OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [c-common.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Subroutines shared by all languages that are variants of C.
/* Subroutines shared by all languages that are variants of C.
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
   2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "intl.h"
#include "intl.h"
#include "tree.h"
#include "tree.h"
#include "flags.h"
#include "flags.h"
#include "output.h"
#include "output.h"
#include "c-pragma.h"
#include "c-pragma.h"
#include "rtl.h"
#include "rtl.h"
#include "ggc.h"
#include "ggc.h"
#include "varray.h"
#include "varray.h"
#include "expr.h"
#include "expr.h"
#include "c-common.h"
#include "c-common.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "tm_p.h"
#include "tm_p.h"
#include "obstack.h"
#include "obstack.h"
#include "cpplib.h"
#include "cpplib.h"
#include "target.h"
#include "target.h"
#include "langhooks.h"
#include "langhooks.h"
#include "tree-inline.h"
#include "tree-inline.h"
#include "c-tree.h"
#include "c-tree.h"
#include "toplev.h"
#include "toplev.h"
#include "tree-iterator.h"
#include "tree-iterator.h"
#include "hashtab.h"
#include "hashtab.h"
#include "tree-mudflap.h"
#include "tree-mudflap.h"
#include "opts.h"
#include "opts.h"
#include "real.h"
#include "real.h"
#include "cgraph.h"
#include "cgraph.h"
 
 
cpp_reader *parse_in;           /* Declared in c-pragma.h.  */
cpp_reader *parse_in;           /* Declared in c-pragma.h.  */
 
 
/* We let tm.h override the types used here, to handle trivial differences
/* We let tm.h override the types used here, to handle trivial differences
   such as the choice of unsigned int or long unsigned int for size_t.
   such as the choice of unsigned int or long unsigned int for size_t.
   When machines start needing nontrivial differences in the size type,
   When machines start needing nontrivial differences in the size type,
   it would be best to do something here to figure out automatically
   it would be best to do something here to figure out automatically
   from other information what type to use.  */
   from other information what type to use.  */
 
 
#ifndef SIZE_TYPE
#ifndef SIZE_TYPE
#define SIZE_TYPE "long unsigned int"
#define SIZE_TYPE "long unsigned int"
#endif
#endif
 
 
#ifndef PID_TYPE
#ifndef PID_TYPE
#define PID_TYPE "int"
#define PID_TYPE "int"
#endif
#endif
 
 
#ifndef WCHAR_TYPE
#ifndef WCHAR_TYPE
#define WCHAR_TYPE "int"
#define WCHAR_TYPE "int"
#endif
#endif
 
 
/* WCHAR_TYPE gets overridden by -fshort-wchar.  */
/* WCHAR_TYPE gets overridden by -fshort-wchar.  */
#define MODIFIED_WCHAR_TYPE \
#define MODIFIED_WCHAR_TYPE \
        (flag_short_wchar ? "short unsigned int" : WCHAR_TYPE)
        (flag_short_wchar ? "short unsigned int" : WCHAR_TYPE)
 
 
#ifndef PTRDIFF_TYPE
#ifndef PTRDIFF_TYPE
#define PTRDIFF_TYPE "long int"
#define PTRDIFF_TYPE "long int"
#endif
#endif
 
 
#ifndef WINT_TYPE
#ifndef WINT_TYPE
#define WINT_TYPE "unsigned int"
#define WINT_TYPE "unsigned int"
#endif
#endif
 
 
#ifndef INTMAX_TYPE
#ifndef INTMAX_TYPE
#define INTMAX_TYPE ((INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE)     \
#define INTMAX_TYPE ((INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE)     \
                     ? "int"                                    \
                     ? "int"                                    \
                     : ((LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
                     : ((LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
                        ? "long int"                            \
                        ? "long int"                            \
                        : "long long int"))
                        : "long long int"))
#endif
#endif
 
 
#ifndef UINTMAX_TYPE
#ifndef UINTMAX_TYPE
#define UINTMAX_TYPE ((INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE)    \
#define UINTMAX_TYPE ((INT_TYPE_SIZE == LONG_LONG_TYPE_SIZE)    \
                     ? "unsigned int"                           \
                     ? "unsigned int"                           \
                     : ((LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
                     : ((LONG_TYPE_SIZE == LONG_LONG_TYPE_SIZE) \
                        ? "long unsigned int"                   \
                        ? "long unsigned int"                   \
                        : "long long unsigned int"))
                        : "long long unsigned int"))
#endif
#endif
 
 
/* The following symbols are subsumed in the c_global_trees array, and
/* The following symbols are subsumed in the c_global_trees array, and
   listed here individually for documentation purposes.
   listed here individually for documentation purposes.
 
 
   INTEGER_TYPE and REAL_TYPE nodes for the standard data types.
   INTEGER_TYPE and REAL_TYPE nodes for the standard data types.
 
 
        tree short_integer_type_node;
        tree short_integer_type_node;
        tree long_integer_type_node;
        tree long_integer_type_node;
        tree long_long_integer_type_node;
        tree long_long_integer_type_node;
 
 
        tree short_unsigned_type_node;
        tree short_unsigned_type_node;
        tree long_unsigned_type_node;
        tree long_unsigned_type_node;
        tree long_long_unsigned_type_node;
        tree long_long_unsigned_type_node;
 
 
        tree truthvalue_type_node;
        tree truthvalue_type_node;
        tree truthvalue_false_node;
        tree truthvalue_false_node;
        tree truthvalue_true_node;
        tree truthvalue_true_node;
 
 
        tree ptrdiff_type_node;
        tree ptrdiff_type_node;
 
 
        tree unsigned_char_type_node;
        tree unsigned_char_type_node;
        tree signed_char_type_node;
        tree signed_char_type_node;
        tree wchar_type_node;
        tree wchar_type_node;
        tree signed_wchar_type_node;
        tree signed_wchar_type_node;
        tree unsigned_wchar_type_node;
        tree unsigned_wchar_type_node;
 
 
        tree float_type_node;
        tree float_type_node;
        tree double_type_node;
        tree double_type_node;
        tree long_double_type_node;
        tree long_double_type_node;
 
 
        tree complex_integer_type_node;
        tree complex_integer_type_node;
        tree complex_float_type_node;
        tree complex_float_type_node;
        tree complex_double_type_node;
        tree complex_double_type_node;
        tree complex_long_double_type_node;
        tree complex_long_double_type_node;
 
 
        tree dfloat32_type_node;
        tree dfloat32_type_node;
        tree dfloat64_type_node;
        tree dfloat64_type_node;
        tree_dfloat128_type_node;
        tree_dfloat128_type_node;
 
 
        tree intQI_type_node;
        tree intQI_type_node;
        tree intHI_type_node;
        tree intHI_type_node;
        tree intSI_type_node;
        tree intSI_type_node;
        tree intDI_type_node;
        tree intDI_type_node;
        tree intTI_type_node;
        tree intTI_type_node;
 
 
        tree unsigned_intQI_type_node;
        tree unsigned_intQI_type_node;
        tree unsigned_intHI_type_node;
        tree unsigned_intHI_type_node;
        tree unsigned_intSI_type_node;
        tree unsigned_intSI_type_node;
        tree unsigned_intDI_type_node;
        tree unsigned_intDI_type_node;
        tree unsigned_intTI_type_node;
        tree unsigned_intTI_type_node;
 
 
        tree widest_integer_literal_type_node;
        tree widest_integer_literal_type_node;
        tree widest_unsigned_literal_type_node;
        tree widest_unsigned_literal_type_node;
 
 
   Nodes for types `void *' and `const void *'.
   Nodes for types `void *' and `const void *'.
 
 
        tree ptr_type_node, const_ptr_type_node;
        tree ptr_type_node, const_ptr_type_node;
 
 
   Nodes for types `char *' and `const char *'.
   Nodes for types `char *' and `const char *'.
 
 
        tree string_type_node, const_string_type_node;
        tree string_type_node, const_string_type_node;
 
 
   Type `char[SOMENUMBER]'.
   Type `char[SOMENUMBER]'.
   Used when an array of char is needed and the size is irrelevant.
   Used when an array of char is needed and the size is irrelevant.
 
 
        tree char_array_type_node;
        tree char_array_type_node;
 
 
   Type `int[SOMENUMBER]' or something like it.
   Type `int[SOMENUMBER]' or something like it.
   Used when an array of int needed and the size is irrelevant.
   Used when an array of int needed and the size is irrelevant.
 
 
        tree int_array_type_node;
        tree int_array_type_node;
 
 
   Type `wchar_t[SOMENUMBER]' or something like it.
   Type `wchar_t[SOMENUMBER]' or something like it.
   Used when a wide string literal is created.
   Used when a wide string literal is created.
 
 
        tree wchar_array_type_node;
        tree wchar_array_type_node;
 
 
   Type `int ()' -- used for implicit declaration of functions.
   Type `int ()' -- used for implicit declaration of functions.
 
 
        tree default_function_type;
        tree default_function_type;
 
 
   A VOID_TYPE node, packaged in a TREE_LIST.
   A VOID_TYPE node, packaged in a TREE_LIST.
 
 
        tree void_list_node;
        tree void_list_node;
 
 
  The lazily created VAR_DECLs for __FUNCTION__, __PRETTY_FUNCTION__,
  The lazily created VAR_DECLs for __FUNCTION__, __PRETTY_FUNCTION__,
  and __func__. (C doesn't generate __FUNCTION__ and__PRETTY_FUNCTION__
  and __func__. (C doesn't generate __FUNCTION__ and__PRETTY_FUNCTION__
  VAR_DECLS, but C++ does.)
  VAR_DECLS, but C++ does.)
 
 
        tree function_name_decl_node;
        tree function_name_decl_node;
        tree pretty_function_name_decl_node;
        tree pretty_function_name_decl_node;
        tree c99_function_name_decl_node;
        tree c99_function_name_decl_node;
 
 
  Stack of nested function name VAR_DECLs.
  Stack of nested function name VAR_DECLs.
 
 
        tree saved_function_name_decls;
        tree saved_function_name_decls;
 
 
*/
*/
 
 
tree c_global_trees[CTI_MAX];
tree c_global_trees[CTI_MAX];


/* Switches common to the C front ends.  */
/* Switches common to the C front ends.  */
 
 
/* Nonzero if prepreprocessing only.  */
/* Nonzero if prepreprocessing only.  */
 
 
int flag_preprocess_only;
int flag_preprocess_only;
 
 
/* Nonzero means don't output line number information.  */
/* Nonzero means don't output line number information.  */
 
 
char flag_no_line_commands;
char flag_no_line_commands;
 
 
/* Nonzero causes -E output not to be done, but directives such as
/* Nonzero causes -E output not to be done, but directives such as
   #define that have side effects are still obeyed.  */
   #define that have side effects are still obeyed.  */
 
 
char flag_no_output;
char flag_no_output;
 
 
/* Nonzero means dump macros in some fashion.  */
/* Nonzero means dump macros in some fashion.  */
 
 
char flag_dump_macros;
char flag_dump_macros;
 
 
/* Nonzero means pass #include lines through to the output.  */
/* Nonzero means pass #include lines through to the output.  */
 
 
char flag_dump_includes;
char flag_dump_includes;
 
 
/* Nonzero means process PCH files while preprocessing.  */
/* Nonzero means process PCH files while preprocessing.  */
 
 
bool flag_pch_preprocess;
bool flag_pch_preprocess;
 
 
/* The file name to which we should write a precompiled header, or
/* The file name to which we should write a precompiled header, or
   NULL if no header will be written in this compile.  */
   NULL if no header will be written in this compile.  */
 
 
const char *pch_file;
const char *pch_file;
 
 
/* Nonzero if an ISO standard was selected.  It rejects macros in the
/* Nonzero if an ISO standard was selected.  It rejects macros in the
   user's namespace.  */
   user's namespace.  */
int flag_iso;
int flag_iso;
 
 
/* Nonzero if -undef was given.  It suppresses target built-in macros
/* Nonzero if -undef was given.  It suppresses target built-in macros
   and assertions.  */
   and assertions.  */
int flag_undef;
int flag_undef;
 
 
/* Nonzero means don't recognize the non-ANSI builtin functions.  */
/* Nonzero means don't recognize the non-ANSI builtin functions.  */
 
 
int flag_no_builtin;
int flag_no_builtin;
 
 
/* Nonzero means don't recognize the non-ANSI builtin functions.
/* Nonzero means don't recognize the non-ANSI builtin functions.
   -ansi sets this.  */
   -ansi sets this.  */
 
 
int flag_no_nonansi_builtin;
int flag_no_nonansi_builtin;
 
 
/* Nonzero means give `double' the same size as `float'.  */
/* Nonzero means give `double' the same size as `float'.  */
 
 
int flag_short_double;
int flag_short_double;
 
 
/* Nonzero means give `wchar_t' the same size as `short'.  */
/* Nonzero means give `wchar_t' the same size as `short'.  */
 
 
int flag_short_wchar;
int flag_short_wchar;
 
 
/* Nonzero means allow Microsoft extensions without warnings or errors.  */
/* Nonzero means allow Microsoft extensions without warnings or errors.  */
int flag_ms_extensions;
int flag_ms_extensions;
 
 
/* Nonzero means don't recognize the keyword `asm'.  */
/* Nonzero means don't recognize the keyword `asm'.  */
 
 
int flag_no_asm;
int flag_no_asm;
 
 
/* Nonzero means to treat bitfields as signed unless they say `unsigned'.  */
/* Nonzero means to treat bitfields as signed unless they say `unsigned'.  */
 
 
int flag_signed_bitfields = 1;
int flag_signed_bitfields = 1;
 
 
/* Warn about #pragma directives that are not recognized.  */
/* Warn about #pragma directives that are not recognized.  */
 
 
int warn_unknown_pragmas; /* Tri state variable.  */
int warn_unknown_pragmas; /* Tri state variable.  */
 
 
/* Warn about format/argument anomalies in calls to formatted I/O functions
/* Warn about format/argument anomalies in calls to formatted I/O functions
   (*printf, *scanf, strftime, strfmon, etc.).  */
   (*printf, *scanf, strftime, strfmon, etc.).  */
 
 
int warn_format;
int warn_format;
 
 
/* Warn about using __null (as NULL in C++) as sentinel.  For code compiled
/* Warn about using __null (as NULL in C++) as sentinel.  For code compiled
   with GCC this doesn't matter as __null is guaranteed to have the right
   with GCC this doesn't matter as __null is guaranteed to have the right
   size.  */
   size.  */
 
 
int warn_strict_null_sentinel;
int warn_strict_null_sentinel;
 
 
/* Zero means that faster, ...NonNil variants of objc_msgSend...
/* Zero means that faster, ...NonNil variants of objc_msgSend...
   calls will be used in ObjC; passing nil receivers to such calls
   calls will be used in ObjC; passing nil receivers to such calls
   will most likely result in crashes.  */
   will most likely result in crashes.  */
int flag_nil_receivers = 1;
int flag_nil_receivers = 1;
 
 
/* Nonzero means that code generation will be altered to support
/* Nonzero means that code generation will be altered to support
   "zero-link" execution.  This currently affects ObjC only, but may
   "zero-link" execution.  This currently affects ObjC only, but may
   affect other languages in the future.  */
   affect other languages in the future.  */
int flag_zero_link = 0;
int flag_zero_link = 0;
 
 
/* Nonzero means emit an '__OBJC, __image_info' for the current translation
/* Nonzero means emit an '__OBJC, __image_info' for the current translation
   unit.  It will inform the ObjC runtime that class definition(s) herein
   unit.  It will inform the ObjC runtime that class definition(s) herein
   contained are to replace one(s) previously loaded.  */
   contained are to replace one(s) previously loaded.  */
int flag_replace_objc_classes = 0;
int flag_replace_objc_classes = 0;
 
 
/* C/ObjC language option variables.  */
/* C/ObjC language option variables.  */
 
 
 
 
/* Nonzero means allow type mismatches in conditional expressions;
/* Nonzero means allow type mismatches in conditional expressions;
   just make their values `void'.  */
   just make their values `void'.  */
 
 
int flag_cond_mismatch;
int flag_cond_mismatch;
 
 
/* Nonzero means enable C89 Amendment 1 features.  */
/* Nonzero means enable C89 Amendment 1 features.  */
 
 
int flag_isoc94;
int flag_isoc94;
 
 
/* Nonzero means use the ISO C99 dialect of C.  */
/* Nonzero means use the ISO C99 dialect of C.  */
 
 
int flag_isoc99;
int flag_isoc99;
 
 
/* Nonzero means that we have builtin functions, and main is an int.  */
/* Nonzero means that we have builtin functions, and main is an int.  */
 
 
int flag_hosted = 1;
int flag_hosted = 1;
 
 
/* Warn if main is suspicious.  */
/* Warn if main is suspicious.  */
 
 
int warn_main;
int warn_main;
 
 
 
 
/* ObjC language option variables.  */
/* ObjC language option variables.  */
 
 
 
 
/* Open and close the file for outputting class declarations, if
/* Open and close the file for outputting class declarations, if
   requested (ObjC).  */
   requested (ObjC).  */
 
 
int flag_gen_declaration;
int flag_gen_declaration;
 
 
/* Tells the compiler that this is a special run.  Do not perform any
/* Tells the compiler that this is a special run.  Do not perform any
   compiling, instead we are to test some platform dependent features
   compiling, instead we are to test some platform dependent features
   and output a C header file with appropriate definitions.  */
   and output a C header file with appropriate definitions.  */
 
 
int print_struct_values;
int print_struct_values;
 
 
/* Tells the compiler what is the constant string class for Objc.  */
/* Tells the compiler what is the constant string class for Objc.  */
 
 
const char *constant_string_class_name;
const char *constant_string_class_name;
 
 
 
 
/* C++ language option variables.  */
/* C++ language option variables.  */
 
 
 
 
/* Nonzero means don't recognize any extension keywords.  */
/* Nonzero means don't recognize any extension keywords.  */
 
 
int flag_no_gnu_keywords;
int flag_no_gnu_keywords;
 
 
/* Nonzero means do emit exported implementations of functions even if
/* Nonzero means do emit exported implementations of functions even if
   they can be inlined.  */
   they can be inlined.  */
 
 
int flag_implement_inlines = 1;
int flag_implement_inlines = 1;
 
 
/* Nonzero means that implicit instantiations will be emitted if needed.  */
/* Nonzero means that implicit instantiations will be emitted if needed.  */
 
 
int flag_implicit_templates = 1;
int flag_implicit_templates = 1;
 
 
/* Nonzero means that implicit instantiations of inline templates will be
/* Nonzero means that implicit instantiations of inline templates will be
   emitted if needed, even if instantiations of non-inline templates
   emitted if needed, even if instantiations of non-inline templates
   aren't.  */
   aren't.  */
 
 
int flag_implicit_inline_templates = 1;
int flag_implicit_inline_templates = 1;
 
 
/* Nonzero means generate separate instantiation control files and
/* Nonzero means generate separate instantiation control files and
   juggle them at link time.  */
   juggle them at link time.  */
 
 
int flag_use_repository;
int flag_use_repository;
 
 
/* Nonzero if we want to issue diagnostics that the standard says are not
/* Nonzero if we want to issue diagnostics that the standard says are not
   required.  */
   required.  */
 
 
int flag_optional_diags = 1;
int flag_optional_diags = 1;
 
 
/* Nonzero means we should attempt to elide constructors when possible.  */
/* Nonzero means we should attempt to elide constructors when possible.  */
 
 
int flag_elide_constructors = 1;
int flag_elide_constructors = 1;
 
 
/* Nonzero means that member functions defined in class scope are
/* Nonzero means that member functions defined in class scope are
   inline by default.  */
   inline by default.  */
 
 
int flag_default_inline = 1;
int flag_default_inline = 1;
 
 
/* Controls whether compiler generates 'type descriptor' that give
/* Controls whether compiler generates 'type descriptor' that give
   run-time type information.  */
   run-time type information.  */
 
 
int flag_rtti = 1;
int flag_rtti = 1;
 
 
/* Nonzero if we want to conserve space in the .o files.  We do this
/* Nonzero if we want to conserve space in the .o files.  We do this
   by putting uninitialized data and runtime initialized data into
   by putting uninitialized data and runtime initialized data into
   .common instead of .data at the expense of not flagging multiple
   .common instead of .data at the expense of not flagging multiple
   definitions.  */
   definitions.  */
 
 
int flag_conserve_space;
int flag_conserve_space;
 
 
/* Nonzero if we want to obey access control semantics.  */
/* Nonzero if we want to obey access control semantics.  */
 
 
int flag_access_control = 1;
int flag_access_control = 1;
 
 
/* Nonzero if we want to check the return value of new and avoid calling
/* Nonzero if we want to check the return value of new and avoid calling
   constructors if it is a null pointer.  */
   constructors if it is a null pointer.  */
 
 
int flag_check_new;
int flag_check_new;
 
 
/* Nonzero if we want the new ISO rules for pushing a new scope for `for'
/* Nonzero if we want the new ISO rules for pushing a new scope for `for'
   initialization variables.
   initialization variables.
   0: Old rules, set by -fno-for-scope.
   0: Old rules, set by -fno-for-scope.
   2: New ISO rules, set by -ffor-scope.
   2: New ISO rules, set by -ffor-scope.
   1: Try to implement new ISO rules, but with backup compatibility
   1: Try to implement new ISO rules, but with backup compatibility
   (and warnings).  This is the default, for now.  */
   (and warnings).  This is the default, for now.  */
 
 
int flag_new_for_scope = 1;
int flag_new_for_scope = 1;
 
 
/* Nonzero if we want to emit defined symbols with common-like linkage as
/* Nonzero if we want to emit defined symbols with common-like linkage as
   weak symbols where possible, in order to conform to C++ semantics.
   weak symbols where possible, in order to conform to C++ semantics.
   Otherwise, emit them as local symbols.  */
   Otherwise, emit them as local symbols.  */
 
 
int flag_weak = 1;
int flag_weak = 1;
 
 
/* 0 means we want the preprocessor to not emit line directives for
/* 0 means we want the preprocessor to not emit line directives for
   the current working directory.  1 means we want it to do it.  -1
   the current working directory.  1 means we want it to do it.  -1
   means we should decide depending on whether debugging information
   means we should decide depending on whether debugging information
   is being emitted or not.  */
   is being emitted or not.  */
 
 
int flag_working_directory = -1;
int flag_working_directory = -1;
 
 
/* Nonzero to use __cxa_atexit, rather than atexit, to register
/* Nonzero to use __cxa_atexit, rather than atexit, to register
   destructors for local statics and global objects.  '2' means it has been
   destructors for local statics and global objects.  '2' means it has been
   set nonzero as a default, not by a command-line flag.  */
   set nonzero as a default, not by a command-line flag.  */
 
 
int flag_use_cxa_atexit = DEFAULT_USE_CXA_ATEXIT;
int flag_use_cxa_atexit = DEFAULT_USE_CXA_ATEXIT;
 
 
/* Nonzero to use __cxa_get_exception_ptr in C++ exception-handling
/* Nonzero to use __cxa_get_exception_ptr in C++ exception-handling
   code.  '2' means it has not been set explicitly on the command line.  */
   code.  '2' means it has not been set explicitly on the command line.  */
 
 
int flag_use_cxa_get_exception_ptr = 2;
int flag_use_cxa_get_exception_ptr = 2;
 
 
/* Nonzero means make the default pedwarns warnings instead of errors.
/* Nonzero means make the default pedwarns warnings instead of errors.
   The value of this flag is ignored if -pedantic is specified.  */
   The value of this flag is ignored if -pedantic is specified.  */
 
 
int flag_permissive;
int flag_permissive;
 
 
/* Nonzero means to implement standard semantics for exception
/* Nonzero means to implement standard semantics for exception
   specifications, calling unexpected if an exception is thrown that
   specifications, calling unexpected if an exception is thrown that
   doesn't match the specification.  Zero means to treat them as
   doesn't match the specification.  Zero means to treat them as
   assertions and optimize accordingly, but not check them.  */
   assertions and optimize accordingly, but not check them.  */
 
 
int flag_enforce_eh_specs = 1;
int flag_enforce_eh_specs = 1;
 
 
/* Nonzero means to generate thread-safe code for initializing local
/* Nonzero means to generate thread-safe code for initializing local
   statics.  */
   statics.  */
 
 
int flag_threadsafe_statics = 1;
int flag_threadsafe_statics = 1;
 
 
/* Nonzero means warn about implicit declarations.  */
/* Nonzero means warn about implicit declarations.  */
 
 
int warn_implicit = 1;
int warn_implicit = 1;
 
 
/* Maximum template instantiation depth.  This limit is rather
/* Maximum template instantiation depth.  This limit is rather
   arbitrary, but it exists to limit the time it takes to notice
   arbitrary, but it exists to limit the time it takes to notice
   infinite template instantiations.  */
   infinite template instantiations.  */
 
 
int max_tinst_depth = 500;
int max_tinst_depth = 500;
 
 
 
 
 
 
/* The elements of `ridpointers' are identifier nodes for the reserved
/* The elements of `ridpointers' are identifier nodes for the reserved
   type names and storage classes.  It is indexed by a RID_... value.  */
   type names and storage classes.  It is indexed by a RID_... value.  */
tree *ridpointers;
tree *ridpointers;
 
 
tree (*make_fname_decl) (tree, int);
tree (*make_fname_decl) (tree, int);
 
 
/* Nonzero means the expression being parsed will never be evaluated.
/* Nonzero means the expression being parsed will never be evaluated.
   This is a count, since unevaluated expressions can nest.  */
   This is a count, since unevaluated expressions can nest.  */
int skip_evaluation;
int skip_evaluation;
 
 
/* Information about how a function name is generated.  */
/* Information about how a function name is generated.  */
struct fname_var_t
struct fname_var_t
{
{
  tree *const decl;     /* pointer to the VAR_DECL.  */
  tree *const decl;     /* pointer to the VAR_DECL.  */
  const unsigned rid;   /* RID number for the identifier.  */
  const unsigned rid;   /* RID number for the identifier.  */
  const int pretty;     /* How pretty is it? */
  const int pretty;     /* How pretty is it? */
};
};
 
 
/* The three ways of getting then name of the current function.  */
/* The three ways of getting then name of the current function.  */
 
 
const struct fname_var_t fname_vars[] =
const struct fname_var_t fname_vars[] =
{
{
  /* C99 compliant __func__, must be first.  */
  /* C99 compliant __func__, must be first.  */
  {&c99_function_name_decl_node, RID_C99_FUNCTION_NAME, 0},
  {&c99_function_name_decl_node, RID_C99_FUNCTION_NAME, 0},
  /* GCC __FUNCTION__ compliant.  */
  /* GCC __FUNCTION__ compliant.  */
  {&function_name_decl_node, RID_FUNCTION_NAME, 0},
  {&function_name_decl_node, RID_FUNCTION_NAME, 0},
  /* GCC __PRETTY_FUNCTION__ compliant.  */
  /* GCC __PRETTY_FUNCTION__ compliant.  */
  {&pretty_function_name_decl_node, RID_PRETTY_FUNCTION_NAME, 1},
  {&pretty_function_name_decl_node, RID_PRETTY_FUNCTION_NAME, 1},
  {NULL, 0, 0},
  {NULL, 0, 0},
};
};
 
 
static int constant_fits_type_p (tree, tree);
static int constant_fits_type_p (tree, tree);
static tree check_case_value (tree);
static tree check_case_value (tree);
static bool check_case_bounds (tree, tree, tree *, tree *);
static bool check_case_bounds (tree, tree, tree *, tree *);
 
 
static tree handle_packed_attribute (tree *, tree, tree, int, bool *);
static tree handle_packed_attribute (tree *, tree, tree, int, bool *);
static tree handle_nocommon_attribute (tree *, tree, tree, int, bool *);
static tree handle_nocommon_attribute (tree *, tree, tree, int, bool *);
static tree handle_common_attribute (tree *, tree, tree, int, bool *);
static tree handle_common_attribute (tree *, tree, tree, int, bool *);
static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *);
static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *);
static tree handle_noinline_attribute (tree *, tree, tree, int, bool *);
static tree handle_noinline_attribute (tree *, tree, tree, int, bool *);
static tree handle_always_inline_attribute (tree *, tree, tree, int,
static tree handle_always_inline_attribute (tree *, tree, tree, int,
                                            bool *);
                                            bool *);
static tree handle_gnu_inline_attribute (tree *, tree, tree, int,
static tree handle_gnu_inline_attribute (tree *, tree, tree, int,
                                         bool *);
                                         bool *);
static tree handle_flatten_attribute (tree *, tree, tree, int, bool *);
static tree handle_flatten_attribute (tree *, tree, tree, int, bool *);
static tree handle_used_attribute (tree *, tree, tree, int, bool *);
static tree handle_used_attribute (tree *, tree, tree, int, bool *);
static tree handle_unused_attribute (tree *, tree, tree, int, bool *);
static tree handle_unused_attribute (tree *, tree, tree, int, bool *);
static tree handle_externally_visible_attribute (tree *, tree, tree, int,
static tree handle_externally_visible_attribute (tree *, tree, tree, int,
                                                 bool *);
                                                 bool *);
static tree handle_const_attribute (tree *, tree, tree, int, bool *);
static tree handle_const_attribute (tree *, tree, tree, int, bool *);
static tree handle_transparent_union_attribute (tree *, tree, tree,
static tree handle_transparent_union_attribute (tree *, tree, tree,
                                                int, bool *);
                                                int, bool *);
static tree handle_constructor_attribute (tree *, tree, tree, int, bool *);
static tree handle_constructor_attribute (tree *, tree, tree, int, bool *);
static tree handle_destructor_attribute (tree *, tree, tree, int, bool *);
static tree handle_destructor_attribute (tree *, tree, tree, int, bool *);
static tree handle_mode_attribute (tree *, tree, tree, int, bool *);
static tree handle_mode_attribute (tree *, tree, tree, int, bool *);
static tree handle_section_attribute (tree *, tree, tree, int, bool *);
static tree handle_section_attribute (tree *, tree, tree, int, bool *);
static tree handle_aligned_attribute (tree *, tree, tree, int, bool *);
static tree handle_aligned_attribute (tree *, tree, tree, int, bool *);
static tree handle_weak_attribute (tree *, tree, tree, int, bool *) ;
static tree handle_weak_attribute (tree *, tree, tree, int, bool *) ;
static tree handle_alias_attribute (tree *, tree, tree, int, bool *);
static tree handle_alias_attribute (tree *, tree, tree, int, bool *);
static tree handle_weakref_attribute (tree *, tree, tree, int, bool *) ;
static tree handle_weakref_attribute (tree *, tree, tree, int, bool *) ;
static tree handle_visibility_attribute (tree *, tree, tree, int,
static tree handle_visibility_attribute (tree *, tree, tree, int,
                                         bool *);
                                         bool *);
static tree handle_tls_model_attribute (tree *, tree, tree, int,
static tree handle_tls_model_attribute (tree *, tree, tree, int,
                                        bool *);
                                        bool *);
static tree handle_no_instrument_function_attribute (tree *, tree,
static tree handle_no_instrument_function_attribute (tree *, tree,
                                                     tree, int, bool *);
                                                     tree, int, bool *);
static tree handle_malloc_attribute (tree *, tree, tree, int, bool *);
static tree handle_malloc_attribute (tree *, tree, tree, int, bool *);
static tree handle_returns_twice_attribute (tree *, tree, tree, int, bool *);
static tree handle_returns_twice_attribute (tree *, tree, tree, int, bool *);
static tree handle_no_limit_stack_attribute (tree *, tree, tree, int,
static tree handle_no_limit_stack_attribute (tree *, tree, tree, int,
                                             bool *);
                                             bool *);
static tree handle_pure_attribute (tree *, tree, tree, int, bool *);
static tree handle_pure_attribute (tree *, tree, tree, int, bool *);
static tree handle_novops_attribute (tree *, tree, tree, int, bool *);
static tree handle_novops_attribute (tree *, tree, tree, int, bool *);
static tree handle_deprecated_attribute (tree *, tree, tree, int,
static tree handle_deprecated_attribute (tree *, tree, tree, int,
                                         bool *);
                                         bool *);
static tree handle_vector_size_attribute (tree *, tree, tree, int,
static tree handle_vector_size_attribute (tree *, tree, tree, int,
                                          bool *);
                                          bool *);
static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *);
static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *);
static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *);
static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *);
static tree handle_cleanup_attribute (tree *, tree, tree, int, bool *);
static tree handle_cleanup_attribute (tree *, tree, tree, int, bool *);
static tree handle_warn_unused_result_attribute (tree *, tree, tree, int,
static tree handle_warn_unused_result_attribute (tree *, tree, tree, int,
                                                 bool *);
                                                 bool *);
static tree handle_sentinel_attribute (tree *, tree, tree, int, bool *);
static tree handle_sentinel_attribute (tree *, tree, tree, int, bool *);
 
 
static void check_function_nonnull (tree, tree);
static void check_function_nonnull (tree, tree);
static void check_nonnull_arg (void *, tree, unsigned HOST_WIDE_INT);
static void check_nonnull_arg (void *, tree, unsigned HOST_WIDE_INT);
static bool nonnull_check_p (tree, unsigned HOST_WIDE_INT);
static bool nonnull_check_p (tree, unsigned HOST_WIDE_INT);
static bool get_nonnull_operand (tree, unsigned HOST_WIDE_INT *);
static bool get_nonnull_operand (tree, unsigned HOST_WIDE_INT *);
static int resort_field_decl_cmp (const void *, const void *);
static int resort_field_decl_cmp (const void *, const void *);
 
 
/* Table of machine-independent attributes common to all C-like languages.  */
/* Table of machine-independent attributes common to all C-like languages.  */
const struct attribute_spec c_common_attribute_table[] =
const struct attribute_spec c_common_attribute_table[] =
{
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
  { "packed",                 0, 0, false, false, false,
  { "packed",                 0, 0, false, false, false,
                              handle_packed_attribute },
                              handle_packed_attribute },
  { "nocommon",               0, 0, true,  false, false,
  { "nocommon",               0, 0, true,  false, false,
                              handle_nocommon_attribute },
                              handle_nocommon_attribute },
  { "common",                 0, 0, true,  false, false,
  { "common",                 0, 0, true,  false, false,
                              handle_common_attribute },
                              handle_common_attribute },
  /* FIXME: logically, noreturn attributes should be listed as
  /* FIXME: logically, noreturn attributes should be listed as
     "false, true, true" and apply to function types.  But implementing this
     "false, true, true" and apply to function types.  But implementing this
     would require all the places in the compiler that use TREE_THIS_VOLATILE
     would require all the places in the compiler that use TREE_THIS_VOLATILE
     on a decl to identify non-returning functions to be located and fixed
     on a decl to identify non-returning functions to be located and fixed
     to check the function type instead.  */
     to check the function type instead.  */
  { "noreturn",               0, 0, true,  false, false,
  { "noreturn",               0, 0, true,  false, false,
                              handle_noreturn_attribute },
                              handle_noreturn_attribute },
  { "volatile",               0, 0, true,  false, false,
  { "volatile",               0, 0, true,  false, false,
                              handle_noreturn_attribute },
                              handle_noreturn_attribute },
  { "noinline",               0, 0, true,  false, false,
  { "noinline",               0, 0, true,  false, false,
                              handle_noinline_attribute },
                              handle_noinline_attribute },
  { "always_inline",          0, 0, true,  false, false,
  { "always_inline",          0, 0, true,  false, false,
                              handle_always_inline_attribute },
                              handle_always_inline_attribute },
  { "gnu_inline",             0, 0, true,  false, false,
  { "gnu_inline",             0, 0, true,  false, false,
                              handle_gnu_inline_attribute },
                              handle_gnu_inline_attribute },
  { "flatten",                0, 0, true,  false, false,
  { "flatten",                0, 0, true,  false, false,
                              handle_flatten_attribute },
                              handle_flatten_attribute },
  { "used",                   0, 0, true,  false, false,
  { "used",                   0, 0, true,  false, false,
                              handle_used_attribute },
                              handle_used_attribute },
  { "unused",                 0, 0, false, false, false,
  { "unused",                 0, 0, false, false, false,
                              handle_unused_attribute },
                              handle_unused_attribute },
  { "externally_visible",     0, 0, true,  false, false,
  { "externally_visible",     0, 0, true,  false, false,
                              handle_externally_visible_attribute },
                              handle_externally_visible_attribute },
  /* The same comments as for noreturn attributes apply to const ones.  */
  /* The same comments as for noreturn attributes apply to const ones.  */
  { "const",                  0, 0, true,  false, false,
  { "const",                  0, 0, true,  false, false,
                              handle_const_attribute },
                              handle_const_attribute },
  { "transparent_union",      0, 0, false, false, false,
  { "transparent_union",      0, 0, false, false, false,
                              handle_transparent_union_attribute },
                              handle_transparent_union_attribute },
  { "constructor",            0, 0, true,  false, false,
  { "constructor",            0, 0, true,  false, false,
                              handle_constructor_attribute },
                              handle_constructor_attribute },
  { "destructor",             0, 0, true,  false, false,
  { "destructor",             0, 0, true,  false, false,
                              handle_destructor_attribute },
                              handle_destructor_attribute },
  { "mode",                   1, 1, false,  true, false,
  { "mode",                   1, 1, false,  true, false,
                              handle_mode_attribute },
                              handle_mode_attribute },
  { "section",                1, 1, true,  false, false,
  { "section",                1, 1, true,  false, false,
                              handle_section_attribute },
                              handle_section_attribute },
  { "aligned",                0, 1, false, false, false,
  { "aligned",                0, 1, false, false, false,
                              handle_aligned_attribute },
                              handle_aligned_attribute },
  { "weak",                   0, 0, true,  false, false,
  { "weak",                   0, 0, true,  false, false,
                              handle_weak_attribute },
                              handle_weak_attribute },
  { "alias",                  1, 1, true,  false, false,
  { "alias",                  1, 1, true,  false, false,
                              handle_alias_attribute },
                              handle_alias_attribute },
  { "weakref",                0, 1, true,  false, false,
  { "weakref",                0, 1, true,  false, false,
                              handle_weakref_attribute },
                              handle_weakref_attribute },
  { "no_instrument_function", 0, 0, true,  false, false,
  { "no_instrument_function", 0, 0, true,  false, false,
                              handle_no_instrument_function_attribute },
                              handle_no_instrument_function_attribute },
  { "malloc",                 0, 0, true,  false, false,
  { "malloc",                 0, 0, true,  false, false,
                              handle_malloc_attribute },
                              handle_malloc_attribute },
  { "returns_twice",          0, 0, true,  false, false,
  { "returns_twice",          0, 0, true,  false, false,
                              handle_returns_twice_attribute },
                              handle_returns_twice_attribute },
  { "no_stack_limit",         0, 0, true,  false, false,
  { "no_stack_limit",         0, 0, true,  false, false,
                              handle_no_limit_stack_attribute },
                              handle_no_limit_stack_attribute },
  { "pure",                   0, 0, true,  false, false,
  { "pure",                   0, 0, true,  false, false,
                              handle_pure_attribute },
                              handle_pure_attribute },
  /* For internal use (marking of builtins) only.  The name contains space
  /* For internal use (marking of builtins) only.  The name contains space
     to prevent its usage in source code.  */
     to prevent its usage in source code.  */
  { "no vops",                0, 0, true,  false, false,
  { "no vops",                0, 0, true,  false, false,
                              handle_novops_attribute },
                              handle_novops_attribute },
  { "deprecated",             0, 0, false, false, false,
  { "deprecated",             0, 0, false, false, false,
                              handle_deprecated_attribute },
                              handle_deprecated_attribute },
  { "vector_size",            1, 1, false, true, false,
  { "vector_size",            1, 1, false, true, false,
                              handle_vector_size_attribute },
                              handle_vector_size_attribute },
  { "visibility",             1, 1, false, false, false,
  { "visibility",             1, 1, false, false, false,
                              handle_visibility_attribute },
                              handle_visibility_attribute },
  { "tls_model",              1, 1, true,  false, false,
  { "tls_model",              1, 1, true,  false, false,
                              handle_tls_model_attribute },
                              handle_tls_model_attribute },
  { "nonnull",                0, -1, false, true, true,
  { "nonnull",                0, -1, false, true, true,
                              handle_nonnull_attribute },
                              handle_nonnull_attribute },
  { "nothrow",                0, 0, true,  false, false,
  { "nothrow",                0, 0, true,  false, false,
                              handle_nothrow_attribute },
                              handle_nothrow_attribute },
  { "may_alias",              0, 0, false, true, false, NULL },
  { "may_alias",              0, 0, false, true, false, NULL },
  { "cleanup",                1, 1, true, false, false,
  { "cleanup",                1, 1, true, false, false,
                              handle_cleanup_attribute },
                              handle_cleanup_attribute },
  { "warn_unused_result",     0, 0, false, true, true,
  { "warn_unused_result",     0, 0, false, true, true,
                              handle_warn_unused_result_attribute },
                              handle_warn_unused_result_attribute },
  { "sentinel",               0, 1, false, true, true,
  { "sentinel",               0, 1, false, true, true,
                              handle_sentinel_attribute },
                              handle_sentinel_attribute },
  { NULL,                     0, 0, false, false, false, NULL }
  { NULL,                     0, 0, false, false, false, NULL }
};
};
 
 
/* Give the specifications for the format attributes, used by C and all
/* Give the specifications for the format attributes, used by C and all
   descendants.  */
   descendants.  */
 
 
const struct attribute_spec c_common_format_attribute_table[] =
const struct attribute_spec c_common_format_attribute_table[] =
{
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
  { "format",                 3, 3, false, true,  true,
  { "format",                 3, 3, false, true,  true,
                              handle_format_attribute },
                              handle_format_attribute },
  { "format_arg",             1, 1, false, true,  true,
  { "format_arg",             1, 1, false, true,  true,
                              handle_format_arg_attribute },
                              handle_format_arg_attribute },
  { NULL,                     0, 0, false, false, false, NULL }
  { NULL,                     0, 0, false, false, false, NULL }
};
};
 
 
/* Push current bindings for the function name VAR_DECLS.  */
/* Push current bindings for the function name VAR_DECLS.  */
 
 
void
void
start_fname_decls (void)
start_fname_decls (void)
{
{
  unsigned ix;
  unsigned ix;
  tree saved = NULL_TREE;
  tree saved = NULL_TREE;
 
 
  for (ix = 0; fname_vars[ix].decl; ix++)
  for (ix = 0; fname_vars[ix].decl; ix++)
    {
    {
      tree decl = *fname_vars[ix].decl;
      tree decl = *fname_vars[ix].decl;
 
 
      if (decl)
      if (decl)
        {
        {
          saved = tree_cons (decl, build_int_cst (NULL_TREE, ix), saved);
          saved = tree_cons (decl, build_int_cst (NULL_TREE, ix), saved);
          *fname_vars[ix].decl = NULL_TREE;
          *fname_vars[ix].decl = NULL_TREE;
        }
        }
    }
    }
  if (saved || saved_function_name_decls)
  if (saved || saved_function_name_decls)
    /* Normally they'll have been NULL, so only push if we've got a
    /* Normally they'll have been NULL, so only push if we've got a
       stack, or they are non-NULL.  */
       stack, or they are non-NULL.  */
    saved_function_name_decls = tree_cons (saved, NULL_TREE,
    saved_function_name_decls = tree_cons (saved, NULL_TREE,
                                           saved_function_name_decls);
                                           saved_function_name_decls);
}
}
 
 
/* Finish up the current bindings, adding them into the current function's
/* Finish up the current bindings, adding them into the current function's
   statement tree.  This must be done _before_ finish_stmt_tree is called.
   statement tree.  This must be done _before_ finish_stmt_tree is called.
   If there is no current function, we must be at file scope and no statements
   If there is no current function, we must be at file scope and no statements
   are involved. Pop the previous bindings.  */
   are involved. Pop the previous bindings.  */
 
 
void
void
finish_fname_decls (void)
finish_fname_decls (void)
{
{
  unsigned ix;
  unsigned ix;
  tree stmts = NULL_TREE;
  tree stmts = NULL_TREE;
  tree stack = saved_function_name_decls;
  tree stack = saved_function_name_decls;
 
 
  for (; stack && TREE_VALUE (stack); stack = TREE_CHAIN (stack))
  for (; stack && TREE_VALUE (stack); stack = TREE_CHAIN (stack))
    append_to_statement_list (TREE_VALUE (stack), &stmts);
    append_to_statement_list (TREE_VALUE (stack), &stmts);
 
 
  if (stmts)
  if (stmts)
    {
    {
      tree *bodyp = &DECL_SAVED_TREE (current_function_decl);
      tree *bodyp = &DECL_SAVED_TREE (current_function_decl);
 
 
      if (TREE_CODE (*bodyp) == BIND_EXPR)
      if (TREE_CODE (*bodyp) == BIND_EXPR)
        bodyp = &BIND_EXPR_BODY (*bodyp);
        bodyp = &BIND_EXPR_BODY (*bodyp);
 
 
      append_to_statement_list_force (*bodyp, &stmts);
      append_to_statement_list_force (*bodyp, &stmts);
      *bodyp = stmts;
      *bodyp = stmts;
    }
    }
 
 
  for (ix = 0; fname_vars[ix].decl; ix++)
  for (ix = 0; fname_vars[ix].decl; ix++)
    *fname_vars[ix].decl = NULL_TREE;
    *fname_vars[ix].decl = NULL_TREE;
 
 
  if (stack)
  if (stack)
    {
    {
      /* We had saved values, restore them.  */
      /* We had saved values, restore them.  */
      tree saved;
      tree saved;
 
 
      for (saved = TREE_PURPOSE (stack); saved; saved = TREE_CHAIN (saved))
      for (saved = TREE_PURPOSE (stack); saved; saved = TREE_CHAIN (saved))
        {
        {
          tree decl = TREE_PURPOSE (saved);
          tree decl = TREE_PURPOSE (saved);
          unsigned ix = TREE_INT_CST_LOW (TREE_VALUE (saved));
          unsigned ix = TREE_INT_CST_LOW (TREE_VALUE (saved));
 
 
          *fname_vars[ix].decl = decl;
          *fname_vars[ix].decl = decl;
        }
        }
      stack = TREE_CHAIN (stack);
      stack = TREE_CHAIN (stack);
    }
    }
  saved_function_name_decls = stack;
  saved_function_name_decls = stack;
}
}
 
 
/* Return the text name of the current function, suitably prettified
/* Return the text name of the current function, suitably prettified
   by PRETTY_P.  Return string must be freed by caller.  */
   by PRETTY_P.  Return string must be freed by caller.  */
 
 
const char *
const char *
fname_as_string (int pretty_p)
fname_as_string (int pretty_p)
{
{
  const char *name = "top level";
  const char *name = "top level";
  char *namep;
  char *namep;
  int vrb = 2;
  int vrb = 2;
 
 
  if (!pretty_p)
  if (!pretty_p)
    {
    {
      name = "";
      name = "";
      vrb = 0;
      vrb = 0;
    }
    }
 
 
  if (current_function_decl)
  if (current_function_decl)
    name = lang_hooks.decl_printable_name (current_function_decl, vrb);
    name = lang_hooks.decl_printable_name (current_function_decl, vrb);
 
 
  if (c_lex_string_translate)
  if (c_lex_string_translate)
    {
    {
      int len = strlen (name) + 3; /* Two for '"'s.  One for NULL.  */
      int len = strlen (name) + 3; /* Two for '"'s.  One for NULL.  */
      cpp_string cstr = { 0, 0 }, strname;
      cpp_string cstr = { 0, 0 }, strname;
 
 
      namep = XNEWVEC (char, len);
      namep = XNEWVEC (char, len);
      snprintf (namep, len, "\"%s\"", name);
      snprintf (namep, len, "\"%s\"", name);
      strname.text = (unsigned char *) namep;
      strname.text = (unsigned char *) namep;
      strname.len = len - 1;
      strname.len = len - 1;
 
 
      if (cpp_interpret_string (parse_in, &strname, 1, &cstr, false))
      if (cpp_interpret_string (parse_in, &strname, 1, &cstr, false))
        {
        {
          XDELETEVEC (namep);
          XDELETEVEC (namep);
          return (char *) cstr.text;
          return (char *) cstr.text;
        }
        }
    }
    }
  else
  else
    namep = xstrdup (name);
    namep = xstrdup (name);
 
 
  return namep;
  return namep;
}
}
 
 
/* Expand DECL if it declares an entity not handled by the
/* Expand DECL if it declares an entity not handled by the
   common code.  */
   common code.  */
 
 
int
int
c_expand_decl (tree decl)
c_expand_decl (tree decl)
{
{
  if (TREE_CODE (decl) == VAR_DECL && !TREE_STATIC (decl))
  if (TREE_CODE (decl) == VAR_DECL && !TREE_STATIC (decl))
    {
    {
      /* Let the back-end know about this variable.  */
      /* Let the back-end know about this variable.  */
      if (!anon_aggr_type_p (TREE_TYPE (decl)))
      if (!anon_aggr_type_p (TREE_TYPE (decl)))
        emit_local_var (decl);
        emit_local_var (decl);
      else
      else
        expand_anon_union_decl (decl, NULL_TREE,
        expand_anon_union_decl (decl, NULL_TREE,
                                DECL_ANON_UNION_ELEMS (decl));
                                DECL_ANON_UNION_ELEMS (decl));
    }
    }
  else
  else
    return 0;
    return 0;
 
 
  return 1;
  return 1;
}
}
 
 
 
 
/* Return the VAR_DECL for a const char array naming the current
/* Return the VAR_DECL for a const char array naming the current
   function. If the VAR_DECL has not yet been created, create it
   function. If the VAR_DECL has not yet been created, create it
   now. RID indicates how it should be formatted and IDENTIFIER_NODE
   now. RID indicates how it should be formatted and IDENTIFIER_NODE
   ID is its name (unfortunately C and C++ hold the RID values of
   ID is its name (unfortunately C and C++ hold the RID values of
   keywords in different places, so we can't derive RID from ID in
   keywords in different places, so we can't derive RID from ID in
   this language independent code.  */
   this language independent code.  */
 
 
tree
tree
fname_decl (unsigned int rid, tree id)
fname_decl (unsigned int rid, tree id)
{
{
  unsigned ix;
  unsigned ix;
  tree decl = NULL_TREE;
  tree decl = NULL_TREE;
 
 
  for (ix = 0; fname_vars[ix].decl; ix++)
  for (ix = 0; fname_vars[ix].decl; ix++)
    if (fname_vars[ix].rid == rid)
    if (fname_vars[ix].rid == rid)
      break;
      break;
 
 
  decl = *fname_vars[ix].decl;
  decl = *fname_vars[ix].decl;
  if (!decl)
  if (!decl)
    {
    {
      /* If a tree is built here, it would normally have the lineno of
      /* If a tree is built here, it would normally have the lineno of
         the current statement.  Later this tree will be moved to the
         the current statement.  Later this tree will be moved to the
         beginning of the function and this line number will be wrong.
         beginning of the function and this line number will be wrong.
         To avoid this problem set the lineno to 0 here; that prevents
         To avoid this problem set the lineno to 0 here; that prevents
         it from appearing in the RTL.  */
         it from appearing in the RTL.  */
      tree stmts;
      tree stmts;
      location_t saved_location = input_location;
      location_t saved_location = input_location;
#ifdef USE_MAPPED_LOCATION
#ifdef USE_MAPPED_LOCATION
      input_location = UNKNOWN_LOCATION;
      input_location = UNKNOWN_LOCATION;
#else
#else
      input_line = 0;
      input_line = 0;
#endif
#endif
 
 
      stmts = push_stmt_list ();
      stmts = push_stmt_list ();
      decl = (*make_fname_decl) (id, fname_vars[ix].pretty);
      decl = (*make_fname_decl) (id, fname_vars[ix].pretty);
      stmts = pop_stmt_list (stmts);
      stmts = pop_stmt_list (stmts);
      if (!IS_EMPTY_STMT (stmts))
      if (!IS_EMPTY_STMT (stmts))
        saved_function_name_decls
        saved_function_name_decls
          = tree_cons (decl, stmts, saved_function_name_decls);
          = tree_cons (decl, stmts, saved_function_name_decls);
      *fname_vars[ix].decl = decl;
      *fname_vars[ix].decl = decl;
      input_location = saved_location;
      input_location = saved_location;
    }
    }
  if (!ix && !current_function_decl)
  if (!ix && !current_function_decl)
    pedwarn ("%qD is not defined outside of function scope", decl);
    pedwarn ("%qD is not defined outside of function scope", decl);
 
 
  return decl;
  return decl;
}
}
 
 
/* Given a STRING_CST, give it a suitable array-of-chars data type.  */
/* Given a STRING_CST, give it a suitable array-of-chars data type.  */
 
 
tree
tree
fix_string_type (tree value)
fix_string_type (tree value)
{
{
  const int wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
  const int wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
  const int wide_flag = TREE_TYPE (value) == wchar_array_type_node;
  const int wide_flag = TREE_TYPE (value) == wchar_array_type_node;
  int length = TREE_STRING_LENGTH (value);
  int length = TREE_STRING_LENGTH (value);
  int nchars;
  int nchars;
  tree e_type, i_type, a_type;
  tree e_type, i_type, a_type;
 
 
  /* Compute the number of elements, for the array type.  */
  /* Compute the number of elements, for the array type.  */
  nchars = wide_flag ? length / wchar_bytes : length;
  nchars = wide_flag ? length / wchar_bytes : length;
 
 
  /* C89 2.2.4.1, C99 5.2.4.1 (Translation limits).  The analogous
  /* C89 2.2.4.1, C99 5.2.4.1 (Translation limits).  The analogous
     limit in C++98 Annex B is very large (65536) and is not normative,
     limit in C++98 Annex B is very large (65536) and is not normative,
     so we do not diagnose it (warn_overlength_strings is forced off
     so we do not diagnose it (warn_overlength_strings is forced off
     in c_common_post_options).  */
     in c_common_post_options).  */
  if (warn_overlength_strings)
  if (warn_overlength_strings)
    {
    {
      const int nchars_max = flag_isoc99 ? 4095 : 509;
      const int nchars_max = flag_isoc99 ? 4095 : 509;
      const int relevant_std = flag_isoc99 ? 99 : 90;
      const int relevant_std = flag_isoc99 ? 99 : 90;
      if (nchars - 1 > nchars_max)
      if (nchars - 1 > nchars_max)
        /* Translators: The %d after 'ISO C' will be 90 or 99.  Do not
        /* Translators: The %d after 'ISO C' will be 90 or 99.  Do not
           separate the %d from the 'C'.  'ISO' should not be
           separate the %d from the 'C'.  'ISO' should not be
           translated, but it may be moved after 'C%d' in languages
           translated, but it may be moved after 'C%d' in languages
           where modifiers follow nouns.  */
           where modifiers follow nouns.  */
        pedwarn ("string length %qd is greater than the length %qd "
        pedwarn ("string length %qd is greater than the length %qd "
                 "ISO C%d compilers are required to support",
                 "ISO C%d compilers are required to support",
                 nchars - 1, nchars_max, relevant_std);
                 nchars - 1, nchars_max, relevant_std);
    }
    }
 
 
  /* Create the array type for the string constant.  The ISO C++
  /* Create the array type for the string constant.  The ISO C++
     standard says that a string literal has type `const char[N]' or
     standard says that a string literal has type `const char[N]' or
     `const wchar_t[N]'.  We use the same logic when invoked as a C
     `const wchar_t[N]'.  We use the same logic when invoked as a C
     front-end with -Wwrite-strings.
     front-end with -Wwrite-strings.
     ??? We should change the type of an expression depending on the
     ??? We should change the type of an expression depending on the
     state of a warning flag.  We should just be warning -- see how
     state of a warning flag.  We should just be warning -- see how
     this is handled in the C++ front-end for the deprecated implicit
     this is handled in the C++ front-end for the deprecated implicit
     conversion from string literals to `char*' or `wchar_t*'.
     conversion from string literals to `char*' or `wchar_t*'.
 
