return fold_build2 (MINUS_EXPR, integer_type_node, ind1, ind2);
      return fold_build2 (MINUS_EXPR, integer_type_node, ind1, ind2);
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Fold function call to builtin signbit, signbitf or signbitl.  Return
/* Fold function call to builtin signbit, signbitf or signbitl.  Return
   NULL_TREE if no simplification can be made.  */
   NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_signbit (tree fndecl, tree arglist)
fold_builtin_signbit (tree fndecl, tree arglist)
{
{
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  tree arg, temp;
  tree arg, temp;
 
 
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
 
 
  /* If ARG is a compile-time constant, determine the result.  */
  /* If ARG is a compile-time constant, determine the result.  */
  if (TREE_CODE (arg) == REAL_CST
  if (TREE_CODE (arg) == REAL_CST
      && !TREE_CONSTANT_OVERFLOW (arg))
      && !TREE_CONSTANT_OVERFLOW (arg))
    {
    {
      REAL_VALUE_TYPE c;
      REAL_VALUE_TYPE c;
 
 
      c = TREE_REAL_CST (arg);
      c = TREE_REAL_CST (arg);
      temp = REAL_VALUE_NEGATIVE (c) ? integer_one_node : integer_zero_node;
      temp = REAL_VALUE_NEGATIVE (c) ? integer_one_node : integer_zero_node;
      return fold_convert (type, temp);
      return fold_convert (type, temp);
    }
    }
 
 
  /* If ARG is non-negative, the result is always zero.  */
  /* If ARG is non-negative, the result is always zero.  */
  if (tree_expr_nonnegative_p (arg))
  if (tree_expr_nonnegative_p (arg))
    return omit_one_operand (type, integer_zero_node, arg);
    return omit_one_operand (type, integer_zero_node, arg);
 
 
  /* If ARG's format doesn't have signed zeros, return "arg < 0.0".  */
  /* If ARG's format doesn't have signed zeros, return "arg < 0.0".  */
  if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg))))
  if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg))))
    return fold_build2 (LT_EXPR, type, arg,
    return fold_build2 (LT_EXPR, type, arg,
                        build_real (TREE_TYPE (arg), dconst0));
                        build_real (TREE_TYPE (arg), dconst0));
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold function call to builtin copysign, copysignf or copysignl.
/* Fold function call to builtin copysign, copysignf or copysignl.
   Return NULL_TREE if no simplification can be made.  */
   Return NULL_TREE if no simplification can be made.  */
 
 
static tree
static tree
fold_builtin_copysign (tree fndecl, tree arglist, tree type)
fold_builtin_copysign (tree fndecl, tree arglist, tree type)
{
{
  tree arg1, arg2, tem;
  tree arg1, arg2, tem;
 
 
  if (!validate_arglist (arglist, REAL_TYPE, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, REAL_TYPE, VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  arg1 = TREE_VALUE (arglist);
  arg1 = TREE_VALUE (arglist);
  arg2 = TREE_VALUE (TREE_CHAIN (arglist));
  arg2 = TREE_VALUE (TREE_CHAIN (arglist));
 
 
  /* copysign(X,X) is X.  */
  /* copysign(X,X) is X.  */
  if (operand_equal_p (arg1, arg2, 0))
  if (operand_equal_p (arg1, arg2, 0))
    return fold_convert (type, arg1);
    return fold_convert (type, arg1);
 
 
  /* If ARG1 and ARG2 are compile-time constants, determine the result.  */
  /* If ARG1 and ARG2 are compile-time constants, determine the result.  */
  if (TREE_CODE (arg1) == REAL_CST
  if (TREE_CODE (arg1) == REAL_CST
      && TREE_CODE (arg2) == REAL_CST
      && TREE_CODE (arg2) == REAL_CST
      && !TREE_CONSTANT_OVERFLOW (arg1)
      && !TREE_CONSTANT_OVERFLOW (arg1)
      && !TREE_CONSTANT_OVERFLOW (arg2))
      && !TREE_CONSTANT_OVERFLOW (arg2))
    {
    {
      REAL_VALUE_TYPE c1, c2;
      REAL_VALUE_TYPE c1, c2;
 
 
      c1 = TREE_REAL_CST (arg1);
      c1 = TREE_REAL_CST (arg1);
      c2 = TREE_REAL_CST (arg2);
      c2 = TREE_REAL_CST (arg2);
      /* c1.sign := c2.sign.  */
      /* c1.sign := c2.sign.  */
      real_copysign (&c1, &c2);
      real_copysign (&c1, &c2);
      return build_real (type, c1);
      return build_real (type, c1);
    }
    }
 
 
  /* copysign(X, Y) is fabs(X) when Y is always non-negative.
  /* copysign(X, Y) is fabs(X) when Y is always non-negative.
     Remember to evaluate Y for side-effects.  */
     Remember to evaluate Y for side-effects.  */
  if (tree_expr_nonnegative_p (arg2))
  if (tree_expr_nonnegative_p (arg2))
    return omit_one_operand (type,
    return omit_one_operand (type,
                             fold_build1 (ABS_EXPR, type, arg1),
                             fold_build1 (ABS_EXPR, type, arg1),
                             arg2);
                             arg2);
 
 
  /* Strip sign changing operations for the first argument.  */
  /* Strip sign changing operations for the first argument.  */
  tem = fold_strip_sign_ops (arg1);
  tem = fold_strip_sign_ops (arg1);
  if (tem)
  if (tem)
    {
    {
      arglist = tree_cons (NULL_TREE, tem, TREE_CHAIN (arglist));
      arglist = tree_cons (NULL_TREE, tem, TREE_CHAIN (arglist));
      return build_function_call_expr (fndecl, arglist);
      return build_function_call_expr (fndecl, arglist);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Fold a call to builtin isascii.  */
/* Fold a call to builtin isascii.  */
 
 
static tree
static tree
fold_builtin_isascii (tree arglist)
fold_builtin_isascii (tree arglist)
{
{
  if (! validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
  if (! validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      /* Transform isascii(c) -> ((c & ~0x7f) == 0).  */
      /* Transform isascii(c) -> ((c & ~0x7f) == 0).  */
      tree arg = TREE_VALUE (arglist);
      tree arg = TREE_VALUE (arglist);
 
 
      arg = build2 (BIT_AND_EXPR, integer_type_node, arg,
      arg = build2 (BIT_AND_EXPR, integer_type_node, arg,
                    build_int_cst (NULL_TREE,
                    build_int_cst (NULL_TREE,
                                   ~ (unsigned HOST_WIDE_INT) 0x7f));
                                   ~ (unsigned HOST_WIDE_INT) 0x7f));
      arg = fold_build2 (EQ_EXPR, integer_type_node,
      arg = fold_build2 (EQ_EXPR, integer_type_node,
                         arg, integer_zero_node);
                         arg, integer_zero_node);
 
 
      if (in_gimple_form && !TREE_CONSTANT (arg))
      if (in_gimple_form && !TREE_CONSTANT (arg))
        return NULL_TREE;
        return NULL_TREE;
      else
      else
        return arg;
        return arg;
    }
    }
}
}
 
 
/* Fold a call to builtin toascii.  */
/* Fold a call to builtin toascii.  */
 
 
static tree
static tree
fold_builtin_toascii (tree arglist)
fold_builtin_toascii (tree arglist)
{
{
  if (! validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
  if (! validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      /* Transform toascii(c) -> (c & 0x7f).  */
      /* Transform toascii(c) -> (c & 0x7f).  */
      tree arg = TREE_VALUE (arglist);
      tree arg = TREE_VALUE (arglist);
 
 
      return fold_build2 (BIT_AND_EXPR, integer_type_node, arg,
      return fold_build2 (BIT_AND_EXPR, integer_type_node, arg,
                          build_int_cst (NULL_TREE, 0x7f));
                          build_int_cst (NULL_TREE, 0x7f));
    }
    }
}
}
 
 
/* Fold a call to builtin isdigit.  */
/* Fold a call to builtin isdigit.  */
 
 
static tree
static tree
fold_builtin_isdigit (tree arglist)
fold_builtin_isdigit (tree arglist)
{
{
  if (! validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
  if (! validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      /* Transform isdigit(c) -> (unsigned)(c) - '0' <= 9.  */
      /* Transform isdigit(c) -> (unsigned)(c) - '0' <= 9.  */
      /* According to the C standard, isdigit is unaffected by locale.
      /* According to the C standard, isdigit is unaffected by locale.
         However, it definitely is affected by the target character set.  */
         However, it definitely is affected by the target character set.  */
      tree arg;
      tree arg;
      unsigned HOST_WIDE_INT target_digit0
      unsigned HOST_WIDE_INT target_digit0
        = lang_hooks.to_target_charset ('0');
        = lang_hooks.to_target_charset ('0');
 
 
      if (target_digit0 == 0)
      if (target_digit0 == 0)
        return NULL_TREE;
        return NULL_TREE;
 
 
      arg = fold_convert (unsigned_type_node, TREE_VALUE (arglist));
      arg = fold_convert (unsigned_type_node, TREE_VALUE (arglist));
      arg = build2 (MINUS_EXPR, unsigned_type_node, arg,
      arg = build2 (MINUS_EXPR, unsigned_type_node, arg,
                    build_int_cst (unsigned_type_node, target_digit0));
                    build_int_cst (unsigned_type_node, target_digit0));
      arg = fold_build2 (LE_EXPR, integer_type_node, arg,
      arg = fold_build2 (LE_EXPR, integer_type_node, arg,
                         build_int_cst (unsigned_type_node, 9));
                         build_int_cst (unsigned_type_node, 9));
      if (in_gimple_form && !TREE_CONSTANT (arg))
      if (in_gimple_form && !TREE_CONSTANT (arg))
        return NULL_TREE;
        return NULL_TREE;
      else
      else
        return arg;
        return arg;
    }
    }
}
}
 
 
/* Fold a call to fabs, fabsf or fabsl.  */
/* Fold a call to fabs, fabsf or fabsl.  */
 
 
static tree
static tree
fold_builtin_fabs (tree arglist, tree type)
fold_builtin_fabs (tree arglist, tree type)
{
{
  tree arg;
  tree arg;
 
 
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  arg = fold_convert (type, arg);
  arg = fold_convert (type, arg);
  if (TREE_CODE (arg) == REAL_CST)
  if (TREE_CODE (arg) == REAL_CST)
    return fold_abs_const (arg, type);
    return fold_abs_const (arg, type);
  return fold_build1 (ABS_EXPR, type, arg);
  return fold_build1 (ABS_EXPR, type, arg);
}
}
 
 
/* Fold a call to abs, labs, llabs or imaxabs.  */
/* Fold a call to abs, labs, llabs or imaxabs.  */
 
 
static tree
static tree
fold_builtin_abs (tree arglist, tree type)
fold_builtin_abs (tree arglist, tree type)
{
{
  tree arg;
  tree arg;
 
 
  if (!validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  arg = fold_convert (type, arg);
  arg = fold_convert (type, arg);
  if (TREE_CODE (arg) == INTEGER_CST)
  if (TREE_CODE (arg) == INTEGER_CST)
    return fold_abs_const (arg, type);
    return fold_abs_const (arg, type);
  return fold_build1 (ABS_EXPR, type, arg);
  return fold_build1 (ABS_EXPR, type, arg);
}
}
 
 
/* Fold a call to __builtin_isnan(), __builtin_isinf, __builtin_finite.
/* Fold a call to __builtin_isnan(), __builtin_isinf, __builtin_finite.
   EXP is the CALL_EXPR for the call.  */
   EXP is the CALL_EXPR for the call.  */
 
 
static tree
static tree
fold_builtin_classify (tree fndecl, tree arglist, int builtin_index)
fold_builtin_classify (tree fndecl, tree arglist, int builtin_index)
{
{
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  tree arg;
  tree arg;
  REAL_VALUE_TYPE r;
  REAL_VALUE_TYPE r;
 
 
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, VOID_TYPE))
    {
    {
      /* Check that we have exactly one argument.  */
      /* Check that we have exactly one argument.  */
      if (arglist == 0)
      if (arglist == 0)
        {
        {
          error ("too few arguments to function %qs",
          error ("too few arguments to function %qs",
                 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
                 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
          return error_mark_node;
          return error_mark_node;
        }
        }
      else if (TREE_CHAIN (arglist) != 0)
      else if (TREE_CHAIN (arglist) != 0)
        {
        {
          error ("too many arguments to function %qs",
          error ("too many arguments to function %qs",
                 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
                 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
          return error_mark_node;
          return error_mark_node;
        }
        }
      else
      else
        {
        {
          error ("non-floating-point argument to function %qs",
          error ("non-floating-point argument to function %qs",
                 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
                 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
          return error_mark_node;
          return error_mark_node;
        }
        }
    }
    }
 
 
  arg = TREE_VALUE (arglist);
  arg = TREE_VALUE (arglist);
  switch (builtin_index)
  switch (builtin_index)
    {
    {
    case BUILT_IN_ISINF:
    case BUILT_IN_ISINF:
      if (!MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg))))
      if (!MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg))))
        return omit_one_operand (type, integer_zero_node, arg);
        return omit_one_operand (type, integer_zero_node, arg);
 
 
      if (TREE_CODE (arg) == REAL_CST)
      if (TREE_CODE (arg) == REAL_CST)
        {
        {
          r = TREE_REAL_CST (arg);
          r = TREE_REAL_CST (arg);
          if (real_isinf (&r))
          if (real_isinf (&r))
            return real_compare (GT_EXPR, &r, &dconst0)
            return real_compare (GT_EXPR, &r, &dconst0)
                   ? integer_one_node : integer_minus_one_node;
                   ? integer_one_node : integer_minus_one_node;
          else
          else
            return integer_zero_node;
            return integer_zero_node;
        }
        }
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case BUILT_IN_FINITE:
    case BUILT_IN_FINITE:
      if (!MODE_HAS_NANS (TYPE_MODE (TREE_TYPE (arg)))
      if (!MODE_HAS_NANS (TYPE_MODE (TREE_TYPE (arg)))
          && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg))))
          && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg))))
        return omit_one_operand (type, integer_zero_node, arg);
        return omit_one_operand (type, integer_zero_node, arg);
 
 
      if (TREE_CODE (arg) == REAL_CST)
      if (TREE_CODE (arg) == REAL_CST)
        {
        {
          r = TREE_REAL_CST (arg);
          r = TREE_REAL_CST (arg);
          return real_isinf (&r) || real_isnan (&r)
          return real_isinf (&r) || real_isnan (&r)
                 ? integer_zero_node : integer_one_node;
                 ? integer_zero_node : integer_one_node;
        }
        }
 
 
      return NULL_TREE;
      return NULL_TREE;
 
 
    case BUILT_IN_ISNAN:
    case BUILT_IN_ISNAN:
      if (!MODE_HAS_NANS (TYPE_MODE (TREE_TYPE (arg))))
      if (!MODE_HAS_NANS (TYPE_MODE (TREE_TYPE (arg))))
        return omit_one_operand (type, integer_zero_node, arg);
        return omit_one_operand (type, integer_zero_node, arg);
 
 
      if (TREE_CODE (arg) == REAL_CST)
      if (TREE_CODE (arg) == REAL_CST)
        {
        {
          r = TREE_REAL_CST (arg);
          r = TREE_REAL_CST (arg);
          return real_isnan (&r) ? integer_one_node : integer_zero_node;
          return real_isnan (&r) ? integer_one_node : integer_zero_node;
        }
        }
 
 
      arg = builtin_save_expr (arg);
      arg = builtin_save_expr (arg);
      return fold_build2 (UNORDERED_EXPR, type, arg, arg);
      return fold_build2 (UNORDERED_EXPR, type, arg, arg);
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Fold a call to an unordered comparison function such as
/* Fold a call to an unordered comparison function such as
   __builtin_isgreater().  FNDECL is the FUNCTION_DECL for the function
   __builtin_isgreater().  FNDECL is the FUNCTION_DECL for the function
   being called and ARGLIST is the argument list for the call.
   being called and ARGLIST is the argument list for the call.
   UNORDERED_CODE and ORDERED_CODE are comparison codes that give
   UNORDERED_CODE and ORDERED_CODE are comparison codes that give
   the opposite of the desired result.  UNORDERED_CODE is used
   the opposite of the desired result.  UNORDERED_CODE is used
   for modes that can hold NaNs and ORDERED_CODE is used for
   for modes that can hold NaNs and ORDERED_CODE is used for
   the rest.  */
   the rest.  */
 
 
static tree
static tree
fold_builtin_unordered_cmp (tree fndecl, tree arglist,
fold_builtin_unordered_cmp (tree fndecl, tree arglist,
                            enum tree_code unordered_code,
                            enum tree_code unordered_code,
                            enum tree_code ordered_code)
                            enum tree_code ordered_code)
{
{
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  enum tree_code code;
  enum tree_code code;
  tree arg0, arg1;
  tree arg0, arg1;
  tree type0, type1;
  tree type0, type1;
  enum tree_code code0, code1;
  enum tree_code code0, code1;
  tree cmp_type = NULL_TREE;
  tree cmp_type = NULL_TREE;
 
 
  if (!validate_arglist (arglist, REAL_TYPE, REAL_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, REAL_TYPE, REAL_TYPE, VOID_TYPE))
    {
    {
      /* Check that we have exactly two arguments.  */
      /* Check that we have exactly two arguments.  */
      if (arglist == 0 || TREE_CHAIN (arglist) == 0)
      if (arglist == 0 || TREE_CHAIN (arglist) == 0)
        {
        {
          error ("too few arguments to function %qs",
          error ("too few arguments to function %qs",
                 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
                 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
          return error_mark_node;
          return error_mark_node;
        }
        }
      else if (TREE_CHAIN (TREE_CHAIN (arglist)) != 0)
      else if (TREE_CHAIN (TREE_CHAIN (arglist)) != 0)
        {
        {
          error ("too many arguments to function %qs",
          error ("too many arguments to function %qs",
                 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
                 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
          return error_mark_node;
          return error_mark_node;
        }
        }
    }
    }
 
 
  arg0 = TREE_VALUE (arglist);
  arg0 = TREE_VALUE (arglist);
  arg1 = TREE_VALUE (TREE_CHAIN (arglist));
  arg1 = TREE_VALUE (TREE_CHAIN (arglist));
 
 
  type0 = TREE_TYPE (arg0);
  type0 = TREE_TYPE (arg0);
  type1 = TREE_TYPE (arg1);
  type1 = TREE_TYPE (arg1);
 
 
  code0 = TREE_CODE (type0);
  code0 = TREE_CODE (type0);
  code1 = TREE_CODE (type1);
  code1 = TREE_CODE (type1);
 
 
  if (code0 == REAL_TYPE && code1 == REAL_TYPE)
  if (code0 == REAL_TYPE && code1 == REAL_TYPE)
    /* Choose the wider of two real types.  */
    /* Choose the wider of two real types.  */
    cmp_type = TYPE_PRECISION (type0) >= TYPE_PRECISION (type1)
    cmp_type = TYPE_PRECISION (type0) >= TYPE_PRECISION (type1)
      ? type0 : type1;
      ? type0 : type1;
  else if (code0 == REAL_TYPE && code1 == INTEGER_TYPE)
  else if (code0 == REAL_TYPE && code1 == INTEGER_TYPE)
    cmp_type = type0;
    cmp_type = type0;
  else if (code0 == INTEGER_TYPE && code1 == REAL_TYPE)
  else if (code0 == INTEGER_TYPE && code1 == REAL_TYPE)
    cmp_type = type1;
    cmp_type = type1;
  else
  else
    {
    {
      error ("non-floating-point argument to function %qs",
      error ("non-floating-point argument to function %qs",
                 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
                 IDENTIFIER_POINTER (DECL_NAME (fndecl)));
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  arg0 = fold_convert (cmp_type, arg0);
  arg0 = fold_convert (cmp_type, arg0);
  arg1 = fold_convert (cmp_type, arg1);
  arg1 = fold_convert (cmp_type, arg1);
 
 
  if (unordered_code == UNORDERED_EXPR)
  if (unordered_code == UNORDERED_EXPR)
    {
    {
      if (!MODE_HAS_NANS (TYPE_MODE (TREE_TYPE (arg0))))
      if (!MODE_HAS_NANS (TYPE_MODE (TREE_TYPE (arg0))))
        return omit_two_operands (type, integer_zero_node, arg0, arg1);
        return omit_two_operands (type, integer_zero_node, arg0, arg1);
      return fold_build2 (UNORDERED_EXPR, type, arg0, arg1);
      return fold_build2 (UNORDERED_EXPR, type, arg0, arg1);
    }
    }
 
 
  code = MODE_HAS_NANS (TYPE_MODE (TREE_TYPE (arg0))) ? unordered_code
  code = MODE_HAS_NANS (TYPE_MODE (TREE_TYPE (arg0))) ? unordered_code
                                                      : ordered_code;
                                                      : ordered_code;
  return fold_build1 (TRUTH_NOT_EXPR, type,
  return fold_build1 (TRUTH_NOT_EXPR, type,
                      fold_build2 (code, type, arg0, arg1));
                      fold_build2 (code, type, arg0, arg1));
}
}
 
