OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [c-decl.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Process declarations and variables for C compiler.
/* Process declarations and variables for C compiler.
   Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
   2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* Process declarations and symbol lookup for C front end.
/* Process declarations and symbol lookup for C front end.
   Also constructs types; the standard scalar types at initialization,
   Also constructs types; the standard scalar types at initialization,
   and structure, union, array and enum types when they are declared.  */
   and structure, union, array and enum types when they are declared.  */
 
 
/* ??? not all decl nodes are given the most useful possible
/* ??? not all decl nodes are given the most useful possible
   line numbers.  For example, the CONST_DECLs for enum values.  */
   line numbers.  For example, the CONST_DECLs for enum values.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "input.h"
#include "input.h"
#include "tm.h"
#include "tm.h"
#include "intl.h"
#include "intl.h"
#include "tree.h"
#include "tree.h"
#include "tree-inline.h"
#include "tree-inline.h"
#include "rtl.h"
#include "rtl.h"
#include "flags.h"
#include "flags.h"
#include "function.h"
#include "function.h"
#include "output.h"
#include "output.h"
#include "expr.h"
#include "expr.h"
#include "c-tree.h"
#include "c-tree.h"
#include "toplev.h"
#include "toplev.h"
#include "ggc.h"
#include "ggc.h"
#include "tm_p.h"
#include "tm_p.h"
#include "cpplib.h"
#include "cpplib.h"
#include "target.h"
#include "target.h"
#include "debug.h"
#include "debug.h"
#include "opts.h"
#include "opts.h"
#include "timevar.h"
#include "timevar.h"
#include "c-common.h"
#include "c-common.h"
#include "c-pragma.h"
#include "c-pragma.h"
#include "langhooks.h"
#include "langhooks.h"
#include "tree-mudflap.h"
#include "tree-mudflap.h"
#include "tree-gimple.h"
#include "tree-gimple.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "cgraph.h"
#include "cgraph.h"
#include "hashtab.h"
#include "hashtab.h"
#include "libfuncs.h"
#include "libfuncs.h"
#include "except.h"
#include "except.h"
#include "langhooks-def.h"
#include "langhooks-def.h"
#include "pointer-set.h"
#include "pointer-set.h"
 
 
/* In grokdeclarator, distinguish syntactic contexts of declarators.  */
/* In grokdeclarator, distinguish syntactic contexts of declarators.  */
enum decl_context
enum decl_context
{ NORMAL,                       /* Ordinary declaration */
{ NORMAL,                       /* Ordinary declaration */
  FUNCDEF,                      /* Function definition */
  FUNCDEF,                      /* Function definition */
  PARM,                         /* Declaration of parm before function body */
  PARM,                         /* Declaration of parm before function body */
  FIELD,                        /* Declaration inside struct or union */
  FIELD,                        /* Declaration inside struct or union */
  TYPENAME};                    /* Typename (inside cast or sizeof)  */
  TYPENAME};                    /* Typename (inside cast or sizeof)  */
 
 


/* Nonzero if we have seen an invalid cross reference
/* Nonzero if we have seen an invalid cross reference
   to a struct, union, or enum, but not yet printed the message.  */
   to a struct, union, or enum, but not yet printed the message.  */
tree pending_invalid_xref;
tree pending_invalid_xref;
 
 
/* File and line to appear in the eventual error message.  */
/* File and line to appear in the eventual error message.  */
location_t pending_invalid_xref_location;
location_t pending_invalid_xref_location;
 
 
/* True means we've initialized exception handling.  */
/* True means we've initialized exception handling.  */
bool c_eh_initialized_p;
bool c_eh_initialized_p;
 
 
/* While defining an enum type, this is 1 plus the last enumerator
/* While defining an enum type, this is 1 plus the last enumerator
   constant value.  Note that will do not have to save this or `enum_overflow'
   constant value.  Note that will do not have to save this or `enum_overflow'
   around nested function definition since such a definition could only
   around nested function definition since such a definition could only
   occur in an enum value expression and we don't use these variables in
   occur in an enum value expression and we don't use these variables in
   that case.  */
   that case.  */
 
 
static tree enum_next_value;
static tree enum_next_value;
 
 
/* Nonzero means that there was overflow computing enum_next_value.  */
/* Nonzero means that there was overflow computing enum_next_value.  */
 
 
static int enum_overflow;
static int enum_overflow;
 
 
/* The file and line that the prototype came from if this is an
/* The file and line that the prototype came from if this is an
   old-style definition; used for diagnostics in
   old-style definition; used for diagnostics in
   store_parm_decls_oldstyle.  */
   store_parm_decls_oldstyle.  */
 
 
static location_t current_function_prototype_locus;
static location_t current_function_prototype_locus;
 
 
/* Whether this prototype was built-in.  */
/* Whether this prototype was built-in.  */
 
 
static bool current_function_prototype_built_in;
static bool current_function_prototype_built_in;
 
 
/* The argument type information of this prototype.  */
/* The argument type information of this prototype.  */
 
 
static tree current_function_prototype_arg_types;
static tree current_function_prototype_arg_types;
 
 
/* The argument information structure for the function currently being
/* The argument information structure for the function currently being
   defined.  */
   defined.  */
 
 
static struct c_arg_info *current_function_arg_info;
static struct c_arg_info *current_function_arg_info;
 
 
/* The obstack on which parser and related data structures, which are
/* The obstack on which parser and related data structures, which are
   not live beyond their top-level declaration or definition, are
   not live beyond their top-level declaration or definition, are
   allocated.  */
   allocated.  */
struct obstack parser_obstack;
struct obstack parser_obstack;
 
 
/* The current statement tree.  */
/* The current statement tree.  */
 
 
static GTY(()) struct stmt_tree_s c_stmt_tree;
static GTY(()) struct stmt_tree_s c_stmt_tree;
 
 
/* State saving variables.  */
/* State saving variables.  */
tree c_break_label;
tree c_break_label;
tree c_cont_label;
tree c_cont_label;
 
 
/* Linked list of TRANSLATION_UNIT_DECLS for the translation units
/* Linked list of TRANSLATION_UNIT_DECLS for the translation units
   included in this invocation.  Note that the current translation
   included in this invocation.  Note that the current translation
   unit is not included in this list.  */
   unit is not included in this list.  */
 
 
static GTY(()) tree all_translation_units;
static GTY(()) tree all_translation_units;
 
 
/* A list of decls to be made automatically visible in each file scope.  */
/* A list of decls to be made automatically visible in each file scope.  */
static GTY(()) tree visible_builtins;
static GTY(()) tree visible_builtins;
 
 
/* Set to 0 at beginning of a function definition, set to 1 if
/* Set to 0 at beginning of a function definition, set to 1 if
   a return statement that specifies a return value is seen.  */
   a return statement that specifies a return value is seen.  */
 
 
int current_function_returns_value;
int current_function_returns_value;
 
 
/* Set to 0 at beginning of a function definition, set to 1 if
/* Set to 0 at beginning of a function definition, set to 1 if
   a return statement with no argument is seen.  */
   a return statement with no argument is seen.  */
 
 
int current_function_returns_null;
int current_function_returns_null;
 
 
/* Set to 0 at beginning of a function definition, set to 1 if
/* Set to 0 at beginning of a function definition, set to 1 if
   a call to a noreturn function is seen.  */
   a call to a noreturn function is seen.  */
 
 
int current_function_returns_abnormally;
int current_function_returns_abnormally;
 
 
/* Set to nonzero by `grokdeclarator' for a function
/* Set to nonzero by `grokdeclarator' for a function
   whose return type is defaulted, if warnings for this are desired.  */
   whose return type is defaulted, if warnings for this are desired.  */
 
 
static int warn_about_return_type;
static int warn_about_return_type;
 
 
/* Nonzero when starting a function declared `extern inline'.  */
/* Nonzero when starting a function declared `extern inline'.  */
 
 
static int current_extern_inline;
static int current_extern_inline;
 
 
/* Nonzero when the current toplevel function contains a declaration
/* Nonzero when the current toplevel function contains a declaration
   of a nested function which is never defined.  */
   of a nested function which is never defined.  */
 
 
static bool undef_nested_function;
static bool undef_nested_function;
 
 
/* True means global_bindings_p should return false even if the scope stack
/* True means global_bindings_p should return false even if the scope stack
   says we are in file scope.  */
   says we are in file scope.  */
bool c_override_global_bindings_to_false;
bool c_override_global_bindings_to_false;
 
 


/* Each c_binding structure describes one binding of an identifier to
/* Each c_binding structure describes one binding of an identifier to
   a decl.  All the decls in a scope - irrespective of namespace - are
   a decl.  All the decls in a scope - irrespective of namespace - are
   chained together by the ->prev field, which (as the name implies)
   chained together by the ->prev field, which (as the name implies)
   runs in reverse order.  All the decls in a given namespace bound to
   runs in reverse order.  All the decls in a given namespace bound to
   a given identifier are chained by the ->shadowed field, which runs
   a given identifier are chained by the ->shadowed field, which runs
   from inner to outer scopes.
   from inner to outer scopes.
 
 
   The ->decl field usually points to a DECL node, but there are two
   The ->decl field usually points to a DECL node, but there are two
   exceptions.  In the namespace of type tags, the bound entity is a
   exceptions.  In the namespace of type tags, the bound entity is a
   RECORD_TYPE, UNION_TYPE, or ENUMERAL_TYPE node.  If an undeclared
   RECORD_TYPE, UNION_TYPE, or ENUMERAL_TYPE node.  If an undeclared
   identifier is encountered, it is bound to error_mark_node to
   identifier is encountered, it is bound to error_mark_node to
   suppress further errors about that identifier in the current
   suppress further errors about that identifier in the current
   function.
   function.
 
 
   The ->type field stores the type of the declaration in this scope;
   The ->type field stores the type of the declaration in this scope;
   if NULL, the type is the type of the ->decl field.  This is only of
   if NULL, the type is the type of the ->decl field.  This is only of
   relevance for objects with external or internal linkage which may
   relevance for objects with external or internal linkage which may
   be redeclared in inner scopes, forming composite types that only
   be redeclared in inner scopes, forming composite types that only
   persist for the duration of those scopes.  In the external scope,
   persist for the duration of those scopes.  In the external scope,
   this stores the composite of all the types declared for this
   this stores the composite of all the types declared for this
   object, visible or not.  The ->inner_comp field (used only at file
   object, visible or not.  The ->inner_comp field (used only at file
   scope) stores whether an incomplete array type at file scope was
   scope) stores whether an incomplete array type at file scope was
   completed at an inner scope to an array size other than 1.
   completed at an inner scope to an array size other than 1.
 
 
   The depth field is copied from the scope structure that holds this
   The depth field is copied from the scope structure that holds this
   decl.  It is used to preserve the proper ordering of the ->shadowed
   decl.  It is used to preserve the proper ordering of the ->shadowed
   field (see bind()) and also for a handful of special-case checks.
   field (see bind()) and also for a handful of special-case checks.
   Finally, the invisible bit is true for a decl which should be
   Finally, the invisible bit is true for a decl which should be
   ignored for purposes of normal name lookup, and the nested bit is
   ignored for purposes of normal name lookup, and the nested bit is
   true for a decl that's been bound a second time in an inner scope;
   true for a decl that's been bound a second time in an inner scope;
   in all such cases, the binding in the outer scope will have its
   in all such cases, the binding in the outer scope will have its
   invisible bit true.  */
   invisible bit true.  */
 
 
struct c_binding GTY((chain_next ("%h.prev")))
struct c_binding GTY((chain_next ("%h.prev")))
{
{
  tree decl;                    /* the decl bound */
  tree decl;                    /* the decl bound */
  tree type;                    /* the type in this scope */
  tree type;                    /* the type in this scope */
  tree id;                      /* the identifier it's bound to */
  tree id;                      /* the identifier it's bound to */
  struct c_binding *prev;       /* the previous decl in this scope */
  struct c_binding *prev;       /* the previous decl in this scope */
  struct c_binding *shadowed;   /* the innermost decl shadowed by this one */
  struct c_binding *shadowed;   /* the innermost decl shadowed by this one */
  unsigned int depth : 28;      /* depth of this scope */
  unsigned int depth : 28;      /* depth of this scope */
  BOOL_BITFIELD invisible : 1;  /* normal lookup should ignore this binding */
  BOOL_BITFIELD invisible : 1;  /* normal lookup should ignore this binding */
  BOOL_BITFIELD nested : 1;     /* do not set DECL_CONTEXT when popping */
  BOOL_BITFIELD nested : 1;     /* do not set DECL_CONTEXT when popping */
  BOOL_BITFIELD inner_comp : 1; /* incomplete array completed in inner scope */
  BOOL_BITFIELD inner_comp : 1; /* incomplete array completed in inner scope */
  /* one free bit */
  /* one free bit */
};
};
#define B_IN_SCOPE(b1, b2) ((b1)->depth == (b2)->depth)
#define B_IN_SCOPE(b1, b2) ((b1)->depth == (b2)->depth)
#define B_IN_CURRENT_SCOPE(b) ((b)->depth == current_scope->depth)
#define B_IN_CURRENT_SCOPE(b) ((b)->depth == current_scope->depth)
#define B_IN_FILE_SCOPE(b) ((b)->depth == 1 /*file_scope->depth*/)
#define B_IN_FILE_SCOPE(b) ((b)->depth == 1 /*file_scope->depth*/)
#define B_IN_EXTERNAL_SCOPE(b) ((b)->depth == 0 /*external_scope->depth*/)
#define B_IN_EXTERNAL_SCOPE(b) ((b)->depth == 0 /*external_scope->depth*/)
 
 
#define I_SYMBOL_BINDING(node) \
#define I_SYMBOL_BINDING(node) \
  (((struct lang_identifier *) IDENTIFIER_NODE_CHECK(node))->symbol_binding)
  (((struct lang_identifier *) IDENTIFIER_NODE_CHECK(node))->symbol_binding)
#define I_SYMBOL_DECL(node) \
#define I_SYMBOL_DECL(node) \
 (I_SYMBOL_BINDING(node) ? I_SYMBOL_BINDING(node)->decl : 0)
 (I_SYMBOL_BINDING(node) ? I_SYMBOL_BINDING(node)->decl : 0)
 
 
#define I_TAG_BINDING(node) \
#define I_TAG_BINDING(node) \
  (((struct lang_identifier *) IDENTIFIER_NODE_CHECK(node))->tag_binding)
  (((struct lang_identifier *) IDENTIFIER_NODE_CHECK(node))->tag_binding)
#define I_TAG_DECL(node) \
#define I_TAG_DECL(node) \
 (I_TAG_BINDING(node) ? I_TAG_BINDING(node)->decl : 0)
 (I_TAG_BINDING(node) ? I_TAG_BINDING(node)->decl : 0)
 
 
#define I_LABEL_BINDING(node) \
#define I_LABEL_BINDING(node) \
  (((struct lang_identifier *) IDENTIFIER_NODE_CHECK(node))->label_binding)
  (((struct lang_identifier *) IDENTIFIER_NODE_CHECK(node))->label_binding)
#define I_LABEL_DECL(node) \
#define I_LABEL_DECL(node) \
 (I_LABEL_BINDING(node) ? I_LABEL_BINDING(node)->decl : 0)
 (I_LABEL_BINDING(node) ? I_LABEL_BINDING(node)->decl : 0)
 
 
/* Each C symbol points to three linked lists of c_binding structures.
/* Each C symbol points to three linked lists of c_binding structures.
   These describe the values of the identifier in the three different
   These describe the values of the identifier in the three different
   namespaces defined by the language.  */
   namespaces defined by the language.  */
 
 
struct lang_identifier GTY(())
struct lang_identifier GTY(())
{
{
  struct c_common_identifier common_id;
  struct c_common_identifier common_id;
  struct c_binding *symbol_binding; /* vars, funcs, constants, typedefs */
  struct c_binding *symbol_binding; /* vars, funcs, constants, typedefs */
  struct c_binding *tag_binding;    /* struct/union/enum tags */
  struct c_binding *tag_binding;    /* struct/union/enum tags */
  struct c_binding *label_binding;  /* labels */
  struct c_binding *label_binding;  /* labels */
};
};
 
 
/* Validate c-lang.c's assumptions.  */
/* Validate c-lang.c's assumptions.  */
extern char C_SIZEOF_STRUCT_LANG_IDENTIFIER_isnt_accurate
extern char C_SIZEOF_STRUCT_LANG_IDENTIFIER_isnt_accurate
[(sizeof(struct lang_identifier) == C_SIZEOF_STRUCT_LANG_IDENTIFIER) ? 1 : -1];
[(sizeof(struct lang_identifier) == C_SIZEOF_STRUCT_LANG_IDENTIFIER) ? 1 : -1];
 
 
/* The resulting tree type.  */
/* The resulting tree type.  */
 
 
union lang_tree_node
union lang_tree_node
  GTY((desc ("TREE_CODE (&%h.generic) == IDENTIFIER_NODE"),
  GTY((desc ("TREE_CODE (&%h.generic) == IDENTIFIER_NODE"),
       chain_next ("TREE_CODE (&%h.generic) == INTEGER_TYPE ? (union lang_tree_node *) TYPE_NEXT_VARIANT (&%h.generic) : (union lang_tree_node *) TREE_CHAIN (&%h.generic)")))
       chain_next ("TREE_CODE (&%h.generic) == INTEGER_TYPE ? (union lang_tree_node *) TYPE_NEXT_VARIANT (&%h.generic) : (union lang_tree_node *) TREE_CHAIN (&%h.generic)")))
{
{
  union tree_node GTY ((tag ("0"),
  union tree_node GTY ((tag ("0"),
                        desc ("tree_node_structure (&%h)")))
                        desc ("tree_node_structure (&%h)")))
    generic;
    generic;
  struct lang_identifier GTY ((tag ("1"))) identifier;
  struct lang_identifier GTY ((tag ("1"))) identifier;
};
};
 
 
/* Each c_scope structure describes the complete contents of one
/* Each c_scope structure describes the complete contents of one
   scope.  Four scopes are distinguished specially: the innermost or
   scope.  Four scopes are distinguished specially: the innermost or
   current scope, the innermost function scope, the file scope (always
   current scope, the innermost function scope, the file scope (always
   the second to outermost) and the outermost or external scope.
   the second to outermost) and the outermost or external scope.
 
 
   Most declarations are recorded in the current scope.
   Most declarations are recorded in the current scope.
 
 
   All normal label declarations are recorded in the innermost
   All normal label declarations are recorded in the innermost
   function scope, as are bindings of undeclared identifiers to
   function scope, as are bindings of undeclared identifiers to
   error_mark_node.  (GCC permits nested functions as an extension,
   error_mark_node.  (GCC permits nested functions as an extension,
   hence the 'innermost' qualifier.)  Explicitly declared labels
   hence the 'innermost' qualifier.)  Explicitly declared labels
   (using the __label__ extension) appear in the current scope.
   (using the __label__ extension) appear in the current scope.
 
 
   Being in the file scope (current_scope == file_scope) causes
   Being in the file scope (current_scope == file_scope) causes
   special behavior in several places below.  Also, under some
   special behavior in several places below.  Also, under some
   conditions the Objective-C front end records declarations in the
   conditions the Objective-C front end records declarations in the
   file scope even though that isn't the current scope.
   file scope even though that isn't the current scope.
 
 
   All declarations with external linkage are recorded in the external
   All declarations with external linkage are recorded in the external
   scope, even if they aren't visible there; this models the fact that
   scope, even if they aren't visible there; this models the fact that
   such declarations are visible to the entire program, and (with a
   such declarations are visible to the entire program, and (with a
   bit of cleverness, see pushdecl) allows diagnosis of some violations
   bit of cleverness, see pushdecl) allows diagnosis of some violations
   of C99 6.2.2p7 and 6.2.7p2:
   of C99 6.2.2p7 and 6.2.7p2:
 
 
     If, within the same translation unit, the same identifier appears
     If, within the same translation unit, the same identifier appears
     with both internal and external linkage, the behavior is
     with both internal and external linkage, the behavior is
     undefined.
     undefined.
 
 
     All declarations that refer to the same object or function shall
     All declarations that refer to the same object or function shall
     have compatible type; otherwise, the behavior is undefined.
     have compatible type; otherwise, the behavior is undefined.
 
 
   Initially only the built-in declarations, which describe compiler
   Initially only the built-in declarations, which describe compiler
   intrinsic functions plus a subset of the standard library, are in
   intrinsic functions plus a subset of the standard library, are in
   this scope.
   this scope.
 
 
   The order of the blocks list matters, and it is frequently appended
   The order of the blocks list matters, and it is frequently appended
   to.  To avoid having to walk all the way to the end of the list on
   to.  To avoid having to walk all the way to the end of the list on
   each insertion, or reverse the list later, we maintain a pointer to
   each insertion, or reverse the list later, we maintain a pointer to
   the last list entry.  (FIXME: It should be feasible to use a reversed
   the last list entry.  (FIXME: It should be feasible to use a reversed
   list here.)
   list here.)
 
 
   The bindings list is strictly in reverse order of declarations;
   The bindings list is strictly in reverse order of declarations;
   pop_scope relies on this.  */
   pop_scope relies on this.  */
 
 
 
 
struct c_scope GTY((chain_next ("%h.outer")))
struct c_scope GTY((chain_next ("%h.outer")))
{
{
  /* The scope containing this one.  */
  /* The scope containing this one.  */
  struct c_scope *outer;
  struct c_scope *outer;
 
 
  /* The next outermost function scope.  */
  /* The next outermost function scope.  */
  struct c_scope *outer_function;
  struct c_scope *outer_function;
 
 
  /* All bindings in this scope.  */
  /* All bindings in this scope.  */
  struct c_binding *bindings;
  struct c_binding *bindings;
 
 
  /* For each scope (except the global one), a chain of BLOCK nodes
  /* For each scope (except the global one), a chain of BLOCK nodes
     for all the scopes that were entered and exited one level down.  */
     for all the scopes that were entered and exited one level down.  */
  tree blocks;
  tree blocks;
  tree blocks_last;
  tree blocks_last;
 
 
  /* The depth of this scope.  Used to keep the ->shadowed chain of
  /* The depth of this scope.  Used to keep the ->shadowed chain of
     bindings sorted innermost to outermost.  */
     bindings sorted innermost to outermost.  */
  unsigned int depth : 28;
  unsigned int depth : 28;
 
 
  /* True if we are currently filling this scope with parameter
  /* True if we are currently filling this scope with parameter
     declarations.  */
     declarations.  */
  BOOL_BITFIELD parm_flag : 1;
  BOOL_BITFIELD parm_flag : 1;
 
 
  /* True if we saw [*] in this scope.  Used to give an error messages
  /* True if we saw [*] in this scope.  Used to give an error messages
     if these appears in a function definition.  */
     if these appears in a function definition.  */
  BOOL_BITFIELD had_vla_unspec : 1;
  BOOL_BITFIELD had_vla_unspec : 1;
 
 
  /* True if we already complained about forward parameter decls
  /* True if we already complained about forward parameter decls
     in this scope.  This prevents double warnings on
     in this scope.  This prevents double warnings on
     foo (int a; int b; ...)  */
     foo (int a; int b; ...)  */
  BOOL_BITFIELD warned_forward_parm_decls : 1;
  BOOL_BITFIELD warned_forward_parm_decls : 1;
 
 
  /* True if this is the outermost block scope of a function body.
  /* True if this is the outermost block scope of a function body.
     This scope contains the parameters, the local variables declared
     This scope contains the parameters, the local variables declared
     in the outermost block, and all the labels (except those in
     in the outermost block, and all the labels (except those in
     nested functions, or declared at block scope with __label__).  */
     nested functions, or declared at block scope with __label__).  */
  BOOL_BITFIELD function_body : 1;
  BOOL_BITFIELD function_body : 1;
 
 
  /* True means make a BLOCK for this scope no matter what.  */
  /* True means make a BLOCK for this scope no matter what.  */
  BOOL_BITFIELD keep : 1;
  BOOL_BITFIELD keep : 1;
};
};
 
 
/* The scope currently in effect.  */
/* The scope currently in effect.  */
 
 
static GTY(()) struct c_scope *current_scope;
static GTY(()) struct c_scope *current_scope;
 
 
/* The innermost function scope.  Ordinary (not explicitly declared)
/* The innermost function scope.  Ordinary (not explicitly declared)
   labels, bindings to error_mark_node, and the lazily-created
   labels, bindings to error_mark_node, and the lazily-created
   bindings of __func__ and its friends get this scope.  */
   bindings of __func__ and its friends get this scope.  */
 
 
static GTY(()) struct c_scope *current_function_scope;
static GTY(()) struct c_scope *current_function_scope;
 
 
/* The C file scope.  This is reset for each input translation unit.  */
/* The C file scope.  This is reset for each input translation unit.  */
 
 
static GTY(()) struct c_scope *file_scope;
static GTY(()) struct c_scope *file_scope;
 
 
/* The outermost scope.  This is used for all declarations with
/* The outermost scope.  This is used for all declarations with
   external linkage, and only these, hence the name.  */
   external linkage, and only these, hence the name.  */
 
 
static GTY(()) struct c_scope *external_scope;
static GTY(()) struct c_scope *external_scope;
 
 
/* A chain of c_scope structures awaiting reuse.  */
/* A chain of c_scope structures awaiting reuse.  */
 
 
static GTY((deletable)) struct c_scope *scope_freelist;
static GTY((deletable)) struct c_scope *scope_freelist;
 
 
/* A chain of c_binding structures awaiting reuse.  */
/* A chain of c_binding structures awaiting reuse.  */
 
 
static GTY((deletable)) struct c_binding *binding_freelist;
static GTY((deletable)) struct c_binding *binding_freelist;
 
 
/* Append VAR to LIST in scope SCOPE.  */
/* Append VAR to LIST in scope SCOPE.  */
#define SCOPE_LIST_APPEND(scope, list, decl) do {       \
#define SCOPE_LIST_APPEND(scope, list, decl) do {       \
  struct c_scope *s_ = (scope);                         \
  struct c_scope *s_ = (scope);                         \
  tree d_ = (decl);                                     \
  tree d_ = (decl);                                     \
  if (s_->list##_last)                                  \
  if (s_->list##_last)                                  \
    TREE_CHAIN (s_->list##_last) = d_;                  \
    TREE_CHAIN (s_->list##_last) = d_;                  \
  else                                                  \
  else                                                  \
    s_->list = d_;                                      \
    s_->list = d_;                                      \
  s_->list##_last = d_;                                 \
  s_->list##_last = d_;                                 \
} while (0)
} while (0)
 
 
/* Concatenate FROM in scope FSCOPE onto TO in scope TSCOPE.  */
/* Concatenate FROM in scope FSCOPE onto TO in scope TSCOPE.  */
#define SCOPE_LIST_CONCAT(tscope, to, fscope, from) do {        \
#define SCOPE_LIST_CONCAT(tscope, to, fscope, from) do {        \
  struct c_scope *t_ = (tscope);                                \
  struct c_scope *t_ = (tscope);                                \
  struct c_scope *f_ = (fscope);                                \
  struct c_scope *f_ = (fscope);                                \
  if (t_->to##_last)                                            \
  if (t_->to##_last)                                            \
    TREE_CHAIN (t_->to##_last) = f_->from;                      \
    TREE_CHAIN (t_->to##_last) = f_->from;                      \
  else                                                          \
  else                                                          \
    t_->to = f_->from;                                          \
    t_->to = f_->from;                                          \
  t_->to##_last = f_->from##_last;                              \
  t_->to##_last = f_->from##_last;                              \
} while (0)
} while (0)
 
 
/* True means unconditionally make a BLOCK for the next scope pushed.  */
/* True means unconditionally make a BLOCK for the next scope pushed.  */
 
 
static bool keep_next_level_flag;
static bool keep_next_level_flag;
 
 
/* True means the next call to push_scope will be the outermost scope
/* True means the next call to push_scope will be the outermost scope
   of a function body, so do not push a new scope, merely cease
   of a function body, so do not push a new scope, merely cease
   expecting parameter decls.  */
   expecting parameter decls.  */
 
 
static bool next_is_function_body;
static bool next_is_function_body;
 
 
/* Functions called automatically at the beginning and end of execution.  */
/* Functions called automatically at the beginning and end of execution.  */
 
 
static GTY(()) tree static_ctors;
static GTY(()) tree static_ctors;
static GTY(()) tree static_dtors;
static GTY(()) tree static_dtors;
 
 
/* Forward declarations.  */
/* Forward declarations.  */
static tree lookup_name_in_scope (tree, struct c_scope *);
static tree lookup_name_in_scope (tree, struct c_scope *);
static tree c_make_fname_decl (tree, int);
static tree c_make_fname_decl (tree, int);
static tree grokdeclarator (const struct c_declarator *,
static tree grokdeclarator (const struct c_declarator *,
                            struct c_declspecs *,
                            struct c_declspecs *,
                            enum decl_context, bool, tree *);
                            enum decl_context, bool, tree *);
static tree grokparms (struct c_arg_info *, bool);
static tree grokparms (struct c_arg_info *, bool);
static void layout_array_type (tree);
static void layout_array_type (tree);


/* T is a statement.  Add it to the statement-tree.  This is the
/* T is a statement.  Add it to the statement-tree.  This is the
   C/ObjC version--C++ has a slightly different version of this
   C/ObjC version--C++ has a slightly different version of this
   function.  */
   function.  */
 
 
tree
tree
add_stmt (tree t)
add_stmt (tree t)
{
{
  enum tree_code code = TREE_CODE (t);
  enum tree_code code = TREE_CODE (t);
 
 
  if (EXPR_P (t) && code != LABEL_EXPR)
  if (EXPR_P (t) && code != LABEL_EXPR)
    {
    {
      if (!EXPR_HAS_LOCATION (t))
      if (!EXPR_HAS_LOCATION (t))
        SET_EXPR_LOCATION (t, input_location);
        SET_EXPR_LOCATION (t, input_location);
    }
    }
 
 
  if (code == LABEL_EXPR || code == CASE_LABEL_EXPR)
  if (code == LABEL_EXPR || code == CASE_LABEL_EXPR)
    STATEMENT_LIST_HAS_LABEL (cur_stmt_list) = 1;
    STATEMENT_LIST_HAS_LABEL (cur_stmt_list) = 1;
 