 
     The C++ front end relies on TYPE_MAIN_VARIANT of a cv-qualified
     The C++ front end relies on TYPE_MAIN_VARIANT of a cv-qualified
     array type being the unqualified version of that type.
     array type being the unqualified version of that type.
     Therefore, if we are constructing an array of const char, we must
     Therefore, if we are constructing an array of const char, we must
     construct the matching unqualified array type first.  The C front
     construct the matching unqualified array type first.  The C front
     end does not require this, but it does no harm, so we do it
     end does not require this, but it does no harm, so we do it
     unconditionally.  */
     unconditionally.  */
  e_type = wide_flag ? wchar_type_node : char_type_node;
  e_type = wide_flag ? wchar_type_node : char_type_node;
  i_type = build_index_type (build_int_cst (NULL_TREE, nchars - 1));
  i_type = build_index_type (build_int_cst (NULL_TREE, nchars - 1));
  a_type = build_array_type (e_type, i_type);
  a_type = build_array_type (e_type, i_type);
  if (c_dialect_cxx() || warn_write_strings)
  if (c_dialect_cxx() || warn_write_strings)
    a_type = c_build_qualified_type (a_type, TYPE_QUAL_CONST);
    a_type = c_build_qualified_type (a_type, TYPE_QUAL_CONST);
 
 
  TREE_TYPE (value) = a_type;
  TREE_TYPE (value) = a_type;
  TREE_CONSTANT (value) = 1;
  TREE_CONSTANT (value) = 1;
  TREE_INVARIANT (value) = 1;
  TREE_INVARIANT (value) = 1;
  TREE_READONLY (value) = 1;
  TREE_READONLY (value) = 1;
  TREE_STATIC (value) = 1;
  TREE_STATIC (value) = 1;
  return value;
  return value;
}
}


/* Print a warning if a constant expression had overflow in folding.
/* Print a warning if a constant expression had overflow in folding.
   Invoke this function on every expression that the language
   Invoke this function on every expression that the language
   requires to be a constant expression.
   requires to be a constant expression.
   Note the ANSI C standard says it is erroneous for a
   Note the ANSI C standard says it is erroneous for a
   constant expression to overflow.  */
   constant expression to overflow.  */
 
 
void
void
constant_expression_warning (tree value)
constant_expression_warning (tree value)
{
{
  if ((TREE_CODE (value) == INTEGER_CST || TREE_CODE (value) == REAL_CST
  if ((TREE_CODE (value) == INTEGER_CST || TREE_CODE (value) == REAL_CST
       || TREE_CODE (value) == VECTOR_CST
       || TREE_CODE (value) == VECTOR_CST
       || TREE_CODE (value) == COMPLEX_CST)
       || TREE_CODE (value) == COMPLEX_CST)
      && TREE_CONSTANT_OVERFLOW (value)
      && TREE_CONSTANT_OVERFLOW (value)
      && warn_overflow
      && warn_overflow
      && pedantic)
      && pedantic)
    pedwarn ("overflow in constant expression");
    pedwarn ("overflow in constant expression");
}
}
 
 
/* Print a warning if an expression had overflow in folding.
/* Print a warning if an expression had overflow in folding.
   Invoke this function on every expression that
   Invoke this function on every expression that
   (1) appears in the source code, and
   (1) appears in the source code, and
   (2) might be a constant expression that overflowed, and
   (2) might be a constant expression that overflowed, and
   (3) is not already checked by convert_and_check;
   (3) is not already checked by convert_and_check;
   however, do not invoke this function on operands of explicit casts.  */
   however, do not invoke this function on operands of explicit casts.  */
 
 
void
void
overflow_warning (tree value)
overflow_warning (tree value)
{
{
  if ((TREE_CODE (value) == INTEGER_CST
  if ((TREE_CODE (value) == INTEGER_CST
       || (TREE_CODE (value) == COMPLEX_CST
       || (TREE_CODE (value) == COMPLEX_CST
           && TREE_CODE (TREE_REALPART (value)) == INTEGER_CST))
           && TREE_CODE (TREE_REALPART (value)) == INTEGER_CST))
      && TREE_OVERFLOW (value))
      && TREE_OVERFLOW (value))
    {
    {
      TREE_OVERFLOW (value) = 0;
      TREE_OVERFLOW (value) = 0;
      if (skip_evaluation == 0)
      if (skip_evaluation == 0)
        warning (OPT_Woverflow, "integer overflow in expression");
        warning (OPT_Woverflow, "integer overflow in expression");
    }
    }
  else if ((TREE_CODE (value) == REAL_CST
  else if ((TREE_CODE (value) == REAL_CST
            || (TREE_CODE (value) == COMPLEX_CST
            || (TREE_CODE (value) == COMPLEX_CST
                && TREE_CODE (TREE_REALPART (value)) == REAL_CST))
                && TREE_CODE (TREE_REALPART (value)) == REAL_CST))
           && TREE_OVERFLOW (value))
           && TREE_OVERFLOW (value))
    {
    {
      TREE_OVERFLOW (value) = 0;
      TREE_OVERFLOW (value) = 0;
      if (skip_evaluation == 0)
      if (skip_evaluation == 0)
        warning (OPT_Woverflow, "floating point overflow in expression");
        warning (OPT_Woverflow, "floating point overflow in expression");
    }
    }
  else if (TREE_CODE (value) == VECTOR_CST && TREE_OVERFLOW (value))
  else if (TREE_CODE (value) == VECTOR_CST && TREE_OVERFLOW (value))
    {
    {
      TREE_OVERFLOW (value) = 0;
      TREE_OVERFLOW (value) = 0;
      if (skip_evaluation == 0)
      if (skip_evaluation == 0)
        warning (OPT_Woverflow, "vector overflow in expression");
        warning (OPT_Woverflow, "vector overflow in expression");
    }
    }
}
}
 
 
/* Print a warning if a large constant is truncated to unsigned,
/* Print a warning if a large constant is truncated to unsigned,
   or if -Wconversion is used and a constant < 0 is converted to unsigned.
   or if -Wconversion is used and a constant < 0 is converted to unsigned.
   Invoke this function on every expression that might be implicitly
   Invoke this function on every expression that might be implicitly
   converted to an unsigned type.  */
   converted to an unsigned type.  */
 
 
static void
static void
unsigned_conversion_warning (tree result, tree operand)
unsigned_conversion_warning (tree result, tree operand)
{
{
  tree type = TREE_TYPE (result);
  tree type = TREE_TYPE (result);
 
 
  if (TREE_CODE (operand) == INTEGER_CST
  if (TREE_CODE (operand) == INTEGER_CST
      && TREE_CODE (type) == INTEGER_TYPE
      && TREE_CODE (type) == INTEGER_TYPE
      && TYPE_UNSIGNED (type)
      && TYPE_UNSIGNED (type)
      && skip_evaluation == 0
      && skip_evaluation == 0
      && !int_fits_type_p (operand, type))
      && !int_fits_type_p (operand, type))
    {
    {
      if (!int_fits_type_p (operand, c_common_signed_type (type)))
      if (!int_fits_type_p (operand, c_common_signed_type (type)))
        /* This detects cases like converting -129 or 256 to unsigned char.  */
        /* This detects cases like converting -129 or 256 to unsigned char.  */
        warning (OPT_Woverflow,
        warning (OPT_Woverflow,
                 "large integer implicitly truncated to unsigned type");
                 "large integer implicitly truncated to unsigned type");
      else
      else
        warning (OPT_Wconversion,
        warning (OPT_Wconversion,
                 "negative integer implicitly converted to unsigned type");
                 "negative integer implicitly converted to unsigned type");
    }
    }
}
}
 
 
/* Print a warning about casts that might indicate violation
/* Print a warning about casts that might indicate violation
   of strict aliasing rules if -Wstrict-aliasing is used and
   of strict aliasing rules if -Wstrict-aliasing is used and
   strict aliasing mode is in effect. OTYPE is the original
   strict aliasing mode is in effect. OTYPE is the original
   TREE_TYPE of EXPR, and TYPE the type we're casting to. */
   TREE_TYPE of EXPR, and TYPE the type we're casting to. */
 
 
void
void
strict_aliasing_warning (tree otype, tree type, tree expr)
strict_aliasing_warning (tree otype, tree type, tree expr)
{
{
  if (flag_strict_aliasing && warn_strict_aliasing
  if (flag_strict_aliasing && warn_strict_aliasing
      && POINTER_TYPE_P (type) && POINTER_TYPE_P (otype)
      && POINTER_TYPE_P (type) && POINTER_TYPE_P (otype)
      && TREE_CODE (expr) == ADDR_EXPR
      && TREE_CODE (expr) == ADDR_EXPR
      && (DECL_P (TREE_OPERAND (expr, 0))
      && (DECL_P (TREE_OPERAND (expr, 0))
          || handled_component_p (TREE_OPERAND (expr, 0)))
          || handled_component_p (TREE_OPERAND (expr, 0)))
      && !VOID_TYPE_P (TREE_TYPE (type)))
      && !VOID_TYPE_P (TREE_TYPE (type)))
    {
    {
      /* Casting the address of an object to non void pointer. Warn
      /* Casting the address of an object to non void pointer. Warn
         if the cast breaks type based aliasing.  */
         if the cast breaks type based aliasing.  */
      if (!COMPLETE_TYPE_P (TREE_TYPE (type)))
      if (!COMPLETE_TYPE_P (TREE_TYPE (type)))
        warning (OPT_Wstrict_aliasing, "type-punning to incomplete type "
        warning (OPT_Wstrict_aliasing, "type-punning to incomplete type "
                 "might break strict-aliasing rules");
                 "might break strict-aliasing rules");
      else
      else
        {
        {
          HOST_WIDE_INT set1 = get_alias_set (TREE_TYPE (TREE_OPERAND (expr, 0)));
          HOST_WIDE_INT set1 = get_alias_set (TREE_TYPE (TREE_OPERAND (expr, 0)));
          HOST_WIDE_INT set2 = get_alias_set (TREE_TYPE (type));
          HOST_WIDE_INT set2 = get_alias_set (TREE_TYPE (type));
 
 
          if (!alias_sets_conflict_p (set1, set2))
          if (!alias_sets_conflict_p (set1, set2))
            warning (OPT_Wstrict_aliasing, "dereferencing type-punned "
            warning (OPT_Wstrict_aliasing, "dereferencing type-punned "
                     "pointer will break strict-aliasing rules");
                     "pointer will break strict-aliasing rules");
          else if (warn_strict_aliasing > 1
          else if (warn_strict_aliasing > 1
                  && !alias_sets_might_conflict_p (set1, set2))
                  && !alias_sets_might_conflict_p (set1, set2))
            warning (OPT_Wstrict_aliasing, "dereferencing type-punned "
            warning (OPT_Wstrict_aliasing, "dereferencing type-punned "
                     "pointer might break strict-aliasing rules");
                     "pointer might break strict-aliasing rules");
        }
        }
    }
    }
}
}
 
 
 
 
/* Print a warning about if (); or if () .. else; constructs
/* Print a warning about if (); or if () .. else; constructs
   via the special empty statement node that we create.  INNER_THEN
   via the special empty statement node that we create.  INNER_THEN
   and INNER_ELSE are the statement lists of the if and the else
   and INNER_ELSE are the statement lists of the if and the else
   block.  */
   block.  */
 
 
void
void
empty_body_warning (tree inner_then, tree inner_else)
empty_body_warning (tree inner_then, tree inner_else)
{
{
  if (extra_warnings)
  if (extra_warnings)
    {
    {
      if (TREE_CODE (inner_then) == STATEMENT_LIST
      if (TREE_CODE (inner_then) == STATEMENT_LIST
          && STATEMENT_LIST_TAIL (inner_then))
          && STATEMENT_LIST_TAIL (inner_then))
        inner_then = STATEMENT_LIST_TAIL (inner_then)->stmt;
        inner_then = STATEMENT_LIST_TAIL (inner_then)->stmt;
 
 
      if (inner_else && TREE_CODE (inner_else) == STATEMENT_LIST
      if (inner_else && TREE_CODE (inner_else) == STATEMENT_LIST
          && STATEMENT_LIST_TAIL (inner_else))
          && STATEMENT_LIST_TAIL (inner_else))
        inner_else = STATEMENT_LIST_TAIL (inner_else)->stmt;
        inner_else = STATEMENT_LIST_TAIL (inner_else)->stmt;
 
 
      if (IS_EMPTY_STMT (inner_then) && !inner_else)
      if (IS_EMPTY_STMT (inner_then) && !inner_else)
        warning (OPT_Wextra, "%Hempty body in an if-statement",
        warning (OPT_Wextra, "%Hempty body in an if-statement",
                 EXPR_LOCUS (inner_then));
                 EXPR_LOCUS (inner_then));
 
 
      if (inner_else && IS_EMPTY_STMT (inner_else))
      if (inner_else && IS_EMPTY_STMT (inner_else))
        warning (OPT_Wextra, "%Hempty body in an else-statement",
        warning (OPT_Wextra, "%Hempty body in an else-statement",
                 EXPR_LOCUS (inner_else));
                 EXPR_LOCUS (inner_else));
   }
   }
}
}
 
 
 
 
/* Nonzero if constant C has a value that is permissible
/* Nonzero if constant C has a value that is permissible
   for type TYPE (an INTEGER_TYPE).  */
   for type TYPE (an INTEGER_TYPE).  */
 
 
static int
static int
constant_fits_type_p (tree c, tree type)
constant_fits_type_p (tree c, tree type)
{
{
  if (TREE_CODE (c) == INTEGER_CST)
  if (TREE_CODE (c) == INTEGER_CST)
    return int_fits_type_p (c, type);
    return int_fits_type_p (c, type);
 
 
  c = convert (type, c);
  c = convert (type, c);
  return !TREE_OVERFLOW (c);
  return !TREE_OVERFLOW (c);
}
}
 
 
/* Nonzero if vector types T1 and T2 can be converted to each other
/* Nonzero if vector types T1 and T2 can be converted to each other
   without an explicit cast.  */
   without an explicit cast.  */
int
int
vector_types_convertible_p (tree t1, tree t2)
vector_types_convertible_p (tree t1, tree t2)
{
{
  return targetm.vector_opaque_p (t1)
  return targetm.vector_opaque_p (t1)
         || targetm.vector_opaque_p (t2)
         || targetm.vector_opaque_p (t2)
         || (tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2))
         || (tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2))
             && (TREE_CODE (TREE_TYPE (t1)) != REAL_TYPE ||
             && (TREE_CODE (TREE_TYPE (t1)) != REAL_TYPE ||
                 TYPE_PRECISION (t1) == TYPE_PRECISION (t2))
                 TYPE_PRECISION (t1) == TYPE_PRECISION (t2))
             && INTEGRAL_TYPE_P (TREE_TYPE (t1))
             && INTEGRAL_TYPE_P (TREE_TYPE (t1))
                == INTEGRAL_TYPE_P (TREE_TYPE (t2)));
                == INTEGRAL_TYPE_P (TREE_TYPE (t2)));
}
}
 
 
/* Convert EXPR to TYPE, warning about conversion problems with constants.
/* Convert EXPR to TYPE, warning about conversion problems with constants.
   Invoke this function on every expression that is converted implicitly,
   Invoke this function on every expression that is converted implicitly,
   i.e. because of language rules and not because of an explicit cast.  */
   i.e. because of language rules and not because of an explicit cast.  */
 
 
tree
tree
convert_and_check (tree type, tree expr)
convert_and_check (tree type, tree expr)
{
{
  tree t = convert (type, expr);
  tree t = convert (type, expr);
  if (TREE_CODE (t) == INTEGER_CST)
  if (TREE_CODE (t) == INTEGER_CST)
    {
    {
      if (TREE_OVERFLOW (t))
      if (TREE_OVERFLOW (t))
        {
        {
          TREE_OVERFLOW (t) = 0;
          TREE_OVERFLOW (t) = 0;
 
 
          /* Do not diagnose overflow in a constant expression merely
          /* Do not diagnose overflow in a constant expression merely
             because a conversion overflowed.  */
             because a conversion overflowed.  */
          TREE_CONSTANT_OVERFLOW (t) = CONSTANT_CLASS_P (expr)
          TREE_CONSTANT_OVERFLOW (t) = CONSTANT_CLASS_P (expr)
                                       && TREE_CONSTANT_OVERFLOW (expr);
                                       && TREE_CONSTANT_OVERFLOW (expr);
 
 
          /* No warning for converting 0x80000000 to int.  */
          /* No warning for converting 0x80000000 to int.  */
          if (!(TYPE_UNSIGNED (type) < TYPE_UNSIGNED (TREE_TYPE (expr))
          if (!(TYPE_UNSIGNED (type) < TYPE_UNSIGNED (TREE_TYPE (expr))
                && TREE_CODE (TREE_TYPE (expr)) == INTEGER_TYPE
                && TREE_CODE (TREE_TYPE (expr)) == INTEGER_TYPE
                && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (expr))))
                && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (expr))))
            /* If EXPR fits in the unsigned version of TYPE,
            /* If EXPR fits in the unsigned version of TYPE,
               don't warn unless pedantic.  */
               don't warn unless pedantic.  */
            if ((pedantic
            if ((pedantic
                 || TYPE_UNSIGNED (type)
                 || TYPE_UNSIGNED (type)
                 || !constant_fits_type_p (expr,
                 || !constant_fits_type_p (expr,
                                           c_common_unsigned_type (type)))
                                           c_common_unsigned_type (type)))
                && skip_evaluation == 0)
                && skip_evaluation == 0)
              warning (OPT_Woverflow,
              warning (OPT_Woverflow,
                       "overflow in implicit constant conversion");
                       "overflow in implicit constant conversion");
        }
        }
      else
      else
        unsigned_conversion_warning (t, expr);
        unsigned_conversion_warning (t, expr);
    }
    }
  return t;
  return t;
}
}


/* A node in a list that describes references to variables (EXPR), which are
/* A node in a list that describes references to variables (EXPR), which are
   either read accesses if WRITER is zero, or write accesses, in which case
   either read accesses if WRITER is zero, or write accesses, in which case
   WRITER is the parent of EXPR.  */
   WRITER is the parent of EXPR.  */
struct tlist
struct tlist
{
{
  struct tlist *next;
  struct tlist *next;
  tree expr, writer;
  tree expr, writer;
};
};
 
 
/* Used to implement a cache the results of a call to verify_tree.  We only
/* Used to implement a cache the results of a call to verify_tree.  We only
   use this for SAVE_EXPRs.  */
   use this for SAVE_EXPRs.  */
struct tlist_cache
struct tlist_cache
{
{
  struct tlist_cache *next;
  struct tlist_cache *next;
  struct tlist *cache_before_sp;
  struct tlist *cache_before_sp;
  struct tlist *cache_after_sp;
  struct tlist *cache_after_sp;
  tree expr;
  tree expr;
};
};
 
 
/* Obstack to use when allocating tlist structures, and corresponding
/* Obstack to use when allocating tlist structures, and corresponding
   firstobj.  */
   firstobj.  */
static struct obstack tlist_obstack;
static struct obstack tlist_obstack;
static char *tlist_firstobj = 0;
static char *tlist_firstobj = 0;
 
 
/* Keep track of the identifiers we've warned about, so we can avoid duplicate
/* Keep track of the identifiers we've warned about, so we can avoid duplicate
   warnings.  */
   warnings.  */
static struct tlist *warned_ids;
static struct tlist *warned_ids;
/* SAVE_EXPRs need special treatment.  We process them only once and then
/* SAVE_EXPRs need special treatment.  We process them only once and then
   cache the results.  */
   cache the results.  */
static struct tlist_cache *save_expr_cache;
static struct tlist_cache *save_expr_cache;
 
 
static void add_tlist (struct tlist **, struct tlist *, tree, int);
static void add_tlist (struct tlist **, struct tlist *, tree, int);
static void merge_tlist (struct tlist **, struct tlist *, int);
static void merge_tlist (struct tlist **, struct tlist *, int);
static void verify_tree (tree, struct tlist **, struct tlist **, tree);
static void verify_tree (tree, struct tlist **, struct tlist **, tree);
static int warning_candidate_p (tree);
static int warning_candidate_p (tree);
static void warn_for_collisions (struct tlist *);
static void warn_for_collisions (struct tlist *);
static void warn_for_collisions_1 (tree, tree, struct tlist *, int);
static void warn_for_collisions_1 (tree, tree, struct tlist *, int);
static struct tlist *new_tlist (struct tlist *, tree, tree);
static struct tlist *new_tlist (struct tlist *, tree, tree);
 
 
/* Create a new struct tlist and fill in its fields.  */
/* Create a new struct tlist and fill in its fields.  */
static struct tlist *
static struct tlist *
new_tlist (struct tlist *next, tree t, tree writer)
new_tlist (struct tlist *next, tree t, tree writer)
{
{
  struct tlist *l;
  struct tlist *l;
  l = XOBNEW (&tlist_obstack, struct tlist);
  l = XOBNEW (&tlist_obstack, struct tlist);
  l->next = next;
  l->next = next;
  l->expr = t;
  l->expr = t;
  l->writer = writer;
  l->writer = writer;
  return l;
  return l;
}
}
 
 
/* Add duplicates of the nodes found in ADD to the list *TO.  If EXCLUDE_WRITER
/* Add duplicates of the nodes found in ADD to the list *TO.  If EXCLUDE_WRITER
   is nonnull, we ignore any node we find which has a writer equal to it.  */
   is nonnull, we ignore any node we find which has a writer equal to it.  */
 
 
static void
static void
add_tlist (struct tlist **to, struct tlist *add, tree exclude_writer, int copy)
add_tlist (struct tlist **to, struct tlist *add, tree exclude_writer, int copy)
{
{
  while (add)
  while (add)
    {
    {
      struct tlist *next = add->next;
      struct tlist *next = add->next;
      if (!copy)
      if (!copy)
        add->next = *to;
        add->next = *to;
      if (!exclude_writer || add->writer != exclude_writer)
      if (!exclude_writer || add->writer != exclude_writer)
        *to = copy ? new_tlist (*to, add->expr, add->writer) : add;
        *to = copy ? new_tlist (*to, add->expr, add->writer) : add;
      add = next;
      add = next;
    }
    }
}
}
 
 
/* Merge the nodes of ADD into TO.  This merging process is done so that for
/* Merge the nodes of ADD into TO.  This merging process is done so that for
   each variable that already exists in TO, no new node is added; however if
   each variable that already exists in TO, no new node is added; however if
   there is a write access recorded in ADD, and an occurrence on TO is only
   there is a write access recorded in ADD, and an occurrence on TO is only
   a read access, then the occurrence in TO will be modified to record the
   a read access, then the occurrence in TO will be modified to record the
   write.  */
   write.  */
 
 
static void
static void
merge_tlist (struct tlist **to, struct tlist *add, int copy)
merge_tlist (struct tlist **to, struct tlist *add, int copy)
{
{
  struct tlist **end = to;
  struct tlist **end = to;
 
 
  while (*end)
  while (*end)
    end = &(*end)->next;
    end = &(*end)->next;
 
 
  while (add)
  while (add)
    {
    {
      int found = 0;
      int found = 0;
      struct tlist *tmp2;
      struct tlist *tmp2;
      struct tlist *next = add->next;
      struct tlist *next = add->next;
 
 
      for (tmp2 = *to; tmp2; tmp2 = tmp2->next)
      for (tmp2 = *to; tmp2; tmp2 = tmp2->next)
        if (tmp2->expr == add->expr)
        if (tmp2->expr == add->expr)
          {
          {
            found = 1;
            found = 1;
            if (!tmp2->writer)
            if (!tmp2->writer)
              tmp2->writer = add->writer;
              tmp2->writer = add->writer;
          }
          }
      if (!found)
      if (!found)
        {
        {
          *end = copy ? add : new_tlist (NULL, add->expr, add->writer);
          *end = copy ? add : new_tlist (NULL, add->expr, add->writer);
          end = &(*end)->next;
          end = &(*end)->next;
          *end = 0;
          *end = 0;
        }
        }
      add = next;
      add = next;
    }
    }
}
}
 
 
/* WRITTEN is a variable, WRITER is its parent.  Warn if any of the variable
/* WRITTEN is a variable, WRITER is its parent.  Warn if any of the variable
   references in list LIST conflict with it, excluding reads if ONLY writers
   references in list LIST conflict with it, excluding reads if ONLY writers
   is nonzero.  */
   is nonzero.  */
 
 
static void
static void
warn_for_collisions_1 (tree written, tree writer, struct tlist *list,
warn_for_collisions_1 (tree written, tree writer, struct tlist *list,
                       int only_writes)
                       int only_writes)
{
{
  struct tlist *tmp;
  struct tlist *tmp;
 
 
  /* Avoid duplicate warnings.  */
  /* Avoid duplicate warnings.  */
  for (tmp = warned_ids; tmp; tmp = tmp->next)
  for (tmp = warned_ids; tmp; tmp = tmp->next)
    if (tmp->expr == written)
    if (tmp->expr == written)
      return;
      return;
 
 
  while (list)
  while (list)
    {
    {
      if (list->expr == written
      if (list->expr == written
          && list->writer != writer
          && list->writer != writer
          && (!only_writes || list->writer)
          && (!only_writes || list->writer)
          && DECL_NAME (list->expr))
          && DECL_NAME (list->expr))
        {
        {
          warned_ids = new_tlist (warned_ids, written, NULL_TREE);
          warned_ids = new_tlist (warned_ids, written, NULL_TREE);
          warning (0, "operation on %qE may be undefined", list->expr);
          warning (0, "operation on %qE may be undefined", list->expr);
        }
        }
      list = list->next;
      list = list->next;
    }
    }
}
}
 
 
/* Given a list LIST of references to variables, find whether any of these
/* Given a list LIST of references to variables, find whether any of these
   can cause conflicts due to missing sequence points.  */
   can cause conflicts due to missing sequence points.  */
 
 
static void
static void
warn_for_collisions (struct tlist *list)
warn_for_collisions (struct tlist *list)
{
{
  struct tlist *tmp;
  struct tlist *tmp;
 
 
  for (tmp = list; tmp; tmp = tmp->next)
  for (tmp = list; tmp; tmp = tmp->next)
    {
    {
      if (tmp->writer)
      if (tmp->writer)
        warn_for_collisions_1 (tmp->expr, tmp->writer, list, 0);
        warn_for_collisions_1 (tmp->expr, tmp->writer, list, 0);
    }
    }
}
}
 
 
/* Return nonzero if X is a tree that can be verified by the sequence point
/* Return nonzero if X is a tree that can be verified by the sequence point
   warnings.  */
   warnings.  */
static int
static int
warning_candidate_p (tree x)
warning_candidate_p (tree x)
{
{
  return TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == PARM_DECL;
  return TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == PARM_DECL;
}
}
 
 
/* Walk the tree X, and record accesses to variables.  If X is written by the
/* Walk the tree X, and record accesses to variables.  If X is written by the
   parent tree, WRITER is the parent.
   parent tree, WRITER is the parent.
   We store accesses in one of the two lists: PBEFORE_SP, and PNO_SP.  If this
   We store accesses in one of the two lists: PBEFORE_SP, and PNO_SP.  If this
   expression or its only operand forces a sequence point, then everything up
   expression or its only operand forces a sequence point, then everything up
   to the sequence point is stored in PBEFORE_SP.  Everything else gets stored
   to the sequence point is stored in PBEFORE_SP.  Everything else gets stored
   in PNO_SP.
   in PNO_SP.
   Once we return, we will have emitted warnings if any subexpression before
   Once we return, we will have emitted warnings if any subexpression before
   such a sequence point could be undefined.  On a higher level, however, the
   such a sequence point could be undefined.  On a higher level, however, the
   sequence point may not be relevant, and we'll merge the two lists.
   sequence point may not be relevant, and we'll merge the two lists.
 
 
   Example: (b++, a) + b;
   Example: (b++, a) + b;
   The call that processes the COMPOUND_EXPR will store the increment of B
   The call that processes the COMPOUND_EXPR will store the increment of B
   in PBEFORE_SP, and the use of A in PNO_SP.  The higher-level call that
   in PBEFORE_SP, and the use of A in PNO_SP.  The higher-level call that
   processes the PLUS_EXPR will need to merge the two lists so that
   processes the PLUS_EXPR will need to merge the two lists so that
   eventually, all accesses end up on the same list (and we'll warn about the
   eventually, all accesses end up on the same list (and we'll warn about the
   unordered subexpressions b++ and b.
   unordered subexpressions b++ and b.
 
 
   A note on merging.  If we modify the former example so that our expression
   A note on merging.  If we modify the former example so that our expression
   becomes
   becomes
     (b++, b) + a
     (b++, b) + a
   care must be taken not simply to add all three expressions into the final
   care must be taken not simply to add all three expressions into the final
   PNO_SP list.  The function merge_tlist takes care of that by merging the
   PNO_SP list.  The function merge_tlist takes care of that by merging the
   before-SP list of the COMPOUND_EXPR into its after-SP list in a special
   before-SP list of the COMPOUND_EXPR into its after-SP list in a special
   way, so that no more than one access to B is recorded.  */
   way, so that no more than one access to B is recorded.  */
 
 
static void
static void
verify_tree (tree x, struct tlist **pbefore_sp, struct tlist **pno_sp,
verify_tree (tree x, struct tlist **pbefore_sp, struct tlist **pno_sp,
             tree writer)
             tree writer)
{
{
  struct tlist *tmp_before, *tmp_nosp, *tmp_list2, *tmp_list3;
  struct tlist *tmp_before, *tmp_nosp, *tmp_list2, *tmp_list3;
  enum tree_code code;
  enum tree_code code;
  enum tree_code_class cl;
  enum tree_code_class cl;
 
 
  /* X may be NULL if it is the operand of an empty statement expression
  /* X may be NULL if it is the operand of an empty statement expression
     ({ }).  */
     ({ }).  */
  if (x == NULL)
  if (x == NULL)
    return;
    return;
 
 
 restart:
 restart:
  code = TREE_CODE (x);
  code = TREE_CODE (x);
  cl = TREE_CODE_CLASS (code);
  cl = TREE_CODE_CLASS (code);
 
 
  if (warning_candidate_p (x))
  if (warning_candidate_p (x))
    {
    {
      *pno_sp = new_tlist (*pno_sp, x, writer);
      *pno_sp = new_tlist (*pno_sp, x, writer);
      return;
      return;
    }
    }
 
 
  switch (code)
  switch (code)
    {
    {
    case CONSTRUCTOR:
    case CONSTRUCTOR:
      return;
      return;
 
 
    case COMPOUND_EXPR:
    case COMPOUND_EXPR:
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_ORIF_EXPR:
      tmp_before = tmp_nosp = tmp_list3 = 0;
      tmp_before = tmp_nosp = tmp_list3 = 0;
      verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
      verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
      warn_for_collisions (tmp_nosp);
      warn_for_collisions (tmp_nosp);
      merge_tlist (pbefore_sp, tmp_before, 0);
      merge_tlist (pbefore_sp, tmp_before, 0);
      merge_tlist (pbefore_sp, tmp_nosp, 0);
      merge_tlist (pbefore_sp, tmp_nosp, 0);
      verify_tree (TREE_OPERAND (x, 1), &tmp_list3, pno_sp, NULL_TREE);
      verify_tree (TREE_OPERAND (x, 1), &tmp_list3, pno_sp, NULL_TREE);
      merge_tlist (pbefore_sp, tmp_list3, 0);
      merge_tlist (pbefore_sp, tmp_list3, 0);
      return;
      return;
 
 
    case COND_EXPR:
    case COND_EXPR:
      tmp_before = tmp_list2 = 0;
      tmp_before = tmp_list2 = 0;
      verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_list2, NULL_TREE);
      verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_list2, NULL_TREE);
      warn_for_collisions (tmp_list2);
      warn_for_collisions (tmp_list2);
      merge_tlist (pbefore_sp, tmp_before, 0);
      merge_tlist (pbefore_sp, tmp_before, 0);
      merge_tlist (pbefore_sp, tmp_list2, 1);
      merge_tlist (pbefore_sp, tmp_list2, 1);
 
 
      tmp_list3 = tmp_nosp = 0;
      tmp_list3 = tmp_nosp = 0;
      verify_tree (TREE_OPERAND (x, 1), &tmp_list3, &tmp_nosp, NULL_TREE);
      verify_tree (TREE_OPERAND (x, 1), &tmp_list3, &tmp_nosp, NULL_TREE);
      warn_for_collisions (tmp_nosp);
      warn_for_collisions (tmp_nosp);
      merge_tlist (pbefore_sp, tmp_list3, 0);
      merge_tlist (pbefore_sp, tmp_list3, 0);
 
 
      tmp_list3 = tmp_list2 = 0;
      tmp_list3 = tmp_list2 = 0;
      verify_tree (TREE_OPERAND (x, 2), &tmp_list3, &tmp_list2, NULL_TREE);
      verify_tree (TREE_OPERAND (x, 2), &tmp_list3, &tmp_list2, NULL_TREE);
      warn_for_collisions (tmp_list2);
      warn_for_collisions (tmp_list2);
      merge_tlist (pbefore_sp, tmp_list3, 0);
      merge_tlist (pbefore_sp, tmp_list3, 0);
      /* Rather than add both tmp_nosp and tmp_list2, we have to merge the
      /* Rather than add both tmp_nosp and tmp_list2, we have to merge the
         two first, to avoid warning for (a ? b++ : b++).  */
         two first, to avoid warning for (a ? b++ : b++).  */
      merge_tlist (&tmp_nosp, tmp_list2, 0);
      merge_tlist (&tmp_nosp, tmp_list2, 0);
      add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
      add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
      return;
      return;
 
 
    case PREDECREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case PREINCREMENT_EXPR:
    case PREINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case POSTINCREMENT_EXPR:
      verify_tree (TREE_OPERAND (x, 0), pno_sp, pno_sp, x);
      verify_tree (TREE_OPERAND (x, 0), pno_sp, pno_sp, x);
      return;
      return;
 
 
    case MODIFY_EXPR:
    case MODIFY_EXPR:
      tmp_before = tmp_nosp = tmp_list3 = 0;
      tmp_before = tmp_nosp = tmp_list3 = 0;
      verify_tree (TREE_OPERAND (x, 1), &tmp_before, &tmp_nosp, NULL_TREE);
      verify_tree (TREE_OPERAND (x, 1), &tmp_before, &tmp_nosp, NULL_TREE);
      verify_tree (TREE_OPERAND (x, 0), &tmp_list3, &tmp_list3, x);
      verify_tree (TREE_OPERAND (x, 0), &tmp_list3, &tmp_list3, x);
      /* Expressions inside the LHS are not ordered wrt. the sequence points
      /* Expressions inside the LHS are not ordered wrt. the sequence points
         in the RHS.  Example:
         in the RHS.  Example:
           *a = (a++, 2)
           *a = (a++, 2)
         Despite the fact that the modification of "a" is in the before_sp
         Despite the fact that the modification of "a" is in the before_sp
         list (tmp_before), it conflicts with the use of "a" in the LHS.
         list (tmp_before), it conflicts with the use of "a" in the LHS.
         We can handle this by adding the contents of tmp_list3
         We can handle this by adding the contents of tmp_list3
         to those of tmp_before, and redoing the collision warnings for that
         to those of tmp_before, and redoing the collision warnings for that
         list.  */
         list.  */
      add_tlist (&tmp_before, tmp_list3, x, 1);
      add_tlist (&tmp_before, tmp_list3, x, 1);
      warn_for_collisions (tmp_before);
      warn_for_collisions (tmp_before);
      /* Exclude the LHS itself here; we first have to merge it into the
      /* Exclude the LHS itself here; we first have to merge it into the
         tmp_nosp list.  This is done to avoid warning for "a = a"; if we
         tmp_nosp list.  This is done to avoid warning for "a = a"; if we
         didn't exclude the LHS, we'd get it twice, once as a read and once
         didn't exclude the LHS, we'd get it twice, once as a read and once
         as a write.  */
         as a write.  */
      add_tlist (pno_sp, tmp_list3, x, 0);
      add_tlist (pno_sp, tmp_list3, x, 0);
      warn_for_collisions_1 (TREE_OPERAND (x, 0), x, tmp_nosp, 1);
      warn_for_collisions_1 (TREE_OPERAND (x, 0), x, tmp_nosp, 1);
 
 
      merge_tlist (pbefore_sp, tmp_before, 0);
      merge_tlist (pbefore_sp, tmp_before, 0);
      if (warning_candidate_p (TREE_OPERAND (x, 0)))
      if (warning_candidate_p (TREE_OPERAND (x, 0)))
        merge_tlist (&tmp_nosp, new_tlist (NULL, TREE_OPERAND (x, 0), x), 0);
        merge_tlist (&tmp_nosp, new_tlist (NULL, TREE_OPERAND (x, 0), x), 0);
      add_tlist (pno_sp, tmp_nosp, NULL_TREE, 1);
      add_tlist (pno_sp, tmp_nosp, NULL_TREE, 1);
      return;
      return;
 
 
    case CALL_EXPR:
    case CALL_EXPR:
      /* We need to warn about conflicts among arguments and conflicts between
      /* We need to warn about conflicts among arguments and conflicts between
         args and the function address.  Side effects of the function address,
         args and the function address.  Side effects of the function address,
         however, are not ordered by the sequence point of the call.  */
         however, are not ordered by the sequence point of the call.  */
      tmp_before = tmp_nosp = tmp_list2 = tmp_list3 = 0;
      tmp_before = tmp_nosp = tmp_list2 = tmp_list3 = 0;
      verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
      verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
      if (TREE_OPERAND (x, 1))
      if (TREE_OPERAND (x, 1))
        verify_tree (TREE_OPERAND (x, 1), &tmp_list2, &tmp_list3, NULL_TREE);
        verify_tree (TREE_OPERAND (x, 1), &tmp_list2, &tmp_list3, NULL_TREE);
      merge_tlist (&tmp_list3, tmp_list2, 0);
      merge_tlist (&tmp_list3, tmp_list2, 0);
      add_tlist (&tmp_before, tmp_list3, NULL_TREE, 0);
      add_tlist (&tmp_before, tmp_list3, NULL_TREE, 0);
      add_tlist (&tmp_before, tmp_nosp, NULL_TREE, 0);
      add_tlist (&tmp_before, tmp_nosp, NULL_TREE, 0);
      warn_for_collisions (tmp_before);
      warn_for_collisions (tmp_before);
      add_tlist (pbefore_sp, tmp_before, NULL_TREE, 0);
      add_tlist (pbefore_sp, tmp_before, NULL_TREE, 0);
      return;
      return;
 
 
    case TREE_LIST:
    case TREE_LIST:
      /* Scan all the list, e.g. indices of multi dimensional array.  */
      /* Scan all the list, e.g. indices of multi dimensional array.  */
      while (x)
      while (x)
        {
        {
          tmp_before = tmp_nosp = 0;
          tmp_before = tmp_nosp = 0;
          verify_tree (TREE_VALUE (x), &tmp_before, &tmp_nosp, NULL_TREE);
          verify_tree (TREE_VALUE (x), &tmp_before, &tmp_nosp, NULL_TREE);
          merge_tlist (&tmp_nosp, tmp_before, 0);
          merge_tlist (&tmp_nosp, tmp_before, 0);
          add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
          add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
          x = TREE_CHAIN (x);
          x = TREE_CHAIN (x);
        }
        }
      return;
      return;
 
 
    case SAVE_EXPR:
    case SAVE_EXPR:
      {
      {
        struct tlist_cache *t;
        struct tlist_cache *t;
        for (t = save_expr_cache; t; t = t->next)
        for (t = save_expr_cache; t; t = t->next)
          if (t->expr == x)
          if (t->expr == x)
            break;
            break;
 
 
        if (!t)
        if (!t)
          {
          {
            t = XOBNEW (&tlist_obstack, struct tlist_cache);
            t = XOBNEW (&tlist_obstack, struct tlist_cache);
            t->next = save_expr_cache;
            t->next = save_expr_cache;
            t->expr = x;
            t->expr = x;
            save_expr_cache = t;
            save_expr_cache = t;
 
 
            tmp_before = tmp_nosp = 0;
            tmp_before = tmp_nosp = 0;
            verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
            verify_tree (TREE_OPERAND (x, 0), &tmp_before, &tmp_nosp, NULL_TREE);
            warn_for_collisions (tmp_nosp);
            warn_for_collisions (tmp_nosp);
 
 
            tmp_list3 = 0;
            tmp_list3 = 0;
            while (tmp_nosp)
            while (tmp_nosp)
              {
              {
                struct tlist *t = tmp_nosp;
                struct tlist *t = tmp_nosp;
                tmp_nosp = t->next;
                tmp_nosp = t->next;
                merge_tlist (&tmp_list3, t, 0);
                merge_tlist (&tmp_list3, t, 0);
              }
              }
            t->cache_before_sp = tmp_before;
            t->cache_before_sp = tmp_before;
            t->cache_after_sp = tmp_list3;
            t->cache_after_sp = tmp_list3;
          }
          }
        merge_tlist (pbefore_sp, t->cache_before_sp, 1);
        merge_tlist (pbefore_sp, t->cache_before_sp, 1);
        add_tlist (pno_sp, t->cache_after_sp, NULL_TREE, 1);
        add_tlist (pno_sp, t->cache_after_sp, NULL_TREE, 1);
        return;
        return;
      }
      }
 
 
    default:
    default:
      /* For other expressions, simply recurse on their operands.
      /* For other expressions, simply recurse on their operands.
         Manual tail recursion for unary expressions.
         Manual tail recursion for unary expressions.
         Other non-expressions need not be processed.  */
         Other non-expressions need not be processed.  */
      if (cl == tcc_unary)
      if (cl == tcc_unary)
        {
        {
          x = TREE_OPERAND (x, 0);
          x = TREE_OPERAND (x, 0);
          writer = 0;
          writer = 0;
          goto restart;
          goto restart;
        }
        }
      else if (IS_EXPR_CODE_CLASS (cl))
      else if (IS_EXPR_CODE_CLASS (cl))
        {
        {
          int lp;
          int lp;
          int max = TREE_CODE_LENGTH (TREE_CODE (x));
          int max = TREE_CODE_LENGTH (TREE_CODE (x));
          for (lp = 0; lp < max; lp++)
          for (lp = 0; lp < max; lp++)
            {
            {
              tmp_before = tmp_nosp = 0;
              tmp_before = tmp_nosp = 0;
              verify_tree (TREE_OPERAND (x, lp), &tmp_before, &tmp_nosp, 0);
              verify_tree (TREE_OPERAND (x, lp), &tmp_before, &tmp_nosp, 0);
              merge_tlist (&tmp_nosp, tmp_before, 0);
              merge_tlist (&tmp_nosp, tmp_before, 0);
              add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
              add_tlist (pno_sp, tmp_nosp, NULL_TREE, 0);
            }
            }
        }
        }
      return;
      return;
    }
    }
}
}
 
 
/* Try to warn for undefined behavior in EXPR due to missing sequence
/* Try to warn for undefined behavior in EXPR due to missing sequence
   points.  */
   points.  */
 
 
void
void
verify_sequence_points (tree expr)
verify_sequence_points (tree expr)
{
{
  struct tlist *before_sp = 0, *after_sp = 0;
  struct tlist *before_sp = 0, *after_sp = 0;
 
 
  warned_ids = 0;
  warned_ids = 0;
  save_expr_cache = 0;
  save_expr_cache = 0;
  if (tlist_firstobj == 0)
  if (tlist_firstobj == 0)
    {
    {
      gcc_obstack_init (&tlist_obstack);
      gcc_obstack_init (&tlist_obstack);
      tlist_firstobj = (char *) obstack_alloc (&tlist_obstack, 0);
      tlist_firstobj = (char *) obstack_alloc (&tlist_obstack, 0);
    }
    }
 
 
  verify_tree (expr, &before_sp, &after_sp, 0);
  verify_tree (expr, &before_sp, &after_sp, 0);
  warn_for_collisions (after_sp);
  warn_for_collisions (after_sp);
  obstack_free (&tlist_obstack, tlist_firstobj);
  obstack_free (&tlist_obstack, tlist_firstobj);
}
}


/* Validate the expression after `case' and apply default promotions.  */
/* Validate the expression after `case' and apply default promotions.  */
 
 
static tree
static tree
check_case_value (tree value)
check_case_value (tree value)
{
{
  if (value == NULL_TREE)
  if (value == NULL_TREE)
    return value;
    return value;
 