 
/* Used by constant folding to simplify calls to builtin functions.  EXP is
/* Used by constant folding to simplify calls to builtin functions.  EXP is
   the CALL_EXPR of a call to a builtin function.  IGNORE is true if the
   the CALL_EXPR of a call to a builtin function.  IGNORE is true if the
   result of the function call is ignored.  This function returns NULL_TREE
   result of the function call is ignored.  This function returns NULL_TREE
   if no simplification was possible.  */
   if no simplification was possible.  */
 
 
static tree
static tree
fold_builtin_1 (tree fndecl, tree arglist, bool ignore)
fold_builtin_1 (tree fndecl, tree arglist, bool ignore)
{
{
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  tree type = TREE_TYPE (TREE_TYPE (fndecl));
  enum built_in_function fcode;
  enum built_in_function fcode;
 
 
  if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
  if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_MD)
    return targetm.fold_builtin (fndecl, arglist, ignore);
    return targetm.fold_builtin (fndecl, arglist, ignore);
 
 
  fcode = DECL_FUNCTION_CODE (fndecl);
  fcode = DECL_FUNCTION_CODE (fndecl);
  switch (fcode)
  switch (fcode)
    {
    {
    case BUILT_IN_FPUTS:
    case BUILT_IN_FPUTS:
      return fold_builtin_fputs (arglist, ignore, false, NULL_TREE);
      return fold_builtin_fputs (arglist, ignore, false, NULL_TREE);
 
 
    case BUILT_IN_FPUTS_UNLOCKED:
    case BUILT_IN_FPUTS_UNLOCKED:
      return fold_builtin_fputs (arglist, ignore, true, NULL_TREE);
      return fold_builtin_fputs (arglist, ignore, true, NULL_TREE);
 
 
    case BUILT_IN_STRSTR:
    case BUILT_IN_STRSTR:
      return fold_builtin_strstr (arglist, type);
      return fold_builtin_strstr (arglist, type);
 
 
    case BUILT_IN_STRCAT:
    case BUILT_IN_STRCAT:
      return fold_builtin_strcat (arglist);
      return fold_builtin_strcat (arglist);
 
 
    case BUILT_IN_STRNCAT:
    case BUILT_IN_STRNCAT:
      return fold_builtin_strncat (arglist);
      return fold_builtin_strncat (arglist);
 
 
    case BUILT_IN_STRSPN:
    case BUILT_IN_STRSPN:
      return fold_builtin_strspn (arglist);
      return fold_builtin_strspn (arglist);
 
 
    case BUILT_IN_STRCSPN:
    case BUILT_IN_STRCSPN:
      return fold_builtin_strcspn (arglist);
      return fold_builtin_strcspn (arglist);
 
 
    case BUILT_IN_STRCHR:
    case BUILT_IN_STRCHR:
    case BUILT_IN_INDEX:
    case BUILT_IN_INDEX:
      return fold_builtin_strchr (arglist, type);
      return fold_builtin_strchr (arglist, type);
 
 
    case BUILT_IN_STRRCHR:
    case BUILT_IN_STRRCHR:
    case BUILT_IN_RINDEX:
    case BUILT_IN_RINDEX:
      return fold_builtin_strrchr (arglist, type);
      return fold_builtin_strrchr (arglist, type);
 
 
    case BUILT_IN_STRCPY:
    case BUILT_IN_STRCPY:
      return fold_builtin_strcpy (fndecl, arglist, NULL_TREE);
      return fold_builtin_strcpy (fndecl, arglist, NULL_TREE);
 
 
    case BUILT_IN_STRNCPY:
    case BUILT_IN_STRNCPY:
      return fold_builtin_strncpy (fndecl, arglist, NULL_TREE);
      return fold_builtin_strncpy (fndecl, arglist, NULL_TREE);
 
 
    case BUILT_IN_STRCMP:
    case BUILT_IN_STRCMP:
      return fold_builtin_strcmp (arglist);
      return fold_builtin_strcmp (arglist);
 
 
    case BUILT_IN_STRNCMP:
    case BUILT_IN_STRNCMP:
      return fold_builtin_strncmp (arglist);
      return fold_builtin_strncmp (arglist);
 
 
    case BUILT_IN_STRPBRK:
    case BUILT_IN_STRPBRK:
      return fold_builtin_strpbrk (arglist, type);
      return fold_builtin_strpbrk (arglist, type);
 
 
    case BUILT_IN_BCMP:
    case BUILT_IN_BCMP:
    case BUILT_IN_MEMCMP:
    case BUILT_IN_MEMCMP:
      return fold_builtin_memcmp (arglist);
      return fold_builtin_memcmp (arglist);
 
 
    case BUILT_IN_SPRINTF:
    case BUILT_IN_SPRINTF:
      return fold_builtin_sprintf (arglist, ignore);
      return fold_builtin_sprintf (arglist, ignore);
 
 
    case BUILT_IN_CONSTANT_P:
    case BUILT_IN_CONSTANT_P:
      {
      {
        tree val;
        tree val;
 
 
        val = fold_builtin_constant_p (arglist);
        val = fold_builtin_constant_p (arglist);
        /* Gimplification will pull the CALL_EXPR for the builtin out of
        /* Gimplification will pull the CALL_EXPR for the builtin out of
           an if condition.  When not optimizing, we'll not CSE it back.
           an if condition.  When not optimizing, we'll not CSE it back.
           To avoid link error types of regressions, return false now.  */
           To avoid link error types of regressions, return false now.  */
        if (!val && !optimize)
        if (!val && !optimize)
          val = integer_zero_node;
          val = integer_zero_node;
 
 
        return val;
        return val;
      }
      }
 
 
    case BUILT_IN_EXPECT:
    case BUILT_IN_EXPECT:
      return fold_builtin_expect (arglist);
      return fold_builtin_expect (arglist);
 
 
    case BUILT_IN_CLASSIFY_TYPE:
    case BUILT_IN_CLASSIFY_TYPE:
      return fold_builtin_classify_type (arglist);
      return fold_builtin_classify_type (arglist);
 
 
    case BUILT_IN_STRLEN:
    case BUILT_IN_STRLEN:
      return fold_builtin_strlen (arglist);
      return fold_builtin_strlen (arglist);
 
 
    CASE_FLT_FN (BUILT_IN_FABS):
    CASE_FLT_FN (BUILT_IN_FABS):
      return fold_builtin_fabs (arglist, type);
      return fold_builtin_fabs (arglist, type);
 
 
    case BUILT_IN_ABS:
    case BUILT_IN_ABS:
    case BUILT_IN_LABS:
    case BUILT_IN_LABS:
    case BUILT_IN_LLABS:
    case BUILT_IN_LLABS:
    case BUILT_IN_IMAXABS:
    case BUILT_IN_IMAXABS:
      return fold_builtin_abs (arglist, type);
      return fold_builtin_abs (arglist, type);
 
 
    CASE_FLT_FN (BUILT_IN_CONJ):
    CASE_FLT_FN (BUILT_IN_CONJ):
      if (validate_arglist (arglist, COMPLEX_TYPE, VOID_TYPE))
      if (validate_arglist (arglist, COMPLEX_TYPE, VOID_TYPE))
        return fold_build1 (CONJ_EXPR, type, TREE_VALUE (arglist));
        return fold_build1 (CONJ_EXPR, type, TREE_VALUE (arglist));
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_CREAL):
    CASE_FLT_FN (BUILT_IN_CREAL):
      if (validate_arglist (arglist, COMPLEX_TYPE, VOID_TYPE))
      if (validate_arglist (arglist, COMPLEX_TYPE, VOID_TYPE))
        return non_lvalue (fold_build1 (REALPART_EXPR, type,
        return non_lvalue (fold_build1 (REALPART_EXPR, type,
                                        TREE_VALUE (arglist)));
                                        TREE_VALUE (arglist)));
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_CIMAG):
    CASE_FLT_FN (BUILT_IN_CIMAG):
      if (validate_arglist (arglist, COMPLEX_TYPE, VOID_TYPE))
      if (validate_arglist (arglist, COMPLEX_TYPE, VOID_TYPE))
        return non_lvalue (fold_build1 (IMAGPART_EXPR, type,
        return non_lvalue (fold_build1 (IMAGPART_EXPR, type,
                                        TREE_VALUE (arglist)));
                                        TREE_VALUE (arglist)));
      break;
      break;
 
 
    CASE_FLT_FN (BUILT_IN_CABS):
    CASE_FLT_FN (BUILT_IN_CABS):
      return fold_builtin_cabs (arglist, type, fndecl);
      return fold_builtin_cabs (arglist, type, fndecl);
 
 
    CASE_FLT_FN (BUILT_IN_SQRT):
    CASE_FLT_FN (BUILT_IN_SQRT):
      return fold_builtin_sqrt (arglist, type);
      return fold_builtin_sqrt (arglist, type);
 
 
    CASE_FLT_FN (BUILT_IN_CBRT):
    CASE_FLT_FN (BUILT_IN_CBRT):
      return fold_builtin_cbrt (arglist, type);
      return fold_builtin_cbrt (arglist, type);
 
 
    CASE_FLT_FN (BUILT_IN_SIN):
    CASE_FLT_FN (BUILT_IN_SIN):
      return fold_builtin_sin (arglist);
      return fold_builtin_sin (arglist);
 
 
    CASE_FLT_FN (BUILT_IN_COS):
    CASE_FLT_FN (BUILT_IN_COS):
      return fold_builtin_cos (arglist, type, fndecl);
      return fold_builtin_cos (arglist, type, fndecl);
 
 
    CASE_FLT_FN (BUILT_IN_EXP):
    CASE_FLT_FN (BUILT_IN_EXP):
      return fold_builtin_exponent (fndecl, arglist, &dconste);
      return fold_builtin_exponent (fndecl, arglist, &dconste);
 
 
    CASE_FLT_FN (BUILT_IN_EXP2):
    CASE_FLT_FN (BUILT_IN_EXP2):
      return fold_builtin_exponent (fndecl, arglist, &dconst2);
      return fold_builtin_exponent (fndecl, arglist, &dconst2);
 
 
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_EXP10):
    CASE_FLT_FN (BUILT_IN_POW10):
    CASE_FLT_FN (BUILT_IN_POW10):
      return fold_builtin_exponent (fndecl, arglist, &dconst10);
      return fold_builtin_exponent (fndecl, arglist, &dconst10);
 
 
    CASE_FLT_FN (BUILT_IN_LOG):
    CASE_FLT_FN (BUILT_IN_LOG):
      return fold_builtin_logarithm (fndecl, arglist, &dconste);
      return fold_builtin_logarithm (fndecl, arglist, &dconste);
 
 
    CASE_FLT_FN (BUILT_IN_LOG2):
    CASE_FLT_FN (BUILT_IN_LOG2):
      return fold_builtin_logarithm (fndecl, arglist, &dconst2);
      return fold_builtin_logarithm (fndecl, arglist, &dconst2);
 
 
    CASE_FLT_FN (BUILT_IN_LOG10):
    CASE_FLT_FN (BUILT_IN_LOG10):
      return fold_builtin_logarithm (fndecl, arglist, &dconst10);
      return fold_builtin_logarithm (fndecl, arglist, &dconst10);
 
 
    CASE_FLT_FN (BUILT_IN_TAN):
    CASE_FLT_FN (BUILT_IN_TAN):
      return fold_builtin_tan (arglist);
      return fold_builtin_tan (arglist);
 
 
    CASE_FLT_FN (BUILT_IN_ATAN):
    CASE_FLT_FN (BUILT_IN_ATAN):
      return fold_builtin_atan (arglist, type);
      return fold_builtin_atan (arglist, type);
 
 
    CASE_FLT_FN (BUILT_IN_POW):
    CASE_FLT_FN (BUILT_IN_POW):
      return fold_builtin_pow (fndecl, arglist, type);
      return fold_builtin_pow (fndecl, arglist, type);
 
 
    CASE_FLT_FN (BUILT_IN_POWI):
    CASE_FLT_FN (BUILT_IN_POWI):
      return fold_builtin_powi (fndecl, arglist, type);
      return fold_builtin_powi (fndecl, arglist, type);
 
 
    CASE_FLT_FN (BUILT_IN_INF):
    CASE_FLT_FN (BUILT_IN_INF):
    case BUILT_IN_INFD32:
    case BUILT_IN_INFD32:
    case BUILT_IN_INFD64:
    case BUILT_IN_INFD64:
    case BUILT_IN_INFD128:
    case BUILT_IN_INFD128:
      return fold_builtin_inf (type, true);
      return fold_builtin_inf (type, true);
 
 
    CASE_FLT_FN (BUILT_IN_HUGE_VAL):
    CASE_FLT_FN (BUILT_IN_HUGE_VAL):
      return fold_builtin_inf (type, false);
      return fold_builtin_inf (type, false);
 
 
    CASE_FLT_FN (BUILT_IN_NAN):
    CASE_FLT_FN (BUILT_IN_NAN):
    case BUILT_IN_NAND32:
    case BUILT_IN_NAND32:
    case BUILT_IN_NAND64:
    case BUILT_IN_NAND64:
    case BUILT_IN_NAND128:
    case BUILT_IN_NAND128:
      return fold_builtin_nan (arglist, type, true);
      return fold_builtin_nan (arglist, type, true);
 
 
    CASE_FLT_FN (BUILT_IN_NANS):
    CASE_FLT_FN (BUILT_IN_NANS):
      return fold_builtin_nan (arglist, type, false);
      return fold_builtin_nan (arglist, type, false);
 
 
    CASE_FLT_FN (BUILT_IN_FLOOR):
    CASE_FLT_FN (BUILT_IN_FLOOR):
      return fold_builtin_floor (fndecl, arglist);
      return fold_builtin_floor (fndecl, arglist);
 
 
    CASE_FLT_FN (BUILT_IN_CEIL):
    CASE_FLT_FN (BUILT_IN_CEIL):
      return fold_builtin_ceil (fndecl, arglist);
      return fold_builtin_ceil (fndecl, arglist);
 
 
    CASE_FLT_FN (BUILT_IN_TRUNC):
    CASE_FLT_FN (BUILT_IN_TRUNC):
      return fold_builtin_trunc (fndecl, arglist);
      return fold_builtin_trunc (fndecl, arglist);
 
 
    CASE_FLT_FN (BUILT_IN_ROUND):
    CASE_FLT_FN (BUILT_IN_ROUND):
      return fold_builtin_round (fndecl, arglist);
      return fold_builtin_round (fndecl, arglist);
 
 
    CASE_FLT_FN (BUILT_IN_NEARBYINT):
    CASE_FLT_FN (BUILT_IN_NEARBYINT):
    CASE_FLT_FN (BUILT_IN_RINT):
    CASE_FLT_FN (BUILT_IN_RINT):
      return fold_trunc_transparent_mathfn (fndecl, arglist);
      return fold_trunc_transparent_mathfn (fndecl, arglist);
 
 
    CASE_FLT_FN (BUILT_IN_LCEIL):
    CASE_FLT_FN (BUILT_IN_LCEIL):
    CASE_FLT_FN (BUILT_IN_LLCEIL):
    CASE_FLT_FN (BUILT_IN_LLCEIL):
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
    CASE_FLT_FN (BUILT_IN_LLFLOOR):
    CASE_FLT_FN (BUILT_IN_LROUND):
    CASE_FLT_FN (BUILT_IN_LROUND):
    CASE_FLT_FN (BUILT_IN_LLROUND):
    CASE_FLT_FN (BUILT_IN_LLROUND):
      return fold_builtin_int_roundingfn (fndecl, arglist);
      return fold_builtin_int_roundingfn (fndecl, arglist);
 
 
    CASE_FLT_FN (BUILT_IN_LRINT):
    CASE_FLT_FN (BUILT_IN_LRINT):
    CASE_FLT_FN (BUILT_IN_LLRINT):
    CASE_FLT_FN (BUILT_IN_LLRINT):
      return fold_fixed_mathfn (fndecl, arglist);
      return fold_fixed_mathfn (fndecl, arglist);
 
 
    CASE_INT_FN (BUILT_IN_FFS):
    CASE_INT_FN (BUILT_IN_FFS):
    CASE_INT_FN (BUILT_IN_CLZ):
    CASE_INT_FN (BUILT_IN_CLZ):
    CASE_INT_FN (BUILT_IN_CTZ):
    CASE_INT_FN (BUILT_IN_CTZ):
    CASE_INT_FN (BUILT_IN_POPCOUNT):
    CASE_INT_FN (BUILT_IN_POPCOUNT):
    CASE_INT_FN (BUILT_IN_PARITY):
    CASE_INT_FN (BUILT_IN_PARITY):
      return fold_builtin_bitop (fndecl, arglist);
      return fold_builtin_bitop (fndecl, arglist);
 
 
    case BUILT_IN_MEMSET:
    case BUILT_IN_MEMSET:
      return fold_builtin_memset (arglist, type, ignore);
      return fold_builtin_memset (arglist, type, ignore);
 
 
    case BUILT_IN_MEMCPY:
    case BUILT_IN_MEMCPY:
      return fold_builtin_memory_op (arglist, type, ignore, /*endp=*/0);
      return fold_builtin_memory_op (arglist, type, ignore, /*endp=*/0);
 
 
    case BUILT_IN_MEMPCPY:
    case BUILT_IN_MEMPCPY:
      return fold_builtin_memory_op (arglist, type, ignore, /*endp=*/1);
      return fold_builtin_memory_op (arglist, type, ignore, /*endp=*/1);
 
 
    case BUILT_IN_MEMMOVE:
    case BUILT_IN_MEMMOVE:
      return fold_builtin_memory_op (arglist, type, ignore, /*endp=*/3);
      return fold_builtin_memory_op (arglist, type, ignore, /*endp=*/3);
 
 
    case BUILT_IN_BZERO:
    case BUILT_IN_BZERO:
      return fold_builtin_bzero (arglist, ignore);
      return fold_builtin_bzero (arglist, ignore);
 
 
    case BUILT_IN_BCOPY:
    case BUILT_IN_BCOPY:
      return fold_builtin_bcopy (arglist, ignore);
      return fold_builtin_bcopy (arglist, ignore);
 