 
  /* Add T to the statement-tree.  Non-side-effect statements need to be
  /* Add T to the statement-tree.  Non-side-effect statements need to be
     recorded during statement expressions.  */
     recorded during statement expressions.  */
  append_to_statement_list_force (t, &cur_stmt_list);
  append_to_statement_list_force (t, &cur_stmt_list);
 
 
  return t;
  return t;
}
}


/* States indicating how grokdeclarator() should handle declspecs marked
/* States indicating how grokdeclarator() should handle declspecs marked
   with __attribute__((deprecated)).  An object declared as
   with __attribute__((deprecated)).  An object declared as
   __attribute__((deprecated)) suppresses warnings of uses of other
   __attribute__((deprecated)) suppresses warnings of uses of other
   deprecated items.  */
   deprecated items.  */
 
 
enum deprecated_states {
enum deprecated_states {
  DEPRECATED_NORMAL,
  DEPRECATED_NORMAL,
  DEPRECATED_SUPPRESS
  DEPRECATED_SUPPRESS
};
};
 
 
static enum deprecated_states deprecated_state = DEPRECATED_NORMAL;
static enum deprecated_states deprecated_state = DEPRECATED_NORMAL;
 
 
void
void
c_print_identifier (FILE *file, tree node, int indent)
c_print_identifier (FILE *file, tree node, int indent)
{
{
  print_node (file, "symbol", I_SYMBOL_DECL (node), indent + 4);
  print_node (file, "symbol", I_SYMBOL_DECL (node), indent + 4);
  print_node (file, "tag", I_TAG_DECL (node), indent + 4);
  print_node (file, "tag", I_TAG_DECL (node), indent + 4);
  print_node (file, "label", I_LABEL_DECL (node), indent + 4);
  print_node (file, "label", I_LABEL_DECL (node), indent + 4);
  if (C_IS_RESERVED_WORD (node))
  if (C_IS_RESERVED_WORD (node))
    {
    {
      tree rid = ridpointers[C_RID_CODE (node)];
      tree rid = ridpointers[C_RID_CODE (node)];
      indent_to (file, indent + 4);
      indent_to (file, indent + 4);
      fprintf (file, "rid %p \"%s\"",
      fprintf (file, "rid %p \"%s\"",
               (void *) rid, IDENTIFIER_POINTER (rid));
               (void *) rid, IDENTIFIER_POINTER (rid));
    }
    }
}
}
 
 
/* Establish a binding between NAME, an IDENTIFIER_NODE, and DECL,
/* Establish a binding between NAME, an IDENTIFIER_NODE, and DECL,
   which may be any of several kinds of DECL or TYPE or error_mark_node,
   which may be any of several kinds of DECL or TYPE or error_mark_node,
   in the scope SCOPE.  */
   in the scope SCOPE.  */
static void
static void
bind (tree name, tree decl, struct c_scope *scope, bool invisible, bool nested)
bind (tree name, tree decl, struct c_scope *scope, bool invisible, bool nested)
{
{
  struct c_binding *b, **here;
  struct c_binding *b, **here;
 
 
  if (binding_freelist)
  if (binding_freelist)
    {
    {
      b = binding_freelist;
      b = binding_freelist;
      binding_freelist = b->prev;
      binding_freelist = b->prev;
    }
    }
  else
  else
    b = GGC_NEW (struct c_binding);
    b = GGC_NEW (struct c_binding);
 
 
  b->shadowed = 0;
  b->shadowed = 0;
  b->decl = decl;
  b->decl = decl;
  b->id = name;
  b->id = name;
  b->depth = scope->depth;
  b->depth = scope->depth;
  b->invisible = invisible;
  b->invisible = invisible;
  b->nested = nested;
  b->nested = nested;
  b->inner_comp = 0;
  b->inner_comp = 0;
 
 
  b->type = 0;
  b->type = 0;
 
 
  b->prev = scope->bindings;
  b->prev = scope->bindings;
  scope->bindings = b;
  scope->bindings = b;
 
 
  if (!name)
  if (!name)
    return;
    return;
 
 
  switch (TREE_CODE (decl))
  switch (TREE_CODE (decl))
    {
    {
    case LABEL_DECL:     here = &I_LABEL_BINDING (name);   break;
    case LABEL_DECL:     here = &I_LABEL_BINDING (name);   break;
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
    case UNION_TYPE:
    case UNION_TYPE:
    case RECORD_TYPE:    here = &I_TAG_BINDING (name);     break;
    case RECORD_TYPE:    here = &I_TAG_BINDING (name);     break;
    case VAR_DECL:
    case VAR_DECL:
    case FUNCTION_DECL:
    case FUNCTION_DECL:
    case TYPE_DECL:
    case TYPE_DECL:
    case CONST_DECL:
    case CONST_DECL:
    case PARM_DECL:
    case PARM_DECL:
    case ERROR_MARK:     here = &I_SYMBOL_BINDING (name);  break;
    case ERROR_MARK:     here = &I_SYMBOL_BINDING (name);  break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  /* Locate the appropriate place in the chain of shadowed decls
  /* Locate the appropriate place in the chain of shadowed decls
     to insert this binding.  Normally, scope == current_scope and
     to insert this binding.  Normally, scope == current_scope and
     this does nothing.  */
     this does nothing.  */
  while (*here && (*here)->depth > scope->depth)
  while (*here && (*here)->depth > scope->depth)
    here = &(*here)->shadowed;
    here = &(*here)->shadowed;
 
 
  b->shadowed = *here;
  b->shadowed = *here;
  *here = b;
  *here = b;
}
}
 
 
/* Clear the binding structure B, stick it on the binding_freelist,
/* Clear the binding structure B, stick it on the binding_freelist,
   and return the former value of b->prev.  This is used by pop_scope
   and return the former value of b->prev.  This is used by pop_scope
   and get_parm_info to iterate destructively over all the bindings
   and get_parm_info to iterate destructively over all the bindings
   from a given scope.  */
   from a given scope.  */
static struct c_binding *
static struct c_binding *
free_binding_and_advance (struct c_binding *b)
free_binding_and_advance (struct c_binding *b)
{
{
  struct c_binding *prev = b->prev;
  struct c_binding *prev = b->prev;
 
 
  memset (b, 0, sizeof (struct c_binding));
  memset (b, 0, sizeof (struct c_binding));
  b->prev = binding_freelist;
  b->prev = binding_freelist;
  binding_freelist = b;
  binding_freelist = b;
 
 
  return prev;
  return prev;
}
}
 
 


/* Hook called at end of compilation to assume 1 elt
/* Hook called at end of compilation to assume 1 elt
   for a file-scope tentative array defn that wasn't complete before.  */
   for a file-scope tentative array defn that wasn't complete before.  */
 
 
void
void
c_finish_incomplete_decl (tree decl)
c_finish_incomplete_decl (tree decl)
{
{
  if (TREE_CODE (decl) == VAR_DECL)
  if (TREE_CODE (decl) == VAR_DECL)
    {
    {
      tree type = TREE_TYPE (decl);
      tree type = TREE_TYPE (decl);
      if (type != error_mark_node
      if (type != error_mark_node
          && TREE_CODE (type) == ARRAY_TYPE
          && TREE_CODE (type) == ARRAY_TYPE
          && !DECL_EXTERNAL (decl)
          && !DECL_EXTERNAL (decl)
          && TYPE_DOMAIN (type) == 0)
          && TYPE_DOMAIN (type) == 0)
        {
        {
          warning (0, "array %q+D assumed to have one element", decl);
          warning (0, "array %q+D assumed to have one element", decl);
 
 
          complete_array_type (&TREE_TYPE (decl), NULL_TREE, true);
          complete_array_type (&TREE_TYPE (decl), NULL_TREE, true);
 
 
          layout_decl (decl, 0);
          layout_decl (decl, 0);
        }
        }
    }
    }
}
}


/* The Objective-C front-end often needs to determine the current scope.  */
/* The Objective-C front-end often needs to determine the current scope.  */
 
 
void *
void *
objc_get_current_scope (void)
objc_get_current_scope (void)
{
{
  return current_scope;
  return current_scope;
}
}
 
 
/* The following function is used only by Objective-C.  It needs to live here
/* The following function is used only by Objective-C.  It needs to live here
   because it accesses the innards of c_scope.  */
   because it accesses the innards of c_scope.  */
 
 
void
void
objc_mark_locals_volatile (void *enclosing_blk)
objc_mark_locals_volatile (void *enclosing_blk)
{
{
  struct c_scope *scope;
  struct c_scope *scope;
  struct c_binding *b;
  struct c_binding *b;
 
 
  for (scope = current_scope;
  for (scope = current_scope;
       scope && scope != enclosing_blk;
       scope && scope != enclosing_blk;
       scope = scope->outer)
       scope = scope->outer)
    {
    {
      for (b = scope->bindings; b; b = b->prev)
      for (b = scope->bindings; b; b = b->prev)
        objc_volatilize_decl (b->decl);
        objc_volatilize_decl (b->decl);
 
 
      /* Do not climb up past the current function.  */
      /* Do not climb up past the current function.  */
      if (scope->function_body)
      if (scope->function_body)
        break;
        break;
    }
    }
}
}
 
 
/* Nonzero if we are currently in file scope.  */
/* Nonzero if we are currently in file scope.  */
 
 
int
int
global_bindings_p (void)
global_bindings_p (void)
{
{
  return current_scope == file_scope && !c_override_global_bindings_to_false;
  return current_scope == file_scope && !c_override_global_bindings_to_false;
}
}
 
 
void
void
keep_next_level (void)
keep_next_level (void)
{
{
  keep_next_level_flag = true;
  keep_next_level_flag = true;
}
}
 
 
/* Identify this scope as currently being filled with parameters.  */
/* Identify this scope as currently being filled with parameters.  */
 
 
void
void
declare_parm_level (void)
declare_parm_level (void)
{
{
  current_scope->parm_flag = true;
  current_scope->parm_flag = true;
}
}
 
 
void
void
push_scope (void)
push_scope (void)
{
{
  if (next_is_function_body)
  if (next_is_function_body)
    {
    {
      /* This is the transition from the parameters to the top level
      /* This is the transition from the parameters to the top level
         of the function body.  These are the same scope
         of the function body.  These are the same scope
         (C99 6.2.1p4,6) so we do not push another scope structure.
         (C99 6.2.1p4,6) so we do not push another scope structure.
         next_is_function_body is set only by store_parm_decls, which
         next_is_function_body is set only by store_parm_decls, which
         in turn is called when and only when we are about to
         in turn is called when and only when we are about to
         encounter the opening curly brace for the function body.
         encounter the opening curly brace for the function body.
 
 
         The outermost block of a function always gets a BLOCK node,
         The outermost block of a function always gets a BLOCK node,
         because the debugging output routines expect that each
         because the debugging output routines expect that each
         function has at least one BLOCK.  */
         function has at least one BLOCK.  */
      current_scope->parm_flag         = false;
      current_scope->parm_flag         = false;
      current_scope->function_body     = true;
      current_scope->function_body     = true;
      current_scope->keep              = true;
      current_scope->keep              = true;
      current_scope->outer_function    = current_function_scope;
      current_scope->outer_function    = current_function_scope;
      current_function_scope           = current_scope;
      current_function_scope           = current_scope;
 
 
      keep_next_level_flag = false;
      keep_next_level_flag = false;
      next_is_function_body = false;
      next_is_function_body = false;
    }
    }
  else
  else
    {
    {
      struct c_scope *scope;
      struct c_scope *scope;
      if (scope_freelist)
      if (scope_freelist)
        {
        {
          scope = scope_freelist;
          scope = scope_freelist;
          scope_freelist = scope->outer;
          scope_freelist = scope->outer;
        }
        }
      else
      else
        scope = GGC_CNEW (struct c_scope);
        scope = GGC_CNEW (struct c_scope);
 
 
      scope->keep          = keep_next_level_flag;
      scope->keep          = keep_next_level_flag;
      scope->outer         = current_scope;
      scope->outer         = current_scope;
      scope->depth         = current_scope ? (current_scope->depth + 1) : 0;
      scope->depth         = current_scope ? (current_scope->depth + 1) : 0;
 
 
      /* Check for scope depth overflow.  Unlikely (2^28 == 268,435,456) but
      /* Check for scope depth overflow.  Unlikely (2^28 == 268,435,456) but
         possible.  */
         possible.  */
      if (current_scope && scope->depth == 0)
      if (current_scope && scope->depth == 0)
        {
        {
          scope->depth--;
          scope->depth--;
          sorry ("GCC supports only %u nested scopes", scope->depth);
          sorry ("GCC supports only %u nested scopes", scope->depth);
        }
        }
 
 
      current_scope        = scope;
      current_scope        = scope;
      keep_next_level_flag = false;
      keep_next_level_flag = false;
    }
    }
}
}
 
 
/* Set the TYPE_CONTEXT of all of TYPE's variants to CONTEXT.  */
/* Set the TYPE_CONTEXT of all of TYPE's variants to CONTEXT.  */
 
 
static void
static void
set_type_context (tree type, tree context)
set_type_context (tree type, tree context)
{
{
  for (type = TYPE_MAIN_VARIANT (type); type;
  for (type = TYPE_MAIN_VARIANT (type); type;
       type = TYPE_NEXT_VARIANT (type))
       type = TYPE_NEXT_VARIANT (type))
    TYPE_CONTEXT (type) = context;
    TYPE_CONTEXT (type) = context;
}
}
 
 
/* Exit a scope.  Restore the state of the identifier-decl mappings
/* Exit a scope.  Restore the state of the identifier-decl mappings
   that were in effect when this scope was entered.  Return a BLOCK
   that were in effect when this scope was entered.  Return a BLOCK
   node containing all the DECLs in this scope that are of interest
   node containing all the DECLs in this scope that are of interest
   to debug info generation.  */
   to debug info generation.  */
 
 
tree
tree
pop_scope (void)
pop_scope (void)
{
{
  struct c_scope *scope = current_scope;
  struct c_scope *scope = current_scope;
  tree block, context, p;
  tree block, context, p;
  struct c_binding *b;
  struct c_binding *b;
 
 
  bool functionbody = scope->function_body;
  bool functionbody = scope->function_body;
  bool keep = functionbody || scope->keep || scope->bindings;
  bool keep = functionbody || scope->keep || scope->bindings;
 
 
  c_end_vm_scope (scope->depth);
  c_end_vm_scope (scope->depth);
 
 
  /* If appropriate, create a BLOCK to record the decls for the life
  /* If appropriate, create a BLOCK to record the decls for the life
     of this function.  */
     of this function.  */
  block = 0;
  block = 0;
  if (keep)
  if (keep)
    {
    {
      block = make_node (BLOCK);
      block = make_node (BLOCK);
      BLOCK_SUBBLOCKS (block) = scope->blocks;
      BLOCK_SUBBLOCKS (block) = scope->blocks;
      TREE_USED (block) = 1;
      TREE_USED (block) = 1;
 
 
      /* In each subblock, record that this is its superior.  */
      /* In each subblock, record that this is its superior.  */
      for (p = scope->blocks; p; p = TREE_CHAIN (p))
      for (p = scope->blocks; p; p = TREE_CHAIN (p))
        BLOCK_SUPERCONTEXT (p) = block;
        BLOCK_SUPERCONTEXT (p) = block;
 
 
      BLOCK_VARS (block) = 0;
      BLOCK_VARS (block) = 0;
    }
    }
 
 
  /* The TYPE_CONTEXTs for all of the tagged types belonging to this
  /* The TYPE_CONTEXTs for all of the tagged types belonging to this
     scope must be set so that they point to the appropriate
     scope must be set so that they point to the appropriate
     construct, i.e.  either to the current FUNCTION_DECL node, or
     construct, i.e.  either to the current FUNCTION_DECL node, or
     else to the BLOCK node we just constructed.
     else to the BLOCK node we just constructed.
 
 
     Note that for tagged types whose scope is just the formal
     Note that for tagged types whose scope is just the formal
     parameter list for some function type specification, we can't
     parameter list for some function type specification, we can't
     properly set their TYPE_CONTEXTs here, because we don't have a
     properly set their TYPE_CONTEXTs here, because we don't have a
     pointer to the appropriate FUNCTION_TYPE node readily available
     pointer to the appropriate FUNCTION_TYPE node readily available
     to us.  For those cases, the TYPE_CONTEXTs of the relevant tagged
     to us.  For those cases, the TYPE_CONTEXTs of the relevant tagged
     type nodes get set in `grokdeclarator' as soon as we have created
     type nodes get set in `grokdeclarator' as soon as we have created
     the FUNCTION_TYPE node which will represent the "scope" for these
     the FUNCTION_TYPE node which will represent the "scope" for these
     "parameter list local" tagged types.  */
     "parameter list local" tagged types.  */
  if (scope->function_body)
  if (scope->function_body)
    context = current_function_decl;
    context = current_function_decl;
  else if (scope == file_scope)
  else if (scope == file_scope)
    {
    {
      tree file_decl = build_decl (TRANSLATION_UNIT_DECL, 0, 0);
      tree file_decl = build_decl (TRANSLATION_UNIT_DECL, 0, 0);
      TREE_CHAIN (file_decl) = all_translation_units;
      TREE_CHAIN (file_decl) = all_translation_units;
      all_translation_units = file_decl;
      all_translation_units = file_decl;
      context = file_decl;
      context = file_decl;
    }
    }
  else
  else
    context = block;
    context = block;
 
 
  /* Clear all bindings in this scope.  */
  /* Clear all bindings in this scope.  */
  for (b = scope->bindings; b; b = free_binding_and_advance (b))
  for (b = scope->bindings; b; b = free_binding_and_advance (b))
    {
    {
      p = b->decl;
      p = b->decl;
      switch (TREE_CODE (p))
      switch (TREE_CODE (p))
        {
        {
        case LABEL_DECL:
        case LABEL_DECL:
          /* Warnings for unused labels, errors for undefined labels.  */
          /* Warnings for unused labels, errors for undefined labels.  */
          if (TREE_USED (p) && !DECL_INITIAL (p))
          if (TREE_USED (p) && !DECL_INITIAL (p))
            {
            {
              error ("label %q+D used but not defined", p);
              error ("label %q+D used but not defined", p);
              DECL_INITIAL (p) = error_mark_node;
              DECL_INITIAL (p) = error_mark_node;
            }
            }
          else if (!TREE_USED (p) && warn_unused_label)
          else if (!TREE_USED (p) && warn_unused_label)
            {
            {
              if (DECL_INITIAL (p))
              if (DECL_INITIAL (p))
                warning (0, "label %q+D defined but not used", p);
                warning (0, "label %q+D defined but not used", p);
              else
              else
                warning (0, "label %q+D declared but not defined", p);
                warning (0, "label %q+D declared but not defined", p);
            }
            }
          /* Labels go in BLOCK_VARS.  */
          /* Labels go in BLOCK_VARS.  */
          TREE_CHAIN (p) = BLOCK_VARS (block);
          TREE_CHAIN (p) = BLOCK_VARS (block);
          BLOCK_VARS (block) = p;
          BLOCK_VARS (block) = p;
          gcc_assert (I_LABEL_BINDING (b->id) == b);
          gcc_assert (I_LABEL_BINDING (b->id) == b);
          I_LABEL_BINDING (b->id) = b->shadowed;
          I_LABEL_BINDING (b->id) = b->shadowed;
          break;
          break;
 
 
        case ENUMERAL_TYPE:
        case ENUMERAL_TYPE:
        case UNION_TYPE:
        case UNION_TYPE:
        case RECORD_TYPE:
        case RECORD_TYPE:
          set_type_context (p, context);
          set_type_context (p, context);
 
 
          /* Types may not have tag-names, in which case the type
          /* Types may not have tag-names, in which case the type
             appears in the bindings list with b->id NULL.  */
             appears in the bindings list with b->id NULL.  */
          if (b->id)
          if (b->id)
            {
            {
              gcc_assert (I_TAG_BINDING (b->id) == b);
              gcc_assert (I_TAG_BINDING (b->id) == b);
              I_TAG_BINDING (b->id) = b->shadowed;
              I_TAG_BINDING (b->id) = b->shadowed;
            }
            }
          break;
          break;
 
 
        case FUNCTION_DECL:
        case FUNCTION_DECL:
          /* Propagate TREE_ADDRESSABLE from nested functions to their
          /* Propagate TREE_ADDRESSABLE from nested functions to their
             containing functions.  */
             containing functions.  */
          if (!TREE_ASM_WRITTEN (p)
          if (!TREE_ASM_WRITTEN (p)
              && DECL_INITIAL (p) != 0
              && DECL_INITIAL (p) != 0
              && TREE_ADDRESSABLE (p)
              && TREE_ADDRESSABLE (p)
              && DECL_ABSTRACT_ORIGIN (p) != 0
              && DECL_ABSTRACT_ORIGIN (p) != 0
              && DECL_ABSTRACT_ORIGIN (p) != p)
              && DECL_ABSTRACT_ORIGIN (p) != p)
            TREE_ADDRESSABLE (DECL_ABSTRACT_ORIGIN (p)) = 1;
            TREE_ADDRESSABLE (DECL_ABSTRACT_ORIGIN (p)) = 1;
          if (!DECL_EXTERNAL (p)
          if (!DECL_EXTERNAL (p)
              && DECL_INITIAL (p) == 0)
              && DECL_INITIAL (p) == 0)
            {
            {
              error ("nested function %q+D declared but never defined", p);
              error ("nested function %q+D declared but never defined", p);
              undef_nested_function = true;
              undef_nested_function = true;
            }
            }
          goto common_symbol;
          goto common_symbol;
 
 
        case VAR_DECL:
        case VAR_DECL:
          /* Warnings for unused variables.  */
          /* Warnings for unused variables.  */
          if (!TREE_USED (p)
          if (!TREE_USED (p)
              && !TREE_NO_WARNING (p)
              && !TREE_NO_WARNING (p)
              && !DECL_IN_SYSTEM_HEADER (p)
              && !DECL_IN_SYSTEM_HEADER (p)
              && DECL_NAME (p)
              && DECL_NAME (p)
              && !DECL_ARTIFICIAL (p)
              && !DECL_ARTIFICIAL (p)
              && scope != file_scope
              && scope != file_scope
              && scope != external_scope)
              && scope != external_scope)
            warning (OPT_Wunused_variable, "unused variable %q+D", p);
            warning (OPT_Wunused_variable, "unused variable %q+D", p);
 
 
          if (b->inner_comp)
          if (b->inner_comp)
            {
            {
              error ("type of array %q+D completed incompatibly with"
              error ("type of array %q+D completed incompatibly with"
                     " implicit initialization", p);
                     " implicit initialization", p);
            }
            }
 
 
          /* Fall through.  */
          /* Fall through.  */
        case TYPE_DECL:
        case TYPE_DECL:
        case CONST_DECL:
        case CONST_DECL:
        common_symbol:
        common_symbol:
          /* All of these go in BLOCK_VARS, but only if this is the
          /* All of these go in BLOCK_VARS, but only if this is the
             binding in the home scope.  */
             binding in the home scope.  */
          if (!b->nested)
          if (!b->nested)
            {
            {
              TREE_CHAIN (p) = BLOCK_VARS (block);
              TREE_CHAIN (p) = BLOCK_VARS (block);
              BLOCK_VARS (block) = p;
              BLOCK_VARS (block) = p;
            }
            }
          /* If this is the file scope, and we are processing more
          /* If this is the file scope, and we are processing more
             than one translation unit in this compilation, set
             than one translation unit in this compilation, set
             DECL_CONTEXT of each decl to the TRANSLATION_UNIT_DECL.
             DECL_CONTEXT of each decl to the TRANSLATION_UNIT_DECL.
             This makes same_translation_unit_p work, and causes
             This makes same_translation_unit_p work, and causes
             static declarations to be given disambiguating suffixes.  */
             static declarations to be given disambiguating suffixes.  */
          if (scope == file_scope && num_in_fnames > 1)
          if (scope == file_scope && num_in_fnames > 1)
            {
            {
              DECL_CONTEXT (p) = context;
              DECL_CONTEXT (p) = context;
              if (TREE_CODE (p) == TYPE_DECL)
              if (TREE_CODE (p) == TYPE_DECL)
                set_type_context (TREE_TYPE (p), context);
                set_type_context (TREE_TYPE (p), context);
            }
            }
 
 
          /* Fall through.  */
          /* Fall through.  */
          /* Parameters go in DECL_ARGUMENTS, not BLOCK_VARS, and have
          /* Parameters go in DECL_ARGUMENTS, not BLOCK_VARS, and have
             already been put there by store_parm_decls.  Unused-
             already been put there by store_parm_decls.  Unused-
             parameter warnings are handled by function.c.
             parameter warnings are handled by function.c.
             error_mark_node obviously does not go in BLOCK_VARS and
             error_mark_node obviously does not go in BLOCK_VARS and
             does not get unused-variable warnings.  */
             does not get unused-variable warnings.  */
        case PARM_DECL:
        case PARM_DECL:
        case ERROR_MARK:
        case ERROR_MARK:
          /* It is possible for a decl not to have a name.  We get
          /* It is possible for a decl not to have a name.  We get
             here with b->id NULL in this case.  */
             here with b->id NULL in this case.  */
          if (b->id)
          if (b->id)
            {
            {
              gcc_assert (I_SYMBOL_BINDING (b->id) == b);
              gcc_assert (I_SYMBOL_BINDING (b->id) == b);
              I_SYMBOL_BINDING (b->id) = b->shadowed;
              I_SYMBOL_BINDING (b->id) = b->shadowed;
              if (b->shadowed && b->shadowed->type)
              if (b->shadowed && b->shadowed->type)
                TREE_TYPE (b->shadowed->decl) = b->shadowed->type;
                TREE_TYPE (b->shadowed->decl) = b->shadowed->type;
            }
            }
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
 
 
 
 
  /* Dispose of the block that we just made inside some higher level.  */
  /* Dispose of the block that we just made inside some higher level.  */
  if ((scope->function_body || scope == file_scope) && context)
  if ((scope->function_body || scope == file_scope) && context)
    {
    {
      DECL_INITIAL (context) = block;
      DECL_INITIAL (context) = block;
      BLOCK_SUPERCONTEXT (block) = context;
      BLOCK_SUPERCONTEXT (block) = context;
    }
    }
  else if (scope->outer)
  else if (scope->outer)
    {
    {
      if (block)
      if (block)
        SCOPE_LIST_APPEND (scope->outer, blocks, block);
        SCOPE_LIST_APPEND (scope->outer, blocks, block);
      /* If we did not make a block for the scope just exited, any
      /* If we did not make a block for the scope just exited, any
         blocks made for inner scopes must be carried forward so they
         blocks made for inner scopes must be carried forward so they
         will later become subblocks of something else.  */
         will later become subblocks of something else.  */
      else if (scope->blocks)
      else if (scope->blocks)
        SCOPE_LIST_CONCAT (scope->outer, blocks, scope, blocks);
        SCOPE_LIST_CONCAT (scope->outer, blocks, scope, blocks);
    }
    }
 
 
  /* Pop the current scope, and free the structure for reuse.  */
  /* Pop the current scope, and free the structure for reuse.  */
  current_scope = scope->outer;
  current_scope = scope->outer;
  if (scope->function_body)
  if (scope->function_body)
    current_function_scope = scope->outer_function;
    current_function_scope = scope->outer_function;
 
 
  memset (scope, 0, sizeof (struct c_scope));
  memset (scope, 0, sizeof (struct c_scope));
  scope->outer = scope_freelist;
  scope->outer = scope_freelist;
  scope_freelist = scope;
  scope_freelist = scope;
 
 
  return block;
  return block;
}
}
 
 
void
void
push_file_scope (void)
push_file_scope (void)
{
{
  tree decl;
  tree decl;
 
 
  if (file_scope)
  if (file_scope)
    return;
    return;
 
 
  push_scope ();
  push_scope ();
  file_scope = current_scope;
  file_scope = current_scope;
 
 
  start_fname_decls ();
  start_fname_decls ();
 
 
  for (decl = visible_builtins; decl; decl = TREE_CHAIN (decl))
  for (decl = visible_builtins; decl; decl = TREE_CHAIN (decl))
    bind (DECL_NAME (decl), decl, file_scope,
    bind (DECL_NAME (decl), decl, file_scope,
          /*invisible=*/false, /*nested=*/true);
          /*invisible=*/false, /*nested=*/true);
}
}
 
 
void
void
pop_file_scope (void)
pop_file_scope (void)
{
{
  /* In case there were missing closebraces, get us back to the global
  /* In case there were missing closebraces, get us back to the global
     binding level.  */
     binding level.  */
  while (current_scope != file_scope)
  while (current_scope != file_scope)
    pop_scope ();
    pop_scope ();
 
 
  /* __FUNCTION__ is defined at file scope ("").  This
  /* __FUNCTION__ is defined at file scope ("").  This
     call may not be necessary as my tests indicate it
     call may not be necessary as my tests indicate it
     still works without it.  */
     still works without it.  */
  finish_fname_decls ();
  finish_fname_decls ();
 
 
  /* This is the point to write out a PCH if we're doing that.
  /* This is the point to write out a PCH if we're doing that.
     In that case we do not want to do anything else.  */
     In that case we do not want to do anything else.  */
  if (pch_file)
  if (pch_file)
    {
    {
      c_common_write_pch ();
      c_common_write_pch ();
      return;
      return;
    }
    }
 
 
  /* Pop off the file scope and close this translation unit.  */
  /* Pop off the file scope and close this translation unit.  */
  pop_scope ();
  pop_scope ();
  file_scope = 0;
  file_scope = 0;
 
 
  maybe_apply_pending_pragma_weaks ();
  maybe_apply_pending_pragma_weaks ();
  cgraph_finalize_compilation_unit ();
  cgraph_finalize_compilation_unit ();
}
}
 
 
/* Insert BLOCK at the end of the list of subblocks of the current
/* Insert BLOCK at the end of the list of subblocks of the current
   scope.  This is used when a BIND_EXPR is expanded, to handle the
   scope.  This is used when a BIND_EXPR is expanded, to handle the
   BLOCK node inside the BIND_EXPR.  */
   BLOCK node inside the BIND_EXPR.  */
 
 
void
void
insert_block (tree block)
insert_block (tree block)
{
{
  TREE_USED (block) = 1;
  TREE_USED (block) = 1;
  SCOPE_LIST_APPEND (current_scope, blocks, block);
  SCOPE_LIST_APPEND (current_scope, blocks, block);
}
}


/* Push a definition or a declaration of struct, union or enum tag "name".
/* Push a definition or a declaration of struct, union or enum tag "name".
   "type" should be the type node.
   "type" should be the type node.
   We assume that the tag "name" is not already defined.
   We assume that the tag "name" is not already defined.
 