 
  /* ??? Can we ever get nops here for a valid case value?  We
  /* ??? Can we ever get nops here for a valid case value?  We
     shouldn't for C.  */
     shouldn't for C.  */
  STRIP_TYPE_NOPS (value);
  STRIP_TYPE_NOPS (value);
  /* In C++, the following is allowed:
  /* In C++, the following is allowed:
 
 
       const int i = 3;
       const int i = 3;
       switch (...) { case i: ... }
       switch (...) { case i: ... }
 
 
     So, we try to reduce the VALUE to a constant that way.  */
     So, we try to reduce the VALUE to a constant that way.  */
  if (c_dialect_cxx ())
  if (c_dialect_cxx ())
    {
    {
      value = decl_constant_value (value);
      value = decl_constant_value (value);
      STRIP_TYPE_NOPS (value);
      STRIP_TYPE_NOPS (value);
      value = fold (value);
      value = fold (value);
    }
    }
 
 
  if (TREE_CODE (value) == INTEGER_CST)
  if (TREE_CODE (value) == INTEGER_CST)
    /* Promote char or short to int.  */
    /* Promote char or short to int.  */
    value = perform_integral_promotions (value);
    value = perform_integral_promotions (value);
  else if (value != error_mark_node)
  else if (value != error_mark_node)
    {
    {
      error ("case label does not reduce to an integer constant");
      error ("case label does not reduce to an integer constant");
      value = error_mark_node;
      value = error_mark_node;
    }
    }
 
 
  constant_expression_warning (value);
  constant_expression_warning (value);
 
 
  return value;
  return value;
}
}


/* See if the case values LOW and HIGH are in the range of the original
/* See if the case values LOW and HIGH are in the range of the original
   type (i.e. before the default conversion to int) of the switch testing
   type (i.e. before the default conversion to int) of the switch testing
   expression.
   expression.
   TYPE is the promoted type of the testing expression, and ORIG_TYPE is
   TYPE is the promoted type of the testing expression, and ORIG_TYPE is
   the type before promoting it.  CASE_LOW_P is a pointer to the lower
   the type before promoting it.  CASE_LOW_P is a pointer to the lower
   bound of the case label, and CASE_HIGH_P is the upper bound or NULL
   bound of the case label, and CASE_HIGH_P is the upper bound or NULL
   if the case is not a case range.
   if the case is not a case range.
   The caller has to make sure that we are not called with NULL for
   The caller has to make sure that we are not called with NULL for
   CASE_LOW_P (i.e. the default case).
   CASE_LOW_P (i.e. the default case).
   Returns true if the case label is in range of ORIG_TYPE (saturated or
   Returns true if the case label is in range of ORIG_TYPE (saturated or
   untouched) or false if the label is out of range.  */
   untouched) or false if the label is out of range.  */
 
 
static bool
static bool
check_case_bounds (tree type, tree orig_type,
check_case_bounds (tree type, tree orig_type,
                   tree *case_low_p, tree *case_high_p)
                   tree *case_low_p, tree *case_high_p)
{
{
  tree min_value, max_value;
  tree min_value, max_value;
  tree case_low = *case_low_p;
  tree case_low = *case_low_p;
  tree case_high = case_high_p ? *case_high_p : case_low;
  tree case_high = case_high_p ? *case_high_p : case_low;
 
 
  /* If there was a problem with the original type, do nothing.  */
  /* If there was a problem with the original type, do nothing.  */
  if (orig_type == error_mark_node)
  if (orig_type == error_mark_node)
    return true;
    return true;
 
 
  min_value = TYPE_MIN_VALUE (orig_type);
  min_value = TYPE_MIN_VALUE (orig_type);
  max_value = TYPE_MAX_VALUE (orig_type);
  max_value = TYPE_MAX_VALUE (orig_type);
 
 
  /* Case label is less than minimum for type.  */
  /* Case label is less than minimum for type.  */
  if (tree_int_cst_compare (case_low, min_value) < 0
  if (tree_int_cst_compare (case_low, min_value) < 0
      && tree_int_cst_compare (case_high, min_value) < 0)
      && tree_int_cst_compare (case_high, min_value) < 0)
    {
    {
      warning (0, "case label value is less than minimum value for type");
      warning (0, "case label value is less than minimum value for type");
      return false;
      return false;
    }
    }
 
 
  /* Case value is greater than maximum for type.  */
  /* Case value is greater than maximum for type.  */
  if (tree_int_cst_compare (case_low, max_value) > 0
  if (tree_int_cst_compare (case_low, max_value) > 0
      && tree_int_cst_compare (case_high, max_value) > 0)
      && tree_int_cst_compare (case_high, max_value) > 0)
    {
    {
      warning (0, "case label value exceeds maximum value for type");
      warning (0, "case label value exceeds maximum value for type");
      return false;
      return false;
    }
    }
 
 
  /* Saturate lower case label value to minimum.  */
  /* Saturate lower case label value to minimum.  */
  if (tree_int_cst_compare (case_high, min_value) >= 0
  if (tree_int_cst_compare (case_high, min_value) >= 0
      && tree_int_cst_compare (case_low, min_value) < 0)
      && tree_int_cst_compare (case_low, min_value) < 0)
    {
    {
      warning (0, "lower value in case label range"
      warning (0, "lower value in case label range"
               " less than minimum value for type");
               " less than minimum value for type");
      case_low = min_value;
      case_low = min_value;
    }
    }
 
 
  /* Saturate upper case label value to maximum.  */
  /* Saturate upper case label value to maximum.  */
  if (tree_int_cst_compare (case_low, max_value) <= 0
  if (tree_int_cst_compare (case_low, max_value) <= 0
      && tree_int_cst_compare (case_high, max_value) > 0)
      && tree_int_cst_compare (case_high, max_value) > 0)
    {
    {
      warning (0, "upper value in case label range"
      warning (0, "upper value in case label range"
               " exceeds maximum value for type");
               " exceeds maximum value for type");
      case_high = max_value;
      case_high = max_value;
    }
    }
 
 
  if (*case_low_p != case_low)
  if (*case_low_p != case_low)
    *case_low_p = convert (type, case_low);
    *case_low_p = convert (type, case_low);
  if (case_high_p && *case_high_p != case_high)
  if (case_high_p && *case_high_p != case_high)
    *case_high_p = convert (type, case_high);
    *case_high_p = convert (type, case_high);
 
 
  return true;
  return true;
}
}


/* Return an integer type with BITS bits of precision,
/* Return an integer type with BITS bits of precision,
   that is unsigned if UNSIGNEDP is nonzero, otherwise signed.  */
   that is unsigned if UNSIGNEDP is nonzero, otherwise signed.  */
 
 
tree
tree
c_common_type_for_size (unsigned int bits, int unsignedp)
c_common_type_for_size (unsigned int bits, int unsignedp)
{
{
  if (bits == TYPE_PRECISION (integer_type_node))
  if (bits == TYPE_PRECISION (integer_type_node))
    return unsignedp ? unsigned_type_node : integer_type_node;
    return unsignedp ? unsigned_type_node : integer_type_node;
 
 
  if (bits == TYPE_PRECISION (signed_char_type_node))
  if (bits == TYPE_PRECISION (signed_char_type_node))
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
 
 
  if (bits == TYPE_PRECISION (short_integer_type_node))
  if (bits == TYPE_PRECISION (short_integer_type_node))
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
 
 
  if (bits == TYPE_PRECISION (long_integer_type_node))
  if (bits == TYPE_PRECISION (long_integer_type_node))
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
 
 
  if (bits == TYPE_PRECISION (long_long_integer_type_node))
  if (bits == TYPE_PRECISION (long_long_integer_type_node))
    return (unsignedp ? long_long_unsigned_type_node
    return (unsignedp ? long_long_unsigned_type_node
            : long_long_integer_type_node);
            : long_long_integer_type_node);
 
 
  if (bits == TYPE_PRECISION (widest_integer_literal_type_node))
  if (bits == TYPE_PRECISION (widest_integer_literal_type_node))
    return (unsignedp ? widest_unsigned_literal_type_node
    return (unsignedp ? widest_unsigned_literal_type_node
            : widest_integer_literal_type_node);
            : widest_integer_literal_type_node);
 
 
  if (bits <= TYPE_PRECISION (intQI_type_node))
  if (bits <= TYPE_PRECISION (intQI_type_node))
    return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
    return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
 
 
  if (bits <= TYPE_PRECISION (intHI_type_node))
  if (bits <= TYPE_PRECISION (intHI_type_node))
    return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
    return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
 
 
  if (bits <= TYPE_PRECISION (intSI_type_node))
  if (bits <= TYPE_PRECISION (intSI_type_node))
    return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
    return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
 
 
  if (bits <= TYPE_PRECISION (intDI_type_node))
  if (bits <= TYPE_PRECISION (intDI_type_node))
    return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
    return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
 
 
  return 0;
  return 0;
}
}
 
 
/* Used for communication between c_common_type_for_mode and
/* Used for communication between c_common_type_for_mode and
   c_register_builtin_type.  */
   c_register_builtin_type.  */
static GTY(()) tree registered_builtin_types;
static GTY(()) tree registered_builtin_types;
 
 
/* Return a data type that has machine mode MODE.
/* Return a data type that has machine mode MODE.
   If the mode is an integer,
   If the mode is an integer,
   then UNSIGNEDP selects between signed and unsigned types.  */
   then UNSIGNEDP selects between signed and unsigned types.  */
 
 
tree
tree
c_common_type_for_mode (enum machine_mode mode, int unsignedp)
c_common_type_for_mode (enum machine_mode mode, int unsignedp)
{
{
  tree t;
  tree t;
 
 
  if (mode == TYPE_MODE (integer_type_node))
  if (mode == TYPE_MODE (integer_type_node))
    return unsignedp ? unsigned_type_node : integer_type_node;
    return unsignedp ? unsigned_type_node : integer_type_node;
 
 
  if (mode == TYPE_MODE (signed_char_type_node))
  if (mode == TYPE_MODE (signed_char_type_node))
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
 
 
  if (mode == TYPE_MODE (short_integer_type_node))
  if (mode == TYPE_MODE (short_integer_type_node))
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
 
 
  if (mode == TYPE_MODE (long_integer_type_node))
  if (mode == TYPE_MODE (long_integer_type_node))
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
 
 
  if (mode == TYPE_MODE (long_long_integer_type_node))
  if (mode == TYPE_MODE (long_long_integer_type_node))
    return unsignedp ? long_long_unsigned_type_node : long_long_integer_type_node;
    return unsignedp ? long_long_unsigned_type_node : long_long_integer_type_node;
 
 
  if (mode == TYPE_MODE (widest_integer_literal_type_node))
  if (mode == TYPE_MODE (widest_integer_literal_type_node))
    return unsignedp ? widest_unsigned_literal_type_node
    return unsignedp ? widest_unsigned_literal_type_node
                     : widest_integer_literal_type_node;
                     : widest_integer_literal_type_node;
 
 
  if (mode == QImode)
  if (mode == QImode)
    return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
    return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
 
 
  if (mode == HImode)
  if (mode == HImode)
    return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
    return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
 
 
  if (mode == SImode)
  if (mode == SImode)
    return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
    return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
 
 
  if (mode == DImode)
  if (mode == DImode)
    return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
    return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
 
 
#if HOST_BITS_PER_WIDE_INT >= 64
#if HOST_BITS_PER_WIDE_INT >= 64
  if (mode == TYPE_MODE (intTI_type_node))
  if (mode == TYPE_MODE (intTI_type_node))
    return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
    return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif
#endif
 
 
  if (mode == TYPE_MODE (float_type_node))
  if (mode == TYPE_MODE (float_type_node))
    return float_type_node;
    return float_type_node;
 
 
  if (mode == TYPE_MODE (double_type_node))
  if (mode == TYPE_MODE (double_type_node))
    return double_type_node;
    return double_type_node;
 
 
  if (mode == TYPE_MODE (long_double_type_node))
  if (mode == TYPE_MODE (long_double_type_node))
    return long_double_type_node;
    return long_double_type_node;
 
 
  if (mode == TYPE_MODE (void_type_node))
  if (mode == TYPE_MODE (void_type_node))
    return void_type_node;
    return void_type_node;
 
 
  if (mode == TYPE_MODE (build_pointer_type (char_type_node)))
  if (mode == TYPE_MODE (build_pointer_type (char_type_node)))
    return (unsignedp
    return (unsignedp
            ? make_unsigned_type (GET_MODE_PRECISION (mode))
            ? make_unsigned_type (GET_MODE_PRECISION (mode))
            : make_signed_type (GET_MODE_PRECISION (mode)));
            : make_signed_type (GET_MODE_PRECISION (mode)));
 
 
  if (mode == TYPE_MODE (build_pointer_type (integer_type_node)))
  if (mode == TYPE_MODE (build_pointer_type (integer_type_node)))
    return (unsignedp
    return (unsignedp
            ? make_unsigned_type (GET_MODE_PRECISION (mode))
            ? make_unsigned_type (GET_MODE_PRECISION (mode))
            : make_signed_type (GET_MODE_PRECISION (mode)));
            : make_signed_type (GET_MODE_PRECISION (mode)));
 
 
  if (COMPLEX_MODE_P (mode))
  if (COMPLEX_MODE_P (mode))
    {
    {
      enum machine_mode inner_mode;
      enum machine_mode inner_mode;
      tree inner_type;
      tree inner_type;
 
 
      if (mode == TYPE_MODE (complex_float_type_node))
      if (mode == TYPE_MODE (complex_float_type_node))
        return complex_float_type_node;
        return complex_float_type_node;
      if (mode == TYPE_MODE (complex_double_type_node))
      if (mode == TYPE_MODE (complex_double_type_node))
        return complex_double_type_node;
        return complex_double_type_node;
      if (mode == TYPE_MODE (complex_long_double_type_node))
      if (mode == TYPE_MODE (complex_long_double_type_node))
        return complex_long_double_type_node;
        return complex_long_double_type_node;
 
 
      if (mode == TYPE_MODE (complex_integer_type_node) && !unsignedp)
      if (mode == TYPE_MODE (complex_integer_type_node) && !unsignedp)
        return complex_integer_type_node;
        return complex_integer_type_node;
 
 
      inner_mode = GET_MODE_INNER (mode);
      inner_mode = GET_MODE_INNER (mode);
      inner_type = c_common_type_for_mode (inner_mode, unsignedp);
      inner_type = c_common_type_for_mode (inner_mode, unsignedp);
      if (inner_type != NULL_TREE)
      if (inner_type != NULL_TREE)
        return build_complex_type (inner_type);
        return build_complex_type (inner_type);
    }
    }
  else if (VECTOR_MODE_P (mode))
  else if (VECTOR_MODE_P (mode))
    {
    {
      enum machine_mode inner_mode = GET_MODE_INNER (mode);
      enum machine_mode inner_mode = GET_MODE_INNER (mode);
      tree inner_type = c_common_type_for_mode (inner_mode, unsignedp);
      tree inner_type = c_common_type_for_mode (inner_mode, unsignedp);
      if (inner_type != NULL_TREE)
      if (inner_type != NULL_TREE)
        return build_vector_type_for_mode (inner_type, mode);
        return build_vector_type_for_mode (inner_type, mode);
    }
    }
 
 
  if (mode == TYPE_MODE (dfloat32_type_node))
  if (mode == TYPE_MODE (dfloat32_type_node))
    return dfloat32_type_node;
    return dfloat32_type_node;
  if (mode == TYPE_MODE (dfloat64_type_node))
  if (mode == TYPE_MODE (dfloat64_type_node))
    return dfloat64_type_node;
    return dfloat64_type_node;
  if (mode == TYPE_MODE (dfloat128_type_node))
  if (mode == TYPE_MODE (dfloat128_type_node))
    return dfloat128_type_node;
    return dfloat128_type_node;
 
 
  for (t = registered_builtin_types; t; t = TREE_CHAIN (t))
  for (t = registered_builtin_types; t; t = TREE_CHAIN (t))
    if (TYPE_MODE (TREE_VALUE (t)) == mode)
    if (TYPE_MODE (TREE_VALUE (t)) == mode)
      return TREE_VALUE (t);
      return TREE_VALUE (t);
 
 
  return 0;
  return 0;
}
}
 
 
/* Return an unsigned type the same as TYPE in other respects.  */
/* Return an unsigned type the same as TYPE in other respects.  */
tree
tree
c_common_unsigned_type (tree type)
c_common_unsigned_type (tree type)
{
{
  tree type1 = TYPE_MAIN_VARIANT (type);
  tree type1 = TYPE_MAIN_VARIANT (type);
  if (type1 == signed_char_type_node || type1 == char_type_node)
  if (type1 == signed_char_type_node || type1 == char_type_node)
    return unsigned_char_type_node;
    return unsigned_char_type_node;
  if (type1 == integer_type_node)
  if (type1 == integer_type_node)
    return unsigned_type_node;
    return unsigned_type_node;
  if (type1 == short_integer_type_node)
  if (type1 == short_integer_type_node)
    return short_unsigned_type_node;
    return short_unsigned_type_node;
  if (type1 == long_integer_type_node)
  if (type1 == long_integer_type_node)
    return long_unsigned_type_node;
    return long_unsigned_type_node;
  if (type1 == long_long_integer_type_node)
  if (type1 == long_long_integer_type_node)
    return long_long_unsigned_type_node;
    return long_long_unsigned_type_node;
  if (type1 == widest_integer_literal_type_node)
  if (type1 == widest_integer_literal_type_node)
    return widest_unsigned_literal_type_node;
    return widest_unsigned_literal_type_node;
#if HOST_BITS_PER_WIDE_INT >= 64
#if HOST_BITS_PER_WIDE_INT >= 64
  if (type1 == intTI_type_node)
  if (type1 == intTI_type_node)
    return unsigned_intTI_type_node;
    return unsigned_intTI_type_node;
#endif
#endif
  if (type1 == intDI_type_node)
  if (type1 == intDI_type_node)
    return unsigned_intDI_type_node;
    return unsigned_intDI_type_node;
  if (type1 == intSI_type_node)
  if (type1 == intSI_type_node)
    return unsigned_intSI_type_node;
    return unsigned_intSI_type_node;
  if (type1 == intHI_type_node)
  if (type1 == intHI_type_node)
    return unsigned_intHI_type_node;
    return unsigned_intHI_type_node;
  if (type1 == intQI_type_node)
  if (type1 == intQI_type_node)
    return unsigned_intQI_type_node;
    return unsigned_intQI_type_node;
 
 
  return c_common_signed_or_unsigned_type (1, type);
  return c_common_signed_or_unsigned_type (1, type);
}
}
 
 
/* Return a signed type the same as TYPE in other respects.  */
/* Return a signed type the same as TYPE in other respects.  */
 
 
tree
tree
c_common_signed_type (tree type)
c_common_signed_type (tree type)
{
{
  tree type1 = TYPE_MAIN_VARIANT (type);
  tree type1 = TYPE_MAIN_VARIANT (type);
  if (type1 == unsigned_char_type_node || type1 == char_type_node)
  if (type1 == unsigned_char_type_node || type1 == char_type_node)
    return signed_char_type_node;
    return signed_char_type_node;
  if (type1 == unsigned_type_node)
  if (type1 == unsigned_type_node)
    return integer_type_node;
    return integer_type_node;
  if (type1 == short_unsigned_type_node)
  if (type1 == short_unsigned_type_node)
    return short_integer_type_node;
    return short_integer_type_node;
  if (type1 == long_unsigned_type_node)
  if (type1 == long_unsigned_type_node)
    return long_integer_type_node;
    return long_integer_type_node;
  if (type1 == long_long_unsigned_type_node)
  if (type1 == long_long_unsigned_type_node)
    return long_long_integer_type_node;
    return long_long_integer_type_node;
  if (type1 == widest_unsigned_literal_type_node)
  if (type1 == widest_unsigned_literal_type_node)
    return widest_integer_literal_type_node;
    return widest_integer_literal_type_node;
#if HOST_BITS_PER_WIDE_INT >= 64
#if HOST_BITS_PER_WIDE_INT >= 64
  if (type1 == unsigned_intTI_type_node)
  if (type1 == unsigned_intTI_type_node)
    return intTI_type_node;
    return intTI_type_node;
#endif
#endif
  if (type1 == unsigned_intDI_type_node)
  if (type1 == unsigned_intDI_type_node)
    return intDI_type_node;
    return intDI_type_node;
  if (type1 == unsigned_intSI_type_node)
  if (type1 == unsigned_intSI_type_node)
    return intSI_type_node;
    return intSI_type_node;
  if (type1 == unsigned_intHI_type_node)
  if (type1 == unsigned_intHI_type_node)
    return intHI_type_node;
    return intHI_type_node;
  if (type1 == unsigned_intQI_type_node)
  if (type1 == unsigned_intQI_type_node)
    return intQI_type_node;
    return intQI_type_node;
 
 
  return c_common_signed_or_unsigned_type (0, type);
  return c_common_signed_or_unsigned_type (0, type);
}
}
 
 
/* Return a type the same as TYPE except unsigned or
/* Return a type the same as TYPE except unsigned or
   signed according to UNSIGNEDP.  */
   signed according to UNSIGNEDP.  */
 
 
tree
tree
c_common_signed_or_unsigned_type (int unsignedp, tree type)
c_common_signed_or_unsigned_type (int unsignedp, tree type)
{
{
  if (!INTEGRAL_TYPE_P (type)
  if (!INTEGRAL_TYPE_P (type)
      || TYPE_UNSIGNED (type) == unsignedp)
      || TYPE_UNSIGNED (type) == unsignedp)
    return type;
    return type;
 
 
  /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
  /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
     the precision; they have precision set to match their range, but
     the precision; they have precision set to match their range, but
     may use a wider mode to match an ABI.  If we change modes, we may
     may use a wider mode to match an ABI.  If we change modes, we may
     wind up with bad conversions.  For INTEGER_TYPEs in C, must check
     wind up with bad conversions.  For INTEGER_TYPEs in C, must check
     the precision as well, so as to yield correct results for
     the precision as well, so as to yield correct results for
     bit-field types.  C++ does not have these separate bit-field
     bit-field types.  C++ does not have these separate bit-field
     types, and producing a signed or unsigned variant of an
     types, and producing a signed or unsigned variant of an
     ENUMERAL_TYPE may cause other problems as well.  */
     ENUMERAL_TYPE may cause other problems as well.  */
 
 
#define TYPE_OK(node)                                                       \
#define TYPE_OK(node)                                                       \
  (TYPE_MODE (type) == TYPE_MODE (node)                                     \
  (TYPE_MODE (type) == TYPE_MODE (node)                                     \
   && (c_dialect_cxx () || TYPE_PRECISION (type) == TYPE_PRECISION (node)))
   && (c_dialect_cxx () || TYPE_PRECISION (type) == TYPE_PRECISION (node)))
  if (TYPE_OK (signed_char_type_node))
  if (TYPE_OK (signed_char_type_node))
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
  if (TYPE_OK (integer_type_node))
  if (TYPE_OK (integer_type_node))
    return unsignedp ? unsigned_type_node : integer_type_node;
    return unsignedp ? unsigned_type_node : integer_type_node;
  if (TYPE_OK (short_integer_type_node))
  if (TYPE_OK (short_integer_type_node))
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
  if (TYPE_OK (long_integer_type_node))
  if (TYPE_OK (long_integer_type_node))
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
  if (TYPE_OK (long_long_integer_type_node))
  if (TYPE_OK (long_long_integer_type_node))
    return (unsignedp ? long_long_unsigned_type_node
    return (unsignedp ? long_long_unsigned_type_node
            : long_long_integer_type_node);
            : long_long_integer_type_node);
  if (TYPE_OK (widest_integer_literal_type_node))
  if (TYPE_OK (widest_integer_literal_type_node))
    return (unsignedp ? widest_unsigned_literal_type_node
    return (unsignedp ? widest_unsigned_literal_type_node
            : widest_integer_literal_type_node);
            : widest_integer_literal_type_node);
 
 
#if HOST_BITS_PER_WIDE_INT >= 64
#if HOST_BITS_PER_WIDE_INT >= 64
  if (TYPE_OK (intTI_type_node))
  if (TYPE_OK (intTI_type_node))
    return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
    return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
#endif
#endif
  if (TYPE_OK (intDI_type_node))
  if (TYPE_OK (intDI_type_node))
    return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
    return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
  if (TYPE_OK (intSI_type_node))
  if (TYPE_OK (intSI_type_node))
    return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
    return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
  if (TYPE_OK (intHI_type_node))
  if (TYPE_OK (intHI_type_node))
    return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
    return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
  if (TYPE_OK (intQI_type_node))
  if (TYPE_OK (intQI_type_node))
    return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
    return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
#undef TYPE_OK
#undef TYPE_OK
 
 
  if (c_dialect_cxx ())
  if (c_dialect_cxx ())
    return type;
    return type;
  else
  else
    return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
    return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
}
}
 
 
/* Build a bit-field integer type for the given WIDTH and UNSIGNEDP.  */
/* Build a bit-field integer type for the given WIDTH and UNSIGNEDP.  */
 
 
tree
tree
c_build_bitfield_integer_type (unsigned HOST_WIDE_INT width, int unsignedp)
c_build_bitfield_integer_type (unsigned HOST_WIDE_INT width, int unsignedp)
{
{
  /* Extended integer types of the same width as a standard type have
  /* Extended integer types of the same width as a standard type have
     lesser rank, so those of the same width as int promote to int or
     lesser rank, so those of the same width as int promote to int or
     unsigned int and are valid for printf formats expecting int or
     unsigned int and are valid for printf formats expecting int or
     unsigned int.  To avoid such special cases, avoid creating
     unsigned int.  To avoid such special cases, avoid creating
     extended integer types for bit-fields if a standard integer type
     extended integer types for bit-fields if a standard integer type
     is available.  */
     is available.  */
  if (width == TYPE_PRECISION (integer_type_node))
  if (width == TYPE_PRECISION (integer_type_node))
    return unsignedp ? unsigned_type_node : integer_type_node;
    return unsignedp ? unsigned_type_node : integer_type_node;
  if (width == TYPE_PRECISION (signed_char_type_node))
  if (width == TYPE_PRECISION (signed_char_type_node))
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
    return unsignedp ? unsigned_char_type_node : signed_char_type_node;
  if (width == TYPE_PRECISION (short_integer_type_node))
  if (width == TYPE_PRECISION (short_integer_type_node))
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
    return unsignedp ? short_unsigned_type_node : short_integer_type_node;
  if (width == TYPE_PRECISION (long_integer_type_node))
  if (width == TYPE_PRECISION (long_integer_type_node))
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
    return unsignedp ? long_unsigned_type_node : long_integer_type_node;
  if (width == TYPE_PRECISION (long_long_integer_type_node))
  if (width == TYPE_PRECISION (long_long_integer_type_node))
    return (unsignedp ? long_long_unsigned_type_node
    return (unsignedp ? long_long_unsigned_type_node
            : long_long_integer_type_node);
            : long_long_integer_type_node);
  return build_nonstandard_integer_type (width, unsignedp);
  return build_nonstandard_integer_type (width, unsignedp);
}
}
 
 
/* The C version of the register_builtin_type langhook.  */
/* The C version of the register_builtin_type langhook.  */
 
 
void
void
c_register_builtin_type (tree type, const char* name)
c_register_builtin_type (tree type, const char* name)
{
{
  tree decl;
  tree decl;
 
 
  decl = build_decl (TYPE_DECL, get_identifier (name), type);
  decl = build_decl (TYPE_DECL, get_identifier (name), type);
  DECL_ARTIFICIAL (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  if (!TYPE_NAME (type))
  if (!TYPE_NAME (type))
    TYPE_NAME (type) = decl;
    TYPE_NAME (type) = decl;
  pushdecl (decl);
  pushdecl (decl);
 
 
  registered_builtin_types = tree_cons (0, type, registered_builtin_types);
  registered_builtin_types = tree_cons (0, type, registered_builtin_types);
}
}
 
 


/* Return the minimum number of bits needed to represent VALUE in a
/* Return the minimum number of bits needed to represent VALUE in a
   signed or unsigned type, UNSIGNEDP says which.  */
   signed or unsigned type, UNSIGNEDP says which.  */
 
 
unsigned int
unsigned int
min_precision (tree value, int unsignedp)
min_precision (tree value, int unsignedp)
{
{
  int log;
  int log;
 
 
  /* If the value is negative, compute its negative minus 1.  The latter
  /* If the value is negative, compute its negative minus 1.  The latter
     adjustment is because the absolute value of the largest negative value
     adjustment is because the absolute value of the largest negative value
     is one larger than the largest positive value.  This is equivalent to
     is one larger than the largest positive value.  This is equivalent to
     a bit-wise negation, so use that operation instead.  */
     a bit-wise negation, so use that operation instead.  */
 
 
  if (tree_int_cst_sgn (value) < 0)
  if (tree_int_cst_sgn (value) < 0)
    value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
    value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
 
 
  /* Return the number of bits needed, taking into account the fact
  /* Return the number of bits needed, taking into account the fact
     that we need one more bit for a signed than unsigned type.  */
     that we need one more bit for a signed than unsigned type.  */
 
 
  if (integer_zerop (value))
  if (integer_zerop (value))
    log = 0;
    log = 0;
  else
  else
    log = tree_floor_log2 (value);
    log = tree_floor_log2 (value);
 
 
  return log + 1 + !unsignedp;
  return log + 1 + !unsignedp;
}
}


/* Print an error message for invalid operands to arith operation
/* Print an error message for invalid operands to arith operation
   CODE.  */
   CODE.  */
 
 
void
void
binary_op_error (enum tree_code code)
binary_op_error (enum tree_code code)
{
{
  const char *opname;
  const char *opname;
 
 
  switch (code)
  switch (code)
    {
    {
    case PLUS_EXPR:
    case PLUS_EXPR:
      opname = "+"; break;
      opname = "+"; break;
    case MINUS_EXPR:
    case MINUS_EXPR:
      opname = "-"; break;
      opname = "-"; break;
    case MULT_EXPR:
    case MULT_EXPR:
      opname = "*"; break;
      opname = "*"; break;
    case MAX_EXPR:
    case MAX_EXPR:
      opname = "max"; break;
      opname = "max"; break;
    case MIN_EXPR:
    case MIN_EXPR:
      opname = "min"; break;
      opname = "min"; break;
    case EQ_EXPR:
    case EQ_EXPR:
      opname = "=="; break;
      opname = "=="; break;
    case NE_EXPR:
    case NE_EXPR:
      opname = "!="; break;
      opname = "!="; break;
    case LE_EXPR:
    case LE_EXPR:
      opname = "<="; break;
      opname = "<="; break;
    case GE_EXPR:
    case GE_EXPR:
      opname = ">="; break;
      opname = ">="; break;
    case LT_EXPR:
    case LT_EXPR:
      opname = "<"; break;
      opname = "<"; break;
    case GT_EXPR:
    case GT_EXPR:
      opname = ">"; break;
      opname = ">"; break;
    case LSHIFT_EXPR:
    case LSHIFT_EXPR:
      opname = "<<"; break;
      opname = "<<"; break;
    case RSHIFT_EXPR:
    case RSHIFT_EXPR:
      opname = ">>"; break;
      opname = ">>"; break;
    case TRUNC_MOD_EXPR:
    case TRUNC_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case FLOOR_MOD_EXPR:
      opname = "%"; break;
      opname = "%"; break;
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case FLOOR_DIV_EXPR:
      opname = "/"; break;
      opname = "/"; break;
    case BIT_AND_EXPR:
    case BIT_AND_EXPR:
      opname = "&"; break;
      opname = "&"; break;
    case BIT_IOR_EXPR:
    case BIT_IOR_EXPR:
      opname = "|"; break;
      opname = "|"; break;
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ANDIF_EXPR:
      opname = "&&"; break;
      opname = "&&"; break;
    case TRUTH_ORIF_EXPR:
    case TRUTH_ORIF_EXPR:
      opname = "||"; break;
      opname = "||"; break;
    case BIT_XOR_EXPR:
    case BIT_XOR_EXPR:
      opname = "^"; break;
      opname = "^"; break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
  error ("invalid operands to binary %s", opname);
  error ("invalid operands to binary %s", opname);
}
}


/* Subroutine of build_binary_op, used for comparison operations.
/* Subroutine of build_binary_op, used for comparison operations.
   See if the operands have both been converted from subword integer types
   See if the operands have both been converted from subword integer types
   and, if so, perhaps change them both back to their original type.
   and, if so, perhaps change them both back to their original type.
   This function is also responsible for converting the two operands
   This function is also responsible for converting the two operands
   to the proper common type for comparison.
   to the proper common type for comparison.
 
 
   The arguments of this function are all pointers to local variables
   The arguments of this function are all pointers to local variables
   of build_binary_op: OP0_PTR is &OP0, OP1_PTR is &OP1,
   of build_binary_op: OP0_PTR is &OP0, OP1_PTR is &OP1,
   RESTYPE_PTR is &RESULT_TYPE and RESCODE_PTR is &RESULTCODE.
   RESTYPE_PTR is &RESULT_TYPE and RESCODE_PTR is &RESULTCODE.
 
 
   If this function returns nonzero, it means that the comparison has
   If this function returns nonzero, it means that the comparison has
   a constant value.  What this function returns is an expression for
   a constant value.  What this function returns is an expression for
   that value.  */
   that value.  */
 
 
tree
tree
shorten_compare (tree *op0_ptr, tree *op1_ptr, tree *restype_ptr,
shorten_compare (tree *op0_ptr, tree *op1_ptr, tree *restype_ptr,
                 enum tree_code *rescode_ptr)
                 enum tree_code *rescode_ptr)
{
{
  tree type;
  tree type;
  tree op0 = *op0_ptr;
  tree op0 = *op0_ptr;
  tree op1 = *op1_ptr;
  tree op1 = *op1_ptr;
  int unsignedp0, unsignedp1;
  int unsignedp0, unsignedp1;
  int real1, real2;
  int real1, real2;
  tree primop0, primop1;
  tree primop0, primop1;
  enum tree_code code = *rescode_ptr;
  enum tree_code code = *rescode_ptr;
 
 
  /* Throw away any conversions to wider types
  /* Throw away any conversions to wider types
     already present in the operands.  */
     already present in the operands.  */
 
 
  primop0 = get_narrower (op0, &unsignedp0);
  primop0 = get_narrower (op0, &unsignedp0);
  primop1 = get_narrower (op1, &unsignedp1);
  primop1 = get_narrower (op1, &unsignedp1);
 
 
  /* Handle the case that OP0 does not *contain* a conversion
  /* Handle the case that OP0 does not *contain* a conversion
     but it *requires* conversion to FINAL_TYPE.  */
     but it *requires* conversion to FINAL_TYPE.  */
 
 
  if (op0 == primop0 && TREE_TYPE (op0) != *restype_ptr)
  if (op0 == primop0 && TREE_TYPE (op0) != *restype_ptr)
    unsignedp0 = TYPE_UNSIGNED (TREE_TYPE (op0));
    unsignedp0 = TYPE_UNSIGNED (TREE_TYPE (op0));
  if (op1 == primop1 && TREE_TYPE (op1) != *restype_ptr)
  if (op1 == primop1 && TREE_TYPE (op1) != *restype_ptr)
    unsignedp1 = TYPE_UNSIGNED (TREE_TYPE (op1));
    unsignedp1 = TYPE_UNSIGNED (TREE_TYPE (op1));
 
 
  /* If one of the operands must be floated, we cannot optimize.  */
  /* If one of the operands must be floated, we cannot optimize.  */
  real1 = TREE_CODE (TREE_TYPE (primop0)) == REAL_TYPE;
  real1 = TREE_CODE (TREE_TYPE (primop0)) == REAL_TYPE;
  real2 = TREE_CODE (TREE_TYPE (primop1)) == REAL_TYPE;
  real2 = TREE_CODE (TREE_TYPE (primop1)) == REAL_TYPE;
 
 
  /* If first arg is constant, swap the args (changing operation
  /* If first arg is constant, swap the args (changing operation
     so value is preserved), for canonicalization.  Don't do this if
     so value is preserved), for canonicalization.  Don't do this if
     the second arg is 0.  */
     the second arg is 0.  */
 
 
  if (TREE_CONSTANT (primop0)
  if (TREE_CONSTANT (primop0)
      && !integer_zerop (primop1) && !real_zerop (primop1))
      && !integer_zerop (primop1) && !real_zerop (primop1))
    {
    {
      tree tem = primop0;
      tree tem = primop0;
      int temi = unsignedp0;
      int temi = unsignedp0;
      primop0 = primop1;
      primop0 = primop1;
      primop1 = tem;
      primop1 = tem;
      tem = op0;
      tem = op0;
      op0 = op1;
      op0 = op1;
      op1 = tem;
      op1 = tem;
      *op0_ptr = op0;
      *op0_ptr = op0;
      *op1_ptr = op1;
      *op1_ptr = op1;
      unsignedp0 = unsignedp1;
      unsignedp0 = unsignedp1;
      unsignedp1 = temi;
      unsignedp1 = temi;
      temi = real1;
      temi = real1;
      real1 = real2;
      real1 = real2;
      real2 = temi;
      real2 = temi;
 
 
      switch (code)
      switch (code)
        {
        {
        case LT_EXPR:
        case LT_EXPR:
          code = GT_EXPR;
          code = GT_EXPR;
          break;
          break;
        case GT_EXPR:
        case GT_EXPR:
          code = LT_EXPR;
          code = LT_EXPR;
          break;
          break;
        case LE_EXPR:
        case LE_EXPR:
          code = GE_EXPR;
          code = GE_EXPR;
          break;
          break;
        case GE_EXPR:
        case GE_EXPR:
          code = LE_EXPR;
          code = LE_EXPR;
          break;
          break;
        default:
        default:
          break;
          break;
        }
        }
      *rescode_ptr = code;
      *rescode_ptr = code;
    }
    }
 
 
  /* If comparing an integer against a constant more bits wide,
  /* If comparing an integer against a constant more bits wide,
     maybe we can deduce a value of 1 or 0 independent of the data.
     maybe we can deduce a value of 1 or 0 independent of the data.
     Or else truncate the constant now
     Or else truncate the constant now
     rather than extend the variable at run time.
     rather than extend the variable at run time.
 
 
     This is only interesting if the constant is the wider arg.
     This is only interesting if the constant is the wider arg.
     Also, it is not safe if the constant is unsigned and the
     Also, it is not safe if the constant is unsigned and the
     variable arg is signed, since in this case the variable
     variable arg is signed, since in this case the variable
     would be sign-extended and then regarded as unsigned.
     would be sign-extended and then regarded as unsigned.
     Our technique fails in this case because the lowest/highest
     Our technique fails in this case because the lowest/highest
     possible unsigned results don't follow naturally from the
     possible unsigned results don't follow naturally from the
     lowest/highest possible values of the variable operand.
     lowest/highest possible values of the variable operand.
     For just EQ_EXPR and NE_EXPR there is another technique that
     For just EQ_EXPR and NE_EXPR there is another technique that
     could be used: see if the constant can be faithfully represented
     could be used: see if the constant can be faithfully represented
     in the other operand's type, by truncating it and reextending it
     in the other operand's type, by truncating it and reextending it
     and see if that preserves the constant's value.  */
     and see if that preserves the constant's value.  */
 
 
  if (!real1 && !real2
  if (!real1 && !real2
      && TREE_CODE (primop1) == INTEGER_CST
      && TREE_CODE (primop1) == INTEGER_CST
      && TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr))
      && TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr))
    {
    {
      int min_gt, max_gt, min_lt, max_lt;
      int min_gt, max_gt, min_lt, max_lt;
      tree maxval, minval;
      tree maxval, minval;
      /* 1 if comparison is nominally unsigned.  */
      /* 1 if comparison is nominally unsigned.  */
      int unsignedp = TYPE_UNSIGNED (*restype_ptr);
      int unsignedp = TYPE_UNSIGNED (*restype_ptr);
      tree val;
      tree val;
 
 
      type = c_common_signed_or_unsigned_type (unsignedp0,
      type = c_common_signed_or_unsigned_type (unsignedp0,
                                               TREE_TYPE (primop0));
                                               TREE_TYPE (primop0));
 
 
      maxval = TYPE_MAX_VALUE (type);
      maxval = TYPE_MAX_VALUE (type);
      minval = TYPE_MIN_VALUE (type);
      minval = TYPE_MIN_VALUE (type);
 
 
      if (unsignedp && !unsignedp0)
      if (unsignedp && !unsignedp0)
        *restype_ptr = c_common_signed_type (*restype_ptr);
        *restype_ptr = c_common_signed_type (*restype_ptr);
 
 
      if (TREE_TYPE (primop1) != *restype_ptr)
      if (TREE_TYPE (primop1) != *restype_ptr)
        {
        {
          /* Convert primop1 to target type, but do not introduce
          /* Convert primop1 to target type, but do not introduce
             additional overflow.  We know primop1 is an int_cst.  */
             additional overflow.  We know primop1 is an int_cst.  */
          tree tmp = build_int_cst_wide (*restype_ptr,
          tree tmp = build_int_cst_wide (*restype_ptr,
                                         TREE_INT_CST_LOW (primop1),
                                         TREE_INT_CST_LOW (primop1),
                                         TREE_INT_CST_HIGH (primop1));
                                         TREE_INT_CST_HIGH (primop1));
 
 
          primop1 = force_fit_type (tmp, 0, TREE_OVERFLOW (primop1),
          primop1 = force_fit_type (tmp, 0, TREE_OVERFLOW (primop1),
                                    TREE_CONSTANT_OVERFLOW (primop1));
                                    TREE_CONSTANT_OVERFLOW (primop1));
        }
        }
      if (type != *restype_ptr)
      if (type != *restype_ptr)
        {
        {
          minval = convert (*restype_ptr, minval);
          minval = convert (*restype_ptr, minval);
          maxval = convert (*restype_ptr, maxval);
          maxval = convert (*restype_ptr, maxval);
        }
        }
 
 
      if (unsignedp && unsignedp0)
      if (unsignedp && unsignedp0)
        {
        {
          min_gt = INT_CST_LT_UNSIGNED (primop1, minval);
          min_gt = INT_CST_LT_UNSIGNED (primop1, minval);
          max_gt = INT_CST_LT_UNSIGNED (primop1, maxval);
          max_gt = INT_CST_LT_UNSIGNED (primop1, maxval);
          min_lt = INT_CST_LT_UNSIGNED (minval, primop1);
          min_lt = INT_CST_LT_UNSIGNED (minval, primop1);
          max_lt = INT_CST_LT_UNSIGNED (maxval, primop1);
          max_lt = INT_CST_LT_UNSIGNED (maxval, primop1);
        }
        }
      else
      else
        {
        {
          min_gt = INT_CST_LT (primop1, minval);
          min_gt = INT_CST_LT (primop1, minval);
          max_gt = INT_CST_LT (primop1, maxval);
          max_gt = INT_CST_LT (primop1, maxval);
          min_lt = INT_CST_LT (minval, primop1);
          min_lt = INT_CST_LT (minval, primop1);
          max_lt = INT_CST_LT (maxval, primop1);
          max_lt = INT_CST_LT (maxval, primop1);
        }
        }
 
 
      val = 0;
      val = 0;
      /* This used to be a switch, but Genix compiler can't handle that.  */
      /* This used to be a switch, but Genix compiler can't handle that.  */
      if (code == NE_EXPR)
      if (code == NE_EXPR)
        {
        {
          if (max_lt || min_gt)
          if (max_lt || min_gt)
            val = truthvalue_true_node;
            val = truthvalue_true_node;
        }
        }
      else if (code == EQ_EXPR)
      else if (code == EQ_EXPR)
        {
        {
          if (max_lt || min_gt)
          if (max_lt || min_gt)
            val = truthvalue_false_node;
            val = truthvalue_false_node;
        }
        }
      else if (code == LT_EXPR)
      else if (code == LT_EXPR)
        {
        {
          if (max_lt)
          if (max_lt)
            val = truthvalue_true_node;
            val = truthvalue_true_node;
          if (!min_lt)
          if (!min_lt)
            val = truthvalue_false_node;
            val = truthvalue_false_node;
        }
        }
      else if (code == GT_EXPR)
      else if (code == GT_EXPR)
        {
        {
          if (min_gt)
          if (min_gt)
            val = truthvalue_true_node;
            val = truthvalue_true_node;
          if (!max_gt)
          if (!max_gt)
            val = truthvalue_false_node;
            val = truthvalue_false_node;
        }
        }
      else if (code == LE_EXPR)
      else if (code == LE_EXPR)
        {
        {
          if (!max_gt)
          if (!max_gt)
            val = truthvalue_true_node;
            val = truthvalue_true_node;
          if (min_gt)
          if (min_gt)
            val = truthvalue_false_node;
            val = truthvalue_false_node;
        }
        }
      else if (code == GE_EXPR)
      else if (code == GE_EXPR)
        {
        {
          if (!min_lt)
          if (!min_lt)
            val = truthvalue_true_node;
            val = truthvalue_true_node;
          if (max_lt)
          if (max_lt)
            val = truthvalue_false_node;
            val = truthvalue_false_node;
        }
        }
 
 
      /* If primop0 was sign-extended and unsigned comparison specd,
      /* If primop0 was sign-extended and unsigned comparison specd,
         we did a signed comparison above using the signed type bounds.
         we did a signed comparison above using the signed type bounds.
         But the comparison we output must be unsigned.
         But the comparison we output must be unsigned.
 