 
    CASE_FLT_FN (BUILT_IN_SIGNBIT):
    CASE_FLT_FN (BUILT_IN_SIGNBIT):
      return fold_builtin_signbit (fndecl, arglist);
      return fold_builtin_signbit (fndecl, arglist);
 
 
    case BUILT_IN_ISASCII:
    case BUILT_IN_ISASCII:
      return fold_builtin_isascii (arglist);
      return fold_builtin_isascii (arglist);
 
 
    case BUILT_IN_TOASCII:
    case BUILT_IN_TOASCII:
      return fold_builtin_toascii (arglist);
      return fold_builtin_toascii (arglist);
 
 
    case BUILT_IN_ISDIGIT:
    case BUILT_IN_ISDIGIT:
      return fold_builtin_isdigit (arglist);
      return fold_builtin_isdigit (arglist);
 
 
    CASE_FLT_FN (BUILT_IN_COPYSIGN):
    CASE_FLT_FN (BUILT_IN_COPYSIGN):
      return fold_builtin_copysign (fndecl, arglist, type);
      return fold_builtin_copysign (fndecl, arglist, type);
 
 
    CASE_FLT_FN (BUILT_IN_FINITE):
    CASE_FLT_FN (BUILT_IN_FINITE):
    case BUILT_IN_FINITED32:
    case BUILT_IN_FINITED32:
    case BUILT_IN_FINITED64:
    case BUILT_IN_FINITED64:
    case BUILT_IN_FINITED128:
    case BUILT_IN_FINITED128:
      return fold_builtin_classify (fndecl, arglist, BUILT_IN_FINITE);
      return fold_builtin_classify (fndecl, arglist, BUILT_IN_FINITE);
 
 
    CASE_FLT_FN (BUILT_IN_ISINF):
    CASE_FLT_FN (BUILT_IN_ISINF):
    case BUILT_IN_ISINFD32:
    case BUILT_IN_ISINFD32:
    case BUILT_IN_ISINFD64:
    case BUILT_IN_ISINFD64:
    case BUILT_IN_ISINFD128:
    case BUILT_IN_ISINFD128:
      return fold_builtin_classify (fndecl, arglist, BUILT_IN_ISINF);
      return fold_builtin_classify (fndecl, arglist, BUILT_IN_ISINF);
 
 
    CASE_FLT_FN (BUILT_IN_ISNAN):
    CASE_FLT_FN (BUILT_IN_ISNAN):
    case BUILT_IN_ISNAND32:
    case BUILT_IN_ISNAND32:
    case BUILT_IN_ISNAND64:
    case BUILT_IN_ISNAND64:
    case BUILT_IN_ISNAND128:
    case BUILT_IN_ISNAND128:
      return fold_builtin_classify (fndecl, arglist, BUILT_IN_ISNAN);
      return fold_builtin_classify (fndecl, arglist, BUILT_IN_ISNAN);
 
 
    case BUILT_IN_ISGREATER:
    case BUILT_IN_ISGREATER:
      return fold_builtin_unordered_cmp (fndecl, arglist, UNLE_EXPR, LE_EXPR);
      return fold_builtin_unordered_cmp (fndecl, arglist, UNLE_EXPR, LE_EXPR);
    case BUILT_IN_ISGREATEREQUAL:
    case BUILT_IN_ISGREATEREQUAL:
      return fold_builtin_unordered_cmp (fndecl, arglist, UNLT_EXPR, LT_EXPR);
      return fold_builtin_unordered_cmp (fndecl, arglist, UNLT_EXPR, LT_EXPR);
    case BUILT_IN_ISLESS:
    case BUILT_IN_ISLESS:
      return fold_builtin_unordered_cmp (fndecl, arglist, UNGE_EXPR, GE_EXPR);
      return fold_builtin_unordered_cmp (fndecl, arglist, UNGE_EXPR, GE_EXPR);
    case BUILT_IN_ISLESSEQUAL:
    case BUILT_IN_ISLESSEQUAL:
      return fold_builtin_unordered_cmp (fndecl, arglist, UNGT_EXPR, GT_EXPR);
      return fold_builtin_unordered_cmp (fndecl, arglist, UNGT_EXPR, GT_EXPR);
    case BUILT_IN_ISLESSGREATER:
    case BUILT_IN_ISLESSGREATER:
      return fold_builtin_unordered_cmp (fndecl, arglist, UNEQ_EXPR, EQ_EXPR);
      return fold_builtin_unordered_cmp (fndecl, arglist, UNEQ_EXPR, EQ_EXPR);
    case BUILT_IN_ISUNORDERED:
    case BUILT_IN_ISUNORDERED:
      return fold_builtin_unordered_cmp (fndecl, arglist, UNORDERED_EXPR,
      return fold_builtin_unordered_cmp (fndecl, arglist, UNORDERED_EXPR,
                                         NOP_EXPR);
                                         NOP_EXPR);
 
 
      /* We do the folding for va_start in the expander.  */
      /* We do the folding for va_start in the expander.  */
    case BUILT_IN_VA_START:
    case BUILT_IN_VA_START:
      break;
      break;
 
 
    case BUILT_IN_OBJECT_SIZE:
    case BUILT_IN_OBJECT_SIZE:
      return fold_builtin_object_size (arglist);
      return fold_builtin_object_size (arglist);
    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMPCPY_CHK:
    case BUILT_IN_MEMPCPY_CHK:
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_MEMSET_CHK:
    case BUILT_IN_MEMSET_CHK:
      return fold_builtin_memory_chk (fndecl, arglist, NULL_TREE, ignore,
      return fold_builtin_memory_chk (fndecl, arglist, NULL_TREE, ignore,
                                      DECL_FUNCTION_CODE (fndecl));
                                      DECL_FUNCTION_CODE (fndecl));
    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
      return fold_builtin_stxcpy_chk (fndecl, arglist, NULL_TREE, ignore,
      return fold_builtin_stxcpy_chk (fndecl, arglist, NULL_TREE, ignore,
                                      DECL_FUNCTION_CODE (fndecl));
                                      DECL_FUNCTION_CODE (fndecl));
    case BUILT_IN_STRNCPY_CHK:
    case BUILT_IN_STRNCPY_CHK:
      return fold_builtin_strncpy_chk (arglist, NULL_TREE);
      return fold_builtin_strncpy_chk (arglist, NULL_TREE);
    case BUILT_IN_STRCAT_CHK:
    case BUILT_IN_STRCAT_CHK:
      return fold_builtin_strcat_chk (fndecl, arglist);
      return fold_builtin_strcat_chk (fndecl, arglist);
    case BUILT_IN_STRNCAT_CHK:
    case BUILT_IN_STRNCAT_CHK:
      return fold_builtin_strncat_chk (fndecl, arglist);
      return fold_builtin_strncat_chk (fndecl, arglist);
    case BUILT_IN_SPRINTF_CHK:
    case BUILT_IN_SPRINTF_CHK:
    case BUILT_IN_VSPRINTF_CHK:
    case BUILT_IN_VSPRINTF_CHK:
      return fold_builtin_sprintf_chk (arglist, DECL_FUNCTION_CODE (fndecl));
      return fold_builtin_sprintf_chk (arglist, DECL_FUNCTION_CODE (fndecl));
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
      return fold_builtin_snprintf_chk (arglist, NULL_TREE,
      return fold_builtin_snprintf_chk (arglist, NULL_TREE,
                                        DECL_FUNCTION_CODE (fndecl));
                                        DECL_FUNCTION_CODE (fndecl));
 
 
    case BUILT_IN_PRINTF:
    case BUILT_IN_PRINTF:
    case BUILT_IN_PRINTF_UNLOCKED:
    case BUILT_IN_PRINTF_UNLOCKED:
    case BUILT_IN_VPRINTF:
    case BUILT_IN_VPRINTF:
    case BUILT_IN_PRINTF_CHK:
    case BUILT_IN_PRINTF_CHK:
    case BUILT_IN_VPRINTF_CHK:
    case BUILT_IN_VPRINTF_CHK:
      return fold_builtin_printf (fndecl, arglist, ignore,
      return fold_builtin_printf (fndecl, arglist, ignore,
                                  DECL_FUNCTION_CODE (fndecl));
                                  DECL_FUNCTION_CODE (fndecl));
 
 
    case BUILT_IN_FPRINTF:
    case BUILT_IN_FPRINTF:
    case BUILT_IN_FPRINTF_UNLOCKED:
    case BUILT_IN_FPRINTF_UNLOCKED:
    case BUILT_IN_VFPRINTF:
    case BUILT_IN_VFPRINTF:
    case BUILT_IN_FPRINTF_CHK:
    case BUILT_IN_FPRINTF_CHK:
    case BUILT_IN_VFPRINTF_CHK:
    case BUILT_IN_VFPRINTF_CHK:
      return fold_builtin_fprintf (fndecl, arglist, ignore,
      return fold_builtin_fprintf (fndecl, arglist, ignore,
                                   DECL_FUNCTION_CODE (fndecl));
                                   DECL_FUNCTION_CODE (fndecl));
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* A wrapper function for builtin folding that prevents warnings for
/* A wrapper function for builtin folding that prevents warnings for
   "statement without effect" and the like, caused by removing the
   "statement without effect" and the like, caused by removing the
   call node earlier than the warning is generated.  */
   call node earlier than the warning is generated.  */
 
 
tree
tree
fold_builtin (tree fndecl, tree arglist, bool ignore)
fold_builtin (tree fndecl, tree arglist, bool ignore)
{
{
  tree exp = fold_builtin_1 (fndecl, arglist, ignore);
  tree exp = fold_builtin_1 (fndecl, arglist, ignore);
  if (exp)
  if (exp)
    {
    {
      exp = build1 (NOP_EXPR, TREE_TYPE (exp), exp);
      exp = build1 (NOP_EXPR, TREE_TYPE (exp), exp);
      TREE_NO_WARNING (exp) = 1;
      TREE_NO_WARNING (exp) = 1;
    }
    }
 
 
  return exp;
  return exp;
}
}
 
 
/* Conveniently construct a function call expression.  */
/* Conveniently construct a function call expression.  */
 
 
tree
tree
build_function_call_expr (tree fn, tree arglist)
build_function_call_expr (tree fn, tree arglist)
{
{
  tree call_expr;
  tree call_expr;
 
 
  call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
  call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
  return fold_build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
  return fold_build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
                      call_expr, arglist, NULL_TREE);
                      call_expr, arglist, NULL_TREE);
}
}
 
 
/* This function validates the types of a function call argument list
/* This function validates the types of a function call argument list
   represented as a tree chain of parameters against a specified list
   represented as a tree chain of parameters against a specified list
   of tree_codes.  If the last specifier is a 0, that represents an
   of tree_codes.  If the last specifier is a 0, that represents an
   ellipses, otherwise the last specifier must be a VOID_TYPE.  */
   ellipses, otherwise the last specifier must be a VOID_TYPE.  */
 
 
static int
static int
validate_arglist (tree arglist, ...)
validate_arglist (tree arglist, ...)
{
{
  enum tree_code code;
  enum tree_code code;
  int res = 0;
  int res = 0;
  va_list ap;
  va_list ap;
 
 
  va_start (ap, arglist);
  va_start (ap, arglist);
 
 
  do
  do
    {
    {
      code = va_arg (ap, enum tree_code);
      code = va_arg (ap, enum tree_code);
      switch (code)
      switch (code)
        {
        {
        case 0:
        case 0:
          /* This signifies an ellipses, any further arguments are all ok.  */
          /* This signifies an ellipses, any further arguments are all ok.  */
          res = 1;
          res = 1;
          goto end;
          goto end;
        case VOID_TYPE:
        case VOID_TYPE:
          /* This signifies an endlink, if no arguments remain, return
          /* This signifies an endlink, if no arguments remain, return
             true, otherwise return false.  */
             true, otherwise return false.  */
          res = arglist == 0;
          res = arglist == 0;
          goto end;
          goto end;
        default:
        default:
          /* If no parameters remain or the parameter's code does not
          /* If no parameters remain or the parameter's code does not
             match the specified code, return false.  Otherwise continue
             match the specified code, return false.  Otherwise continue
             checking any remaining arguments.  */
             checking any remaining arguments.  */
          if (arglist == 0)
          if (arglist == 0)
            goto end;
            goto end;
          if (code == POINTER_TYPE)
          if (code == POINTER_TYPE)
            {
            {
              if (! POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (arglist))))
              if (! POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (arglist))))
                goto end;
                goto end;
            }
            }
          else if (code != TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))))
          else if (code != TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))))
            goto end;
            goto end;
          break;
          break;
        }
        }
      arglist = TREE_CHAIN (arglist);
      arglist = TREE_CHAIN (arglist);
    }
    }
  while (1);
  while (1);
 
 
  /* We need gotos here since we can only have one VA_CLOSE in a
  /* We need gotos here since we can only have one VA_CLOSE in a
     function.  */
     function.  */
 end: ;
 end: ;
  va_end (ap);
  va_end (ap);
 
 
  return res;
  return res;
}
}
 
 
/* Default target-specific builtin expander that does nothing.  */
/* Default target-specific builtin expander that does nothing.  */
 
 
rtx
rtx
default_expand_builtin (tree exp ATTRIBUTE_UNUSED,
default_expand_builtin (tree exp ATTRIBUTE_UNUSED,
                        rtx target ATTRIBUTE_UNUSED,
                        rtx target ATTRIBUTE_UNUSED,
                        rtx subtarget ATTRIBUTE_UNUSED,
                        rtx subtarget ATTRIBUTE_UNUSED,
                        enum machine_mode mode ATTRIBUTE_UNUSED,
                        enum machine_mode mode ATTRIBUTE_UNUSED,
                        int ignore ATTRIBUTE_UNUSED)
                        int ignore ATTRIBUTE_UNUSED)
{
{
  return NULL_RTX;
  return NULL_RTX;
}
}
 
 
/* Returns true is EXP represents data that would potentially reside
/* Returns true is EXP represents data that would potentially reside
   in a readonly section.  */
   in a readonly section.  */
 
 
static bool
static bool
readonly_data_expr (tree exp)
readonly_data_expr (tree exp)
{
{
  STRIP_NOPS (exp);
  STRIP_NOPS (exp);
 
 
  if (TREE_CODE (exp) != ADDR_EXPR)
  if (TREE_CODE (exp) != ADDR_EXPR)
    return false;
    return false;
 
 
  exp = get_base_address (TREE_OPERAND (exp, 0));
  exp = get_base_address (TREE_OPERAND (exp, 0));
  if (!exp)
  if (!exp)
    return false;
    return false;
 
 
  /* Make sure we call decl_readonly_section only for trees it
  /* Make sure we call decl_readonly_section only for trees it
     can handle (since it returns true for everything it doesn't
     can handle (since it returns true for everything it doesn't
     understand).  */
     understand).  */
  if (TREE_CODE (exp) == STRING_CST
  if (TREE_CODE (exp) == STRING_CST
      || TREE_CODE (exp) == CONSTRUCTOR
      || TREE_CODE (exp) == CONSTRUCTOR
      || (TREE_CODE (exp) == VAR_DECL && TREE_STATIC (exp)))
      || (TREE_CODE (exp) == VAR_DECL && TREE_STATIC (exp)))
    return decl_readonly_section (exp, 0);
    return decl_readonly_section (exp, 0);
  else
  else
    return false;
    return false;
}
}
 
 
/* Simplify a call to the strstr builtin.
/* Simplify a call to the strstr builtin.
 
 
   Return 0 if no simplification was possible, otherwise return the
   Return 0 if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strstr (tree arglist, tree type)
fold_builtin_strstr (tree arglist, tree type)
{
{
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist));
      tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist));
      tree fn;
      tree fn;
      const char *p1, *p2;
      const char *p1, *p2;
 
 
      p2 = c_getstr (s2);
      p2 = c_getstr (s2);
      if (p2 == NULL)
      if (p2 == NULL)
        return 0;
        return 0;
 
 
      p1 = c_getstr (s1);
      p1 = c_getstr (s1);
      if (p1 != NULL)
      if (p1 != NULL)
        {
        {
          const char *r = strstr (p1, p2);
          const char *r = strstr (p1, p2);
          tree tem;
          tree tem;
 
 
          if (r == NULL)
          if (r == NULL)
            return build_int_cst (TREE_TYPE (s1), 0);
            return build_int_cst (TREE_TYPE (s1), 0);
 
 
          /* Return an offset into the constant string argument.  */
          /* Return an offset into the constant string argument.  */
          tem = fold_build2 (PLUS_EXPR, TREE_TYPE (s1),
          tem = fold_build2 (PLUS_EXPR, TREE_TYPE (s1),
                             s1, build_int_cst (TREE_TYPE (s1), r - p1));
                             s1, build_int_cst (TREE_TYPE (s1), r - p1));
          return fold_convert (type, tem);
          return fold_convert (type, tem);
        }
        }
 
 
      /* The argument is const char *, and the result is char *, so we need
      /* The argument is const char *, and the result is char *, so we need
         a type conversion here to avoid a warning.  */
         a type conversion here to avoid a warning.  */
      if (p2[0] == '\0')
      if (p2[0] == '\0')
        return fold_convert (type, s1);
        return fold_convert (type, s1);
 
 
      if (p2[1] != '\0')
      if (p2[1] != '\0')
        return 0;
        return 0;
 
 
      fn = implicit_built_in_decls[BUILT_IN_STRCHR];
      fn = implicit_built_in_decls[BUILT_IN_STRCHR];
      if (!fn)
      if (!fn)
        return 0;
        return 0;
 
 
      /* New argument list transforming strstr(s1, s2) to
      /* New argument list transforming strstr(s1, s2) to
         strchr(s1, s2[0]).  */
         strchr(s1, s2[0]).  */
      arglist = build_tree_list (NULL_TREE,
      arglist = build_tree_list (NULL_TREE,
                                 build_int_cst (NULL_TREE, p2[0]));
                                 build_int_cst (NULL_TREE, p2[0]));
      arglist = tree_cons (NULL_TREE, s1, arglist);
      arglist = tree_cons (NULL_TREE, s1, arglist);
      return build_function_call_expr (fn, arglist);
      return build_function_call_expr (fn, arglist);
    }
    }
}
}
 
 
/* Simplify a call to the strchr builtin.
/* Simplify a call to the strchr builtin.
 
 
   Return 0 if no simplification was possible, otherwise return the
   Return 0 if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strchr (tree arglist, tree type)
fold_builtin_strchr (tree arglist, tree type)
{
{
  if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist));
      tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist));
      const char *p1;
      const char *p1;
 
 
      if (TREE_CODE (s2) != INTEGER_CST)
      if (TREE_CODE (s2) != INTEGER_CST)
        return 0;
        return 0;
 
 
      p1 = c_getstr (s1);
      p1 = c_getstr (s1);
      if (p1 != NULL)
      if (p1 != NULL)
        {
        {
          char c;
          char c;
          const char *r;
          const char *r;
          tree tem;
          tree tem;
 
 
          if (target_char_cast (s2, &c))
          if (target_char_cast (s2, &c))
            return 0;
            return 0;
 
 
          r = strchr (p1, c);
          r = strchr (p1, c);
 
 
          if (r == NULL)
          if (r == NULL)
            return build_int_cst (TREE_TYPE (s1), 0);
            return build_int_cst (TREE_TYPE (s1), 0);
 
 
          /* Return an offset into the constant string argument.  */
          /* Return an offset into the constant string argument.  */
          tem = fold_build2 (PLUS_EXPR, TREE_TYPE (s1),
          tem = fold_build2 (PLUS_EXPR, TREE_TYPE (s1),
                             s1, build_int_cst (TREE_TYPE (s1), r - p1));
                             s1, build_int_cst (TREE_TYPE (s1), r - p1));
          return fold_convert (type, tem);
          return fold_convert (type, tem);
        }
        }
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Simplify a call to the strrchr builtin.
/* Simplify a call to the strrchr builtin.
 