 
   Note that the definition may really be just a forward reference.
   Note that the definition may really be just a forward reference.
   In that case, the TYPE_SIZE will be zero.  */
   In that case, the TYPE_SIZE will be zero.  */
 
 
static void
static void
pushtag (tree name, tree type)
pushtag (tree name, tree type)
{
{
  /* Record the identifier as the type's name if it has none.  */
  /* Record the identifier as the type's name if it has none.  */
  if (name && !TYPE_NAME (type))
  if (name && !TYPE_NAME (type))
    TYPE_NAME (type) = name;
    TYPE_NAME (type) = name;
  bind (name, type, current_scope, /*invisible=*/false, /*nested=*/false);
  bind (name, type, current_scope, /*invisible=*/false, /*nested=*/false);
 
 
  /* Create a fake NULL-named TYPE_DECL node whose TREE_TYPE will be the
  /* Create a fake NULL-named TYPE_DECL node whose TREE_TYPE will be the
     tagged type we just added to the current scope.  This fake
     tagged type we just added to the current scope.  This fake
     NULL-named TYPE_DECL node helps dwarfout.c to know when it needs
     NULL-named TYPE_DECL node helps dwarfout.c to know when it needs
     to output a representation of a tagged type, and it also gives
     to output a representation of a tagged type, and it also gives
     us a convenient place to record the "scope start" address for the
     us a convenient place to record the "scope start" address for the
     tagged type.  */
     tagged type.  */
 
 
  TYPE_STUB_DECL (type) = pushdecl (build_decl (TYPE_DECL, NULL_TREE, type));
  TYPE_STUB_DECL (type) = pushdecl (build_decl (TYPE_DECL, NULL_TREE, type));
 
 
  /* An approximation for now, so we can tell this is a function-scope tag.
  /* An approximation for now, so we can tell this is a function-scope tag.
     This will be updated in pop_scope.  */
     This will be updated in pop_scope.  */
  TYPE_CONTEXT (type) = DECL_CONTEXT (TYPE_STUB_DECL (type));
  TYPE_CONTEXT (type) = DECL_CONTEXT (TYPE_STUB_DECL (type));
}
}


/* Subroutine of compare_decls.  Allow harmless mismatches in return
/* Subroutine of compare_decls.  Allow harmless mismatches in return
   and argument types provided that the type modes match.  This function
   and argument types provided that the type modes match.  This function
   return a unified type given a suitable match, and 0 otherwise.  */
   return a unified type given a suitable match, and 0 otherwise.  */
 
 
static tree
static tree
match_builtin_function_types (tree newtype, tree oldtype)
match_builtin_function_types (tree newtype, tree oldtype)
{
{
  tree newrettype, oldrettype;
  tree newrettype, oldrettype;
  tree newargs, oldargs;
  tree newargs, oldargs;
  tree trytype, tryargs;
  tree trytype, tryargs;
 
 
  /* Accept the return type of the new declaration if same modes.  */
  /* Accept the return type of the new declaration if same modes.  */
  oldrettype = TREE_TYPE (oldtype);
  oldrettype = TREE_TYPE (oldtype);
  newrettype = TREE_TYPE (newtype);
  newrettype = TREE_TYPE (newtype);
 
 
  if (TYPE_MODE (oldrettype) != TYPE_MODE (newrettype))
  if (TYPE_MODE (oldrettype) != TYPE_MODE (newrettype))
    return 0;
    return 0;
 
 
  oldargs = TYPE_ARG_TYPES (oldtype);
  oldargs = TYPE_ARG_TYPES (oldtype);
  newargs = TYPE_ARG_TYPES (newtype);
  newargs = TYPE_ARG_TYPES (newtype);
  tryargs = newargs;
  tryargs = newargs;
 
 
  while (oldargs || newargs)
  while (oldargs || newargs)
    {
    {
      if (!oldargs
      if (!oldargs
          || !newargs
          || !newargs
          || !TREE_VALUE (oldargs)
          || !TREE_VALUE (oldargs)
          || !TREE_VALUE (newargs)
          || !TREE_VALUE (newargs)
          || TYPE_MODE (TREE_VALUE (oldargs))
          || TYPE_MODE (TREE_VALUE (oldargs))
             != TYPE_MODE (TREE_VALUE (newargs)))
             != TYPE_MODE (TREE_VALUE (newargs)))
        return 0;
        return 0;
 
 
      oldargs = TREE_CHAIN (oldargs);
      oldargs = TREE_CHAIN (oldargs);
      newargs = TREE_CHAIN (newargs);
      newargs = TREE_CHAIN (newargs);
    }
    }
 
 
  trytype = build_function_type (newrettype, tryargs);
  trytype = build_function_type (newrettype, tryargs);
  return build_type_attribute_variant (trytype, TYPE_ATTRIBUTES (oldtype));
  return build_type_attribute_variant (trytype, TYPE_ATTRIBUTES (oldtype));
}
}
 
 
/* Subroutine of diagnose_mismatched_decls.  Check for function type
/* Subroutine of diagnose_mismatched_decls.  Check for function type
   mismatch involving an empty arglist vs a nonempty one and give clearer
   mismatch involving an empty arglist vs a nonempty one and give clearer
   diagnostics.  */
   diagnostics.  */
static void
static void
diagnose_arglist_conflict (tree newdecl, tree olddecl,
diagnose_arglist_conflict (tree newdecl, tree olddecl,
                           tree newtype, tree oldtype)
                           tree newtype, tree oldtype)
{
{
  tree t;
  tree t;
 
 
  if (TREE_CODE (olddecl) != FUNCTION_DECL
  if (TREE_CODE (olddecl) != FUNCTION_DECL
      || !comptypes (TREE_TYPE (oldtype), TREE_TYPE (newtype))
      || !comptypes (TREE_TYPE (oldtype), TREE_TYPE (newtype))
      || !((TYPE_ARG_TYPES (oldtype) == 0 && DECL_INITIAL (olddecl) == 0)
      || !((TYPE_ARG_TYPES (oldtype) == 0 && DECL_INITIAL (olddecl) == 0)
           ||
           ||
           (TYPE_ARG_TYPES (newtype) == 0 && DECL_INITIAL (newdecl) == 0)))
           (TYPE_ARG_TYPES (newtype) == 0 && DECL_INITIAL (newdecl) == 0)))
    return;
    return;
 
 
  t = TYPE_ARG_TYPES (oldtype);
  t = TYPE_ARG_TYPES (oldtype);
  if (t == 0)
  if (t == 0)
    t = TYPE_ARG_TYPES (newtype);
    t = TYPE_ARG_TYPES (newtype);
  for (; t; t = TREE_CHAIN (t))
  for (; t; t = TREE_CHAIN (t))
    {
    {
      tree type = TREE_VALUE (t);
      tree type = TREE_VALUE (t);
 
 
      if (TREE_CHAIN (t) == 0
      if (TREE_CHAIN (t) == 0
          && TYPE_MAIN_VARIANT (type) != void_type_node)
          && TYPE_MAIN_VARIANT (type) != void_type_node)
        {
        {
          inform ("a parameter list with an ellipsis can%'t match "
          inform ("a parameter list with an ellipsis can%'t match "
                  "an empty parameter name list declaration");
                  "an empty parameter name list declaration");
          break;
          break;
        }
        }
 
 
      if (c_type_promotes_to (type) != type)
      if (c_type_promotes_to (type) != type)
        {
        {
          inform ("an argument type that has a default promotion can%'t match "
          inform ("an argument type that has a default promotion can%'t match "
                  "an empty parameter name list declaration");
                  "an empty parameter name list declaration");
          break;
          break;
        }
        }
    }
    }
}
}
 
 
/* Another subroutine of diagnose_mismatched_decls.  OLDDECL is an
/* Another subroutine of diagnose_mismatched_decls.  OLDDECL is an
   old-style function definition, NEWDECL is a prototype declaration.
   old-style function definition, NEWDECL is a prototype declaration.
   Diagnose inconsistencies in the argument list.  Returns TRUE if
   Diagnose inconsistencies in the argument list.  Returns TRUE if
   the prototype is compatible, FALSE if not.  */
   the prototype is compatible, FALSE if not.  */
static bool
static bool
validate_proto_after_old_defn (tree newdecl, tree newtype, tree oldtype)
validate_proto_after_old_defn (tree newdecl, tree newtype, tree oldtype)
{
{
  tree newargs, oldargs;
  tree newargs, oldargs;
  int i;
  int i;
 
 
#define END_OF_ARGLIST(t) ((t) == void_type_node)
#define END_OF_ARGLIST(t) ((t) == void_type_node)
 
 
  oldargs = TYPE_ACTUAL_ARG_TYPES (oldtype);
  oldargs = TYPE_ACTUAL_ARG_TYPES (oldtype);
  newargs = TYPE_ARG_TYPES (newtype);
  newargs = TYPE_ARG_TYPES (newtype);
  i = 1;
  i = 1;
 
 
  for (;;)
  for (;;)
    {
    {
      tree oldargtype = TREE_VALUE (oldargs);
      tree oldargtype = TREE_VALUE (oldargs);
      tree newargtype = TREE_VALUE (newargs);
      tree newargtype = TREE_VALUE (newargs);
 
 
      if (oldargtype == error_mark_node || newargtype == error_mark_node)
      if (oldargtype == error_mark_node || newargtype == error_mark_node)
        return false;
        return false;
 
 
      oldargtype = TYPE_MAIN_VARIANT (oldargtype);
      oldargtype = TYPE_MAIN_VARIANT (oldargtype);
      newargtype = TYPE_MAIN_VARIANT (newargtype);
      newargtype = TYPE_MAIN_VARIANT (newargtype);
 
 
      if (END_OF_ARGLIST (oldargtype) && END_OF_ARGLIST (newargtype))
      if (END_OF_ARGLIST (oldargtype) && END_OF_ARGLIST (newargtype))
        break;
        break;
 
 
      /* Reaching the end of just one list means the two decls don't
      /* Reaching the end of just one list means the two decls don't
         agree on the number of arguments.  */
         agree on the number of arguments.  */
      if (END_OF_ARGLIST (oldargtype))
      if (END_OF_ARGLIST (oldargtype))
        {
        {
          error ("prototype for %q+D declares more arguments "
          error ("prototype for %q+D declares more arguments "
                 "than previous old-style definition", newdecl);
                 "than previous old-style definition", newdecl);
          return false;
          return false;
        }
        }
      else if (END_OF_ARGLIST (newargtype))
      else if (END_OF_ARGLIST (newargtype))
        {
        {
          error ("prototype for %q+D declares fewer arguments "
          error ("prototype for %q+D declares fewer arguments "
                 "than previous old-style definition", newdecl);
                 "than previous old-style definition", newdecl);
          return false;
          return false;
        }
        }
 
 
      /* Type for passing arg must be consistent with that declared
      /* Type for passing arg must be consistent with that declared
         for the arg.  */
         for the arg.  */
      else if (!comptypes (oldargtype, newargtype))
      else if (!comptypes (oldargtype, newargtype))
        {
        {
          error ("prototype for %q+D declares argument %d"
          error ("prototype for %q+D declares argument %d"
                 " with incompatible type",
                 " with incompatible type",
                 newdecl, i);
                 newdecl, i);
          return false;
          return false;
        }
        }
 
 
      oldargs = TREE_CHAIN (oldargs);
      oldargs = TREE_CHAIN (oldargs);
      newargs = TREE_CHAIN (newargs);
      newargs = TREE_CHAIN (newargs);
      i++;
      i++;
    }
    }
 
 
  /* If we get here, no errors were found, but do issue a warning
  /* If we get here, no errors were found, but do issue a warning
     for this poor-style construct.  */
     for this poor-style construct.  */
  warning (0, "prototype for %q+D follows non-prototype definition",
  warning (0, "prototype for %q+D follows non-prototype definition",
           newdecl);
           newdecl);
  return true;
  return true;
#undef END_OF_ARGLIST
#undef END_OF_ARGLIST
}
}
 
 
/* Subroutine of diagnose_mismatched_decls.  Report the location of DECL,
/* Subroutine of diagnose_mismatched_decls.  Report the location of DECL,
   first in a pair of mismatched declarations, using the diagnostic
   first in a pair of mismatched declarations, using the diagnostic
   function DIAG.  */
   function DIAG.  */
static void
static void
locate_old_decl (tree decl, void (*diag)(const char *, ...) ATTRIBUTE_GCC_CDIAG(1,2))
locate_old_decl (tree decl, void (*diag)(const char *, ...) ATTRIBUTE_GCC_CDIAG(1,2))
{
{
  if (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl))
  if (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl))
    ;
    ;
  else if (DECL_INITIAL (decl))
  else if (DECL_INITIAL (decl))
    diag (G_("previous definition of %q+D was here"), decl);
    diag (G_("previous definition of %q+D was here"), decl);
  else if (C_DECL_IMPLICIT (decl))
  else if (C_DECL_IMPLICIT (decl))
    diag (G_("previous implicit declaration of %q+D was here"), decl);
    diag (G_("previous implicit declaration of %q+D was here"), decl);
  else
  else
    diag (G_("previous declaration of %q+D was here"), decl);
    diag (G_("previous declaration of %q+D was here"), decl);
}
}
 
 
/* Subroutine of duplicate_decls.  Compare NEWDECL to OLDDECL.
/* Subroutine of duplicate_decls.  Compare NEWDECL to OLDDECL.
   Returns true if the caller should proceed to merge the two, false
   Returns true if the caller should proceed to merge the two, false
   if OLDDECL should simply be discarded.  As a side effect, issues
   if OLDDECL should simply be discarded.  As a side effect, issues
   all necessary diagnostics for invalid or poor-style combinations.
   all necessary diagnostics for invalid or poor-style combinations.
   If it returns true, writes the types of NEWDECL and OLDDECL to
   If it returns true, writes the types of NEWDECL and OLDDECL to
   *NEWTYPEP and *OLDTYPEP - these may have been adjusted from
   *NEWTYPEP and *OLDTYPEP - these may have been adjusted from
   TREE_TYPE (NEWDECL, OLDDECL) respectively.  */
   TREE_TYPE (NEWDECL, OLDDECL) respectively.  */
 
 
static bool
static bool
diagnose_mismatched_decls (tree newdecl, tree olddecl,
diagnose_mismatched_decls (tree newdecl, tree olddecl,
                           tree *newtypep, tree *oldtypep)
                           tree *newtypep, tree *oldtypep)
{
{
  tree newtype, oldtype;
  tree newtype, oldtype;
  bool pedwarned = false;
  bool pedwarned = false;
  bool warned = false;
  bool warned = false;
  bool retval = true;
  bool retval = true;
 
 
#define DECL_EXTERN_INLINE(DECL) (DECL_DECLARED_INLINE_P (DECL)  \
#define DECL_EXTERN_INLINE(DECL) (DECL_DECLARED_INLINE_P (DECL)  \
                                  && DECL_EXTERNAL (DECL))
                                  && DECL_EXTERNAL (DECL))
 
 
  /* If we have error_mark_node for either decl or type, just discard
  /* If we have error_mark_node for either decl or type, just discard
     the previous decl - we're in an error cascade already.  */
     the previous decl - we're in an error cascade already.  */
  if (olddecl == error_mark_node || newdecl == error_mark_node)
  if (olddecl == error_mark_node || newdecl == error_mark_node)
    return false;
    return false;
  *oldtypep = oldtype = TREE_TYPE (olddecl);
  *oldtypep = oldtype = TREE_TYPE (olddecl);
  *newtypep = newtype = TREE_TYPE (newdecl);
  *newtypep = newtype = TREE_TYPE (newdecl);
  if (oldtype == error_mark_node || newtype == error_mark_node)
  if (oldtype == error_mark_node || newtype == error_mark_node)
    return false;
    return false;
 
 
  /* Two different categories of symbol altogether.  This is an error
  /* Two different categories of symbol altogether.  This is an error
     unless OLDDECL is a builtin.  OLDDECL will be discarded in any case.  */
     unless OLDDECL is a builtin.  OLDDECL will be discarded in any case.  */
  if (TREE_CODE (olddecl) != TREE_CODE (newdecl))
  if (TREE_CODE (olddecl) != TREE_CODE (newdecl))
    {
    {
      if (!(TREE_CODE (olddecl) == FUNCTION_DECL
      if (!(TREE_CODE (olddecl) == FUNCTION_DECL
            && DECL_BUILT_IN (olddecl)
            && DECL_BUILT_IN (olddecl)
            && !C_DECL_DECLARED_BUILTIN (olddecl)))
            && !C_DECL_DECLARED_BUILTIN (olddecl)))
        {
        {
          error ("%q+D redeclared as different kind of symbol", newdecl);
          error ("%q+D redeclared as different kind of symbol", newdecl);
          locate_old_decl (olddecl, error);
          locate_old_decl (olddecl, error);
        }
        }
      else if (TREE_PUBLIC (newdecl))
      else if (TREE_PUBLIC (newdecl))
        warning (0, "built-in function %q+D declared as non-function",
        warning (0, "built-in function %q+D declared as non-function",
                 newdecl);
                 newdecl);
      else
      else
        warning (OPT_Wshadow, "declaration of %q+D shadows "
        warning (OPT_Wshadow, "declaration of %q+D shadows "
                 "a built-in function", newdecl);
                 "a built-in function", newdecl);
      return false;
      return false;
    }
    }
 
 
  /* Enumerators have no linkage, so may only be declared once in a
  /* Enumerators have no linkage, so may only be declared once in a
     given scope.  */
     given scope.  */
  if (TREE_CODE (olddecl) == CONST_DECL)
  if (TREE_CODE (olddecl) == CONST_DECL)
    {
    {
      error ("redeclaration of enumerator %q+D", newdecl);
      error ("redeclaration of enumerator %q+D", newdecl);
      locate_old_decl (olddecl, error);
      locate_old_decl (olddecl, error);
      return false;
      return false;
    }
    }
 
 
  if (!comptypes (oldtype, newtype))
  if (!comptypes (oldtype, newtype))
    {
    {
      if (TREE_CODE (olddecl) == FUNCTION_DECL
      if (TREE_CODE (olddecl) == FUNCTION_DECL
          && DECL_BUILT_IN (olddecl) && !C_DECL_DECLARED_BUILTIN (olddecl))
          && DECL_BUILT_IN (olddecl) && !C_DECL_DECLARED_BUILTIN (olddecl))
        {
        {
          /* Accept harmless mismatch in function types.
          /* Accept harmless mismatch in function types.
             This is for the ffs and fprintf builtins.  */
             This is for the ffs and fprintf builtins.  */
          tree trytype = match_builtin_function_types (newtype, oldtype);
          tree trytype = match_builtin_function_types (newtype, oldtype);
 
 
          if (trytype && comptypes (newtype, trytype))
          if (trytype && comptypes (newtype, trytype))
            *oldtypep = oldtype = trytype;
            *oldtypep = oldtype = trytype;
          else
          else
            {
            {
              /* If types don't match for a built-in, throw away the
              /* If types don't match for a built-in, throw away the
                 built-in.  No point in calling locate_old_decl here, it
                 built-in.  No point in calling locate_old_decl here, it
                 won't print anything.  */
                 won't print anything.  */
              warning (0, "conflicting types for built-in function %q+D",
              warning (0, "conflicting types for built-in function %q+D",
                       newdecl);
                       newdecl);
              return false;
              return false;
            }
            }
        }
        }
      else if (TREE_CODE (olddecl) == FUNCTION_DECL
      else if (TREE_CODE (olddecl) == FUNCTION_DECL
               && DECL_IS_BUILTIN (olddecl))
               && DECL_IS_BUILTIN (olddecl))
        {
        {
          /* A conflicting function declaration for a predeclared
          /* A conflicting function declaration for a predeclared
             function that isn't actually built in.  Objective C uses
             function that isn't actually built in.  Objective C uses
             these.  The new declaration silently overrides everything
             these.  The new declaration silently overrides everything
             but the volatility (i.e. noreturn) indication.  See also
             but the volatility (i.e. noreturn) indication.  See also
             below.  FIXME: Make Objective C use normal builtins.  */
             below.  FIXME: Make Objective C use normal builtins.  */
          TREE_THIS_VOLATILE (newdecl) |= TREE_THIS_VOLATILE (olddecl);
          TREE_THIS_VOLATILE (newdecl) |= TREE_THIS_VOLATILE (olddecl);
          return false;
          return false;
        }
        }
      /* Permit void foo (...) to match int foo (...) if the latter is
      /* Permit void foo (...) to match int foo (...) if the latter is
         the definition and implicit int was used.  See
         the definition and implicit int was used.  See
         c-torture/compile/920625-2.c.  */
         c-torture/compile/920625-2.c.  */
      else if (TREE_CODE (newdecl) == FUNCTION_DECL && DECL_INITIAL (newdecl)
      else if (TREE_CODE (newdecl) == FUNCTION_DECL && DECL_INITIAL (newdecl)
               && TYPE_MAIN_VARIANT (TREE_TYPE (oldtype)) == void_type_node
               && TYPE_MAIN_VARIANT (TREE_TYPE (oldtype)) == void_type_node
               && TYPE_MAIN_VARIANT (TREE_TYPE (newtype)) == integer_type_node
               && TYPE_MAIN_VARIANT (TREE_TYPE (newtype)) == integer_type_node
               && C_FUNCTION_IMPLICIT_INT (newdecl) && !DECL_INITIAL (olddecl))
               && C_FUNCTION_IMPLICIT_INT (newdecl) && !DECL_INITIAL (olddecl))
        {
        {
          pedwarn ("conflicting types for %q+D", newdecl);
          pedwarn ("conflicting types for %q+D", newdecl);
          /* Make sure we keep void as the return type.  */
          /* Make sure we keep void as the return type.  */
          TREE_TYPE (newdecl) = *newtypep = newtype = oldtype;
          TREE_TYPE (newdecl) = *newtypep = newtype = oldtype;
          C_FUNCTION_IMPLICIT_INT (newdecl) = 0;
          C_FUNCTION_IMPLICIT_INT (newdecl) = 0;
          pedwarned = true;
          pedwarned = true;
        }
        }
      /* Permit void foo (...) to match an earlier call to foo (...) with
      /* Permit void foo (...) to match an earlier call to foo (...) with
         no declared type (thus, implicitly int).  */
         no declared type (thus, implicitly int).  */
      else if (TREE_CODE (newdecl) == FUNCTION_DECL
      else if (TREE_CODE (newdecl) == FUNCTION_DECL
               && TYPE_MAIN_VARIANT (TREE_TYPE (newtype)) == void_type_node
               && TYPE_MAIN_VARIANT (TREE_TYPE (newtype)) == void_type_node
               && TYPE_MAIN_VARIANT (TREE_TYPE (oldtype)) == integer_type_node
               && TYPE_MAIN_VARIANT (TREE_TYPE (oldtype)) == integer_type_node
               && C_DECL_IMPLICIT (olddecl) && !DECL_INITIAL (olddecl))
               && C_DECL_IMPLICIT (olddecl) && !DECL_INITIAL (olddecl))
        {
        {
          pedwarn ("conflicting types for %q+D", newdecl);
          pedwarn ("conflicting types for %q+D", newdecl);
          /* Make sure we keep void as the return type.  */
          /* Make sure we keep void as the return type.  */
          TREE_TYPE (olddecl) = *oldtypep = oldtype = newtype;
          TREE_TYPE (olddecl) = *oldtypep = oldtype = newtype;
          pedwarned = true;
          pedwarned = true;
        }
        }
      else
      else
        {
        {
          if (TYPE_QUALS (newtype) != TYPE_QUALS (oldtype))
          if (TYPE_QUALS (newtype) != TYPE_QUALS (oldtype))
            error ("conflicting type qualifiers for %q+D", newdecl);
            error ("conflicting type qualifiers for %q+D", newdecl);
          else
          else
            error ("conflicting types for %q+D", newdecl);
            error ("conflicting types for %q+D", newdecl);
          diagnose_arglist_conflict (newdecl, olddecl, newtype, oldtype);
          diagnose_arglist_conflict (newdecl, olddecl, newtype, oldtype);
          locate_old_decl (olddecl, error);
          locate_old_decl (olddecl, error);
          return false;
          return false;
        }
        }
    }
    }
 
 
  /* Redeclaration of a type is a constraint violation (6.7.2.3p1),
  /* Redeclaration of a type is a constraint violation (6.7.2.3p1),
     but silently ignore the redeclaration if either is in a system
     but silently ignore the redeclaration if either is in a system
     header.  (Conflicting redeclarations were handled above.)  */
     header.  (Conflicting redeclarations were handled above.)  */
  if (TREE_CODE (newdecl) == TYPE_DECL)
  if (TREE_CODE (newdecl) == TYPE_DECL)
    {
    {
      if (DECL_IN_SYSTEM_HEADER (newdecl) || DECL_IN_SYSTEM_HEADER (olddecl))
      if (DECL_IN_SYSTEM_HEADER (newdecl) || DECL_IN_SYSTEM_HEADER (olddecl))
        return true;  /* Allow OLDDECL to continue in use.  */
        return true;  /* Allow OLDDECL to continue in use.  */
 
 
      error ("redefinition of typedef %q+D", newdecl);
      error ("redefinition of typedef %q+D", newdecl);
      locate_old_decl (olddecl, error);
      locate_old_decl (olddecl, error);
      return false;
      return false;
    }
    }
 
 
  /* Function declarations can either be 'static' or 'extern' (no
  /* Function declarations can either be 'static' or 'extern' (no
     qualifier is equivalent to 'extern' - C99 6.2.2p5) and therefore
     qualifier is equivalent to 'extern' - C99 6.2.2p5) and therefore
     can never conflict with each other on account of linkage (6.2.2p4).
     can never conflict with each other on account of linkage (6.2.2p4).
     Multiple definitions are not allowed (6.9p3,5) but GCC permits
     Multiple definitions are not allowed (6.9p3,5) but GCC permits
     two definitions if one is 'extern inline' and one is not.  The non-
     two definitions if one is 'extern inline' and one is not.  The non-
     extern-inline definition supersedes the extern-inline definition.  */
     extern-inline definition supersedes the extern-inline definition.  */
 
 
  else if (TREE_CODE (newdecl) == FUNCTION_DECL)
  else if (TREE_CODE (newdecl) == FUNCTION_DECL)
    {
    {
      /* If you declare a built-in function name as static, or
      /* If you declare a built-in function name as static, or
         define the built-in with an old-style definition (so we
         define the built-in with an old-style definition (so we
         can't validate the argument list) the built-in definition is
         can't validate the argument list) the built-in definition is
         overridden, but optionally warn this was a bad choice of name.  */
         overridden, but optionally warn this was a bad choice of name.  */
      if (DECL_BUILT_IN (olddecl)
      if (DECL_BUILT_IN (olddecl)
          && !C_DECL_DECLARED_BUILTIN (olddecl)
          && !C_DECL_DECLARED_BUILTIN (olddecl)
          && (!TREE_PUBLIC (newdecl)
          && (!TREE_PUBLIC (newdecl)
              || (DECL_INITIAL (newdecl)
              || (DECL_INITIAL (newdecl)
                  && !TYPE_ARG_TYPES (TREE_TYPE (newdecl)))))
                  && !TYPE_ARG_TYPES (TREE_TYPE (newdecl)))))
        {
        {
          warning (OPT_Wshadow, "declaration of %q+D shadows "
          warning (OPT_Wshadow, "declaration of %q+D shadows "
                   "a built-in function", newdecl);
                   "a built-in function", newdecl);
          /* Discard the old built-in function.  */
          /* Discard the old built-in function.  */
          return false;
          return false;
        }
        }
 
 
      if (DECL_INITIAL (newdecl))
      if (DECL_INITIAL (newdecl))
        {
        {
          if (DECL_INITIAL (olddecl))
          if (DECL_INITIAL (olddecl))
            {
            {
              /* If both decls are in the same TU and the new declaration
              /* If both decls are in the same TU and the new declaration
                 isn't overriding an extern inline reject the new decl.
                 isn't overriding an extern inline reject the new decl.
                 When we handle c99 style inline rules we'll want to reject
                 When we handle c99 style inline rules we'll want to reject
                 the following:
                 the following:
 
 
                 DECL_EXTERN_INLINE (olddecl)
                 DECL_EXTERN_INLINE (olddecl)
                 && !DECL_EXTERN_INLINE (newdecl)
                 && !DECL_EXTERN_INLINE (newdecl)
 
 
                 if they're in the same translation unit. Until we implement
                 if they're in the same translation unit. Until we implement
                 the full semantics we accept the construct.  */
                 the full semantics we accept the construct.  */
              if (!(DECL_EXTERN_INLINE (olddecl)
              if (!(DECL_EXTERN_INLINE (olddecl)
                    && !DECL_EXTERN_INLINE (newdecl))
                    && !DECL_EXTERN_INLINE (newdecl))
                  && same_translation_unit_p (newdecl, olddecl))
                  && same_translation_unit_p (newdecl, olddecl))
                {
                {
                  error ("redefinition of %q+D", newdecl);
                  error ("redefinition of %q+D", newdecl);
                  locate_old_decl (olddecl, error);
                  locate_old_decl (olddecl, error);
                  return false;
                  return false;
                }
                }
            }
            }
        }
        }
      /* If we have a prototype after an old-style function definition,
      /* If we have a prototype after an old-style function definition,
         the argument types must be checked specially.  */
         the argument types must be checked specially.  */
      else if (DECL_INITIAL (olddecl)
      else if (DECL_INITIAL (olddecl)
               && !TYPE_ARG_TYPES (oldtype) && TYPE_ARG_TYPES (newtype)
               && !TYPE_ARG_TYPES (oldtype) && TYPE_ARG_TYPES (newtype)
               && TYPE_ACTUAL_ARG_TYPES (oldtype)
               && TYPE_ACTUAL_ARG_TYPES (oldtype)
               && !validate_proto_after_old_defn (newdecl, newtype, oldtype))
               && !validate_proto_after_old_defn (newdecl, newtype, oldtype))
        {
        {
          locate_old_decl (olddecl, error);
          locate_old_decl (olddecl, error);
          return false;
          return false;
        }
        }
      /* A non-static declaration (even an "extern") followed by a
      /* A non-static declaration (even an "extern") followed by a
         static declaration is undefined behavior per C99 6.2.2p3-5,7.
         static declaration is undefined behavior per C99 6.2.2p3-5,7.
         The same is true for a static forward declaration at block
         The same is true for a static forward declaration at block
         scope followed by a non-static declaration/definition at file
         scope followed by a non-static declaration/definition at file
         scope.  Static followed by non-static at the same scope is
         scope.  Static followed by non-static at the same scope is
         not undefined behavior, and is the most convenient way to get
         not undefined behavior, and is the most convenient way to get
         some effects (see e.g.  what unwind-dw2-fde-glibc.c does to
         some effects (see e.g.  what unwind-dw2-fde-glibc.c does to
         the definition of _Unwind_Find_FDE in unwind-dw2-fde.c), but
         the definition of _Unwind_Find_FDE in unwind-dw2-fde.c), but
         we do diagnose it if -Wtraditional.  */
         we do diagnose it if -Wtraditional.  */
      if (TREE_PUBLIC (olddecl) && !TREE_PUBLIC (newdecl))
      if (TREE_PUBLIC (olddecl) && !TREE_PUBLIC (newdecl))
        {
        {
          /* Two exceptions to the rule.  If olddecl is an extern
          /* Two exceptions to the rule.  If olddecl is an extern
             inline, or a predeclared function that isn't actually
             inline, or a predeclared function that isn't actually
             built in, newdecl silently overrides olddecl.  The latter
             built in, newdecl silently overrides olddecl.  The latter
             occur only in Objective C; see also above.  (FIXME: Make
             occur only in Objective C; see also above.  (FIXME: Make
             Objective C use normal builtins.)  */
             Objective C use normal builtins.)  */
          if (!DECL_IS_BUILTIN (olddecl)
          if (!DECL_IS_BUILTIN (olddecl)
              && !DECL_EXTERN_INLINE (olddecl))
              && !DECL_EXTERN_INLINE (olddecl))
            {
            {
              error ("static declaration of %q+D follows "
              error ("static declaration of %q+D follows "
                     "non-static declaration", newdecl);
                     "non-static declaration", newdecl);
              locate_old_decl (olddecl, error);
              locate_old_decl (olddecl, error);
            }
            }
          return false;
          return false;
        }
        }
      else if (TREE_PUBLIC (newdecl) && !TREE_PUBLIC (olddecl))
      else if (TREE_PUBLIC (newdecl) && !TREE_PUBLIC (olddecl))
        {
        {
          if (DECL_CONTEXT (olddecl))
          if (DECL_CONTEXT (olddecl))
            {
            {
              error ("non-static declaration of %q+D follows "
              error ("non-static declaration of %q+D follows "
                     "static declaration", newdecl);
                     "static declaration", newdecl);
              locate_old_decl (olddecl, error);
              locate_old_decl (olddecl, error);
              return false;
              return false;
            }
            }
          else if (warn_traditional)
          else if (warn_traditional)
            {
            {
              warning (OPT_Wtraditional, "non-static declaration of %q+D "
              warning (OPT_Wtraditional, "non-static declaration of %q+D "
                       "follows static declaration", newdecl);
                       "follows static declaration", newdecl);
              warned = true;
              warned = true;
            }
            }
        }
        }
    }
    }
  else if (TREE_CODE (newdecl) == VAR_DECL)
  else if (TREE_CODE (newdecl) == VAR_DECL)
    {
    {
      /* Only variables can be thread-local, and all declarations must
      /* Only variables can be thread-local, and all declarations must
         agree on this property.  */
         agree on this property.  */
      if (C_DECL_THREADPRIVATE_P (olddecl) && !DECL_THREAD_LOCAL_P (newdecl))
      if (C_DECL_THREADPRIVATE_P (olddecl) && !DECL_THREAD_LOCAL_P (newdecl))
        {
        {
          /* Nothing to check.  Since OLDDECL is marked threadprivate
          /* Nothing to check.  Since OLDDECL is marked threadprivate
             and NEWDECL does not have a thread-local attribute, we
             and NEWDECL does not have a thread-local attribute, we
             will merge the threadprivate attribute into NEWDECL.  */
             will merge the threadprivate attribute into NEWDECL.  */
          ;
          ;
        }
        }
      else if (DECL_THREAD_LOCAL_P (newdecl) != DECL_THREAD_LOCAL_P (olddecl))
      else if (DECL_THREAD_LOCAL_P (newdecl) != DECL_THREAD_LOCAL_P (olddecl))
        {
        {
          if (DECL_THREAD_LOCAL_P (newdecl))
          if (DECL_THREAD_LOCAL_P (newdecl))
            error ("thread-local declaration of %q+D follows "
            error ("thread-local declaration of %q+D follows "
                   "non-thread-local declaration", newdecl);
                   "non-thread-local declaration", newdecl);
          else
          else
            error ("non-thread-local declaration of %q+D follows "
            error ("non-thread-local declaration of %q+D follows "
                   "thread-local declaration", newdecl);
                   "thread-local declaration", newdecl);
 
 
          locate_old_decl (olddecl, error);
          locate_old_decl (olddecl, error);
          return false;
          return false;
        }
        }
 