 
         Also, for inequalities, VAL is no good; but if the signed
         Also, for inequalities, VAL is no good; but if the signed
         comparison had *any* fixed result, it follows that the
         comparison had *any* fixed result, it follows that the
         unsigned comparison just tests the sign in reverse
         unsigned comparison just tests the sign in reverse
         (positive values are LE, negative ones GE).
         (positive values are LE, negative ones GE).
         So we can generate an unsigned comparison
         So we can generate an unsigned comparison
         against an extreme value of the signed type.  */
         against an extreme value of the signed type.  */
 
 
      if (unsignedp && !unsignedp0)
      if (unsignedp && !unsignedp0)
        {
        {
          if (val != 0)
          if (val != 0)
            switch (code)
            switch (code)
              {
              {
              case LT_EXPR:
              case LT_EXPR:
              case GE_EXPR:
              case GE_EXPR:
                primop1 = TYPE_MIN_VALUE (type);
                primop1 = TYPE_MIN_VALUE (type);
                val = 0;
                val = 0;
                break;
                break;
 
 
              case LE_EXPR:
              case LE_EXPR:
              case GT_EXPR:
              case GT_EXPR:
                primop1 = TYPE_MAX_VALUE (type);
                primop1 = TYPE_MAX_VALUE (type);
                val = 0;
                val = 0;
                break;
                break;
 
 
              default:
              default:
                break;
                break;
              }
              }
          type = c_common_unsigned_type (type);
          type = c_common_unsigned_type (type);
        }
        }
 
 
      if (TREE_CODE (primop0) != INTEGER_CST)
      if (TREE_CODE (primop0) != INTEGER_CST)
        {
        {
          if (val == truthvalue_false_node)
          if (val == truthvalue_false_node)
            warning (0, "comparison is always false due to limited range of data type");
            warning (0, "comparison is always false due to limited range of data type");
          if (val == truthvalue_true_node)
          if (val == truthvalue_true_node)
            warning (0, "comparison is always true due to limited range of data type");
            warning (0, "comparison is always true due to limited range of data type");
        }
        }
 
 
      if (val != 0)
      if (val != 0)
        {
        {
          /* Don't forget to evaluate PRIMOP0 if it has side effects.  */
          /* Don't forget to evaluate PRIMOP0 if it has side effects.  */
          if (TREE_SIDE_EFFECTS (primop0))
          if (TREE_SIDE_EFFECTS (primop0))
            return build2 (COMPOUND_EXPR, TREE_TYPE (val), primop0, val);
            return build2 (COMPOUND_EXPR, TREE_TYPE (val), primop0, val);
          return val;
          return val;
        }
        }
 
 
      /* Value is not predetermined, but do the comparison
      /* Value is not predetermined, but do the comparison
         in the type of the operand that is not constant.
         in the type of the operand that is not constant.
         TYPE is already properly set.  */
         TYPE is already properly set.  */
    }
    }
 
 
  /* If either arg is decimal float and the other is float, find the
  /* If either arg is decimal float and the other is float, find the
     proper common type to use for comparison.  */
     proper common type to use for comparison.  */
  else if (real1 && real2
  else if (real1 && real2
           && (DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop0)))
           && (DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop0)))
               || DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop1)))))
               || DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (primop1)))))
    type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
    type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
 
 
  else if (real1 && real2
  else if (real1 && real2
           && (TYPE_PRECISION (TREE_TYPE (primop0))
           && (TYPE_PRECISION (TREE_TYPE (primop0))
               == TYPE_PRECISION (TREE_TYPE (primop1))))
               == TYPE_PRECISION (TREE_TYPE (primop1))))
    type = TREE_TYPE (primop0);
    type = TREE_TYPE (primop0);
 
 
  /* If args' natural types are both narrower than nominal type
  /* If args' natural types are both narrower than nominal type
     and both extend in the same manner, compare them
     and both extend in the same manner, compare them
     in the type of the wider arg.
     in the type of the wider arg.
     Otherwise must actually extend both to the nominal
     Otherwise must actually extend both to the nominal
     common type lest different ways of extending
     common type lest different ways of extending
     alter the result.
     alter the result.
     (eg, (short)-1 == (unsigned short)-1  should be 0.)  */
     (eg, (short)-1 == (unsigned short)-1  should be 0.)  */
 
 
  else if (unsignedp0 == unsignedp1 && real1 == real2
  else if (unsignedp0 == unsignedp1 && real1 == real2
           && TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr)
           && TYPE_PRECISION (TREE_TYPE (primop0)) < TYPE_PRECISION (*restype_ptr)
           && TYPE_PRECISION (TREE_TYPE (primop1)) < TYPE_PRECISION (*restype_ptr))
           && TYPE_PRECISION (TREE_TYPE (primop1)) < TYPE_PRECISION (*restype_ptr))
    {
    {
      type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
      type = common_type (TREE_TYPE (primop0), TREE_TYPE (primop1));
      type = c_common_signed_or_unsigned_type (unsignedp0
      type = c_common_signed_or_unsigned_type (unsignedp0
                                               || TYPE_UNSIGNED (*restype_ptr),
                                               || TYPE_UNSIGNED (*restype_ptr),
                                               type);
                                               type);
      /* Make sure shorter operand is extended the right way
      /* Make sure shorter operand is extended the right way
         to match the longer operand.  */
         to match the longer operand.  */
      primop0
      primop0
        = convert (c_common_signed_or_unsigned_type (unsignedp0,
        = convert (c_common_signed_or_unsigned_type (unsignedp0,
                                                     TREE_TYPE (primop0)),
                                                     TREE_TYPE (primop0)),
                   primop0);
                   primop0);
      primop1
      primop1
        = convert (c_common_signed_or_unsigned_type (unsignedp1,
        = convert (c_common_signed_or_unsigned_type (unsignedp1,
                                                     TREE_TYPE (primop1)),
                                                     TREE_TYPE (primop1)),
                   primop1);
                   primop1);
    }
    }
  else
  else
    {
    {
      /* Here we must do the comparison on the nominal type
      /* Here we must do the comparison on the nominal type
         using the args exactly as we received them.  */
         using the args exactly as we received them.  */
      type = *restype_ptr;
      type = *restype_ptr;
      primop0 = op0;
      primop0 = op0;
      primop1 = op1;
      primop1 = op1;
 
 
      if (!real1 && !real2 && integer_zerop (primop1)
      if (!real1 && !real2 && integer_zerop (primop1)
          && TYPE_UNSIGNED (*restype_ptr))
          && TYPE_UNSIGNED (*restype_ptr))
        {
        {
          tree value = 0;
          tree value = 0;
          switch (code)
          switch (code)
            {
            {
            case GE_EXPR:
            case GE_EXPR:
              /* All unsigned values are >= 0, so we warn if extra warnings
              /* All unsigned values are >= 0, so we warn if extra warnings
                 are requested.  However, if OP0 is a constant that is
                 are requested.  However, if OP0 is a constant that is
                 >= 0, the signedness of the comparison isn't an issue,
                 >= 0, the signedness of the comparison isn't an issue,
                 so suppress the warning.  */
                 so suppress the warning.  */
              if (extra_warnings && !in_system_header
              if (extra_warnings && !in_system_header
                  && !(TREE_CODE (primop0) == INTEGER_CST
                  && !(TREE_CODE (primop0) == INTEGER_CST
                       && !TREE_OVERFLOW (convert (c_common_signed_type (type),
                       && !TREE_OVERFLOW (convert (c_common_signed_type (type),
                                                   primop0))))
                                                   primop0))))
                warning (0, "comparison of unsigned expression >= 0 is always true");
                warning (0, "comparison of unsigned expression >= 0 is always true");
              value = truthvalue_true_node;
              value = truthvalue_true_node;
              break;
              break;
 
 
            case LT_EXPR:
            case LT_EXPR:
              if (extra_warnings && !in_system_header
              if (extra_warnings && !in_system_header
                  && !(TREE_CODE (primop0) == INTEGER_CST
                  && !(TREE_CODE (primop0) == INTEGER_CST
                       && !TREE_OVERFLOW (convert (c_common_signed_type (type),
                       && !TREE_OVERFLOW (convert (c_common_signed_type (type),
                                                   primop0))))
                                                   primop0))))
                warning (0, "comparison of unsigned expression < 0 is always false");
                warning (0, "comparison of unsigned expression < 0 is always false");
              value = truthvalue_false_node;
              value = truthvalue_false_node;
              break;
              break;
 
 
            default:
            default:
              break;
              break;
            }
            }
 
 
          if (value != 0)
          if (value != 0)
            {
            {
              /* Don't forget to evaluate PRIMOP0 if it has side effects.  */
              /* Don't forget to evaluate PRIMOP0 if it has side effects.  */
              if (TREE_SIDE_EFFECTS (primop0))
              if (TREE_SIDE_EFFECTS (primop0))
                return build2 (COMPOUND_EXPR, TREE_TYPE (value),
                return build2 (COMPOUND_EXPR, TREE_TYPE (value),
                               primop0, value);
                               primop0, value);
              return value;
              return value;
            }
            }
        }
        }
    }
    }
 
 
  *op0_ptr = convert (type, primop0);
  *op0_ptr = convert (type, primop0);
  *op1_ptr = convert (type, primop1);
  *op1_ptr = convert (type, primop1);
 
 
  *restype_ptr = truthvalue_type_node;
  *restype_ptr = truthvalue_type_node;
 
 
  return 0;
  return 0;
}
}


/* Return a tree for the sum or difference (RESULTCODE says which)
/* Return a tree for the sum or difference (RESULTCODE says which)
   of pointer PTROP and integer INTOP.  */
   of pointer PTROP and integer INTOP.  */
 
 
tree
tree
pointer_int_sum (enum tree_code resultcode, tree ptrop, tree intop)
pointer_int_sum (enum tree_code resultcode, tree ptrop, tree intop)
{
{
  tree size_exp, ret;
  tree size_exp, ret;
 
 
  /* The result is a pointer of the same type that is being added.  */
  /* The result is a pointer of the same type that is being added.  */
 
 
  tree result_type = TREE_TYPE (ptrop);
  tree result_type = TREE_TYPE (ptrop);
 
 
  if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
  if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
    {
    {
      if (pedantic || warn_pointer_arith)
      if (pedantic || warn_pointer_arith)
        pedwarn ("pointer of type %<void *%> used in arithmetic");
        pedwarn ("pointer of type %<void *%> used in arithmetic");
      size_exp = integer_one_node;
      size_exp = integer_one_node;
    }
    }
  else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
  else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
    {
    {
      if (pedantic || warn_pointer_arith)
      if (pedantic || warn_pointer_arith)
        pedwarn ("pointer to a function used in arithmetic");
        pedwarn ("pointer to a function used in arithmetic");
      size_exp = integer_one_node;
      size_exp = integer_one_node;
    }
    }
  else if (TREE_CODE (TREE_TYPE (result_type)) == METHOD_TYPE)
  else if (TREE_CODE (TREE_TYPE (result_type)) == METHOD_TYPE)
    {
    {
      if (pedantic || warn_pointer_arith)
      if (pedantic || warn_pointer_arith)
        pedwarn ("pointer to member function used in arithmetic");
        pedwarn ("pointer to member function used in arithmetic");
      size_exp = integer_one_node;
      size_exp = integer_one_node;
    }
    }
  else
  else
    size_exp = size_in_bytes (TREE_TYPE (result_type));
    size_exp = size_in_bytes (TREE_TYPE (result_type));
 
 
  /* We are manipulating pointer values, so we don't need to warn
  /* We are manipulating pointer values, so we don't need to warn
     about relying on undefined signed overflow.  We disable the
     about relying on undefined signed overflow.  We disable the
     warning here because we use integer types so fold won't know that
     warning here because we use integer types so fold won't know that
     they are really pointers.  */
     they are really pointers.  */
  fold_defer_overflow_warnings ();
  fold_defer_overflow_warnings ();
 
 
  /* If what we are about to multiply by the size of the elements
  /* If what we are about to multiply by the size of the elements
     contains a constant term, apply distributive law
     contains a constant term, apply distributive law
     and multiply that constant term separately.
     and multiply that constant term separately.
     This helps produce common subexpressions.  */
     This helps produce common subexpressions.  */
 
 
  if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
  if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
      && !TREE_CONSTANT (intop)
      && !TREE_CONSTANT (intop)
      && TREE_CONSTANT (TREE_OPERAND (intop, 1))
      && TREE_CONSTANT (TREE_OPERAND (intop, 1))
      && TREE_CONSTANT (size_exp)
      && TREE_CONSTANT (size_exp)
      /* If the constant comes from pointer subtraction,
      /* If the constant comes from pointer subtraction,
         skip this optimization--it would cause an error.  */
         skip this optimization--it would cause an error.  */
      && TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
      && TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
      /* If the constant is unsigned, and smaller than the pointer size,
      /* If the constant is unsigned, and smaller than the pointer size,
         then we must skip this optimization.  This is because it could cause
         then we must skip this optimization.  This is because it could cause
         an overflow error if the constant is negative but INTOP is not.  */
         an overflow error if the constant is negative but INTOP is not.  */
      && (!TYPE_UNSIGNED (TREE_TYPE (intop))
      && (!TYPE_UNSIGNED (TREE_TYPE (intop))
          || (TYPE_PRECISION (TREE_TYPE (intop))
          || (TYPE_PRECISION (TREE_TYPE (intop))
              == TYPE_PRECISION (TREE_TYPE (ptrop)))))
              == TYPE_PRECISION (TREE_TYPE (ptrop)))))
    {
    {
      enum tree_code subcode = resultcode;
      enum tree_code subcode = resultcode;
      tree int_type = TREE_TYPE (intop);
      tree int_type = TREE_TYPE (intop);
      if (TREE_CODE (intop) == MINUS_EXPR)
      if (TREE_CODE (intop) == MINUS_EXPR)
        subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
        subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
      /* Convert both subexpression types to the type of intop,
      /* Convert both subexpression types to the type of intop,
         because weird cases involving pointer arithmetic
         because weird cases involving pointer arithmetic
         can result in a sum or difference with different type args.  */
         can result in a sum or difference with different type args.  */
      ptrop = build_binary_op (subcode, ptrop,
      ptrop = build_binary_op (subcode, ptrop,
                               convert (int_type, TREE_OPERAND (intop, 1)), 1);
                               convert (int_type, TREE_OPERAND (intop, 1)), 1);
      intop = convert (int_type, TREE_OPERAND (intop, 0));
      intop = convert (int_type, TREE_OPERAND (intop, 0));
    }
    }
 
 
  /* Convert the integer argument to a type the same size as sizetype
  /* Convert the integer argument to a type the same size as sizetype
     so the multiply won't overflow spuriously.  */
     so the multiply won't overflow spuriously.  */
 
 
  if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
  if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
      || TYPE_UNSIGNED (TREE_TYPE (intop)) != TYPE_UNSIGNED (sizetype))
      || TYPE_UNSIGNED (TREE_TYPE (intop)) != TYPE_UNSIGNED (sizetype))
    intop = convert (c_common_type_for_size (TYPE_PRECISION (sizetype),
    intop = convert (c_common_type_for_size (TYPE_PRECISION (sizetype),
                                             TYPE_UNSIGNED (sizetype)), intop);
                                             TYPE_UNSIGNED (sizetype)), intop);
 
 
  /* Replace the integer argument with a suitable product by the object size.
  /* Replace the integer argument with a suitable product by the object size.
     Do this multiplication as signed, then convert to the appropriate
     Do this multiplication as signed, then convert to the appropriate
     pointer type (actually unsigned integral).  */
     pointer type (actually unsigned integral).  */
 
 
  intop = convert (result_type,
  intop = convert (result_type,
                   build_binary_op (MULT_EXPR, intop,
                   build_binary_op (MULT_EXPR, intop,
                                    convert (TREE_TYPE (intop), size_exp), 1));
                                    convert (TREE_TYPE (intop), size_exp), 1));
 
 
  /* Create the sum or difference.  */
  /* Create the sum or difference.  */
  ret = fold_build2 (resultcode, result_type, ptrop, intop);
  ret = fold_build2 (resultcode, result_type, ptrop, intop);
 
 
  fold_undefer_and_ignore_overflow_warnings ();
  fold_undefer_and_ignore_overflow_warnings ();
 
 
  return ret;
  return ret;
}
}


/* Prepare expr to be an argument of a TRUTH_NOT_EXPR,
/* Prepare expr to be an argument of a TRUTH_NOT_EXPR,
   or for an `if' or `while' statement or ?..: exp.  It should already
   or for an `if' or `while' statement or ?..: exp.  It should already
   have been validated to be of suitable type; otherwise, a bad
   have been validated to be of suitable type; otherwise, a bad
   diagnostic may result.
   diagnostic may result.
 
 
   This preparation consists of taking the ordinary
   This preparation consists of taking the ordinary
   representation of an expression expr and producing a valid tree
   representation of an expression expr and producing a valid tree
   boolean expression describing whether expr is nonzero.  We could
   boolean expression describing whether expr is nonzero.  We could
   simply always do build_binary_op (NE_EXPR, expr, truthvalue_false_node, 1),
   simply always do build_binary_op (NE_EXPR, expr, truthvalue_false_node, 1),
   but we optimize comparisons, &&, ||, and !.
   but we optimize comparisons, &&, ||, and !.
 
 
   The resulting type should always be `truthvalue_type_node'.  */
   The resulting type should always be `truthvalue_type_node'.  */
 
 
tree
tree
c_common_truthvalue_conversion (tree expr)
c_common_truthvalue_conversion (tree expr)
{
{
  switch (TREE_CODE (expr))
  switch (TREE_CODE (expr))
    {
    {
    case EQ_EXPR:   case NE_EXPR:   case UNEQ_EXPR: case LTGT_EXPR:
    case EQ_EXPR:   case NE_EXPR:   case UNEQ_EXPR: case LTGT_EXPR:
    case LE_EXPR:   case GE_EXPR:   case LT_EXPR:   case GT_EXPR:
    case LE_EXPR:   case GE_EXPR:   case LT_EXPR:   case GT_EXPR:
    case UNLE_EXPR: case UNGE_EXPR: case UNLT_EXPR: case UNGT_EXPR:
    case UNLE_EXPR: case UNGE_EXPR: case UNLT_EXPR: case UNGT_EXPR:
    case ORDERED_EXPR: case UNORDERED_EXPR:
    case ORDERED_EXPR: case UNORDERED_EXPR:
      if (TREE_TYPE (expr) == truthvalue_type_node)
      if (TREE_TYPE (expr) == truthvalue_type_node)
        return expr;
        return expr;
      return build2 (TREE_CODE (expr), truthvalue_type_node,
      return build2 (TREE_CODE (expr), truthvalue_type_node,
                     TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1));
                     TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1));
 
 
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_XOR_EXPR:
    case TRUTH_XOR_EXPR:
      if (TREE_TYPE (expr) == truthvalue_type_node)
      if (TREE_TYPE (expr) == truthvalue_type_node)
        return expr;
        return expr;
      return build2 (TREE_CODE (expr), truthvalue_type_node,
      return build2 (TREE_CODE (expr), truthvalue_type_node,
                 c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)),
                 c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)),
                 c_common_truthvalue_conversion (TREE_OPERAND (expr, 1)));
                 c_common_truthvalue_conversion (TREE_OPERAND (expr, 1)));
 
 
    case TRUTH_NOT_EXPR:
    case TRUTH_NOT_EXPR:
      if (TREE_TYPE (expr) == truthvalue_type_node)
      if (TREE_TYPE (expr) == truthvalue_type_node)
        return expr;
        return expr;
      return build1 (TREE_CODE (expr), truthvalue_type_node,
      return build1 (TREE_CODE (expr), truthvalue_type_node,
                 c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)));
                 c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)));
 
 
    case ERROR_MARK:
    case ERROR_MARK:
      return expr;
      return expr;
 
 
    case INTEGER_CST:
    case INTEGER_CST:
      /* Avoid integer_zerop to ignore TREE_CONSTANT_OVERFLOW.  */
      /* Avoid integer_zerop to ignore TREE_CONSTANT_OVERFLOW.  */
      return (TREE_INT_CST_LOW (expr) != 0 || TREE_INT_CST_HIGH (expr) != 0)
      return (TREE_INT_CST_LOW (expr) != 0 || TREE_INT_CST_HIGH (expr) != 0)
             ? truthvalue_true_node
             ? truthvalue_true_node
             : truthvalue_false_node;
             : truthvalue_false_node;
 
 
    case REAL_CST:
    case REAL_CST:
      return real_compare (NE_EXPR, &TREE_REAL_CST (expr), &dconst0)
      return real_compare (NE_EXPR, &TREE_REAL_CST (expr), &dconst0)
             ? truthvalue_true_node
             ? truthvalue_true_node
             : truthvalue_false_node;
             : truthvalue_false_node;
 
 
    case FUNCTION_DECL:
    case FUNCTION_DECL:
      expr = build_unary_op (ADDR_EXPR, expr, 0);
      expr = build_unary_op (ADDR_EXPR, expr, 0);
      /* Fall through.  */
      /* Fall through.  */
 
 
    case ADDR_EXPR:
    case ADDR_EXPR:
      {
      {
        tree inner = TREE_OPERAND (expr, 0);
        tree inner = TREE_OPERAND (expr, 0);
        if (DECL_P (inner)
        if (DECL_P (inner)
            && (TREE_CODE (inner) == PARM_DECL
            && (TREE_CODE (inner) == PARM_DECL
                || TREE_CODE (inner) == LABEL_DECL
                || TREE_CODE (inner) == LABEL_DECL
                || !DECL_WEAK (inner)))
                || !DECL_WEAK (inner)))
          {
          {
            /* Common Ada/Pascal programmer's mistake.  We always warn
            /* Common Ada/Pascal programmer's mistake.  We always warn
               about this since it is so bad.  */
               about this since it is so bad.  */
            warning (OPT_Waddress,
            warning (OPT_Waddress,
                     "the address of %qD will always evaluate as %<true%>",
                     "the address of %qD will always evaluate as %<true%>",
                     inner);
                     inner);
            return truthvalue_true_node;
            return truthvalue_true_node;
          }
          }
 
 
        /* If we are taking the address of an external decl, it might be
        /* If we are taking the address of an external decl, it might be
           zero if it is weak, so we cannot optimize.  */
           zero if it is weak, so we cannot optimize.  */
        if (DECL_P (inner)
        if (DECL_P (inner)
            && DECL_EXTERNAL (inner))
            && DECL_EXTERNAL (inner))
          break;
          break;
 
 
        if (TREE_SIDE_EFFECTS (inner))
        if (TREE_SIDE_EFFECTS (inner))
          return build2 (COMPOUND_EXPR, truthvalue_type_node,
          return build2 (COMPOUND_EXPR, truthvalue_type_node,
                         inner, truthvalue_true_node);
                         inner, truthvalue_true_node);
        else
        else
          return truthvalue_true_node;
          return truthvalue_true_node;
      }
      }
 
 
    case COMPLEX_EXPR:
    case COMPLEX_EXPR:
      return build_binary_op ((TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))
      return build_binary_op ((TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1))
                               ? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
                               ? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
                c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)),
                c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)),
                c_common_truthvalue_conversion (TREE_OPERAND (expr, 1)),
                c_common_truthvalue_conversion (TREE_OPERAND (expr, 1)),
                              0);
                              0);
 
 
    case NEGATE_EXPR:
    case NEGATE_EXPR:
    case ABS_EXPR:
    case ABS_EXPR:
    case FLOAT_EXPR:
    case FLOAT_EXPR:
      /* These don't change whether an object is nonzero or zero.  */
      /* These don't change whether an object is nonzero or zero.  */
      return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
      return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
 
 
    case LROTATE_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
    case RROTATE_EXPR:
      /* These don't change whether an object is zero or nonzero, but
      /* These don't change whether an object is zero or nonzero, but
         we can't ignore them if their second arg has side-effects.  */
         we can't ignore them if their second arg has side-effects.  */
      if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1)))
      if (TREE_SIDE_EFFECTS (TREE_OPERAND (expr, 1)))
        return build2 (COMPOUND_EXPR, truthvalue_type_node,
        return build2 (COMPOUND_EXPR, truthvalue_type_node,
                       TREE_OPERAND (expr, 1),
                       TREE_OPERAND (expr, 1),
                       c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)));
                       c_common_truthvalue_conversion (TREE_OPERAND (expr, 0)));
      else
      else
        return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
        return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
 
 
    case COND_EXPR:
    case COND_EXPR:
      /* Distribute the conversion into the arms of a COND_EXPR.  */
      /* Distribute the conversion into the arms of a COND_EXPR.  */
      return fold_build3 (COND_EXPR, truthvalue_type_node,
      return fold_build3 (COND_EXPR, truthvalue_type_node,
                TREE_OPERAND (expr, 0),
                TREE_OPERAND (expr, 0),
                c_common_truthvalue_conversion (TREE_OPERAND (expr, 1)),
                c_common_truthvalue_conversion (TREE_OPERAND (expr, 1)),
                c_common_truthvalue_conversion (TREE_OPERAND (expr, 2)));
                c_common_truthvalue_conversion (TREE_OPERAND (expr, 2)));
 
 
    case CONVERT_EXPR:
    case CONVERT_EXPR:
    case NOP_EXPR:
    case NOP_EXPR:
      /* Don't cancel the effect of a CONVERT_EXPR from a REFERENCE_TYPE,
      /* Don't cancel the effect of a CONVERT_EXPR from a REFERENCE_TYPE,
         since that affects how `default_conversion' will behave.  */
         since that affects how `default_conversion' will behave.  */
      if (TREE_CODE (TREE_TYPE (expr)) == REFERENCE_TYPE
      if (TREE_CODE (TREE_TYPE (expr)) == REFERENCE_TYPE
          || TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == REFERENCE_TYPE)
          || TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == REFERENCE_TYPE)
        break;
        break;
      /* If this is widening the argument, we can ignore it.  */
      /* If this is widening the argument, we can ignore it.  */
      if (TYPE_PRECISION (TREE_TYPE (expr))
      if (TYPE_PRECISION (TREE_TYPE (expr))
          >= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
          >= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
        return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
        return c_common_truthvalue_conversion (TREE_OPERAND (expr, 0));
      break;
      break;
 
 
    case MODIFY_EXPR:
    case MODIFY_EXPR:
      if (!TREE_NO_WARNING (expr))
      if (!TREE_NO_WARNING (expr))
        warning (OPT_Wparentheses,
        warning (OPT_Wparentheses,
                 "suggest parentheses around assignment used as truth value");
                 "suggest parentheses around assignment used as truth value");
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  if (TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
  if (TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
    {
    {
      tree t = save_expr (expr);
      tree t = save_expr (expr);
      return (build_binary_op
      return (build_binary_op
              ((TREE_SIDE_EFFECTS (expr)
              ((TREE_SIDE_EFFECTS (expr)
                ? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
                ? TRUTH_OR_EXPR : TRUTH_ORIF_EXPR),
        c_common_truthvalue_conversion (build_unary_op (REALPART_EXPR, t, 0)),
        c_common_truthvalue_conversion (build_unary_op (REALPART_EXPR, t, 0)),
        c_common_truthvalue_conversion (build_unary_op (IMAGPART_EXPR, t, 0)),
        c_common_truthvalue_conversion (build_unary_op (IMAGPART_EXPR, t, 0)),
               0));
               0));
    }
    }
 
 
  return build_binary_op (NE_EXPR, expr, integer_zero_node, 1);
  return build_binary_op (NE_EXPR, expr, integer_zero_node, 1);
}
}


static void def_builtin_1  (enum built_in_function fncode,
static void def_builtin_1  (enum built_in_function fncode,
                            const char *name,
                            const char *name,
                            enum built_in_class fnclass,
                            enum built_in_class fnclass,
                            tree fntype, tree libtype,
                            tree fntype, tree libtype,
                            bool both_p, bool fallback_p, bool nonansi_p,
                            bool both_p, bool fallback_p, bool nonansi_p,
                            tree fnattrs, bool implicit_p);
                            tree fnattrs, bool implicit_p);
 
 
/* Make a variant type in the proper way for C/C++, propagating qualifiers
/* Make a variant type in the proper way for C/C++, propagating qualifiers
   down to the element type of an array.  */
   down to the element type of an array.  */
 
 
tree
tree
c_build_qualified_type (tree type, int type_quals)
c_build_qualified_type (tree type, int type_quals)
{
{
  if (type == error_mark_node)
  if (type == error_mark_node)
    return type;
    return type;
 
 
  if (TREE_CODE (type) == ARRAY_TYPE)
  if (TREE_CODE (type) == ARRAY_TYPE)
    {
    {
      tree t;
      tree t;
      tree element_type = c_build_qualified_type (TREE_TYPE (type),
      tree element_type = c_build_qualified_type (TREE_TYPE (type),
                                                  type_quals);
                                                  type_quals);
 
 
      /* See if we already have an identically qualified type.  */
      /* See if we already have an identically qualified type.  */
      for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
      for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
        {
        {
          if (TYPE_QUALS (strip_array_types (t)) == type_quals
          if (TYPE_QUALS (strip_array_types (t)) == type_quals
              && TYPE_NAME (t) == TYPE_NAME (type)
              && TYPE_NAME (t) == TYPE_NAME (type)
              && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
              && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
              && attribute_list_equal (TYPE_ATTRIBUTES (t),
              && attribute_list_equal (TYPE_ATTRIBUTES (t),
                                       TYPE_ATTRIBUTES (type)))
                                       TYPE_ATTRIBUTES (type)))
            break;
            break;
        }
        }
      if (!t)
      if (!t)
        {
        {
          t = build_variant_type_copy (type);
          t = build_variant_type_copy (type);
          TREE_TYPE (t) = element_type;
          TREE_TYPE (t) = element_type;
        }
        }
      return t;
      return t;
    }
    }
 
 
  /* A restrict-qualified pointer type must be a pointer to object or
  /* A restrict-qualified pointer type must be a pointer to object or
     incomplete type.  Note that the use of POINTER_TYPE_P also allows
     incomplete type.  Note that the use of POINTER_TYPE_P also allows
     REFERENCE_TYPEs, which is appropriate for C++.  */
     REFERENCE_TYPEs, which is appropriate for C++.  */
  if ((type_quals & TYPE_QUAL_RESTRICT)
  if ((type_quals & TYPE_QUAL_RESTRICT)
      && (!POINTER_TYPE_P (type)
      && (!POINTER_TYPE_P (type)
          || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
          || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type))))
    {
    {
      error ("invalid use of %<restrict%>");
      error ("invalid use of %<restrict%>");
      type_quals &= ~TYPE_QUAL_RESTRICT;
      type_quals &= ~TYPE_QUAL_RESTRICT;
    }
    }
 
 
  return build_qualified_type (type, type_quals);
  return build_qualified_type (type, type_quals);
}
}
 
 
/* Apply the TYPE_QUALS to the new DECL.  */
/* Apply the TYPE_QUALS to the new DECL.  */
 
 
void
void
c_apply_type_quals_to_decl (int type_quals, tree decl)
c_apply_type_quals_to_decl (int type_quals, tree decl)
{
{
  tree type = TREE_TYPE (decl);
  tree type = TREE_TYPE (decl);
 
 
  if (type == error_mark_node)
  if (type == error_mark_node)
    return;
    return;
 
 
  if (((type_quals & TYPE_QUAL_CONST)
  if (((type_quals & TYPE_QUAL_CONST)
       || (type && TREE_CODE (type) == REFERENCE_TYPE))
       || (type && TREE_CODE (type) == REFERENCE_TYPE))
      /* An object declared 'const' is only readonly after it is
      /* An object declared 'const' is only readonly after it is
         initialized.  We don't have any way of expressing this currently,
         initialized.  We don't have any way of expressing this currently,
         so we need to be conservative and unset TREE_READONLY for types
         so we need to be conservative and unset TREE_READONLY for types
         with constructors.  Otherwise aliasing code will ignore stores in
         with constructors.  Otherwise aliasing code will ignore stores in
         an inline constructor.  */
         an inline constructor.  */
      && !(type && TYPE_NEEDS_CONSTRUCTING (type)))
      && !(type && TYPE_NEEDS_CONSTRUCTING (type)))
    TREE_READONLY (decl) = 1;
    TREE_READONLY (decl) = 1;
  if (type_quals & TYPE_QUAL_VOLATILE)
  if (type_quals & TYPE_QUAL_VOLATILE)
    {
    {
      TREE_SIDE_EFFECTS (decl) = 1;
      TREE_SIDE_EFFECTS (decl) = 1;
      TREE_THIS_VOLATILE (decl) = 1;
      TREE_THIS_VOLATILE (decl) = 1;
    }
    }
  if (type_quals & TYPE_QUAL_RESTRICT)
  if (type_quals & TYPE_QUAL_RESTRICT)
    {
    {
      while (type && TREE_CODE (type) == ARRAY_TYPE)
      while (type && TREE_CODE (type) == ARRAY_TYPE)
        /* Allow 'restrict' on arrays of pointers.
        /* Allow 'restrict' on arrays of pointers.
           FIXME currently we just ignore it.  */
           FIXME currently we just ignore it.  */
        type = TREE_TYPE (type);
        type = TREE_TYPE (type);
      if (!type
      if (!type
          || !POINTER_TYPE_P (type)
          || !POINTER_TYPE_P (type)
          || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type)))
          || !C_TYPE_OBJECT_OR_INCOMPLETE_P (TREE_TYPE (type)))
        error ("invalid use of %<restrict%>");
        error ("invalid use of %<restrict%>");
      else if (flag_strict_aliasing && type == TREE_TYPE (decl))
      else if (flag_strict_aliasing && type == TREE_TYPE (decl))
        /* Indicate we need to make a unique alias set for this pointer.
        /* Indicate we need to make a unique alias set for this pointer.
           We can't do it here because it might be pointing to an
           We can't do it here because it might be pointing to an
           incomplete type.  */
           incomplete type.  */
        DECL_POINTER_ALIAS_SET (decl) = -2;
        DECL_POINTER_ALIAS_SET (decl) = -2;
    }
    }
}
}
 
 
/* Hash function for the problem of multiple type definitions in
/* Hash function for the problem of multiple type definitions in
   different files.  This must hash all types that will compare
   different files.  This must hash all types that will compare
   equal via comptypes to the same value.  In practice it hashes
   equal via comptypes to the same value.  In practice it hashes
   on some of the simple stuff and leaves the details to comptypes.  */
   on some of the simple stuff and leaves the details to comptypes.  */
 
 
static hashval_t
static hashval_t
c_type_hash (const void *p)
c_type_hash (const void *p)
{
{
  int i = 0;
  int i = 0;
  int shift, size;
  int shift, size;
  tree t = (tree) p;
  tree t = (tree) p;
  tree t2;
  tree t2;
  switch (TREE_CODE (t))
  switch (TREE_CODE (t))
    {
    {
    /* For pointers, hash on pointee type plus some swizzling.  */
    /* For pointers, hash on pointee type plus some swizzling.  */
    case POINTER_TYPE:
    case POINTER_TYPE:
      return c_type_hash (TREE_TYPE (t)) ^ 0x3003003;
      return c_type_hash (TREE_TYPE (t)) ^ 0x3003003;
    /* Hash on number of elements and total size.  */
    /* Hash on number of elements and total size.  */
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
      shift = 3;
      shift = 3;
      t2 = TYPE_VALUES (t);
      t2 = TYPE_VALUES (t);
      break;
      break;
    case RECORD_TYPE:
    case RECORD_TYPE:
      shift = 0;
      shift = 0;
      t2 = TYPE_FIELDS (t);
      t2 = TYPE_FIELDS (t);
      break;
      break;
    case QUAL_UNION_TYPE:
    case QUAL_UNION_TYPE:
      shift = 1;
      shift = 1;
      t2 = TYPE_FIELDS (t);
      t2 = TYPE_FIELDS (t);
      break;
      break;
    case UNION_TYPE:
    case UNION_TYPE:
      shift = 2;
      shift = 2;
      t2 = TYPE_FIELDS (t);
      t2 = TYPE_FIELDS (t);
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
  for (; t2; t2 = TREE_CHAIN (t2))
  for (; t2; t2 = TREE_CHAIN (t2))
    i++;
    i++;
  size = TREE_INT_CST_LOW (TYPE_SIZE (t));
  size = TREE_INT_CST_LOW (TYPE_SIZE (t));
  return ((size << 24) | (i << shift));
  return ((size << 24) | (i << shift));
}
}
 
 
static GTY((param_is (union tree_node))) htab_t type_hash_table;
static GTY((param_is (union tree_node))) htab_t type_hash_table;
 
 
/* Return the typed-based alias set for T, which may be an expression
/* Return the typed-based alias set for T, which may be an expression
   or a type.  Return -1 if we don't do anything special.  */
   or a type.  Return -1 if we don't do anything special.  */
 
 
HOST_WIDE_INT
HOST_WIDE_INT
c_common_get_alias_set (tree t)
c_common_get_alias_set (tree t)
{
{
  tree u;
  tree u;
  PTR *slot;
  PTR *slot;
 
 
  /* Permit type-punning when accessing a union, provided the access
  /* Permit type-punning when accessing a union, provided the access
     is directly through the union.  For example, this code does not
     is directly through the union.  For example, this code does not
     permit taking the address of a union member and then storing
     permit taking the address of a union member and then storing
     through it.  Even the type-punning allowed here is a GCC
     through it.  Even the type-punning allowed here is a GCC
     extension, albeit a common and useful one; the C standard says
     extension, albeit a common and useful one; the C standard says
     that such accesses have implementation-defined behavior.  */
     that such accesses have implementation-defined behavior.  */
  for (u = t;
  for (u = t;
       TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
       TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
       u = TREE_OPERAND (u, 0))
       u = TREE_OPERAND (u, 0))
    if (TREE_CODE (u) == COMPONENT_REF
    if (TREE_CODE (u) == COMPONENT_REF
        && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
        && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
      return 0;
      return 0;
 
 
  /* That's all the expressions we handle specially.  */
  /* That's all the expressions we handle specially.  */
  if (!TYPE_P (t))
  if (!TYPE_P (t))
    return -1;
    return -1;
 
 
  /* The C standard guarantees that any object may be accessed via an
  /* The C standard guarantees that any object may be accessed via an
     lvalue that has character type.  */
     lvalue that has character type.  */
  if (t == char_type_node
  if (t == char_type_node
      || t == signed_char_type_node
      || t == signed_char_type_node
      || t == unsigned_char_type_node)
      || t == unsigned_char_type_node)
    return 0;
    return 0;
 
 
  /* If it has the may_alias attribute, it can alias anything.  */
  /* If it has the may_alias attribute, it can alias anything.  */
  if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (t)))
  if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (t)))
    return 0;
    return 0;
 
 
  /* The C standard specifically allows aliasing between signed and
  /* The C standard specifically allows aliasing between signed and
     unsigned variants of the same type.  We treat the signed
     unsigned variants of the same type.  We treat the signed
     variant as canonical.  */
     variant as canonical.  */
  if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
  if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
    {
    {
      tree t1 = c_common_signed_type (t);
      tree t1 = c_common_signed_type (t);
 
 
      /* t1 == t can happen for boolean nodes which are always unsigned.  */
      /* t1 == t can happen for boolean nodes which are always unsigned.  */
      if (t1 != t)
      if (t1 != t)
        return get_alias_set (t1);
        return get_alias_set (t1);
    }
    }
  else if (POINTER_TYPE_P (t))
  else if (POINTER_TYPE_P (t))
    {
    {
      tree t1;
      tree t1;
 
 
      /* Unfortunately, there is no canonical form of a pointer type.
      /* Unfortunately, there is no canonical form of a pointer type.
         In particular, if we have `typedef int I', then `int *', and
         In particular, if we have `typedef int I', then `int *', and
         `I *' are different types.  So, we have to pick a canonical
         `I *' are different types.  So, we have to pick a canonical
         representative.  We do this below.
         representative.  We do this below.
 
 
         Technically, this approach is actually more conservative that
         Technically, this approach is actually more conservative that
         it needs to be.  In particular, `const int *' and `int *'
         it needs to be.  In particular, `const int *' and `int *'
         should be in different alias sets, according to the C and C++
         should be in different alias sets, according to the C and C++
         standard, since their types are not the same, and so,
         standard, since their types are not the same, and so,
         technically, an `int **' and `const int **' cannot point at
         technically, an `int **' and `const int **' cannot point at
         the same thing.
         the same thing.
 
 
         But, the standard is wrong.  In particular, this code is
         But, the standard is wrong.  In particular, this code is
         legal C++:
         legal C++:
 
 
            int *ip;
            int *ip;
            int **ipp = &ip;
            int **ipp = &ip;
            const int* const* cipp = ipp;
            const int* const* cipp = ipp;
 
 
         And, it doesn't make sense for that to be legal unless you
         And, it doesn't make sense for that to be legal unless you
         can dereference IPP and CIPP.  So, we ignore cv-qualifiers on
         can dereference IPP and CIPP.  So, we ignore cv-qualifiers on
         the pointed-to types.  This issue has been reported to the
         the pointed-to types.  This issue has been reported to the
         C++ committee.  */
         C++ committee.  */
      t1 = build_type_no_quals (t);
      t1 = build_type_no_quals (t);
      if (t1 != t)
      if (t1 != t)
        return get_alias_set (t1);
        return get_alias_set (t1);
    }
    }
 
 
  /* Handle the case of multiple type nodes referring to "the same" type,
  /* Handle the case of multiple type nodes referring to "the same" type,
     which occurs with IMA.  These share an alias set.  FIXME:  Currently only
     which occurs with IMA.  These share an alias set.  FIXME:  Currently only
     C90 is handled.  (In C99 type compatibility is not transitive, which
     C90 is handled.  (In C99 type compatibility is not transitive, which
     complicates things mightily. The alias set splay trees can theoretically
     complicates things mightily. The alias set splay trees can theoretically
     represent this, but insertion is tricky when you consider all the
     represent this, but insertion is tricky when you consider all the
     different orders things might arrive in.) */
     different orders things might arrive in.) */
 
 
  if (c_language != clk_c || flag_isoc99)
  if (c_language != clk_c || flag_isoc99)
    return -1;
    return -1;
 
 
  /* Save time if there's only one input file.  */
  /* Save time if there's only one input file.  */
  if (num_in_fnames == 1)
  if (num_in_fnames == 1)
    return -1;
    return -1;
 
 
  /* Pointers need special handling if they point to any type that
  /* Pointers need special handling if they point to any type that
     needs special handling (below).  */
     needs special handling (below).  */
  if (TREE_CODE (t) == POINTER_TYPE)
  if (TREE_CODE (t) == POINTER_TYPE)
    {
    {
      tree t2;
      tree t2;
      /* Find bottom type under any nested POINTERs.  */
      /* Find bottom type under any nested POINTERs.  */
      for (t2 = TREE_TYPE (t);
      for (t2 = TREE_TYPE (t);
     TREE_CODE (t2) == POINTER_TYPE;
     TREE_CODE (t2) == POINTER_TYPE;
     t2 = TREE_TYPE (t2))
     t2 = TREE_TYPE (t2))
  ;
  ;
      if (TREE_CODE (t2) != RECORD_TYPE
      if (TREE_CODE (t2) != RECORD_TYPE
    && TREE_CODE (t2) != ENUMERAL_TYPE
    && TREE_CODE (t2) != ENUMERAL_TYPE
    && TREE_CODE (t2) != QUAL_UNION_TYPE
    && TREE_CODE (t2) != QUAL_UNION_TYPE
    && TREE_CODE (t2) != UNION_TYPE)
    && TREE_CODE (t2) != UNION_TYPE)
  return -1;
  return -1;
      if (TYPE_SIZE (t2) == 0)
      if (TYPE_SIZE (t2) == 0)
  return -1;
  return -1;
    }
    }
  /* These are the only cases that need special handling.  */
  /* These are the only cases that need special handling.  */
  if (TREE_CODE (t) != RECORD_TYPE
  if (TREE_CODE (t) != RECORD_TYPE
      && TREE_CODE (t) != ENUMERAL_TYPE
      && TREE_CODE (t) != ENUMERAL_TYPE
      && TREE_CODE (t) != QUAL_UNION_TYPE
      && TREE_CODE (t) != QUAL_UNION_TYPE
      && TREE_CODE (t) != UNION_TYPE
      && TREE_CODE (t) != UNION_TYPE
      && TREE_CODE (t) != POINTER_TYPE)
      && TREE_CODE (t) != POINTER_TYPE)
    return -1;
    return -1;
  /* Undefined? */
  /* Undefined? */
  if (TYPE_SIZE (t) == 0)
  if (TYPE_SIZE (t) == 0)
    return -1;
    return -1;
 
 
  /* Look up t in hash table.  Only one of the compatible types within each
  /* Look up t in hash table.  Only one of the compatible types within each
     alias set is recorded in the table.  */
     alias set is recorded in the table.  */
  if (!type_hash_table)
  if (!type_hash_table)
    type_hash_table = htab_create_ggc (1021, c_type_hash,
    type_hash_table = htab_create_ggc (1021, c_type_hash,
            (htab_eq) lang_hooks.types_compatible_p,
            (htab_eq) lang_hooks.types_compatible_p,
            NULL);
            NULL);
  slot = htab_find_slot (type_hash_table, t, INSERT);
  slot = htab_find_slot (type_hash_table, t, INSERT);
  if (*slot != NULL)
  if (*slot != NULL)
    {
    {
      TYPE_ALIAS_SET (t) = TYPE_ALIAS_SET ((tree)*slot);
      TYPE_ALIAS_SET (t) = TYPE_ALIAS_SET ((tree)*slot);
      return TYPE_ALIAS_SET ((tree)*slot);
      return TYPE_ALIAS_SET ((tree)*slot);
    }
    }
  else
  else
    /* Our caller will assign and record (in t) a new alias set; all we need
    /* Our caller will assign and record (in t) a new alias set; all we need
       to do is remember t in the hash table.  */
       to do is remember t in the hash table.  */
    *slot = t;
    *slot = t;
 
 
  return -1;
  return -1;
}
}


/* Compute the value of 'sizeof (TYPE)' or '__alignof__ (TYPE)', where the
/* Compute the value of 'sizeof (TYPE)' or '__alignof__ (TYPE)', where the
   second parameter indicates which OPERATOR is being applied.  The COMPLAIN
   second parameter indicates which OPERATOR is being applied.  The COMPLAIN
   flag controls whether we should diagnose possibly ill-formed
   flag controls whether we should diagnose possibly ill-formed
   constructs or not.  */
   constructs or not.  */
 
 
tree
tree
c_sizeof_or_alignof_type (tree type, bool is_sizeof, int complain)
c_sizeof_or_alignof_type (tree type, bool is_sizeof, int complain)
{
{
  const char *op_name;
  const char *op_name;
  tree value = NULL;
  tree value = NULL;
  enum tree_code type_code = TREE_CODE (type);
  enum tree_code type_code = TREE_CODE (type);
 
 
  op_name = is_sizeof ? "sizeof" : "__alignof__";
  op_name = is_sizeof ? "sizeof" : "__alignof__";
 
 
  if (type_code == FUNCTION_TYPE)
  if (type_code == FUNCTION_TYPE)
    {
    {
      if (is_sizeof)
      if (is_sizeof)
        {
        {
          if (complain && (pedantic || warn_pointer_arith))
          if (complain && (pedantic || warn_pointer_arith))
            pedwarn ("invalid application of %<sizeof%> to a function type");
            pedwarn ("invalid application of %<sizeof%> to a function type");
          value = size_one_node;
          value = size_one_node;
        }
        }
      else
      else
        value = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
        value = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
    }
    }
  else if (type_code == VOID_TYPE || type_code == ERROR_MARK)
  else if (type_code == VOID_TYPE || type_code == ERROR_MARK)
    {
    {
      if (type_code == VOID_TYPE
      if (type_code == VOID_TYPE
          && complain && (pedantic || warn_pointer_arith))
          && complain && (pedantic || warn_pointer_arith))
        pedwarn ("invalid application of %qs to a void type", op_name);
        pedwarn ("invalid application of %qs to a void type", op_name);
      value = size_one_node;
      value = size_one_node;
    }
    }
  else if (!COMPLETE_TYPE_P (type))
  else if (!COMPLETE_TYPE_P (type))
    {
    {
      if (complain)
      if (complain)
        error ("invalid application of %qs to incomplete type %qT ",
        error ("invalid application of %qs to incomplete type %qT ",
               op_name, type);
               op_name, type);
      value = size_zero_node;
      value = size_zero_node;
    }
    }
  else
  else
    {
    {
      if (is_sizeof)
      if (is_sizeof)
        /* Convert in case a char is more than one unit.  */
        /* Convert in case a char is more than one unit.  */
        value = size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
        value = size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
                            size_int (TYPE_PRECISION (char_type_node)
                            size_int (TYPE_PRECISION (char_type_node)
                                      / BITS_PER_UNIT));
                                      / BITS_PER_UNIT));
      else
      else
        value = size_int (TYPE_ALIGN_UNIT (type));
        value = size_int (TYPE_ALIGN_UNIT (type));
    }
    }
 
 
  /* VALUE will have an integer type with TYPE_IS_SIZETYPE set.
  /* VALUE will have an integer type with TYPE_IS_SIZETYPE set.
     TYPE_IS_SIZETYPE means that certain things (like overflow) will
     TYPE_IS_SIZETYPE means that certain things (like overflow) will
     never happen.  However, this node should really have type
     never happen.  However, this node should really have type
     `size_t', which is just a typedef for an ordinary integer type.  */
     `size_t', which is just a typedef for an ordinary integer type.  */
  value = fold_convert (size_type_node, value);
  value = fold_convert (size_type_node, value);
  gcc_assert (!TYPE_IS_SIZETYPE (TREE_TYPE (value)));
  gcc_assert (!TYPE_IS_SIZETYPE (TREE_TYPE (value)));
 
 
  return value;
  return value;
}
}
 
 
/* Implement the __alignof keyword: Return the minimum required
/* Implement the __alignof keyword: Return the minimum required
   alignment of EXPR, measured in bytes.  For VAR_DECL's and
   alignment of EXPR, measured in bytes.  For VAR_DECL's and
   FIELD_DECL's return DECL_ALIGN (which can be set from an
   FIELD_DECL's return DECL_ALIGN (which can be set from an
   "aligned" __attribute__ specification).  */
   "aligned" __attribute__ specification).  */
 
 
tree
tree
c_alignof_expr (tree expr)
c_alignof_expr (tree expr)
{
{
  tree t;
  tree t;
 
 
  if (TREE_CODE (expr) == VAR_DECL)
  if (TREE_CODE (expr) == VAR_DECL)
    t = size_int (DECL_ALIGN_UNIT (expr));
    t = size_int (DECL_ALIGN_UNIT (expr));
 
 
  else if (TREE_CODE (expr) == COMPONENT_REF
  else if (TREE_CODE (expr) == COMPONENT_REF
           && DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
           && DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
    {
    {
      error ("%<__alignof%> applied to a bit-field");
      error ("%<__alignof%> applied to a bit-field");
      t = size_one_node;
      t = size_one_node;
    }
    }
  else if (TREE_CODE (expr) == COMPONENT_REF
  else if (TREE_CODE (expr) == COMPONENT_REF
           && TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
           && TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
    t = size_int (DECL_ALIGN_UNIT (TREE_OPERAND (expr, 1)));
    t = size_int (DECL_ALIGN_UNIT (TREE_OPERAND (expr, 1)));
 
 
  else if (TREE_CODE (expr) == INDIRECT_REF)
  else if (TREE_CODE (expr) == INDIRECT_REF)
    {
    {
      tree t = TREE_OPERAND (expr, 0);
      tree t = TREE_OPERAND (expr, 0);
      tree best = t;
      tree best = t;
      int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
      int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
 
 
      while ((TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR)
      while ((TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR)
             && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
             && TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
        {
        {
          int thisalign;
          int thisalign;
 
 
          t = TREE_OPERAND (t, 0);
          t = TREE_OPERAND (t, 0);
          thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
          thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
          if (thisalign > bestalign)
          if (thisalign > bestalign)
            best = t, bestalign = thisalign;
            best = t, bestalign = thisalign;
        }
        }
      return c_alignof (TREE_TYPE (TREE_TYPE (best)));
      return c_alignof (TREE_TYPE (TREE_TYPE (best)));
    }
    }
  else
  else
    return c_alignof (TREE_TYPE (expr));
    return c_alignof (TREE_TYPE (expr));
 
 
  return fold_convert (size_type_node, t);
  return fold_convert (size_type_node, t);
}
}


/* Handle C and C++ default attributes.  */
/* Handle C and C++ default attributes.  */
 
 
enum built_in_attribute
enum built_in_attribute
{
{
#define DEF_ATTR_NULL_TREE(ENUM) ENUM,
#define DEF_ATTR_NULL_TREE(ENUM) ENUM,
#define DEF_ATTR_INT(ENUM, VALUE) ENUM,
#define DEF_ATTR_INT(ENUM, VALUE) ENUM,
#define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
#define DEF_ATTR_IDENT(ENUM, STRING) ENUM,
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM,
#include "builtin-attrs.def"
#include "builtin-attrs.def"
#undef DEF_ATTR_NULL_TREE
#undef DEF_ATTR_NULL_TREE
#undef DEF_ATTR_INT
#undef DEF_ATTR_INT
#undef DEF_ATTR_IDENT
#undef DEF_ATTR_IDENT
#undef DEF_ATTR_TREE_LIST
#undef DEF_ATTR_TREE_LIST
  ATTR_LAST
  ATTR_LAST
};
};
 
 
static GTY(()) tree built_in_attributes[(int) ATTR_LAST];
static GTY(()) tree built_in_attributes[(int) ATTR_LAST];
 
 
static void c_init_attributes (void);
static void c_init_attributes (void);
 
 
enum c_builtin_type
enum c_builtin_type
{
{
#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME,
#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME,
#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME,
#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME,
#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
#define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME,
#define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME,
#define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6) NAME,
#define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6) NAME,
#define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7) NAME,
#define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7) NAME,
#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME,
#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME,
#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME,
#define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
#define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME,
#define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
#define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME,
#define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG6) \
#define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG6) \
  NAME,
  NAME,
#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
#define DEF_POINTER_TYPE(NAME, TYPE) NAME,
#include "builtin-types.def"
#include "builtin-types.def"
#undef DEF_PRIMITIVE_TYPE
#undef DEF_PRIMITIVE_TYPE
#undef DEF_FUNCTION_TYPE_0
#undef DEF_FUNCTION_TYPE_0
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_5
#undef DEF_FUNCTION_TYPE_5
#undef DEF_FUNCTION_TYPE_6
#undef DEF_FUNCTION_TYPE_6
#undef DEF_FUNCTION_TYPE_7
#undef DEF_FUNCTION_TYPE_7
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_FUNCTION_TYPE_VAR_1
#undef DEF_FUNCTION_TYPE_VAR_1
#undef DEF_FUNCTION_TYPE_VAR_2
#undef DEF_FUNCTION_TYPE_VAR_2
#undef DEF_FUNCTION_TYPE_VAR_3
#undef DEF_FUNCTION_TYPE_VAR_3
#undef DEF_FUNCTION_TYPE_VAR_4
#undef DEF_FUNCTION_TYPE_VAR_4
#undef DEF_FUNCTION_TYPE_VAR_5
#undef DEF_FUNCTION_TYPE_VAR_5
#undef DEF_POINTER_TYPE
#undef DEF_POINTER_TYPE
  BT_LAST
  BT_LAST
};
};
 
 
typedef enum c_builtin_type builtin_type;
typedef enum c_builtin_type builtin_type;
 
 
/* A temporary array for c_common_nodes_and_builtins.  Used in
/* A temporary array for c_common_nodes_and_builtins.  Used in
   communication with def_fn_type.  */
   communication with def_fn_type.  */
static tree builtin_types[(int) BT_LAST + 1];
static tree builtin_types[(int) BT_LAST + 1];
 
 
/* A helper function for c_common_nodes_and_builtins.  Build function type
/* A helper function for c_common_nodes_and_builtins.  Build function type
   for DEF with return type RET and N arguments.  If VAR is true, then the
   for DEF with return type RET and N arguments.  If VAR is true, then the
   function should be variadic after those N arguments.
   function should be variadic after those N arguments.
 