 
   Return 0 if no simplification was possible, otherwise return the
   Return 0 if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strrchr (tree arglist, tree type)
fold_builtin_strrchr (tree arglist, tree type)
{
{
  if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist));
      tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist));
      tree fn;
      tree fn;
      const char *p1;
      const char *p1;
 
 
      if (TREE_CODE (s2) != INTEGER_CST)
      if (TREE_CODE (s2) != INTEGER_CST)
        return 0;
        return 0;
 
 
      p1 = c_getstr (s1);
      p1 = c_getstr (s1);
      if (p1 != NULL)
      if (p1 != NULL)
        {
        {
          char c;
          char c;
          const char *r;
          const char *r;
          tree tem;
          tree tem;
 
 
          if (target_char_cast (s2, &c))
          if (target_char_cast (s2, &c))
            return 0;
            return 0;
 
 
          r = strrchr (p1, c);
          r = strrchr (p1, c);
 
 
          if (r == NULL)
          if (r == NULL)
            return build_int_cst (TREE_TYPE (s1), 0);
            return build_int_cst (TREE_TYPE (s1), 0);
 
 
          /* Return an offset into the constant string argument.  */
          /* Return an offset into the constant string argument.  */
          tem = fold_build2 (PLUS_EXPR, TREE_TYPE (s1),
          tem = fold_build2 (PLUS_EXPR, TREE_TYPE (s1),
                             s1, build_int_cst (TREE_TYPE (s1), r - p1));
                             s1, build_int_cst (TREE_TYPE (s1), r - p1));
          return fold_convert (type, tem);
          return fold_convert (type, tem);
        }
        }
 
 
      if (! integer_zerop (s2))
      if (! integer_zerop (s2))
        return 0;
        return 0;
 
 
      fn = implicit_built_in_decls[BUILT_IN_STRCHR];
      fn = implicit_built_in_decls[BUILT_IN_STRCHR];
      if (!fn)
      if (!fn)
        return 0;
        return 0;
 
 
      /* Transform strrchr(s1, '\0') to strchr(s1, '\0').  */
      /* Transform strrchr(s1, '\0') to strchr(s1, '\0').  */
      return build_function_call_expr (fn, arglist);
      return build_function_call_expr (fn, arglist);
    }
    }
}
}
 
 
/* Simplify a call to the strpbrk builtin.
/* Simplify a call to the strpbrk builtin.
 
 
   Return 0 if no simplification was possible, otherwise return the
   Return 0 if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strpbrk (tree arglist, tree type)
fold_builtin_strpbrk (tree arglist, tree type)
{
{
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist));
      tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist));
      tree fn;
      tree fn;
      const char *p1, *p2;
      const char *p1, *p2;
 
 
      p2 = c_getstr (s2);
      p2 = c_getstr (s2);
      if (p2 == NULL)
      if (p2 == NULL)
        return 0;
        return 0;
 
 
      p1 = c_getstr (s1);
      p1 = c_getstr (s1);
      if (p1 != NULL)
      if (p1 != NULL)
        {
        {
          const char *r = strpbrk (p1, p2);
          const char *r = strpbrk (p1, p2);
          tree tem;
          tree tem;
 
 
          if (r == NULL)
          if (r == NULL)
            return build_int_cst (TREE_TYPE (s1), 0);
            return build_int_cst (TREE_TYPE (s1), 0);
 
 
          /* Return an offset into the constant string argument.  */
          /* Return an offset into the constant string argument.  */
          tem = fold_build2 (PLUS_EXPR, TREE_TYPE (s1),
          tem = fold_build2 (PLUS_EXPR, TREE_TYPE (s1),
                             s1, build_int_cst (TREE_TYPE (s1), r - p1));
                             s1, build_int_cst (TREE_TYPE (s1), r - p1));
          return fold_convert (type, tem);
          return fold_convert (type, tem);
        }
        }
 
 
      if (p2[0] == '\0')
      if (p2[0] == '\0')
        /* strpbrk(x, "") == NULL.
        /* strpbrk(x, "") == NULL.
           Evaluate and ignore s1 in case it had side-effects.  */
           Evaluate and ignore s1 in case it had side-effects.  */
        return omit_one_operand (TREE_TYPE (s1), integer_zero_node, s1);
        return omit_one_operand (TREE_TYPE (s1), integer_zero_node, s1);
 
 
      if (p2[1] != '\0')
      if (p2[1] != '\0')
        return 0;  /* Really call strpbrk.  */
        return 0;  /* Really call strpbrk.  */
 
 
      fn = implicit_built_in_decls[BUILT_IN_STRCHR];
      fn = implicit_built_in_decls[BUILT_IN_STRCHR];
      if (!fn)
      if (!fn)
        return 0;
        return 0;
 
 
      /* New argument list transforming strpbrk(s1, s2) to
      /* New argument list transforming strpbrk(s1, s2) to
         strchr(s1, s2[0]).  */
         strchr(s1, s2[0]).  */
      arglist = build_tree_list (NULL_TREE,
      arglist = build_tree_list (NULL_TREE,
                                 build_int_cst (NULL_TREE, p2[0]));
                                 build_int_cst (NULL_TREE, p2[0]));
      arglist = tree_cons (NULL_TREE, s1, arglist);
      arglist = tree_cons (NULL_TREE, s1, arglist);
      return build_function_call_expr (fn, arglist);
      return build_function_call_expr (fn, arglist);
    }
    }
}
}
 
 
/* Simplify a call to the strcat builtin.
/* Simplify a call to the strcat builtin.
 
 
   Return 0 if no simplification was possible, otherwise return the
   Return 0 if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strcat (tree arglist)
fold_builtin_strcat (tree arglist)
{
{
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree dst = TREE_VALUE (arglist),
      tree dst = TREE_VALUE (arglist),
        src = TREE_VALUE (TREE_CHAIN (arglist));
        src = TREE_VALUE (TREE_CHAIN (arglist));
      const char *p = c_getstr (src);
      const char *p = c_getstr (src);
 
 
      /* If the string length is zero, return the dst parameter.  */
      /* If the string length is zero, return the dst parameter.  */
      if (p && *p == '\0')
      if (p && *p == '\0')
        return dst;
        return dst;
 
 
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Simplify a call to the strncat builtin.
/* Simplify a call to the strncat builtin.
 
 
   Return 0 if no simplification was possible, otherwise return the
   Return 0 if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strncat (tree arglist)
fold_builtin_strncat (tree arglist)
{
{
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree dst = TREE_VALUE (arglist);
      tree dst = TREE_VALUE (arglist);
      tree src = TREE_VALUE (TREE_CHAIN (arglist));
      tree src = TREE_VALUE (TREE_CHAIN (arglist));
      tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
      tree len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
      const char *p = c_getstr (src);
      const char *p = c_getstr (src);
 
 
      /* If the requested length is zero, or the src parameter string
      /* If the requested length is zero, or the src parameter string
         length is zero, return the dst parameter.  */
         length is zero, return the dst parameter.  */
      if (integer_zerop (len) || (p && *p == '\0'))
      if (integer_zerop (len) || (p && *p == '\0'))
        return omit_two_operands (TREE_TYPE (dst), dst, src, len);
        return omit_two_operands (TREE_TYPE (dst), dst, src, len);
 
 
      /* If the requested len is greater than or equal to the string
      /* If the requested len is greater than or equal to the string
         length, call strcat.  */
         length, call strcat.  */
      if (TREE_CODE (len) == INTEGER_CST && p
      if (TREE_CODE (len) == INTEGER_CST && p
          && compare_tree_int (len, strlen (p)) >= 0)
          && compare_tree_int (len, strlen (p)) >= 0)
        {
        {
          tree newarglist
          tree newarglist
            = tree_cons (NULL_TREE, dst, build_tree_list (NULL_TREE, src));
            = tree_cons (NULL_TREE, dst, build_tree_list (NULL_TREE, src));
          tree fn = implicit_built_in_decls[BUILT_IN_STRCAT];
          tree fn = implicit_built_in_decls[BUILT_IN_STRCAT];
 
 
          /* If the replacement _DECL isn't initialized, don't do the
          /* If the replacement _DECL isn't initialized, don't do the
             transformation.  */
             transformation.  */
          if (!fn)
          if (!fn)
            return 0;
            return 0;
 
 
          return build_function_call_expr (fn, newarglist);
          return build_function_call_expr (fn, newarglist);
        }
        }
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Simplify a call to the strspn builtin.
/* Simplify a call to the strspn builtin.
 
 
   Return 0 if no simplification was possible, otherwise return the
   Return 0 if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strspn (tree arglist)
fold_builtin_strspn (tree arglist)
{
{
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist));
      tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist));
      const char *p1 = c_getstr (s1), *p2 = c_getstr (s2);
      const char *p1 = c_getstr (s1), *p2 = c_getstr (s2);
 
 
      /* If both arguments are constants, evaluate at compile-time.  */
      /* If both arguments are constants, evaluate at compile-time.  */
      if (p1 && p2)
      if (p1 && p2)
        {
        {
          const size_t r = strspn (p1, p2);
          const size_t r = strspn (p1, p2);
          return size_int (r);
          return size_int (r);
        }
        }
 
 
      /* If either argument is "", return 0.  */
      /* If either argument is "", return 0.  */
      if ((p1 && *p1 == '\0') || (p2 && *p2 == '\0'))
      if ((p1 && *p1 == '\0') || (p2 && *p2 == '\0'))
        /* Evaluate and ignore both arguments in case either one has
        /* Evaluate and ignore both arguments in case either one has
           side-effects.  */
           side-effects.  */
        return omit_two_operands (integer_type_node, integer_zero_node,
        return omit_two_operands (integer_type_node, integer_zero_node,
                                  s1, s2);
                                  s1, s2);
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Simplify a call to the strcspn builtin.
/* Simplify a call to the strcspn builtin.
 
 
   Return 0 if no simplification was possible, otherwise return the
   Return 0 if no simplification was possible, otherwise return the
   simplified form of the call as a tree.
   simplified form of the call as a tree.
 
 
   The simplified form may be a constant or other expression which
   The simplified form may be a constant or other expression which
   computes the same value, but in a more efficient manner (including
   computes the same value, but in a more efficient manner (including
   calls to other builtin functions).
   calls to other builtin functions).
 
 
   The call may contain arguments which need to be evaluated, but
   The call may contain arguments which need to be evaluated, but
   which are not useful to determine the result of the call.  In
   which are not useful to determine the result of the call.  In
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   this case we return a chain of COMPOUND_EXPRs.  The LHS of each
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPR will be an argument which must be evaluated.
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPRs are chained through their RHS.  The RHS of the last
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   COMPOUND_EXPR in the chain will contain the tree for the simplified
   form of the builtin function call.  */
   form of the builtin function call.  */
 
 
static tree
static tree
fold_builtin_strcspn (tree arglist)
fold_builtin_strcspn (tree arglist)
{
{
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
  else
  else
    {
    {
      tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist));
      tree s1 = TREE_VALUE (arglist), s2 = TREE_VALUE (TREE_CHAIN (arglist));
      const char *p1 = c_getstr (s1), *p2 = c_getstr (s2);
      const char *p1 = c_getstr (s1), *p2 = c_getstr (s2);
 
 
      /* If both arguments are constants, evaluate at compile-time.  */
      /* If both arguments are constants, evaluate at compile-time.  */
      if (p1 && p2)
      if (p1 && p2)
        {
        {
          const size_t r = strcspn (p1, p2);
          const size_t r = strcspn (p1, p2);
          return size_int (r);
          return size_int (r);
        }
        }
 
 
      /* If the first argument is "", return 0.  */
      /* If the first argument is "", return 0.  */
      if (p1 && *p1 == '\0')
      if (p1 && *p1 == '\0')
        {
        {
          /* Evaluate and ignore argument s2 in case it has
          /* Evaluate and ignore argument s2 in case it has
             side-effects.  */
             side-effects.  */
          return omit_one_operand (integer_type_node,
          return omit_one_operand (integer_type_node,
                                   integer_zero_node, s2);
                                   integer_zero_node, s2);
        }
        }
 
 
      /* If the second argument is "", return __builtin_strlen(s1).  */
      /* If the second argument is "", return __builtin_strlen(s1).  */
      if (p2 && *p2 == '\0')
      if (p2 && *p2 == '\0')
        {
        {
          tree newarglist = build_tree_list (NULL_TREE, s1),
          tree newarglist = build_tree_list (NULL_TREE, s1),
            fn = implicit_built_in_decls[BUILT_IN_STRLEN];
            fn = implicit_built_in_decls[BUILT_IN_STRLEN];
 
 
          /* If the replacement _DECL isn't initialized, don't do the
          /* If the replacement _DECL isn't initialized, don't do the
             transformation.  */
             transformation.  */
          if (!fn)
          if (!fn)
            return 0;
            return 0;
 
 
          return build_function_call_expr (fn, newarglist);
          return build_function_call_expr (fn, newarglist);
        }
        }
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Fold a call to the fputs builtin.  IGNORE is true if the value returned
/* Fold a call to the fputs builtin.  IGNORE is true if the value returned
   by the builtin will be ignored.  UNLOCKED is true is true if this
   by the builtin will be ignored.  UNLOCKED is true is true if this
   actually a call to fputs_unlocked.  If LEN in non-NULL, it represents
   actually a call to fputs_unlocked.  If LEN in non-NULL, it represents
   the known length of the string.  Return NULL_TREE if no simplification
   the known length of the string.  Return NULL_TREE if no simplification
   was possible.  */
   was possible.  */
 
 
tree
tree
fold_builtin_fputs (tree arglist, bool ignore, bool unlocked, tree len)
fold_builtin_fputs (tree arglist, bool ignore, bool unlocked, tree len)
{
{
  tree fn;
  tree fn;
  /* If we're using an unlocked function, assume the other unlocked
  /* If we're using an unlocked function, assume the other unlocked
     functions exist explicitly.  */
     functions exist explicitly.  */
  tree const fn_fputc = unlocked ? built_in_decls[BUILT_IN_FPUTC_UNLOCKED]
  tree const fn_fputc = unlocked ? built_in_decls[BUILT_IN_FPUTC_UNLOCKED]
    : implicit_built_in_decls[BUILT_IN_FPUTC];
    : implicit_built_in_decls[BUILT_IN_FPUTC];
  tree const fn_fwrite = unlocked ? built_in_decls[BUILT_IN_FWRITE_UNLOCKED]
  tree const fn_fwrite = unlocked ? built_in_decls[BUILT_IN_FWRITE_UNLOCKED]
    : implicit_built_in_decls[BUILT_IN_FWRITE];
    : implicit_built_in_decls[BUILT_IN_FWRITE];
 
 
  /* If the return value is used, don't do the transformation.  */
  /* If the return value is used, don't do the transformation.  */
  if (!ignore)
  if (!ignore)
    return 0;
    return 0;
 
 
  /* Verify the arguments in the original call.  */
  /* Verify the arguments in the original call.  */
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  if (! len)
  if (! len)
    len = c_strlen (TREE_VALUE (arglist), 0);
    len = c_strlen (TREE_VALUE (arglist), 0);
 
 
  /* Get the length of the string passed to fputs.  If the length
  /* Get the length of the string passed to fputs.  If the length
     can't be determined, punt.  */
     can't be determined, punt.  */
  if (!len
  if (!len
      || TREE_CODE (len) != INTEGER_CST)
      || TREE_CODE (len) != INTEGER_CST)
    return 0;
    return 0;
 
 
  switch (compare_tree_int (len, 1))
  switch (compare_tree_int (len, 1))
    {
    {
    case -1: /* length is 0, delete the call entirely .  */
    case -1: /* length is 0, delete the call entirely .  */
      return omit_one_operand (integer_type_node, integer_zero_node,
      return omit_one_operand (integer_type_node, integer_zero_node,
                               TREE_VALUE (TREE_CHAIN (arglist)));
                               TREE_VALUE (TREE_CHAIN (arglist)));
 
 
    case 0: /* length is 1, call fputc.  */
    case 0: /* length is 1, call fputc.  */
      {
      {
        const char *p = c_getstr (TREE_VALUE (arglist));
        const char *p = c_getstr (TREE_VALUE (arglist));
 
 
        if (p != NULL)
        if (p != NULL)
          {
          {
            /* New argument list transforming fputs(string, stream) to
            /* New argument list transforming fputs(string, stream) to
               fputc(string[0], stream).  */
               fputc(string[0], stream).  */
            arglist = build_tree_list (NULL_TREE,
            arglist = build_tree_list (NULL_TREE,
                                       TREE_VALUE (TREE_CHAIN (arglist)));
                                       TREE_VALUE (TREE_CHAIN (arglist)));
            arglist = tree_cons (NULL_TREE,
            arglist = tree_cons (NULL_TREE,
                                 build_int_cst (NULL_TREE, p[0]),
                                 build_int_cst (NULL_TREE, p[0]),
                                 arglist);
                                 arglist);
            fn = fn_fputc;
            fn = fn_fputc;
            break;
            break;
          }
          }
      }
      }
      /* FALLTHROUGH */
      /* FALLTHROUGH */
    case 1: /* length is greater than 1, call fwrite.  */
    case 1: /* length is greater than 1, call fwrite.  */
      {
      {
        tree string_arg;
        tree string_arg;
 
 
        /* If optimizing for size keep fputs.  */
        /* If optimizing for size keep fputs.  */
        if (optimize_size)
        if (optimize_size)
          return 0;
          return 0;
        string_arg = TREE_VALUE (arglist);
        string_arg = TREE_VALUE (arglist);
        /* New argument list transforming fputs(string, stream) to
        /* New argument list transforming fputs(string, stream) to
           fwrite(string, 1, len, stream).  */
           fwrite(string, 1, len, stream).  */
        arglist = build_tree_list (NULL_TREE,
        arglist = build_tree_list (NULL_TREE,
                                   TREE_VALUE (TREE_CHAIN (arglist)));
                                   TREE_VALUE (TREE_CHAIN (arglist)));
        arglist = tree_cons (NULL_TREE, len, arglist);
        arglist = tree_cons (NULL_TREE, len, arglist);
        arglist = tree_cons (NULL_TREE, size_one_node, arglist);
        arglist = tree_cons (NULL_TREE, size_one_node, arglist);
        arglist = tree_cons (NULL_TREE, string_arg, arglist);
        arglist = tree_cons (NULL_TREE, string_arg, arglist);
        fn = fn_fwrite;
        fn = fn_fwrite;
        break;
        break;
      }
      }
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* If the replacement _DECL isn't initialized, don't do the
  /* If the replacement _DECL isn't initialized, don't do the
     transformation.  */
     transformation.  */
  if (!fn)
  if (!fn)
    return 0;
    return 0;
 
 
  /* These optimizations are only performed when the result is ignored,
  /* These optimizations are only performed when the result is ignored,
     hence there's no need to cast the result to integer_type_node.  */
     hence there's no need to cast the result to integer_type_node.  */
  return build_function_call_expr (fn, arglist);
  return build_function_call_expr (fn, arglist);
}
}
 