 
      /* Multiple initialized definitions are not allowed (6.9p3,5).  */
      /* Multiple initialized definitions are not allowed (6.9p3,5).  */
      if (DECL_INITIAL (newdecl) && DECL_INITIAL (olddecl))
      if (DECL_INITIAL (newdecl) && DECL_INITIAL (olddecl))
        {
        {
          error ("redefinition of %q+D", newdecl);
          error ("redefinition of %q+D", newdecl);
          locate_old_decl (olddecl, error);
          locate_old_decl (olddecl, error);
          return false;
          return false;
        }
        }
 
 
      /* Objects declared at file scope: if the first declaration had
      /* Objects declared at file scope: if the first declaration had
         external linkage (even if it was an external reference) the
         external linkage (even if it was an external reference) the
         second must have external linkage as well, or the behavior is
         second must have external linkage as well, or the behavior is
         undefined.  If the first declaration had internal linkage, then
         undefined.  If the first declaration had internal linkage, then
         the second must too, or else be an external reference (in which
         the second must too, or else be an external reference (in which
         case the composite declaration still has internal linkage).
         case the composite declaration still has internal linkage).
         As for function declarations, we warn about the static-then-
         As for function declarations, we warn about the static-then-
         extern case only for -Wtraditional.  See generally 6.2.2p3-5,7.  */
         extern case only for -Wtraditional.  See generally 6.2.2p3-5,7.  */
      if (DECL_FILE_SCOPE_P (newdecl)
      if (DECL_FILE_SCOPE_P (newdecl)
          && TREE_PUBLIC (newdecl) != TREE_PUBLIC (olddecl))
          && TREE_PUBLIC (newdecl) != TREE_PUBLIC (olddecl))
        {
        {
          if (DECL_EXTERNAL (newdecl))
          if (DECL_EXTERNAL (newdecl))
            {
            {
              if (!DECL_FILE_SCOPE_P (olddecl))
              if (!DECL_FILE_SCOPE_P (olddecl))
                {
                {
                  error ("extern declaration of %q+D follows "
                  error ("extern declaration of %q+D follows "
                         "declaration with no linkage", newdecl);
                         "declaration with no linkage", newdecl);
                  locate_old_decl (olddecl, error);
                  locate_old_decl (olddecl, error);
                  return false;
                  return false;
                }
                }
              else if (warn_traditional)
              else if (warn_traditional)
                {
                {
                  warning (OPT_Wtraditional, "non-static declaration of %q+D "
                  warning (OPT_Wtraditional, "non-static declaration of %q+D "
                           "follows static declaration", newdecl);
                           "follows static declaration", newdecl);
                  warned = true;
                  warned = true;
                }
                }
            }
            }
          else
          else
            {
            {
              if (TREE_PUBLIC (newdecl))
              if (TREE_PUBLIC (newdecl))
                error ("non-static declaration of %q+D follows "
                error ("non-static declaration of %q+D follows "
                       "static declaration", newdecl);
                       "static declaration", newdecl);
              else
              else
                error ("static declaration of %q+D follows "
                error ("static declaration of %q+D follows "
                       "non-static declaration", newdecl);
                       "non-static declaration", newdecl);
 
 
              locate_old_decl (olddecl, error);
              locate_old_decl (olddecl, error);
              return false;
              return false;
            }
            }
        }
        }
      /* Two objects with the same name declared at the same block
      /* Two objects with the same name declared at the same block
         scope must both be external references (6.7p3).  */
         scope must both be external references (6.7p3).  */
      else if (!DECL_FILE_SCOPE_P (newdecl))
      else if (!DECL_FILE_SCOPE_P (newdecl))
        {
        {
          if (DECL_EXTERNAL (newdecl))
          if (DECL_EXTERNAL (newdecl))
            {
            {
              /* Extern with initializer at block scope, which will
              /* Extern with initializer at block scope, which will
                 already have received an error.  */
                 already have received an error.  */
            }
            }
          else if (DECL_EXTERNAL (olddecl))
          else if (DECL_EXTERNAL (olddecl))
            {
            {
              error ("declaration of %q+D with no linkage follows "
              error ("declaration of %q+D with no linkage follows "
                     "extern declaration", newdecl);
                     "extern declaration", newdecl);
              locate_old_decl (olddecl, error);
              locate_old_decl (olddecl, error);
            }
            }
          else
          else
            {
            {
              error ("redeclaration of %q+D with no linkage", newdecl);
              error ("redeclaration of %q+D with no linkage", newdecl);
              locate_old_decl (olddecl, error);
              locate_old_decl (olddecl, error);
            }
            }
 
 
          return false;
          return false;
        }
        }
    }
    }
 
 
  /* warnings */
  /* warnings */
  /* All decls must agree on a visibility.  */
  /* All decls must agree on a visibility.  */
  if (CODE_CONTAINS_STRUCT (TREE_CODE (newdecl), TS_DECL_WITH_VIS)
  if (CODE_CONTAINS_STRUCT (TREE_CODE (newdecl), TS_DECL_WITH_VIS)
      && DECL_VISIBILITY_SPECIFIED (newdecl) && DECL_VISIBILITY_SPECIFIED (olddecl)
      && DECL_VISIBILITY_SPECIFIED (newdecl) && DECL_VISIBILITY_SPECIFIED (olddecl)
      && DECL_VISIBILITY (newdecl) != DECL_VISIBILITY (olddecl))
      && DECL_VISIBILITY (newdecl) != DECL_VISIBILITY (olddecl))
    {
    {
      warning (0, "redeclaration of %q+D with different visibility "
      warning (0, "redeclaration of %q+D with different visibility "
               "(old visibility preserved)", newdecl);
               "(old visibility preserved)", newdecl);
      warned = true;
      warned = true;
    }
    }
 
 
  if (TREE_CODE (newdecl) == FUNCTION_DECL)
  if (TREE_CODE (newdecl) == FUNCTION_DECL)
    {
    {
      /* Diagnose inline __attribute__ ((noinline)) which is silly.  */
      /* Diagnose inline __attribute__ ((noinline)) which is silly.  */
      if (DECL_DECLARED_INLINE_P (newdecl)
      if (DECL_DECLARED_INLINE_P (newdecl)
          && lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl)))
          && lookup_attribute ("noinline", DECL_ATTRIBUTES (olddecl)))
        {
        {
          warning (OPT_Wattributes, "inline declaration of %qD follows "
          warning (OPT_Wattributes, "inline declaration of %qD follows "
                   "declaration with attribute noinline", newdecl);
                   "declaration with attribute noinline", newdecl);
          warned = true;
          warned = true;
        }
        }
      else if (DECL_DECLARED_INLINE_P (olddecl)
      else if (DECL_DECLARED_INLINE_P (olddecl)
               && lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl)))
               && lookup_attribute ("noinline", DECL_ATTRIBUTES (newdecl)))
        {
        {
          warning (OPT_Wattributes, "declaration of %q+D with attribute "
          warning (OPT_Wattributes, "declaration of %q+D with attribute "
                   "noinline follows inline declaration ", newdecl);
                   "noinline follows inline declaration ", newdecl);
          warned = true;
          warned = true;
        }
        }
 
 
      /* Inline declaration after use or definition.
      /* Inline declaration after use or definition.
         ??? Should we still warn about this now we have unit-at-a-time
         ??? Should we still warn about this now we have unit-at-a-time
         mode and can get it right?
         mode and can get it right?
         Definitely don't complain if the decls are in different translation
         Definitely don't complain if the decls are in different translation
         units.  */
         units.  */
      if (DECL_DECLARED_INLINE_P (newdecl) && !DECL_DECLARED_INLINE_P (olddecl)
      if (DECL_DECLARED_INLINE_P (newdecl) && !DECL_DECLARED_INLINE_P (olddecl)
          && same_translation_unit_p (olddecl, newdecl))
          && same_translation_unit_p (olddecl, newdecl))
        {
        {
          if (TREE_USED (olddecl))
          if (TREE_USED (olddecl))
            {
            {
              warning (0, "%q+D declared inline after being called", olddecl);
              warning (0, "%q+D declared inline after being called", olddecl);
              warned = true;
              warned = true;
            }
            }
          else if (DECL_INITIAL (olddecl))
          else if (DECL_INITIAL (olddecl))
            {
            {
              warning (0, "%q+D declared inline after its definition", olddecl);
              warning (0, "%q+D declared inline after its definition", olddecl);
              warned = true;
              warned = true;
            }
            }
        }
        }
    }
    }
  else /* PARM_DECL, VAR_DECL */
  else /* PARM_DECL, VAR_DECL */
    {
    {
      /* Redeclaration of a parameter is a constraint violation (this is
      /* Redeclaration of a parameter is a constraint violation (this is
         not explicitly stated, but follows from C99 6.7p3 [no more than
         not explicitly stated, but follows from C99 6.7p3 [no more than
         one declaration of the same identifier with no linkage in the
         one declaration of the same identifier with no linkage in the
         same scope, except type tags] and 6.2.2p6 [parameters have no
         same scope, except type tags] and 6.2.2p6 [parameters have no
         linkage]).  We must check for a forward parameter declaration,
         linkage]).  We must check for a forward parameter declaration,
         indicated by TREE_ASM_WRITTEN on the old declaration - this is
         indicated by TREE_ASM_WRITTEN on the old declaration - this is
         an extension, the mandatory diagnostic for which is handled by
         an extension, the mandatory diagnostic for which is handled by
         mark_forward_parm_decls.  */
         mark_forward_parm_decls.  */
 
 
      if (TREE_CODE (newdecl) == PARM_DECL
      if (TREE_CODE (newdecl) == PARM_DECL
          && (!TREE_ASM_WRITTEN (olddecl) || TREE_ASM_WRITTEN (newdecl)))
          && (!TREE_ASM_WRITTEN (olddecl) || TREE_ASM_WRITTEN (newdecl)))
        {
        {
          error ("redefinition of parameter %q+D", newdecl);
          error ("redefinition of parameter %q+D", newdecl);
          locate_old_decl (olddecl, error);
          locate_old_decl (olddecl, error);
          return false;
          return false;
        }
        }
    }
    }
 
 
  /* Optional warning for completely redundant decls.  */
  /* Optional warning for completely redundant decls.  */
  if (!warned && !pedwarned
  if (!warned && !pedwarned
      && warn_redundant_decls
      && warn_redundant_decls
      /* Don't warn about a function declaration followed by a
      /* Don't warn about a function declaration followed by a
         definition.  */
         definition.  */
      && !(TREE_CODE (newdecl) == FUNCTION_DECL
      && !(TREE_CODE (newdecl) == FUNCTION_DECL
           && DECL_INITIAL (newdecl) && !DECL_INITIAL (olddecl))
           && DECL_INITIAL (newdecl) && !DECL_INITIAL (olddecl))
      /* Don't warn about redundant redeclarations of builtins.  */
      /* Don't warn about redundant redeclarations of builtins.  */
      && !(TREE_CODE (newdecl) == FUNCTION_DECL
      && !(TREE_CODE (newdecl) == FUNCTION_DECL
           && !DECL_BUILT_IN (newdecl)
           && !DECL_BUILT_IN (newdecl)
           && DECL_BUILT_IN (olddecl)
           && DECL_BUILT_IN (olddecl)
           && !C_DECL_DECLARED_BUILTIN (olddecl))
           && !C_DECL_DECLARED_BUILTIN (olddecl))
      /* Don't warn about an extern followed by a definition.  */
      /* Don't warn about an extern followed by a definition.  */
      && !(DECL_EXTERNAL (olddecl) && !DECL_EXTERNAL (newdecl))
      && !(DECL_EXTERNAL (olddecl) && !DECL_EXTERNAL (newdecl))
      /* Don't warn about forward parameter decls.  */
      /* Don't warn about forward parameter decls.  */
      && !(TREE_CODE (newdecl) == PARM_DECL
      && !(TREE_CODE (newdecl) == PARM_DECL
           && TREE_ASM_WRITTEN (olddecl) && !TREE_ASM_WRITTEN (newdecl))
           && TREE_ASM_WRITTEN (olddecl) && !TREE_ASM_WRITTEN (newdecl))
      /* Don't warn about a variable definition following a declaration.  */
      /* Don't warn about a variable definition following a declaration.  */
      && !(TREE_CODE (newdecl) == VAR_DECL
      && !(TREE_CODE (newdecl) == VAR_DECL
           && DECL_INITIAL (newdecl) && !DECL_INITIAL (olddecl)))
           && DECL_INITIAL (newdecl) && !DECL_INITIAL (olddecl)))
    {
    {
      warning (OPT_Wredundant_decls, "redundant redeclaration of %q+D",
      warning (OPT_Wredundant_decls, "redundant redeclaration of %q+D",
               newdecl);
               newdecl);
      warned = true;
      warned = true;
    }
    }
 
 
  /* Report location of previous decl/defn in a consistent manner.  */
  /* Report location of previous decl/defn in a consistent manner.  */
  if (warned || pedwarned)
  if (warned || pedwarned)
    locate_old_decl (olddecl, pedwarned ? pedwarn : warning0);
    locate_old_decl (olddecl, pedwarned ? pedwarn : warning0);
 
 
#undef DECL_EXTERN_INLINE
#undef DECL_EXTERN_INLINE
 
 
  return retval;
  return retval;
}
}
 
 
/* Subroutine of duplicate_decls.  NEWDECL has been found to be
/* Subroutine of duplicate_decls.  NEWDECL has been found to be
   consistent with OLDDECL, but carries new information.  Merge the
   consistent with OLDDECL, but carries new information.  Merge the
   new information into OLDDECL.  This function issues no
   new information into OLDDECL.  This function issues no
   diagnostics.  */
   diagnostics.  */
 
 
static void
static void
merge_decls (tree newdecl, tree olddecl, tree newtype, tree oldtype)
merge_decls (tree newdecl, tree olddecl, tree newtype, tree oldtype)
{
{
  int new_is_definition = (TREE_CODE (newdecl) == FUNCTION_DECL
  int new_is_definition = (TREE_CODE (newdecl) == FUNCTION_DECL
                           && DECL_INITIAL (newdecl) != 0);
                           && DECL_INITIAL (newdecl) != 0);
  int new_is_prototype = (TREE_CODE (newdecl) == FUNCTION_DECL
  int new_is_prototype = (TREE_CODE (newdecl) == FUNCTION_DECL
                          && TYPE_ARG_TYPES (TREE_TYPE (newdecl)) != 0);
                          && TYPE_ARG_TYPES (TREE_TYPE (newdecl)) != 0);
  int old_is_prototype = (TREE_CODE (olddecl) == FUNCTION_DECL
  int old_is_prototype = (TREE_CODE (olddecl) == FUNCTION_DECL
                          && TYPE_ARG_TYPES (TREE_TYPE (olddecl)) != 0);
                          && TYPE_ARG_TYPES (TREE_TYPE (olddecl)) != 0);
 
 
  /* For real parm decl following a forward decl, rechain the old decl
  /* For real parm decl following a forward decl, rechain the old decl
     in its new location and clear TREE_ASM_WRITTEN (it's not a
     in its new location and clear TREE_ASM_WRITTEN (it's not a
     forward decl anymore).  */
     forward decl anymore).  */
  if (TREE_CODE (newdecl) == PARM_DECL
  if (TREE_CODE (newdecl) == PARM_DECL
      && TREE_ASM_WRITTEN (olddecl) && !TREE_ASM_WRITTEN (newdecl))
      && TREE_ASM_WRITTEN (olddecl) && !TREE_ASM_WRITTEN (newdecl))
    {
    {
      struct c_binding *b, **here;
      struct c_binding *b, **here;
 
 
      for (here = &current_scope->bindings; *here; here = &(*here)->prev)
      for (here = &current_scope->bindings; *here; here = &(*here)->prev)
        if ((*here)->decl == olddecl)
        if ((*here)->decl == olddecl)
          goto found;
          goto found;
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    found:
    found:
      b = *here;
      b = *here;
      *here = b->prev;
      *here = b->prev;
      b->prev = current_scope->bindings;
      b->prev = current_scope->bindings;
      current_scope->bindings = b;
      current_scope->bindings = b;
 
 
      TREE_ASM_WRITTEN (olddecl) = 0;
      TREE_ASM_WRITTEN (olddecl) = 0;
    }
    }
 
 
  DECL_ATTRIBUTES (newdecl)
  DECL_ATTRIBUTES (newdecl)
    = targetm.merge_decl_attributes (olddecl, newdecl);
    = targetm.merge_decl_attributes (olddecl, newdecl);
 
 
  /* Merge the data types specified in the two decls.  */
  /* Merge the data types specified in the two decls.  */
  TREE_TYPE (newdecl)
  TREE_TYPE (newdecl)
    = TREE_TYPE (olddecl)
    = TREE_TYPE (olddecl)
    = composite_type (newtype, oldtype);
    = composite_type (newtype, oldtype);
 
 
  /* Lay the type out, unless already done.  */
  /* Lay the type out, unless already done.  */
  if (!comptypes (oldtype, TREE_TYPE (newdecl)))
  if (!comptypes (oldtype, TREE_TYPE (newdecl)))
    {
    {
      if (TREE_TYPE (newdecl) != error_mark_node)
      if (TREE_TYPE (newdecl) != error_mark_node)
        layout_type (TREE_TYPE (newdecl));
        layout_type (TREE_TYPE (newdecl));
      if (TREE_CODE (newdecl) != FUNCTION_DECL
      if (TREE_CODE (newdecl) != FUNCTION_DECL
          && TREE_CODE (newdecl) != TYPE_DECL
          && TREE_CODE (newdecl) != TYPE_DECL
          && TREE_CODE (newdecl) != CONST_DECL)
          && TREE_CODE (newdecl) != CONST_DECL)
        layout_decl (newdecl, 0);
        layout_decl (newdecl, 0);
    }
    }
  else
  else
    {
    {
      /* Since the type is OLDDECL's, make OLDDECL's size go with.  */
      /* Since the type is OLDDECL's, make OLDDECL's size go with.  */
      DECL_SIZE (newdecl) = DECL_SIZE (olddecl);
      DECL_SIZE (newdecl) = DECL_SIZE (olddecl);
      DECL_SIZE_UNIT (newdecl) = DECL_SIZE_UNIT (olddecl);
      DECL_SIZE_UNIT (newdecl) = DECL_SIZE_UNIT (olddecl);
      DECL_MODE (newdecl) = DECL_MODE (olddecl);
      DECL_MODE (newdecl) = DECL_MODE (olddecl);
      if (TREE_CODE (olddecl) != FUNCTION_DECL)
      if (TREE_CODE (olddecl) != FUNCTION_DECL)
        if (DECL_ALIGN (olddecl) > DECL_ALIGN (newdecl))
        if (DECL_ALIGN (olddecl) > DECL_ALIGN (newdecl))
          {
          {
            DECL_ALIGN (newdecl) = DECL_ALIGN (olddecl);
            DECL_ALIGN (newdecl) = DECL_ALIGN (olddecl);
            DECL_USER_ALIGN (newdecl) |= DECL_ALIGN (olddecl);
            DECL_USER_ALIGN (newdecl) |= DECL_ALIGN (olddecl);
          }
          }
    }
    }
 
 
 
 
  /* Merge the type qualifiers.  */
  /* Merge the type qualifiers.  */
  if (TREE_READONLY (newdecl))
  if (TREE_READONLY (newdecl))
    TREE_READONLY (olddecl) = 1;
    TREE_READONLY (olddecl) = 1;
 
 
  if (TREE_THIS_VOLATILE (newdecl))
  if (TREE_THIS_VOLATILE (newdecl))
    TREE_THIS_VOLATILE (olddecl) = 1;
    TREE_THIS_VOLATILE (olddecl) = 1;
 
 
  /* Merge deprecatedness.  */
  /* Merge deprecatedness.  */
  if (TREE_DEPRECATED (newdecl))
  if (TREE_DEPRECATED (newdecl))
    TREE_DEPRECATED (olddecl) = 1;
    TREE_DEPRECATED (olddecl) = 1;
 
 
  /* Keep source location of definition rather than declaration and of
  /* Keep source location of definition rather than declaration and of
     prototype rather than non-prototype unless that prototype is
     prototype rather than non-prototype unless that prototype is
     built-in.  */
     built-in.  */
  if ((DECL_INITIAL (newdecl) == 0 && DECL_INITIAL (olddecl) != 0)
  if ((DECL_INITIAL (newdecl) == 0 && DECL_INITIAL (olddecl) != 0)
      || (old_is_prototype && !new_is_prototype
      || (old_is_prototype && !new_is_prototype
          && !C_DECL_BUILTIN_PROTOTYPE (olddecl)))
          && !C_DECL_BUILTIN_PROTOTYPE (olddecl)))
    DECL_SOURCE_LOCATION (newdecl) = DECL_SOURCE_LOCATION (olddecl);
    DECL_SOURCE_LOCATION (newdecl) = DECL_SOURCE_LOCATION (olddecl);
 
 
  /* Merge the initialization information.  */
  /* Merge the initialization information.  */
   if (DECL_INITIAL (newdecl) == 0)
   if (DECL_INITIAL (newdecl) == 0)
    DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl);
    DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl);
 
 
  /* Merge the threadprivate attribute.  */
  /* Merge the threadprivate attribute.  */
  if (TREE_CODE (olddecl) == VAR_DECL && C_DECL_THREADPRIVATE_P (olddecl))
  if (TREE_CODE (olddecl) == VAR_DECL && C_DECL_THREADPRIVATE_P (olddecl))
    {
    {
      DECL_TLS_MODEL (newdecl) = DECL_TLS_MODEL (olddecl);
      DECL_TLS_MODEL (newdecl) = DECL_TLS_MODEL (olddecl);
      C_DECL_THREADPRIVATE_P (newdecl) = 1;
      C_DECL_THREADPRIVATE_P (newdecl) = 1;
    }
    }
 
 
  if (CODE_CONTAINS_STRUCT (TREE_CODE (olddecl), TS_DECL_WITH_VIS))
  if (CODE_CONTAINS_STRUCT (TREE_CODE (olddecl), TS_DECL_WITH_VIS))
    {
    {
      /* Merge the unused-warning information.  */
      /* Merge the unused-warning information.  */
      if (DECL_IN_SYSTEM_HEADER (olddecl))
      if (DECL_IN_SYSTEM_HEADER (olddecl))
        DECL_IN_SYSTEM_HEADER (newdecl) = 1;
        DECL_IN_SYSTEM_HEADER (newdecl) = 1;
      else if (DECL_IN_SYSTEM_HEADER (newdecl))
      else if (DECL_IN_SYSTEM_HEADER (newdecl))
        DECL_IN_SYSTEM_HEADER (olddecl) = 1;
        DECL_IN_SYSTEM_HEADER (olddecl) = 1;
 
 
      /* Merge the section attribute.
      /* Merge the section attribute.
         We want to issue an error if the sections conflict but that
         We want to issue an error if the sections conflict but that
         must be done later in decl_attributes since we are called
         must be done later in decl_attributes since we are called
         before attributes are assigned.  */
         before attributes are assigned.  */
      if (DECL_SECTION_NAME (newdecl) == NULL_TREE)
      if (DECL_SECTION_NAME (newdecl) == NULL_TREE)
        DECL_SECTION_NAME (newdecl) = DECL_SECTION_NAME (olddecl);
        DECL_SECTION_NAME (newdecl) = DECL_SECTION_NAME (olddecl);
 
 
      /* Copy the assembler name.
      /* Copy the assembler name.
         Currently, it can only be defined in the prototype.  */
         Currently, it can only be defined in the prototype.  */
      COPY_DECL_ASSEMBLER_NAME (olddecl, newdecl);
      COPY_DECL_ASSEMBLER_NAME (olddecl, newdecl);
 
 
      /* Use visibility of whichever declaration had it specified */
      /* Use visibility of whichever declaration had it specified */
      if (DECL_VISIBILITY_SPECIFIED (olddecl))
      if (DECL_VISIBILITY_SPECIFIED (olddecl))
        {
        {
          DECL_VISIBILITY (newdecl) = DECL_VISIBILITY (olddecl);
          DECL_VISIBILITY (newdecl) = DECL_VISIBILITY (olddecl);
          DECL_VISIBILITY_SPECIFIED (newdecl) = 1;
          DECL_VISIBILITY_SPECIFIED (newdecl) = 1;
        }
        }
 
 
      if (TREE_CODE (newdecl) == FUNCTION_DECL)
      if (TREE_CODE (newdecl) == FUNCTION_DECL)
        {
        {
          DECL_STATIC_CONSTRUCTOR(newdecl) |= DECL_STATIC_CONSTRUCTOR(olddecl);
          DECL_STATIC_CONSTRUCTOR(newdecl) |= DECL_STATIC_CONSTRUCTOR(olddecl);
          DECL_STATIC_DESTRUCTOR (newdecl) |= DECL_STATIC_DESTRUCTOR (olddecl);
          DECL_STATIC_DESTRUCTOR (newdecl) |= DECL_STATIC_DESTRUCTOR (olddecl);
          DECL_NO_LIMIT_STACK (newdecl) |= DECL_NO_LIMIT_STACK (olddecl);
          DECL_NO_LIMIT_STACK (newdecl) |= DECL_NO_LIMIT_STACK (olddecl);
          DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (newdecl)
          DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (newdecl)
            |= DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (olddecl);
            |= DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (olddecl);
          TREE_THIS_VOLATILE (newdecl) |= TREE_THIS_VOLATILE (olddecl);
          TREE_THIS_VOLATILE (newdecl) |= TREE_THIS_VOLATILE (olddecl);
          TREE_READONLY (newdecl) |= TREE_READONLY (olddecl);
          TREE_READONLY (newdecl) |= TREE_READONLY (olddecl);
          DECL_IS_MALLOC (newdecl) |= DECL_IS_MALLOC (olddecl);
          DECL_IS_MALLOC (newdecl) |= DECL_IS_MALLOC (olddecl);
          DECL_IS_PURE (newdecl) |= DECL_IS_PURE (olddecl);
          DECL_IS_PURE (newdecl) |= DECL_IS_PURE (olddecl);
          DECL_IS_NOVOPS (newdecl) |= DECL_IS_NOVOPS (olddecl);
          DECL_IS_NOVOPS (newdecl) |= DECL_IS_NOVOPS (olddecl);
        }
        }
 
 
      /* Merge the storage class information.  */
      /* Merge the storage class information.  */
      merge_weak (newdecl, olddecl);
      merge_weak (newdecl, olddecl);
 
 
      /* For functions, static overrides non-static.  */
      /* For functions, static overrides non-static.  */
      if (TREE_CODE (newdecl) == FUNCTION_DECL)
      if (TREE_CODE (newdecl) == FUNCTION_DECL)
        {
        {
          TREE_PUBLIC (newdecl) &= TREE_PUBLIC (olddecl);
          TREE_PUBLIC (newdecl) &= TREE_PUBLIC (olddecl);
          /* This is since we don't automatically
          /* This is since we don't automatically
             copy the attributes of NEWDECL into OLDDECL.  */
             copy the attributes of NEWDECL into OLDDECL.  */
          TREE_PUBLIC (olddecl) = TREE_PUBLIC (newdecl);
          TREE_PUBLIC (olddecl) = TREE_PUBLIC (newdecl);
          /* If this clears `static', clear it in the identifier too.  */
          /* If this clears `static', clear it in the identifier too.  */
          if (!TREE_PUBLIC (olddecl))
          if (!TREE_PUBLIC (olddecl))
            TREE_PUBLIC (DECL_NAME (olddecl)) = 0;
            TREE_PUBLIC (DECL_NAME (olddecl)) = 0;
        }
        }
    }
    }
 
 
  if (DECL_EXTERNAL (newdecl))
  if (DECL_EXTERNAL (newdecl))
    {
    {
      TREE_STATIC (newdecl) = TREE_STATIC (olddecl);
      TREE_STATIC (newdecl) = TREE_STATIC (olddecl);
      DECL_EXTERNAL (newdecl) = DECL_EXTERNAL (olddecl);
      DECL_EXTERNAL (newdecl) = DECL_EXTERNAL (olddecl);
 