 
   Takes special care not to ICE if any of the types involved are
   Takes special care not to ICE if any of the types involved are
   error_mark_node, which indicates that said type is not in fact available
   error_mark_node, which indicates that said type is not in fact available
   (see builtin_type_for_size).  In which case the function type as a whole
   (see builtin_type_for_size).  In which case the function type as a whole
   should be error_mark_node.  */
   should be error_mark_node.  */
 
 
static void
static void
def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...)
def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...)
{
{
  tree args = NULL, t;
  tree args = NULL, t;
  va_list list;
  va_list list;
  int i;
  int i;
 
 
  va_start (list, n);
  va_start (list, n);
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    {
    {
      builtin_type a = va_arg (list, builtin_type);
      builtin_type a = va_arg (list, builtin_type);
      t = builtin_types[a];
      t = builtin_types[a];
      if (t == error_mark_node)
      if (t == error_mark_node)
        goto egress;
        goto egress;
      args = tree_cons (NULL_TREE, t, args);
      args = tree_cons (NULL_TREE, t, args);
    }
    }
  va_end (list);
  va_end (list);
 
 
  args = nreverse (args);
  args = nreverse (args);
  if (!var)
  if (!var)
    args = chainon (args, void_list_node);
    args = chainon (args, void_list_node);
 
 
  t = builtin_types[ret];
  t = builtin_types[ret];
  if (t == error_mark_node)
  if (t == error_mark_node)
    goto egress;
    goto egress;
  t = build_function_type (t, args);
  t = build_function_type (t, args);
 
 
 egress:
 egress:
  builtin_types[def] = t;
  builtin_types[def] = t;
}
}
 
 
/* Build tree nodes and builtin functions common to both C and C++ language
/* Build tree nodes and builtin functions common to both C and C++ language
   frontends.  */
   frontends.  */
 
 
void
void
c_common_nodes_and_builtins (void)
c_common_nodes_and_builtins (void)
{
{
  int wchar_type_size;
  int wchar_type_size;
  tree array_domain_type;
  tree array_domain_type;
  tree va_list_ref_type_node;
  tree va_list_ref_type_node;
  tree va_list_arg_type_node;
  tree va_list_arg_type_node;
 
 
  /* Define `int' and `char' first so that dbx will output them first.  */
  /* Define `int' and `char' first so that dbx will output them first.  */
  record_builtin_type (RID_INT, NULL, integer_type_node);
  record_builtin_type (RID_INT, NULL, integer_type_node);
  record_builtin_type (RID_CHAR, "char", char_type_node);
  record_builtin_type (RID_CHAR, "char", char_type_node);
 
 
  /* `signed' is the same as `int'.  FIXME: the declarations of "signed",
  /* `signed' is the same as `int'.  FIXME: the declarations of "signed",
     "unsigned long", "long long unsigned" and "unsigned short" were in C++
     "unsigned long", "long long unsigned" and "unsigned short" were in C++
     but not C.  Are the conditionals here needed?  */
     but not C.  Are the conditionals here needed?  */
  if (c_dialect_cxx ())
  if (c_dialect_cxx ())
    record_builtin_type (RID_SIGNED, NULL, integer_type_node);
    record_builtin_type (RID_SIGNED, NULL, integer_type_node);
  record_builtin_type (RID_LONG, "long int", long_integer_type_node);
  record_builtin_type (RID_LONG, "long int", long_integer_type_node);
  record_builtin_type (RID_UNSIGNED, "unsigned int", unsigned_type_node);
  record_builtin_type (RID_UNSIGNED, "unsigned int", unsigned_type_node);
  record_builtin_type (RID_MAX, "long unsigned int",
  record_builtin_type (RID_MAX, "long unsigned int",
                       long_unsigned_type_node);
                       long_unsigned_type_node);
  if (c_dialect_cxx ())
  if (c_dialect_cxx ())
    record_builtin_type (RID_MAX, "unsigned long", long_unsigned_type_node);
    record_builtin_type (RID_MAX, "unsigned long", long_unsigned_type_node);
  record_builtin_type (RID_MAX, "long long int",
  record_builtin_type (RID_MAX, "long long int",
                       long_long_integer_type_node);
                       long_long_integer_type_node);
  record_builtin_type (RID_MAX, "long long unsigned int",
  record_builtin_type (RID_MAX, "long long unsigned int",
                       long_long_unsigned_type_node);
                       long_long_unsigned_type_node);
  if (c_dialect_cxx ())
  if (c_dialect_cxx ())
    record_builtin_type (RID_MAX, "long long unsigned",
    record_builtin_type (RID_MAX, "long long unsigned",
                         long_long_unsigned_type_node);
                         long_long_unsigned_type_node);
  record_builtin_type (RID_SHORT, "short int", short_integer_type_node);
  record_builtin_type (RID_SHORT, "short int", short_integer_type_node);
  record_builtin_type (RID_MAX, "short unsigned int",
  record_builtin_type (RID_MAX, "short unsigned int",
                       short_unsigned_type_node);
                       short_unsigned_type_node);
  if (c_dialect_cxx ())
  if (c_dialect_cxx ())
    record_builtin_type (RID_MAX, "unsigned short",
    record_builtin_type (RID_MAX, "unsigned short",
                         short_unsigned_type_node);
                         short_unsigned_type_node);
 
 
  /* Define both `signed char' and `unsigned char'.  */
  /* Define both `signed char' and `unsigned char'.  */
  record_builtin_type (RID_MAX, "signed char", signed_char_type_node);
  record_builtin_type (RID_MAX, "signed char", signed_char_type_node);
  record_builtin_type (RID_MAX, "unsigned char", unsigned_char_type_node);
  record_builtin_type (RID_MAX, "unsigned char", unsigned_char_type_node);
 
 
  /* These are types that c_common_type_for_size and
  /* These are types that c_common_type_for_size and
     c_common_type_for_mode use.  */
     c_common_type_for_mode use.  */
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
                                         intQI_type_node));
                                         intQI_type_node));
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
                                         intHI_type_node));
                                         intHI_type_node));
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
                                         intSI_type_node));
                                         intSI_type_node));
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
                                         intDI_type_node));
                                         intDI_type_node));
#if HOST_BITS_PER_WIDE_INT >= 64
#if HOST_BITS_PER_WIDE_INT >= 64
  if (targetm.scalar_mode_supported_p (TImode))
  if (targetm.scalar_mode_supported_p (TImode))
    lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
    lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
                                           get_identifier ("__int128_t"),
                                           get_identifier ("__int128_t"),
                                           intTI_type_node));
                                           intTI_type_node));
#endif
#endif
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
                                         unsigned_intQI_type_node));
                                         unsigned_intQI_type_node));
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
                                         unsigned_intHI_type_node));
                                         unsigned_intHI_type_node));
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
                                         unsigned_intSI_type_node));
                                         unsigned_intSI_type_node));
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
                                         unsigned_intDI_type_node));
                                         unsigned_intDI_type_node));
#if HOST_BITS_PER_WIDE_INT >= 64
#if HOST_BITS_PER_WIDE_INT >= 64
  if (targetm.scalar_mode_supported_p (TImode))
  if (targetm.scalar_mode_supported_p (TImode))
    lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
    lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
                                           get_identifier ("__uint128_t"),
                                           get_identifier ("__uint128_t"),
                                           unsigned_intTI_type_node));
                                           unsigned_intTI_type_node));
#endif
#endif
 
 
  /* Create the widest literal types.  */
  /* Create the widest literal types.  */
  widest_integer_literal_type_node
  widest_integer_literal_type_node
    = make_signed_type (HOST_BITS_PER_WIDE_INT * 2);
    = make_signed_type (HOST_BITS_PER_WIDE_INT * 2);
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
                                         widest_integer_literal_type_node));
                                         widest_integer_literal_type_node));
 
 
  widest_unsigned_literal_type_node
  widest_unsigned_literal_type_node
    = make_unsigned_type (HOST_BITS_PER_WIDE_INT * 2);
    = make_unsigned_type (HOST_BITS_PER_WIDE_INT * 2);
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL, NULL_TREE,
                                         widest_unsigned_literal_type_node));
                                         widest_unsigned_literal_type_node));
 
 
  /* `unsigned long' is the standard type for sizeof.
  /* `unsigned long' is the standard type for sizeof.
     Note that stddef.h uses `unsigned long',
     Note that stddef.h uses `unsigned long',
     and this must agree, even if long and int are the same size.  */
     and this must agree, even if long and int are the same size.  */
  size_type_node =
  size_type_node =
    TREE_TYPE (identifier_global_value (get_identifier (SIZE_TYPE)));
    TREE_TYPE (identifier_global_value (get_identifier (SIZE_TYPE)));
  signed_size_type_node = c_common_signed_type (size_type_node);
  signed_size_type_node = c_common_signed_type (size_type_node);
  set_sizetype (size_type_node);
  set_sizetype (size_type_node);
 
 
  pid_type_node =
  pid_type_node =
    TREE_TYPE (identifier_global_value (get_identifier (PID_TYPE)));
    TREE_TYPE (identifier_global_value (get_identifier (PID_TYPE)));
 
 
  build_common_tree_nodes_2 (flag_short_double);
  build_common_tree_nodes_2 (flag_short_double);
 
 
  record_builtin_type (RID_FLOAT, NULL, float_type_node);
  record_builtin_type (RID_FLOAT, NULL, float_type_node);
  record_builtin_type (RID_DOUBLE, NULL, double_type_node);
  record_builtin_type (RID_DOUBLE, NULL, double_type_node);
  record_builtin_type (RID_MAX, "long double", long_double_type_node);
  record_builtin_type (RID_MAX, "long double", long_double_type_node);
 
 
  /* Only supported decimal floating point extension if the target
  /* Only supported decimal floating point extension if the target
     actually supports underlying modes. */
     actually supports underlying modes. */
  if (targetm.scalar_mode_supported_p (SDmode)
  if (targetm.scalar_mode_supported_p (SDmode)
      && targetm.scalar_mode_supported_p (DDmode)
      && targetm.scalar_mode_supported_p (DDmode)
      && targetm.scalar_mode_supported_p (TDmode))
      && targetm.scalar_mode_supported_p (TDmode))
    {
    {
      record_builtin_type (RID_DFLOAT32, NULL, dfloat32_type_node);
      record_builtin_type (RID_DFLOAT32, NULL, dfloat32_type_node);
      record_builtin_type (RID_DFLOAT64, NULL, dfloat64_type_node);
      record_builtin_type (RID_DFLOAT64, NULL, dfloat64_type_node);
      record_builtin_type (RID_DFLOAT128, NULL, dfloat128_type_node);
      record_builtin_type (RID_DFLOAT128, NULL, dfloat128_type_node);
    }
    }
 
 
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
                                         get_identifier ("complex int"),
                                         get_identifier ("complex int"),
                                         complex_integer_type_node));
                                         complex_integer_type_node));
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
                                         get_identifier ("complex float"),
                                         get_identifier ("complex float"),
                                         complex_float_type_node));
                                         complex_float_type_node));
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
  lang_hooks.decls.pushdecl (build_decl (TYPE_DECL,
                                         get_identifier ("complex double"),
                                         get_identifier ("complex double"),
                                         complex_double_type_node));
                                         complex_double_type_node));
  lang_hooks.decls.pushdecl
  lang_hooks.decls.pushdecl
    (build_decl (TYPE_DECL, get_identifier ("complex long double"),
    (build_decl (TYPE_DECL, get_identifier ("complex long double"),
                 complex_long_double_type_node));
                 complex_long_double_type_node));
 
 
  if (c_dialect_cxx ())
  if (c_dialect_cxx ())
    /* For C++, make fileptr_type_node a distinct void * type until
    /* For C++, make fileptr_type_node a distinct void * type until
       FILE type is defined.  */
       FILE type is defined.  */
    fileptr_type_node = build_variant_type_copy (ptr_type_node);
    fileptr_type_node = build_variant_type_copy (ptr_type_node);
 
 
  record_builtin_type (RID_VOID, NULL, void_type_node);
  record_builtin_type (RID_VOID, NULL, void_type_node);
 
 
  /* This node must not be shared.  */
  /* This node must not be shared.  */
  void_zero_node = make_node (INTEGER_CST);
  void_zero_node = make_node (INTEGER_CST);
  TREE_TYPE (void_zero_node) = void_type_node;
  TREE_TYPE (void_zero_node) = void_type_node;
 
 
  void_list_node = build_void_list_node ();
  void_list_node = build_void_list_node ();
 
 
  /* Make a type to be the domain of a few array types
  /* Make a type to be the domain of a few array types
     whose domains don't really matter.
     whose domains don't really matter.
     200 is small enough that it always fits in size_t
     200 is small enough that it always fits in size_t
     and large enough that it can hold most function names for the
     and large enough that it can hold most function names for the
     initializations of __FUNCTION__ and __PRETTY_FUNCTION__.  */
     initializations of __FUNCTION__ and __PRETTY_FUNCTION__.  */
  array_domain_type = build_index_type (size_int (200));
  array_domain_type = build_index_type (size_int (200));
 
 
  /* Make a type for arrays of characters.
  /* Make a type for arrays of characters.
     With luck nothing will ever really depend on the length of this
     With luck nothing will ever really depend on the length of this
     array type.  */
     array type.  */
  char_array_type_node
  char_array_type_node
    = build_array_type (char_type_node, array_domain_type);
    = build_array_type (char_type_node, array_domain_type);
 
 
  /* Likewise for arrays of ints.  */
  /* Likewise for arrays of ints.  */
  int_array_type_node
  int_array_type_node
    = build_array_type (integer_type_node, array_domain_type);
    = build_array_type (integer_type_node, array_domain_type);
 
 
  string_type_node = build_pointer_type (char_type_node);
  string_type_node = build_pointer_type (char_type_node);
  const_string_type_node
  const_string_type_node
    = build_pointer_type (build_qualified_type
    = build_pointer_type (build_qualified_type
                          (char_type_node, TYPE_QUAL_CONST));
                          (char_type_node, TYPE_QUAL_CONST));
 
 
  /* This is special for C++ so functions can be overloaded.  */
  /* This is special for C++ so functions can be overloaded.  */
  wchar_type_node = get_identifier (MODIFIED_WCHAR_TYPE);
  wchar_type_node = get_identifier (MODIFIED_WCHAR_TYPE);
  wchar_type_node = TREE_TYPE (identifier_global_value (wchar_type_node));
  wchar_type_node = TREE_TYPE (identifier_global_value (wchar_type_node));
  wchar_type_size = TYPE_PRECISION (wchar_type_node);
  wchar_type_size = TYPE_PRECISION (wchar_type_node);
  if (c_dialect_cxx ())
  if (c_dialect_cxx ())
    {
    {
      if (TYPE_UNSIGNED (wchar_type_node))
      if (TYPE_UNSIGNED (wchar_type_node))
        wchar_type_node = make_unsigned_type (wchar_type_size);
        wchar_type_node = make_unsigned_type (wchar_type_size);
      else
      else
        wchar_type_node = make_signed_type (wchar_type_size);
        wchar_type_node = make_signed_type (wchar_type_size);
      record_builtin_type (RID_WCHAR, "wchar_t", wchar_type_node);
      record_builtin_type (RID_WCHAR, "wchar_t", wchar_type_node);
    }
    }
  else
  else
    {
    {
      signed_wchar_type_node = c_common_signed_type (wchar_type_node);
      signed_wchar_type_node = c_common_signed_type (wchar_type_node);
      unsigned_wchar_type_node = c_common_unsigned_type (wchar_type_node);
      unsigned_wchar_type_node = c_common_unsigned_type (wchar_type_node);
    }
    }
 
 
  /* This is for wide string constants.  */
  /* This is for wide string constants.  */
  wchar_array_type_node
  wchar_array_type_node
    = build_array_type (wchar_type_node, array_domain_type);
    = build_array_type (wchar_type_node, array_domain_type);
 
 
  wint_type_node =
  wint_type_node =
    TREE_TYPE (identifier_global_value (get_identifier (WINT_TYPE)));
    TREE_TYPE (identifier_global_value (get_identifier (WINT_TYPE)));
 
 
  intmax_type_node =
  intmax_type_node =
    TREE_TYPE (identifier_global_value (get_identifier (INTMAX_TYPE)));
    TREE_TYPE (identifier_global_value (get_identifier (INTMAX_TYPE)));
  uintmax_type_node =
  uintmax_type_node =
    TREE_TYPE (identifier_global_value (get_identifier (UINTMAX_TYPE)));
    TREE_TYPE (identifier_global_value (get_identifier (UINTMAX_TYPE)));
 
 
  default_function_type = build_function_type (integer_type_node, NULL_TREE);
  default_function_type = build_function_type (integer_type_node, NULL_TREE);
  ptrdiff_type_node
  ptrdiff_type_node
    = TREE_TYPE (identifier_global_value (get_identifier (PTRDIFF_TYPE)));
    = TREE_TYPE (identifier_global_value (get_identifier (PTRDIFF_TYPE)));
  unsigned_ptrdiff_type_node = c_common_unsigned_type (ptrdiff_type_node);
  unsigned_ptrdiff_type_node = c_common_unsigned_type (ptrdiff_type_node);
 
 
  lang_hooks.decls.pushdecl
  lang_hooks.decls.pushdecl
    (build_decl (TYPE_DECL, get_identifier ("__builtin_va_list"),
    (build_decl (TYPE_DECL, get_identifier ("__builtin_va_list"),
                 va_list_type_node));
                 va_list_type_node));
 
 
  if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
  if (TREE_CODE (va_list_type_node) == ARRAY_TYPE)
    {
    {
      va_list_arg_type_node = va_list_ref_type_node =
      va_list_arg_type_node = va_list_ref_type_node =
        build_pointer_type (TREE_TYPE (va_list_type_node));
        build_pointer_type (TREE_TYPE (va_list_type_node));
    }
    }
  else
  else
    {
    {
      va_list_arg_type_node = va_list_type_node;
      va_list_arg_type_node = va_list_type_node;
      va_list_ref_type_node = build_reference_type (va_list_type_node);
      va_list_ref_type_node = build_reference_type (va_list_type_node);
    }
    }
 
 
#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \
  builtin_types[ENUM] = VALUE;
  builtin_types[ENUM] = VALUE;
#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \
  def_fn_type (ENUM, RETURN, 0, 0);
  def_fn_type (ENUM, RETURN, 0, 0);
#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \
  def_fn_type (ENUM, RETURN, 0, 1, ARG1);
  def_fn_type (ENUM, RETURN, 0, 1, ARG1);
#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \
  def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2);
  def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2);
#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
  def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3);
  def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3);
#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
  def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4);
  def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4);
#define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
#define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
  def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
  def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
#define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
#define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
                            ARG6)                                       \
                            ARG6)                                       \
  def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
  def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6);
#define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
#define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \
                            ARG6, ARG7)                                 \
                            ARG6, ARG7)                                 \
  def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
  def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7);
#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \
  def_fn_type (ENUM, RETURN, 1, 0);
  def_fn_type (ENUM, RETURN, 1, 0);
#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \
  def_fn_type (ENUM, RETURN, 1, 1, ARG1);
  def_fn_type (ENUM, RETURN, 1, 1, ARG1);
#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \
  def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2);
  def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2);
#define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
#define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \
  def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3);
  def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3);
#define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
#define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \
  def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4);
  def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4);
#define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
#define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \
  def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
  def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5);
#define DEF_POINTER_TYPE(ENUM, TYPE) \
#define DEF_POINTER_TYPE(ENUM, TYPE) \
  builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]);
  builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]);
 
 
#include "builtin-types.def"
#include "builtin-types.def"
 
 
#undef DEF_PRIMITIVE_TYPE
#undef DEF_PRIMITIVE_TYPE
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_1
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_2
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_3
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_4
#undef DEF_FUNCTION_TYPE_5
#undef DEF_FUNCTION_TYPE_5
#undef DEF_FUNCTION_TYPE_6
#undef DEF_FUNCTION_TYPE_6
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_FUNCTION_TYPE_VAR_0
#undef DEF_FUNCTION_TYPE_VAR_1
#undef DEF_FUNCTION_TYPE_VAR_1
#undef DEF_FUNCTION_TYPE_VAR_2
#undef DEF_FUNCTION_TYPE_VAR_2
#undef DEF_FUNCTION_TYPE_VAR_3
#undef DEF_FUNCTION_TYPE_VAR_3
#undef DEF_FUNCTION_TYPE_VAR_4
#undef DEF_FUNCTION_TYPE_VAR_4
#undef DEF_FUNCTION_TYPE_VAR_5
#undef DEF_FUNCTION_TYPE_VAR_5
#undef DEF_POINTER_TYPE
#undef DEF_POINTER_TYPE
  builtin_types[(int) BT_LAST] = NULL_TREE;
  builtin_types[(int) BT_LAST] = NULL_TREE;
 
 
  c_init_attributes ();
  c_init_attributes ();
 
 
#define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \
#define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \
                    NONANSI_P, ATTRS, IMPLICIT, COND)                   \
                    NONANSI_P, ATTRS, IMPLICIT, COND)                   \
  if (NAME && COND)                                                     \
  if (NAME && COND)                                                     \
    def_builtin_1 (ENUM, NAME, CLASS,                                   \
    def_builtin_1 (ENUM, NAME, CLASS,                                   \
                   builtin_types[(int) TYPE],                           \
                   builtin_types[(int) TYPE],                           \
                   builtin_types[(int) LIBTYPE],                        \
                   builtin_types[(int) LIBTYPE],                        \
                   BOTH_P, FALLBACK_P, NONANSI_P,                       \
                   BOTH_P, FALLBACK_P, NONANSI_P,                       \
                   built_in_attributes[(int) ATTRS], IMPLICIT);
                   built_in_attributes[(int) ATTRS], IMPLICIT);
#include "builtins.def"
#include "builtins.def"
#undef DEF_BUILTIN
#undef DEF_BUILTIN
 
 
  build_common_builtin_nodes ();
  build_common_builtin_nodes ();
 
 
  targetm.init_builtins ();
  targetm.init_builtins ();
  if (flag_mudflap)
  if (flag_mudflap)
    mudflap_init ();
    mudflap_init ();
 
 
  main_identifier_node = get_identifier ("main");
  main_identifier_node = get_identifier ("main");
 
 
  /* Create the built-in __null node.  It is important that this is
  /* Create the built-in __null node.  It is important that this is
     not shared.  */
     not shared.  */
  null_node = make_node (INTEGER_CST);
  null_node = make_node (INTEGER_CST);
  TREE_TYPE (null_node) = c_common_type_for_size (POINTER_SIZE, 0);
  TREE_TYPE (null_node) = c_common_type_for_size (POINTER_SIZE, 0);
 
 
  /* Since builtin_types isn't gc'ed, don't export these nodes.  */
  /* Since builtin_types isn't gc'ed, don't export these nodes.  */
  memset (builtin_types, 0, sizeof (builtin_types));
  memset (builtin_types, 0, sizeof (builtin_types));
}
}
 
 
/* Look up the function in built_in_decls that corresponds to DECL
/* Look up the function in built_in_decls that corresponds to DECL
   and set ASMSPEC as its user assembler name.  DECL must be a
   and set ASMSPEC as its user assembler name.  DECL must be a
   function decl that declares a builtin.  */
   function decl that declares a builtin.  */
 
 
void
void
set_builtin_user_assembler_name (tree decl, const char *asmspec)
set_builtin_user_assembler_name (tree decl, const char *asmspec)
{
{
  tree builtin;
  tree builtin;
  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL
  gcc_assert (TREE_CODE (decl) == FUNCTION_DECL
              && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
              && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
              && asmspec != 0);
              && asmspec != 0);
 
 
  builtin = built_in_decls [DECL_FUNCTION_CODE (decl)];
  builtin = built_in_decls [DECL_FUNCTION_CODE (decl)];
  set_user_assembler_name (builtin, asmspec);
  set_user_assembler_name (builtin, asmspec);
  if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MEMCPY)
  if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MEMCPY)
    init_block_move_fn (asmspec);
    init_block_move_fn (asmspec);
  else if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MEMSET)
  else if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MEMSET)
    init_block_clear_fn (asmspec);
    init_block_clear_fn (asmspec);
}
}
 
 
/* The number of named compound-literals generated thus far.  */
/* The number of named compound-literals generated thus far.  */
static GTY(()) int compound_literal_number;
static GTY(()) int compound_literal_number;
 
 
/* Set DECL_NAME for DECL, a VAR_DECL for a compound-literal.  */
/* Set DECL_NAME for DECL, a VAR_DECL for a compound-literal.  */
 
 
void
void
set_compound_literal_name (tree decl)
set_compound_literal_name (tree decl)
{
{
  char *name;
  char *name;
  ASM_FORMAT_PRIVATE_NAME (name, "__compound_literal",
  ASM_FORMAT_PRIVATE_NAME (name, "__compound_literal",
                           compound_literal_number);
                           compound_literal_number);
  compound_literal_number++;
  compound_literal_number++;
  DECL_NAME (decl) = get_identifier (name);
  DECL_NAME (decl) = get_identifier (name);
}
}
 
 
tree
tree
build_va_arg (tree expr, tree type)
build_va_arg (tree expr, tree type)
{
{
  return build1 (VA_ARG_EXPR, type, expr);
  return build1 (VA_ARG_EXPR, type, expr);
}
}
 
 
 
 
/* Linked list of disabled built-in functions.  */
/* Linked list of disabled built-in functions.  */
 
 
typedef struct disabled_builtin
typedef struct disabled_builtin
{
{
  const char *name;
  const char *name;
  struct disabled_builtin *next;
  struct disabled_builtin *next;
} disabled_builtin;
} disabled_builtin;
static disabled_builtin *disabled_builtins = NULL;
static disabled_builtin *disabled_builtins = NULL;
 
 
static bool builtin_function_disabled_p (const char *);
static bool builtin_function_disabled_p (const char *);
 
 
/* Disable a built-in function specified by -fno-builtin-NAME.  If NAME
/* Disable a built-in function specified by -fno-builtin-NAME.  If NAME
   begins with "__builtin_", give an error.  */
   begins with "__builtin_", give an error.  */
 
 
void
void
disable_builtin_function (const char *name)
disable_builtin_function (const char *name)
{
{
  if (strncmp (name, "__builtin_", strlen ("__builtin_")) == 0)
  if (strncmp (name, "__builtin_", strlen ("__builtin_")) == 0)
    error ("cannot disable built-in function %qs", name);
    error ("cannot disable built-in function %qs", name);
  else
  else
    {
    {
      disabled_builtin *new_disabled_builtin = XNEW (disabled_builtin);
      disabled_builtin *new_disabled_builtin = XNEW (disabled_builtin);
      new_disabled_builtin->name = name;
      new_disabled_builtin->name = name;
      new_disabled_builtin->next = disabled_builtins;
      new_disabled_builtin->next = disabled_builtins;
      disabled_builtins = new_disabled_builtin;
      disabled_builtins = new_disabled_builtin;
    }
    }
}
}
 
 
 
 
/* Return true if the built-in function NAME has been disabled, false
/* Return true if the built-in function NAME has been disabled, false
   otherwise.  */
   otherwise.  */
 
 
static bool
static bool
builtin_function_disabled_p (const char *name)
builtin_function_disabled_p (const char *name)
{
{
  disabled_builtin *p;
  disabled_builtin *p;
  for (p = disabled_builtins; p != NULL; p = p->next)
  for (p = disabled_builtins; p != NULL; p = p->next)
    {
    {
      if (strcmp (name, p->name) == 0)
      if (strcmp (name, p->name) == 0)
        return true;
        return true;
    }
    }
  return false;
  return false;
}
}
 
 
 
 
/* Worker for DEF_BUILTIN.
/* Worker for DEF_BUILTIN.
   Possibly define a builtin function with one or two names.
   Possibly define a builtin function with one or two names.
   Does not declare a non-__builtin_ function if flag_no_builtin, or if
   Does not declare a non-__builtin_ function if flag_no_builtin, or if
   nonansi_p and flag_no_nonansi_builtin.  */
   nonansi_p and flag_no_nonansi_builtin.  */
 
 
static void
static void
def_builtin_1 (enum built_in_function fncode,
def_builtin_1 (enum built_in_function fncode,
               const char *name,
               const char *name,
               enum built_in_class fnclass,
               enum built_in_class fnclass,
               tree fntype, tree libtype,
               tree fntype, tree libtype,
               bool both_p, bool fallback_p, bool nonansi_p,
               bool both_p, bool fallback_p, bool nonansi_p,
               tree fnattrs, bool implicit_p)
               tree fnattrs, bool implicit_p)
{
{
  tree decl;
  tree decl;
  const char *libname;
  const char *libname;
 
 
  if (fntype == error_mark_node)
  if (fntype == error_mark_node)
    return;
    return;
 
 
  gcc_assert ((!both_p && !fallback_p)
  gcc_assert ((!both_p && !fallback_p)
              || !strncmp (name, "__builtin_",
              || !strncmp (name, "__builtin_",
                           strlen ("__builtin_")));
                           strlen ("__builtin_")));
 
 
  libname = name + strlen ("__builtin_");
  libname = name + strlen ("__builtin_");
  decl = lang_hooks.builtin_function (name, fntype, fncode, fnclass,
  decl = lang_hooks.builtin_function (name, fntype, fncode, fnclass,
                                      (fallback_p ? libname : NULL),
                                      (fallback_p ? libname : NULL),
                                      fnattrs);
                                      fnattrs);
  if (both_p
  if (both_p
      && !flag_no_builtin && !builtin_function_disabled_p (libname)
      && !flag_no_builtin && !builtin_function_disabled_p (libname)
      && !(nonansi_p && flag_no_nonansi_builtin))
      && !(nonansi_p && flag_no_nonansi_builtin))
    lang_hooks.builtin_function (libname, libtype, fncode, fnclass,
    lang_hooks.builtin_function (libname, libtype, fncode, fnclass,
                                 NULL, fnattrs);
                                 NULL, fnattrs);
 
 
  built_in_decls[(int) fncode] = decl;
  built_in_decls[(int) fncode] = decl;
  if (implicit_p)
  if (implicit_p)
    implicit_built_in_decls[(int) fncode] = decl;
    implicit_built_in_decls[(int) fncode] = decl;
}
}


/* Nonzero if the type T promotes to int.  This is (nearly) the
/* Nonzero if the type T promotes to int.  This is (nearly) the
   integral promotions defined in ISO C99 6.3.1.1/2.  */
   integral promotions defined in ISO C99 6.3.1.1/2.  */
 
 
bool
bool
c_promoting_integer_type_p (tree t)
c_promoting_integer_type_p (tree t)
{
{
  switch (TREE_CODE (t))
  switch (TREE_CODE (t))
    {
    {
    case INTEGER_TYPE:
    case INTEGER_TYPE:
      return (TYPE_MAIN_VARIANT (t) == char_type_node
      return (TYPE_MAIN_VARIANT (t) == char_type_node
              || TYPE_MAIN_VARIANT (t) == signed_char_type_node
              || TYPE_MAIN_VARIANT (t) == signed_char_type_node
              || TYPE_MAIN_VARIANT (t) == unsigned_char_type_node
              || TYPE_MAIN_VARIANT (t) == unsigned_char_type_node
              || TYPE_MAIN_VARIANT (t) == short_integer_type_node
              || TYPE_MAIN_VARIANT (t) == short_integer_type_node
              || TYPE_MAIN_VARIANT (t) == short_unsigned_type_node
              || TYPE_MAIN_VARIANT (t) == short_unsigned_type_node
              || TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node));
              || TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node));
 
 
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
      /* ??? Technically all enumerations not larger than an int
      /* ??? Technically all enumerations not larger than an int
         promote to an int.  But this is used along code paths
         promote to an int.  But this is used along code paths
         that only want to notice a size change.  */
         that only want to notice a size change.  */
      return TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node);
      return TYPE_PRECISION (t) < TYPE_PRECISION (integer_type_node);
 
 
    case BOOLEAN_TYPE:
    case BOOLEAN_TYPE:
      return 1;
      return 1;
 
 
    default:
    default:
      return 0;
      return 0;
    }
    }
}
}
 
 
/* Return 1 if PARMS specifies a fixed number of parameters
/* Return 1 if PARMS specifies a fixed number of parameters
   and none of their types is affected by default promotions.  */
   and none of their types is affected by default promotions.  */
 
 
int
int
self_promoting_args_p (tree parms)
self_promoting_args_p (tree parms)
{
{
  tree t;
  tree t;
  for (t = parms; t; t = TREE_CHAIN (t))
  for (t = parms; t; t = TREE_CHAIN (t))
    {
    {
      tree type = TREE_VALUE (t);
      tree type = TREE_VALUE (t);
 
 
      if (type == error_mark_node)
      if (type == error_mark_node)
        continue;
        continue;
 
 
      if (TREE_CHAIN (t) == 0 && type != void_type_node)
      if (TREE_CHAIN (t) == 0 && type != void_type_node)
        return 0;
        return 0;
 
 
      if (type == 0)
      if (type == 0)
        return 0;
        return 0;
 
 
      if (TYPE_MAIN_VARIANT (type) == float_type_node)
      if (TYPE_MAIN_VARIANT (type) == float_type_node)
        return 0;
        return 0;
 
 
      if (c_promoting_integer_type_p (type))
      if (c_promoting_integer_type_p (type))
        return 0;
        return 0;
    }
    }
  return 1;
  return 1;
}
}
 
 
/* Recursively examines the array elements of TYPE, until a non-array
/* Recursively examines the array elements of TYPE, until a non-array
   element type is found.  */
   element type is found.  */
 
 
tree
tree
strip_array_types (tree type)
strip_array_types (tree type)
{
{
  while (TREE_CODE (type) == ARRAY_TYPE)
  while (TREE_CODE (type) == ARRAY_TYPE)
    type = TREE_TYPE (type);
    type = TREE_TYPE (type);
 
 
  return type;
  return type;
}
}
 
 
/* Recursively remove any '*' or '&' operator from TYPE.  */
/* Recursively remove any '*' or '&' operator from TYPE.  */
tree
tree
strip_pointer_operator (tree t)
strip_pointer_operator (tree t)
{
{
  while (POINTER_TYPE_P (t))
  while (POINTER_TYPE_P (t))
    t = TREE_TYPE (t);
    t = TREE_TYPE (t);
  return t;
  return t;
}
}
 
 
/* Used to compare case labels.  K1 and K2 are actually tree nodes
/* Used to compare case labels.  K1 and K2 are actually tree nodes
   representing case labels, or NULL_TREE for a `default' label.
   representing case labels, or NULL_TREE for a `default' label.
   Returns -1 if K1 is ordered before K2, -1 if K1 is ordered after
   Returns -1 if K1 is ordered before K2, -1 if K1 is ordered after
   K2, and 0 if K1 and K2 are equal.  */
   K2, and 0 if K1 and K2 are equal.  */
 
 
int
int
case_compare (splay_tree_key k1, splay_tree_key k2)
case_compare (splay_tree_key k1, splay_tree_key k2)
{
{
  /* Consider a NULL key (such as arises with a `default' label) to be
  /* Consider a NULL key (such as arises with a `default' label) to be
     smaller than anything else.  */
     smaller than anything else.  */
  if (!k1)
  if (!k1)
    return k2 ? -1 : 0;
    return k2 ? -1 : 0;
  else if (!k2)
  else if (!k2)
    return k1 ? 1 : 0;
    return k1 ? 1 : 0;
 
 
  return tree_int_cst_compare ((tree) k1, (tree) k2);
  return tree_int_cst_compare ((tree) k1, (tree) k2);
}
}
 
 
/* Process a case label for the range LOW_VALUE ... HIGH_VALUE.  If
/* Process a case label for the range LOW_VALUE ... HIGH_VALUE.  If
   LOW_VALUE and HIGH_VALUE are both NULL_TREE then this case label is
   LOW_VALUE and HIGH_VALUE are both NULL_TREE then this case label is
   actually a `default' label.  If only HIGH_VALUE is NULL_TREE, then
   actually a `default' label.  If only HIGH_VALUE is NULL_TREE, then
   case label was declared using the usual C/C++ syntax, rather than
   case label was declared using the usual C/C++ syntax, rather than
   the GNU case range extension.  CASES is a tree containing all the
   the GNU case range extension.  CASES is a tree containing all the
   case ranges processed so far; COND is the condition for the
   case ranges processed so far; COND is the condition for the
   switch-statement itself.  Returns the CASE_LABEL_EXPR created, or
   switch-statement itself.  Returns the CASE_LABEL_EXPR created, or
   ERROR_MARK_NODE if no CASE_LABEL_EXPR is created.  */
   ERROR_MARK_NODE if no CASE_LABEL_EXPR is created.  */
 
 
tree
tree
c_add_case_label (splay_tree cases, tree cond, tree orig_type,
c_add_case_label (splay_tree cases, tree cond, tree orig_type,
                  tree low_value, tree high_value)
                  tree low_value, tree high_value)
{
{
  tree type;
  tree type;
  tree label;
  tree label;
  tree case_label;
  tree case_label;
  splay_tree_node node;
  splay_tree_node node;
 
 
  /* Create the LABEL_DECL itself.  */
  /* Create the LABEL_DECL itself.  */
  label = create_artificial_label ();
  label = create_artificial_label ();
 
 
  /* If there was an error processing the switch condition, bail now
  /* If there was an error processing the switch condition, bail now
     before we get more confused.  */
     before we get more confused.  */
  if (!cond || cond == error_mark_node)
  if (!cond || cond == error_mark_node)
    goto error_out;
    goto error_out;
 
 
  if ((low_value && TREE_TYPE (low_value)
  if ((low_value && TREE_TYPE (low_value)
       && POINTER_TYPE_P (TREE_TYPE (low_value)))
       && POINTER_TYPE_P (TREE_TYPE (low_value)))
      || (high_value && TREE_TYPE (high_value)
      || (high_value && TREE_TYPE (high_value)
          && POINTER_TYPE_P (TREE_TYPE (high_value))))
          && POINTER_TYPE_P (TREE_TYPE (high_value))))
    {
    {
      error ("pointers are not permitted as case values");
      error ("pointers are not permitted as case values");
      goto error_out;
      goto error_out;
    }
    }
 
 
  /* Case ranges are a GNU extension.  */
  /* Case ranges are a GNU extension.  */
  if (high_value && pedantic)
  if (high_value && pedantic)
    pedwarn ("range expressions in switch statements are non-standard");
    pedwarn ("range expressions in switch statements are non-standard");
 
 
  type = TREE_TYPE (cond);
  type = TREE_TYPE (cond);
  if (low_value)
  if (low_value)
    {
    {
      low_value = check_case_value (low_value);
      low_value = check_case_value (low_value);
      low_value = convert_and_check (type, low_value);
      low_value = convert_and_check (type, low_value);
      if (low_value == error_mark_node)
      if (low_value == error_mark_node)
        goto error_out;
        goto error_out;
    }
    }
  if (high_value)
  if (high_value)
    {
    {
      high_value = check_case_value (high_value);
      high_value = check_case_value (high_value);
      high_value = convert_and_check (type, high_value);
      high_value = convert_and_check (type, high_value);
      if (high_value == error_mark_node)
      if (high_value == error_mark_node)
        goto error_out;
        goto error_out;
    }
    }
 
 
  if (low_value && high_value)
  if (low_value && high_value)
    {
    {
      /* If the LOW_VALUE and HIGH_VALUE are the same, then this isn't
      /* If the LOW_VALUE and HIGH_VALUE are the same, then this isn't
         really a case range, even though it was written that way.
         really a case range, even though it was written that way.
         Remove the HIGH_VALUE to simplify later processing.  */
         Remove the HIGH_VALUE to simplify later processing.  */
      if (tree_int_cst_equal (low_value, high_value))
      if (tree_int_cst_equal (low_value, high_value))
        high_value = NULL_TREE;
        high_value = NULL_TREE;
      else if (!tree_int_cst_lt (low_value, high_value))
      else if (!tree_int_cst_lt (low_value, high_value))
        warning (0, "empty range specified");
        warning (0, "empty range specified");
    }
    }
 
 
  /* See if the case is in range of the type of the original testing
  /* See if the case is in range of the type of the original testing
     expression.  If both low_value and high_value are out of range,
     expression.  If both low_value and high_value are out of range,
     don't insert the case label and return NULL_TREE.  */
     don't insert the case label and return NULL_TREE.  */
  if (low_value
  if (low_value
      && !check_case_bounds (type, orig_type,
      && !check_case_bounds (type, orig_type,
                             &low_value, high_value ? &high_value : NULL))
                             &low_value, high_value ? &high_value : NULL))
    return NULL_TREE;
    return NULL_TREE;
 
 
  /* Look up the LOW_VALUE in the table of case labels we already
  /* Look up the LOW_VALUE in the table of case labels we already
     have.  */
     have.  */
  node = splay_tree_lookup (cases, (splay_tree_key) low_value);
  node = splay_tree_lookup (cases, (splay_tree_key) low_value);
  /* If there was not an exact match, check for overlapping ranges.
  /* If there was not an exact match, check for overlapping ranges.
     There's no need to do this if there's no LOW_VALUE or HIGH_VALUE;
     There's no need to do this if there's no LOW_VALUE or HIGH_VALUE;
     that's a `default' label and the only overlap is an exact match.  */
     that's a `default' label and the only overlap is an exact match.  */
  if (!node && (low_value || high_value))
  if (!node && (low_value || high_value))
    {
    {
      splay_tree_node low_bound;
      splay_tree_node low_bound;
      splay_tree_node high_bound;
      splay_tree_node high_bound;
 
 
      /* Even though there wasn't an exact match, there might be an
      /* Even though there wasn't an exact match, there might be an
         overlap between this case range and another case range.
         overlap between this case range and another case range.
         Since we've (inductively) not allowed any overlapping case
         Since we've (inductively) not allowed any overlapping case
         ranges, we simply need to find the greatest low case label
         ranges, we simply need to find the greatest low case label
         that is smaller that LOW_VALUE, and the smallest low case
         that is smaller that LOW_VALUE, and the smallest low case
         label that is greater than LOW_VALUE.  If there is an overlap
         label that is greater than LOW_VALUE.  If there is an overlap
         it will occur in one of these two ranges.  */
         it will occur in one of these two ranges.  */
      low_bound = splay_tree_predecessor (cases,
      low_bound = splay_tree_predecessor (cases,
                                          (splay_tree_key) low_value);
                                          (splay_tree_key) low_value);
      high_bound = splay_tree_successor (cases,
      high_bound = splay_tree_successor (cases,
                                         (splay_tree_key) low_value);
                                         (splay_tree_key) low_value);
 
 
      /* Check to see if the LOW_BOUND overlaps.  It is smaller than
      /* Check to see if the LOW_BOUND overlaps.  It is smaller than
         the LOW_VALUE, so there is no need to check unless the
         the LOW_VALUE, so there is no need to check unless the
         LOW_BOUND is in fact itself a case range.  */
         LOW_BOUND is in fact itself a case range.  */
      if (low_bound
      if (low_bound
          && CASE_HIGH ((tree) low_bound->value)
          && CASE_HIGH ((tree) low_bound->value)
          && tree_int_cst_compare (CASE_HIGH ((tree) low_bound->value),
          && tree_int_cst_compare (CASE_HIGH ((tree) low_bound->value),
                                    low_value) >= 0)
                                    low_value) >= 0)
        node = low_bound;
        node = low_bound;
      /* Check to see if the HIGH_BOUND overlaps.  The low end of that
      /* Check to see if the HIGH_BOUND overlaps.  The low end of that
         range is bigger than the low end of the current range, so we
         range is bigger than the low end of the current range, so we
         are only interested if the current range is a real range, and
         are only interested if the current range is a real range, and
         not an ordinary case label.  */
         not an ordinary case label.  */
      else if (high_bound
      else if (high_bound
               && high_value
               && high_value
               && (tree_int_cst_compare ((tree) high_bound->key,
               && (tree_int_cst_compare ((tree) high_bound->key,
                                         high_value)
                                         high_value)
                   <= 0))
                   <= 0))
        node = high_bound;
        node = high_bound;
    }
    }
  /* If there was an overlap, issue an error.  */
  /* If there was an overlap, issue an error.  */
  if (node)
  if (node)
    {
    {
      tree duplicate = CASE_LABEL ((tree) node->value);
      tree duplicate = CASE_LABEL ((tree) node->value);
 
 
      if (high_value)
      if (high_value)
        {
        {
          error ("duplicate (or overlapping) case value");
          error ("duplicate (or overlapping) case value");
          error ("%Jthis is the first entry overlapping that value", duplicate);
          error ("%Jthis is the first entry overlapping that value", duplicate);
        }
        }
      else if (low_value)
      else if (low_value)
        {
        {
          error ("duplicate case value") ;
          error ("duplicate case value") ;
          error ("%Jpreviously used here", duplicate);
          error ("%Jpreviously used here", duplicate);
        }
        }
      else
      else
        {
        {
          error ("multiple default labels in one switch");
          error ("multiple default labels in one switch");
          error ("%Jthis is the first default label", duplicate);
          error ("%Jthis is the first default label", duplicate);
        }
        }
      goto error_out;
      goto error_out;
    }
    }
 
 
  /* Add a CASE_LABEL to the statement-tree.  */
  /* Add a CASE_LABEL to the statement-tree.  */
  case_label = add_stmt (build_case_label (low_value, high_value, label));
  case_label = add_stmt (build_case_label (low_value, high_value, label));
  /* Register this case label in the splay tree.  */
  /* Register this case label in the splay tree.  */
  splay_tree_insert (cases,
  splay_tree_insert (cases,
                     (splay_tree_key) low_value,
                     (splay_tree_key) low_value,
                     (splay_tree_value) case_label);
                     (splay_tree_value) case_label);
 
 
  return case_label;
  return case_label;
 
 
 error_out:
 error_out:
  /* Add a label so that the back-end doesn't think that the beginning of
  /* Add a label so that the back-end doesn't think that the beginning of
     the switch is unreachable.  Note that we do not add a case label, as
     the switch is unreachable.  Note that we do not add a case label, as
     that just leads to duplicates and thence to failure later on.  */
     that just leads to duplicates and thence to failure later on.  */
  if (!cases->root)
  if (!cases->root)
    {
    {
      tree t = create_artificial_label ();
      tree t = create_artificial_label ();
      add_stmt (build_stmt (LABEL_EXPR, t));
      add_stmt (build_stmt (LABEL_EXPR, t));
    }
    }
  return error_mark_node;
  return error_mark_node;
}
}
 
 
/* Subroutines of c_do_switch_warnings, called via splay_tree_foreach.
/* Subroutines of c_do_switch_warnings, called via splay_tree_foreach.
   Used to verify that case values match up with enumerator values.  */
   Used to verify that case values match up with enumerator values.  */
 
 
static void
static void
match_case_to_enum_1 (tree key, tree type, tree label)
match_case_to_enum_1 (tree key, tree type, tree label)
{
{
  char buf[2 + 2*HOST_BITS_PER_WIDE_INT/4 + 1];
  char buf[2 + 2*HOST_BITS_PER_WIDE_INT/4 + 1];
 
 
  /* ??? Not working too hard to print the double-word value.
  /* ??? Not working too hard to print the double-word value.
     Should perhaps be done with %lwd in the diagnostic routines?  */
     Should perhaps be done with %lwd in the diagnostic routines?  */
  if (TREE_INT_CST_HIGH (key) == 0)
  if (TREE_INT_CST_HIGH (key) == 0)
    snprintf (buf, sizeof (buf), HOST_WIDE_INT_PRINT_UNSIGNED,
    snprintf (buf, sizeof (buf), HOST_WIDE_INT_PRINT_UNSIGNED,
              TREE_INT_CST_LOW (key));
              TREE_INT_CST_LOW (key));
  else if (!TYPE_UNSIGNED (type)
  else if (!TYPE_UNSIGNED (type)
           && TREE_INT_CST_HIGH (key) == -1
           && TREE_INT_CST_HIGH (key) == -1
           && TREE_INT_CST_LOW (key) != 0)
           && TREE_INT_CST_LOW (key) != 0)
    snprintf (buf, sizeof (buf), "-" HOST_WIDE_INT_PRINT_UNSIGNED,
    snprintf (buf, sizeof (buf), "-" HOST_WIDE_INT_PRINT_UNSIGNED,
              -TREE_INT_CST_LOW (key));
              -TREE_INT_CST_LOW (key));
  else
  else
    snprintf (buf, sizeof (buf), HOST_WIDE_INT_PRINT_DOUBLE_HEX,
    snprintf (buf, sizeof (buf), HOST_WIDE_INT_PRINT_DOUBLE_HEX,
              TREE_INT_CST_HIGH (key), TREE_INT_CST_LOW (key));
              TREE_INT_CST_HIGH (key), TREE_INT_CST_LOW (key));
 
 
  if (TYPE_NAME (type) == 0)
  if (TYPE_NAME (type) == 0)
    warning (0, "%Jcase value %qs not in enumerated type",
    warning (0, "%Jcase value %qs not in enumerated type",
             CASE_LABEL (label), buf);
             CASE_LABEL (label), buf);
  else
  else
    warning (0, "%Jcase value %qs not in enumerated type %qT",
    warning (0, "%Jcase value %qs not in enumerated type %qT",
             CASE_LABEL (label), buf, type);
             CASE_LABEL (label), buf, type);
}
}
 