 
/* Fold the new_arg's arguments (ARGLIST). Returns true if there was an error
/* Fold the new_arg's arguments (ARGLIST). Returns true if there was an error
   produced.  False otherwise.  This is done so that we don't output the error
   produced.  False otherwise.  This is done so that we don't output the error
   or warning twice or three times.  */
   or warning twice or three times.  */
bool
bool
fold_builtin_next_arg (tree arglist)
fold_builtin_next_arg (tree arglist)
{
{
  tree fntype = TREE_TYPE (current_function_decl);
  tree fntype = TREE_TYPE (current_function_decl);
 
 
  if (TYPE_ARG_TYPES (fntype) == 0
  if (TYPE_ARG_TYPES (fntype) == 0
      || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
      || (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
          == void_type_node))
          == void_type_node))
    {
    {
      error ("%<va_start%> used in function with fixed args");
      error ("%<va_start%> used in function with fixed args");
      return true;
      return true;
    }
    }
  else if (!arglist)
  else if (!arglist)
    {
    {
      /* Evidently an out of date version of <stdarg.h>; can't validate
      /* Evidently an out of date version of <stdarg.h>; can't validate
         va_start's second argument, but can still work as intended.  */
         va_start's second argument, but can still work as intended.  */
      warning (0, "%<__builtin_next_arg%> called without an argument");
      warning (0, "%<__builtin_next_arg%> called without an argument");
      return true;
      return true;
    }
    }
  /* We use __builtin_va_start (ap, 0, 0) or __builtin_next_arg (0, 0)
  /* We use __builtin_va_start (ap, 0, 0) or __builtin_next_arg (0, 0)
     when we checked the arguments and if needed issued a warning.  */
     when we checked the arguments and if needed issued a warning.  */
  else if (!TREE_CHAIN (arglist)
  else if (!TREE_CHAIN (arglist)
           || !integer_zerop (TREE_VALUE (arglist))
           || !integer_zerop (TREE_VALUE (arglist))
           || !integer_zerop (TREE_VALUE (TREE_CHAIN (arglist)))
           || !integer_zerop (TREE_VALUE (TREE_CHAIN (arglist)))
           || TREE_CHAIN (TREE_CHAIN (arglist)))
           || TREE_CHAIN (TREE_CHAIN (arglist)))
    {
    {
      tree last_parm = tree_last (DECL_ARGUMENTS (current_function_decl));
      tree last_parm = tree_last (DECL_ARGUMENTS (current_function_decl));
      tree arg = TREE_VALUE (arglist);
      tree arg = TREE_VALUE (arglist);
 
 
      if (TREE_CHAIN (arglist))
      if (TREE_CHAIN (arglist))
        {
        {
          error ("%<va_start%> used with too many arguments");
          error ("%<va_start%> used with too many arguments");
          return true;
          return true;
        }
        }
 
 
      /* Strip off all nops for the sake of the comparison.  This
      /* Strip off all nops for the sake of the comparison.  This
         is not quite the same as STRIP_NOPS.  It does more.
         is not quite the same as STRIP_NOPS.  It does more.
         We must also strip off INDIRECT_EXPR for C++ reference
         We must also strip off INDIRECT_EXPR for C++ reference
         parameters.  */
         parameters.  */
      while (TREE_CODE (arg) == NOP_EXPR
      while (TREE_CODE (arg) == NOP_EXPR
             || TREE_CODE (arg) == CONVERT_EXPR
             || TREE_CODE (arg) == CONVERT_EXPR
             || TREE_CODE (arg) == NON_LVALUE_EXPR
             || TREE_CODE (arg) == NON_LVALUE_EXPR
             || TREE_CODE (arg) == INDIRECT_REF)
             || TREE_CODE (arg) == INDIRECT_REF)
        arg = TREE_OPERAND (arg, 0);
        arg = TREE_OPERAND (arg, 0);
      if (arg != last_parm)
      if (arg != last_parm)
        {
        {
          /* FIXME: Sometimes with the tree optimizers we can get the
          /* FIXME: Sometimes with the tree optimizers we can get the
             not the last argument even though the user used the last
             not the last argument even though the user used the last
             argument.  We just warn and set the arg to be the last
             argument.  We just warn and set the arg to be the last
             argument so that we will get wrong-code because of
             argument so that we will get wrong-code because of
             it.  */
             it.  */
          warning (0, "second parameter of %<va_start%> not last named argument");
          warning (0, "second parameter of %<va_start%> not last named argument");
        }
        }
      /* We want to verify the second parameter just once before the tree
      /* We want to verify the second parameter just once before the tree
         optimizers are run and then avoid keeping it in the tree,
         optimizers are run and then avoid keeping it in the tree,
         as otherwise we could warn even for correct code like:
         as otherwise we could warn even for correct code like:
         void foo (int i, ...)
         void foo (int i, ...)
         { va_list ap; i++; va_start (ap, i); va_end (ap); }  */
         { va_list ap; i++; va_start (ap, i); va_end (ap); }  */
      TREE_VALUE (arglist) = integer_zero_node;
      TREE_VALUE (arglist) = integer_zero_node;
      TREE_CHAIN (arglist) = build_tree_list (NULL, integer_zero_node);
      TREE_CHAIN (arglist) = build_tree_list (NULL, integer_zero_node);
    }
    }
  return false;
  return false;
}
}
 
 
 
 
/* Simplify a call to the sprintf builtin.
/* Simplify a call to the sprintf builtin.
 
 
   Return 0 if no simplification was possible, otherwise return the
   Return 0 if no simplification was possible, otherwise return the
   simplified form of the call as a tree.  If IGNORED is true, it means that
   simplified form of the call as a tree.  If IGNORED is true, it means that
   the caller does not use the returned value of the function.  */
   the caller does not use the returned value of the function.  */
 
 
static tree
static tree
fold_builtin_sprintf (tree arglist, int ignored)
fold_builtin_sprintf (tree arglist, int ignored)
{
{
  tree call, retval, dest, fmt;
  tree call, retval, dest, fmt;
  const char *fmt_str = NULL;
  const char *fmt_str = NULL;
 
 
  /* Verify the required arguments in the original call.  We deal with two
  /* Verify the required arguments in the original call.  We deal with two
     types of sprintf() calls: 'sprintf (str, fmt)' and
     types of sprintf() calls: 'sprintf (str, fmt)' and
     'sprintf (dest, "%s", orig)'.  */
     'sprintf (dest, "%s", orig)'.  */
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, VOID_TYPE)
      && !validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, POINTER_TYPE,
      && !validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, POINTER_TYPE,
                            VOID_TYPE))
                            VOID_TYPE))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Get the destination string and the format specifier.  */
  /* Get the destination string and the format specifier.  */
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  fmt = TREE_VALUE (TREE_CHAIN (arglist));
  fmt = TREE_VALUE (TREE_CHAIN (arglist));
  arglist = TREE_CHAIN (TREE_CHAIN (arglist));
  arglist = TREE_CHAIN (TREE_CHAIN (arglist));
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str == NULL)
  if (fmt_str == NULL)
    return NULL_TREE;
    return NULL_TREE;
 
 
  call = NULL_TREE;
  call = NULL_TREE;
  retval = NULL_TREE;
  retval = NULL_TREE;
 
 
  if (!init_target_chars())
  if (!init_target_chars())
    return 0;
    return 0;
 
 
  /* If the format doesn't contain % args or %%, use strcpy.  */
  /* If the format doesn't contain % args or %%, use strcpy.  */
  if (strchr (fmt_str, target_percent) == NULL)
  if (strchr (fmt_str, target_percent) == NULL)
    {
    {
      tree fn = implicit_built_in_decls[BUILT_IN_STRCPY];
      tree fn = implicit_built_in_decls[BUILT_IN_STRCPY];
 
 
      if (!fn)
      if (!fn)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Don't optimize sprintf (buf, "abc", ptr++).  */
      /* Don't optimize sprintf (buf, "abc", ptr++).  */
      if (arglist)
      if (arglist)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Convert sprintf (str, fmt) into strcpy (str, fmt) when
      /* Convert sprintf (str, fmt) into strcpy (str, fmt) when
         'format' is known to contain no % formats.  */
         'format' is known to contain no % formats.  */
      arglist = build_tree_list (NULL_TREE, fmt);
      arglist = build_tree_list (NULL_TREE, fmt);
      arglist = tree_cons (NULL_TREE, dest, arglist);
      arglist = tree_cons (NULL_TREE, dest, arglist);
      call = build_function_call_expr (fn, arglist);
      call = build_function_call_expr (fn, arglist);
      if (!ignored)
      if (!ignored)
        retval = build_int_cst (NULL_TREE, strlen (fmt_str));
        retval = build_int_cst (NULL_TREE, strlen (fmt_str));
    }
    }
 
 
  /* If the format is "%s", use strcpy if the result isn't used.  */
  /* If the format is "%s", use strcpy if the result isn't used.  */
  else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0)
  else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0)
    {
    {
      tree fn, orig;
      tree fn, orig;
      fn = implicit_built_in_decls[BUILT_IN_STRCPY];
      fn = implicit_built_in_decls[BUILT_IN_STRCPY];
 
 
      if (!fn)
      if (!fn)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Don't crash on sprintf (str1, "%s").  */
      /* Don't crash on sprintf (str1, "%s").  */
      if (!arglist)
      if (!arglist)
        return NULL_TREE;
        return NULL_TREE;
 
 
      /* Convert sprintf (str1, "%s", str2) into strcpy (str1, str2).  */
      /* Convert sprintf (str1, "%s", str2) into strcpy (str1, str2).  */
      orig = TREE_VALUE (arglist);
      orig = TREE_VALUE (arglist);
      arglist = build_tree_list (NULL_TREE, orig);
      arglist = build_tree_list (NULL_TREE, orig);
      arglist = tree_cons (NULL_TREE, dest, arglist);
      arglist = tree_cons (NULL_TREE, dest, arglist);
      if (!ignored)
      if (!ignored)
        {
        {
          retval = c_strlen (orig, 1);
          retval = c_strlen (orig, 1);
          if (!retval || TREE_CODE (retval) != INTEGER_CST)
          if (!retval || TREE_CODE (retval) != INTEGER_CST)
            return NULL_TREE;
            return NULL_TREE;
        }
        }
      call = build_function_call_expr (fn, arglist);
      call = build_function_call_expr (fn, arglist);
    }
    }
 
 
  if (call && retval)
  if (call && retval)
    {
    {
      retval = fold_convert
      retval = fold_convert
        (TREE_TYPE (TREE_TYPE (implicit_built_in_decls[BUILT_IN_SPRINTF])),
        (TREE_TYPE (TREE_TYPE (implicit_built_in_decls[BUILT_IN_SPRINTF])),
         retval);
         retval);
      return build2 (COMPOUND_EXPR, TREE_TYPE (retval), call, retval);
      return build2 (COMPOUND_EXPR, TREE_TYPE (retval), call, retval);
    }
    }
  else
  else
    return call;
    return call;
}
}
 
 
/* Expand a call to __builtin_object_size.  */
/* Expand a call to __builtin_object_size.  */
 
 
rtx
rtx
expand_builtin_object_size (tree exp)
expand_builtin_object_size (tree exp)
{
{
  tree ost;
  tree ost;
  int object_size_type;
  int object_size_type;
  tree fndecl = get_callee_fndecl (exp);
  tree fndecl = get_callee_fndecl (exp);
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  location_t locus = EXPR_LOCATION (exp);
  location_t locus = EXPR_LOCATION (exp);
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    {
    {
      error ("%Hfirst argument of %D must be a pointer, second integer constant",
      error ("%Hfirst argument of %D must be a pointer, second integer constant",
             &locus, fndecl);
             &locus, fndecl);
      expand_builtin_trap ();
      expand_builtin_trap ();
      return const0_rtx;
      return const0_rtx;
    }
    }
 
 
  ost = TREE_VALUE (TREE_CHAIN (arglist));
  ost = TREE_VALUE (TREE_CHAIN (arglist));
  STRIP_NOPS (ost);
  STRIP_NOPS (ost);
 
 
  if (TREE_CODE (ost) != INTEGER_CST
  if (TREE_CODE (ost) != INTEGER_CST
      || tree_int_cst_sgn (ost) < 0
      || tree_int_cst_sgn (ost) < 0
      || compare_tree_int (ost, 3) > 0)
      || compare_tree_int (ost, 3) > 0)
    {
    {
      error ("%Hlast argument of %D is not integer constant between 0 and 3",
      error ("%Hlast argument of %D is not integer constant between 0 and 3",
             &locus, fndecl);
             &locus, fndecl);
      expand_builtin_trap ();
      expand_builtin_trap ();
      return const0_rtx;
      return const0_rtx;
    }
    }
 
 
  object_size_type = tree_low_cst (ost, 0);
  object_size_type = tree_low_cst (ost, 0);
 
 
  return object_size_type < 2 ? constm1_rtx : const0_rtx;
  return object_size_type < 2 ? constm1_rtx : const0_rtx;
}
}
 
 
/* Expand EXP, a call to the __mem{cpy,pcpy,move,set}_chk builtin.
/* Expand EXP, a call to the __mem{cpy,pcpy,move,set}_chk builtin.
   FCODE is the BUILT_IN_* to use.
   FCODE is the BUILT_IN_* to use.
   Return 0 if we failed; the caller should emit a normal call,
   Return 0 if we failed; the caller should emit a normal call,
   otherwise try to get the result in TARGET, if convenient (and in
   otherwise try to get the result in TARGET, if convenient (and in
   mode MODE if that's convenient).  */
   mode MODE if that's convenient).  */
 
 
static rtx
static rtx
expand_builtin_memory_chk (tree exp, rtx target, enum machine_mode mode,
expand_builtin_memory_chk (tree exp, rtx target, enum machine_mode mode,
                           enum built_in_function fcode)
                           enum built_in_function fcode)
{
{
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  tree dest, src, len, size;
  tree dest, src, len, size;
 
 
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE,
                         POINTER_TYPE,
                         fcode == BUILT_IN_MEMSET_CHK
                         fcode == BUILT_IN_MEMSET_CHK
                         ? INTEGER_TYPE : POINTER_TYPE,
                         ? INTEGER_TYPE : POINTER_TYPE,
                         INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  src = TREE_VALUE (TREE_CHAIN (arglist));
  src = TREE_VALUE (TREE_CHAIN (arglist));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return 0;
    return 0;
 
 
  if (host_integerp (len, 1) || integer_all_onesp (size))
  if (host_integerp (len, 1) || integer_all_onesp (size))
    {
    {
      tree fn;
      tree fn;
 
 
      if (! integer_all_onesp (size) && tree_int_cst_lt (size, len))
      if (! integer_all_onesp (size) && tree_int_cst_lt (size, len))
        {
        {
          location_t locus = EXPR_LOCATION (exp);
          location_t locus = EXPR_LOCATION (exp);
          warning (0, "%Hcall to %D will always overflow destination buffer",
          warning (0, "%Hcall to %D will always overflow destination buffer",
                   &locus, get_callee_fndecl (exp));
                   &locus, get_callee_fndecl (exp));
          return 0;
          return 0;
        }
        }
 
 
      arglist = build_tree_list (NULL_TREE, len);
      arglist = build_tree_list (NULL_TREE, len);
      arglist = tree_cons (NULL_TREE, src, arglist);
      arglist = tree_cons (NULL_TREE, src, arglist);
      arglist = tree_cons (NULL_TREE, dest, arglist);
      arglist = tree_cons (NULL_TREE, dest, arglist);
 
 
      fn = NULL_TREE;
      fn = NULL_TREE;
      /* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume
      /* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume
         mem{cpy,pcpy,move,set} is available.  */
         mem{cpy,pcpy,move,set} is available.  */
      switch (fcode)
      switch (fcode)
        {
        {
        case BUILT_IN_MEMCPY_CHK:
        case BUILT_IN_MEMCPY_CHK:
          fn = built_in_decls[BUILT_IN_MEMCPY];
          fn = built_in_decls[BUILT_IN_MEMCPY];
          break;
          break;
        case BUILT_IN_MEMPCPY_CHK:
        case BUILT_IN_MEMPCPY_CHK:
          fn = built_in_decls[BUILT_IN_MEMPCPY];
          fn = built_in_decls[BUILT_IN_MEMPCPY];
          break;
          break;
        case BUILT_IN_MEMMOVE_CHK:
        case BUILT_IN_MEMMOVE_CHK:
          fn = built_in_decls[BUILT_IN_MEMMOVE];
          fn = built_in_decls[BUILT_IN_MEMMOVE];
          break;
          break;
        case BUILT_IN_MEMSET_CHK:
        case BUILT_IN_MEMSET_CHK:
          fn = built_in_decls[BUILT_IN_MEMSET];
          fn = built_in_decls[BUILT_IN_MEMSET];
          break;
          break;
        default:
        default:
          break;
          break;
        }
        }
 
 
      if (! fn)
      if (! fn)
        return 0;
        return 0;
 
 
      fn = build_function_call_expr (fn, arglist);
      fn = build_function_call_expr (fn, arglist);
      if (TREE_CODE (fn) == CALL_EXPR)
      if (TREE_CODE (fn) == CALL_EXPR)
        CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
        CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
      return expand_expr (fn, target, mode, EXPAND_NORMAL);
      return expand_expr (fn, target, mode, EXPAND_NORMAL);
    }
    }
  else if (fcode == BUILT_IN_MEMSET_CHK)
  else if (fcode == BUILT_IN_MEMSET_CHK)
    return 0;
    return 0;
  else
  else
    {
    {
      unsigned int dest_align
      unsigned int dest_align
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
        = get_pointer_alignment (dest, BIGGEST_ALIGNMENT);
 
 
      /* If DEST is not a pointer type, call the normal function.  */
      /* If DEST is not a pointer type, call the normal function.  */
      if (dest_align == 0)
      if (dest_align == 0)
        return 0;
        return 0;
 
 
      /* If SRC and DEST are the same (and not volatile), do nothing.  */
      /* If SRC and DEST are the same (and not volatile), do nothing.  */
      if (operand_equal_p (src, dest, 0))
      if (operand_equal_p (src, dest, 0))
        {
        {
          tree expr;
          tree expr;
 
 
          if (fcode != BUILT_IN_MEMPCPY_CHK)
          if (fcode != BUILT_IN_MEMPCPY_CHK)
            {
            {
              /* Evaluate and ignore LEN in case it has side-effects.  */
              /* Evaluate and ignore LEN in case it has side-effects.  */
              expand_expr (len, const0_rtx, VOIDmode, EXPAND_NORMAL);
              expand_expr (len, const0_rtx, VOIDmode, EXPAND_NORMAL);
              return expand_expr (dest, target, mode, EXPAND_NORMAL);
              return expand_expr (dest, target, mode, EXPAND_NORMAL);
            }
            }
 
 
          len = fold_convert (TREE_TYPE (dest), len);
          len = fold_convert (TREE_TYPE (dest), len);
          expr = fold_build2 (PLUS_EXPR, TREE_TYPE (dest), dest, len);
          expr = fold_build2 (PLUS_EXPR, TREE_TYPE (dest), dest, len);
          return expand_expr (expr, target, mode, EXPAND_NORMAL);
          return expand_expr (expr, target, mode, EXPAND_NORMAL);
        }
        }
 
 
      /* __memmove_chk special case.  */
      /* __memmove_chk special case.  */
      if (fcode == BUILT_IN_MEMMOVE_CHK)
      if (fcode == BUILT_IN_MEMMOVE_CHK)
        {
        {
          unsigned int src_align
          unsigned int src_align
            = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
            = get_pointer_alignment (src, BIGGEST_ALIGNMENT);
 
 
          if (src_align == 0)
          if (src_align == 0)
            return 0;
            return 0;
 