 
      /* An extern decl does not override previous storage class.  */
      /* An extern decl does not override previous storage class.  */
      TREE_PUBLIC (newdecl) = TREE_PUBLIC (olddecl);
      TREE_PUBLIC (newdecl) = TREE_PUBLIC (olddecl);
      if (!DECL_EXTERNAL (newdecl))
      if (!DECL_EXTERNAL (newdecl))
        {
        {
          DECL_CONTEXT (newdecl) = DECL_CONTEXT (olddecl);
          DECL_CONTEXT (newdecl) = DECL_CONTEXT (olddecl);
          DECL_COMMON (newdecl) = DECL_COMMON (olddecl);
          DECL_COMMON (newdecl) = DECL_COMMON (olddecl);
        }
        }
    }
    }
  else
  else
    {
    {
      TREE_STATIC (olddecl) = TREE_STATIC (newdecl);
      TREE_STATIC (olddecl) = TREE_STATIC (newdecl);
      TREE_PUBLIC (olddecl) = TREE_PUBLIC (newdecl);
      TREE_PUBLIC (olddecl) = TREE_PUBLIC (newdecl);
    }
    }
 
 
  if (TREE_CODE (newdecl) == FUNCTION_DECL)
  if (TREE_CODE (newdecl) == FUNCTION_DECL)
    {
    {
      /* If we're redefining a function previously defined as extern
      /* If we're redefining a function previously defined as extern
         inline, make sure we emit debug info for the inline before we
         inline, make sure we emit debug info for the inline before we
         throw it away, in case it was inlined into a function that
         throw it away, in case it was inlined into a function that
         hasn't been written out yet.  */
         hasn't been written out yet.  */
      if (new_is_definition && DECL_INITIAL (olddecl))
      if (new_is_definition && DECL_INITIAL (olddecl))
        {
        {
          if (TREE_USED (olddecl)
          if (TREE_USED (olddecl)
              /* In unit-at-a-time mode we never inline re-defined extern
              /* In unit-at-a-time mode we never inline re-defined extern
                 inline functions.  */
                 inline functions.  */
              && !flag_unit_at_a_time
              && !flag_unit_at_a_time
              && cgraph_function_possibly_inlined_p (olddecl))
              && cgraph_function_possibly_inlined_p (olddecl))
            (*debug_hooks->outlining_inline_function) (olddecl);
            (*debug_hooks->outlining_inline_function) (olddecl);
 
 
          /* The new defn must not be inline.  */
          /* The new defn must not be inline.  */
          DECL_INLINE (newdecl) = 0;
          DECL_INLINE (newdecl) = 0;
          DECL_UNINLINABLE (newdecl) = 1;
          DECL_UNINLINABLE (newdecl) = 1;
        }
        }
      else
      else
        {
        {
          /* If either decl says `inline', this fn is inline, unless
          /* If either decl says `inline', this fn is inline, unless
             its definition was passed already.  */
             its definition was passed already.  */
          if (DECL_DECLARED_INLINE_P (newdecl)
          if (DECL_DECLARED_INLINE_P (newdecl)
              || DECL_DECLARED_INLINE_P (olddecl))
              || DECL_DECLARED_INLINE_P (olddecl))
            DECL_DECLARED_INLINE_P (newdecl) = 1;
            DECL_DECLARED_INLINE_P (newdecl) = 1;
 
 
          DECL_UNINLINABLE (newdecl) = DECL_UNINLINABLE (olddecl)
          DECL_UNINLINABLE (newdecl) = DECL_UNINLINABLE (olddecl)
            = (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl));
            = (DECL_UNINLINABLE (newdecl) || DECL_UNINLINABLE (olddecl));
        }
        }
 
 
      if (DECL_BUILT_IN (olddecl))
      if (DECL_BUILT_IN (olddecl))
        {
        {
          /* If redeclaring a builtin function, it stays built in.
          /* If redeclaring a builtin function, it stays built in.
             But it gets tagged as having been declared.  */
             But it gets tagged as having been declared.  */
          DECL_BUILT_IN_CLASS (newdecl) = DECL_BUILT_IN_CLASS (olddecl);
          DECL_BUILT_IN_CLASS (newdecl) = DECL_BUILT_IN_CLASS (olddecl);
          DECL_FUNCTION_CODE (newdecl) = DECL_FUNCTION_CODE (olddecl);
          DECL_FUNCTION_CODE (newdecl) = DECL_FUNCTION_CODE (olddecl);
          C_DECL_DECLARED_BUILTIN (newdecl) = 1;
          C_DECL_DECLARED_BUILTIN (newdecl) = 1;
          if (new_is_prototype)
          if (new_is_prototype)
            C_DECL_BUILTIN_PROTOTYPE (newdecl) = 0;
            C_DECL_BUILTIN_PROTOTYPE (newdecl) = 0;
          else
          else
            C_DECL_BUILTIN_PROTOTYPE (newdecl)
            C_DECL_BUILTIN_PROTOTYPE (newdecl)
              = C_DECL_BUILTIN_PROTOTYPE (olddecl);
              = C_DECL_BUILTIN_PROTOTYPE (olddecl);
        }
        }
 
 
      /* Also preserve various other info from the definition.  */
      /* Also preserve various other info from the definition.  */
      if (!new_is_definition)
      if (!new_is_definition)
        {
        {
          DECL_RESULT (newdecl) = DECL_RESULT (olddecl);
          DECL_RESULT (newdecl) = DECL_RESULT (olddecl);
          DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl);
          DECL_INITIAL (newdecl) = DECL_INITIAL (olddecl);
          DECL_STRUCT_FUNCTION (newdecl) = DECL_STRUCT_FUNCTION (olddecl);
          DECL_STRUCT_FUNCTION (newdecl) = DECL_STRUCT_FUNCTION (olddecl);
          DECL_SAVED_TREE (newdecl) = DECL_SAVED_TREE (olddecl);
          DECL_SAVED_TREE (newdecl) = DECL_SAVED_TREE (olddecl);
          DECL_ARGUMENTS (newdecl) = DECL_ARGUMENTS (olddecl);
          DECL_ARGUMENTS (newdecl) = DECL_ARGUMENTS (olddecl);
 
 
          /* Set DECL_INLINE on the declaration if we've got a body
          /* Set DECL_INLINE on the declaration if we've got a body
             from which to instantiate.  */
             from which to instantiate.  */
          if (DECL_INLINE (olddecl) && !DECL_UNINLINABLE (newdecl))
          if (DECL_INLINE (olddecl) && !DECL_UNINLINABLE (newdecl))
            {
            {
              DECL_INLINE (newdecl) = 1;
              DECL_INLINE (newdecl) = 1;
              DECL_ABSTRACT_ORIGIN (newdecl)
              DECL_ABSTRACT_ORIGIN (newdecl)
                = DECL_ABSTRACT_ORIGIN (olddecl);
                = DECL_ABSTRACT_ORIGIN (olddecl);
            }
            }
        }
        }
      else
      else
        {
        {
          /* If a previous declaration said inline, mark the
          /* If a previous declaration said inline, mark the
             definition as inlinable.  */
             definition as inlinable.  */
          if (DECL_DECLARED_INLINE_P (newdecl)
          if (DECL_DECLARED_INLINE_P (newdecl)
              && !DECL_UNINLINABLE (newdecl))
              && !DECL_UNINLINABLE (newdecl))
            DECL_INLINE (newdecl) = 1;
            DECL_INLINE (newdecl) = 1;
        }
        }
    }
    }
 
 
  /* Copy most of the decl-specific fields of NEWDECL into OLDDECL.
  /* Copy most of the decl-specific fields of NEWDECL into OLDDECL.
     But preserve OLDDECL's DECL_UID and DECL_CONTEXT.  */
     But preserve OLDDECL's DECL_UID and DECL_CONTEXT.  */
  {
  {
    unsigned olddecl_uid = DECL_UID (olddecl);
    unsigned olddecl_uid = DECL_UID (olddecl);
    tree olddecl_context = DECL_CONTEXT (olddecl);
    tree olddecl_context = DECL_CONTEXT (olddecl);
 
 
    memcpy ((char *) olddecl + sizeof (struct tree_common),
    memcpy ((char *) olddecl + sizeof (struct tree_common),
            (char *) newdecl + sizeof (struct tree_common),
            (char *) newdecl + sizeof (struct tree_common),
            sizeof (struct tree_decl_common) - sizeof (struct tree_common));
            sizeof (struct tree_decl_common) - sizeof (struct tree_common));
    switch (TREE_CODE (olddecl))
    switch (TREE_CODE (olddecl))
      {
      {
      case FIELD_DECL:
      case FIELD_DECL:
      case VAR_DECL:
      case VAR_DECL:
      case PARM_DECL:
      case PARM_DECL:
      case LABEL_DECL:
      case LABEL_DECL:
      case RESULT_DECL:
      case RESULT_DECL:
      case CONST_DECL:
      case CONST_DECL:
      case TYPE_DECL:
      case TYPE_DECL:
      case FUNCTION_DECL:
      case FUNCTION_DECL:
        memcpy ((char *) olddecl + sizeof (struct tree_decl_common),
        memcpy ((char *) olddecl + sizeof (struct tree_decl_common),
                (char *) newdecl + sizeof (struct tree_decl_common),
                (char *) newdecl + sizeof (struct tree_decl_common),
                tree_code_size (TREE_CODE (olddecl)) - sizeof (struct tree_decl_common));
                tree_code_size (TREE_CODE (olddecl)) - sizeof (struct tree_decl_common));
        break;
        break;
 
 
      default:
      default:
 
 
        memcpy ((char *) olddecl + sizeof (struct tree_decl_common),
        memcpy ((char *) olddecl + sizeof (struct tree_decl_common),
                (char *) newdecl + sizeof (struct tree_decl_common),
                (char *) newdecl + sizeof (struct tree_decl_common),
                sizeof (struct tree_decl_non_common) - sizeof (struct tree_decl_common));
                sizeof (struct tree_decl_non_common) - sizeof (struct tree_decl_common));
      }
      }
    DECL_UID (olddecl) = olddecl_uid;
    DECL_UID (olddecl) = olddecl_uid;
    DECL_CONTEXT (olddecl) = olddecl_context;
    DECL_CONTEXT (olddecl) = olddecl_context;
  }
  }
 
 
  /* If OLDDECL had its DECL_RTL instantiated, re-invoke make_decl_rtl
  /* If OLDDECL had its DECL_RTL instantiated, re-invoke make_decl_rtl
     so that encode_section_info has a chance to look at the new decl
     so that encode_section_info has a chance to look at the new decl
     flags and attributes.  */
     flags and attributes.  */
  if (DECL_RTL_SET_P (olddecl)
  if (DECL_RTL_SET_P (olddecl)
      && (TREE_CODE (olddecl) == FUNCTION_DECL
      && (TREE_CODE (olddecl) == FUNCTION_DECL
          || (TREE_CODE (olddecl) == VAR_DECL
          || (TREE_CODE (olddecl) == VAR_DECL
              && TREE_STATIC (olddecl))))
              && TREE_STATIC (olddecl))))
    make_decl_rtl (olddecl);
    make_decl_rtl (olddecl);
}
}
 
 
/* Handle when a new declaration NEWDECL has the same name as an old
/* Handle when a new declaration NEWDECL has the same name as an old
   one OLDDECL in the same binding contour.  Prints an error message
   one OLDDECL in the same binding contour.  Prints an error message
   if appropriate.
   if appropriate.
 
 
   If safely possible, alter OLDDECL to look like NEWDECL, and return
   If safely possible, alter OLDDECL to look like NEWDECL, and return
   true.  Otherwise, return false.  */
   true.  Otherwise, return false.  */
 
 
static bool
static bool
duplicate_decls (tree newdecl, tree olddecl)
duplicate_decls (tree newdecl, tree olddecl)
{
{
  tree newtype = NULL, oldtype = NULL;
  tree newtype = NULL, oldtype = NULL;
 
 
  if (!diagnose_mismatched_decls (newdecl, olddecl, &newtype, &oldtype))
  if (!diagnose_mismatched_decls (newdecl, olddecl, &newtype, &oldtype))
    {
    {
      /* Avoid `unused variable' and other warnings warnings for OLDDECL.  */
      /* Avoid `unused variable' and other warnings warnings for OLDDECL.  */
      TREE_NO_WARNING (olddecl) = 1;
      TREE_NO_WARNING (olddecl) = 1;
      return false;
      return false;
    }
    }
 
 
  merge_decls (newdecl, olddecl, newtype, oldtype);
  merge_decls (newdecl, olddecl, newtype, oldtype);
  return true;
  return true;
}
}
 
 


/* Check whether decl-node NEW_DECL shadows an existing declaration.  */
/* Check whether decl-node NEW_DECL shadows an existing declaration.  */
static void
static void
warn_if_shadowing (tree new_decl)
warn_if_shadowing (tree new_decl)
{
{
  struct c_binding *b;
  struct c_binding *b;
 
 
  /* Shadow warnings wanted?  */
  /* Shadow warnings wanted?  */
  if (!warn_shadow
  if (!warn_shadow
      /* No shadow warnings for internally generated vars.  */
      /* No shadow warnings for internally generated vars.  */
      || DECL_IS_BUILTIN (new_decl)
      || DECL_IS_BUILTIN (new_decl)
      /* No shadow warnings for vars made for inlining.  */
      /* No shadow warnings for vars made for inlining.  */
      || DECL_FROM_INLINE (new_decl))
      || DECL_FROM_INLINE (new_decl))
    return;
    return;
 
 
  /* Is anything being shadowed?  Invisible decls do not count.  */
  /* Is anything being shadowed?  Invisible decls do not count.  */
  for (b = I_SYMBOL_BINDING (DECL_NAME (new_decl)); b; b = b->shadowed)
  for (b = I_SYMBOL_BINDING (DECL_NAME (new_decl)); b; b = b->shadowed)
    if (b->decl && b->decl != new_decl && !b->invisible)
    if (b->decl && b->decl != new_decl && !b->invisible)
      {
      {
        tree old_decl = b->decl;
        tree old_decl = b->decl;
 
 
        if (old_decl == error_mark_node)
        if (old_decl == error_mark_node)
          {
          {
            warning (OPT_Wshadow, "declaration of %q+D shadows previous "
            warning (OPT_Wshadow, "declaration of %q+D shadows previous "
                     "non-variable", new_decl);
                     "non-variable", new_decl);
            break;
            break;
          }
          }
        else if (TREE_CODE (old_decl) == PARM_DECL)
        else if (TREE_CODE (old_decl) == PARM_DECL)
          warning (OPT_Wshadow, "declaration of %q+D shadows a parameter",
          warning (OPT_Wshadow, "declaration of %q+D shadows a parameter",
                   new_decl);
                   new_decl);
        else if (DECL_FILE_SCOPE_P (old_decl))
        else if (DECL_FILE_SCOPE_P (old_decl))
          warning (OPT_Wshadow, "declaration of %q+D shadows a global "
          warning (OPT_Wshadow, "declaration of %q+D shadows a global "
                   "declaration", new_decl);
                   "declaration", new_decl);
        else if (TREE_CODE (old_decl) == FUNCTION_DECL
        else if (TREE_CODE (old_decl) == FUNCTION_DECL
                 && DECL_BUILT_IN (old_decl))
                 && DECL_BUILT_IN (old_decl))
          {
          {
            warning (OPT_Wshadow, "declaration of %q+D shadows "
            warning (OPT_Wshadow, "declaration of %q+D shadows "
                     "a built-in function", new_decl);
                     "a built-in function", new_decl);
            break;
            break;
          }
          }
        else
        else
          warning (OPT_Wshadow, "declaration of %q+D shadows a previous local",
          warning (OPT_Wshadow, "declaration of %q+D shadows a previous local",
                   new_decl);
                   new_decl);
 
 
        warning (OPT_Wshadow, "%Jshadowed declaration is here", old_decl);
        warning (OPT_Wshadow, "%Jshadowed declaration is here", old_decl);
 
 
        break;
        break;
      }
      }
}
}
 
 
 
 
/* Subroutine of pushdecl.
/* Subroutine of pushdecl.
 
 
   X is a TYPE_DECL for a typedef statement.  Create a brand new
   X is a TYPE_DECL for a typedef statement.  Create a brand new
   ..._TYPE node (which will be just a variant of the existing
   ..._TYPE node (which will be just a variant of the existing
   ..._TYPE node with identical properties) and then install X
   ..._TYPE node with identical properties) and then install X
   as the TYPE_NAME of this brand new (duplicate) ..._TYPE node.
   as the TYPE_NAME of this brand new (duplicate) ..._TYPE node.
 
 
   The whole point here is to end up with a situation where each
   The whole point here is to end up with a situation where each
   and every ..._TYPE node the compiler creates will be uniquely
   and every ..._TYPE node the compiler creates will be uniquely
   associated with AT MOST one node representing a typedef name.
   associated with AT MOST one node representing a typedef name.
   This way, even though the compiler substitutes corresponding
   This way, even though the compiler substitutes corresponding
   ..._TYPE nodes for TYPE_DECL (i.e. "typedef name") nodes very
   ..._TYPE nodes for TYPE_DECL (i.e. "typedef name") nodes very
   early on, later parts of the compiler can always do the reverse
   early on, later parts of the compiler can always do the reverse
   translation and get back the corresponding typedef name.  For
   translation and get back the corresponding typedef name.  For
   example, given:
   example, given:
 
 
        typedef struct S MY_TYPE;
        typedef struct S MY_TYPE;
        MY_TYPE object;
        MY_TYPE object;
 
 
   Later parts of the compiler might only know that `object' was of
   Later parts of the compiler might only know that `object' was of
   type `struct S' if it were not for code just below.  With this
   type `struct S' if it were not for code just below.  With this
   code however, later parts of the compiler see something like:
   code however, later parts of the compiler see something like:
 
 
        struct S' == struct S
        struct S' == struct S
        typedef struct S' MY_TYPE;
        typedef struct S' MY_TYPE;
        struct S' object;
        struct S' object;
 
 
    And they can then deduce (from the node for type struct S') that
    And they can then deduce (from the node for type struct S') that
    the original object declaration was:
    the original object declaration was:
 
 
                MY_TYPE object;
                MY_TYPE object;
 
 
    Being able to do this is important for proper support of protoize,
    Being able to do this is important for proper support of protoize,
    and also for generating precise symbolic debugging information
    and also for generating precise symbolic debugging information
    which takes full account of the programmer's (typedef) vocabulary.
    which takes full account of the programmer's (typedef) vocabulary.
 
 
    Obviously, we don't want to generate a duplicate ..._TYPE node if
    Obviously, we don't want to generate a duplicate ..._TYPE node if
    the TYPE_DECL node that we are now processing really represents a
    the TYPE_DECL node that we are now processing really represents a
    standard built-in type.
    standard built-in type.
 
 
    Since all standard types are effectively declared at line zero
    Since all standard types are effectively declared at line zero
    in the source file, we can easily check to see if we are working
    in the source file, we can easily check to see if we are working
    on a standard type by checking the current value of lineno.  */
    on a standard type by checking the current value of lineno.  */
 
 
static void
static void
clone_underlying_type (tree x)
clone_underlying_type (tree x)
{
{
  if (DECL_IS_BUILTIN (x))
  if (DECL_IS_BUILTIN (x))
    {
    {
      if (TYPE_NAME (TREE_TYPE (x)) == 0)
      if (TYPE_NAME (TREE_TYPE (x)) == 0)
        TYPE_NAME (TREE_TYPE (x)) = x;
        TYPE_NAME (TREE_TYPE (x)) = x;
    }
    }
  else if (TREE_TYPE (x) != error_mark_node
  else if (TREE_TYPE (x) != error_mark_node
           && DECL_ORIGINAL_TYPE (x) == NULL_TREE)
           && DECL_ORIGINAL_TYPE (x) == NULL_TREE)
    {
    {
      tree tt = TREE_TYPE (x);
      tree tt = TREE_TYPE (x);
      DECL_ORIGINAL_TYPE (x) = tt;
      DECL_ORIGINAL_TYPE (x) = tt;
      tt = build_variant_type_copy (tt);
      tt = build_variant_type_copy (tt);
      TYPE_NAME (tt) = x;
      TYPE_NAME (tt) = x;
      TREE_USED (tt) = TREE_USED (x);
      TREE_USED (tt) = TREE_USED (x);
      TREE_TYPE (x) = tt;
      TREE_TYPE (x) = tt;
    }
    }
}
}
 
 
/* Record a decl-node X as belonging to the current lexical scope.
/* Record a decl-node X as belonging to the current lexical scope.
   Check for errors (such as an incompatible declaration for the same
   Check for errors (such as an incompatible declaration for the same
   name already seen in the same scope).
   name already seen in the same scope).
 
 
   Returns either X or an old decl for the same name.
   Returns either X or an old decl for the same name.
   If an old decl is returned, it may have been smashed
   If an old decl is returned, it may have been smashed
   to agree with what X says.  */
   to agree with what X says.  */
 
 
tree
tree
pushdecl (tree x)
pushdecl (tree x)
{
{
  tree name = DECL_NAME (x);
  tree name = DECL_NAME (x);
  struct c_scope *scope = current_scope;
  struct c_scope *scope = current_scope;
  struct c_binding *b;
  struct c_binding *b;
  bool nested = false;
  bool nested = false;
 
 
  /* Functions need the lang_decl data.  */
  /* Functions need the lang_decl data.  */
  if (TREE_CODE (x) == FUNCTION_DECL && !DECL_LANG_SPECIFIC (x))
  if (TREE_CODE (x) == FUNCTION_DECL && !DECL_LANG_SPECIFIC (x))
    DECL_LANG_SPECIFIC (x) = GGC_CNEW (struct lang_decl);
    DECL_LANG_SPECIFIC (x) = GGC_CNEW (struct lang_decl);
 
 
  /* Must set DECL_CONTEXT for everything not at file scope or
  /* Must set DECL_CONTEXT for everything not at file scope or
     DECL_FILE_SCOPE_P won't work.  Local externs don't count
     DECL_FILE_SCOPE_P won't work.  Local externs don't count
     unless they have initializers (which generate code).  */
     unless they have initializers (which generate code).  */
  if (current_function_decl
  if (current_function_decl
      && ((TREE_CODE (x) != FUNCTION_DECL && TREE_CODE (x) != VAR_DECL)
      && ((TREE_CODE (x) != FUNCTION_DECL && TREE_CODE (x) != VAR_DECL)
          || DECL_INITIAL (x) || !DECL_EXTERNAL (x)))
          || DECL_INITIAL (x) || !DECL_EXTERNAL (x)))
    DECL_CONTEXT (x) = current_function_decl;
    DECL_CONTEXT (x) = current_function_decl;
 
 
  /* If this is of variably modified type, prevent jumping into its
  /* If this is of variably modified type, prevent jumping into its
     scope.  */
     scope.  */
  if ((TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == TYPE_DECL)
  if ((TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == TYPE_DECL)
      && variably_modified_type_p (TREE_TYPE (x), NULL_TREE))
      && variably_modified_type_p (TREE_TYPE (x), NULL_TREE))
    c_begin_vm_scope (scope->depth);
    c_begin_vm_scope (scope->depth);
 
 
  /* Anonymous decls are just inserted in the scope.  */
  /* Anonymous decls are just inserted in the scope.  */
  if (!name)
  if (!name)
    {
    {
      bind (name, x, scope, /*invisible=*/false, /*nested=*/false);
      bind (name, x, scope, /*invisible=*/false, /*nested=*/false);
      return x;
      return x;
    }
    }
 
 
  /* First, see if there is another declaration with the same name in
  /* First, see if there is another declaration with the same name in
     the current scope.  If there is, duplicate_decls may do all the
     the current scope.  If there is, duplicate_decls may do all the
     work for us.  If duplicate_decls returns false, that indicates
     work for us.  If duplicate_decls returns false, that indicates
     two incompatible decls in the same scope; we are to silently
     two incompatible decls in the same scope; we are to silently
     replace the old one (duplicate_decls has issued all appropriate
     replace the old one (duplicate_decls has issued all appropriate
     diagnostics).  In particular, we should not consider possible
     diagnostics).  In particular, we should not consider possible
     duplicates in the external scope, or shadowing.  */
     duplicates in the external scope, or shadowing.  */
  b = I_SYMBOL_BINDING (name);
  b = I_SYMBOL_BINDING (name);
  if (b && B_IN_SCOPE (b, scope))
  if (b && B_IN_SCOPE (b, scope))
    {
    {
      struct c_binding *b_ext, *b_use;
      struct c_binding *b_ext, *b_use;
      tree type = TREE_TYPE (x);
      tree type = TREE_TYPE (x);
      tree visdecl = b->decl;
      tree visdecl = b->decl;
      tree vistype = TREE_TYPE (visdecl);
      tree vistype = TREE_TYPE (visdecl);
      if (TREE_CODE (TREE_TYPE (x)) == ARRAY_TYPE
      if (TREE_CODE (TREE_TYPE (x)) == ARRAY_TYPE
          && COMPLETE_TYPE_P (TREE_TYPE (x)))
          && COMPLETE_TYPE_P (TREE_TYPE (x)))
        b->inner_comp = false;
        b->inner_comp = false;
      b_use = b;
      b_use = b;
      b_ext = b;
      b_ext = b;
      /* If this is an external linkage declaration, we should check
      /* If this is an external linkage declaration, we should check
         for compatibility with the type in the external scope before
         for compatibility with the type in the external scope before
         setting the type at this scope based on the visible
         setting the type at this scope based on the visible
         information only.  */
         information only.  */
      if (TREE_PUBLIC (x) && TREE_PUBLIC (visdecl))
      if (TREE_PUBLIC (x) && TREE_PUBLIC (visdecl))
        {
        {
          while (b_ext && !B_IN_EXTERNAL_SCOPE (b_ext))
          while (b_ext && !B_IN_EXTERNAL_SCOPE (b_ext))
            b_ext = b_ext->shadowed;
            b_ext = b_ext->shadowed;
          if (b_ext)
          if (b_ext)
            {
            {
              b_use = b_ext;
              b_use = b_ext;
              if (b_use->type)
              if (b_use->type)
                TREE_TYPE (b_use->decl) = b_use->type;
                TREE_TYPE (b_use->decl) = b_use->type;
            }
            }
        }
        }
      if (duplicate_decls (x, b_use->decl))
      if (duplicate_decls (x, b_use->decl))
        {
        {
          if (b_use != b)
          if (b_use != b)
            {
            {
              /* Save the updated type in the external scope and
              /* Save the updated type in the external scope and
                 restore the proper type for this scope.  */
                 restore the proper type for this scope.  */
              tree thistype;
              tree thistype;
              if (comptypes (vistype, type))
              if (comptypes (vistype, type))
                thistype = composite_type (vistype, type);
                thistype = composite_type (vistype, type);
              else
              else
                thistype = TREE_TYPE (b_use->decl);
                thistype = TREE_TYPE (b_use->decl);
              b_use->type = TREE_TYPE (b_use->decl);
              b_use->type = TREE_TYPE (b_use->decl);
              if (TREE_CODE (b_use->decl) == FUNCTION_DECL
              if (TREE_CODE (b_use->decl) == FUNCTION_DECL
                  && DECL_BUILT_IN (b_use->decl))
                  && DECL_BUILT_IN (b_use->decl))
                thistype
                thistype
                  = build_type_attribute_variant (thistype,
                  = build_type_attribute_variant (thistype,
                                                  TYPE_ATTRIBUTES
                                                  TYPE_ATTRIBUTES
                                                  (b_use->type));
                                                  (b_use->type));
              TREE_TYPE (b_use->decl) = thistype;
              TREE_TYPE (b_use->decl) = thistype;
            }
            }
          return b_use->decl;
          return b_use->decl;
        }
        }
      else
      else
        goto skip_external_and_shadow_checks;
        goto skip_external_and_shadow_checks;
    }
    }
 
 
  /* All declarations with external linkage, and all external
  /* All declarations with external linkage, and all external
     references, go in the external scope, no matter what scope is
     references, go in the external scope, no matter what scope is
     current.  However, the binding in that scope is ignored for
     current.  However, the binding in that scope is ignored for
     purposes of normal name lookup.  A separate binding structure is
     purposes of normal name lookup.  A separate binding structure is
     created in the requested scope; this governs the normal
     created in the requested scope; this governs the normal
     visibility of the symbol.
     visibility of the symbol.
 