 
/* Subroutine of c_do_switch_warnings, called via splay_tree_foreach.
/* Subroutine of c_do_switch_warnings, called via splay_tree_foreach.
   Used to verify that case values match up with enumerator values.  */
   Used to verify that case values match up with enumerator values.  */
 
 
static int
static int
match_case_to_enum (splay_tree_node node, void *data)
match_case_to_enum (splay_tree_node node, void *data)
{
{
  tree label = (tree) node->value;
  tree label = (tree) node->value;
  tree type = (tree) data;
  tree type = (tree) data;
 
 
  /* Skip default case.  */
  /* Skip default case.  */
  if (!CASE_LOW (label))
  if (!CASE_LOW (label))
    return 0;
    return 0;
 
 
  /* If CASE_LOW_SEEN is not set, that means CASE_LOW did not appear
  /* If CASE_LOW_SEEN is not set, that means CASE_LOW did not appear
     when we did our enum->case scan.  Reset our scratch bit after.  */
     when we did our enum->case scan.  Reset our scratch bit after.  */
  if (!CASE_LOW_SEEN (label))
  if (!CASE_LOW_SEEN (label))
    match_case_to_enum_1 (CASE_LOW (label), type, label);
    match_case_to_enum_1 (CASE_LOW (label), type, label);
  else
  else
    CASE_LOW_SEEN (label) = 0;
    CASE_LOW_SEEN (label) = 0;
 
 
  /* If CASE_HIGH is non-null, we have a range.  If CASE_HIGH_SEEN is
  /* If CASE_HIGH is non-null, we have a range.  If CASE_HIGH_SEEN is
     not set, that means that CASE_HIGH did not appear when we did our
     not set, that means that CASE_HIGH did not appear when we did our
     enum->case scan.  Reset our scratch bit after.  */
     enum->case scan.  Reset our scratch bit after.  */
  if (CASE_HIGH (label))
  if (CASE_HIGH (label))
    {
    {
      if (!CASE_HIGH_SEEN (label))
      if (!CASE_HIGH_SEEN (label))
        match_case_to_enum_1 (CASE_HIGH (label), type, label);
        match_case_to_enum_1 (CASE_HIGH (label), type, label);
      else
      else
        CASE_HIGH_SEEN (label) = 0;
        CASE_HIGH_SEEN (label) = 0;
    }
    }
 
 
  return 0;
  return 0;
}
}
 
 
/* Handle -Wswitch*.  Called from the front end after parsing the
/* Handle -Wswitch*.  Called from the front end after parsing the
   switch construct.  */
   switch construct.  */
/* ??? Should probably be somewhere generic, since other languages
/* ??? Should probably be somewhere generic, since other languages
   besides C and C++ would want this.  At the moment, however, C/C++
   besides C and C++ would want this.  At the moment, however, C/C++
   are the only tree-ssa languages that support enumerations at all,
   are the only tree-ssa languages that support enumerations at all,
   so the point is moot.  */
   so the point is moot.  */
 
 
void
void
c_do_switch_warnings (splay_tree cases, location_t switch_location,
c_do_switch_warnings (splay_tree cases, location_t switch_location,
                      tree type, tree cond)
                      tree type, tree cond)
{
{
  splay_tree_node default_node;
  splay_tree_node default_node;
  splay_tree_node node;
  splay_tree_node node;
  tree chain;
  tree chain;
 
 
  if (!warn_switch && !warn_switch_enum && !warn_switch_default)
  if (!warn_switch && !warn_switch_enum && !warn_switch_default)
    return;
    return;
 
 
  default_node = splay_tree_lookup (cases, (splay_tree_key) NULL);
  default_node = splay_tree_lookup (cases, (splay_tree_key) NULL);
  if (!default_node)
  if (!default_node)
    warning (OPT_Wswitch_default, "%Hswitch missing default case",
    warning (OPT_Wswitch_default, "%Hswitch missing default case",
             &switch_location);
             &switch_location);
 
 
  /* From here on, we only care about about enumerated types.  */
  /* From here on, we only care about about enumerated types.  */
  if (!type || TREE_CODE (type) != ENUMERAL_TYPE)
  if (!type || TREE_CODE (type) != ENUMERAL_TYPE)
    return;
    return;
 
 
  /* If the switch expression was an enumerated type, check that
  /* If the switch expression was an enumerated type, check that
     exactly all enumeration literals are covered by the cases.
     exactly all enumeration literals are covered by the cases.
     The check is made when -Wswitch was specified and there is no
     The check is made when -Wswitch was specified and there is no
     default case, or when -Wswitch-enum was specified.  */
     default case, or when -Wswitch-enum was specified.  */
 
 
  if (!warn_switch_enum
  if (!warn_switch_enum
      && !(warn_switch && !default_node))
      && !(warn_switch && !default_node))
    return;
    return;
 
 
  /* Clearing COND if it is not an integer constant simplifies
  /* Clearing COND if it is not an integer constant simplifies
     the tests inside the loop below.  */
     the tests inside the loop below.  */
  if (TREE_CODE (cond) != INTEGER_CST)
  if (TREE_CODE (cond) != INTEGER_CST)
    cond = NULL_TREE;
    cond = NULL_TREE;
 
 
  /* The time complexity here is O(N*lg(N)) worst case, but for the
  /* The time complexity here is O(N*lg(N)) worst case, but for the
      common case of monotonically increasing enumerators, it is
      common case of monotonically increasing enumerators, it is
      O(N), since the nature of the splay tree will keep the next
      O(N), since the nature of the splay tree will keep the next
      element adjacent to the root at all times.  */
      element adjacent to the root at all times.  */
 
 
  for (chain = TYPE_VALUES (type); chain; chain = TREE_CHAIN (chain))
  for (chain = TYPE_VALUES (type); chain; chain = TREE_CHAIN (chain))
    {
    {
      tree value = TREE_VALUE (chain);
      tree value = TREE_VALUE (chain);
      node = splay_tree_lookup (cases, (splay_tree_key) value);
      node = splay_tree_lookup (cases, (splay_tree_key) value);
      if (node)
      if (node)
        {
        {
          /* Mark the CASE_LOW part of the case entry as seen.  */
          /* Mark the CASE_LOW part of the case entry as seen.  */
          tree label = (tree) node->value;
          tree label = (tree) node->value;
          CASE_LOW_SEEN (label) = 1;
          CASE_LOW_SEEN (label) = 1;
          continue;
          continue;
        }
        }
 
 
      /* Even though there wasn't an exact match, there might be a
      /* Even though there wasn't an exact match, there might be a
         case range which includes the enumator's value.  */
         case range which includes the enumator's value.  */
      node = splay_tree_predecessor (cases, (splay_tree_key) value);
      node = splay_tree_predecessor (cases, (splay_tree_key) value);
      if (node && CASE_HIGH ((tree) node->value))
      if (node && CASE_HIGH ((tree) node->value))
        {
        {
          tree label = (tree) node->value;
          tree label = (tree) node->value;
          int cmp = tree_int_cst_compare (CASE_HIGH (label), value);
          int cmp = tree_int_cst_compare (CASE_HIGH (label), value);
          if (cmp >= 0)
          if (cmp >= 0)
            {
            {
              /* If we match the upper bound exactly, mark the CASE_HIGH
              /* If we match the upper bound exactly, mark the CASE_HIGH
                 part of the case entry as seen.  */
                 part of the case entry as seen.  */
              if (cmp == 0)
              if (cmp == 0)
                CASE_HIGH_SEEN (label) = 1;
                CASE_HIGH_SEEN (label) = 1;
              continue;
              continue;
            }
            }
        }
        }
 
 
      /* We've now determined that this enumerated literal isn't
      /* We've now determined that this enumerated literal isn't
         handled by the case labels of the switch statement.  */
         handled by the case labels of the switch statement.  */
 
 
      /* If the switch expression is a constant, we only really care
      /* If the switch expression is a constant, we only really care
         about whether that constant is handled by the switch.  */
         about whether that constant is handled by the switch.  */
      if (cond && tree_int_cst_compare (cond, value))
      if (cond && tree_int_cst_compare (cond, value))
        continue;
        continue;
 
 
      warning (0, "%Henumeration value %qE not handled in switch",
      warning (0, "%Henumeration value %qE not handled in switch",
               &switch_location, TREE_PURPOSE (chain));
               &switch_location, TREE_PURPOSE (chain));
    }
    }
 
 
  /* Warn if there are case expressions that don't correspond to
  /* Warn if there are case expressions that don't correspond to
     enumerators.  This can occur since C and C++ don't enforce
     enumerators.  This can occur since C and C++ don't enforce
     type-checking of assignments to enumeration variables.
     type-checking of assignments to enumeration variables.
 
 
     The time complexity here is now always O(N) worst case, since
     The time complexity here is now always O(N) worst case, since
     we should have marked both the lower bound and upper bound of
     we should have marked both the lower bound and upper bound of
     every disjoint case label, with CASE_LOW_SEEN and CASE_HIGH_SEEN
     every disjoint case label, with CASE_LOW_SEEN and CASE_HIGH_SEEN
     above.  This scan also resets those fields.  */
     above.  This scan also resets those fields.  */
  splay_tree_foreach (cases, match_case_to_enum, type);
  splay_tree_foreach (cases, match_case_to_enum, type);
}
}
 
 
/* Finish an expression taking the address of LABEL (an
/* Finish an expression taking the address of LABEL (an
   IDENTIFIER_NODE).  Returns an expression for the address.  */
   IDENTIFIER_NODE).  Returns an expression for the address.  */
 
 
tree
tree
finish_label_address_expr (tree label)
finish_label_address_expr (tree label)
{
{
  tree result;
  tree result;
 
 
  if (pedantic)
  if (pedantic)
    pedwarn ("taking the address of a label is non-standard");
    pedwarn ("taking the address of a label is non-standard");
 
 
  if (label == error_mark_node)
  if (label == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  label = lookup_label (label);
  label = lookup_label (label);
  if (label == NULL_TREE)
  if (label == NULL_TREE)
    result = null_pointer_node;
    result = null_pointer_node;
  else
  else
    {
    {
      TREE_USED (label) = 1;
      TREE_USED (label) = 1;
      result = build1 (ADDR_EXPR, ptr_type_node, label);
      result = build1 (ADDR_EXPR, ptr_type_node, label);
      /* The current function in not necessarily uninlinable.
      /* The current function in not necessarily uninlinable.
         Computed gotos are incompatible with inlining, but the value
         Computed gotos are incompatible with inlining, but the value
         here could be used only in a diagnostic, for example.  */
         here could be used only in a diagnostic, for example.  */
    }
    }
 
 
  return result;
  return result;
}
}
 
 
/* Hook used by expand_expr to expand language-specific tree codes.  */
/* Hook used by expand_expr to expand language-specific tree codes.  */
/* The only things that should go here are bits needed to expand
/* The only things that should go here are bits needed to expand
   constant initializers.  Everything else should be handled by the
   constant initializers.  Everything else should be handled by the
   gimplification routines.  */
   gimplification routines.  */
 
 
rtx
rtx
c_expand_expr (tree exp, rtx target, enum machine_mode tmode,
c_expand_expr (tree exp, rtx target, enum machine_mode tmode,
               int modifier /* Actually enum_modifier.  */,
               int modifier /* Actually enum_modifier.  */,
               rtx *alt_rtl)
               rtx *alt_rtl)
{
{
  switch (TREE_CODE (exp))
  switch (TREE_CODE (exp))
    {
    {
    case COMPOUND_LITERAL_EXPR:
    case COMPOUND_LITERAL_EXPR:
      {
      {
        /* Initialize the anonymous variable declared in the compound
        /* Initialize the anonymous variable declared in the compound
           literal, then return the variable.  */
           literal, then return the variable.  */
        tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
        tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
        emit_local_var (decl);
        emit_local_var (decl);
        return expand_expr_real (decl, target, tmode, modifier, alt_rtl);
        return expand_expr_real (decl, target, tmode, modifier, alt_rtl);
      }
      }
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Hook used by staticp to handle language-specific tree codes.  */
/* Hook used by staticp to handle language-specific tree codes.  */
 
 
tree
tree
c_staticp (tree exp)
c_staticp (tree exp)
{
{
  return (TREE_CODE (exp) == COMPOUND_LITERAL_EXPR
  return (TREE_CODE (exp) == COMPOUND_LITERAL_EXPR
          && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp))
          && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp))
          ? exp : NULL);
          ? exp : NULL);
}
}


 
 
/* Given a boolean expression ARG, return a tree representing an increment
/* Given a boolean expression ARG, return a tree representing an increment
   or decrement (as indicated by CODE) of ARG.  The front end must check for
   or decrement (as indicated by CODE) of ARG.  The front end must check for
   invalid cases (e.g., decrement in C++).  */
   invalid cases (e.g., decrement in C++).  */
tree
tree
boolean_increment (enum tree_code code, tree arg)
boolean_increment (enum tree_code code, tree arg)
{
{
  tree val;
  tree val;
  tree true_res = boolean_true_node;
  tree true_res = boolean_true_node;
 
 
  arg = stabilize_reference (arg);
  arg = stabilize_reference (arg);
  switch (code)
  switch (code)
    {
    {
    case PREINCREMENT_EXPR:
    case PREINCREMENT_EXPR:
      val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
      val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
      break;
      break;
    case POSTINCREMENT_EXPR:
    case POSTINCREMENT_EXPR:
      val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
      val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg, true_res);
      arg = save_expr (arg);
      arg = save_expr (arg);
      val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
      val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
      val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
      val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
      break;
      break;
    case PREDECREMENT_EXPR:
    case PREDECREMENT_EXPR:
      val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg,
      val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg,
                    invert_truthvalue (arg));
                    invert_truthvalue (arg));
      break;
      break;
    case POSTDECREMENT_EXPR:
    case POSTDECREMENT_EXPR:
      val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg,
      val = build2 (MODIFY_EXPR, TREE_TYPE (arg), arg,
                    invert_truthvalue (arg));
                    invert_truthvalue (arg));
      arg = save_expr (arg);
      arg = save_expr (arg);
      val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
      val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), val, arg);
      val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
      val = build2 (COMPOUND_EXPR, TREE_TYPE (arg), arg, val);
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
  TREE_SIDE_EFFECTS (val) = 1;
  TREE_SIDE_EFFECTS (val) = 1;
  return val;
  return val;
}
}


/* Built-in macros for stddef.h, that require macros defined in this
/* Built-in macros for stddef.h, that require macros defined in this
   file.  */
   file.  */
void
void
c_stddef_cpp_builtins(void)
c_stddef_cpp_builtins(void)
{
{
  builtin_define_with_value ("__SIZE_TYPE__", SIZE_TYPE, 0);
  builtin_define_with_value ("__SIZE_TYPE__", SIZE_TYPE, 0);
  builtin_define_with_value ("__PTRDIFF_TYPE__", PTRDIFF_TYPE, 0);
  builtin_define_with_value ("__PTRDIFF_TYPE__", PTRDIFF_TYPE, 0);
  builtin_define_with_value ("__WCHAR_TYPE__", MODIFIED_WCHAR_TYPE, 0);
  builtin_define_with_value ("__WCHAR_TYPE__", MODIFIED_WCHAR_TYPE, 0);
  builtin_define_with_value ("__WINT_TYPE__", WINT_TYPE, 0);
  builtin_define_with_value ("__WINT_TYPE__", WINT_TYPE, 0);
  builtin_define_with_value ("__INTMAX_TYPE__", INTMAX_TYPE, 0);
  builtin_define_with_value ("__INTMAX_TYPE__", INTMAX_TYPE, 0);
  builtin_define_with_value ("__UINTMAX_TYPE__", UINTMAX_TYPE, 0);
  builtin_define_with_value ("__UINTMAX_TYPE__", UINTMAX_TYPE, 0);
}
}
 
 
static void
static void
c_init_attributes (void)
c_init_attributes (void)
{
{
  /* Fill in the built_in_attributes array.  */
  /* Fill in the built_in_attributes array.  */
#define DEF_ATTR_NULL_TREE(ENUM)                                \
#define DEF_ATTR_NULL_TREE(ENUM)                                \
  built_in_attributes[(int) ENUM] = NULL_TREE;
  built_in_attributes[(int) ENUM] = NULL_TREE;
#define DEF_ATTR_INT(ENUM, VALUE)                               \
#define DEF_ATTR_INT(ENUM, VALUE)                               \
  built_in_attributes[(int) ENUM] = build_int_cst (NULL_TREE, VALUE);
  built_in_attributes[(int) ENUM] = build_int_cst (NULL_TREE, VALUE);
#define DEF_ATTR_IDENT(ENUM, STRING)                            \
#define DEF_ATTR_IDENT(ENUM, STRING)                            \
  built_in_attributes[(int) ENUM] = get_identifier (STRING);
  built_in_attributes[(int) ENUM] = get_identifier (STRING);
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \
#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \
  built_in_attributes[(int) ENUM]                       \
  built_in_attributes[(int) ENUM]                       \
    = tree_cons (built_in_attributes[(int) PURPOSE],    \
    = tree_cons (built_in_attributes[(int) PURPOSE],    \
                 built_in_attributes[(int) VALUE],      \
                 built_in_attributes[(int) VALUE],      \
                 built_in_attributes[(int) CHAIN]);
                 built_in_attributes[(int) CHAIN]);
#include "builtin-attrs.def"
#include "builtin-attrs.def"
#undef DEF_ATTR_NULL_TREE
#undef DEF_ATTR_NULL_TREE
#undef DEF_ATTR_INT
#undef DEF_ATTR_INT
#undef DEF_ATTR_IDENT
#undef DEF_ATTR_IDENT
#undef DEF_ATTR_TREE_LIST
#undef DEF_ATTR_TREE_LIST
}
}
 
 
/* Attribute handlers common to C front ends.  */
/* Attribute handlers common to C front ends.  */
 
 
/* Handle a "packed" attribute; arguments as in
/* Handle a "packed" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_packed_attribute (tree *node, tree name, tree ARG_UNUSED (args),
handle_packed_attribute (tree *node, tree name, tree ARG_UNUSED (args),
                         int flags, bool *no_add_attrs)
                         int flags, bool *no_add_attrs)
{
{
  if (TYPE_P (*node))
  if (TYPE_P (*node))
    {
    {
      if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
      if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
        *node = build_variant_type_copy (*node);
        *node = build_variant_type_copy (*node);
      TYPE_PACKED (*node) = 1;
      TYPE_PACKED (*node) = 1;
    }
    }
  else if (TREE_CODE (*node) == FIELD_DECL)
  else if (TREE_CODE (*node) == FIELD_DECL)
    {
    {
      if (TYPE_ALIGN (TREE_TYPE (*node)) <= BITS_PER_UNIT)
      if (TYPE_ALIGN (TREE_TYPE (*node)) <= BITS_PER_UNIT)
        warning (OPT_Wattributes,
        warning (OPT_Wattributes,
                 "%qE attribute ignored for field of type %qT",
                 "%qE attribute ignored for field of type %qT",
                 name, TREE_TYPE (*node));
                 name, TREE_TYPE (*node));
      else
      else
        DECL_PACKED (*node) = 1;
        DECL_PACKED (*node) = 1;
    }
    }
  /* We can't set DECL_PACKED for a VAR_DECL, because the bit is
  /* We can't set DECL_PACKED for a VAR_DECL, because the bit is
     used for DECL_REGISTER.  It wouldn't mean anything anyway.
     used for DECL_REGISTER.  It wouldn't mean anything anyway.
     We can't set DECL_PACKED on the type of a TYPE_DECL, because
     We can't set DECL_PACKED on the type of a TYPE_DECL, because
     that changes what the typedef is typing.  */
     that changes what the typedef is typing.  */
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "nocommon" attribute; arguments as in
/* Handle a "nocommon" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_nocommon_attribute (tree *node, tree name,
handle_nocommon_attribute (tree *node, tree name,
                           tree ARG_UNUSED (args),
                           tree ARG_UNUSED (args),
                           int ARG_UNUSED (flags), bool *no_add_attrs)
                           int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  if (TREE_CODE (*node) == VAR_DECL)
  if (TREE_CODE (*node) == VAR_DECL)
    DECL_COMMON (*node) = 0;
    DECL_COMMON (*node) = 0;
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "common" attribute; arguments as in
/* Handle a "common" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_common_attribute (tree *node, tree name, tree ARG_UNUSED (args),
handle_common_attribute (tree *node, tree name, tree ARG_UNUSED (args),
                         int ARG_UNUSED (flags), bool *no_add_attrs)
                         int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  if (TREE_CODE (*node) == VAR_DECL)
  if (TREE_CODE (*node) == VAR_DECL)
    DECL_COMMON (*node) = 1;
    DECL_COMMON (*node) = 1;
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "noreturn" attribute; arguments as in
/* Handle a "noreturn" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_noreturn_attribute (tree *node, tree name, tree ARG_UNUSED (args),
handle_noreturn_attribute (tree *node, tree name, tree ARG_UNUSED (args),
                           int ARG_UNUSED (flags), bool *no_add_attrs)
                           int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  tree type = TREE_TYPE (*node);
  tree type = TREE_TYPE (*node);
 
 
  /* See FIXME comment in c_common_attribute_table.  */
  /* See FIXME comment in c_common_attribute_table.  */
  if (TREE_CODE (*node) == FUNCTION_DECL)
  if (TREE_CODE (*node) == FUNCTION_DECL)
    TREE_THIS_VOLATILE (*node) = 1;
    TREE_THIS_VOLATILE (*node) = 1;
  else if (TREE_CODE (type) == POINTER_TYPE
  else if (TREE_CODE (type) == POINTER_TYPE
           && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
           && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
    TREE_TYPE (*node)
    TREE_TYPE (*node)
      = build_pointer_type
      = build_pointer_type
        (build_type_variant (TREE_TYPE (type),
        (build_type_variant (TREE_TYPE (type),
                             TYPE_READONLY (TREE_TYPE (type)), 1));
                             TYPE_READONLY (TREE_TYPE (type)), 1));
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "noinline" attribute; arguments as in
/* Handle a "noinline" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_noinline_attribute (tree *node, tree name,
handle_noinline_attribute (tree *node, tree name,
                           tree ARG_UNUSED (args),
                           tree ARG_UNUSED (args),
                           int ARG_UNUSED (flags), bool *no_add_attrs)
                           int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  if (TREE_CODE (*node) == FUNCTION_DECL)
  if (TREE_CODE (*node) == FUNCTION_DECL)
    DECL_UNINLINABLE (*node) = 1;
    DECL_UNINLINABLE (*node) = 1;
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "always_inline" attribute; arguments as in
/* Handle a "always_inline" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_always_inline_attribute (tree *node, tree name,
handle_always_inline_attribute (tree *node, tree name,
                                tree ARG_UNUSED (args),
                                tree ARG_UNUSED (args),
                                int ARG_UNUSED (flags),
                                int ARG_UNUSED (flags),
                                bool *no_add_attrs)
                                bool *no_add_attrs)
{
{
  if (TREE_CODE (*node) == FUNCTION_DECL)
  if (TREE_CODE (*node) == FUNCTION_DECL)
    {
    {
      /* Do nothing else, just set the attribute.  We'll get at
      /* Do nothing else, just set the attribute.  We'll get at
         it later with lookup_attribute.  */
         it later with lookup_attribute.  */
    }
    }
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "gnu_inline" attribute; arguments as in
/* Handle a "gnu_inline" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_gnu_inline_attribute (tree *node, tree name,
handle_gnu_inline_attribute (tree *node, tree name,
                             tree ARG_UNUSED (args),
                             tree ARG_UNUSED (args),
                             int ARG_UNUSED (flags),
                             int ARG_UNUSED (flags),
                             bool *no_add_attrs)
                             bool *no_add_attrs)
{
{
  if (TREE_CODE (*node) == FUNCTION_DECL && DECL_DECLARED_INLINE_P (*node))
  if (TREE_CODE (*node) == FUNCTION_DECL && DECL_DECLARED_INLINE_P (*node))
    {
    {
      /* Do nothing else, just set the attribute.  We'll get at
      /* Do nothing else, just set the attribute.  We'll get at
         it later with lookup_attribute.  */
         it later with lookup_attribute.  */
    }
    }
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "flatten" attribute; arguments as in
/* Handle a "flatten" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_flatten_attribute (tree *node, tree name,
handle_flatten_attribute (tree *node, tree name,
                          tree args ATTRIBUTE_UNUSED,
                          tree args ATTRIBUTE_UNUSED,
                          int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
                          int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
{
{
  if (TREE_CODE (*node) == FUNCTION_DECL)
  if (TREE_CODE (*node) == FUNCTION_DECL)
    /* Do nothing else, just set the attribute.  We'll get at
    /* Do nothing else, just set the attribute.  We'll get at
       it later with lookup_attribute.  */
       it later with lookup_attribute.  */
    ;
    ;
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
 
 
/* Handle a "used" attribute; arguments as in
/* Handle a "used" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_used_attribute (tree *pnode, tree name, tree ARG_UNUSED (args),
handle_used_attribute (tree *pnode, tree name, tree ARG_UNUSED (args),
                       int ARG_UNUSED (flags), bool *no_add_attrs)
                       int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  tree node = *pnode;
  tree node = *pnode;
 
 
  if (TREE_CODE (node) == FUNCTION_DECL
  if (TREE_CODE (node) == FUNCTION_DECL
      || (TREE_CODE (node) == VAR_DECL && TREE_STATIC (node)))
      || (TREE_CODE (node) == VAR_DECL && TREE_STATIC (node)))
    {
    {
      TREE_USED (node) = 1;
      TREE_USED (node) = 1;
      DECL_PRESERVE_P (node) = 1;
      DECL_PRESERVE_P (node) = 1;
    }
    }
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "unused" attribute; arguments as in
/* Handle a "unused" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_unused_attribute (tree *node, tree name, tree ARG_UNUSED (args),
handle_unused_attribute (tree *node, tree name, tree ARG_UNUSED (args),
                         int flags, bool *no_add_attrs)
                         int flags, bool *no_add_attrs)
{
{
  if (DECL_P (*node))
  if (DECL_P (*node))
    {
    {
      tree decl = *node;
      tree decl = *node;
 
 
      if (TREE_CODE (decl) == PARM_DECL
      if (TREE_CODE (decl) == PARM_DECL
          || TREE_CODE (decl) == VAR_DECL
          || TREE_CODE (decl) == VAR_DECL
          || TREE_CODE (decl) == FUNCTION_DECL
          || TREE_CODE (decl) == FUNCTION_DECL
          || TREE_CODE (decl) == LABEL_DECL
          || TREE_CODE (decl) == LABEL_DECL
          || TREE_CODE (decl) == TYPE_DECL)
          || TREE_CODE (decl) == TYPE_DECL)
        TREE_USED (decl) = 1;
        TREE_USED (decl) = 1;
      else
      else
        {
        {
          warning (OPT_Wattributes, "%qE attribute ignored", name);
          warning (OPT_Wattributes, "%qE attribute ignored", name);
          *no_add_attrs = true;
          *no_add_attrs = true;
        }
        }
    }
    }
  else
  else
    {
    {
      if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
      if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
        *node = build_variant_type_copy (*node);
        *node = build_variant_type_copy (*node);
      TREE_USED (*node) = 1;
      TREE_USED (*node) = 1;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "externally_visible" attribute; arguments as in
/* Handle a "externally_visible" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_externally_visible_attribute (tree *pnode, tree name,
handle_externally_visible_attribute (tree *pnode, tree name,
                                     tree ARG_UNUSED (args),
                                     tree ARG_UNUSED (args),
                                     int ARG_UNUSED (flags),
                                     int ARG_UNUSED (flags),
                                     bool *no_add_attrs)
                                     bool *no_add_attrs)
{
{
  tree node = *pnode;
  tree node = *pnode;
 
 
  if (TREE_CODE (node) == FUNCTION_DECL || TREE_CODE (node) == VAR_DECL)
  if (TREE_CODE (node) == FUNCTION_DECL || TREE_CODE (node) == VAR_DECL)
    {
    {
      if ((!TREE_STATIC (node) && TREE_CODE (node) != FUNCTION_DECL
      if ((!TREE_STATIC (node) && TREE_CODE (node) != FUNCTION_DECL
           && !DECL_EXTERNAL (node)) || !TREE_PUBLIC (node))
           && !DECL_EXTERNAL (node)) || !TREE_PUBLIC (node))
        {
        {
          warning (OPT_Wattributes,
          warning (OPT_Wattributes,
                   "%qE attribute have effect only on public objects", name);
                   "%qE attribute have effect only on public objects", name);
          *no_add_attrs = true;
          *no_add_attrs = true;
        }
        }
    }
    }
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "const" attribute; arguments as in
/* Handle a "const" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_const_attribute (tree *node, tree name, tree ARG_UNUSED (args),
handle_const_attribute (tree *node, tree name, tree ARG_UNUSED (args),
                        int ARG_UNUSED (flags), bool *no_add_attrs)
                        int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  tree type = TREE_TYPE (*node);
  tree type = TREE_TYPE (*node);
 
 
  /* See FIXME comment on noreturn in c_common_attribute_table.  */
  /* See FIXME comment on noreturn in c_common_attribute_table.  */
  if (TREE_CODE (*node) == FUNCTION_DECL)
  if (TREE_CODE (*node) == FUNCTION_DECL)
    TREE_READONLY (*node) = 1;
    TREE_READONLY (*node) = 1;
  else if (TREE_CODE (type) == POINTER_TYPE
  else if (TREE_CODE (type) == POINTER_TYPE
           && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
           && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE)
    TREE_TYPE (*node)
    TREE_TYPE (*node)
      = build_pointer_type
      = build_pointer_type
        (build_type_variant (TREE_TYPE (type), 1,
        (build_type_variant (TREE_TYPE (type), 1,
                             TREE_THIS_VOLATILE (TREE_TYPE (type))));
                             TREE_THIS_VOLATILE (TREE_TYPE (type))));
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "transparent_union" attribute; arguments as in
/* Handle a "transparent_union" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_transparent_union_attribute (tree *node, tree name,
handle_transparent_union_attribute (tree *node, tree name,
                                    tree ARG_UNUSED (args), int flags,
                                    tree ARG_UNUSED (args), int flags,
                                    bool *no_add_attrs)
                                    bool *no_add_attrs)
{
{
  tree type = NULL;
  tree type = NULL;
 
 
  *no_add_attrs = true;
  *no_add_attrs = true;
 
 
  if (DECL_P (*node))
  if (DECL_P (*node))
    {
    {
      if (TREE_CODE (*node) != TYPE_DECL)
      if (TREE_CODE (*node) != TYPE_DECL)
        goto ignored;
        goto ignored;
      node = &TREE_TYPE (*node);
      node = &TREE_TYPE (*node);
      type = *node;
      type = *node;
    }
    }
  else if (TYPE_P (*node))
  else if (TYPE_P (*node))
    type = *node;
    type = *node;
  else
  else
    goto ignored;
    goto ignored;
 
 
  if (TREE_CODE (type) == UNION_TYPE)
  if (TREE_CODE (type) == UNION_TYPE)
    {
    {
      /* When IN_PLACE is set, leave the check for FIELDS and MODE to
      /* When IN_PLACE is set, leave the check for FIELDS and MODE to
         the code in finish_struct.  */
         the code in finish_struct.  */
      if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
      if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
        {
        {
          if (TYPE_FIELDS (type) == NULL_TREE
          if (TYPE_FIELDS (type) == NULL_TREE
              || TYPE_MODE (type) != DECL_MODE (TYPE_FIELDS (type)))
              || TYPE_MODE (type) != DECL_MODE (TYPE_FIELDS (type)))
            goto ignored;
            goto ignored;
 
 
          /* A type variant isn't good enough, since we don't a cast
          /* A type variant isn't good enough, since we don't a cast
             to such a type removed as a no-op.  */
             to such a type removed as a no-op.  */
          *node = type = build_duplicate_type (type);
          *node = type = build_duplicate_type (type);
        }
        }
 
 
      TYPE_TRANSPARENT_UNION (type) = 1;
      TYPE_TRANSPARENT_UNION (type) = 1;
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
 ignored:
 ignored:
  warning (OPT_Wattributes, "%qE attribute ignored", name);
  warning (OPT_Wattributes, "%qE attribute ignored", name);
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "constructor" attribute; arguments as in
/* Handle a "constructor" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_constructor_attribute (tree *node, tree name,
handle_constructor_attribute (tree *node, tree name,
                              tree ARG_UNUSED (args),
                              tree ARG_UNUSED (args),
                              int ARG_UNUSED (flags),
                              int ARG_UNUSED (flags),
                              bool *no_add_attrs)
                              bool *no_add_attrs)
{
{
  tree decl = *node;
  tree decl = *node;
  tree type = TREE_TYPE (decl);
  tree type = TREE_TYPE (decl);
 
 
  if (TREE_CODE (decl) == FUNCTION_DECL
  if (TREE_CODE (decl) == FUNCTION_DECL
      && TREE_CODE (type) == FUNCTION_TYPE
      && TREE_CODE (type) == FUNCTION_TYPE
      && decl_function_context (decl) == 0)
      && decl_function_context (decl) == 0)
    {
    {
      DECL_STATIC_CONSTRUCTOR (decl) = 1;
      DECL_STATIC_CONSTRUCTOR (decl) = 1;
      TREE_USED (decl) = 1;
      TREE_USED (decl) = 1;
    }
    }
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "destructor" attribute; arguments as in
/* Handle a "destructor" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_destructor_attribute (tree *node, tree name,
handle_destructor_attribute (tree *node, tree name,
                             tree ARG_UNUSED (args),
                             tree ARG_UNUSED (args),
                             int ARG_UNUSED (flags),
                             int ARG_UNUSED (flags),
                             bool *no_add_attrs)
                             bool *no_add_attrs)
{
{
  tree decl = *node;
  tree decl = *node;
  tree type = TREE_TYPE (decl);
  tree type = TREE_TYPE (decl);
 
 
  if (TREE_CODE (decl) == FUNCTION_DECL
  if (TREE_CODE (decl) == FUNCTION_DECL
      && TREE_CODE (type) == FUNCTION_TYPE
      && TREE_CODE (type) == FUNCTION_TYPE
      && decl_function_context (decl) == 0)
      && decl_function_context (decl) == 0)
    {
    {
      DECL_STATIC_DESTRUCTOR (decl) = 1;
      DECL_STATIC_DESTRUCTOR (decl) = 1;
      TREE_USED (decl) = 1;
      TREE_USED (decl) = 1;
    }
    }
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "mode" attribute; arguments as in
/* Handle a "mode" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_mode_attribute (tree *node, tree name, tree args,
handle_mode_attribute (tree *node, tree name, tree args,
                       int ARG_UNUSED (flags), bool *no_add_attrs)
                       int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  tree type = *node;
  tree type = *node;
 
 
  *no_add_attrs = true;
  *no_add_attrs = true;
 
 
  if (TREE_CODE (TREE_VALUE (args)) != IDENTIFIER_NODE)
  if (TREE_CODE (TREE_VALUE (args)) != IDENTIFIER_NODE)
    warning (OPT_Wattributes, "%qE attribute ignored", name);
    warning (OPT_Wattributes, "%qE attribute ignored", name);
  else
  else
    {
    {
      int j;
      int j;
      const char *p = IDENTIFIER_POINTER (TREE_VALUE (args));
      const char *p = IDENTIFIER_POINTER (TREE_VALUE (args));
      int len = strlen (p);
      int len = strlen (p);
      enum machine_mode mode = VOIDmode;
      enum machine_mode mode = VOIDmode;
      tree typefm;
      tree typefm;
      bool valid_mode;
      bool valid_mode;
 
 
      if (len > 4 && p[0] == '_' && p[1] == '_'
      if (len > 4 && p[0] == '_' && p[1] == '_'
          && p[len - 1] == '_' && p[len - 2] == '_')
          && p[len - 1] == '_' && p[len - 2] == '_')
        {
        {
          char *newp = (char *) alloca (len - 1);
          char *newp = (char *) alloca (len - 1);
 
 
          strcpy (newp, &p[2]);
          strcpy (newp, &p[2]);
          newp[len - 4] = '\0';
          newp[len - 4] = '\0';
          p = newp;
          p = newp;
        }
        }
 
 
      /* Change this type to have a type with the specified mode.
      /* Change this type to have a type with the specified mode.
         First check for the special modes.  */
         First check for the special modes.  */
      if (!strcmp (p, "byte"))
      if (!strcmp (p, "byte"))
        mode = byte_mode;
        mode = byte_mode;
      else if (!strcmp (p, "word"))
      else if (!strcmp (p, "word"))
        mode = word_mode;
        mode = word_mode;
      else if (!strcmp (p, "pointer"))
      else if (!strcmp (p, "pointer"))
        mode = ptr_mode;
        mode = ptr_mode;
      else
      else
        for (j = 0; j < NUM_MACHINE_MODES; j++)
        for (j = 0; j < NUM_MACHINE_MODES; j++)
          if (!strcmp (p, GET_MODE_NAME (j)))
          if (!strcmp (p, GET_MODE_NAME (j)))
            {
            {
              mode = (enum machine_mode) j;
              mode = (enum machine_mode) j;
              break;
              break;
            }
            }
 
 
      if (mode == VOIDmode)
      if (mode == VOIDmode)
        {
        {
          error ("unknown machine mode %qs", p);
          error ("unknown machine mode %qs", p);
          return NULL_TREE;
          return NULL_TREE;
        }
        }
 
 
      valid_mode = false;
      valid_mode = false;
      switch (GET_MODE_CLASS (mode))
      switch (GET_MODE_CLASS (mode))
        {
        {
        case MODE_INT:
        case MODE_INT:
        case MODE_PARTIAL_INT:
        case MODE_PARTIAL_INT:
        case MODE_FLOAT:
        case MODE_FLOAT:
        case MODE_DECIMAL_FLOAT:
        case MODE_DECIMAL_FLOAT:
          valid_mode = targetm.scalar_mode_supported_p (mode);
          valid_mode = targetm.scalar_mode_supported_p (mode);
          break;
          break;
 
 
        case MODE_COMPLEX_INT:
        case MODE_COMPLEX_INT:
        case MODE_COMPLEX_FLOAT:
        case MODE_COMPLEX_FLOAT:
          valid_mode = targetm.scalar_mode_supported_p (GET_MODE_INNER (mode));
          valid_mode = targetm.scalar_mode_supported_p (GET_MODE_INNER (mode));
          break;
          break;
 
 
        case MODE_VECTOR_INT:
        case MODE_VECTOR_INT:
        case MODE_VECTOR_FLOAT:
        case MODE_VECTOR_FLOAT:
          warning (OPT_Wattributes, "specifying vector types with "
          warning (OPT_Wattributes, "specifying vector types with "
                   "__attribute__ ((mode)) is deprecated");
                   "__attribute__ ((mode)) is deprecated");
          warning (OPT_Wattributes,
          warning (OPT_Wattributes,
                   "use __attribute__ ((vector_size)) instead");
                   "use __attribute__ ((vector_size)) instead");
          valid_mode = vector_mode_valid_p (mode);
          valid_mode = vector_mode_valid_p (mode);
          break;
          break;
 
 
        default:
        default:
          break;
          break;
        }
        }
      if (!valid_mode)
      if (!valid_mode)
        {
        {
          error ("unable to emulate %qs", p);
          error ("unable to emulate %qs", p);
          return NULL_TREE;
          return NULL_TREE;
        }
        }
 
 
      if (POINTER_TYPE_P (type))
      if (POINTER_TYPE_P (type))
        {
        {
          tree (*fn)(tree, enum machine_mode, bool);
          tree (*fn)(tree, enum machine_mode, bool);
 
 
          if (!targetm.valid_pointer_mode (mode))
          if (!targetm.valid_pointer_mode (mode))
            {
            {
              error ("invalid pointer mode %qs", p);
              error ("invalid pointer mode %qs", p);
              return NULL_TREE;
              return NULL_TREE;
            }
            }
 
 
          if (TREE_CODE (type) == POINTER_TYPE)
          if (TREE_CODE (type) == POINTER_TYPE)
            fn = build_pointer_type_for_mode;
            fn = build_pointer_type_for_mode;
          else
          else
            fn = build_reference_type_for_mode;
            fn = build_reference_type_for_mode;
          typefm = fn (TREE_TYPE (type), mode, false);
          typefm = fn (TREE_TYPE (type), mode, false);
        }
        }
      else
      else
        typefm = lang_hooks.types.type_for_mode (mode, TYPE_UNSIGNED (type));
        typefm = lang_hooks.types.type_for_mode (mode, TYPE_UNSIGNED (type));
 
 
      if (typefm == NULL_TREE)
      if (typefm == NULL_TREE)
        {
        {
          error ("no data type for mode %qs", p);
          error ("no data type for mode %qs", p);
          return NULL_TREE;
          return NULL_TREE;
        }
        }
      else if (TREE_CODE (type) == ENUMERAL_TYPE)
      else if (TREE_CODE (type) == ENUMERAL_TYPE)
        {
        {
          /* For enumeral types, copy the precision from the integer
          /* For enumeral types, copy the precision from the integer
             type returned above.  If not an INTEGER_TYPE, we can't use
             type returned above.  If not an INTEGER_TYPE, we can't use
             this mode for this type.  */
             this mode for this type.  */
          if (TREE_CODE (typefm) != INTEGER_TYPE)
          if (TREE_CODE (typefm) != INTEGER_TYPE)
            {
            {
              error ("cannot use mode %qs for enumeral types", p);
              error ("cannot use mode %qs for enumeral types", p);
              return NULL_TREE;
              return NULL_TREE;
            }
            }
 
 
          if (flags & ATTR_FLAG_TYPE_IN_PLACE)
          if (flags & ATTR_FLAG_TYPE_IN_PLACE)
            {
            {
              TYPE_PRECISION (type) = TYPE_PRECISION (typefm);
              TYPE_PRECISION (type) = TYPE_PRECISION (typefm);
              typefm = type;
              typefm = type;
            }
            }
          else
          else
            {
            {
              /* We cannot build a type variant, as there's code that assumes
              /* We cannot build a type variant, as there's code that assumes
                 that TYPE_MAIN_VARIANT has the same mode.  This includes the
                 that TYPE_MAIN_VARIANT has the same mode.  This includes the
                 debug generators.  Instead, create a subrange type.  This
                 debug generators.  Instead, create a subrange type.  This
                 results in all of the enumeral values being emitted only once
                 results in all of the enumeral values being emitted only once
                 in the original, and the subtype gets them by reference.  */
                 in the original, and the subtype gets them by reference.  */
              if (TYPE_UNSIGNED (type))
              if (TYPE_UNSIGNED (type))
                typefm = make_unsigned_type (TYPE_PRECISION (typefm));
                typefm = make_unsigned_type (TYPE_PRECISION (typefm));
              else
              else
                typefm = make_signed_type (TYPE_PRECISION (typefm));
                typefm = make_signed_type (TYPE_PRECISION (typefm));
              TREE_TYPE (typefm) = type;
              TREE_TYPE (typefm) = type;
            }
            }
        }
        }
      else if (VECTOR_MODE_P (mode)
      else if (VECTOR_MODE_P (mode)
               ? TREE_CODE (type) != TREE_CODE (TREE_TYPE (typefm))
               ? TREE_CODE (type) != TREE_CODE (TREE_TYPE (typefm))
               : TREE_CODE (type) != TREE_CODE (typefm))
               : TREE_CODE (type) != TREE_CODE (typefm))
        {
        {
          error ("mode %qs applied to inappropriate type", p);
          error ("mode %qs applied to inappropriate type", p);
          return NULL_TREE;
          return NULL_TREE;
        }
        }
 
 
      *node = typefm;
      *node = typefm;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "section" attribute; arguments as in
/* Handle a "section" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_section_attribute (tree *node, tree ARG_UNUSED (name), tree args,
handle_section_attribute (tree *node, tree ARG_UNUSED (name), tree args,
                          int ARG_UNUSED (flags), bool *no_add_attrs)
                          int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  tree decl = *node;
  tree decl = *node;
 
 
  if (targetm.have_named_sections)
  if (targetm.have_named_sections)
    {
    {
      user_defined_section_attribute = true;
      user_defined_section_attribute = true;
 
 
      if ((TREE_CODE (decl) == FUNCTION_DECL
      if ((TREE_CODE (decl) == FUNCTION_DECL
           || TREE_CODE (decl) == VAR_DECL)
           || TREE_CODE (decl) == VAR_DECL)
          && TREE_CODE (TREE_VALUE (args)) == STRING_CST)
          && TREE_CODE (TREE_VALUE (args)) == STRING_CST)
        {
        {
          if (TREE_CODE (decl) == VAR_DECL
          if (TREE_CODE (decl) == VAR_DECL
              && current_function_decl != NULL_TREE
              && current_function_decl != NULL_TREE
              && !TREE_STATIC (decl))
              && !TREE_STATIC (decl))
            {
            {
              error ("%Jsection attribute cannot be specified for "
              error ("%Jsection attribute cannot be specified for "
                     "local variables", decl);
                     "local variables", decl);
              *no_add_attrs = true;
              *no_add_attrs = true;
            }
            }
 
 
          /* The decl may have already been given a section attribute
          /* The decl may have already been given a section attribute
             from a previous declaration.  Ensure they match.  */
             from a previous declaration.  Ensure they match.  */
          else if (DECL_SECTION_NAME (decl) != NULL_TREE
          else if (DECL_SECTION_NAME (decl) != NULL_TREE
                   && strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (decl)),
                   && strcmp (TREE_STRING_POINTER (DECL_SECTION_NAME (decl)),
                              TREE_STRING_POINTER (TREE_VALUE (args))) != 0)
                              TREE_STRING_POINTER (TREE_VALUE (args))) != 0)
            {
            {
              error ("section of %q+D conflicts with previous declaration",
              error ("section of %q+D conflicts with previous declaration",
                     *node);
                     *node);
              *no_add_attrs = true;
              *no_add_attrs = true;
            }
            }
          else
          else
            DECL_SECTION_NAME (decl) = TREE_VALUE (args);
            DECL_SECTION_NAME (decl) = TREE_VALUE (args);
        }
        }
      else
      else
        {
        {
          error ("section attribute not allowed for %q+D", *node);
          error ("section attribute not allowed for %q+D", *node);
          *no_add_attrs = true;
          *no_add_attrs = true;
        }
        }
    }
    }
  else
  else
    {
    {
      error ("%Jsection attributes are not supported for this target", *node);
      error ("%Jsection attributes are not supported for this target", *node);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "aligned" attribute; arguments as in
/* Handle a "aligned" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_aligned_attribute (tree *node, tree ARG_UNUSED (name), tree args,
handle_aligned_attribute (tree *node, tree ARG_UNUSED (name), tree args,
                          int flags, bool *no_add_attrs)
                          int flags, bool *no_add_attrs)
{
{
  tree decl = NULL_TREE;
  tree decl = NULL_TREE;
  tree *type = NULL;
  tree *type = NULL;
  int is_type = 0;
  int is_type = 0;
  tree align_expr = (args ? TREE_VALUE (args)
  tree align_expr = (args ? TREE_VALUE (args)
                     : size_int (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
                     : size_int (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
  int i;
  int i;
 
 
  if (DECL_P (*node))
  if (DECL_P (*node))
    {
    {
      decl = *node;
      decl = *node;
      type = &TREE_TYPE (decl);
      type = &TREE_TYPE (decl);
      is_type = TREE_CODE (*node) == TYPE_DECL;
      is_type = TREE_CODE (*node) == TYPE_DECL;
    }
    }
  else if (TYPE_P (*node))
  else if (TYPE_P (*node))
    type = node, is_type = 1;
    type = node, is_type = 1;
 
 
  if (TREE_CODE (align_expr) != INTEGER_CST)
  if (TREE_CODE (align_expr) != INTEGER_CST)
    {
    {
      error ("requested alignment is not a constant");
      error ("requested alignment is not a constant");
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
  else if ((i = tree_log2 (align_expr)) == -1)
  else if ((i = tree_log2 (align_expr)) == -1)
    {
    {
      error ("requested alignment is not a power of 2");
      error ("requested alignment is not a power of 2");
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
  else if (i > HOST_BITS_PER_INT - 2)
  else if (i > HOST_BITS_PER_INT - 2)
    {
    {
      error ("requested alignment is too large");
      error ("requested alignment is too large");
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
  else if (is_type)
  else if (is_type)
    {
    {
      /* If we have a TYPE_DECL, then copy the type, so that we
      /* If we have a TYPE_DECL, then copy the type, so that we
         don't accidentally modify a builtin type.  See pushdecl.  */
         don't accidentally modify a builtin type.  See pushdecl.  */
      if (decl && TREE_TYPE (decl) != error_mark_node
      if (decl && TREE_TYPE (decl) != error_mark_node
          && DECL_ORIGINAL_TYPE (decl) == NULL_TREE)
          && DECL_ORIGINAL_TYPE (decl) == NULL_TREE)
        {
        {
          tree tt = TREE_TYPE (decl);
          tree tt = TREE_TYPE (decl);
          *type = build_variant_type_copy (*type);
          *type = build_variant_type_copy (*type);
          DECL_ORIGINAL_TYPE (decl) = tt;
          DECL_ORIGINAL_TYPE (decl) = tt;
          TYPE_NAME (*type) = decl;
          TYPE_NAME (*type) = decl;
          TREE_USED (*type) = TREE_USED (decl);
          TREE_USED (*type) = TREE_USED (decl);
          TREE_TYPE (decl) = *type;
          TREE_TYPE (decl) = *type;
        }
        }
      else if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
      else if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
        *type = build_variant_type_copy (*type);
        *type = build_variant_type_copy (*type);
 