 
          /* If src is categorized for a readonly section we can use
          /* If src is categorized for a readonly section we can use
             normal __memcpy_chk.  */
             normal __memcpy_chk.  */
          if (readonly_data_expr (src))
          if (readonly_data_expr (src))
            {
            {
              tree fn = built_in_decls[BUILT_IN_MEMCPY_CHK];
              tree fn = built_in_decls[BUILT_IN_MEMCPY_CHK];
              if (!fn)
              if (!fn)
                return 0;
                return 0;
              fn = build_function_call_expr (fn, arglist);
              fn = build_function_call_expr (fn, arglist);
              if (TREE_CODE (fn) == CALL_EXPR)
              if (TREE_CODE (fn) == CALL_EXPR)
                CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
                CALL_EXPR_TAILCALL (fn) = CALL_EXPR_TAILCALL (exp);
              return expand_expr (fn, target, mode, EXPAND_NORMAL);
              return expand_expr (fn, target, mode, EXPAND_NORMAL);
            }
            }
        }
        }
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Emit warning if a buffer overflow is detected at compile time.  */
/* Emit warning if a buffer overflow is detected at compile time.  */
 
 
static void
static void
maybe_emit_chk_warning (tree exp, enum built_in_function fcode)
maybe_emit_chk_warning (tree exp, enum built_in_function fcode)
{
{
  int arg_mask, is_strlen = 0;
  int arg_mask, is_strlen = 0;
  tree arglist = TREE_OPERAND (exp, 1), a;
  tree arglist = TREE_OPERAND (exp, 1), a;
  tree len, size;
  tree len, size;
  location_t locus;
  location_t locus;
 
 
  switch (fcode)
  switch (fcode)
    {
    {
    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STRCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
    case BUILT_IN_STPCPY_CHK:
    /* For __strcat_chk the warning will be emitted only if overflowing
    /* For __strcat_chk the warning will be emitted only if overflowing
       by at least strlen (dest) + 1 bytes.  */
       by at least strlen (dest) + 1 bytes.  */
    case BUILT_IN_STRCAT_CHK:
    case BUILT_IN_STRCAT_CHK:
      arg_mask = 6;
      arg_mask = 6;
      is_strlen = 1;
      is_strlen = 1;
      break;
      break;
    case BUILT_IN_STRNCPY_CHK:
    case BUILT_IN_STRNCPY_CHK:
      arg_mask = 12;
      arg_mask = 12;
      break;
      break;
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_SNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
    case BUILT_IN_VSNPRINTF_CHK:
      arg_mask = 10;
      arg_mask = 10;
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  len = NULL_TREE;
  len = NULL_TREE;
  size = NULL_TREE;
  size = NULL_TREE;
  for (a = arglist; a && arg_mask; a = TREE_CHAIN (a), arg_mask >>= 1)
  for (a = arglist; a && arg_mask; a = TREE_CHAIN (a), arg_mask >>= 1)
    if (arg_mask & 1)
    if (arg_mask & 1)
      {
      {
        if (len)
        if (len)
          size = a;
          size = a;
        else
        else
          len = a;
          len = a;
      }
      }
 
 
  if (!len || !size)
  if (!len || !size)
    return;
    return;
 
 
  len = TREE_VALUE (len);
  len = TREE_VALUE (len);
  size = TREE_VALUE (size);
  size = TREE_VALUE (size);
 
 
  if (! host_integerp (size, 1) || integer_all_onesp (size))
  if (! host_integerp (size, 1) || integer_all_onesp (size))
    return;
    return;
 
 
  if (is_strlen)
  if (is_strlen)
    {
    {
      len = c_strlen (len, 1);
      len = c_strlen (len, 1);
      if (! len || ! host_integerp (len, 1) || tree_int_cst_lt (len, size))
      if (! len || ! host_integerp (len, 1) || tree_int_cst_lt (len, size))
        return;
        return;
    }
    }
  else if (! host_integerp (len, 1) || ! tree_int_cst_lt (size, len))
  else if (! host_integerp (len, 1) || ! tree_int_cst_lt (size, len))
    return;
    return;
 
 
  locus = EXPR_LOCATION (exp);
  locus = EXPR_LOCATION (exp);
  warning (0, "%Hcall to %D will always overflow destination buffer",
  warning (0, "%Hcall to %D will always overflow destination buffer",
           &locus, get_callee_fndecl (exp));
           &locus, get_callee_fndecl (exp));
}
}
 
 
/* Emit warning if a buffer overflow is detected at compile time
/* Emit warning if a buffer overflow is detected at compile time
   in __sprintf_chk/__vsprintf_chk calls.  */
   in __sprintf_chk/__vsprintf_chk calls.  */
 
 
static void
static void
maybe_emit_sprintf_chk_warning (tree exp, enum built_in_function fcode)
maybe_emit_sprintf_chk_warning (tree exp, enum built_in_function fcode)
{
{
  tree arglist = TREE_OPERAND (exp, 1);
  tree arglist = TREE_OPERAND (exp, 1);
  tree dest, size, len, fmt, flag;
  tree dest, size, len, fmt, flag;
  const char *fmt_str;
  const char *fmt_str;
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (! arglist)
  if (! arglist)
    return;
    return;
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  if (! arglist)
  if (! arglist)
    return;
    return;
  flag = TREE_VALUE (arglist);
  flag = TREE_VALUE (arglist);
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  if (! arglist)
  if (! arglist)
    return;
    return;
  size = TREE_VALUE (arglist);
  size = TREE_VALUE (arglist);
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  if (! arglist)
  if (! arglist)
    return;
    return;
  fmt = TREE_VALUE (arglist);
  fmt = TREE_VALUE (arglist);
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
 
 
  if (! host_integerp (size, 1) || integer_all_onesp (size))
  if (! host_integerp (size, 1) || integer_all_onesp (size))
    return;
    return;
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str == NULL)
  if (fmt_str == NULL)
    return;
    return;
 
 
  if (!init_target_chars())
  if (!init_target_chars())
    return;
    return;
 
 
  /* If the format doesn't contain % args or %%, we know its size.  */
  /* If the format doesn't contain % args or %%, we know its size.  */
  if (strchr (fmt_str, target_percent) == 0)
  if (strchr (fmt_str, target_percent) == 0)
    len = build_int_cstu (size_type_node, strlen (fmt_str));
    len = build_int_cstu (size_type_node, strlen (fmt_str));
  /* If the format is "%s" and first ... argument is a string literal,
  /* If the format is "%s" and first ... argument is a string literal,
     we know it too.  */
     we know it too.  */
  else if (fcode == BUILT_IN_SPRINTF_CHK && strcmp (fmt_str, target_percent_s) == 0)
  else if (fcode == BUILT_IN_SPRINTF_CHK && strcmp (fmt_str, target_percent_s) == 0)
    {
    {
      tree arg;
      tree arg;
 
 
      if (! arglist)
      if (! arglist)
        return;
        return;
      arg = TREE_VALUE (arglist);
      arg = TREE_VALUE (arglist);
      if (! POINTER_TYPE_P (TREE_TYPE (arg)))
      if (! POINTER_TYPE_P (TREE_TYPE (arg)))
        return;
        return;
 
 
      len = c_strlen (arg, 1);
      len = c_strlen (arg, 1);
      if (!len || ! host_integerp (len, 1))
      if (!len || ! host_integerp (len, 1))
        return;
        return;
    }
    }
  else
  else
    return;
    return;
 
 
  if (! tree_int_cst_lt (len, size))
  if (! tree_int_cst_lt (len, size))
    {
    {
      location_t locus = EXPR_LOCATION (exp);
      location_t locus = EXPR_LOCATION (exp);
      warning (0, "%Hcall to %D will always overflow destination buffer",
      warning (0, "%Hcall to %D will always overflow destination buffer",
               &locus, get_callee_fndecl (exp));
               &locus, get_callee_fndecl (exp));
    }
    }
}
}
 
 
/* Fold a call to __builtin_object_size, if possible.  */
/* Fold a call to __builtin_object_size, if possible.  */
 
 
tree
tree
fold_builtin_object_size (tree arglist)
fold_builtin_object_size (tree arglist)
{
{
  tree ptr, ost, ret = 0;
  tree ptr, ost, ret = 0;
  int object_size_type;
  int object_size_type;
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
  if (!validate_arglist (arglist, POINTER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  ptr = TREE_VALUE (arglist);
  ptr = TREE_VALUE (arglist);
  ost = TREE_VALUE (TREE_CHAIN (arglist));
  ost = TREE_VALUE (TREE_CHAIN (arglist));
  STRIP_NOPS (ost);
  STRIP_NOPS (ost);
 
 
  if (TREE_CODE (ost) != INTEGER_CST
  if (TREE_CODE (ost) != INTEGER_CST
      || tree_int_cst_sgn (ost) < 0
      || tree_int_cst_sgn (ost) < 0
      || compare_tree_int (ost, 3) > 0)
      || compare_tree_int (ost, 3) > 0)
    return 0;
    return 0;
 
 
  object_size_type = tree_low_cst (ost, 0);
  object_size_type = tree_low_cst (ost, 0);
 
 
  /* __builtin_object_size doesn't evaluate side-effects in its arguments;
  /* __builtin_object_size doesn't evaluate side-effects in its arguments;
     if there are any side-effects, it returns (size_t) -1 for types 0 and 1
     if there are any side-effects, it returns (size_t) -1 for types 0 and 1
     and (size_t) 0 for types 2 and 3.  */
     and (size_t) 0 for types 2 and 3.  */
  if (TREE_SIDE_EFFECTS (ptr))
  if (TREE_SIDE_EFFECTS (ptr))
    return fold_convert (size_type_node,
    return fold_convert (size_type_node,
                         object_size_type < 2
                         object_size_type < 2
                         ? integer_minus_one_node : integer_zero_node);
                         ? integer_minus_one_node : integer_zero_node);
 
 
  if (TREE_CODE (ptr) == ADDR_EXPR)
  if (TREE_CODE (ptr) == ADDR_EXPR)
    ret = build_int_cstu (size_type_node,
    ret = build_int_cstu (size_type_node,
                        compute_builtin_object_size (ptr, object_size_type));
                        compute_builtin_object_size (ptr, object_size_type));
 
 
  else if (TREE_CODE (ptr) == SSA_NAME)
  else if (TREE_CODE (ptr) == SSA_NAME)
    {
    {
      unsigned HOST_WIDE_INT bytes;
      unsigned HOST_WIDE_INT bytes;
 
 
      /* If object size is not known yet, delay folding until
      /* If object size is not known yet, delay folding until
       later.  Maybe subsequent passes will help determining
       later.  Maybe subsequent passes will help determining
       it.  */
       it.  */
      bytes = compute_builtin_object_size (ptr, object_size_type);
      bytes = compute_builtin_object_size (ptr, object_size_type);
      if (bytes != (unsigned HOST_WIDE_INT) (object_size_type < 2
      if (bytes != (unsigned HOST_WIDE_INT) (object_size_type < 2
                                             ? -1 : 0))
                                             ? -1 : 0))
        ret = build_int_cstu (size_type_node, bytes);
        ret = build_int_cstu (size_type_node, bytes);
    }
    }
 
 
  if (ret)
  if (ret)
    {
    {
      ret = force_fit_type (ret, -1, false, false);
      ret = force_fit_type (ret, -1, false, false);
      if (TREE_CONSTANT_OVERFLOW (ret))
      if (TREE_CONSTANT_OVERFLOW (ret))
        ret = 0;
        ret = 0;
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
/* Fold a call to the __mem{cpy,pcpy,move,set}_chk builtin.
/* Fold a call to the __mem{cpy,pcpy,move,set}_chk builtin.
   IGNORE is true, if return value can be ignored.  FCODE is the BUILT_IN_*
   IGNORE is true, if return value can be ignored.  FCODE is the BUILT_IN_*
   code of the builtin.  If MAXLEN is not NULL, it is maximum length
   code of the builtin.  If MAXLEN is not NULL, it is maximum length
   passed as third argument.  */
   passed as third argument.  */
 
 
tree
tree
fold_builtin_memory_chk (tree fndecl, tree arglist, tree maxlen, bool ignore,
fold_builtin_memory_chk (tree fndecl, tree arglist, tree maxlen, bool ignore,
                         enum built_in_function fcode)
                         enum built_in_function fcode)
{
{
  tree dest, src, len, size, fn;
  tree dest, src, len, size, fn;
 
 
  if (!validate_arglist (arglist,
  if (!validate_arglist (arglist,
                         POINTER_TYPE,
                         POINTER_TYPE,
                         fcode == BUILT_IN_MEMSET_CHK
                         fcode == BUILT_IN_MEMSET_CHK
                         ? INTEGER_TYPE : POINTER_TYPE,
                         ? INTEGER_TYPE : POINTER_TYPE,
                         INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
                         INTEGER_TYPE, INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  /* Actually val for __memset_chk, but it doesn't matter.  */
  /* Actually val for __memset_chk, but it doesn't matter.  */
  src = TREE_VALUE (TREE_CHAIN (arglist));
  src = TREE_VALUE (TREE_CHAIN (arglist));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
 
 
  /* If SRC and DEST are the same (and not volatile), return DEST
  /* If SRC and DEST are the same (and not volatile), return DEST
     (resp. DEST+LEN for __mempcpy_chk).  */
     (resp. DEST+LEN for __mempcpy_chk).  */
  if (fcode != BUILT_IN_MEMSET_CHK && operand_equal_p (src, dest, 0))
  if (fcode != BUILT_IN_MEMSET_CHK && operand_equal_p (src, dest, 0))
    {
    {
      if (fcode != BUILT_IN_MEMPCPY_CHK)
      if (fcode != BUILT_IN_MEMPCPY_CHK)
        return omit_one_operand (TREE_TYPE (TREE_TYPE (fndecl)), dest, len);
        return omit_one_operand (TREE_TYPE (TREE_TYPE (fndecl)), dest, len);
      else
      else
        {
        {
          tree temp = fold_convert (TREE_TYPE (dest), len);
          tree temp = fold_convert (TREE_TYPE (dest), len);
          temp = fold_build2 (PLUS_EXPR, TREE_TYPE (dest), dest, temp);
          temp = fold_build2 (PLUS_EXPR, TREE_TYPE (dest), dest, temp);
          return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)), temp);
          return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)), temp);
        }
        }
    }
    }
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return 0;
    return 0;
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      if (! host_integerp (len, 1))
      if (! host_integerp (len, 1))
        {
        {
          /* If LEN is not constant, try MAXLEN too.
          /* If LEN is not constant, try MAXLEN too.
             For MAXLEN only allow optimizing into non-_ocs function
             For MAXLEN only allow optimizing into non-_ocs function
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
            {
            {
              if (fcode == BUILT_IN_MEMPCPY_CHK && ignore)
              if (fcode == BUILT_IN_MEMPCPY_CHK && ignore)
                {
                {
                  /* (void) __mempcpy_chk () can be optimized into
                  /* (void) __mempcpy_chk () can be optimized into
                     (void) __memcpy_chk ().  */
                     (void) __memcpy_chk ().  */
                  fn = built_in_decls[BUILT_IN_MEMCPY_CHK];
                  fn = built_in_decls[BUILT_IN_MEMCPY_CHK];
                  if (!fn)
                  if (!fn)
                    return 0;
                    return 0;
 
 
                  return build_function_call_expr (fn, arglist);
                  return build_function_call_expr (fn, arglist);
                }
                }
              return 0;
              return 0;
            }
            }
        }
        }
      else
      else
        maxlen = len;
        maxlen = len;
 
 
      if (tree_int_cst_lt (size, maxlen))
      if (tree_int_cst_lt (size, maxlen))
        return 0;
        return 0;
    }
    }
 
 
  arglist = build_tree_list (NULL_TREE, len);
  arglist = build_tree_list (NULL_TREE, len);
  arglist = tree_cons (NULL_TREE, src, arglist);
  arglist = tree_cons (NULL_TREE, src, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
 
 
  fn = NULL_TREE;
  fn = NULL_TREE;
  /* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume
  /* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume
     mem{cpy,pcpy,move,set} is available.  */
     mem{cpy,pcpy,move,set} is available.  */
  switch (fcode)
  switch (fcode)
    {
    {
    case BUILT_IN_MEMCPY_CHK:
    case BUILT_IN_MEMCPY_CHK:
      fn = built_in_decls[BUILT_IN_MEMCPY];
      fn = built_in_decls[BUILT_IN_MEMCPY];
      break;
      break;
    case BUILT_IN_MEMPCPY_CHK:
    case BUILT_IN_MEMPCPY_CHK:
      fn = built_in_decls[BUILT_IN_MEMPCPY];
      fn = built_in_decls[BUILT_IN_MEMPCPY];
      break;
      break;
    case BUILT_IN_MEMMOVE_CHK:
    case BUILT_IN_MEMMOVE_CHK:
      fn = built_in_decls[BUILT_IN_MEMMOVE];
      fn = built_in_decls[BUILT_IN_MEMMOVE];
      break;
      break;
    case BUILT_IN_MEMSET_CHK:
    case BUILT_IN_MEMSET_CHK:
      fn = built_in_decls[BUILT_IN_MEMSET];
      fn = built_in_decls[BUILT_IN_MEMSET];
      break;
      break;
    default:
    default:
      break;
      break;
    }
    }
 
 
  if (!fn)
  if (!fn)
    return 0;
    return 0;
 
 
  return build_function_call_expr (fn, arglist);
  return build_function_call_expr (fn, arglist);
}
}
 
 
/* Fold a call to the __st[rp]cpy_chk builtin.
/* Fold a call to the __st[rp]cpy_chk builtin.
   IGNORE is true, if return value can be ignored.  FCODE is the BUILT_IN_*
   IGNORE is true, if return value can be ignored.  FCODE is the BUILT_IN_*
   code of the builtin.  If MAXLEN is not NULL, it is maximum length of
   code of the builtin.  If MAXLEN is not NULL, it is maximum length of
   strings passed as second argument.  */
   strings passed as second argument.  */
 
 
tree
tree
fold_builtin_stxcpy_chk (tree fndecl, tree arglist, tree maxlen, bool ignore,
fold_builtin_stxcpy_chk (tree fndecl, tree arglist, tree maxlen, bool ignore,
                         enum built_in_function fcode)
                         enum built_in_function fcode)
{
{
  tree dest, src, size, len, fn;
  tree dest, src, size, len, fn;
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE,
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE,
                         VOID_TYPE))
                         VOID_TYPE))
    return 0;
    return 0;
 
 
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  src = TREE_VALUE (TREE_CHAIN (arglist));
  src = TREE_VALUE (TREE_CHAIN (arglist));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
 
 
  /* If SRC and DEST are the same (and not volatile), return DEST.  */
  /* If SRC and DEST are the same (and not volatile), return DEST.  */
  if (fcode == BUILT_IN_STRCPY_CHK && operand_equal_p (src, dest, 0))
  if (fcode == BUILT_IN_STRCPY_CHK && operand_equal_p (src, dest, 0))
    return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)), dest);
    return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)), dest);
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return 0;
    return 0;
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      len = c_strlen (src, 1);
      len = c_strlen (src, 1);
      if (! len || ! host_integerp (len, 1))
      if (! len || ! host_integerp (len, 1))
        {
        {
          /* If LEN is not constant, try MAXLEN too.
          /* If LEN is not constant, try MAXLEN too.
             For MAXLEN only allow optimizing into non-_ocs function
             For MAXLEN only allow optimizing into non-_ocs function
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
            {
            {
              if (fcode == BUILT_IN_STPCPY_CHK)
              if (fcode == BUILT_IN_STPCPY_CHK)
                {
                {
                  if (! ignore)
                  if (! ignore)
                    return 0;
                    return 0;
 
 
                  /* If return value of __stpcpy_chk is ignored,
                  /* If return value of __stpcpy_chk is ignored,
                     optimize into __strcpy_chk.  */
                     optimize into __strcpy_chk.  */
                  fn = built_in_decls[BUILT_IN_STRCPY_CHK];
                  fn = built_in_decls[BUILT_IN_STRCPY_CHK];
                  if (!fn)
                  if (!fn)
                    return 0;
                    return 0;
 
 
                  return build_function_call_expr (fn, arglist);
                  return build_function_call_expr (fn, arglist);
                }
                }
 
 
              if (! len || TREE_SIDE_EFFECTS (len))
              if (! len || TREE_SIDE_EFFECTS (len))
                return 0;
                return 0;
 