 
     The binding in the externals scope is used exclusively for
     The binding in the externals scope is used exclusively for
     detecting duplicate declarations of the same object, no matter
     detecting duplicate declarations of the same object, no matter
     what scope they are in; this is what we do here.  (C99 6.2.7p2:
     what scope they are in; this is what we do here.  (C99 6.2.7p2:
     All declarations that refer to the same object or function shall
     All declarations that refer to the same object or function shall
     have compatible type; otherwise, the behavior is undefined.)  */
     have compatible type; otherwise, the behavior is undefined.)  */
  if (DECL_EXTERNAL (x) || scope == file_scope)
  if (DECL_EXTERNAL (x) || scope == file_scope)
    {
    {
      tree type = TREE_TYPE (x);
      tree type = TREE_TYPE (x);
      tree vistype = 0;
      tree vistype = 0;
      tree visdecl = 0;
      tree visdecl = 0;
      bool type_saved = false;
      bool type_saved = false;
      if (b && !B_IN_EXTERNAL_SCOPE (b)
      if (b && !B_IN_EXTERNAL_SCOPE (b)
          && (TREE_CODE (b->decl) == FUNCTION_DECL
          && (TREE_CODE (b->decl) == FUNCTION_DECL
              || TREE_CODE (b->decl) == VAR_DECL)
              || TREE_CODE (b->decl) == VAR_DECL)
          && DECL_FILE_SCOPE_P (b->decl))
          && DECL_FILE_SCOPE_P (b->decl))
        {
        {
          visdecl = b->decl;
          visdecl = b->decl;
          vistype = TREE_TYPE (visdecl);
          vistype = TREE_TYPE (visdecl);
        }
        }
      if (scope != file_scope
      if (scope != file_scope
          && !DECL_IN_SYSTEM_HEADER (x))
          && !DECL_IN_SYSTEM_HEADER (x))
        warning (OPT_Wnested_externs, "nested extern declaration of %qD", x);
        warning (OPT_Wnested_externs, "nested extern declaration of %qD", x);
 
 
      while (b && !B_IN_EXTERNAL_SCOPE (b))
      while (b && !B_IN_EXTERNAL_SCOPE (b))
        {
        {
          /* If this decl might be modified, save its type.  This is
          /* If this decl might be modified, save its type.  This is
             done here rather than when the decl is first bound
             done here rather than when the decl is first bound
             because the type may change after first binding, through
             because the type may change after first binding, through
             being completed or through attributes being added.  If we
             being completed or through attributes being added.  If we
             encounter multiple such decls, only the first should have
             encounter multiple such decls, only the first should have
             its type saved; the others will already have had their
             its type saved; the others will already have had their
             proper types saved and the types will not have changed as
             proper types saved and the types will not have changed as
             their scopes will not have been re-entered.  */
             their scopes will not have been re-entered.  */
          if (DECL_P (b->decl) && DECL_FILE_SCOPE_P (b->decl) && !type_saved)
          if (DECL_P (b->decl) && DECL_FILE_SCOPE_P (b->decl) && !type_saved)
            {
            {
              b->type = TREE_TYPE (b->decl);
              b->type = TREE_TYPE (b->decl);
              type_saved = true;
              type_saved = true;
            }
            }
          if (B_IN_FILE_SCOPE (b)
          if (B_IN_FILE_SCOPE (b)
              && TREE_CODE (b->decl) == VAR_DECL
              && TREE_CODE (b->decl) == VAR_DECL
              && TREE_STATIC (b->decl)
              && TREE_STATIC (b->decl)
              && TREE_CODE (TREE_TYPE (b->decl)) == ARRAY_TYPE
              && TREE_CODE (TREE_TYPE (b->decl)) == ARRAY_TYPE
              && !TYPE_DOMAIN (TREE_TYPE (b->decl))
              && !TYPE_DOMAIN (TREE_TYPE (b->decl))
              && TREE_CODE (type) == ARRAY_TYPE
              && TREE_CODE (type) == ARRAY_TYPE
              && TYPE_DOMAIN (type)
              && TYPE_DOMAIN (type)
              && TYPE_MAX_VALUE (TYPE_DOMAIN (type))
              && TYPE_MAX_VALUE (TYPE_DOMAIN (type))
              && !integer_zerop (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
              && !integer_zerop (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
            {
            {
              /* Array type completed in inner scope, which should be
              /* Array type completed in inner scope, which should be
                 diagnosed if the completion does not have size 1 and
                 diagnosed if the completion does not have size 1 and
                 it does not get completed in the file scope.  */
                 it does not get completed in the file scope.  */
              b->inner_comp = true;
              b->inner_comp = true;
            }
            }
          b = b->shadowed;
          b = b->shadowed;
        }
        }
 
 
      /* If a matching external declaration has been found, set its
      /* If a matching external declaration has been found, set its
         type to the composite of all the types of that declaration.
         type to the composite of all the types of that declaration.
         After the consistency checks, it will be reset to the
         After the consistency checks, it will be reset to the
         composite of the visible types only.  */
         composite of the visible types only.  */
      if (b && (TREE_PUBLIC (x) || same_translation_unit_p (x, b->decl))
      if (b && (TREE_PUBLIC (x) || same_translation_unit_p (x, b->decl))
          && b->type)
          && b->type)
        TREE_TYPE (b->decl) = b->type;
        TREE_TYPE (b->decl) = b->type;
 
 
      /* The point of the same_translation_unit_p check here is,
      /* The point of the same_translation_unit_p check here is,
         we want to detect a duplicate decl for a construct like
         we want to detect a duplicate decl for a construct like
         foo() { extern bar(); } ... static bar();  but not if
         foo() { extern bar(); } ... static bar();  but not if
         they are in different translation units.  In any case,
         they are in different translation units.  In any case,
         the static does not go in the externals scope.  */
         the static does not go in the externals scope.  */
      if (b
      if (b
          && (TREE_PUBLIC (x) || same_translation_unit_p (x, b->decl))
          && (TREE_PUBLIC (x) || same_translation_unit_p (x, b->decl))
          && duplicate_decls (x, b->decl))
          && duplicate_decls (x, b->decl))
        {
        {
          tree thistype;
          tree thistype;
          if (vistype)
          if (vistype)
            {
            {
              if (comptypes (vistype, type))
              if (comptypes (vistype, type))
                thistype = composite_type (vistype, type);
                thistype = composite_type (vistype, type);
              else
              else
                thistype = TREE_TYPE (b->decl);
                thistype = TREE_TYPE (b->decl);
            }
            }
          else
          else
            thistype = type;
            thistype = type;
          b->type = TREE_TYPE (b->decl);
          b->type = TREE_TYPE (b->decl);
          if (TREE_CODE (b->decl) == FUNCTION_DECL && DECL_BUILT_IN (b->decl))
          if (TREE_CODE (b->decl) == FUNCTION_DECL && DECL_BUILT_IN (b->decl))
            thistype
            thistype
              = build_type_attribute_variant (thistype,
              = build_type_attribute_variant (thistype,
                                              TYPE_ATTRIBUTES (b->type));
                                              TYPE_ATTRIBUTES (b->type));
          TREE_TYPE (b->decl) = thistype;
          TREE_TYPE (b->decl) = thistype;
          bind (name, b->decl, scope, /*invisible=*/false, /*nested=*/true);
          bind (name, b->decl, scope, /*invisible=*/false, /*nested=*/true);
          return b->decl;
          return b->decl;
        }
        }
      else if (TREE_PUBLIC (x))
      else if (TREE_PUBLIC (x))
        {
        {
          if (visdecl && !b && duplicate_decls (x, visdecl))
          if (visdecl && !b && duplicate_decls (x, visdecl))
            {
            {
              /* An external declaration at block scope referring to a
              /* An external declaration at block scope referring to a
                 visible entity with internal linkage.  The composite
                 visible entity with internal linkage.  The composite
                 type will already be correct for this scope, so we
                 type will already be correct for this scope, so we
                 just need to fall through to make the declaration in
                 just need to fall through to make the declaration in
                 this scope.  */
                 this scope.  */
              nested = true;
              nested = true;
              x = visdecl;
              x = visdecl;
            }
            }
          else
          else
            {
            {
              bind (name, x, external_scope, /*invisible=*/true,
              bind (name, x, external_scope, /*invisible=*/true,
                    /*nested=*/false);
                    /*nested=*/false);
              nested = true;
              nested = true;
            }
            }
        }
        }
    }
    }
 
 
  if (TREE_CODE (x) != PARM_DECL)
  if (TREE_CODE (x) != PARM_DECL)
    warn_if_shadowing (x);
    warn_if_shadowing (x);
 
 
 skip_external_and_shadow_checks:
 skip_external_and_shadow_checks:
  if (TREE_CODE (x) == TYPE_DECL)
  if (TREE_CODE (x) == TYPE_DECL)
    clone_underlying_type (x);
    clone_underlying_type (x);
 
 
  bind (name, x, scope, /*invisible=*/false, nested);
  bind (name, x, scope, /*invisible=*/false, nested);
 
 
  /* If x's type is incomplete because it's based on a
  /* If x's type is incomplete because it's based on a
     structure or union which has not yet been fully declared,
     structure or union which has not yet been fully declared,
     attach it to that structure or union type, so we can go
     attach it to that structure or union type, so we can go
     back and complete the variable declaration later, if the
     back and complete the variable declaration later, if the
     structure or union gets fully declared.
     structure or union gets fully declared.
 
 
     If the input is erroneous, we can have error_mark in the type
     If the input is erroneous, we can have error_mark in the type
     slot (e.g. "f(void a, ...)") - that doesn't count as an
     slot (e.g. "f(void a, ...)") - that doesn't count as an
     incomplete type.  */
     incomplete type.  */
  if (TREE_TYPE (x) != error_mark_node
  if (TREE_TYPE (x) != error_mark_node
      && !COMPLETE_TYPE_P (TREE_TYPE (x)))
      && !COMPLETE_TYPE_P (TREE_TYPE (x)))
    {
    {
      tree element = TREE_TYPE (x);
      tree element = TREE_TYPE (x);
 
 
      while (TREE_CODE (element) == ARRAY_TYPE)
      while (TREE_CODE (element) == ARRAY_TYPE)
        element = TREE_TYPE (element);
        element = TREE_TYPE (element);
      element = TYPE_MAIN_VARIANT (element);
      element = TYPE_MAIN_VARIANT (element);
 
 
      if ((TREE_CODE (element) == RECORD_TYPE
      if ((TREE_CODE (element) == RECORD_TYPE
           || TREE_CODE (element) == UNION_TYPE)
           || TREE_CODE (element) == UNION_TYPE)
          && (TREE_CODE (x) != TYPE_DECL
          && (TREE_CODE (x) != TYPE_DECL
              || TREE_CODE (TREE_TYPE (x)) == ARRAY_TYPE)
              || TREE_CODE (TREE_TYPE (x)) == ARRAY_TYPE)
          && !COMPLETE_TYPE_P (element))
          && !COMPLETE_TYPE_P (element))
        C_TYPE_INCOMPLETE_VARS (element)
        C_TYPE_INCOMPLETE_VARS (element)
          = tree_cons (NULL_TREE, x, C_TYPE_INCOMPLETE_VARS (element));
          = tree_cons (NULL_TREE, x, C_TYPE_INCOMPLETE_VARS (element));
    }
    }
  return x;
  return x;
}
}
 
 
/* Record X as belonging to file scope.
/* Record X as belonging to file scope.
   This is used only internally by the Objective-C front end,
   This is used only internally by the Objective-C front end,
   and is limited to its needs.  duplicate_decls is not called;
   and is limited to its needs.  duplicate_decls is not called;
   if there is any preexisting decl for this identifier, it is an ICE.  */
   if there is any preexisting decl for this identifier, it is an ICE.  */
 
 
tree
tree
pushdecl_top_level (tree x)
pushdecl_top_level (tree x)
{
{
  tree name;
  tree name;
  bool nested = false;
  bool nested = false;
  gcc_assert (TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == CONST_DECL);
  gcc_assert (TREE_CODE (x) == VAR_DECL || TREE_CODE (x) == CONST_DECL);
 
 
  name = DECL_NAME (x);
  name = DECL_NAME (x);
 
 
 gcc_assert (TREE_CODE (x) == CONST_DECL || !I_SYMBOL_BINDING (name));
 gcc_assert (TREE_CODE (x) == CONST_DECL || !I_SYMBOL_BINDING (name));
 
 
  if (TREE_PUBLIC (x))
  if (TREE_PUBLIC (x))
    {
    {
      bind (name, x, external_scope, /*invisible=*/true, /*nested=*/false);
      bind (name, x, external_scope, /*invisible=*/true, /*nested=*/false);
      nested = true;
      nested = true;
    }
    }
  if (file_scope)
  if (file_scope)
    bind (name, x, file_scope, /*invisible=*/false, nested);
    bind (name, x, file_scope, /*invisible=*/false, nested);
 
 
  return x;
  return x;
}
}


static void
static void
implicit_decl_warning (tree id, tree olddecl)
implicit_decl_warning (tree id, tree olddecl)
{
{
  void (*diag) (const char *, ...) ATTRIBUTE_GCC_CDIAG(1,2);
  void (*diag) (const char *, ...) ATTRIBUTE_GCC_CDIAG(1,2);
  switch (mesg_implicit_function_declaration)
  switch (mesg_implicit_function_declaration)
    {
    {
    case 0: return;
    case 0: return;
    case 1: diag = warning0; break;
    case 1: diag = warning0; break;
    case 2: diag = error;   break;
    case 2: diag = error;   break;
    default: gcc_unreachable ();
    default: gcc_unreachable ();
    }
    }
 
 
  diag (G_("implicit declaration of function %qE"), id);
  diag (G_("implicit declaration of function %qE"), id);
  if (olddecl)
  if (olddecl)
    locate_old_decl (olddecl, diag);
    locate_old_decl (olddecl, diag);
}
}
 
 
/* Generate an implicit declaration for identifier FUNCTIONID as a
/* Generate an implicit declaration for identifier FUNCTIONID as a
   function of type int ().  */
   function of type int ().  */
 
 
tree
tree
implicitly_declare (tree functionid)
implicitly_declare (tree functionid)
{
{
  struct c_binding *b;
  struct c_binding *b;
  tree decl = 0;
  tree decl = 0;
  tree asmspec_tree;
  tree asmspec_tree;
 
 
  for (b = I_SYMBOL_BINDING (functionid); b; b = b->shadowed)
  for (b = I_SYMBOL_BINDING (functionid); b; b = b->shadowed)
    {
    {
      if (B_IN_SCOPE (b, external_scope))
      if (B_IN_SCOPE (b, external_scope))
        {
        {
          decl = b->decl;
          decl = b->decl;
          break;
          break;
        }
        }
    }
    }
 
 
  if (decl)
  if (decl)
    {
    {
      if (decl == error_mark_node)
      if (decl == error_mark_node)
        return decl;
        return decl;
 
 
      /* FIXME: Objective-C has weird not-really-builtin functions
      /* FIXME: Objective-C has weird not-really-builtin functions
         which are supposed to be visible automatically.  They wind up
         which are supposed to be visible automatically.  They wind up
         in the external scope because they're pushed before the file
         in the external scope because they're pushed before the file
         scope gets created.  Catch this here and rebind them into the
         scope gets created.  Catch this here and rebind them into the
         file scope.  */
         file scope.  */
      if (!DECL_BUILT_IN (decl) && DECL_IS_BUILTIN (decl))
      if (!DECL_BUILT_IN (decl) && DECL_IS_BUILTIN (decl))
        {
        {
          bind (functionid, decl, file_scope,
          bind (functionid, decl, file_scope,
                /*invisible=*/false, /*nested=*/true);
                /*invisible=*/false, /*nested=*/true);
          return decl;
          return decl;
        }
        }
      else
      else
        {
        {
          tree newtype = default_function_type;
          tree newtype = default_function_type;
          if (b->type)
          if (b->type)
            TREE_TYPE (decl) = b->type;
            TREE_TYPE (decl) = b->type;
          /* Implicit declaration of a function already declared
          /* Implicit declaration of a function already declared
             (somehow) in a different scope, or as a built-in.
             (somehow) in a different scope, or as a built-in.
             If this is the first time this has happened, warn;
             If this is the first time this has happened, warn;
             then recycle the old declaration but with the new type.  */
             then recycle the old declaration but with the new type.  */
          if (!C_DECL_IMPLICIT (decl))
          if (!C_DECL_IMPLICIT (decl))
            {
            {
              implicit_decl_warning (functionid, decl);
              implicit_decl_warning (functionid, decl);
              C_DECL_IMPLICIT (decl) = 1;
              C_DECL_IMPLICIT (decl) = 1;
            }
            }
          if (DECL_BUILT_IN (decl))
          if (DECL_BUILT_IN (decl))
            {
            {
              newtype = build_type_attribute_variant (newtype,
              newtype = build_type_attribute_variant (newtype,
                                                      TYPE_ATTRIBUTES
                                                      TYPE_ATTRIBUTES
                                                      (TREE_TYPE (decl)));
                                                      (TREE_TYPE (decl)));
              if (!comptypes (newtype, TREE_TYPE (decl)))
              if (!comptypes (newtype, TREE_TYPE (decl)))
                {
                {
                  warning (0, "incompatible implicit declaration of built-in"
                  warning (0, "incompatible implicit declaration of built-in"
                           " function %qD", decl);
                           " function %qD", decl);
                  newtype = TREE_TYPE (decl);
                  newtype = TREE_TYPE (decl);
                }
                }
            }
            }
          else
          else
            {
            {
              if (!comptypes (newtype, TREE_TYPE (decl)))
              if (!comptypes (newtype, TREE_TYPE (decl)))
                {
                {
                  error ("incompatible implicit declaration of function %qD",
                  error ("incompatible implicit declaration of function %qD",
                         decl);
                         decl);
                  locate_old_decl (decl, error);
                  locate_old_decl (decl, error);
                }
                }
            }
            }
          b->type = TREE_TYPE (decl);
          b->type = TREE_TYPE (decl);
          TREE_TYPE (decl) = newtype;
          TREE_TYPE (decl) = newtype;
          bind (functionid, decl, current_scope,
          bind (functionid, decl, current_scope,
                /*invisible=*/false, /*nested=*/true);
                /*invisible=*/false, /*nested=*/true);
          return decl;
          return decl;
        }
        }
    }
    }
 
 
  /* Not seen before.  */
  /* Not seen before.  */
  decl = build_decl (FUNCTION_DECL, functionid, default_function_type);
  decl = build_decl (FUNCTION_DECL, functionid, default_function_type);
  DECL_EXTERNAL (decl) = 1;
  DECL_EXTERNAL (decl) = 1;
  TREE_PUBLIC (decl) = 1;
  TREE_PUBLIC (decl) = 1;
  C_DECL_IMPLICIT (decl) = 1;
  C_DECL_IMPLICIT (decl) = 1;
  implicit_decl_warning (functionid, 0);
  implicit_decl_warning (functionid, 0);
  asmspec_tree = maybe_apply_renaming_pragma (decl, /*asmname=*/NULL);
  asmspec_tree = maybe_apply_renaming_pragma (decl, /*asmname=*/NULL);
  if (asmspec_tree)
  if (asmspec_tree)
    set_user_assembler_name (decl, TREE_STRING_POINTER (asmspec_tree));
    set_user_assembler_name (decl, TREE_STRING_POINTER (asmspec_tree));
 
 
  /* C89 says implicit declarations are in the innermost block.
  /* C89 says implicit declarations are in the innermost block.
     So we record the decl in the standard fashion.  */
     So we record the decl in the standard fashion.  */
  decl = pushdecl (decl);
  decl = pushdecl (decl);
 
 
  /* No need to call objc_check_decl here - it's a function type.  */
  /* No need to call objc_check_decl here - it's a function type.  */
  rest_of_decl_compilation (decl, 0, 0);
  rest_of_decl_compilation (decl, 0, 0);
 
 
  /* Write a record describing this implicit function declaration
  /* Write a record describing this implicit function declaration
     to the prototypes file (if requested).  */
     to the prototypes file (if requested).  */
  gen_aux_info_record (decl, 0, 1, 0);
  gen_aux_info_record (decl, 0, 1, 0);
 
 
  /* Possibly apply some default attributes to this implicit declaration.  */
  /* Possibly apply some default attributes to this implicit declaration.  */
  decl_attributes (&decl, NULL_TREE, 0);
  decl_attributes (&decl, NULL_TREE, 0);
 
 
  return decl;
  return decl;
}
}
 
 
/* Issue an error message for a reference to an undeclared variable
/* Issue an error message for a reference to an undeclared variable
   ID, including a reference to a builtin outside of function-call
   ID, including a reference to a builtin outside of function-call
   context.  Establish a binding of the identifier to error_mark_node
   context.  Establish a binding of the identifier to error_mark_node
   in an appropriate scope, which will suppress further errors for the
   in an appropriate scope, which will suppress further errors for the
   same identifier.  The error message should be given location LOC.  */
   same identifier.  The error message should be given location LOC.  */
void
void
undeclared_variable (tree id, location_t loc)
undeclared_variable (tree id, location_t loc)
{
{
  static bool already = false;
  static bool already = false;
  struct c_scope *scope;
  struct c_scope *scope;
 
 
  if (current_function_decl == 0)
  if (current_function_decl == 0)
    {
    {
      error ("%H%qE undeclared here (not in a function)", &loc, id);
      error ("%H%qE undeclared here (not in a function)", &loc, id);
      scope = current_scope;
      scope = current_scope;
    }
    }
  else
  else
    {
    {
      error ("%H%qE undeclared (first use in this function)", &loc, id);
      error ("%H%qE undeclared (first use in this function)", &loc, id);
 
 
      if (!already)
      if (!already)
        {
        {
          error ("%H(Each undeclared identifier is reported only once", &loc);
          error ("%H(Each undeclared identifier is reported only once", &loc);
          error ("%Hfor each function it appears in.)", &loc);
          error ("%Hfor each function it appears in.)", &loc);
          already = true;
          already = true;
        }
        }
 
 
      /* If we are parsing old-style parameter decls, current_function_decl
      /* If we are parsing old-style parameter decls, current_function_decl
         will be nonnull but current_function_scope will be null.  */
         will be nonnull but current_function_scope will be null.  */
      scope = current_function_scope ? current_function_scope : current_scope;
      scope = current_function_scope ? current_function_scope : current_scope;
    }
    }
  bind (id, error_mark_node, scope, /*invisible=*/false, /*nested=*/false);
  bind (id, error_mark_node, scope, /*invisible=*/false, /*nested=*/false);
}
}


/* Subroutine of lookup_label, declare_label, define_label: construct a
/* Subroutine of lookup_label, declare_label, define_label: construct a
   LABEL_DECL with all the proper frills.  */
   LABEL_DECL with all the proper frills.  */
 
 
static tree
static tree
make_label (tree name, location_t location)
make_label (tree name, location_t location)
{
{
  tree label = build_decl (LABEL_DECL, name, void_type_node);
  tree label = build_decl (LABEL_DECL, name, void_type_node);
 
 
  DECL_CONTEXT (label) = current_function_decl;
  DECL_CONTEXT (label) = current_function_decl;
  DECL_MODE (label) = VOIDmode;
  DECL_MODE (label) = VOIDmode;
  DECL_SOURCE_LOCATION (label) = location;
  DECL_SOURCE_LOCATION (label) = location;
 
 
  return label;
  return label;
}
}
 
 
/* Get the LABEL_DECL corresponding to identifier NAME as a label.
/* Get the LABEL_DECL corresponding to identifier NAME as a label.
   Create one if none exists so far for the current function.
   Create one if none exists so far for the current function.
   This is called when a label is used in a goto expression or
   This is called when a label is used in a goto expression or
   has its address taken.  */
   has its address taken.  */
 
 
tree
tree
lookup_label (tree name)
lookup_label (tree name)
{
{
  tree label;
  tree label;
 
 
  if (current_function_decl == 0)
  if (current_function_decl == 0)
    {
    {
      error ("label %qE referenced outside of any function", name);
      error ("label %qE referenced outside of any function", name);
      return 0;
      return 0;
    }
    }
 
 
  /* Use a label already defined or ref'd with this name, but not if
  /* Use a label already defined or ref'd with this name, but not if
     it is inherited from a containing function and wasn't declared
     it is inherited from a containing function and wasn't declared
     using __label__.  */
     using __label__.  */
  label = I_LABEL_DECL (name);
  label = I_LABEL_DECL (name);
  if (label && (DECL_CONTEXT (label) == current_function_decl
  if (label && (DECL_CONTEXT (label) == current_function_decl
                || C_DECLARED_LABEL_FLAG (label)))
                || C_DECLARED_LABEL_FLAG (label)))
    {
    {
      /* If the label has only been declared, update its apparent
      /* If the label has only been declared, update its apparent
         location to point here, for better diagnostics if it
         location to point here, for better diagnostics if it
         turns out not to have been defined.  */
         turns out not to have been defined.  */
      if (!TREE_USED (label))
      if (!TREE_USED (label))
        DECL_SOURCE_LOCATION (label) = input_location;
        DECL_SOURCE_LOCATION (label) = input_location;
      return label;
      return label;
    }
    }
 
 
  /* No label binding for that identifier; make one.  */
  /* No label binding for that identifier; make one.  */
  label = make_label (name, input_location);
  label = make_label (name, input_location);
 
 
  /* Ordinary labels go in the current function scope.  */
  /* Ordinary labels go in the current function scope.  */
  bind (name, label, current_function_scope,
  bind (name, label, current_function_scope,
        /*invisible=*/false, /*nested=*/false);
        /*invisible=*/false, /*nested=*/false);
  return label;
  return label;
}
}
 
 
/* Make a label named NAME in the current function, shadowing silently
/* Make a label named NAME in the current function, shadowing silently
   any that may be inherited from containing functions or containing
   any that may be inherited from containing functions or containing
   scopes.  This is called for __label__ declarations.  */
   scopes.  This is called for __label__ declarations.  */
 
 
tree
tree
declare_label (tree name)
declare_label (tree name)
{
{
  struct c_binding *b = I_LABEL_BINDING (name);
  struct c_binding *b = I_LABEL_BINDING (name);
  tree label;
  tree label;
 
 
  /* Check to make sure that the label hasn't already been declared
  /* Check to make sure that the label hasn't already been declared
     at this scope */
     at this scope */
  if (b && B_IN_CURRENT_SCOPE (b))
  if (b && B_IN_CURRENT_SCOPE (b))
    {
    {
      error ("duplicate label declaration %qE", name);
      error ("duplicate label declaration %qE", name);
      locate_old_decl (b->decl, error);
      locate_old_decl (b->decl, error);
 
 
      /* Just use the previous declaration.  */
      /* Just use the previous declaration.  */
      return b->decl;
      return b->decl;
    }
    }
 
 
  label = make_label (name, input_location);
  label = make_label (name, input_location);
  C_DECLARED_LABEL_FLAG (label) = 1;
  C_DECLARED_LABEL_FLAG (label) = 1;
 
 
  /* Declared labels go in the current scope.  */
  /* Declared labels go in the current scope.  */
  bind (name, label, current_scope,
  bind (name, label, current_scope,
        /*invisible=*/false, /*nested=*/false);
        /*invisible=*/false, /*nested=*/false);
  return label;
  return label;
}
}
 
 
/* Define a label, specifying the location in the source file.
/* Define a label, specifying the location in the source file.
   Return the LABEL_DECL node for the label, if the definition is valid.
   Return the LABEL_DECL node for the label, if the definition is valid.
   Otherwise return 0.  */
   Otherwise return 0.  */
 
 
tree
tree
define_label (location_t location, tree name)
define_label (location_t location, tree name)
{
{
  /* Find any preexisting label with this name.  It is an error
  /* Find any preexisting label with this name.  It is an error
     if that label has already been defined in this function, or
     if that label has already been defined in this function, or
     if there is a containing function with a declared label with
     if there is a containing function with a declared label with
     the same name.  */
     the same name.  */
  tree label = I_LABEL_DECL (name);
  tree label = I_LABEL_DECL (name);
  struct c_label_list *nlist_se, *nlist_vm;
  struct c_label_list *nlist_se, *nlist_vm;
 
 
  if (label
  if (label
      && ((DECL_CONTEXT (label) == current_function_decl
      && ((DECL_CONTEXT (label) == current_function_decl
           && DECL_INITIAL (label) != 0)
           && DECL_INITIAL (label) != 0)
          || (DECL_CONTEXT (label) != current_function_decl
          || (DECL_CONTEXT (label) != current_function_decl
              && C_DECLARED_LABEL_FLAG (label))))
              && C_DECLARED_LABEL_FLAG (label))))
    {
    {
      error ("%Hduplicate label %qD", &location, label);
      error ("%Hduplicate label %qD", &location, label);
      locate_old_decl (label, error);
      locate_old_decl (label, error);
      return 0;
      return 0;
    }
    }
  else if (label && DECL_CONTEXT (label) == current_function_decl)
  else if (label && DECL_CONTEXT (label) == current_function_decl)
    {
    {
      /* The label has been used or declared already in this function,
      /* The label has been used or declared already in this function,
         but not defined.  Update its location to point to this
         but not defined.  Update its location to point to this
         definition.  */
         definition.  */
      if (C_DECL_UNDEFINABLE_STMT_EXPR (label))
      if (C_DECL_UNDEFINABLE_STMT_EXPR (label))
        error ("%Jjump into statement expression", label);
        error ("%Jjump into statement expression", label);
      if (C_DECL_UNDEFINABLE_VM (label))
      if (C_DECL_UNDEFINABLE_VM (label))
        error ("%Jjump into scope of identifier with variably modified type",
        error ("%Jjump into scope of identifier with variably modified type",
               label);
               label);
      DECL_SOURCE_LOCATION (label) = location;
      DECL_SOURCE_LOCATION (label) = location;
    }
    }
  else
  else
    {
    {
      /* No label binding for that identifier; make one.  */
      /* No label binding for that identifier; make one.  */
      label = make_label (name, location);
      label = make_label (name, location);
 
 
      /* Ordinary labels go in the current function scope.  */
      /* Ordinary labels go in the current function scope.  */
      bind (name, label, current_function_scope,
      bind (name, label, current_function_scope,
            /*invisible=*/false, /*nested=*/false);
            /*invisible=*/false, /*nested=*/false);
    }
    }
 
 
  if (!in_system_header && lookup_name (name))
  if (!in_system_header && lookup_name (name))
    warning (OPT_Wtraditional, "%Htraditional C lacks a separate namespace "
    warning (OPT_Wtraditional, "%Htraditional C lacks a separate namespace "
             "for labels, identifier %qE conflicts", &location, name);
             "for labels, identifier %qE conflicts", &location, name);
 
 
  nlist_se = XOBNEW (&parser_obstack, struct c_label_list);
  nlist_se = XOBNEW (&parser_obstack, struct c_label_list);
  nlist_se->next = label_context_stack_se->labels_def;
  nlist_se->next = label_context_stack_se->labels_def;
  nlist_se->label = label;
  nlist_se->label = label;
  label_context_stack_se->labels_def = nlist_se;
  label_context_stack_se->labels_def = nlist_se;
 
 
  nlist_vm = XOBNEW (&parser_obstack, struct c_label_list);
  nlist_vm = XOBNEW (&parser_obstack, struct c_label_list);
  nlist_vm->next = label_context_stack_vm->labels_def;
  nlist_vm->next = label_context_stack_vm->labels_def;
  nlist_vm->label = label;
  nlist_vm->label = label;
  label_context_stack_vm->labels_def = nlist_vm;
  label_context_stack_vm->labels_def = nlist_vm;
 
 
  /* Mark label as having been defined.  */
  /* Mark label as having been defined.  */
  DECL_INITIAL (label) = error_mark_node;
  DECL_INITIAL (label) = error_mark_node;
  return label;
  return label;
}
}


/* Given NAME, an IDENTIFIER_NODE,
/* Given NAME, an IDENTIFIER_NODE,
   return the structure (or union or enum) definition for that name.
   return the structure (or union or enum) definition for that name.
   If THISLEVEL_ONLY is nonzero, searches only the current_scope.
   If THISLEVEL_ONLY is nonzero, searches only the current_scope.
   CODE says which kind of type the caller wants;
   CODE says which kind of type the caller wants;
   it is RECORD_TYPE or UNION_TYPE or ENUMERAL_TYPE.
   it is RECORD_TYPE or UNION_TYPE or ENUMERAL_TYPE.
   If the wrong kind of type is found, an error is reported.  */
   If the wrong kind of type is found, an error is reported.  */
 
 
static tree
static tree
lookup_tag (enum tree_code code, tree name, int thislevel_only)
lookup_tag (enum tree_code code, tree name, int thislevel_only)
{
{
  struct c_binding *b = I_TAG_BINDING (name);
  struct c_binding *b = I_TAG_BINDING (name);
  int thislevel = 0;
  int thislevel = 0;
 
 
  if (!b || !b->decl)
  if (!b || !b->decl)
    return 0;
    return 0;
 