 
      TYPE_ALIGN (*type) = (1 << i) * BITS_PER_UNIT;
      TYPE_ALIGN (*type) = (1 << i) * BITS_PER_UNIT;
      TYPE_USER_ALIGN (*type) = 1;
      TYPE_USER_ALIGN (*type) = 1;
    }
    }
  else if (TREE_CODE (decl) != VAR_DECL
  else if (TREE_CODE (decl) != VAR_DECL
           && TREE_CODE (decl) != FIELD_DECL)
           && TREE_CODE (decl) != FIELD_DECL)
    {
    {
      error ("alignment may not be specified for %q+D", decl);
      error ("alignment may not be specified for %q+D", decl);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
  else
  else
    {
    {
      DECL_ALIGN (decl) = (1 << i) * BITS_PER_UNIT;
      DECL_ALIGN (decl) = (1 << i) * BITS_PER_UNIT;
      DECL_USER_ALIGN (decl) = 1;
      DECL_USER_ALIGN (decl) = 1;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "weak" attribute; arguments as in
/* Handle a "weak" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_weak_attribute (tree *node, tree name,
handle_weak_attribute (tree *node, tree name,
                       tree ARG_UNUSED (args),
                       tree ARG_UNUSED (args),
                       int ARG_UNUSED (flags),
                       int ARG_UNUSED (flags),
                       bool * ARG_UNUSED (no_add_attrs))
                       bool * ARG_UNUSED (no_add_attrs))
{
{
  if (TREE_CODE (*node) == FUNCTION_DECL
  if (TREE_CODE (*node) == FUNCTION_DECL
      || TREE_CODE (*node) == VAR_DECL)
      || TREE_CODE (*node) == VAR_DECL)
    declare_weak (*node);
    declare_weak (*node);
  else
  else
    warning (OPT_Wattributes, "%qE attribute ignored", name);
    warning (OPT_Wattributes, "%qE attribute ignored", name);
 
 
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle an "alias" attribute; arguments as in
/* Handle an "alias" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_alias_attribute (tree *node, tree name, tree args,
handle_alias_attribute (tree *node, tree name, tree args,
                        int ARG_UNUSED (flags), bool *no_add_attrs)
                        int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  tree decl = *node;
  tree decl = *node;
 
 
  if ((TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
  if ((TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
      || (TREE_CODE (decl) != FUNCTION_DECL
      || (TREE_CODE (decl) != FUNCTION_DECL
          && TREE_PUBLIC (decl) && !DECL_EXTERNAL (decl))
          && TREE_PUBLIC (decl) && !DECL_EXTERNAL (decl))
      /* A static variable declaration is always a tentative definition,
      /* A static variable declaration is always a tentative definition,
         but the alias is a non-tentative definition which overrides.  */
         but the alias is a non-tentative definition which overrides.  */
      || (TREE_CODE (decl) != FUNCTION_DECL
      || (TREE_CODE (decl) != FUNCTION_DECL
          && ! TREE_PUBLIC (decl) && DECL_INITIAL (decl)))
          && ! TREE_PUBLIC (decl) && DECL_INITIAL (decl)))
    {
    {
      error ("%q+D defined both normally and as an alias", decl);
      error ("%q+D defined both normally and as an alias", decl);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  /* Note that the very first time we process a nested declaration,
  /* Note that the very first time we process a nested declaration,
     decl_function_context will not be set.  Indeed, *would* never
     decl_function_context will not be set.  Indeed, *would* never
     be set except for the DECL_INITIAL/DECL_EXTERNAL frobbery that
     be set except for the DECL_INITIAL/DECL_EXTERNAL frobbery that
     we do below.  After such frobbery, pushdecl would set the context.
     we do below.  After such frobbery, pushdecl would set the context.
     In any case, this is never what we want.  */
     In any case, this is never what we want.  */
  else if (decl_function_context (decl) == 0 && current_function_decl == NULL)
  else if (decl_function_context (decl) == 0 && current_function_decl == NULL)
    {
    {
      tree id;
      tree id;
 
 
      id = TREE_VALUE (args);
      id = TREE_VALUE (args);
      if (TREE_CODE (id) != STRING_CST)
      if (TREE_CODE (id) != STRING_CST)
        {
        {
          error ("alias argument not a string");
          error ("alias argument not a string");
          *no_add_attrs = true;
          *no_add_attrs = true;
          return NULL_TREE;
          return NULL_TREE;
        }
        }
      id = get_identifier (TREE_STRING_POINTER (id));
      id = get_identifier (TREE_STRING_POINTER (id));
      /* This counts as a use of the object pointed to.  */
      /* This counts as a use of the object pointed to.  */
      TREE_USED (id) = 1;
      TREE_USED (id) = 1;
 
 
      if (TREE_CODE (decl) == FUNCTION_DECL)
      if (TREE_CODE (decl) == FUNCTION_DECL)
        DECL_INITIAL (decl) = error_mark_node;
        DECL_INITIAL (decl) = error_mark_node;
      else
      else
        {
        {
          if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
          if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
            DECL_EXTERNAL (decl) = 1;
            DECL_EXTERNAL (decl) = 1;
          else
          else
            DECL_EXTERNAL (decl) = 0;
            DECL_EXTERNAL (decl) = 0;
          TREE_STATIC (decl) = 1;
          TREE_STATIC (decl) = 1;
        }
        }
    }
    }
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "weakref" attribute; arguments as in struct
/* Handle a "weakref" attribute; arguments as in struct
   attribute_spec.handler.  */
   attribute_spec.handler.  */
 
 
static tree
static tree
handle_weakref_attribute (tree *node, tree ARG_UNUSED (name), tree args,
handle_weakref_attribute (tree *node, tree ARG_UNUSED (name), tree args,
                          int flags, bool *no_add_attrs)
                          int flags, bool *no_add_attrs)
{
{
  tree attr = NULL_TREE;
  tree attr = NULL_TREE;
 
 
  /* We must ignore the attribute when it is associated with
  /* We must ignore the attribute when it is associated with
     local-scoped decls, since attribute alias is ignored and many
     local-scoped decls, since attribute alias is ignored and many
     such symbols do not even have a DECL_WEAK field.  */
     such symbols do not even have a DECL_WEAK field.  */
  if (decl_function_context (*node) || current_function_decl)
  if (decl_function_context (*node) || current_function_decl)
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  /* The idea here is that `weakref("name")' mutates into `weakref,
  /* The idea here is that `weakref("name")' mutates into `weakref,
     alias("name")', and weakref without arguments, in turn,
     alias("name")', and weakref without arguments, in turn,
     implicitly adds weak. */
     implicitly adds weak. */
 
 
  if (args)
  if (args)
    {
    {
      attr = tree_cons (get_identifier ("alias"), args, attr);
      attr = tree_cons (get_identifier ("alias"), args, attr);
      attr = tree_cons (get_identifier ("weakref"), NULL_TREE, attr);
      attr = tree_cons (get_identifier ("weakref"), NULL_TREE, attr);
 
 
      *no_add_attrs = true;
      *no_add_attrs = true;
 
 
      decl_attributes (node, attr, flags);
      decl_attributes (node, attr, flags);
    }
    }
  else
  else
    {
    {
      if (lookup_attribute ("alias", DECL_ATTRIBUTES (*node)))
      if (lookup_attribute ("alias", DECL_ATTRIBUTES (*node)))
        error ("%Jweakref attribute must appear before alias attribute",
        error ("%Jweakref attribute must appear before alias attribute",
               *node);
               *node);
 
 
      /* Can't call declare_weak because it wants this to be TREE_PUBLIC,
      /* Can't call declare_weak because it wants this to be TREE_PUBLIC,
         and that isn't supported; and because it wants to add it to
         and that isn't supported; and because it wants to add it to
         the list of weak decls, which isn't helpful.  */
         the list of weak decls, which isn't helpful.  */
      DECL_WEAK (*node) = 1;
      DECL_WEAK (*node) = 1;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle an "visibility" attribute; arguments as in
/* Handle an "visibility" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_visibility_attribute (tree *node, tree name, tree args,
handle_visibility_attribute (tree *node, tree name, tree args,
                             int ARG_UNUSED (flags),
                             int ARG_UNUSED (flags),
                             bool *ARG_UNUSED (no_add_attrs))
                             bool *ARG_UNUSED (no_add_attrs))
{
{
  tree decl = *node;
  tree decl = *node;
  tree id = TREE_VALUE (args);
  tree id = TREE_VALUE (args);
  enum symbol_visibility vis;
  enum symbol_visibility vis;
 
 
  if (TYPE_P (*node))
  if (TYPE_P (*node))
    {
    {
      if (TREE_CODE (*node) == ENUMERAL_TYPE)
      if (TREE_CODE (*node) == ENUMERAL_TYPE)
        /* OK */;
        /* OK */;
      else if (TREE_CODE (*node) != RECORD_TYPE && TREE_CODE (*node) != UNION_TYPE)
      else if (TREE_CODE (*node) != RECORD_TYPE && TREE_CODE (*node) != UNION_TYPE)
        {
        {
          warning (OPT_Wattributes, "%qE attribute ignored on non-class types",
          warning (OPT_Wattributes, "%qE attribute ignored on non-class types",
                   name);
                   name);
          return NULL_TREE;
          return NULL_TREE;
        }
        }
      else if (TYPE_FIELDS (*node))
      else if (TYPE_FIELDS (*node))
        {
        {
          error ("%qE attribute ignored because %qT is already defined",
          error ("%qE attribute ignored because %qT is already defined",
                 name, *node);
                 name, *node);
          return NULL_TREE;
          return NULL_TREE;
        }
        }
    }
    }
  else if (decl_function_context (decl) != 0 || !TREE_PUBLIC (decl))
  else if (decl_function_context (decl) != 0 || !TREE_PUBLIC (decl))
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  if (TREE_CODE (id) != STRING_CST)
  if (TREE_CODE (id) != STRING_CST)
    {
    {
      error ("visibility argument not a string");
      error ("visibility argument not a string");
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  /*  If this is a type, set the visibility on the type decl.  */
  /*  If this is a type, set the visibility on the type decl.  */
  if (TYPE_P (decl))
  if (TYPE_P (decl))
    {
    {
      decl = TYPE_NAME (decl);
      decl = TYPE_NAME (decl);
      if (!decl)
      if (!decl)
        return NULL_TREE;
        return NULL_TREE;
      if (TREE_CODE (decl) == IDENTIFIER_NODE)
      if (TREE_CODE (decl) == IDENTIFIER_NODE)
        {
        {
           warning (OPT_Wattributes, "%qE attribute ignored on types",
           warning (OPT_Wattributes, "%qE attribute ignored on types",
                    name);
                    name);
           return NULL_TREE;
           return NULL_TREE;
        }
        }
    }
    }
 
 
  if (strcmp (TREE_STRING_POINTER (id), "default") == 0)
  if (strcmp (TREE_STRING_POINTER (id), "default") == 0)
    vis = VISIBILITY_DEFAULT;
    vis = VISIBILITY_DEFAULT;
  else if (strcmp (TREE_STRING_POINTER (id), "internal") == 0)
  else if (strcmp (TREE_STRING_POINTER (id), "internal") == 0)
    vis = VISIBILITY_INTERNAL;
    vis = VISIBILITY_INTERNAL;
  else if (strcmp (TREE_STRING_POINTER (id), "hidden") == 0)
  else if (strcmp (TREE_STRING_POINTER (id), "hidden") == 0)
    vis = VISIBILITY_HIDDEN;
    vis = VISIBILITY_HIDDEN;
  else if (strcmp (TREE_STRING_POINTER (id), "protected") == 0)
  else if (strcmp (TREE_STRING_POINTER (id), "protected") == 0)
    vis = VISIBILITY_PROTECTED;
    vis = VISIBILITY_PROTECTED;
  else
  else
    {
    {
      error ("visibility argument must be one of \"default\", \"hidden\", \"protected\" or \"internal\"");
      error ("visibility argument must be one of \"default\", \"hidden\", \"protected\" or \"internal\"");
      vis = VISIBILITY_DEFAULT;
      vis = VISIBILITY_DEFAULT;
    }
    }
 
 
  if (DECL_VISIBILITY_SPECIFIED (decl)
  if (DECL_VISIBILITY_SPECIFIED (decl)
      && vis != DECL_VISIBILITY (decl)
      && vis != DECL_VISIBILITY (decl)
      && lookup_attribute ("visibility", (TYPE_P (*node)
      && lookup_attribute ("visibility", (TYPE_P (*node)
                                          ? TYPE_ATTRIBUTES (*node)
                                          ? TYPE_ATTRIBUTES (*node)
                                          : DECL_ATTRIBUTES (decl))))
                                          : DECL_ATTRIBUTES (decl))))
    error ("%qD redeclared with different visibility", decl);
    error ("%qD redeclared with different visibility", decl);
 
 
  DECL_VISIBILITY (decl) = vis;
  DECL_VISIBILITY (decl) = vis;
  DECL_VISIBILITY_SPECIFIED (decl) = 1;
  DECL_VISIBILITY_SPECIFIED (decl) = 1;
 
 
  /* Go ahead and attach the attribute to the node as well.  This is needed
  /* Go ahead and attach the attribute to the node as well.  This is needed
     so we can determine whether we have VISIBILITY_DEFAULT because the
     so we can determine whether we have VISIBILITY_DEFAULT because the
     visibility was not specified, or because it was explicitly overridden
     visibility was not specified, or because it was explicitly overridden
     from the containing scope.  */
     from the containing scope.  */
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Determine the ELF symbol visibility for DECL, which is either a
/* Determine the ELF symbol visibility for DECL, which is either a
   variable or a function.  It is an error to use this function if a
   variable or a function.  It is an error to use this function if a
   definition of DECL is not available in this translation unit.
   definition of DECL is not available in this translation unit.
   Returns true if the final visibility has been determined by this
   Returns true if the final visibility has been determined by this
   function; false if the caller is free to make additional
   function; false if the caller is free to make additional
   modifications.  */
   modifications.  */
 
 
bool
bool
c_determine_visibility (tree decl)
c_determine_visibility (tree decl)
{
{
  gcc_assert (TREE_CODE (decl) == VAR_DECL
  gcc_assert (TREE_CODE (decl) == VAR_DECL
              || TREE_CODE (decl) == FUNCTION_DECL);
              || TREE_CODE (decl) == FUNCTION_DECL);
 
 
  /* If the user explicitly specified the visibility with an
  /* If the user explicitly specified the visibility with an
     attribute, honor that.  DECL_VISIBILITY will have been set during
     attribute, honor that.  DECL_VISIBILITY will have been set during
     the processing of the attribute.  We check for an explicit
     the processing of the attribute.  We check for an explicit
     attribute, rather than just checking DECL_VISIBILITY_SPECIFIED,
     attribute, rather than just checking DECL_VISIBILITY_SPECIFIED,
     to distinguish the use of an attribute from the use of a "#pragma
     to distinguish the use of an attribute from the use of a "#pragma
     GCC visibility push(...)"; in the latter case we still want other
     GCC visibility push(...)"; in the latter case we still want other
     considerations to be able to overrule the #pragma.  */
     considerations to be able to overrule the #pragma.  */
  if (lookup_attribute ("visibility", DECL_ATTRIBUTES (decl)))
  if (lookup_attribute ("visibility", DECL_ATTRIBUTES (decl)))
    return true;
    return true;
 
 
  /* Anything that is exported must have default visibility.  */
  /* Anything that is exported must have default visibility.  */
  if (TARGET_DLLIMPORT_DECL_ATTRIBUTES
  if (TARGET_DLLIMPORT_DECL_ATTRIBUTES
      && lookup_attribute ("dllexport", DECL_ATTRIBUTES (decl)))
      && lookup_attribute ("dllexport", DECL_ATTRIBUTES (decl)))
    {
    {
      DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
      DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
      DECL_VISIBILITY_SPECIFIED (decl) = 1;
      DECL_VISIBILITY_SPECIFIED (decl) = 1;
      return true;
      return true;
    }
    }
 
 
  /* Set default visibility to whatever the user supplied with
  /* Set default visibility to whatever the user supplied with
     visibility_specified depending on #pragma GCC visibility.  */
     visibility_specified depending on #pragma GCC visibility.  */
  if (!DECL_VISIBILITY_SPECIFIED (decl))
  if (!DECL_VISIBILITY_SPECIFIED (decl))
    {
    {
      DECL_VISIBILITY (decl) = default_visibility;
      DECL_VISIBILITY (decl) = default_visibility;
      DECL_VISIBILITY_SPECIFIED (decl) = visibility_options.inpragma;
      DECL_VISIBILITY_SPECIFIED (decl) = visibility_options.inpragma;
    }
    }
  return false;
  return false;
}
}
 
 
/* Handle an "tls_model" attribute; arguments as in
/* Handle an "tls_model" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_tls_model_attribute (tree *node, tree name, tree args,
handle_tls_model_attribute (tree *node, tree name, tree args,
                            int ARG_UNUSED (flags), bool *no_add_attrs)
                            int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  tree id;
  tree id;
  tree decl = *node;
  tree decl = *node;
  enum tls_model kind;
  enum tls_model kind;
 
 
  *no_add_attrs = true;
  *no_add_attrs = true;
 
 
  if (!DECL_THREAD_LOCAL_P (decl))
  if (!DECL_THREAD_LOCAL_P (decl))
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  kind = DECL_TLS_MODEL (decl);
  kind = DECL_TLS_MODEL (decl);
  id = TREE_VALUE (args);
  id = TREE_VALUE (args);
  if (TREE_CODE (id) != STRING_CST)
  if (TREE_CODE (id) != STRING_CST)
    {
    {
      error ("tls_model argument not a string");
      error ("tls_model argument not a string");
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  if (!strcmp (TREE_STRING_POINTER (id), "local-exec"))
  if (!strcmp (TREE_STRING_POINTER (id), "local-exec"))
    kind = TLS_MODEL_LOCAL_EXEC;
    kind = TLS_MODEL_LOCAL_EXEC;
  else if (!strcmp (TREE_STRING_POINTER (id), "initial-exec"))
  else if (!strcmp (TREE_STRING_POINTER (id), "initial-exec"))
    kind = TLS_MODEL_INITIAL_EXEC;
    kind = TLS_MODEL_INITIAL_EXEC;
  else if (!strcmp (TREE_STRING_POINTER (id), "local-dynamic"))
  else if (!strcmp (TREE_STRING_POINTER (id), "local-dynamic"))
    kind = optimize ? TLS_MODEL_LOCAL_DYNAMIC : TLS_MODEL_GLOBAL_DYNAMIC;
    kind = optimize ? TLS_MODEL_LOCAL_DYNAMIC : TLS_MODEL_GLOBAL_DYNAMIC;
  else if (!strcmp (TREE_STRING_POINTER (id), "global-dynamic"))
  else if (!strcmp (TREE_STRING_POINTER (id), "global-dynamic"))
    kind = TLS_MODEL_GLOBAL_DYNAMIC;
    kind = TLS_MODEL_GLOBAL_DYNAMIC;
  else
  else
    error ("tls_model argument must be one of \"local-exec\", \"initial-exec\", \"local-dynamic\" or \"global-dynamic\"");
    error ("tls_model argument must be one of \"local-exec\", \"initial-exec\", \"local-dynamic\" or \"global-dynamic\"");
 
 
  DECL_TLS_MODEL (decl) = kind;
  DECL_TLS_MODEL (decl) = kind;
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "no_instrument_function" attribute; arguments as in
/* Handle a "no_instrument_function" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_no_instrument_function_attribute (tree *node, tree name,
handle_no_instrument_function_attribute (tree *node, tree name,
                                         tree ARG_UNUSED (args),
                                         tree ARG_UNUSED (args),
                                         int ARG_UNUSED (flags),
                                         int ARG_UNUSED (flags),
                                         bool *no_add_attrs)
                                         bool *no_add_attrs)
{
{
  tree decl = *node;
  tree decl = *node;
 
 
  if (TREE_CODE (decl) != FUNCTION_DECL)
  if (TREE_CODE (decl) != FUNCTION_DECL)
    {
    {
      error ("%J%qE attribute applies only to functions", decl, name);
      error ("%J%qE attribute applies only to functions", decl, name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
  else if (DECL_INITIAL (decl))
  else if (DECL_INITIAL (decl))
    {
    {
      error ("%Jcan%'t set %qE attribute after definition", decl, name);
      error ("%Jcan%'t set %qE attribute after definition", decl, name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
  else
  else
    DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (decl) = 1;
    DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (decl) = 1;
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "malloc" attribute; arguments as in
/* Handle a "malloc" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_malloc_attribute (tree *node, tree name, tree ARG_UNUSED (args),
handle_malloc_attribute (tree *node, tree name, tree ARG_UNUSED (args),
                         int ARG_UNUSED (flags), bool *no_add_attrs)
                         int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  if (TREE_CODE (*node) == FUNCTION_DECL
  if (TREE_CODE (*node) == FUNCTION_DECL
      && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
      && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
    DECL_IS_MALLOC (*node) = 1;
    DECL_IS_MALLOC (*node) = 1;
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "returns_twice" attribute; arguments as in
/* Handle a "returns_twice" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_returns_twice_attribute (tree *node, tree name, tree ARG_UNUSED (args),
handle_returns_twice_attribute (tree *node, tree name, tree ARG_UNUSED (args),
                         int ARG_UNUSED (flags), bool *no_add_attrs)
                         int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  if (TREE_CODE (*node) == FUNCTION_DECL)
  if (TREE_CODE (*node) == FUNCTION_DECL)
    DECL_IS_RETURNS_TWICE (*node) = 1;
    DECL_IS_RETURNS_TWICE (*node) = 1;
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "no_limit_stack" attribute; arguments as in
/* Handle a "no_limit_stack" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_no_limit_stack_attribute (tree *node, tree name,
handle_no_limit_stack_attribute (tree *node, tree name,
                                 tree ARG_UNUSED (args),
                                 tree ARG_UNUSED (args),
                                 int ARG_UNUSED (flags),
                                 int ARG_UNUSED (flags),
                                 bool *no_add_attrs)
                                 bool *no_add_attrs)
{
{
  tree decl = *node;
  tree decl = *node;
 
 
  if (TREE_CODE (decl) != FUNCTION_DECL)
  if (TREE_CODE (decl) != FUNCTION_DECL)
    {
    {
      error ("%J%qE attribute applies only to functions", decl, name);
      error ("%J%qE attribute applies only to functions", decl, name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
  else if (DECL_INITIAL (decl))
  else if (DECL_INITIAL (decl))
    {
    {
      error ("%Jcan%'t set %qE attribute after definition", decl, name);
      error ("%Jcan%'t set %qE attribute after definition", decl, name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
  else
  else
    DECL_NO_LIMIT_STACK (decl) = 1;
    DECL_NO_LIMIT_STACK (decl) = 1;
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "pure" attribute; arguments as in
/* Handle a "pure" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_pure_attribute (tree *node, tree name, tree ARG_UNUSED (args),
handle_pure_attribute (tree *node, tree name, tree ARG_UNUSED (args),
                       int ARG_UNUSED (flags), bool *no_add_attrs)
                       int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  if (TREE_CODE (*node) == FUNCTION_DECL)
  if (TREE_CODE (*node) == FUNCTION_DECL)
    DECL_IS_PURE (*node) = 1;
    DECL_IS_PURE (*node) = 1;
  /* ??? TODO: Support types.  */
  /* ??? TODO: Support types.  */
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "no vops" attribute; arguments as in
/* Handle a "no vops" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_novops_attribute (tree *node, tree ARG_UNUSED (name),
handle_novops_attribute (tree *node, tree ARG_UNUSED (name),
                         tree ARG_UNUSED (args), int ARG_UNUSED (flags),
                         tree ARG_UNUSED (args), int ARG_UNUSED (flags),
                         bool *ARG_UNUSED (no_add_attrs))
                         bool *ARG_UNUSED (no_add_attrs))
{
{
  gcc_assert (TREE_CODE (*node) == FUNCTION_DECL);
  gcc_assert (TREE_CODE (*node) == FUNCTION_DECL);
  DECL_IS_NOVOPS (*node) = 1;
  DECL_IS_NOVOPS (*node) = 1;
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "deprecated" attribute; arguments as in
/* Handle a "deprecated" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_deprecated_attribute (tree *node, tree name,
handle_deprecated_attribute (tree *node, tree name,
                             tree ARG_UNUSED (args), int flags,
                             tree ARG_UNUSED (args), int flags,
                             bool *no_add_attrs)
                             bool *no_add_attrs)
{
{
  tree type = NULL_TREE;
  tree type = NULL_TREE;
  int warn = 0;
  int warn = 0;
  tree what = NULL_TREE;
  tree what = NULL_TREE;
 
 
  if (DECL_P (*node))
  if (DECL_P (*node))
    {
    {
      tree decl = *node;
      tree decl = *node;
      type = TREE_TYPE (decl);
      type = TREE_TYPE (decl);
 
 
      if (TREE_CODE (decl) == TYPE_DECL
      if (TREE_CODE (decl) == TYPE_DECL
          || TREE_CODE (decl) == PARM_DECL
          || TREE_CODE (decl) == PARM_DECL
          || TREE_CODE (decl) == VAR_DECL
          || TREE_CODE (decl) == VAR_DECL
          || TREE_CODE (decl) == FUNCTION_DECL
          || TREE_CODE (decl) == FUNCTION_DECL
          || TREE_CODE (decl) == FIELD_DECL)
          || TREE_CODE (decl) == FIELD_DECL)
        TREE_DEPRECATED (decl) = 1;
        TREE_DEPRECATED (decl) = 1;
      else
      else
        warn = 1;
        warn = 1;
    }
    }
  else if (TYPE_P (*node))
  else if (TYPE_P (*node))
    {
    {
      if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
      if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
        *node = build_variant_type_copy (*node);
        *node = build_variant_type_copy (*node);
      TREE_DEPRECATED (*node) = 1;
      TREE_DEPRECATED (*node) = 1;
      type = *node;
      type = *node;
    }
    }
  else
  else
    warn = 1;
    warn = 1;
 
 
  if (warn)
  if (warn)
    {
    {
      *no_add_attrs = true;
      *no_add_attrs = true;
      if (type && TYPE_NAME (type))
      if (type && TYPE_NAME (type))
        {
        {
          if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
          if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
            what = TYPE_NAME (*node);
            what = TYPE_NAME (*node);
          else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
          else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
                   && DECL_NAME (TYPE_NAME (type)))
                   && DECL_NAME (TYPE_NAME (type)))
            what = DECL_NAME (TYPE_NAME (type));
            what = DECL_NAME (TYPE_NAME (type));
        }
        }
      if (what)
      if (what)
        warning (OPT_Wattributes, "%qE attribute ignored for %qE", name, what);
        warning (OPT_Wattributes, "%qE attribute ignored for %qE", name, what);
      else
      else
        warning (OPT_Wattributes, "%qE attribute ignored", name);
        warning (OPT_Wattributes, "%qE attribute ignored", name);
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "vector_size" attribute; arguments as in
/* Handle a "vector_size" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_vector_size_attribute (tree *node, tree name, tree args,
handle_vector_size_attribute (tree *node, tree name, tree args,
                              int ARG_UNUSED (flags),
                              int ARG_UNUSED (flags),
                              bool *no_add_attrs)
                              bool *no_add_attrs)
{
{
  unsigned HOST_WIDE_INT vecsize, nunits;
  unsigned HOST_WIDE_INT vecsize, nunits;
  enum machine_mode orig_mode;
  enum machine_mode orig_mode;
  tree type = *node, new_type, size;
  tree type = *node, new_type, size;
 
 
  *no_add_attrs = true;
  *no_add_attrs = true;
 
 
  size = TREE_VALUE (args);
  size = TREE_VALUE (args);
 
 
  if (!host_integerp (size, 1))
  if (!host_integerp (size, 1))
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  /* Get the vector size (in bytes).  */
  /* Get the vector size (in bytes).  */
  vecsize = tree_low_cst (size, 1);
  vecsize = tree_low_cst (size, 1);
 
 
  /* We need to provide for vector pointers, vector arrays, and
  /* We need to provide for vector pointers, vector arrays, and
     functions returning vectors.  For example:
     functions returning vectors.  For example:
 
 
       __attribute__((vector_size(16))) short *foo;
       __attribute__((vector_size(16))) short *foo;
 
 
     In this case, the mode is SI, but the type being modified is
     In this case, the mode is SI, but the type being modified is
     HI, so we need to look further.  */
     HI, so we need to look further.  */
 
 
  while (POINTER_TYPE_P (type)
  while (POINTER_TYPE_P (type)
         || TREE_CODE (type) == FUNCTION_TYPE
         || TREE_CODE (type) == FUNCTION_TYPE
         || TREE_CODE (type) == METHOD_TYPE
         || TREE_CODE (type) == METHOD_TYPE
         || TREE_CODE (type) == ARRAY_TYPE)
         || TREE_CODE (type) == ARRAY_TYPE)
    type = TREE_TYPE (type);
    type = TREE_TYPE (type);
 
 
  /* Get the mode of the type being modified.  */
  /* Get the mode of the type being modified.  */
  orig_mode = TYPE_MODE (type);
  orig_mode = TYPE_MODE (type);
 
 
  if (TREE_CODE (type) == RECORD_TYPE
  if (TREE_CODE (type) == RECORD_TYPE
      || TREE_CODE (type) == UNION_TYPE
      || TREE_CODE (type) == UNION_TYPE
      || TREE_CODE (type) == VECTOR_TYPE
      || TREE_CODE (type) == VECTOR_TYPE
      || (!SCALAR_FLOAT_MODE_P (orig_mode)
      || (!SCALAR_FLOAT_MODE_P (orig_mode)
          && GET_MODE_CLASS (orig_mode) != MODE_INT)
          && GET_MODE_CLASS (orig_mode) != MODE_INT)
      || !host_integerp (TYPE_SIZE_UNIT (type), 1))
      || !host_integerp (TYPE_SIZE_UNIT (type), 1))
    {
    {
      error ("invalid vector type for attribute %qE", name);
      error ("invalid vector type for attribute %qE", name);
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  if (vecsize % tree_low_cst (TYPE_SIZE_UNIT (type), 1))
  if (vecsize % tree_low_cst (TYPE_SIZE_UNIT (type), 1))
    {
    {
      error ("vector size not an integral multiple of component size");
      error ("vector size not an integral multiple of component size");
      return NULL;
      return NULL;
    }
    }
 
 
  if (vecsize == 0)
  if (vecsize == 0)
    {
    {
      error ("zero vector size");
      error ("zero vector size");
      return NULL;
      return NULL;
    }
    }
 
 
  /* Calculate how many units fit in the vector.  */
  /* Calculate how many units fit in the vector.  */
  nunits = vecsize / tree_low_cst (TYPE_SIZE_UNIT (type), 1);
  nunits = vecsize / tree_low_cst (TYPE_SIZE_UNIT (type), 1);
  if (nunits & (nunits - 1))
  if (nunits & (nunits - 1))
    {
    {
      error ("number of components of the vector not a power of two");
      error ("number of components of the vector not a power of two");
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  new_type = build_vector_type (type, nunits);
  new_type = build_vector_type (type, nunits);
 
 
  /* Build back pointers if needed.  */
  /* Build back pointers if needed.  */
  *node = reconstruct_complex_type (*node, new_type);
  *node = reconstruct_complex_type (*node, new_type);
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle the "nonnull" attribute.  */
/* Handle the "nonnull" attribute.  */
static tree
static tree
handle_nonnull_attribute (tree *node, tree ARG_UNUSED (name),
handle_nonnull_attribute (tree *node, tree ARG_UNUSED (name),
                          tree args, int ARG_UNUSED (flags),
                          tree args, int ARG_UNUSED (flags),
                          bool *no_add_attrs)
                          bool *no_add_attrs)
{
{
  tree type = *node;
  tree type = *node;
  unsigned HOST_WIDE_INT attr_arg_num;
  unsigned HOST_WIDE_INT attr_arg_num;
 
 
  /* If no arguments are specified, all pointer arguments should be
  /* If no arguments are specified, all pointer arguments should be
     non-null.  Verify a full prototype is given so that the arguments
     non-null.  Verify a full prototype is given so that the arguments
     will have the correct types when we actually check them later.  */
     will have the correct types when we actually check them later.  */
  if (!args)
  if (!args)
    {
    {
      if (!TYPE_ARG_TYPES (type))
      if (!TYPE_ARG_TYPES (type))
        {
        {
          error ("nonnull attribute without arguments on a non-prototype");
          error ("nonnull attribute without arguments on a non-prototype");
          *no_add_attrs = true;
          *no_add_attrs = true;
        }
        }
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  /* Argument list specified.  Verify that each argument number references
  /* Argument list specified.  Verify that each argument number references
     a pointer argument.  */
     a pointer argument.  */
  for (attr_arg_num = 1; args; args = TREE_CHAIN (args))
  for (attr_arg_num = 1; args; args = TREE_CHAIN (args))
    {
    {
      tree argument;
      tree argument;
      unsigned HOST_WIDE_INT arg_num = 0, ck_num;
      unsigned HOST_WIDE_INT arg_num = 0, ck_num;
 
 
      if (!get_nonnull_operand (TREE_VALUE (args), &arg_num))
      if (!get_nonnull_operand (TREE_VALUE (args), &arg_num))
        {
        {
          error ("nonnull argument has invalid operand number (argument %lu)",
          error ("nonnull argument has invalid operand number (argument %lu)",
                 (unsigned long) attr_arg_num);
                 (unsigned long) attr_arg_num);
          *no_add_attrs = true;
          *no_add_attrs = true;
          return NULL_TREE;
          return NULL_TREE;
        }
        }
 
 
      argument = TYPE_ARG_TYPES (type);
      argument = TYPE_ARG_TYPES (type);
      if (argument)
      if (argument)
        {
        {
          for (ck_num = 1; ; ck_num++)
          for (ck_num = 1; ; ck_num++)
            {
            {
              if (!argument || ck_num == arg_num)
              if (!argument || ck_num == arg_num)
                break;
                break;
              argument = TREE_CHAIN (argument);
              argument = TREE_CHAIN (argument);
            }
            }
 
 
          if (!argument
          if (!argument
              || TREE_CODE (TREE_VALUE (argument)) == VOID_TYPE)
              || TREE_CODE (TREE_VALUE (argument)) == VOID_TYPE)
            {
            {
              error ("nonnull argument with out-of-range operand number (argument %lu, operand %lu)",
              error ("nonnull argument with out-of-range operand number (argument %lu, operand %lu)",
                     (unsigned long) attr_arg_num, (unsigned long) arg_num);
                     (unsigned long) attr_arg_num, (unsigned long) arg_num);
              *no_add_attrs = true;
              *no_add_attrs = true;
              return NULL_TREE;
              return NULL_TREE;
            }
            }
 
 
          if (TREE_CODE (TREE_VALUE (argument)) != POINTER_TYPE)
          if (TREE_CODE (TREE_VALUE (argument)) != POINTER_TYPE)
            {
            {
              error ("nonnull argument references non-pointer operand (argument %lu, operand %lu)",
              error ("nonnull argument references non-pointer operand (argument %lu, operand %lu)",
                   (unsigned long) attr_arg_num, (unsigned long) arg_num);
                   (unsigned long) attr_arg_num, (unsigned long) arg_num);
              *no_add_attrs = true;
              *no_add_attrs = true;
              return NULL_TREE;
              return NULL_TREE;
            }
            }
        }
        }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Check the argument list of a function call for null in argument slots
/* Check the argument list of a function call for null in argument slots
   that are marked as requiring a non-null pointer argument.  */
   that are marked as requiring a non-null pointer argument.  */
 
 
static void
static void
check_function_nonnull (tree attrs, tree params)
check_function_nonnull (tree attrs, tree params)
{
{
  tree a, args, param;
  tree a, args, param;
  int param_num;
  int param_num;
 
 
  for (a = attrs; a; a = TREE_CHAIN (a))
  for (a = attrs; a; a = TREE_CHAIN (a))
    {
    {
      if (is_attribute_p ("nonnull", TREE_PURPOSE (a)))
      if (is_attribute_p ("nonnull", TREE_PURPOSE (a)))
        {
        {
          args = TREE_VALUE (a);
          args = TREE_VALUE (a);
 
 
          /* Walk the argument list.  If we encounter an argument number we
          /* Walk the argument list.  If we encounter an argument number we
             should check for non-null, do it.  If the attribute has no args,
             should check for non-null, do it.  If the attribute has no args,
             then every pointer argument is checked (in which case the check
             then every pointer argument is checked (in which case the check
             for pointer type is done in check_nonnull_arg).  */
             for pointer type is done in check_nonnull_arg).  */
          for (param = params, param_num = 1; ;
          for (param = params, param_num = 1; ;
               param_num++, param = TREE_CHAIN (param))
               param_num++, param = TREE_CHAIN (param))
            {
            {
              if (!param)
              if (!param)
        break;
        break;
              if (!args || nonnull_check_p (args, param_num))
              if (!args || nonnull_check_p (args, param_num))
        check_function_arguments_recurse (check_nonnull_arg, NULL,
        check_function_arguments_recurse (check_nonnull_arg, NULL,
                                          TREE_VALUE (param),
                                          TREE_VALUE (param),
                                          param_num);
                                          param_num);
            }
            }
        }
        }
    }
    }
}
}
 
 
/* Check that the Nth argument of a function call (counting backwards
/* Check that the Nth argument of a function call (counting backwards
   from the end) is a (pointer)0.  */
   from the end) is a (pointer)0.  */
 
 
static void
static void
check_function_sentinel (tree attrs, tree params, tree typelist)
check_function_sentinel (tree attrs, tree params, tree typelist)
{
{
  tree attr = lookup_attribute ("sentinel", attrs);
  tree attr = lookup_attribute ("sentinel", attrs);
 
 
  if (attr)
  if (attr)
    {
    {
      /* Skip over the named arguments.  */
      /* Skip over the named arguments.  */
      while (typelist && params)
      while (typelist && params)
      {
      {
        typelist = TREE_CHAIN (typelist);
        typelist = TREE_CHAIN (typelist);
        params = TREE_CHAIN (params);
        params = TREE_CHAIN (params);
      }
      }
 
 
      if (typelist || !params)
      if (typelist || !params)
        warning (OPT_Wformat,
        warning (OPT_Wformat,
                 "not enough variable arguments to fit a sentinel");
                 "not enough variable arguments to fit a sentinel");
      else
      else
        {
        {
          tree sentinel, end;
          tree sentinel, end;
          unsigned pos = 0;
          unsigned pos = 0;
 
 
          if (TREE_VALUE (attr))
          if (TREE_VALUE (attr))
            {
            {
              tree p = TREE_VALUE (TREE_VALUE (attr));
              tree p = TREE_VALUE (TREE_VALUE (attr));
              pos = TREE_INT_CST_LOW (p);
              pos = TREE_INT_CST_LOW (p);
            }
            }
 
 
          sentinel = end = params;
          sentinel = end = params;
 
 
          /* Advance `end' ahead of `sentinel' by `pos' positions.  */
          /* Advance `end' ahead of `sentinel' by `pos' positions.  */
          while (pos > 0 && TREE_CHAIN (end))
          while (pos > 0 && TREE_CHAIN (end))
            {
            {
              pos--;
              pos--;
              end = TREE_CHAIN (end);
              end = TREE_CHAIN (end);
            }
            }
          if (pos > 0)
          if (pos > 0)
            {
            {
              warning (OPT_Wformat,
              warning (OPT_Wformat,
                       "not enough variable arguments to fit a sentinel");
                       "not enough variable arguments to fit a sentinel");
              return;
              return;
            }
            }
 
 
          /* Now advance both until we find the last parameter.  */
          /* Now advance both until we find the last parameter.  */
          while (TREE_CHAIN (end))
          while (TREE_CHAIN (end))
            {
            {
              end = TREE_CHAIN (end);
              end = TREE_CHAIN (end);
              sentinel = TREE_CHAIN (sentinel);
              sentinel = TREE_CHAIN (sentinel);
            }
            }
 
 
          /* Validate the sentinel.  */
          /* Validate the sentinel.  */
          if ((!POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (sentinel)))
          if ((!POINTER_TYPE_P (TREE_TYPE (TREE_VALUE (sentinel)))
               || !integer_zerop (TREE_VALUE (sentinel)))
               || !integer_zerop (TREE_VALUE (sentinel)))
              /* Although __null (in C++) is only an integer we allow it
              /* Although __null (in C++) is only an integer we allow it
                 nevertheless, as we are guaranteed that it's exactly
                 nevertheless, as we are guaranteed that it's exactly
                 as wide as a pointer, and we don't want to force
                 as wide as a pointer, and we don't want to force
                 users to cast the NULL they have written there.
                 users to cast the NULL they have written there.
                 We warn with -Wstrict-null-sentinel, though.  */
                 We warn with -Wstrict-null-sentinel, though.  */
              && (warn_strict_null_sentinel
              && (warn_strict_null_sentinel
                  || null_node != TREE_VALUE (sentinel)))
                  || null_node != TREE_VALUE (sentinel)))
            warning (OPT_Wformat, "missing sentinel in function call");
            warning (OPT_Wformat, "missing sentinel in function call");
        }
        }
    }
    }
}
}
 
 
/* Helper for check_function_nonnull; given a list of operands which
/* Helper for check_function_nonnull; given a list of operands which
   must be non-null in ARGS, determine if operand PARAM_NUM should be
   must be non-null in ARGS, determine if operand PARAM_NUM should be
   checked.  */
   checked.  */
 
 
static bool
static bool
nonnull_check_p (tree args, unsigned HOST_WIDE_INT param_num)
nonnull_check_p (tree args, unsigned HOST_WIDE_INT param_num)
{
{
  unsigned HOST_WIDE_INT arg_num = 0;
  unsigned HOST_WIDE_INT arg_num = 0;
 
 
  for (; args; args = TREE_CHAIN (args))
  for (; args; args = TREE_CHAIN (args))
    {
    {
      bool found = get_nonnull_operand (TREE_VALUE (args), &arg_num);
      bool found = get_nonnull_operand (TREE_VALUE (args), &arg_num);
 
 
      gcc_assert (found);
      gcc_assert (found);
 
 
      if (arg_num == param_num)
      if (arg_num == param_num)
        return true;
        return true;
    }
    }
  return false;
  return false;
}
}
 
 
/* Check that the function argument PARAM (which is operand number
/* Check that the function argument PARAM (which is operand number
   PARAM_NUM) is non-null.  This is called by check_function_nonnull
   PARAM_NUM) is non-null.  This is called by check_function_nonnull
   via check_function_arguments_recurse.  */
   via check_function_arguments_recurse.  */
 
 
static void
static void
check_nonnull_arg (void * ARG_UNUSED (ctx), tree param,
check_nonnull_arg (void * ARG_UNUSED (ctx), tree param,
                   unsigned HOST_WIDE_INT param_num)
                   unsigned HOST_WIDE_INT param_num)
{
{
  /* Just skip checking the argument if it's not a pointer.  This can
  /* Just skip checking the argument if it's not a pointer.  This can
     happen if the "nonnull" attribute was given without an operand
     happen if the "nonnull" attribute was given without an operand
     list (which means to check every pointer argument).  */
     list (which means to check every pointer argument).  */
 
 
  if (TREE_CODE (TREE_TYPE (param)) != POINTER_TYPE)
  if (TREE_CODE (TREE_TYPE (param)) != POINTER_TYPE)
    return;
    return;
 
 
  if (integer_zerop (param))
  if (integer_zerop (param))
    warning (OPT_Wnonnull, "null argument where non-null required "
    warning (OPT_Wnonnull, "null argument where non-null required "
             "(argument %lu)", (unsigned long) param_num);
             "(argument %lu)", (unsigned long) param_num);
}
}
 
 
/* Helper for nonnull attribute handling; fetch the operand number
/* Helper for nonnull attribute handling; fetch the operand number
   from the attribute argument list.  */
   from the attribute argument list.  */
 
 
static bool
static bool
get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp)
get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp)
{
{
  /* Verify the arg number is a constant.  */
  /* Verify the arg number is a constant.  */
  if (TREE_CODE (arg_num_expr) != INTEGER_CST
  if (TREE_CODE (arg_num_expr) != INTEGER_CST
      || TREE_INT_CST_HIGH (arg_num_expr) != 0)
      || TREE_INT_CST_HIGH (arg_num_expr) != 0)
    return false;
    return false;
 
 
  *valp = TREE_INT_CST_LOW (arg_num_expr);
  *valp = TREE_INT_CST_LOW (arg_num_expr);
  return true;
  return true;
}
}
 
 
/* Handle a "nothrow" attribute; arguments as in
/* Handle a "nothrow" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_nothrow_attribute (tree *node, tree name, tree ARG_UNUSED (args),
handle_nothrow_attribute (tree *node, tree name, tree ARG_UNUSED (args),
                          int ARG_UNUSED (flags), bool *no_add_attrs)
                          int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  if (TREE_CODE (*node) == FUNCTION_DECL)
  if (TREE_CODE (*node) == FUNCTION_DECL)
    TREE_NOTHROW (*node) = 1;
    TREE_NOTHROW (*node) = 1;
  /* ??? TODO: Support types.  */
  /* ??? TODO: Support types.  */
  else
  else
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "cleanup" attribute; arguments as in
/* Handle a "cleanup" attribute; arguments as in
   struct attribute_spec.handler.  */
   struct attribute_spec.handler.  */
 
 
static tree
static tree
handle_cleanup_attribute (tree *node, tree name, tree args,
handle_cleanup_attribute (tree *node, tree name, tree args,
                          int ARG_UNUSED (flags), bool *no_add_attrs)
                          int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  tree decl = *node;
  tree decl = *node;
  tree cleanup_id, cleanup_decl;
  tree cleanup_id, cleanup_decl;
 
 
  /* ??? Could perhaps support cleanups on TREE_STATIC, much like we do
  /* ??? Could perhaps support cleanups on TREE_STATIC, much like we do
     for global destructors in C++.  This requires infrastructure that
     for global destructors in C++.  This requires infrastructure that
     we don't have generically at the moment.  It's also not a feature
     we don't have generically at the moment.  It's also not a feature
     we'd be missing too much, since we do have attribute constructor.  */
     we'd be missing too much, since we do have attribute constructor.  */
  if (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl))
  if (TREE_CODE (decl) != VAR_DECL || TREE_STATIC (decl))
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  /* Verify that the argument is a function in scope.  */
  /* Verify that the argument is a function in scope.  */
  /* ??? We could support pointers to functions here as well, if
  /* ??? We could support pointers to functions here as well, if
     that was considered desirable.  */
     that was considered desirable.  */
  cleanup_id = TREE_VALUE (args);
  cleanup_id = TREE_VALUE (args);
  if (TREE_CODE (cleanup_id) != IDENTIFIER_NODE)
  if (TREE_CODE (cleanup_id) != IDENTIFIER_NODE)
    {
    {
      error ("cleanup argument not an identifier");
      error ("cleanup argument not an identifier");
      *no_add_attrs = true;
      *no_add_attrs = true;
      return NULL_TREE;
      return NULL_TREE;
    }
    }
  cleanup_decl = lookup_name (cleanup_id);
  cleanup_decl = lookup_name (cleanup_id);
  if (!cleanup_decl || TREE_CODE (cleanup_decl) != FUNCTION_DECL)
  if (!cleanup_decl || TREE_CODE (cleanup_decl) != FUNCTION_DECL)
    {
    {
      error ("cleanup argument not a function");
      error ("cleanup argument not a function");
      *no_add_attrs = true;
      *no_add_attrs = true;
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  /* That the function has proper type is checked with the
  /* That the function has proper type is checked with the
     eventual call to build_function_call.  */
     eventual call to build_function_call.  */
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "warn_unused_result" attribute.  No special handling.  */
/* Handle a "warn_unused_result" attribute.  No special handling.  */
 
 
static tree
static tree
handle_warn_unused_result_attribute (tree *node, tree name,
handle_warn_unused_result_attribute (tree *node, tree name,
                               tree ARG_UNUSED (args),
                               tree ARG_UNUSED (args),
                               int ARG_UNUSED (flags), bool *no_add_attrs)
                               int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  /* Ignore the attribute for functions not returning any value.  */
  /* Ignore the attribute for functions not returning any value.  */
  if (VOID_TYPE_P (TREE_TYPE (*node)))
  if (VOID_TYPE_P (TREE_TYPE (*node)))
    {
    {
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      warning (OPT_Wattributes, "%qE attribute ignored", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* Handle a "sentinel" attribute.  */
/* Handle a "sentinel" attribute.  */
 
 
static tree
static tree
handle_sentinel_attribute (tree *node, tree name, tree args,
handle_sentinel_attribute (tree *node, tree name, tree args,
                           int ARG_UNUSED (flags), bool *no_add_attrs)
                           int ARG_UNUSED (flags), bool *no_add_attrs)
{
{
  tree params = TYPE_ARG_TYPES (*node);
  tree params = TYPE_ARG_TYPES (*node);
 
 
  if (!params)
  if (!params)
    {
    {
      warning (OPT_Wattributes,
      warning (OPT_Wattributes,
               "%qE attribute requires prototypes with named arguments", name);
               "%qE attribute requires prototypes with named arguments", name);
      *no_add_attrs = true;
      *no_add_attrs = true;
    }
    }
  else
  else
    {
    {
      while (TREE_CHAIN (params))
      while (TREE_CHAIN (params))
        params = TREE_CHAIN (params);
        params = TREE_CHAIN (params);
 
 
      if (VOID_TYPE_P (TREE_VALUE (params)))
      if (VOID_TYPE_P (TREE_VALUE (params)))
        {
        {
          warning (OPT_Wattributes,
          warning (OPT_Wattributes,
                   "%qE attribute only applies to variadic functions", name);
                   "%qE attribute only applies to variadic functions", name);
          *no_add_attrs = true;
          *no_add_attrs = true;
        }
        }
    }
    }
 
 
  if (args)
  if (args)
    {
    {
      tree position = TREE_VALUE (args);
      tree position = TREE_VALUE (args);
 
 
      if (TREE_CODE (position) != INTEGER_CST)
      if (TREE_CODE (position) != INTEGER_CST)
        {
        {
          warning (0, "requested position is not an integer constant");
          warning (0, "requested position is not an integer constant");
          *no_add_attrs = true;
          *no_add_attrs = true;
        }
        }
      else
      else
        {
        {
          if (tree_int_cst_lt (position, integer_zero_node))
          if (tree_int_cst_lt (position, integer_zero_node))
            {
            {
              warning (0, "requested position is less than zero");
              warning (0, "requested position is less than zero");
              *no_add_attrs = true;
              *no_add_attrs = true;
            }
            }
        }
        }
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}