 
              /* If c_strlen returned something, but not a constant,
              /* If c_strlen returned something, but not a constant,
                 transform __strcpy_chk into __memcpy_chk.  */
                 transform __strcpy_chk into __memcpy_chk.  */
              fn = built_in_decls[BUILT_IN_MEMCPY_CHK];
              fn = built_in_decls[BUILT_IN_MEMCPY_CHK];
              if (!fn)
              if (!fn)
                return 0;
                return 0;
 
 
              len = size_binop (PLUS_EXPR, len, ssize_int (1));
              len = size_binop (PLUS_EXPR, len, ssize_int (1));
              arglist = build_tree_list (NULL_TREE, size);
              arglist = build_tree_list (NULL_TREE, size);
              arglist = tree_cons (NULL_TREE, len, arglist);
              arglist = tree_cons (NULL_TREE, len, arglist);
              arglist = tree_cons (NULL_TREE, src, arglist);
              arglist = tree_cons (NULL_TREE, src, arglist);
              arglist = tree_cons (NULL_TREE, dest, arglist);
              arglist = tree_cons (NULL_TREE, dest, arglist);
              return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)),
              return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)),
                                   build_function_call_expr (fn, arglist));
                                   build_function_call_expr (fn, arglist));
            }
            }
        }
        }
      else
      else
        maxlen = len;
        maxlen = len;
 
 
      if (! tree_int_cst_lt (maxlen, size))
      if (! tree_int_cst_lt (maxlen, size))
        return 0;
        return 0;
    }
    }
 
 
  arglist = build_tree_list (NULL_TREE, src);
  arglist = build_tree_list (NULL_TREE, src);
  arglist = tree_cons (NULL_TREE, dest, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
 
 
  /* If __builtin_st{r,p}cpy_chk is used, assume st{r,p}cpy is available.  */
  /* If __builtin_st{r,p}cpy_chk is used, assume st{r,p}cpy is available.  */
  fn = built_in_decls[fcode == BUILT_IN_STPCPY_CHK
  fn = built_in_decls[fcode == BUILT_IN_STPCPY_CHK
                      ? BUILT_IN_STPCPY : BUILT_IN_STRCPY];
                      ? BUILT_IN_STPCPY : BUILT_IN_STRCPY];
  if (!fn)
  if (!fn)
    return 0;
    return 0;
 
 
  return build_function_call_expr (fn, arglist);
  return build_function_call_expr (fn, arglist);
}
}
 
 
/* Fold a call to the __strncpy_chk builtin.
/* Fold a call to the __strncpy_chk builtin.
   If MAXLEN is not NULL, it is maximum length passed as third argument.  */
   If MAXLEN is not NULL, it is maximum length passed as third argument.  */
 
 
tree
tree
fold_builtin_strncpy_chk (tree arglist, tree maxlen)
fold_builtin_strncpy_chk (tree arglist, tree maxlen)
{
{
  tree dest, src, size, len, fn;
  tree dest, src, size, len, fn;
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE,
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE,
                         INTEGER_TYPE, VOID_TYPE))
                         INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  src = TREE_VALUE (TREE_CHAIN (arglist));
  src = TREE_VALUE (TREE_CHAIN (arglist));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return 0;
    return 0;
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      if (! host_integerp (len, 1))
      if (! host_integerp (len, 1))
        {
        {
          /* If LEN is not constant, try MAXLEN too.
          /* If LEN is not constant, try MAXLEN too.
             For MAXLEN only allow optimizing into non-_ocs function
             For MAXLEN only allow optimizing into non-_ocs function
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
            return 0;
            return 0;
        }
        }
      else
      else
        maxlen = len;
        maxlen = len;
 
 
      if (tree_int_cst_lt (size, maxlen))
      if (tree_int_cst_lt (size, maxlen))
        return 0;
        return 0;
    }
    }
 
 
  arglist = build_tree_list (NULL_TREE, len);
  arglist = build_tree_list (NULL_TREE, len);
  arglist = tree_cons (NULL_TREE, src, arglist);
  arglist = tree_cons (NULL_TREE, src, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
 
 
  /* If __builtin_strncpy_chk is used, assume strncpy is available.  */
  /* If __builtin_strncpy_chk is used, assume strncpy is available.  */
  fn = built_in_decls[BUILT_IN_STRNCPY];
  fn = built_in_decls[BUILT_IN_STRNCPY];
  if (!fn)
  if (!fn)
    return 0;
    return 0;
 
 
  return build_function_call_expr (fn, arglist);
  return build_function_call_expr (fn, arglist);
}
}
 
 
/* Fold a call to the __strcat_chk builtin FNDECL with ARGLIST.  */
/* Fold a call to the __strcat_chk builtin FNDECL with ARGLIST.  */
 
 
static tree
static tree
fold_builtin_strcat_chk (tree fndecl, tree arglist)
fold_builtin_strcat_chk (tree fndecl, tree arglist)
{
{
  tree dest, src, size, fn;
  tree dest, src, size, fn;
  const char *p;
  const char *p;
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE,
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE,
                         VOID_TYPE))
                         VOID_TYPE))
    return 0;
    return 0;
 
 
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  src = TREE_VALUE (TREE_CHAIN (arglist));
  src = TREE_VALUE (TREE_CHAIN (arglist));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
 
 
  p = c_getstr (src);
  p = c_getstr (src);
  /* If the SRC parameter is "", return DEST.  */
  /* If the SRC parameter is "", return DEST.  */
  if (p && *p == '\0')
  if (p && *p == '\0')
    return omit_one_operand (TREE_TYPE (TREE_TYPE (fndecl)), dest, src);
    return omit_one_operand (TREE_TYPE (TREE_TYPE (fndecl)), dest, src);
 
 
  if (! host_integerp (size, 1) || ! integer_all_onesp (size))
  if (! host_integerp (size, 1) || ! integer_all_onesp (size))
    return 0;
    return 0;
 
 
  arglist = build_tree_list (NULL_TREE, src);
  arglist = build_tree_list (NULL_TREE, src);
  arglist = tree_cons (NULL_TREE, dest, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
 
 
  /* If __builtin_strcat_chk is used, assume strcat is available.  */
  /* If __builtin_strcat_chk is used, assume strcat is available.  */
  fn = built_in_decls[BUILT_IN_STRCAT];
  fn = built_in_decls[BUILT_IN_STRCAT];
  if (!fn)
  if (!fn)
    return 0;
    return 0;
 
 
  return build_function_call_expr (fn, arglist);
  return build_function_call_expr (fn, arglist);
}
}
 
 
/* Fold a call to the __strncat_chk builtin EXP.  */
/* Fold a call to the __strncat_chk builtin EXP.  */
 
 
static tree
static tree
fold_builtin_strncat_chk (tree fndecl, tree arglist)
fold_builtin_strncat_chk (tree fndecl, tree arglist)
{
{
  tree dest, src, size, len, fn;
  tree dest, src, size, len, fn;
  const char *p;
  const char *p;
 
 
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE,
  if (!validate_arglist (arglist, POINTER_TYPE, POINTER_TYPE, INTEGER_TYPE,
                         INTEGER_TYPE, VOID_TYPE))
                         INTEGER_TYPE, VOID_TYPE))
    return 0;
    return 0;
 
 
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  src = TREE_VALUE (TREE_CHAIN (arglist));
  src = TREE_VALUE (TREE_CHAIN (arglist));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  len = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
  size = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
 
 
  p = c_getstr (src);
  p = c_getstr (src);
  /* If the SRC parameter is "" or if LEN is 0, return DEST.  */
  /* If the SRC parameter is "" or if LEN is 0, return DEST.  */
  if (p && *p == '\0')
  if (p && *p == '\0')
    return omit_one_operand (TREE_TYPE (TREE_TYPE (fndecl)), dest, len);
    return omit_one_operand (TREE_TYPE (TREE_TYPE (fndecl)), dest, len);
  else if (integer_zerop (len))
  else if (integer_zerop (len))
    return omit_one_operand (TREE_TYPE (TREE_TYPE (fndecl)), dest, src);
    return omit_one_operand (TREE_TYPE (TREE_TYPE (fndecl)), dest, src);
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return 0;
    return 0;
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      tree src_len = c_strlen (src, 1);
      tree src_len = c_strlen (src, 1);
      if (src_len
      if (src_len
          && host_integerp (src_len, 1)
          && host_integerp (src_len, 1)
          && host_integerp (len, 1)
          && host_integerp (len, 1)
          && ! tree_int_cst_lt (len, src_len))
          && ! tree_int_cst_lt (len, src_len))
        {
        {
          /* If LEN >= strlen (SRC), optimize into __strcat_chk.  */
          /* If LEN >= strlen (SRC), optimize into __strcat_chk.  */
          fn = built_in_decls[BUILT_IN_STRCAT_CHK];
          fn = built_in_decls[BUILT_IN_STRCAT_CHK];
          if (!fn)
          if (!fn)
            return 0;
            return 0;
 
 
          arglist = build_tree_list (NULL_TREE, size);
          arglist = build_tree_list (NULL_TREE, size);
          arglist = tree_cons (NULL_TREE, src, arglist);
          arglist = tree_cons (NULL_TREE, src, arglist);
          arglist = tree_cons (NULL_TREE, dest, arglist);
          arglist = tree_cons (NULL_TREE, dest, arglist);
          return build_function_call_expr (fn, arglist);
          return build_function_call_expr (fn, arglist);
        }
        }
      return 0;
      return 0;
    }
    }
 
 
  arglist = build_tree_list (NULL_TREE, len);
  arglist = build_tree_list (NULL_TREE, len);
  arglist = tree_cons (NULL_TREE, src, arglist);
  arglist = tree_cons (NULL_TREE, src, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
 
 
  /* If __builtin_strncat_chk is used, assume strncat is available.  */
  /* If __builtin_strncat_chk is used, assume strncat is available.  */
  fn = built_in_decls[BUILT_IN_STRNCAT];
  fn = built_in_decls[BUILT_IN_STRNCAT];
  if (!fn)
  if (!fn)
    return 0;
    return 0;
 
 
  return build_function_call_expr (fn, arglist);
  return build_function_call_expr (fn, arglist);
}
}
 
 
/* Fold a call to __{,v}sprintf_chk with argument list ARGLIST.  Return 0 if
/* Fold a call to __{,v}sprintf_chk with argument list ARGLIST.  Return 0 if
   a normal call should be emitted rather than expanding the function
   a normal call should be emitted rather than expanding the function
   inline.  FCODE is either BUILT_IN_SPRINTF_CHK or BUILT_IN_VSPRINTF_CHK.  */
   inline.  FCODE is either BUILT_IN_SPRINTF_CHK or BUILT_IN_VSPRINTF_CHK.  */
 
 
static tree
static tree
fold_builtin_sprintf_chk (tree arglist, enum built_in_function fcode)
fold_builtin_sprintf_chk (tree arglist, enum built_in_function fcode)
{
{
  tree dest, size, len, fn, fmt, flag;
  tree dest, size, len, fn, fmt, flag;
  const char *fmt_str;
  const char *fmt_str;
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  if (! POINTER_TYPE_P (TREE_TYPE (dest)))
  if (! POINTER_TYPE_P (TREE_TYPE (dest)))
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  flag = TREE_VALUE (arglist);
  flag = TREE_VALUE (arglist);
  if (TREE_CODE (TREE_TYPE (flag)) != INTEGER_TYPE)
  if (TREE_CODE (TREE_TYPE (flag)) != INTEGER_TYPE)
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  size = TREE_VALUE (arglist);
  size = TREE_VALUE (arglist);
  if (TREE_CODE (TREE_TYPE (size)) != INTEGER_TYPE)
  if (TREE_CODE (TREE_TYPE (size)) != INTEGER_TYPE)
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  fmt = TREE_VALUE (arglist);
  fmt = TREE_VALUE (arglist);
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return 0;
    return 0;
 
 
  len = NULL_TREE;
  len = NULL_TREE;
 
 
  if (!init_target_chars())
  if (!init_target_chars())
    return 0;
    return 0;
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str != NULL)
  if (fmt_str != NULL)
    {
    {
      /* If the format doesn't contain % args or %%, we know the size.  */
      /* If the format doesn't contain % args or %%, we know the size.  */
      if (strchr (fmt_str, target_percent) == 0)
      if (strchr (fmt_str, target_percent) == 0)
        {
        {
          if (fcode != BUILT_IN_SPRINTF_CHK || arglist == NULL_TREE)
          if (fcode != BUILT_IN_SPRINTF_CHK || arglist == NULL_TREE)
            len = build_int_cstu (size_type_node, strlen (fmt_str));
            len = build_int_cstu (size_type_node, strlen (fmt_str));
        }
        }
      /* If the format is "%s" and first ... argument is a string literal,
      /* If the format is "%s" and first ... argument is a string literal,
         we know the size too.  */
         we know the size too.  */
      else if (fcode == BUILT_IN_SPRINTF_CHK && strcmp (fmt_str, target_percent_s) == 0)
      else if (fcode == BUILT_IN_SPRINTF_CHK && strcmp (fmt_str, target_percent_s) == 0)
        {
        {
          tree arg;
          tree arg;
 
 
          if (arglist && !TREE_CHAIN (arglist))
          if (arglist && !TREE_CHAIN (arglist))
            {
            {
              arg = TREE_VALUE (arglist);
              arg = TREE_VALUE (arglist);
              if (POINTER_TYPE_P (TREE_TYPE (arg)))
              if (POINTER_TYPE_P (TREE_TYPE (arg)))
                {
                {
                  len = c_strlen (arg, 1);
                  len = c_strlen (arg, 1);
                  if (! len || ! host_integerp (len, 1))
                  if (! len || ! host_integerp (len, 1))
                    len = NULL_TREE;
                    len = NULL_TREE;
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      if (! len || ! tree_int_cst_lt (len, size))
      if (! len || ! tree_int_cst_lt (len, size))
        return 0;
        return 0;
    }
    }
 
 
  /* Only convert __{,v}sprintf_chk to {,v}sprintf if flag is 0
  /* Only convert __{,v}sprintf_chk to {,v}sprintf if flag is 0
     or if format doesn't contain % chars or is "%s".  */
     or if format doesn't contain % chars or is "%s".  */
  if (! integer_zerop (flag))
  if (! integer_zerop (flag))
    {
    {
      if (fmt_str == NULL)
      if (fmt_str == NULL)
        return 0;
        return 0;
      if (strchr (fmt_str, target_percent) != NULL && strcmp (fmt_str, target_percent_s))
      if (strchr (fmt_str, target_percent) != NULL && strcmp (fmt_str, target_percent_s))
        return 0;
        return 0;
    }
    }
 
 
  arglist = tree_cons (NULL_TREE, fmt, arglist);
  arglist = tree_cons (NULL_TREE, fmt, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
 
 
  /* If __builtin_{,v}sprintf_chk is used, assume {,v}sprintf is available.  */
  /* If __builtin_{,v}sprintf_chk is used, assume {,v}sprintf is available.  */
  fn = built_in_decls[fcode == BUILT_IN_VSPRINTF_CHK
  fn = built_in_decls[fcode == BUILT_IN_VSPRINTF_CHK
                      ? BUILT_IN_VSPRINTF : BUILT_IN_SPRINTF];
                      ? BUILT_IN_VSPRINTF : BUILT_IN_SPRINTF];
  if (!fn)
  if (!fn)
    return 0;
    return 0;
 
 
  return build_function_call_expr (fn, arglist);
  return build_function_call_expr (fn, arglist);
}
}
 
 
/* Fold a call to {,v}snprintf with argument list ARGLIST.  Return 0 if
/* Fold a call to {,v}snprintf with argument list ARGLIST.  Return 0 if
   a normal call should be emitted rather than expanding the function
   a normal call should be emitted rather than expanding the function
   inline.  FCODE is either BUILT_IN_SNPRINTF_CHK or
   inline.  FCODE is either BUILT_IN_SNPRINTF_CHK or
   BUILT_IN_VSNPRINTF_CHK.  If MAXLEN is not NULL, it is maximum length
   BUILT_IN_VSNPRINTF_CHK.  If MAXLEN is not NULL, it is maximum length
   passed as second argument.  */
   passed as second argument.  */
 
 
tree
tree
fold_builtin_snprintf_chk (tree arglist, tree maxlen,
fold_builtin_snprintf_chk (tree arglist, tree maxlen,
                           enum built_in_function fcode)
                           enum built_in_function fcode)
{
{
  tree dest, size, len, fn, fmt, flag;
  tree dest, size, len, fn, fmt, flag;
  const char *fmt_str;
  const char *fmt_str;
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  dest = TREE_VALUE (arglist);
  dest = TREE_VALUE (arglist);
  if (! POINTER_TYPE_P (TREE_TYPE (dest)))
  if (! POINTER_TYPE_P (TREE_TYPE (dest)))
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  len = TREE_VALUE (arglist);
  len = TREE_VALUE (arglist);
  if (TREE_CODE (TREE_TYPE (len)) != INTEGER_TYPE)
  if (TREE_CODE (TREE_TYPE (len)) != INTEGER_TYPE)
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  flag = TREE_VALUE (arglist);
  flag = TREE_VALUE (arglist);
  if (TREE_CODE (TREE_TYPE (len)) != INTEGER_TYPE)
  if (TREE_CODE (TREE_TYPE (len)) != INTEGER_TYPE)
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  size = TREE_VALUE (arglist);
  size = TREE_VALUE (arglist);
  if (TREE_CODE (TREE_TYPE (size)) != INTEGER_TYPE)
  if (TREE_CODE (TREE_TYPE (size)) != INTEGER_TYPE)
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  fmt = TREE_VALUE (arglist);
  fmt = TREE_VALUE (arglist);
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
 
 
  if (! host_integerp (size, 1))
  if (! host_integerp (size, 1))
    return 0;
    return 0;
 
 
  if (! integer_all_onesp (size))
  if (! integer_all_onesp (size))
    {
    {
      if (! host_integerp (len, 1))
      if (! host_integerp (len, 1))
        {
        {
          /* If LEN is not constant, try MAXLEN too.
          /* If LEN is not constant, try MAXLEN too.
             For MAXLEN only allow optimizing into non-_ocs function
             For MAXLEN only allow optimizing into non-_ocs function
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
             if SIZE is >= MAXLEN, never convert to __ocs_fail ().  */
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
          if (maxlen == NULL_TREE || ! host_integerp (maxlen, 1))
            return 0;
            return 0;
        }
        }
      else
      else
        maxlen = len;
        maxlen = len;
 
 
      if (tree_int_cst_lt (size, maxlen))
      if (tree_int_cst_lt (size, maxlen))
        return 0;
        return 0;
    }
    }
 
 
  if (!init_target_chars())
  if (!init_target_chars())
    return 0;
    return 0;
 
 
  /* Only convert __{,v}snprintf_chk to {,v}snprintf if flag is 0
  /* Only convert __{,v}snprintf_chk to {,v}snprintf if flag is 0
     or if format doesn't contain % chars or is "%s".  */
     or if format doesn't contain % chars or is "%s".  */
  if (! integer_zerop (flag))
  if (! integer_zerop (flag))
    {
    {
      fmt_str = c_getstr (fmt);
      fmt_str = c_getstr (fmt);
      if (fmt_str == NULL)
      if (fmt_str == NULL)
        return 0;
        return 0;
      if (strchr (fmt_str, target_percent) != NULL && strcmp (fmt_str, target_percent_s))
      if (strchr (fmt_str, target_percent) != NULL && strcmp (fmt_str, target_percent_s))
        return 0;
        return 0;
    }
    }
 
 
  arglist = tree_cons (NULL_TREE, fmt, arglist);
  arglist = tree_cons (NULL_TREE, fmt, arglist);
  arglist = tree_cons (NULL_TREE, len, arglist);
  arglist = tree_cons (NULL_TREE, len, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
  arglist = tree_cons (NULL_TREE, dest, arglist);
 
 
  /* If __builtin_{,v}snprintf_chk is used, assume {,v}snprintf is
  /* If __builtin_{,v}snprintf_chk is used, assume {,v}snprintf is
     available.  */
     available.  */
  fn = built_in_decls[fcode == BUILT_IN_VSNPRINTF_CHK
  fn = built_in_decls[fcode == BUILT_IN_VSNPRINTF_CHK
                      ? BUILT_IN_VSNPRINTF : BUILT_IN_SNPRINTF];
                      ? BUILT_IN_VSNPRINTF : BUILT_IN_SNPRINTF];
  if (!fn)
  if (!fn)
    return 0;
    return 0;
 
 
  return build_function_call_expr (fn, arglist);
  return build_function_call_expr (fn, arglist);
}
}
 
 
/* Fold a call to the {,v}printf{,_unlocked} and __{,v}printf_chk builtins.
/* Fold a call to the {,v}printf{,_unlocked} and __{,v}printf_chk builtins.
 