 
  /* We only care about whether it's in this level if
  /* We only care about whether it's in this level if
     thislevel_only was set or it might be a type clash.  */
     thislevel_only was set or it might be a type clash.  */
  if (thislevel_only || TREE_CODE (b->decl) != code)
  if (thislevel_only || TREE_CODE (b->decl) != code)
    {
    {
      /* For our purposes, a tag in the external scope is the same as
      /* For our purposes, a tag in the external scope is the same as
         a tag in the file scope.  (Primarily relevant to Objective-C
         a tag in the file scope.  (Primarily relevant to Objective-C
         and its builtin structure tags, which get pushed before the
         and its builtin structure tags, which get pushed before the
         file scope is created.)  */
         file scope is created.)  */
      if (B_IN_CURRENT_SCOPE (b)
      if (B_IN_CURRENT_SCOPE (b)
          || (current_scope == file_scope && B_IN_EXTERNAL_SCOPE (b)))
          || (current_scope == file_scope && B_IN_EXTERNAL_SCOPE (b)))
        thislevel = 1;
        thislevel = 1;
    }
    }
 
 
  if (thislevel_only && !thislevel)
  if (thislevel_only && !thislevel)
    return 0;
    return 0;
 
 
  if (TREE_CODE (b->decl) != code)
  if (TREE_CODE (b->decl) != code)
    {
    {
      /* Definition isn't the kind we were looking for.  */
      /* Definition isn't the kind we were looking for.  */
      pending_invalid_xref = name;
      pending_invalid_xref = name;
      pending_invalid_xref_location = input_location;
      pending_invalid_xref_location = input_location;
 
 
      /* If in the same binding level as a declaration as a tag
      /* If in the same binding level as a declaration as a tag
         of a different type, this must not be allowed to
         of a different type, this must not be allowed to
         shadow that tag, so give the error immediately.
         shadow that tag, so give the error immediately.
         (For example, "struct foo; union foo;" is invalid.)  */
         (For example, "struct foo; union foo;" is invalid.)  */
      if (thislevel)
      if (thislevel)
        pending_xref_error ();
        pending_xref_error ();
    }
    }
  return b->decl;
  return b->decl;
}
}
 
 
/* Print an error message now
/* Print an error message now
   for a recent invalid struct, union or enum cross reference.
   for a recent invalid struct, union or enum cross reference.
   We don't print them immediately because they are not invalid
   We don't print them immediately because they are not invalid
   when used in the `struct foo;' construct for shadowing.  */
   when used in the `struct foo;' construct for shadowing.  */
 
 
void
void
pending_xref_error (void)
pending_xref_error (void)
{
{
  if (pending_invalid_xref != 0)
  if (pending_invalid_xref != 0)
    error ("%H%qE defined as wrong kind of tag",
    error ("%H%qE defined as wrong kind of tag",
           &pending_invalid_xref_location, pending_invalid_xref);
           &pending_invalid_xref_location, pending_invalid_xref);
  pending_invalid_xref = 0;
  pending_invalid_xref = 0;
}
}
 
 


/* Look up NAME in the current scope and its superiors
/* Look up NAME in the current scope and its superiors
   in the namespace of variables, functions and typedefs.
   in the namespace of variables, functions and typedefs.
   Return a ..._DECL node of some kind representing its definition,
   Return a ..._DECL node of some kind representing its definition,
   or return 0 if it is undefined.  */
   or return 0 if it is undefined.  */
 
 
tree
tree
lookup_name (tree name)
lookup_name (tree name)
{
{
  struct c_binding *b = I_SYMBOL_BINDING (name);
  struct c_binding *b = I_SYMBOL_BINDING (name);
  if (b && !b->invisible)
  if (b && !b->invisible)
    return b->decl;
    return b->decl;
  return 0;
  return 0;
}
}
 
 
/* Similar to `lookup_name' but look only at the indicated scope.  */
/* Similar to `lookup_name' but look only at the indicated scope.  */
 
 
static tree
static tree
lookup_name_in_scope (tree name, struct c_scope *scope)
lookup_name_in_scope (tree name, struct c_scope *scope)
{
{
  struct c_binding *b;
  struct c_binding *b;
 
 
  for (b = I_SYMBOL_BINDING (name); b; b = b->shadowed)
  for (b = I_SYMBOL_BINDING (name); b; b = b->shadowed)
    if (B_IN_SCOPE (b, scope))
    if (B_IN_SCOPE (b, scope))
      return b->decl;
      return b->decl;
  return 0;
  return 0;
}
}


/* Create the predefined scalar types of C,
/* Create the predefined scalar types of C,
   and some nodes representing standard constants (0, 1, (void *) 0).
   and some nodes representing standard constants (0, 1, (void *) 0).
   Initialize the global scope.
   Initialize the global scope.
   Make definitions for built-in primitive functions.  */
   Make definitions for built-in primitive functions.  */
 
 
void
void
c_init_decl_processing (void)
c_init_decl_processing (void)
{
{
  location_t save_loc = input_location;
  location_t save_loc = input_location;
 
 
  /* Initialize reserved words for parser.  */
  /* Initialize reserved words for parser.  */
  c_parse_init ();
  c_parse_init ();
 
 
  current_function_decl = 0;
  current_function_decl = 0;
 
 
  gcc_obstack_init (&parser_obstack);
  gcc_obstack_init (&parser_obstack);
 
 
  /* Make the externals scope.  */
  /* Make the externals scope.  */
  push_scope ();
  push_scope ();
  external_scope = current_scope;
  external_scope = current_scope;
 
 
  /* Declarations from c_common_nodes_and_builtins must not be associated
  /* Declarations from c_common_nodes_and_builtins must not be associated
     with this input file, lest we get differences between using and not
     with this input file, lest we get differences between using and not
     using preprocessed headers.  */
     using preprocessed headers.  */
#ifdef USE_MAPPED_LOCATION
#ifdef USE_MAPPED_LOCATION
  input_location = BUILTINS_LOCATION;
  input_location = BUILTINS_LOCATION;
#else
#else
  input_location.file = "<built-in>";
  input_location.file = "<built-in>";
  input_location.line = 0;
  input_location.line = 0;
#endif
#endif
 
 
  build_common_tree_nodes (flag_signed_char, false);
  build_common_tree_nodes (flag_signed_char, false);
 
 
  c_common_nodes_and_builtins ();
  c_common_nodes_and_builtins ();
 
 
  /* In C, comparisons and TRUTH_* expressions have type int.  */
  /* In C, comparisons and TRUTH_* expressions have type int.  */
  truthvalue_type_node = integer_type_node;
  truthvalue_type_node = integer_type_node;
  truthvalue_true_node = integer_one_node;
  truthvalue_true_node = integer_one_node;
  truthvalue_false_node = integer_zero_node;
  truthvalue_false_node = integer_zero_node;
 
 
  /* Even in C99, which has a real boolean type.  */
  /* Even in C99, which has a real boolean type.  */
  pushdecl (build_decl (TYPE_DECL, get_identifier ("_Bool"),
  pushdecl (build_decl (TYPE_DECL, get_identifier ("_Bool"),
                        boolean_type_node));
                        boolean_type_node));
 
 
  input_location = save_loc;
  input_location = save_loc;
 
 
  pedantic_lvalues = true;
  pedantic_lvalues = true;
 
 
  make_fname_decl = c_make_fname_decl;
  make_fname_decl = c_make_fname_decl;
  start_fname_decls ();
  start_fname_decls ();
}
}
 
 
/* Create the VAR_DECL for __FUNCTION__ etc. ID is the name to give the
/* Create the VAR_DECL for __FUNCTION__ etc. ID is the name to give the
   decl, NAME is the initialization string and TYPE_DEP indicates whether
   decl, NAME is the initialization string and TYPE_DEP indicates whether
   NAME depended on the type of the function.  As we don't yet implement
   NAME depended on the type of the function.  As we don't yet implement
   delayed emission of static data, we mark the decl as emitted
   delayed emission of static data, we mark the decl as emitted
   so it is not placed in the output.  Anything using it must therefore pull
   so it is not placed in the output.  Anything using it must therefore pull
   out the STRING_CST initializer directly.  FIXME.  */
   out the STRING_CST initializer directly.  FIXME.  */
 
 
static tree
static tree
c_make_fname_decl (tree id, int type_dep)
c_make_fname_decl (tree id, int type_dep)
{
{
  const char *name = fname_as_string (type_dep);
  const char *name = fname_as_string (type_dep);
  tree decl, type, init;
  tree decl, type, init;
  size_t length = strlen (name);
  size_t length = strlen (name);
 
 
  type = build_array_type (char_type_node,
  type = build_array_type (char_type_node,
                           build_index_type (size_int (length)));
                           build_index_type (size_int (length)));
  type = c_build_qualified_type (type, TYPE_QUAL_CONST);
  type = c_build_qualified_type (type, TYPE_QUAL_CONST);
 
 
  decl = build_decl (VAR_DECL, id, type);
  decl = build_decl (VAR_DECL, id, type);
 
 
  TREE_STATIC (decl) = 1;
  TREE_STATIC (decl) = 1;
  TREE_READONLY (decl) = 1;
  TREE_READONLY (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
  DECL_ARTIFICIAL (decl) = 1;
 
 
  init = build_string (length + 1, name);
  init = build_string (length + 1, name);
  free ((char *) name);
  free ((char *) name);
  TREE_TYPE (init) = type;
  TREE_TYPE (init) = type;
  DECL_INITIAL (decl) = init;
  DECL_INITIAL (decl) = init;
 
 
  TREE_USED (decl) = 1;
  TREE_USED (decl) = 1;
 
 
  if (current_function_decl
  if (current_function_decl
      /* For invalid programs like this:
      /* For invalid programs like this:
 
 
         void foo()
         void foo()
         const char* p = __FUNCTION__;
         const char* p = __FUNCTION__;
 
 
         the __FUNCTION__ is believed to appear in K&R style function
         the __FUNCTION__ is believed to appear in K&R style function
         parameter declarator.  In that case we still don't have
         parameter declarator.  In that case we still don't have
         function_scope.  */
         function_scope.  */
      && (!errorcount || current_function_scope))
      && (!errorcount || current_function_scope))
    {
    {
      DECL_CONTEXT (decl) = current_function_decl;
      DECL_CONTEXT (decl) = current_function_decl;
      bind (id, decl, current_function_scope,
      bind (id, decl, current_function_scope,
            /*invisible=*/false, /*nested=*/false);
            /*invisible=*/false, /*nested=*/false);
    }
    }
 
 
  finish_decl (decl, init, NULL_TREE);
  finish_decl (decl, init, NULL_TREE);
 
 
  return decl;
  return decl;
}
}
 
 
/* Return a definition for a builtin function named NAME and whose data type
/* Return a definition for a builtin function named NAME and whose data type
   is TYPE.  TYPE should be a function type with argument types.
   is TYPE.  TYPE should be a function type with argument types.
   FUNCTION_CODE tells later passes how to compile calls to this function.
   FUNCTION_CODE tells later passes how to compile calls to this function.
   See tree.h for its possible values.
   See tree.h for its possible values.
 
 
   If LIBRARY_NAME is nonzero, use that for DECL_ASSEMBLER_NAME,
   If LIBRARY_NAME is nonzero, use that for DECL_ASSEMBLER_NAME,
   the name to be called if we can't opencode the function.  If
   the name to be called if we can't opencode the function.  If
   ATTRS is nonzero, use that for the function's attribute list.  */
   ATTRS is nonzero, use that for the function's attribute list.  */
 
 
tree
tree
builtin_function (const char *name, tree type, int function_code,
builtin_function (const char *name, tree type, int function_code,
                  enum built_in_class cl, const char *library_name,
                  enum built_in_class cl, const char *library_name,
                  tree attrs)
                  tree attrs)
{
{
  tree id = get_identifier (name);
  tree id = get_identifier (name);
  tree decl = build_decl (FUNCTION_DECL, id, type);
  tree decl = build_decl (FUNCTION_DECL, id, type);
  TREE_PUBLIC (decl) = 1;
  TREE_PUBLIC (decl) = 1;
  DECL_EXTERNAL (decl) = 1;
  DECL_EXTERNAL (decl) = 1;
  DECL_LANG_SPECIFIC (decl) = GGC_CNEW (struct lang_decl);
  DECL_LANG_SPECIFIC (decl) = GGC_CNEW (struct lang_decl);
  DECL_BUILT_IN_CLASS (decl) = cl;
  DECL_BUILT_IN_CLASS (decl) = cl;
  DECL_FUNCTION_CODE (decl) = function_code;
  DECL_FUNCTION_CODE (decl) = function_code;
  C_DECL_BUILTIN_PROTOTYPE (decl) = (TYPE_ARG_TYPES (type) != 0);
  C_DECL_BUILTIN_PROTOTYPE (decl) = (TYPE_ARG_TYPES (type) != 0);
  if (library_name)
  if (library_name)
    SET_DECL_ASSEMBLER_NAME (decl, get_identifier (library_name));
    SET_DECL_ASSEMBLER_NAME (decl, get_identifier (library_name));
 
 
  /* Should never be called on a symbol with a preexisting meaning.  */
  /* Should never be called on a symbol with a preexisting meaning.  */
  gcc_assert (!I_SYMBOL_BINDING (id));
  gcc_assert (!I_SYMBOL_BINDING (id));
 
 
  bind (id, decl, external_scope, /*invisible=*/true, /*nested=*/false);
  bind (id, decl, external_scope, /*invisible=*/true, /*nested=*/false);
 
 
  /* Builtins in the implementation namespace are made visible without
  /* Builtins in the implementation namespace are made visible without
     needing to be explicitly declared.  See push_file_scope.  */
     needing to be explicitly declared.  See push_file_scope.  */
  if (name[0] == '_' && (name[1] == '_' || ISUPPER (name[1])))
  if (name[0] == '_' && (name[1] == '_' || ISUPPER (name[1])))
    {
    {
      TREE_CHAIN (decl) = visible_builtins;
      TREE_CHAIN (decl) = visible_builtins;
      visible_builtins = decl;
      visible_builtins = decl;
    }
    }
 
 
  /* Possibly apply some default attributes to this built-in function.  */
  /* Possibly apply some default attributes to this built-in function.  */
  if (attrs)
  if (attrs)
    decl_attributes (&decl, attrs, ATTR_FLAG_BUILT_IN);
    decl_attributes (&decl, attrs, ATTR_FLAG_BUILT_IN);
  else
  else
    decl_attributes (&decl, NULL_TREE, 0);
    decl_attributes (&decl, NULL_TREE, 0);
 
 
  return decl;
  return decl;
}
}


/* Called when a declaration is seen that contains no names to declare.
/* Called when a declaration is seen that contains no names to declare.
   If its type is a reference to a structure, union or enum inherited
   If its type is a reference to a structure, union or enum inherited
   from a containing scope, shadow that tag name for the current scope
   from a containing scope, shadow that tag name for the current scope
   with a forward reference.
   with a forward reference.
   If its type defines a new named structure or union
   If its type defines a new named structure or union
   or defines an enum, it is valid but we need not do anything here.
   or defines an enum, it is valid but we need not do anything here.
   Otherwise, it is an error.  */
   Otherwise, it is an error.  */
 
 
void
void
shadow_tag (const struct c_declspecs *declspecs)
shadow_tag (const struct c_declspecs *declspecs)
{
{
  shadow_tag_warned (declspecs, 0);
  shadow_tag_warned (declspecs, 0);
}
}
 
 
/* WARNED is 1 if we have done a pedwarn, 2 if we have done a warning,
/* WARNED is 1 if we have done a pedwarn, 2 if we have done a warning,
   but no pedwarn.  */
   but no pedwarn.  */
void
void
shadow_tag_warned (const struct c_declspecs *declspecs, int warned)
shadow_tag_warned (const struct c_declspecs *declspecs, int warned)
{
{
  bool found_tag = false;
  bool found_tag = false;
 
 
  if (declspecs->type && !declspecs->default_int_p && !declspecs->typedef_p)
  if (declspecs->type && !declspecs->default_int_p && !declspecs->typedef_p)
    {
    {
      tree value = declspecs->type;
      tree value = declspecs->type;
      enum tree_code code = TREE_CODE (value);
      enum tree_code code = TREE_CODE (value);
 
 
      if (code == RECORD_TYPE || code == UNION_TYPE || code == ENUMERAL_TYPE)
      if (code == RECORD_TYPE || code == UNION_TYPE || code == ENUMERAL_TYPE)
        /* Used to test also that TYPE_SIZE (value) != 0.
        /* Used to test also that TYPE_SIZE (value) != 0.
           That caused warning for `struct foo;' at top level in the file.  */
           That caused warning for `struct foo;' at top level in the file.  */
        {
        {
          tree name = TYPE_NAME (value);
          tree name = TYPE_NAME (value);
          tree t;
          tree t;
 
 
          found_tag = true;
          found_tag = true;
 
 
          if (name == 0)
          if (name == 0)
            {
            {
              if (warned != 1 && code != ENUMERAL_TYPE)
              if (warned != 1 && code != ENUMERAL_TYPE)
                /* Empty unnamed enum OK */
                /* Empty unnamed enum OK */
                {
                {
                  pedwarn ("unnamed struct/union that defines no instances");
                  pedwarn ("unnamed struct/union that defines no instances");
                  warned = 1;
                  warned = 1;
                }
                }
            }
            }
          else if (!declspecs->tag_defined_p
          else if (!declspecs->tag_defined_p
                   && declspecs->storage_class != csc_none)
                   && declspecs->storage_class != csc_none)
            {
            {
              if (warned != 1)
              if (warned != 1)
                pedwarn ("empty declaration with storage class specifier "
                pedwarn ("empty declaration with storage class specifier "
                         "does not redeclare tag");
                         "does not redeclare tag");
              warned = 1;
              warned = 1;
              pending_xref_error ();
              pending_xref_error ();
            }
            }
          else if (!declspecs->tag_defined_p
          else if (!declspecs->tag_defined_p
                   && (declspecs->const_p
                   && (declspecs->const_p
                       || declspecs->volatile_p
                       || declspecs->volatile_p
                       || declspecs->restrict_p))
                       || declspecs->restrict_p))
            {
            {
              if (warned != 1)
              if (warned != 1)
                pedwarn ("empty declaration with type qualifier "
                pedwarn ("empty declaration with type qualifier "
                         "does not redeclare tag");
                         "does not redeclare tag");
              warned = 1;
              warned = 1;
              pending_xref_error ();
              pending_xref_error ();
            }
            }
          else
          else
            {
            {
              pending_invalid_xref = 0;
              pending_invalid_xref = 0;
              t = lookup_tag (code, name, 1);
              t = lookup_tag (code, name, 1);
 
 
              if (t == 0)
              if (t == 0)
                {
                {
                  t = make_node (code);
                  t = make_node (code);
                  pushtag (name, t);
                  pushtag (name, t);
                }
                }
            }
            }
        }
        }
      else
      else
        {
        {
          if (warned != 1 && !in_system_header)
          if (warned != 1 && !in_system_header)
            {
            {
              pedwarn ("useless type name in empty declaration");
              pedwarn ("useless type name in empty declaration");
              warned = 1;
              warned = 1;
            }
            }
        }
        }
    }
    }
  else if (warned != 1 && !in_system_header && declspecs->typedef_p)
  else if (warned != 1 && !in_system_header && declspecs->typedef_p)
    {
    {
      pedwarn ("useless type name in empty declaration");
      pedwarn ("useless type name in empty declaration");
      warned = 1;
      warned = 1;
    }
    }
 
 
  pending_invalid_xref = 0;
  pending_invalid_xref = 0;
 
 
  if (declspecs->inline_p)
  if (declspecs->inline_p)
    {
    {
      error ("%<inline%> in empty declaration");
      error ("%<inline%> in empty declaration");
      warned = 1;
      warned = 1;
    }
    }
 
 
  if (current_scope == file_scope && declspecs->storage_class == csc_auto)
  if (current_scope == file_scope && declspecs->storage_class == csc_auto)
    {
    {
      error ("%<auto%> in file-scope empty declaration");
      error ("%<auto%> in file-scope empty declaration");
      warned = 1;
      warned = 1;
    }
    }
 
 
  if (current_scope == file_scope && declspecs->storage_class == csc_register)
  if (current_scope == file_scope && declspecs->storage_class == csc_register)
    {
    {
      error ("%<register%> in file-scope empty declaration");
      error ("%<register%> in file-scope empty declaration");
      warned = 1;
      warned = 1;
    }
    }
 
 
  if (!warned && !in_system_header && declspecs->storage_class != csc_none)
  if (!warned && !in_system_header && declspecs->storage_class != csc_none)
    {
    {
      warning (0, "useless storage class specifier in empty declaration");
      warning (0, "useless storage class specifier in empty declaration");
      warned = 2;
      warned = 2;
    }
    }
 
 
  if (!warned && !in_system_header && declspecs->thread_p)
  if (!warned && !in_system_header && declspecs->thread_p)
    {
    {
      warning (0, "useless %<__thread%> in empty declaration");
      warning (0, "useless %<__thread%> in empty declaration");
      warned = 2;
      warned = 2;
    }
    }
 
 
  if (!warned && !in_system_header && (declspecs->const_p
  if (!warned && !in_system_header && (declspecs->const_p
                                       || declspecs->volatile_p
                                       || declspecs->volatile_p
                                       || declspecs->restrict_p))
                                       || declspecs->restrict_p))
    {
    {
      warning (0, "useless type qualifier in empty declaration");
      warning (0, "useless type qualifier in empty declaration");
      warned = 2;
      warned = 2;
    }
    }
 
 
  if (warned != 1)
  if (warned != 1)
    {
    {
      if (!found_tag)
      if (!found_tag)
        pedwarn ("empty declaration");
        pedwarn ("empty declaration");
    }
    }
}
}


 
 
/* Return the qualifiers from SPECS as a bitwise OR of TYPE_QUAL_*
/* Return the qualifiers from SPECS as a bitwise OR of TYPE_QUAL_*
   bits.  SPECS represents declaration specifiers that the grammar
   bits.  SPECS represents declaration specifiers that the grammar
   only permits to contain type qualifiers and attributes.  */
   only permits to contain type qualifiers and attributes.  */
 
 
int
int
quals_from_declspecs (const struct c_declspecs *specs)
quals_from_declspecs (const struct c_declspecs *specs)
{
{
  int quals = ((specs->const_p ? TYPE_QUAL_CONST : 0)
  int quals = ((specs->const_p ? TYPE_QUAL_CONST : 0)
               | (specs->volatile_p ? TYPE_QUAL_VOLATILE : 0)
               | (specs->volatile_p ? TYPE_QUAL_VOLATILE : 0)
               | (specs->restrict_p ? TYPE_QUAL_RESTRICT : 0));
               | (specs->restrict_p ? TYPE_QUAL_RESTRICT : 0));
  gcc_assert (!specs->type
  gcc_assert (!specs->type
              && !specs->decl_attr
              && !specs->decl_attr
              && specs->typespec_word == cts_none
              && specs->typespec_word == cts_none
              && specs->storage_class == csc_none
              && specs->storage_class == csc_none
              && !specs->typedef_p
              && !specs->typedef_p
              && !specs->explicit_signed_p
              && !specs->explicit_signed_p
              && !specs->deprecated_p
              && !specs->deprecated_p
              && !specs->long_p
              && !specs->long_p
              && !specs->long_long_p
              && !specs->long_long_p
              && !specs->short_p
              && !specs->short_p
              && !specs->signed_p
              && !specs->signed_p
              && !specs->unsigned_p
              && !specs->unsigned_p
              && !specs->complex_p
              && !specs->complex_p
              && !specs->inline_p
              && !specs->inline_p
              && !specs->thread_p);
              && !specs->thread_p);
  return quals;
  return quals;
}
}
 
 
/* Construct an array declarator.  EXPR is the expression inside [],
/* Construct an array declarator.  EXPR is the expression inside [],
   or NULL_TREE.  QUALS are the type qualifiers inside the [] (to be
   or NULL_TREE.  QUALS are the type qualifiers inside the [] (to be
   applied to the pointer to which a parameter array is converted).
   applied to the pointer to which a parameter array is converted).
   STATIC_P is true if "static" is inside the [], false otherwise.
   STATIC_P is true if "static" is inside the [], false otherwise.
   VLA_UNSPEC_P is true if the array is [*], a VLA of unspecified
   VLA_UNSPEC_P is true if the array is [*], a VLA of unspecified
   length which is nevertheless a complete type, false otherwise.  The
   length which is nevertheless a complete type, false otherwise.  The
   field for the contained declarator is left to be filled in by
   field for the contained declarator is left to be filled in by
   set_array_declarator_inner.  */
   set_array_declarator_inner.  */
 
 
struct c_declarator *
struct c_declarator *
build_array_declarator (tree expr, struct c_declspecs *quals, bool static_p,
build_array_declarator (tree expr, struct c_declspecs *quals, bool static_p,
                        bool vla_unspec_p)
                        bool vla_unspec_p)
{
{
  struct c_declarator *declarator = XOBNEW (&parser_obstack,
  struct c_declarator *declarator = XOBNEW (&parser_obstack,
                                            struct c_declarator);
                                            struct c_declarator);
  declarator->kind = cdk_array;
  declarator->kind = cdk_array;
  declarator->declarator = 0;
  declarator->declarator = 0;
  declarator->u.array.dimen = expr;
  declarator->u.array.dimen = expr;
  if (quals)
  if (quals)
    {
    {
      declarator->u.array.attrs = quals->attrs;
      declarator->u.array.attrs = quals->attrs;
      declarator->u.array.quals = quals_from_declspecs (quals);
      declarator->u.array.quals = quals_from_declspecs (quals);
    }
    }
  else
  else
    {
    {
      declarator->u.array.attrs = NULL_TREE;
      declarator->u.array.attrs = NULL_TREE;
      declarator->u.array.quals = 0;
      declarator->u.array.quals = 0;
    }
    }
  declarator->u.array.static_p = static_p;
  declarator->u.array.static_p = static_p;
  declarator->u.array.vla_unspec_p = vla_unspec_p;
  declarator->u.array.vla_unspec_p = vla_unspec_p;
  if (pedantic && !flag_isoc99)
  if (pedantic && !flag_isoc99)
    {
    {
      if (static_p || quals != NULL)
      if (static_p || quals != NULL)
        pedwarn ("ISO C90 does not support %<static%> or type "
        pedwarn ("ISO C90 does not support %<static%> or type "
                 "qualifiers in parameter array declarators");
                 "qualifiers in parameter array declarators");
      if (vla_unspec_p)
      if (vla_unspec_p)
        pedwarn ("ISO C90 does not support %<[*]%> array declarators");
        pedwarn ("ISO C90 does not support %<[*]%> array declarators");
    }
    }
  if (vla_unspec_p)
  if (vla_unspec_p)
    {
    {
      if (!current_scope->parm_flag)
      if (!current_scope->parm_flag)
        {
        {
          /* C99 6.7.5.2p4 */
          /* C99 6.7.5.2p4 */
          error ("%<[*]%> not allowed in other than function prototype scope");
          error ("%<[*]%> not allowed in other than function prototype scope");
          declarator->u.array.vla_unspec_p = false;
          declarator->u.array.vla_unspec_p = false;
          return NULL;
          return NULL;
        }
        }
      current_scope->had_vla_unspec = true;
      current_scope->had_vla_unspec = true;
    }
    }
  return declarator;
  return declarator;
}
}
 
 
/* Set the contained declarator of an array declarator.  DECL is the
/* Set the contained declarator of an array declarator.  DECL is the
   declarator, as constructed by build_array_declarator; INNER is what
   declarator, as constructed by build_array_declarator; INNER is what
   appears on the left of the [].  ABSTRACT_P is true if it is an
   appears on the left of the [].  ABSTRACT_P is true if it is an
   abstract declarator, false otherwise; this is used to reject static
   abstract declarator, false otherwise; this is used to reject static
   and type qualifiers in abstract declarators, where they are not in
   and type qualifiers in abstract declarators, where they are not in
   the C99 grammar (subject to possible change in DR#289).  */
   the C99 grammar (subject to possible change in DR#289).  */
 
 
struct c_declarator *
struct c_declarator *
set_array_declarator_inner (struct c_declarator *decl,
set_array_declarator_inner (struct c_declarator *decl,
                            struct c_declarator *inner, bool abstract_p)
                            struct c_declarator *inner, bool abstract_p)
{
{
  decl->declarator = inner;
  decl->declarator = inner;
  if (abstract_p && (decl->u.array.quals != TYPE_UNQUALIFIED
  if (abstract_p && (decl->u.array.quals != TYPE_UNQUALIFIED
                     || decl->u.array.attrs != NULL_TREE
                     || decl->u.array.attrs != NULL_TREE
                     || decl->u.array.static_p))
                     || decl->u.array.static_p))
    error ("static or type qualifiers in abstract declarator");
    error ("static or type qualifiers in abstract declarator");
  return decl;
  return decl;
}
}
 
 
/* INIT is a constructor that forms DECL's initializer.  If the final
/* INIT is a constructor that forms DECL's initializer.  If the final
   element initializes a flexible array field, add the size of that
   element initializes a flexible array field, add the size of that
   initializer to DECL's size.  */
   initializer to DECL's size.  */
 
 
static void
static void
add_flexible_array_elts_to_size (tree decl, tree init)
add_flexible_array_elts_to_size (tree decl, tree init)
{
{
  tree elt, type;
  tree elt, type;
 
 
  if (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init)))
  if (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init)))
    return;
    return;
 
 
  elt = VEC_last (constructor_elt, CONSTRUCTOR_ELTS (init))->value;
  elt = VEC_last (constructor_elt, CONSTRUCTOR_ELTS (init))->value;
  type = TREE_TYPE (elt);
  type = TREE_TYPE (elt);
  if (TREE_CODE (type) == ARRAY_TYPE
  if (TREE_CODE (type) == ARRAY_TYPE
      && TYPE_SIZE (type) == NULL_TREE
      && TYPE_SIZE (type) == NULL_TREE
      && TYPE_DOMAIN (type) != NULL_TREE
      && TYPE_DOMAIN (type) != NULL_TREE
      && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL_TREE)
      && TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL_TREE)
    {
    {
      complete_array_type (&type, elt, false);
      complete_array_type (&type, elt, false);
      DECL_SIZE (decl)
      DECL_SIZE (decl)
        = size_binop (PLUS_EXPR, DECL_SIZE (decl), TYPE_SIZE (type));
        = size_binop (PLUS_EXPR, DECL_SIZE (decl), TYPE_SIZE (type));
      DECL_SIZE_UNIT (decl)
      DECL_SIZE_UNIT (decl)
        = size_binop (PLUS_EXPR, DECL_SIZE_UNIT (decl), TYPE_SIZE_UNIT (type));
        = size_binop (PLUS_EXPR, DECL_SIZE_UNIT (decl), TYPE_SIZE_UNIT (type));
    }
    }
}
}


/* Decode a "typename", such as "int **", returning a ..._TYPE node.  */
/* Decode a "typename", such as "int **", returning a ..._TYPE node.  */
 
 
tree
tree
groktypename (struct c_type_name *type_name)
groktypename (struct c_type_name *type_name)
{
{
  tree type;
  tree type;
  tree attrs = type_name->specs->attrs;
  tree attrs = type_name->specs->attrs;
 
 
  type_name->specs->attrs = NULL_TREE;
  type_name->specs->attrs = NULL_TREE;
 
 
  type = grokdeclarator (type_name->declarator, type_name->specs, TYPENAME,
  type = grokdeclarator (type_name->declarator, type_name->specs, TYPENAME,
                         false, NULL);
                         false, NULL);
 
 
  /* Apply attributes.  */
  /* Apply attributes.  */
  decl_attributes (&type, attrs, 0);
  decl_attributes (&type, attrs, 0);
 
 
  return type;
  return type;
}
}
 
 
/* Decode a declarator in an ordinary declaration or data definition.
/* Decode a declarator in an ordinary declaration or data definition.
   This is called as soon as the type information and variable name
   This is called as soon as the type information and variable name
   have been parsed, before parsing the initializer if any.
   have been parsed, before parsing the initializer if any.
   Here we create the ..._DECL node, fill in its type,
   Here we create the ..._DECL node, fill in its type,
   and put it on the list of decls for the current context.
   and put it on the list of decls for the current context.
   The ..._DECL node is returned as the value.
   The ..._DECL node is returned as the value.
 