/* Check for valid arguments being passed to a function.  */
/* Check for valid arguments being passed to a function.  */
void
void
check_function_arguments (tree attrs, tree params, tree typelist)
check_function_arguments (tree attrs, tree params, tree typelist)
{
{
  /* Check for null being passed in a pointer argument that must be
  /* Check for null being passed in a pointer argument that must be
     non-null.  We also need to do this if format checking is enabled.  */
     non-null.  We also need to do this if format checking is enabled.  */
 
 
  if (warn_nonnull)
  if (warn_nonnull)
    check_function_nonnull (attrs, params);
    check_function_nonnull (attrs, params);
 
 
  /* Check for errors in format strings.  */
  /* Check for errors in format strings.  */
 
 
  if (warn_format || warn_missing_format_attribute)
  if (warn_format || warn_missing_format_attribute)
      check_function_format (attrs, params);
      check_function_format (attrs, params);
 
 
  if (warn_format)
  if (warn_format)
    check_function_sentinel (attrs, params, typelist);
    check_function_sentinel (attrs, params, typelist);
}
}
 
 
/* Generic argument checking recursion routine.  PARAM is the argument to
/* Generic argument checking recursion routine.  PARAM is the argument to
   be checked.  PARAM_NUM is the number of the argument.  CALLBACK is invoked
   be checked.  PARAM_NUM is the number of the argument.  CALLBACK is invoked
   once the argument is resolved.  CTX is context for the callback.  */
   once the argument is resolved.  CTX is context for the callback.  */
void
void
check_function_arguments_recurse (void (*callback)
check_function_arguments_recurse (void (*callback)
                                  (void *, tree, unsigned HOST_WIDE_INT),
                                  (void *, tree, unsigned HOST_WIDE_INT),
                                  void *ctx, tree param,
                                  void *ctx, tree param,
                                  unsigned HOST_WIDE_INT param_num)
                                  unsigned HOST_WIDE_INT param_num)
{
{
  if ((TREE_CODE (param) == NOP_EXPR || TREE_CODE (param) == CONVERT_EXPR)
  if ((TREE_CODE (param) == NOP_EXPR || TREE_CODE (param) == CONVERT_EXPR)
      && (TYPE_PRECISION (TREE_TYPE (param))
      && (TYPE_PRECISION (TREE_TYPE (param))
          == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (param, 0)))))
          == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (param, 0)))))
    {
    {
      /* Strip coercion.  */
      /* Strip coercion.  */
      check_function_arguments_recurse (callback, ctx,
      check_function_arguments_recurse (callback, ctx,
                                        TREE_OPERAND (param, 0), param_num);
                                        TREE_OPERAND (param, 0), param_num);
      return;
      return;
    }
    }
 
 
  if (TREE_CODE (param) == CALL_EXPR)
  if (TREE_CODE (param) == CALL_EXPR)
    {
    {
      tree type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (param, 0)));
      tree type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (param, 0)));
      tree attrs;
      tree attrs;
      bool found_format_arg = false;
      bool found_format_arg = false;
 
 
      /* See if this is a call to a known internationalization function
      /* See if this is a call to a known internationalization function
         that modifies a format arg.  Such a function may have multiple
         that modifies a format arg.  Such a function may have multiple
         format_arg attributes (for example, ngettext).  */
         format_arg attributes (for example, ngettext).  */
 
 
      for (attrs = TYPE_ATTRIBUTES (type);
      for (attrs = TYPE_ATTRIBUTES (type);
           attrs;
           attrs;
           attrs = TREE_CHAIN (attrs))
           attrs = TREE_CHAIN (attrs))
        if (is_attribute_p ("format_arg", TREE_PURPOSE (attrs)))
        if (is_attribute_p ("format_arg", TREE_PURPOSE (attrs)))
          {
          {
            tree inner_args;
            tree inner_args;
            tree format_num_expr;
            tree format_num_expr;
            int format_num;
            int format_num;
            int i;
            int i;
 
 
            /* Extract the argument number, which was previously checked
            /* Extract the argument number, which was previously checked
               to be valid.  */
               to be valid.  */
            format_num_expr = TREE_VALUE (TREE_VALUE (attrs));
            format_num_expr = TREE_VALUE (TREE_VALUE (attrs));
 
 
            gcc_assert (TREE_CODE (format_num_expr) == INTEGER_CST
            gcc_assert (TREE_CODE (format_num_expr) == INTEGER_CST
                        && !TREE_INT_CST_HIGH (format_num_expr));
                        && !TREE_INT_CST_HIGH (format_num_expr));
 
 
            format_num = TREE_INT_CST_LOW (format_num_expr);
            format_num = TREE_INT_CST_LOW (format_num_expr);
 
 
            for (inner_args = TREE_OPERAND (param, 1), i = 1;
            for (inner_args = TREE_OPERAND (param, 1), i = 1;
                 inner_args != 0;
                 inner_args != 0;
                 inner_args = TREE_CHAIN (inner_args), i++)
                 inner_args = TREE_CHAIN (inner_args), i++)
              if (i == format_num)
              if (i == format_num)
                {
                {
                  check_function_arguments_recurse (callback, ctx,
                  check_function_arguments_recurse (callback, ctx,
                                                    TREE_VALUE (inner_args),
                                                    TREE_VALUE (inner_args),
                                                    param_num);
                                                    param_num);
                  found_format_arg = true;
                  found_format_arg = true;
                  break;
                  break;
                }
                }
          }
          }
 
 
      /* If we found a format_arg attribute and did a recursive check,
      /* If we found a format_arg attribute and did a recursive check,
         we are done with checking this argument.  Otherwise, we continue
         we are done with checking this argument.  Otherwise, we continue
         and this will be considered a non-literal.  */
         and this will be considered a non-literal.  */
      if (found_format_arg)
      if (found_format_arg)
        return;
        return;
    }
    }
 
 
  if (TREE_CODE (param) == COND_EXPR)
  if (TREE_CODE (param) == COND_EXPR)
    {
    {
      /* Check both halves of the conditional expression.  */
      /* Check both halves of the conditional expression.  */
      check_function_arguments_recurse (callback, ctx,
      check_function_arguments_recurse (callback, ctx,
                                        TREE_OPERAND (param, 1), param_num);
                                        TREE_OPERAND (param, 1), param_num);
      check_function_arguments_recurse (callback, ctx,
      check_function_arguments_recurse (callback, ctx,
                                        TREE_OPERAND (param, 2), param_num);
                                        TREE_OPERAND (param, 2), param_num);
      return;
      return;
    }
    }
 
 
  (*callback) (ctx, param, param_num);
  (*callback) (ctx, param, param_num);
}
}
 
 
/* Function to help qsort sort FIELD_DECLs by name order.  */
/* Function to help qsort sort FIELD_DECLs by name order.  */
 
 
int
int
field_decl_cmp (const void *x_p, const void *y_p)
field_decl_cmp (const void *x_p, const void *y_p)
{
{
  const tree *const x = (const tree *const) x_p;
  const tree *const x = (const tree *const) x_p;
  const tree *const y = (const tree *const) y_p;
  const tree *const y = (const tree *const) y_p;
 
 
  if (DECL_NAME (*x) == DECL_NAME (*y))
  if (DECL_NAME (*x) == DECL_NAME (*y))
    /* A nontype is "greater" than a type.  */
    /* A nontype is "greater" than a type.  */
    return (TREE_CODE (*y) == TYPE_DECL) - (TREE_CODE (*x) == TYPE_DECL);
    return (TREE_CODE (*y) == TYPE_DECL) - (TREE_CODE (*x) == TYPE_DECL);
  if (DECL_NAME (*x) == NULL_TREE)
  if (DECL_NAME (*x) == NULL_TREE)
    return -1;
    return -1;
  if (DECL_NAME (*y) == NULL_TREE)
  if (DECL_NAME (*y) == NULL_TREE)
    return 1;
    return 1;
  if (DECL_NAME (*x) < DECL_NAME (*y))
  if (DECL_NAME (*x) < DECL_NAME (*y))
    return -1;
    return -1;
  return 1;
  return 1;
}
}
 
 
static struct {
static struct {
  gt_pointer_operator new_value;
  gt_pointer_operator new_value;
  void *cookie;
  void *cookie;
} resort_data;
} resort_data;
 
 
/* This routine compares two fields like field_decl_cmp but using the
/* This routine compares two fields like field_decl_cmp but using the
pointer operator in resort_data.  */
pointer operator in resort_data.  */
 
 
static int
static int
resort_field_decl_cmp (const void *x_p, const void *y_p)
resort_field_decl_cmp (const void *x_p, const void *y_p)
{
{
  const tree *const x = (const tree *const) x_p;
  const tree *const x = (const tree *const) x_p;
  const tree *const y = (const tree *const) y_p;
  const tree *const y = (const tree *const) y_p;
 
 
  if (DECL_NAME (*x) == DECL_NAME (*y))
  if (DECL_NAME (*x) == DECL_NAME (*y))
    /* A nontype is "greater" than a type.  */
    /* A nontype is "greater" than a type.  */
    return (TREE_CODE (*y) == TYPE_DECL) - (TREE_CODE (*x) == TYPE_DECL);
    return (TREE_CODE (*y) == TYPE_DECL) - (TREE_CODE (*x) == TYPE_DECL);
  if (DECL_NAME (*x) == NULL_TREE)
  if (DECL_NAME (*x) == NULL_TREE)
    return -1;
    return -1;
  if (DECL_NAME (*y) == NULL_TREE)
  if (DECL_NAME (*y) == NULL_TREE)
    return 1;
    return 1;
  {
  {
    tree d1 = DECL_NAME (*x);
    tree d1 = DECL_NAME (*x);
    tree d2 = DECL_NAME (*y);
    tree d2 = DECL_NAME (*y);
    resort_data.new_value (&d1, resort_data.cookie);
    resort_data.new_value (&d1, resort_data.cookie);
    resort_data.new_value (&d2, resort_data.cookie);
    resort_data.new_value (&d2, resort_data.cookie);
    if (d1 < d2)
    if (d1 < d2)
      return -1;
      return -1;
  }
  }
  return 1;
  return 1;
}
}
 
 
/* Resort DECL_SORTED_FIELDS because pointers have been reordered.  */
/* Resort DECL_SORTED_FIELDS because pointers have been reordered.  */
 
 
void
void
resort_sorted_fields (void *obj,
resort_sorted_fields (void *obj,
                      void * ARG_UNUSED (orig_obj),
                      void * ARG_UNUSED (orig_obj),
                      gt_pointer_operator new_value,
                      gt_pointer_operator new_value,
                      void *cookie)
                      void *cookie)
{
{
  struct sorted_fields_type *sf = (struct sorted_fields_type *) obj;
  struct sorted_fields_type *sf = (struct sorted_fields_type *) obj;
  resort_data.new_value = new_value;
  resort_data.new_value = new_value;
  resort_data.cookie = cookie;
  resort_data.cookie = cookie;
  qsort (&sf->elts[0], sf->len, sizeof (tree),
  qsort (&sf->elts[0], sf->len, sizeof (tree),
         resort_field_decl_cmp);
         resort_field_decl_cmp);
}
}
 
 
/* Subroutine of c_parse_error.
/* Subroutine of c_parse_error.
   Return the result of concatenating LHS and RHS. RHS is really
   Return the result of concatenating LHS and RHS. RHS is really
   a string literal, its first character is indicated by RHS_START and
   a string literal, its first character is indicated by RHS_START and
   RHS_SIZE is its length (including the terminating NUL character).
   RHS_SIZE is its length (including the terminating NUL character).
 
 
   The caller is responsible for deleting the returned pointer.  */
   The caller is responsible for deleting the returned pointer.  */
 
 
static char *
static char *
catenate_strings (const char *lhs, const char *rhs_start, int rhs_size)
catenate_strings (const char *lhs, const char *rhs_start, int rhs_size)
{
{
  const int lhs_size = strlen (lhs);
  const int lhs_size = strlen (lhs);
  char *result = XNEWVEC (char, lhs_size + rhs_size);
  char *result = XNEWVEC (char, lhs_size + rhs_size);
  strncpy (result, lhs, lhs_size);
  strncpy (result, lhs, lhs_size);
  strncpy (result + lhs_size, rhs_start, rhs_size);
  strncpy (result + lhs_size, rhs_start, rhs_size);
  return result;
  return result;
}
}
 
 
/* Issue the error given by GMSGID, indicating that it occurred before
/* Issue the error given by GMSGID, indicating that it occurred before
   TOKEN, which had the associated VALUE.  */
   TOKEN, which had the associated VALUE.  */
 
 
void
void
c_parse_error (const char *gmsgid, enum cpp_ttype token, tree value)
c_parse_error (const char *gmsgid, enum cpp_ttype token, tree value)
{
{
#define catenate_messages(M1, M2) catenate_strings ((M1), (M2), sizeof (M2))
#define catenate_messages(M1, M2) catenate_strings ((M1), (M2), sizeof (M2))
 
 
  char *message = NULL;
  char *message = NULL;
 
 
  if (token == CPP_EOF)
  if (token == CPP_EOF)
    message = catenate_messages (gmsgid, " at end of input");
    message = catenate_messages (gmsgid, " at end of input");
  else if (token == CPP_CHAR || token == CPP_WCHAR)
  else if (token == CPP_CHAR || token == CPP_WCHAR)
    {
    {
      unsigned int val = TREE_INT_CST_LOW (value);
      unsigned int val = TREE_INT_CST_LOW (value);
      const char *const ell = (token == CPP_CHAR) ? "" : "L";
      const char *const ell = (token == CPP_CHAR) ? "" : "L";
      if (val <= UCHAR_MAX && ISGRAPH (val))
      if (val <= UCHAR_MAX && ISGRAPH (val))
        message = catenate_messages (gmsgid, " before %s'%c'");
        message = catenate_messages (gmsgid, " before %s'%c'");
      else
      else
        message = catenate_messages (gmsgid, " before %s'\\x%x'");
        message = catenate_messages (gmsgid, " before %s'\\x%x'");
 
 
      error (message, ell, val);
      error (message, ell, val);
      free (message);
      free (message);
      message = NULL;
      message = NULL;
    }
    }
  else if (token == CPP_STRING || token == CPP_WSTRING)
  else if (token == CPP_STRING || token == CPP_WSTRING)
    message = catenate_messages (gmsgid, " before string constant");
    message = catenate_messages (gmsgid, " before string constant");
  else if (token == CPP_NUMBER)
  else if (token == CPP_NUMBER)
    message = catenate_messages (gmsgid, " before numeric constant");
    message = catenate_messages (gmsgid, " before numeric constant");
  else if (token == CPP_NAME)
  else if (token == CPP_NAME)
    {
    {
      message = catenate_messages (gmsgid, " before %qE");
      message = catenate_messages (gmsgid, " before %qE");
      error (message, value);
      error (message, value);
      free (message);
      free (message);
      message = NULL;
      message = NULL;
    }
    }
  else if (token == CPP_PRAGMA)
  else if (token == CPP_PRAGMA)
    message = catenate_messages (gmsgid, " before %<#pragma%>");
    message = catenate_messages (gmsgid, " before %<#pragma%>");
  else if (token == CPP_PRAGMA_EOL)
  else if (token == CPP_PRAGMA_EOL)
    message = catenate_messages (gmsgid, " before end of line");
    message = catenate_messages (gmsgid, " before end of line");
  else if (token < N_TTYPES)
  else if (token < N_TTYPES)
    {
    {
      message = catenate_messages (gmsgid, " before %qs token");
      message = catenate_messages (gmsgid, " before %qs token");
      error (message, cpp_type2name (token));
      error (message, cpp_type2name (token));
      free (message);
      free (message);
      message = NULL;
      message = NULL;
    }
    }
  else
  else
    error (gmsgid);
    error (gmsgid);
 
 
  if (message)
  if (message)
    {
    {
      error (message);
      error (message);
      free (message);
      free (message);
    }
    }
#undef catenate_messages
#undef catenate_messages
}
}
 
 
/* Walk a gimplified function and warn for functions whose return value is
/* Walk a gimplified function and warn for functions whose return value is
   ignored and attribute((warn_unused_result)) is set.  This is done before
   ignored and attribute((warn_unused_result)) is set.  This is done before
   inlining, so we don't have to worry about that.  */
   inlining, so we don't have to worry about that.  */
 
 
void
void
c_warn_unused_result (tree *top_p)
c_warn_unused_result (tree *top_p)
{
{
  tree t = *top_p;
  tree t = *top_p;
  tree_stmt_iterator i;
  tree_stmt_iterator i;
  tree fdecl, ftype;
  tree fdecl, ftype;
 
 
  switch (TREE_CODE (t))
  switch (TREE_CODE (t))
    {
    {
    case STATEMENT_LIST:
    case STATEMENT_LIST:
      for (i = tsi_start (*top_p); !tsi_end_p (i); tsi_next (&i))
      for (i = tsi_start (*top_p); !tsi_end_p (i); tsi_next (&i))
        c_warn_unused_result (tsi_stmt_ptr (i));
        c_warn_unused_result (tsi_stmt_ptr (i));
      break;
      break;
 
 
    case COND_EXPR:
    case COND_EXPR:
      c_warn_unused_result (&COND_EXPR_THEN (t));
      c_warn_unused_result (&COND_EXPR_THEN (t));
      c_warn_unused_result (&COND_EXPR_ELSE (t));
      c_warn_unused_result (&COND_EXPR_ELSE (t));
      break;
      break;
    case BIND_EXPR:
    case BIND_EXPR:
      c_warn_unused_result (&BIND_EXPR_BODY (t));
      c_warn_unused_result (&BIND_EXPR_BODY (t));
      break;
      break;
    case TRY_FINALLY_EXPR:
    case TRY_FINALLY_EXPR:
    case TRY_CATCH_EXPR:
    case TRY_CATCH_EXPR:
      c_warn_unused_result (&TREE_OPERAND (t, 0));
      c_warn_unused_result (&TREE_OPERAND (t, 0));
      c_warn_unused_result (&TREE_OPERAND (t, 1));
      c_warn_unused_result (&TREE_OPERAND (t, 1));
      break;
      break;
    case CATCH_EXPR:
    case CATCH_EXPR:
      c_warn_unused_result (&CATCH_BODY (t));
      c_warn_unused_result (&CATCH_BODY (t));
      break;
      break;
    case EH_FILTER_EXPR:
    case EH_FILTER_EXPR:
      c_warn_unused_result (&EH_FILTER_FAILURE (t));
      c_warn_unused_result (&EH_FILTER_FAILURE (t));
      break;
      break;
 
 
    case CALL_EXPR:
    case CALL_EXPR:
      if (TREE_USED (t))
      if (TREE_USED (t))
        break;
        break;
 
 
      /* This is a naked call, as opposed to a CALL_EXPR nested inside
      /* This is a naked call, as opposed to a CALL_EXPR nested inside
         a MODIFY_EXPR.  All calls whose value is ignored should be
         a MODIFY_EXPR.  All calls whose value is ignored should be
         represented like this.  Look for the attribute.  */
         represented like this.  Look for the attribute.  */
      fdecl = get_callee_fndecl (t);
      fdecl = get_callee_fndecl (t);
      if (fdecl)
      if (fdecl)
        ftype = TREE_TYPE (fdecl);
        ftype = TREE_TYPE (fdecl);
      else
      else
        {
        {
          ftype = TREE_TYPE (TREE_OPERAND (t, 0));
          ftype = TREE_TYPE (TREE_OPERAND (t, 0));
          /* Look past pointer-to-function to the function type itself.  */
          /* Look past pointer-to-function to the function type itself.  */
          ftype = TREE_TYPE (ftype);
          ftype = TREE_TYPE (ftype);
        }
        }
 
 
      if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
      if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
        {
        {
          if (fdecl)
          if (fdecl)
            warning (0, "%Hignoring return value of %qD, "
            warning (0, "%Hignoring return value of %qD, "
                     "declared with attribute warn_unused_result",
                     "declared with attribute warn_unused_result",
                     EXPR_LOCUS (t), fdecl);
                     EXPR_LOCUS (t), fdecl);
          else
          else
            warning (0, "%Hignoring return value of function "
            warning (0, "%Hignoring return value of function "
                     "declared with attribute warn_unused_result",
                     "declared with attribute warn_unused_result",
                     EXPR_LOCUS (t));
                     EXPR_LOCUS (t));
        }
        }
      break;
      break;
 
 
    default:
    default:
      /* Not a container, not a call, or a call whose value is used.  */
      /* Not a container, not a call, or a call whose value is used.  */
      break;
      break;
    }
    }
}
}
 
 
/* Convert a character from the host to the target execution character
/* Convert a character from the host to the target execution character
   set.  cpplib handles this, mostly.  */
   set.  cpplib handles this, mostly.  */
 
 
HOST_WIDE_INT
HOST_WIDE_INT
c_common_to_target_charset (HOST_WIDE_INT c)
c_common_to_target_charset (HOST_WIDE_INT c)
{
{
  /* Character constants in GCC proper are sign-extended under -fsigned-char,
  /* Character constants in GCC proper are sign-extended under -fsigned-char,
     zero-extended under -fno-signed-char.  cpplib insists that characters
     zero-extended under -fno-signed-char.  cpplib insists that characters
     and character constants are always unsigned.  Hence we must convert
     and character constants are always unsigned.  Hence we must convert
     back and forth.  */
     back and forth.  */
  cppchar_t uc = ((cppchar_t)c) & ((((cppchar_t)1) << CHAR_BIT)-1);
  cppchar_t uc = ((cppchar_t)c) & ((((cppchar_t)1) << CHAR_BIT)-1);
 
 
  uc = cpp_host_to_exec_charset (parse_in, uc);
  uc = cpp_host_to_exec_charset (parse_in, uc);
 
 
  if (flag_signed_char)
  if (flag_signed_char)
    return ((HOST_WIDE_INT)uc) << (HOST_BITS_PER_WIDE_INT - CHAR_TYPE_SIZE)
    return ((HOST_WIDE_INT)uc) << (HOST_BITS_PER_WIDE_INT - CHAR_TYPE_SIZE)
                               >> (HOST_BITS_PER_WIDE_INT - CHAR_TYPE_SIZE);
                               >> (HOST_BITS_PER_WIDE_INT - CHAR_TYPE_SIZE);
  else
  else
    return uc;
    return uc;
}
}
 
 
/* Build the result of __builtin_offsetof.  EXPR is a nested sequence of
/* Build the result of __builtin_offsetof.  EXPR is a nested sequence of
   component references, with STOP_REF, or alternatively an INDIRECT_REF of
   component references, with STOP_REF, or alternatively an INDIRECT_REF of
   NULL, at the bottom; much like the traditional rendering of offsetof as a
   NULL, at the bottom; much like the traditional rendering of offsetof as a
   macro.  Returns the folded and properly cast result.  */
   macro.  Returns the folded and properly cast result.  */
 
 
static tree
static tree
fold_offsetof_1 (tree expr, tree stop_ref)
fold_offsetof_1 (tree expr, tree stop_ref)
{
{
  enum tree_code code = PLUS_EXPR;
  enum tree_code code = PLUS_EXPR;
  tree base, off, t;
  tree base, off, t;
 
 
  if (expr == stop_ref && TREE_CODE (expr) != ERROR_MARK)
  if (expr == stop_ref && TREE_CODE (expr) != ERROR_MARK)
    return size_zero_node;
    return size_zero_node;
 
 
  switch (TREE_CODE (expr))
  switch (TREE_CODE (expr))
    {
    {
    case ERROR_MARK:
    case ERROR_MARK:
      return expr;
      return expr;
 
 
    case VAR_DECL:
    case VAR_DECL:
      error ("cannot apply %<offsetof%> to static data member %qD", expr);
      error ("cannot apply %<offsetof%> to static data member %qD", expr);
      return error_mark_node;
      return error_mark_node;
 
 
    case CALL_EXPR:
    case CALL_EXPR:
      error ("cannot apply %<offsetof%> when %<operator[]%> is overloaded");
      error ("cannot apply %<offsetof%> when %<operator[]%> is overloaded");
      return error_mark_node;
      return error_mark_node;
 
 
    case INTEGER_CST:
    case INTEGER_CST:
      gcc_assert (integer_zerop (expr));
      gcc_assert (integer_zerop (expr));
      return size_zero_node;
      return size_zero_node;
 
 
    case NOP_EXPR:
    case NOP_EXPR:
    case INDIRECT_REF:
    case INDIRECT_REF:
      base = fold_offsetof_1 (TREE_OPERAND (expr, 0), stop_ref);
      base = fold_offsetof_1 (TREE_OPERAND (expr, 0), stop_ref);
      gcc_assert (base == error_mark_node || base == size_zero_node);
      gcc_assert (base == error_mark_node || base == size_zero_node);
      return base;
      return base;
 
 
    case COMPONENT_REF:
    case COMPONENT_REF:
      base = fold_offsetof_1 (TREE_OPERAND (expr, 0), stop_ref);
      base = fold_offsetof_1 (TREE_OPERAND (expr, 0), stop_ref);
      if (base == error_mark_node)
      if (base == error_mark_node)
        return base;
        return base;
 
 
      t = TREE_OPERAND (expr, 1);
      t = TREE_OPERAND (expr, 1);
      if (DECL_C_BIT_FIELD (t))
      if (DECL_C_BIT_FIELD (t))
        {
        {
          error ("attempt to take address of bit-field structure "
          error ("attempt to take address of bit-field structure "
                 "member %qD", t);
                 "member %qD", t);
          return error_mark_node;
          return error_mark_node;
        }
        }
      off = size_binop (PLUS_EXPR, DECL_FIELD_OFFSET (t),
      off = size_binop (PLUS_EXPR, DECL_FIELD_OFFSET (t),
                        size_int (tree_low_cst (DECL_FIELD_BIT_OFFSET (t), 1)
                        size_int (tree_low_cst (DECL_FIELD_BIT_OFFSET (t), 1)
                                  / BITS_PER_UNIT));
                                  / BITS_PER_UNIT));
      break;
      break;
 
 
    case ARRAY_REF:
    case ARRAY_REF:
      base = fold_offsetof_1 (TREE_OPERAND (expr, 0), stop_ref);
      base = fold_offsetof_1 (TREE_OPERAND (expr, 0), stop_ref);
      if (base == error_mark_node)
      if (base == error_mark_node)
        return base;
        return base;
 
 
      t = TREE_OPERAND (expr, 1);
      t = TREE_OPERAND (expr, 1);
      if (TREE_CODE (t) == INTEGER_CST && tree_int_cst_sgn (t) < 0)
      if (TREE_CODE (t) == INTEGER_CST && tree_int_cst_sgn (t) < 0)
        {
        {
          code = MINUS_EXPR;
          code = MINUS_EXPR;
          t = fold_build1 (NEGATE_EXPR, TREE_TYPE (t), t);
          t = fold_build1 (NEGATE_EXPR, TREE_TYPE (t), t);
        }
        }
      t = convert (sizetype, t);
      t = convert (sizetype, t);
      off = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (TREE_TYPE (expr)), t);
      off = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (TREE_TYPE (expr)), t);
      break;
      break;
 
 
    case COMPOUND_EXPR:
    case COMPOUND_EXPR:
      /* Handle static members of volatile structs.  */
      /* Handle static members of volatile structs.  */
      t = TREE_OPERAND (expr, 1);
      t = TREE_OPERAND (expr, 1);
      gcc_assert (TREE_CODE (t) == VAR_DECL);
      gcc_assert (TREE_CODE (t) == VAR_DECL);
      return fold_offsetof_1 (t, stop_ref);
      return fold_offsetof_1 (t, stop_ref);
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  return size_binop (code, base, off);
  return size_binop (code, base, off);
}
}
 
 
tree
tree
fold_offsetof (tree expr, tree stop_ref)
fold_offsetof (tree expr, tree stop_ref)
{
{
  /* Convert back from the internal sizetype to size_t.  */
  /* Convert back from the internal sizetype to size_t.  */
  return convert (size_type_node, fold_offsetof_1 (expr, stop_ref));
  return convert (size_type_node, fold_offsetof_1 (expr, stop_ref));
}
}
 
 
/* Print an error message for an invalid lvalue.  USE says
/* Print an error message for an invalid lvalue.  USE says
   how the lvalue is being used and so selects the error message.  */
   how the lvalue is being used and so selects the error message.  */
 
 
void
void
lvalue_error (enum lvalue_use use)
lvalue_error (enum lvalue_use use)
{
{
  switch (use)
  switch (use)
    {
    {
    case lv_assign:
    case lv_assign:
      error ("lvalue required as left operand of assignment");
      error ("lvalue required as left operand of assignment");
      break;
      break;
    case lv_increment:
    case lv_increment:
      error ("lvalue required as increment operand");
      error ("lvalue required as increment operand");
      break;
      break;
    case lv_decrement:
    case lv_decrement:
      error ("lvalue required as decrement operand");
      error ("lvalue required as decrement operand");
      break;
      break;
    case lv_addressof:
    case lv_addressof:
      error ("lvalue required as unary %<&%> operand");
      error ("lvalue required as unary %<&%> operand");
      break;
      break;
    case lv_asm:
    case lv_asm:
      error ("lvalue required in asm statement");
      error ("lvalue required in asm statement");
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}


/* *PTYPE is an incomplete array.  Complete it with a domain based on
/* *PTYPE is an incomplete array.  Complete it with a domain based on
   INITIAL_VALUE.  If INITIAL_VALUE is not present, use 1 if DO_DEFAULT
   INITIAL_VALUE.  If INITIAL_VALUE is not present, use 1 if DO_DEFAULT
   is true.  Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered,
   is true.  Return 0 if successful, 1 if INITIAL_VALUE can't be deciphered,
   2 if INITIAL_VALUE was NULL, and 3 if INITIAL_VALUE was empty.  */
   2 if INITIAL_VALUE was NULL, and 3 if INITIAL_VALUE was empty.  */
 
 
int
int
complete_array_type (tree *ptype, tree initial_value, bool do_default)
complete_array_type (tree *ptype, tree initial_value, bool do_default)
{
{
  tree maxindex, type, main_type, elt, unqual_elt;
  tree maxindex, type, main_type, elt, unqual_elt;
  int failure = 0, quals;
  int failure = 0, quals;
 
 
  maxindex = size_zero_node;
  maxindex = size_zero_node;
  if (initial_value)
  if (initial_value)
    {
    {
      if (TREE_CODE (initial_value) == STRING_CST)
      if (TREE_CODE (initial_value) == STRING_CST)
        {
        {
          int eltsize
          int eltsize
            = int_size_in_bytes (TREE_TYPE (TREE_TYPE (initial_value)));
            = int_size_in_bytes (TREE_TYPE (TREE_TYPE (initial_value)));
          maxindex = size_int (TREE_STRING_LENGTH (initial_value)/eltsize - 1);
          maxindex = size_int (TREE_STRING_LENGTH (initial_value)/eltsize - 1);
        }
        }
      else if (TREE_CODE (initial_value) == CONSTRUCTOR)
      else if (TREE_CODE (initial_value) == CONSTRUCTOR)
        {
        {
          VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (initial_value);
          VEC(constructor_elt,gc) *v = CONSTRUCTOR_ELTS (initial_value);
 
 
          if (VEC_empty (constructor_elt, v))
          if (VEC_empty (constructor_elt, v))
            {
            {
              if (pedantic)
              if (pedantic)
                failure = 3;
                failure = 3;
              maxindex = integer_minus_one_node;
              maxindex = integer_minus_one_node;
            }
            }
          else
          else
            {
            {
              tree curindex;
              tree curindex;
              unsigned HOST_WIDE_INT cnt;
              unsigned HOST_WIDE_INT cnt;
              constructor_elt *ce;
              constructor_elt *ce;
 
 
              if (VEC_index (constructor_elt, v, 0)->index)
              if (VEC_index (constructor_elt, v, 0)->index)
                maxindex = fold_convert (sizetype,
                maxindex = fold_convert (sizetype,
                                         VEC_index (constructor_elt,
                                         VEC_index (constructor_elt,
                                                    v, 0)->index);
                                                    v, 0)->index);
              curindex = maxindex;
              curindex = maxindex;
 
 
              for (cnt = 1;
              for (cnt = 1;
                   VEC_iterate (constructor_elt, v, cnt, ce);
                   VEC_iterate (constructor_elt, v, cnt, ce);
                   cnt++)
                   cnt++)
                {
                {
                  if (ce->index)
                  if (ce->index)
                    curindex = fold_convert (sizetype, ce->index);
                    curindex = fold_convert (sizetype, ce->index);
                  else
                  else
                    curindex = size_binop (PLUS_EXPR, curindex, size_one_node);
                    curindex = size_binop (PLUS_EXPR, curindex, size_one_node);
 
 
                  if (tree_int_cst_lt (maxindex, curindex))
                  if (tree_int_cst_lt (maxindex, curindex))
                    maxindex = curindex;
                    maxindex = curindex;
                }
                }
            }
            }
        }
        }
      else
      else
        {
        {
          /* Make an error message unless that happened already.  */
          /* Make an error message unless that happened already.  */
          if (initial_value != error_mark_node)
          if (initial_value != error_mark_node)
            failure = 1;
            failure = 1;
        }
        }
    }
    }
  else
  else
    {
    {
      failure = 2;
      failure = 2;
      if (!do_default)
      if (!do_default)
        return failure;
        return failure;
    }
    }
 
 
  type = *ptype;
  type = *ptype;
  elt = TREE_TYPE (type);
  elt = TREE_TYPE (type);
  quals = TYPE_QUALS (strip_array_types (elt));
  quals = TYPE_QUALS (strip_array_types (elt));
  if (quals == 0)
  if (quals == 0)
    unqual_elt = elt;
    unqual_elt = elt;
  else
  else
    unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
    unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
 
 
  /* Using build_distinct_type_copy and modifying things afterward instead
  /* Using build_distinct_type_copy and modifying things afterward instead
     of using build_array_type to create a new type preserves all of the
     of using build_array_type to create a new type preserves all of the
     TYPE_LANG_FLAG_? bits that the front end may have set.  */
     TYPE_LANG_FLAG_? bits that the front end may have set.  */
  main_type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
  main_type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
  TREE_TYPE (main_type) = unqual_elt;
  TREE_TYPE (main_type) = unqual_elt;
  TYPE_DOMAIN (main_type) = build_index_type (maxindex);
  TYPE_DOMAIN (main_type) = build_index_type (maxindex);
  layout_type (main_type);
  layout_type (main_type);
 
 
  if (quals == 0)
  if (quals == 0)
    type = main_type;
    type = main_type;
  else
  else
    type = c_build_qualified_type (main_type, quals);
    type = c_build_qualified_type (main_type, quals);
 
 
  *ptype = type;
  *ptype = type;
  return failure;
  return failure;
}
}
 
 


/* Used to help initialize the builtin-types.def table.  When a type of
/* Used to help initialize the builtin-types.def table.  When a type of
   the correct size doesn't exist, use error_mark_node instead of NULL.
   the correct size doesn't exist, use error_mark_node instead of NULL.
   The later results in segfaults even when a decl using the type doesn't
   The later results in segfaults even when a decl using the type doesn't
   get invoked.  */
   get invoked.  */
 
 
tree
tree
builtin_type_for_size (int size, bool unsignedp)
builtin_type_for_size (int size, bool unsignedp)
{
{
  tree type = lang_hooks.types.type_for_size (size, unsignedp);
  tree type = lang_hooks.types.type_for_size (size, unsignedp);
  return type ? type : error_mark_node;
  return type ? type : error_mark_node;
}
}
 
 
/* A helper function for resolve_overloaded_builtin in resolving the
/* A helper function for resolve_overloaded_builtin in resolving the
   overloaded __sync_ builtins.  Returns a positive power of 2 if the
   overloaded __sync_ builtins.  Returns a positive power of 2 if the
   first operand of PARAMS is a pointer to a supported data type.
   first operand of PARAMS is a pointer to a supported data type.
   Returns 0 if an error is encountered.  */
   Returns 0 if an error is encountered.  */
 
 
static int
static int
sync_resolve_size (tree function, tree params)
sync_resolve_size (tree function, tree params)
{
{
  tree type;
  tree type;
  int size;
  int size;
 
 
  if (params == NULL)
  if (params == NULL)
    {
    {
      error ("too few arguments to function %qE", function);
      error ("too few arguments to function %qE", function);
      return 0;
      return 0;
    }
    }
 
 
  type = TREE_TYPE (TREE_VALUE (params));
  type = TREE_TYPE (TREE_VALUE (params));
  if (TREE_CODE (type) != POINTER_TYPE)
  if (TREE_CODE (type) != POINTER_TYPE)
    goto incompatible;
    goto incompatible;
 
 
  type = TREE_TYPE (type);
  type = TREE_TYPE (type);
  if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
  if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
    goto incompatible;
    goto incompatible;
 
 
  size = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
  size = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
  if (size == 1 || size == 2 || size == 4 || size == 8 || size == 16)
  if (size == 1 || size == 2 || size == 4 || size == 8 || size == 16)
    return size;
    return size;
 
 
 incompatible:
 incompatible:
  error ("incompatible type for argument %d of %qE", 1, function);
  error ("incompatible type for argument %d of %qE", 1, function);
  return 0;
  return 0;
}
}
 
 
/* A helper function for resolve_overloaded_builtin.  Adds casts to
/* A helper function for resolve_overloaded_builtin.  Adds casts to
   PARAMS to make arguments match up with those of FUNCTION.  Drops
   PARAMS to make arguments match up with those of FUNCTION.  Drops
   the variadic arguments at the end.  Returns false if some error
   the variadic arguments at the end.  Returns false if some error
   was encountered; true on success.  */
   was encountered; true on success.  */
 
 
static bool
static bool
sync_resolve_params (tree orig_function, tree function, tree params)
sync_resolve_params (tree orig_function, tree function, tree params)
{
{
  tree arg_types = TYPE_ARG_TYPES (TREE_TYPE (function));
  tree arg_types = TYPE_ARG_TYPES (TREE_TYPE (function));
  tree ptype;
  tree ptype;
  int number;
  int number;
 
 
  /* We've declared the implementation functions to use "volatile void *"
  /* We've declared the implementation functions to use "volatile void *"
     as the pointer parameter, so we shouldn't get any complaints from the
     as the pointer parameter, so we shouldn't get any complaints from the
     call to check_function_arguments what ever type the user used.  */
     call to check_function_arguments what ever type the user used.  */
  arg_types = TREE_CHAIN (arg_types);
  arg_types = TREE_CHAIN (arg_types);
  ptype = TREE_TYPE (TREE_TYPE (TREE_VALUE (params)));
  ptype = TREE_TYPE (TREE_TYPE (TREE_VALUE (params)));
  number = 2;
  number = 2;
 
 
  /* For the rest of the values, we need to cast these to FTYPE, so that we
  /* For the rest of the values, we need to cast these to FTYPE, so that we
     don't get warnings for passing pointer types, etc.  */
     don't get warnings for passing pointer types, etc.  */
  while (arg_types != void_list_node)
  while (arg_types != void_list_node)
    {
    {
      tree val;
      tree val;
 
 
      params = TREE_CHAIN (params);
      params = TREE_CHAIN (params);
      if (params == NULL)
      if (params == NULL)
        {
        {
          error ("too few arguments to function %qE", orig_function);
          error ("too few arguments to function %qE", orig_function);
          return false;
          return false;
        }
        }
 
 
      /* ??? Ideally for the first conversion we'd use convert_for_assignment
      /* ??? Ideally for the first conversion we'd use convert_for_assignment
         so that we get warnings for anything that doesn't match the pointer
         so that we get warnings for anything that doesn't match the pointer
         type.  This isn't portable across the C and C++ front ends atm.  */
         type.  This isn't portable across the C and C++ front ends atm.  */
      val = TREE_VALUE (params);
      val = TREE_VALUE (params);
      val = convert (ptype, val);
      val = convert (ptype, val);
      val = convert (TREE_VALUE (arg_types), val);
      val = convert (TREE_VALUE (arg_types), val);
      TREE_VALUE (params) = val;
      TREE_VALUE (params) = val;
 
 
      arg_types = TREE_CHAIN (arg_types);
      arg_types = TREE_CHAIN (arg_types);
      number++;
      number++;
    }
    }
 
 
  /* The definition of these primitives is variadic, with the remaining
  /* The definition of these primitives is variadic, with the remaining
     being "an optional list of variables protected by the memory barrier".
     being "an optional list of variables protected by the memory barrier".
     No clue what that's supposed to mean, precisely, but we consider all
     No clue what that's supposed to mean, precisely, but we consider all
     call-clobbered variables to be protected so we're safe.  */
     call-clobbered variables to be protected so we're safe.  */
  TREE_CHAIN (params) = NULL;
  TREE_CHAIN (params) = NULL;
 
 
  return true;
  return true;
}
}
 
 
/* A helper function for resolve_overloaded_builtin.  Adds a cast to
/* A helper function for resolve_overloaded_builtin.  Adds a cast to
   RESULT to make it match the type of the first pointer argument in
   RESULT to make it match the type of the first pointer argument in
   PARAMS.  */
   PARAMS.  */
 
 
static tree
static tree
sync_resolve_return (tree params, tree result)
sync_resolve_return (tree params, tree result)
{
{
  tree ptype = TREE_TYPE (TREE_TYPE (TREE_VALUE (params)));
  tree ptype = TREE_TYPE (TREE_TYPE (TREE_VALUE (params)));
  ptype = TYPE_MAIN_VARIANT (ptype);
  ptype = TYPE_MAIN_VARIANT (ptype);
  return convert (ptype, result);
  return convert (ptype, result);
}
}
 
 
/* Some builtin functions are placeholders for other expressions.  This
/* Some builtin functions are placeholders for other expressions.  This
   function should be called immediately after parsing the call expression
   function should be called immediately after parsing the call expression
   before surrounding code has committed to the type of the expression.
   before surrounding code has committed to the type of the expression.
 
 
   FUNCTION is the DECL that has been invoked; it is known to be a builtin.
   FUNCTION is the DECL that has been invoked; it is known to be a builtin.
   PARAMS is the argument list for the call.  The return value is non-null
   PARAMS is the argument list for the call.  The return value is non-null
   when expansion is complete, and null if normal processing should
   when expansion is complete, and null if normal processing should
   continue.  */
   continue.  */
 
 
tree
tree
resolve_overloaded_builtin (tree function, tree params)
resolve_overloaded_builtin (tree function, tree params)
{
{
  enum built_in_function orig_code = DECL_FUNCTION_CODE (function);
  enum built_in_function orig_code = DECL_FUNCTION_CODE (function);
  switch (DECL_BUILT_IN_CLASS (function))
  switch (DECL_BUILT_IN_CLASS (function))
    {
    {
    case BUILT_IN_NORMAL:
    case BUILT_IN_NORMAL:
      break;
      break;
    case BUILT_IN_MD:
    case BUILT_IN_MD:
      if (targetm.resolve_overloaded_builtin)
      if (targetm.resolve_overloaded_builtin)
        return targetm.resolve_overloaded_builtin (function, params);
        return targetm.resolve_overloaded_builtin (function, params);
      else
      else
        return NULL_TREE;
        return NULL_TREE;
    default:
    default:
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  /* Handle BUILT_IN_NORMAL here.  */
  /* Handle BUILT_IN_NORMAL here.  */
  switch (orig_code)
  switch (orig_code)
    {
    {
    case BUILT_IN_FETCH_AND_ADD_N:
    case BUILT_IN_FETCH_AND_ADD_N:
    case BUILT_IN_FETCH_AND_SUB_N:
    case BUILT_IN_FETCH_AND_SUB_N:
    case BUILT_IN_FETCH_AND_OR_N:
    case BUILT_IN_FETCH_AND_OR_N:
    case BUILT_IN_FETCH_AND_AND_N:
    case BUILT_IN_FETCH_AND_AND_N:
    case BUILT_IN_FETCH_AND_XOR_N:
    case BUILT_IN_FETCH_AND_XOR_N:
    case BUILT_IN_FETCH_AND_NAND_N:
    case BUILT_IN_FETCH_AND_NAND_N:
    case BUILT_IN_ADD_AND_FETCH_N:
    case BUILT_IN_ADD_AND_FETCH_N:
    case BUILT_IN_SUB_AND_FETCH_N:
    case BUILT_IN_SUB_AND_FETCH_N:
    case BUILT_IN_OR_AND_FETCH_N:
    case BUILT_IN_OR_AND_FETCH_N:
    case BUILT_IN_AND_AND_FETCH_N:
    case BUILT_IN_AND_AND_FETCH_N:
    case BUILT_IN_XOR_AND_FETCH_N:
    case BUILT_IN_XOR_AND_FETCH_N:
    case BUILT_IN_NAND_AND_FETCH_N:
    case BUILT_IN_NAND_AND_FETCH_N:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_N:
    case BUILT_IN_BOOL_COMPARE_AND_SWAP_N:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_N:
    case BUILT_IN_VAL_COMPARE_AND_SWAP_N:
    case BUILT_IN_LOCK_TEST_AND_SET_N:
    case BUILT_IN_LOCK_TEST_AND_SET_N:
    case BUILT_IN_LOCK_RELEASE_N:
    case BUILT_IN_LOCK_RELEASE_N:
      {
      {
        int n = sync_resolve_size (function, params);
        int n = sync_resolve_size (function, params);
        tree new_function, result;
        tree new_function, result;
 
 
        if (n == 0)
        if (n == 0)
          return error_mark_node;
          return error_mark_node;
 
 
        new_function = built_in_decls[orig_code + exact_log2 (n) + 1];
        new_function = built_in_decls[orig_code + exact_log2 (n) + 1];
        if (!sync_resolve_params (function, new_function, params))
        if (!sync_resolve_params (function, new_function, params))
          return error_mark_node;
          return error_mark_node;
 
 
        result = build_function_call (new_function, params);
        result = build_function_call (new_function, params);
        if (orig_code != BUILT_IN_BOOL_COMPARE_AND_SWAP_N
        if (orig_code != BUILT_IN_BOOL_COMPARE_AND_SWAP_N
            && orig_code != BUILT_IN_LOCK_RELEASE_N)
            && orig_code != BUILT_IN_LOCK_RELEASE_N)
          result = sync_resolve_return (params, result);
          result = sync_resolve_return (params, result);
 
 
        return result;
        return result;
      }
      }
 
 
    default:
    default:
      return NULL_TREE;
      return NULL_TREE;
    }
    }
}
}
 
 
/* Ignoring their sign, return true if two scalar types are the same.  */
/* Ignoring their sign, return true if two scalar types are the same.  */
bool
bool
same_scalar_type_ignoring_signedness (tree t1, tree t2)
same_scalar_type_ignoring_signedness (tree t1, tree t2)
{
{
  enum tree_code c1 = TREE_CODE (t1), c2 = TREE_CODE (t2);
  enum tree_code c1 = TREE_CODE (t1), c2 = TREE_CODE (t2);
 
 
  gcc_assert ((c1 == INTEGER_TYPE || c1 == REAL_TYPE)
  gcc_assert ((c1 == INTEGER_TYPE || c1 == REAL_TYPE)
              && (c2 == INTEGER_TYPE || c2 == REAL_TYPE));
              && (c2 == INTEGER_TYPE || c2 == REAL_TYPE));
 
 
  /* Equality works here because c_common_signed_type uses
  /* Equality works here because c_common_signed_type uses
     TYPE_MAIN_VARIANT.  */
     TYPE_MAIN_VARIANT.  */
  return lang_hooks.types.signed_type (t1)
  return lang_hooks.types.signed_type (t1)
    == lang_hooks.types.signed_type (t2);
    == lang_hooks.types.signed_type (t2);
}
}
 
 
/* Check for missing format attributes on function pointers.  LTYPE is
/* Check for missing format attributes on function pointers.  LTYPE is
   the new type or left-hand side type.  RTYPE is the old type or
   the new type or left-hand side type.  RTYPE is the old type or
   right-hand side type.  Returns TRUE if LTYPE is missing the desired
   right-hand side type.  Returns TRUE if LTYPE is missing the desired
   attribute.  */
   attribute.  */
 
 
bool
bool
check_missing_format_attribute (tree ltype, tree rtype)
check_missing_format_attribute (tree ltype, tree rtype)
{
{
  tree const ttr = TREE_TYPE (rtype), ttl = TREE_TYPE (ltype);
  tree const ttr = TREE_TYPE (rtype), ttl = TREE_TYPE (ltype);
  tree ra;
  tree ra;
 
 
  for (ra = TYPE_ATTRIBUTES (ttr); ra; ra = TREE_CHAIN (ra))
  for (ra = TYPE_ATTRIBUTES (ttr); ra; ra = TREE_CHAIN (ra))
    if (is_attribute_p ("format", TREE_PURPOSE (ra)))
    if (is_attribute_p ("format", TREE_PURPOSE (ra)))
      break;
      break;
  if (ra)
  if (ra)
    {
    {
      tree la;
      tree la;
      for (la = TYPE_ATTRIBUTES (ttl); la; la = TREE_CHAIN (la))
      for (la = TYPE_ATTRIBUTES (ttl); la; la = TREE_CHAIN (la))
        if (is_attribute_p ("format", TREE_PURPOSE (la)))
        if (is_attribute_p ("format", TREE_PURPOSE (la)))
          break;
          break;
      return !la;
      return !la;
    }
    }
  else
  else
    return false;
    return false;
}
}
 
 
/* Subscripting with type char is likely to lose on a machine where
/* Subscripting with type char is likely to lose on a machine where
   chars are signed.  So warn on any machine, but optionally.  Don't
   chars are signed.  So warn on any machine, but optionally.  Don't
   warn for unsigned char since that type is safe.  Don't warn for
   warn for unsigned char since that type is safe.  Don't warn for
   signed char because anyone who uses that must have done so
   signed char because anyone who uses that must have done so
   deliberately. Furthermore, we reduce the false positive load by
   deliberately. Furthermore, we reduce the false positive load by
   warning only for non-constant value of type char.  */
   warning only for non-constant value of type char.  */
 
 
void
void
warn_array_subscript_with_type_char (tree index)
warn_array_subscript_with_type_char (tree index)
{
{
  if (TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node
  if (TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node
      && TREE_CODE (index) != INTEGER_CST)
      && TREE_CODE (index) != INTEGER_CST)
    warning (OPT_Wchar_subscripts, "array subscript has type %<char%>");
    warning (OPT_Wchar_subscripts, "array subscript has type %<char%>");
}
}
 
 
 
 
#include "gt-c-common.h"
#include "gt-c-common.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.