 
   Return 0 if no simplification was possible, otherwise return the
   Return 0 if no simplification was possible, otherwise return the
   simplified form of the call as a tree.  FCODE is the BUILT_IN_*
   simplified form of the call as a tree.  FCODE is the BUILT_IN_*
   code of the function to be simplified.  */
   code of the function to be simplified.  */
 
 
static tree
static tree
fold_builtin_printf (tree fndecl, tree arglist, bool ignore,
fold_builtin_printf (tree fndecl, tree arglist, bool ignore,
                     enum built_in_function fcode)
                     enum built_in_function fcode)
{
{
  tree fmt, fn = NULL_TREE, fn_putchar, fn_puts, arg, call;
  tree fmt, fn = NULL_TREE, fn_putchar, fn_puts, arg, call;
  const char *fmt_str = NULL;
  const char *fmt_str = NULL;
 
 
  /* If the return value is used, don't do the transformation.  */
  /* If the return value is used, don't do the transformation.  */
  if (! ignore)
  if (! ignore)
    return 0;
    return 0;
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (fcode == BUILT_IN_PRINTF_CHK || fcode == BUILT_IN_VPRINTF_CHK)
  if (fcode == BUILT_IN_PRINTF_CHK || fcode == BUILT_IN_VPRINTF_CHK)
    {
    {
      tree flag;
      tree flag;
 
 
      if (! arglist)
      if (! arglist)
        return 0;
        return 0;
      flag = TREE_VALUE (arglist);
      flag = TREE_VALUE (arglist);
      if (TREE_CODE (TREE_TYPE (flag)) != INTEGER_TYPE
      if (TREE_CODE (TREE_TYPE (flag)) != INTEGER_TYPE
          || TREE_SIDE_EFFECTS (flag))
          || TREE_SIDE_EFFECTS (flag))
        return 0;
        return 0;
      arglist = TREE_CHAIN (arglist);
      arglist = TREE_CHAIN (arglist);
    }
    }
 
 
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  fmt = TREE_VALUE (arglist);
  fmt = TREE_VALUE (arglist);
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str == NULL)
  if (fmt_str == NULL)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (fcode == BUILT_IN_PRINTF_UNLOCKED)
  if (fcode == BUILT_IN_PRINTF_UNLOCKED)
    {
    {
      /* If we're using an unlocked function, assume the other
      /* If we're using an unlocked function, assume the other
         unlocked functions exist explicitly.  */
         unlocked functions exist explicitly.  */
      fn_putchar = built_in_decls[BUILT_IN_PUTCHAR_UNLOCKED];
      fn_putchar = built_in_decls[BUILT_IN_PUTCHAR_UNLOCKED];
      fn_puts = built_in_decls[BUILT_IN_PUTS_UNLOCKED];
      fn_puts = built_in_decls[BUILT_IN_PUTS_UNLOCKED];
    }
    }
  else
  else
    {
    {
      fn_putchar = implicit_built_in_decls[BUILT_IN_PUTCHAR];
      fn_putchar = implicit_built_in_decls[BUILT_IN_PUTCHAR];
      fn_puts = implicit_built_in_decls[BUILT_IN_PUTS];
      fn_puts = implicit_built_in_decls[BUILT_IN_PUTS];
    }
    }
 
 
  if (!init_target_chars())
  if (!init_target_chars())
    return 0;
    return 0;
 
 
  if (strcmp (fmt_str, target_percent_s) == 0 || strchr (fmt_str, target_percent) == NULL)
  if (strcmp (fmt_str, target_percent_s) == 0 || strchr (fmt_str, target_percent) == NULL)
    {
    {
      const char *str;
      const char *str;
 
 
      if (strcmp (fmt_str, target_percent_s) == 0)
      if (strcmp (fmt_str, target_percent_s) == 0)
        {
        {
          if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
          if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
            return 0;
            return 0;
 
 
          if (! arglist
          if (! arglist
              || ! POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (arglist)))
              || ! POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (arglist)))
              || TREE_CHAIN (arglist))
              || TREE_CHAIN (arglist))
            return 0;
            return 0;
 
 
          str = c_getstr (TREE_VALUE (arglist));
          str = c_getstr (TREE_VALUE (arglist));
          if (str == NULL)
          if (str == NULL)
            return 0;
            return 0;
        }
        }
      else
      else
        {
        {
          /* The format specifier doesn't contain any '%' characters.  */
          /* The format specifier doesn't contain any '%' characters.  */
          if (fcode != BUILT_IN_VPRINTF && fcode != BUILT_IN_VPRINTF_CHK
          if (fcode != BUILT_IN_VPRINTF && fcode != BUILT_IN_VPRINTF_CHK
              && arglist)
              && arglist)
            return 0;
            return 0;
          str = fmt_str;
          str = fmt_str;
        }
        }
 
 
      /* If the string was "", printf does nothing.  */
      /* If the string was "", printf does nothing.  */
      if (str[0] == '\0')
      if (str[0] == '\0')
        return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
        return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
 
 
      /* If the string has length of 1, call putchar.  */
      /* If the string has length of 1, call putchar.  */
      if (str[1] == '\0')
      if (str[1] == '\0')
        {
        {
          /* Given printf("c"), (where c is any one character,)
          /* Given printf("c"), (where c is any one character,)
             convert "c"[0] to an int and pass that to the replacement
             convert "c"[0] to an int and pass that to the replacement
             function.  */
             function.  */
          arg = build_int_cst (NULL_TREE, str[0]);
          arg = build_int_cst (NULL_TREE, str[0]);
          arglist = build_tree_list (NULL_TREE, arg);
          arglist = build_tree_list (NULL_TREE, arg);
          fn = fn_putchar;
          fn = fn_putchar;
        }
        }
      else
      else
        {
        {
          /* If the string was "string\n", call puts("string").  */
          /* If the string was "string\n", call puts("string").  */
          size_t len = strlen (str);
          size_t len = strlen (str);
          if ((unsigned char)str[len - 1] == target_newline)
          if ((unsigned char)str[len - 1] == target_newline)
            {
            {
              /* Create a NUL-terminated string that's one char shorter
              /* Create a NUL-terminated string that's one char shorter
                 than the original, stripping off the trailing '\n'.  */
                 than the original, stripping off the trailing '\n'.  */
              char *newstr = alloca (len);
              char *newstr = alloca (len);
              memcpy (newstr, str, len - 1);
              memcpy (newstr, str, len - 1);
              newstr[len - 1] = 0;
              newstr[len - 1] = 0;
 
 
              arg = build_string_literal (len, newstr);
              arg = build_string_literal (len, newstr);
              arglist = build_tree_list (NULL_TREE, arg);
              arglist = build_tree_list (NULL_TREE, arg);
              fn = fn_puts;
              fn = fn_puts;
            }
            }
          else
          else
            /* We'd like to arrange to call fputs(string,stdout) here,
            /* We'd like to arrange to call fputs(string,stdout) here,
               but we need stdout and don't have a way to get it yet.  */
               but we need stdout and don't have a way to get it yet.  */
            return 0;
            return 0;
        }
        }
    }
    }
 
 
  /* The other optimizations can be done only on the non-va_list variants.  */
  /* The other optimizations can be done only on the non-va_list variants.  */
  else if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
  else if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
    return 0;
    return 0;
 
 
  /* If the format specifier was "%s\n", call __builtin_puts(arg).  */
  /* If the format specifier was "%s\n", call __builtin_puts(arg).  */
  else if (strcmp (fmt_str, target_percent_s_newline) == 0)
  else if (strcmp (fmt_str, target_percent_s_newline) == 0)
    {
    {
      if (! arglist
      if (! arglist
          || ! POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (arglist)))
          || ! POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (arglist)))
          || TREE_CHAIN (arglist))
          || TREE_CHAIN (arglist))
        return 0;
        return 0;
      fn = fn_puts;
      fn = fn_puts;
    }
    }
 
 
  /* If the format specifier was "%c", call __builtin_putchar(arg).  */
  /* If the format specifier was "%c", call __builtin_putchar(arg).  */
  else if (strcmp (fmt_str, target_percent_c) == 0)
  else if (strcmp (fmt_str, target_percent_c) == 0)
    {
    {
      if (! arglist
      if (! arglist
          || TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != INTEGER_TYPE
          || TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != INTEGER_TYPE
          || TREE_CHAIN (arglist))
          || TREE_CHAIN (arglist))
        return 0;
        return 0;
      fn = fn_putchar;
      fn = fn_putchar;
    }
    }
 
 
  if (!fn)
  if (!fn)
    return 0;
    return 0;
 
 
  call = build_function_call_expr (fn, arglist);
  call = build_function_call_expr (fn, arglist);
  return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)), call);
  return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)), call);
}
}
 
 
/* Fold a call to the {,v}fprintf{,_unlocked} and __{,v}printf_chk builtins.
/* Fold a call to the {,v}fprintf{,_unlocked} and __{,v}printf_chk builtins.
 
 
   Return 0 if no simplification was possible, otherwise return the
   Return 0 if no simplification was possible, otherwise return the
   simplified form of the call as a tree.  FCODE is the BUILT_IN_*
   simplified form of the call as a tree.  FCODE is the BUILT_IN_*
   code of the function to be simplified.  */
   code of the function to be simplified.  */
 
 
static tree
static tree
fold_builtin_fprintf (tree fndecl, tree arglist, bool ignore,
fold_builtin_fprintf (tree fndecl, tree arglist, bool ignore,
                      enum built_in_function fcode)
                      enum built_in_function fcode)
{
{
  tree fp, fmt, fn = NULL_TREE, fn_fputc, fn_fputs, arg, call;
  tree fp, fmt, fn = NULL_TREE, fn_fputc, fn_fputs, arg, call;
  const char *fmt_str = NULL;
  const char *fmt_str = NULL;
 
 
  /* If the return value is used, don't do the transformation.  */
  /* If the return value is used, don't do the transformation.  */
  if (! ignore)
  if (! ignore)
    return 0;
    return 0;
 
 
  /* Verify the required arguments in the original call.  */
  /* Verify the required arguments in the original call.  */
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  fp = TREE_VALUE (arglist);
  fp = TREE_VALUE (arglist);
  if (! POINTER_TYPE_P (TREE_TYPE (fp)))
  if (! POINTER_TYPE_P (TREE_TYPE (fp)))
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
 
 
  if (fcode == BUILT_IN_FPRINTF_CHK || fcode == BUILT_IN_VFPRINTF_CHK)
  if (fcode == BUILT_IN_FPRINTF_CHK || fcode == BUILT_IN_VFPRINTF_CHK)
    {
    {
      tree flag;
      tree flag;
 
 
      if (! arglist)
      if (! arglist)
        return 0;
        return 0;
      flag = TREE_VALUE (arglist);
      flag = TREE_VALUE (arglist);
      if (TREE_CODE (TREE_TYPE (flag)) != INTEGER_TYPE
      if (TREE_CODE (TREE_TYPE (flag)) != INTEGER_TYPE
          || TREE_SIDE_EFFECTS (flag))
          || TREE_SIDE_EFFECTS (flag))
        return 0;
        return 0;
      arglist = TREE_CHAIN (arglist);
      arglist = TREE_CHAIN (arglist);
    }
    }
 
 
  if (! arglist)
  if (! arglist)
    return 0;
    return 0;
  fmt = TREE_VALUE (arglist);
  fmt = TREE_VALUE (arglist);
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
  if (! POINTER_TYPE_P (TREE_TYPE (fmt)))
    return 0;
    return 0;
  arglist = TREE_CHAIN (arglist);
  arglist = TREE_CHAIN (arglist);
 
 
  /* Check whether the format is a literal string constant.  */
  /* Check whether the format is a literal string constant.  */
  fmt_str = c_getstr (fmt);
  fmt_str = c_getstr (fmt);
  if (fmt_str == NULL)
  if (fmt_str == NULL)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (fcode == BUILT_IN_FPRINTF_UNLOCKED)
  if (fcode == BUILT_IN_FPRINTF_UNLOCKED)
    {
    {
      /* If we're using an unlocked function, assume the other
      /* If we're using an unlocked function, assume the other
         unlocked functions exist explicitly.  */
         unlocked functions exist explicitly.  */
      fn_fputc = built_in_decls[BUILT_IN_FPUTC_UNLOCKED];
      fn_fputc = built_in_decls[BUILT_IN_FPUTC_UNLOCKED];
      fn_fputs = built_in_decls[BUILT_IN_FPUTS_UNLOCKED];
      fn_fputs = built_in_decls[BUILT_IN_FPUTS_UNLOCKED];
    }
    }
  else
  else
    {
    {
      fn_fputc = implicit_built_in_decls[BUILT_IN_FPUTC];
      fn_fputc = implicit_built_in_decls[BUILT_IN_FPUTC];
      fn_fputs = implicit_built_in_decls[BUILT_IN_FPUTS];
      fn_fputs = implicit_built_in_decls[BUILT_IN_FPUTS];
    }
    }
 
 
  if (!init_target_chars())
  if (!init_target_chars())
    return 0;
    return 0;
 
 
  /* If the format doesn't contain % args or %%, use strcpy.  */
  /* If the format doesn't contain % args or %%, use strcpy.  */
  if (strchr (fmt_str, target_percent) == NULL)
  if (strchr (fmt_str, target_percent) == NULL)
    {
    {
      if (fcode != BUILT_IN_VFPRINTF && fcode != BUILT_IN_VFPRINTF_CHK
      if (fcode != BUILT_IN_VFPRINTF && fcode != BUILT_IN_VFPRINTF_CHK
          && arglist)
          && arglist)
        return 0;
        return 0;
 
 
      /* If the format specifier was "", fprintf does nothing.  */
      /* If the format specifier was "", fprintf does nothing.  */
      if (fmt_str[0] == '\0')
      if (fmt_str[0] == '\0')
        {
        {
          /* If FP has side-effects, just wait until gimplification is
          /* If FP has side-effects, just wait until gimplification is
             done.  */
             done.  */
          if (TREE_SIDE_EFFECTS (fp))
          if (TREE_SIDE_EFFECTS (fp))
            return 0;
            return 0;
 
 
          return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
          return build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
        }
        }
 
 
      /* When "string" doesn't contain %, replace all cases of
      /* When "string" doesn't contain %, replace all cases of
         fprintf (fp, string) with fputs (string, fp).  The fputs
         fprintf (fp, string) with fputs (string, fp).  The fputs
         builtin will take care of special cases like length == 1.  */
         builtin will take care of special cases like length == 1.  */
      arglist = build_tree_list (NULL_TREE, fp);
      arglist = build_tree_list (NULL_TREE, fp);
      arglist = tree_cons (NULL_TREE, fmt, arglist);
      arglist = tree_cons (NULL_TREE, fmt, arglist);
      fn = fn_fputs;
      fn = fn_fputs;
    }
    }
 
 
  /* The other optimizations can be done only on the non-va_list variants.  */
  /* The other optimizations can be done only on the non-va_list variants.  */
  else if (fcode == BUILT_IN_VFPRINTF || fcode == BUILT_IN_VFPRINTF_CHK)
  else if (fcode == BUILT_IN_VFPRINTF || fcode == BUILT_IN_VFPRINTF_CHK)
    return 0;
    return 0;
 
 
  /* If the format specifier was "%s", call __builtin_fputs (arg, fp).  */
  /* If the format specifier was "%s", call __builtin_fputs (arg, fp).  */
  else if (strcmp (fmt_str, target_percent_s) == 0)
  else if (strcmp (fmt_str, target_percent_s) == 0)
    {
    {
      if (! arglist
      if (! arglist
          || ! POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (arglist)))
          || ! POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (arglist)))
          || TREE_CHAIN (arglist))
          || TREE_CHAIN (arglist))
        return 0;
        return 0;
      arg = TREE_VALUE (arglist);
      arg = TREE_VALUE (arglist);
      arglist = build_tree_list (NULL_TREE, fp);
      arglist = build_tree_list (NULL_TREE, fp);
      arglist = tree_cons (NULL_TREE, arg, arglist);
      arglist = tree_cons (NULL_TREE, arg, arglist);
      fn = fn_fputs;
      fn = fn_fputs;
    }
    }
 
 
  /* If the format specifier was "%c", call __builtin_fputc (arg, fp).  */
  /* If the format specifier was "%c", call __builtin_fputc (arg, fp).  */
  else if (strcmp (fmt_str, target_percent_c) == 0)
  else if (strcmp (fmt_str, target_percent_c) == 0)
    {
    {
      if (! arglist
      if (! arglist
          || TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != INTEGER_TYPE
          || TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) != INTEGER_TYPE
          || TREE_CHAIN (arglist))
          || TREE_CHAIN (arglist))
        return 0;
        return 0;
      arg = TREE_VALUE (arglist);
      arg = TREE_VALUE (arglist);
      arglist = build_tree_list (NULL_TREE, fp);
      arglist = build_tree_list (NULL_TREE, fp);
      arglist = tree_cons (NULL_TREE, arg, arglist);
      arglist = tree_cons (NULL_TREE, arg, arglist);
      fn = fn_fputc;
      fn = fn_fputc;
    }
    }
 
 
  if (!fn)
  if (!fn)
    return 0;
    return 0;
 
 
  call = build_function_call_expr (fn, arglist);
  call = build_function_call_expr (fn, arglist);
  return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)), call);
  return fold_convert (TREE_TYPE (TREE_TYPE (fndecl)), call);
}
}
 
 
/* Initialize format string characters in the target charset.  */
/* Initialize format string characters in the target charset.  */
 
 
static bool
static bool
init_target_chars (void)
init_target_chars (void)
{
{
  static bool init;
  static bool init;
  if (!init)
  if (!init)
    {
    {
      target_newline = lang_hooks.to_target_charset ('\n');
      target_newline = lang_hooks.to_target_charset ('\n');
      target_percent = lang_hooks.to_target_charset ('%');
      target_percent = lang_hooks.to_target_charset ('%');
      target_c = lang_hooks.to_target_charset ('c');
      target_c = lang_hooks.to_target_charset ('c');
      target_s = lang_hooks.to_target_charset ('s');
      target_s = lang_hooks.to_target_charset ('s');
      if (target_newline == 0 || target_percent == 0 || target_c == 0
      if (target_newline == 0 || target_percent == 0 || target_c == 0
          || target_s == 0)
          || target_s == 0)
        return false;
        return false;
 
 
      target_percent_c[0] = target_percent;
      target_percent_c[0] = target_percent;
      target_percent_c[1] = target_c;
      target_percent_c[1] = target_c;
      target_percent_c[2] = '\0';
      target_percent_c[2] = '\0';
 
 
      target_percent_s[0] = target_percent;
      target_percent_s[0] = target_percent;
      target_percent_s[1] = target_s;
      target_percent_s[1] = target_s;
      target_percent_s[2] = '\0';
      target_percent_s[2] = '\0';
 
 
      target_percent_s_newline[0] = target_percent;
      target_percent_s_newline[0] = target_percent;
      target_percent_s_newline[1] = target_s;
      target_percent_s_newline[1] = target_s;
      target_percent_s_newline[2] = target_newline;
      target_percent_s_newline[2] = target_newline;
      target_percent_s_newline[3] = '\0';
      target_percent_s_newline[3] = '\0';
 
 
      init = true;
      init = true;
    }
    }
  return true;
  return true;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.