 
   Exception: for arrays where the length is not specified,
   Exception: for arrays where the length is not specified,
   the type is left null, to be filled in by `finish_decl'.
   the type is left null, to be filled in by `finish_decl'.
 
 
   Function definitions do not come here; they go to start_function
   Function definitions do not come here; they go to start_function
   instead.  However, external and forward declarations of functions
   instead.  However, external and forward declarations of functions
   do go through here.  Structure field declarations are done by
   do go through here.  Structure field declarations are done by
   grokfield and not through here.  */
   grokfield and not through here.  */
 
 
tree
tree
start_decl (struct c_declarator *declarator, struct c_declspecs *declspecs,
start_decl (struct c_declarator *declarator, struct c_declspecs *declspecs,
            bool initialized, tree attributes)
            bool initialized, tree attributes)
{
{
  tree decl;
  tree decl;
  tree tem;
  tree tem;
 
 
  /* An object declared as __attribute__((deprecated)) suppresses
  /* An object declared as __attribute__((deprecated)) suppresses
     warnings of uses of other deprecated items.  */
     warnings of uses of other deprecated items.  */
  if (lookup_attribute ("deprecated", attributes))
  if (lookup_attribute ("deprecated", attributes))
    deprecated_state = DEPRECATED_SUPPRESS;
    deprecated_state = DEPRECATED_SUPPRESS;
 
 
  decl = grokdeclarator (declarator, declspecs,
  decl = grokdeclarator (declarator, declspecs,
                         NORMAL, initialized, NULL);
                         NORMAL, initialized, NULL);
  if (!decl)
  if (!decl)
    return 0;
    return 0;
 
 
  deprecated_state = DEPRECATED_NORMAL;
  deprecated_state = DEPRECATED_NORMAL;
 
 
  if (warn_main > 0 && TREE_CODE (decl) != FUNCTION_DECL
  if (warn_main > 0 && TREE_CODE (decl) != FUNCTION_DECL
      && MAIN_NAME_P (DECL_NAME (decl)))
      && MAIN_NAME_P (DECL_NAME (decl)))
    warning (OPT_Wmain, "%q+D is usually a function", decl);
    warning (OPT_Wmain, "%q+D is usually a function", decl);
 
 
  if (initialized)
  if (initialized)
    /* Is it valid for this decl to have an initializer at all?
    /* Is it valid for this decl to have an initializer at all?
       If not, set INITIALIZED to zero, which will indirectly
       If not, set INITIALIZED to zero, which will indirectly
       tell 'finish_decl' to ignore the initializer once it is parsed.  */
       tell 'finish_decl' to ignore the initializer once it is parsed.  */
    switch (TREE_CODE (decl))
    switch (TREE_CODE (decl))
      {
      {
      case TYPE_DECL:
      case TYPE_DECL:
        error ("typedef %qD is initialized (use __typeof__ instead)", decl);
        error ("typedef %qD is initialized (use __typeof__ instead)", decl);
        initialized = 0;
        initialized = 0;
        break;
        break;
 
 
      case FUNCTION_DECL:
      case FUNCTION_DECL:
        error ("function %qD is initialized like a variable", decl);
        error ("function %qD is initialized like a variable", decl);
        initialized = 0;
        initialized = 0;
        break;
        break;
 
 
      case PARM_DECL:
      case PARM_DECL:
        /* DECL_INITIAL in a PARM_DECL is really DECL_ARG_TYPE.  */
        /* DECL_INITIAL in a PARM_DECL is really DECL_ARG_TYPE.  */
        error ("parameter %qD is initialized", decl);
        error ("parameter %qD is initialized", decl);
        initialized = 0;
        initialized = 0;
        break;
        break;
 
 
      default:
      default:
        /* Don't allow initializations for incomplete types except for
        /* Don't allow initializations for incomplete types except for
           arrays which might be completed by the initialization.  */
           arrays which might be completed by the initialization.  */
 
 
        /* This can happen if the array size is an undefined macro.
        /* This can happen if the array size is an undefined macro.
           We already gave a warning, so we don't need another one.  */
           We already gave a warning, so we don't need another one.  */
        if (TREE_TYPE (decl) == error_mark_node)
        if (TREE_TYPE (decl) == error_mark_node)
          initialized = 0;
          initialized = 0;
        else if (COMPLETE_TYPE_P (TREE_TYPE (decl)))
        else if (COMPLETE_TYPE_P (TREE_TYPE (decl)))
          {
          {
            /* A complete type is ok if size is fixed.  */
            /* A complete type is ok if size is fixed.  */
 
 
            if (TREE_CODE (TYPE_SIZE (TREE_TYPE (decl))) != INTEGER_CST
            if (TREE_CODE (TYPE_SIZE (TREE_TYPE (decl))) != INTEGER_CST
                || C_DECL_VARIABLE_SIZE (decl))
                || C_DECL_VARIABLE_SIZE (decl))
              {
              {
                error ("variable-sized object may not be initialized");
                error ("variable-sized object may not be initialized");
                initialized = 0;
                initialized = 0;
              }
              }
          }
          }
        else if (TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE)
        else if (TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE)
          {
          {
            error ("variable %qD has initializer but incomplete type", decl);
            error ("variable %qD has initializer but incomplete type", decl);
            initialized = 0;
            initialized = 0;
          }
          }
        else if (C_DECL_VARIABLE_SIZE (decl))
        else if (C_DECL_VARIABLE_SIZE (decl))
          {
          {
            /* Although C99 is unclear about whether incomplete arrays
            /* Although C99 is unclear about whether incomplete arrays
               of VLAs themselves count as VLAs, it does not make
               of VLAs themselves count as VLAs, it does not make
               sense to permit them to be initialized given that
               sense to permit them to be initialized given that
               ordinary VLAs may not be initialized.  */
               ordinary VLAs may not be initialized.  */
            error ("variable-sized object may not be initialized");
            error ("variable-sized object may not be initialized");
            initialized = 0;
            initialized = 0;
          }
          }
      }
      }
 
 
  if (initialized)
  if (initialized)
    {
    {
      if (current_scope == file_scope)
      if (current_scope == file_scope)
        TREE_STATIC (decl) = 1;
        TREE_STATIC (decl) = 1;
 
 
      /* Tell 'pushdecl' this is an initialized decl
      /* Tell 'pushdecl' this is an initialized decl
         even though we don't yet have the initializer expression.
         even though we don't yet have the initializer expression.
         Also tell 'finish_decl' it may store the real initializer.  */
         Also tell 'finish_decl' it may store the real initializer.  */
      DECL_INITIAL (decl) = error_mark_node;
      DECL_INITIAL (decl) = error_mark_node;
    }
    }
 
 
  /* If this is a function declaration, write a record describing it to the
  /* If this is a function declaration, write a record describing it to the
     prototypes file (if requested).  */
     prototypes file (if requested).  */
 
 
  if (TREE_CODE (decl) == FUNCTION_DECL)
  if (TREE_CODE (decl) == FUNCTION_DECL)
    gen_aux_info_record (decl, 0, 0, TYPE_ARG_TYPES (TREE_TYPE (decl)) != 0);
    gen_aux_info_record (decl, 0, 0, TYPE_ARG_TYPES (TREE_TYPE (decl)) != 0);
 
 
  /* ANSI specifies that a tentative definition which is not merged with
  /* ANSI specifies that a tentative definition which is not merged with
     a non-tentative definition behaves exactly like a definition with an
     a non-tentative definition behaves exactly like a definition with an
     initializer equal to zero.  (Section 3.7.2)
     initializer equal to zero.  (Section 3.7.2)
 
 
     -fno-common gives strict ANSI behavior, though this tends to break
     -fno-common gives strict ANSI behavior, though this tends to break
     a large body of code that grew up without this rule.
     a large body of code that grew up without this rule.
 
 
     Thread-local variables are never common, since there's no entrenched
     Thread-local variables are never common, since there's no entrenched
     body of code to break, and it allows more efficient variable references
     body of code to break, and it allows more efficient variable references
     in the presence of dynamic linking.  */
     in the presence of dynamic linking.  */
 
 
  if (TREE_CODE (decl) == VAR_DECL
  if (TREE_CODE (decl) == VAR_DECL
      && !initialized
      && !initialized
      && TREE_PUBLIC (decl)
      && TREE_PUBLIC (decl)
      && !DECL_THREAD_LOCAL_P (decl)
      && !DECL_THREAD_LOCAL_P (decl)
      && !flag_no_common)
      && !flag_no_common)
    DECL_COMMON (decl) = 1;
    DECL_COMMON (decl) = 1;
 
 
  /* Set attributes here so if duplicate decl, will have proper attributes.  */
  /* Set attributes here so if duplicate decl, will have proper attributes.  */
  decl_attributes (&decl, attributes, 0);
  decl_attributes (&decl, attributes, 0);
 
 
  if (TREE_CODE (decl) == FUNCTION_DECL
  if (TREE_CODE (decl) == FUNCTION_DECL
      && targetm.calls.promote_prototypes (TREE_TYPE (decl)))
      && targetm.calls.promote_prototypes (TREE_TYPE (decl)))
    {
    {
      struct c_declarator *ce = declarator;
      struct c_declarator *ce = declarator;
 
 
      if (ce->kind == cdk_pointer)
      if (ce->kind == cdk_pointer)
        ce = declarator->declarator;
        ce = declarator->declarator;
      if (ce->kind == cdk_function)
      if (ce->kind == cdk_function)
        {
        {
          tree args = ce->u.arg_info->parms;
          tree args = ce->u.arg_info->parms;
          for (; args; args = TREE_CHAIN (args))
          for (; args; args = TREE_CHAIN (args))
            {
            {
              tree type = TREE_TYPE (args);
              tree type = TREE_TYPE (args);
              if (type && INTEGRAL_TYPE_P (type)
              if (type && INTEGRAL_TYPE_P (type)
                  && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node))
                  && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node))
                DECL_ARG_TYPE (args) = integer_type_node;
                DECL_ARG_TYPE (args) = integer_type_node;
            }
            }
        }
        }
    }
    }
 
 
  if (TREE_CODE (decl) == FUNCTION_DECL
  if (TREE_CODE (decl) == FUNCTION_DECL
      && DECL_DECLARED_INLINE_P (decl)
      && DECL_DECLARED_INLINE_P (decl)
      && DECL_UNINLINABLE (decl)
      && DECL_UNINLINABLE (decl)
      && lookup_attribute ("noinline", DECL_ATTRIBUTES (decl)))
      && lookup_attribute ("noinline", DECL_ATTRIBUTES (decl)))
    warning (OPT_Wattributes, "inline function %q+D given attribute noinline",
    warning (OPT_Wattributes, "inline function %q+D given attribute noinline",
             decl);
             decl);
 
 
  /* Add this decl to the current scope.
  /* Add this decl to the current scope.
     TEM may equal DECL or it may be a previous decl of the same name.  */
     TEM may equal DECL or it may be a previous decl of the same name.  */
  tem = pushdecl (decl);
  tem = pushdecl (decl);
 
 
  if (initialized && DECL_EXTERNAL (tem))
  if (initialized && DECL_EXTERNAL (tem))
    {
    {
      DECL_EXTERNAL (tem) = 0;
      DECL_EXTERNAL (tem) = 0;
      TREE_STATIC (tem) = 1;
      TREE_STATIC (tem) = 1;
    }
    }
 
 
  return tem;
  return tem;
}
}
 
 
/* Initialize EH if not initialized yet and exceptions are enabled.  */
/* Initialize EH if not initialized yet and exceptions are enabled.  */
 
 
void
void
c_maybe_initialize_eh (void)
c_maybe_initialize_eh (void)
{
{
  if (!flag_exceptions || c_eh_initialized_p)
  if (!flag_exceptions || c_eh_initialized_p)
    return;
    return;
 
 
  c_eh_initialized_p = true;
  c_eh_initialized_p = true;
  eh_personality_libfunc
  eh_personality_libfunc
    = init_one_libfunc (USING_SJLJ_EXCEPTIONS
    = init_one_libfunc (USING_SJLJ_EXCEPTIONS
                        ? "__gcc_personality_sj0"
                        ? "__gcc_personality_sj0"
                        : "__gcc_personality_v0");
                        : "__gcc_personality_v0");
  default_init_unwind_resume_libfunc ();
  default_init_unwind_resume_libfunc ();
  using_eh_for_cleanups ();
  using_eh_for_cleanups ();
}
}
 
 
/* Finish processing of a declaration;
/* Finish processing of a declaration;
   install its initial value.
   install its initial value.
   If the length of an array type is not known before,
   If the length of an array type is not known before,
   it must be determined now, from the initial value, or it is an error.  */
   it must be determined now, from the initial value, or it is an error.  */
 
 
void
void
finish_decl (tree decl, tree init, tree asmspec_tree)
finish_decl (tree decl, tree init, tree asmspec_tree)
{
{
  tree type;
  tree type;
  int was_incomplete = (DECL_SIZE (decl) == 0);
  int was_incomplete = (DECL_SIZE (decl) == 0);
  const char *asmspec = 0;
  const char *asmspec = 0;
 
 
  /* If a name was specified, get the string.  */
  /* If a name was specified, get the string.  */
  if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
  if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
      && DECL_FILE_SCOPE_P (decl))
      && DECL_FILE_SCOPE_P (decl))
    asmspec_tree = maybe_apply_renaming_pragma (decl, asmspec_tree);
    asmspec_tree = maybe_apply_renaming_pragma (decl, asmspec_tree);
  if (asmspec_tree)
  if (asmspec_tree)
    asmspec = TREE_STRING_POINTER (asmspec_tree);
    asmspec = TREE_STRING_POINTER (asmspec_tree);
 
 
  /* If `start_decl' didn't like having an initialization, ignore it now.  */
  /* If `start_decl' didn't like having an initialization, ignore it now.  */
  if (init != 0 && DECL_INITIAL (decl) == 0)
  if (init != 0 && DECL_INITIAL (decl) == 0)
    init = 0;
    init = 0;
 
 
  /* Don't crash if parm is initialized.  */
  /* Don't crash if parm is initialized.  */
  if (TREE_CODE (decl) == PARM_DECL)
  if (TREE_CODE (decl) == PARM_DECL)
    init = 0;
    init = 0;
 
 
  if (init)
  if (init)
    store_init_value (decl, init);
    store_init_value (decl, init);
 
 
  if (c_dialect_objc () && (TREE_CODE (decl) == VAR_DECL
  if (c_dialect_objc () && (TREE_CODE (decl) == VAR_DECL
                            || TREE_CODE (decl) == FUNCTION_DECL
                            || TREE_CODE (decl) == FUNCTION_DECL
                            || TREE_CODE (decl) == FIELD_DECL))
                            || TREE_CODE (decl) == FIELD_DECL))
    objc_check_decl (decl);
    objc_check_decl (decl);
 
 
  type = TREE_TYPE (decl);
  type = TREE_TYPE (decl);
 
 
  /* Deduce size of array from initialization, if not already known.  */
  /* Deduce size of array from initialization, if not already known.  */
  if (TREE_CODE (type) == ARRAY_TYPE
  if (TREE_CODE (type) == ARRAY_TYPE
      && TYPE_DOMAIN (type) == 0
      && TYPE_DOMAIN (type) == 0
      && TREE_CODE (decl) != TYPE_DECL)
      && TREE_CODE (decl) != TYPE_DECL)
    {
    {
      bool do_default
      bool do_default
        = (TREE_STATIC (decl)
        = (TREE_STATIC (decl)
           /* Even if pedantic, an external linkage array
           /* Even if pedantic, an external linkage array
              may have incomplete type at first.  */
              may have incomplete type at first.  */
           ? pedantic && !TREE_PUBLIC (decl)
           ? pedantic && !TREE_PUBLIC (decl)
           : !DECL_EXTERNAL (decl));
           : !DECL_EXTERNAL (decl));
      int failure
      int failure
        = complete_array_type (&TREE_TYPE (decl), DECL_INITIAL (decl),
        = complete_array_type (&TREE_TYPE (decl), DECL_INITIAL (decl),
                               do_default);
                               do_default);
 
 
      /* Get the completed type made by complete_array_type.  */
      /* Get the completed type made by complete_array_type.  */
      type = TREE_TYPE (decl);
      type = TREE_TYPE (decl);
 
 
      switch (failure)
      switch (failure)
        {
        {
        case 1:
        case 1:
          error ("initializer fails to determine size of %q+D", decl);
          error ("initializer fails to determine size of %q+D", decl);
          break;
          break;
 
 
        case 2:
        case 2:
          if (do_default)
          if (do_default)
            error ("array size missing in %q+D", decl);
            error ("array size missing in %q+D", decl);
          /* If a `static' var's size isn't known,
          /* If a `static' var's size isn't known,
             make it extern as well as static, so it does not get
             make it extern as well as static, so it does not get
             allocated.
             allocated.
             If it is not `static', then do not mark extern;
             If it is not `static', then do not mark extern;
             finish_incomplete_decl will give it a default size
             finish_incomplete_decl will give it a default size
             and it will get allocated.  */
             and it will get allocated.  */
          else if (!pedantic && TREE_STATIC (decl) && !TREE_PUBLIC (decl))
          else if (!pedantic && TREE_STATIC (decl) && !TREE_PUBLIC (decl))
            DECL_EXTERNAL (decl) = 1;
            DECL_EXTERNAL (decl) = 1;
          break;
          break;
 
 
        case 3:
        case 3:
          error ("zero or negative size array %q+D", decl);
          error ("zero or negative size array %q+D", decl);
          break;
          break;
 
 
        case 0:
        case 0:
          /* For global variables, update the copy of the type that
          /* For global variables, update the copy of the type that
             exists in the binding.  */
             exists in the binding.  */
          if (TREE_PUBLIC (decl))
          if (TREE_PUBLIC (decl))
            {
            {
              struct c_binding *b_ext = I_SYMBOL_BINDING (DECL_NAME (decl));
              struct c_binding *b_ext = I_SYMBOL_BINDING (DECL_NAME (decl));
              while (b_ext && !B_IN_EXTERNAL_SCOPE (b_ext))
              while (b_ext && !B_IN_EXTERNAL_SCOPE (b_ext))
                b_ext = b_ext->shadowed;
                b_ext = b_ext->shadowed;
              if (b_ext)
              if (b_ext)
                {
                {
                  if (b_ext->type)
                  if (b_ext->type)
                    b_ext->type = composite_type (b_ext->type, type);
                    b_ext->type = composite_type (b_ext->type, type);
                  else
                  else
                    b_ext->type = type;
                    b_ext->type = type;
                }
                }
            }
            }
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
 
 
      if (DECL_INITIAL (decl))
      if (DECL_INITIAL (decl))
        TREE_TYPE (DECL_INITIAL (decl)) = type;
        TREE_TYPE (DECL_INITIAL (decl)) = type;
 
 
      layout_decl (decl, 0);
      layout_decl (decl, 0);
    }
    }
 
 
  if (TREE_CODE (decl) == VAR_DECL)
  if (TREE_CODE (decl) == VAR_DECL)
    {
    {
      if (init && TREE_CODE (init) == CONSTRUCTOR)
      if (init && TREE_CODE (init) == CONSTRUCTOR)
        add_flexible_array_elts_to_size (decl, init);
        add_flexible_array_elts_to_size (decl, init);
 
 
      if (DECL_SIZE (decl) == 0 && TREE_TYPE (decl) != error_mark_node
      if (DECL_SIZE (decl) == 0 && TREE_TYPE (decl) != error_mark_node
          && COMPLETE_TYPE_P (TREE_TYPE (decl)))
          && COMPLETE_TYPE_P (TREE_TYPE (decl)))
        layout_decl (decl, 0);
        layout_decl (decl, 0);
 
 
      if (DECL_SIZE (decl) == 0
      if (DECL_SIZE (decl) == 0
          /* Don't give an error if we already gave one earlier.  */
          /* Don't give an error if we already gave one earlier.  */
          && TREE_TYPE (decl) != error_mark_node
          && TREE_TYPE (decl) != error_mark_node
          && (TREE_STATIC (decl)
          && (TREE_STATIC (decl)
              /* A static variable with an incomplete type
              /* A static variable with an incomplete type
                 is an error if it is initialized.
                 is an error if it is initialized.
                 Also if it is not file scope.
                 Also if it is not file scope.
                 Otherwise, let it through, but if it is not `extern'
                 Otherwise, let it through, but if it is not `extern'
                 then it may cause an error message later.  */
                 then it may cause an error message later.  */
              ? (DECL_INITIAL (decl) != 0
              ? (DECL_INITIAL (decl) != 0
                 || !DECL_FILE_SCOPE_P (decl))
                 || !DECL_FILE_SCOPE_P (decl))
              /* An automatic variable with an incomplete type
              /* An automatic variable with an incomplete type
                 is an error.  */
                 is an error.  */
              : !DECL_EXTERNAL (decl)))
              : !DECL_EXTERNAL (decl)))
         {
         {
           error ("storage size of %q+D isn%'t known", decl);
           error ("storage size of %q+D isn%'t known", decl);
           TREE_TYPE (decl) = error_mark_node;
           TREE_TYPE (decl) = error_mark_node;
         }
         }
 
 
      if ((DECL_EXTERNAL (decl) || TREE_STATIC (decl))
      if ((DECL_EXTERNAL (decl) || TREE_STATIC (decl))
          && DECL_SIZE (decl) != 0)
          && DECL_SIZE (decl) != 0)
        {
        {
          if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST)
          if (TREE_CODE (DECL_SIZE (decl)) == INTEGER_CST)
            constant_expression_warning (DECL_SIZE (decl));
            constant_expression_warning (DECL_SIZE (decl));
          else
          else
            error ("storage size of %q+D isn%'t constant", decl);
            error ("storage size of %q+D isn%'t constant", decl);
        }
        }
 
 
      if (TREE_USED (type))
      if (TREE_USED (type))
        TREE_USED (decl) = 1;
        TREE_USED (decl) = 1;
    }
    }
 
 
  /* If this is a function and an assembler name is specified, reset DECL_RTL
  /* If this is a function and an assembler name is specified, reset DECL_RTL
     so we can give it its new name.  Also, update built_in_decls if it
     so we can give it its new name.  Also, update built_in_decls if it
     was a normal built-in.  */
     was a normal built-in.  */
  if (TREE_CODE (decl) == FUNCTION_DECL && asmspec)
  if (TREE_CODE (decl) == FUNCTION_DECL && asmspec)
    {
    {
      if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
      if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
        set_builtin_user_assembler_name (decl, asmspec);
        set_builtin_user_assembler_name (decl, asmspec);
      set_user_assembler_name (decl, asmspec);
      set_user_assembler_name (decl, asmspec);
    }
    }
 
 
  /* If #pragma weak was used, mark the decl weak now.  */
  /* If #pragma weak was used, mark the decl weak now.  */
  maybe_apply_pragma_weak (decl);
  maybe_apply_pragma_weak (decl);
 
 
  /* Output the assembler code and/or RTL code for variables and functions,
  /* Output the assembler code and/or RTL code for variables and functions,
     unless the type is an undefined structure or union.
     unless the type is an undefined structure or union.
     If not, it will get done when the type is completed.  */
     If not, it will get done when the type is completed.  */
 
 
  if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL)
  if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL)
    {
    {
      /* Determine the ELF visibility.  */
      /* Determine the ELF visibility.  */
      if (TREE_PUBLIC (decl))
      if (TREE_PUBLIC (decl))
        c_determine_visibility (decl);
        c_determine_visibility (decl);
 
 
      /* This is a no-op in c-lang.c or something real in objc-act.c.  */
      /* This is a no-op in c-lang.c or something real in objc-act.c.  */
      if (c_dialect_objc ())
      if (c_dialect_objc ())
        objc_check_decl (decl);
        objc_check_decl (decl);
 
 
      if (asmspec)
      if (asmspec)
        {
        {
          /* If this is not a static variable, issue a warning.
          /* If this is not a static variable, issue a warning.
             It doesn't make any sense to give an ASMSPEC for an
             It doesn't make any sense to give an ASMSPEC for an
             ordinary, non-register local variable.  Historically,
             ordinary, non-register local variable.  Historically,
             GCC has accepted -- but ignored -- the ASMSPEC in
             GCC has accepted -- but ignored -- the ASMSPEC in
             this case.  */
             this case.  */
          if (!DECL_FILE_SCOPE_P (decl)
          if (!DECL_FILE_SCOPE_P (decl)
              && TREE_CODE (decl) == VAR_DECL
              && TREE_CODE (decl) == VAR_DECL
              && !C_DECL_REGISTER (decl)
              && !C_DECL_REGISTER (decl)
              && !TREE_STATIC (decl))
              && !TREE_STATIC (decl))
            warning (0, "ignoring asm-specifier for non-static local "
            warning (0, "ignoring asm-specifier for non-static local "
                     "variable %q+D", decl);
                     "variable %q+D", decl);
          else
          else
            set_user_assembler_name (decl, asmspec);
            set_user_assembler_name (decl, asmspec);
        }
        }
 
 
      if (DECL_FILE_SCOPE_P (decl))
      if (DECL_FILE_SCOPE_P (decl))
        {
        {
          if (DECL_INITIAL (decl) == NULL_TREE
          if (DECL_INITIAL (decl) == NULL_TREE
              || DECL_INITIAL (decl) == error_mark_node)
              || DECL_INITIAL (decl) == error_mark_node)
            /* Don't output anything
            /* Don't output anything
               when a tentative file-scope definition is seen.
               when a tentative file-scope definition is seen.
               But at end of compilation, do output code for them.  */
               But at end of compilation, do output code for them.  */
            DECL_DEFER_OUTPUT (decl) = 1;
            DECL_DEFER_OUTPUT (decl) = 1;
          rest_of_decl_compilation (decl, true, 0);
          rest_of_decl_compilation (decl, true, 0);
        }
        }
      else
      else
        {
        {
          /* In conjunction with an ASMSPEC, the `register'
          /* In conjunction with an ASMSPEC, the `register'
             keyword indicates that we should place the variable
             keyword indicates that we should place the variable
             in a particular register.  */
             in a particular register.  */
          if (asmspec && C_DECL_REGISTER (decl))
          if (asmspec && C_DECL_REGISTER (decl))
            {
            {
              DECL_HARD_REGISTER (decl) = 1;
              DECL_HARD_REGISTER (decl) = 1;
              /* This cannot be done for a structure with volatile
              /* This cannot be done for a structure with volatile
                 fields, on which DECL_REGISTER will have been
                 fields, on which DECL_REGISTER will have been
                 reset.  */
                 reset.  */
              if (!DECL_REGISTER (decl))
              if (!DECL_REGISTER (decl))
                error ("cannot put object with volatile field into register");
                error ("cannot put object with volatile field into register");
            }
            }
 
 
          if (TREE_CODE (decl) != FUNCTION_DECL)
          if (TREE_CODE (decl) != FUNCTION_DECL)
            {
            {
              /* If we're building a variable sized type, and we might be
              /* If we're building a variable sized type, and we might be
                 reachable other than via the top of the current binding
                 reachable other than via the top of the current binding
                 level, then create a new BIND_EXPR so that we deallocate
                 level, then create a new BIND_EXPR so that we deallocate
                 the object at the right time.  */
                 the object at the right time.  */
              /* Note that DECL_SIZE can be null due to errors.  */
              /* Note that DECL_SIZE can be null due to errors.  */
              if (DECL_SIZE (decl)
              if (DECL_SIZE (decl)
                  && !TREE_CONSTANT (DECL_SIZE (decl))
                  && !TREE_CONSTANT (DECL_SIZE (decl))
                  && STATEMENT_LIST_HAS_LABEL (cur_stmt_list))
                  && STATEMENT_LIST_HAS_LABEL (cur_stmt_list))
                {
                {
                  tree bind;
                  tree bind;
                  bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL);
                  bind = build3 (BIND_EXPR, void_type_node, NULL, NULL, NULL);
                  TREE_SIDE_EFFECTS (bind) = 1;
                  TREE_SIDE_EFFECTS (bind) = 1;
                  add_stmt (bind);
                  add_stmt (bind);
                  BIND_EXPR_BODY (bind) = push_stmt_list ();
                  BIND_EXPR_BODY (bind) = push_stmt_list ();
                }
                }
              add_stmt (build_stmt (DECL_EXPR, decl));
              add_stmt (build_stmt (DECL_EXPR, decl));
            }
            }
        }
        }
 
 
 
 
      if (!DECL_FILE_SCOPE_P (decl))
      if (!DECL_FILE_SCOPE_P (decl))
        {
        {
          /* Recompute the RTL of a local array now
          /* Recompute the RTL of a local array now
             if it used to be an incomplete type.  */
             if it used to be an incomplete type.  */
          if (was_incomplete
          if (was_incomplete
              && !TREE_STATIC (decl) && !DECL_EXTERNAL (decl))
              && !TREE_STATIC (decl) && !DECL_EXTERNAL (decl))
            {
            {
              /* If we used it already as memory, it must stay in memory.  */
              /* If we used it already as memory, it must stay in memory.  */
              TREE_ADDRESSABLE (decl) = TREE_USED (decl);
              TREE_ADDRESSABLE (decl) = TREE_USED (decl);
              /* If it's still incomplete now, no init will save it.  */
              /* If it's still incomplete now, no init will save it.  */
              if (DECL_SIZE (decl) == 0)
              if (DECL_SIZE (decl) == 0)
                DECL_INITIAL (decl) = 0;
                DECL_INITIAL (decl) = 0;
            }
            }
        }
        }
    }
    }
 
 
  /* If this was marked 'used', be sure it will be output.  */
  /* If this was marked 'used', be sure it will be output.  */
  if (!flag_unit_at_a_time && lookup_attribute ("used", DECL_ATTRIBUTES (decl)))
  if (!flag_unit_at_a_time && lookup_attribute ("used", DECL_ATTRIBUTES (decl)))
    mark_decl_referenced (decl);
    mark_decl_referenced (decl);
 
 
  if (TREE_CODE (decl) == TYPE_DECL)
  if (TREE_CODE (decl) == TYPE_DECL)
    {
    {
      if (!DECL_FILE_SCOPE_P (decl)
      if (!DECL_FILE_SCOPE_P (decl)
          && variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
          && variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
        add_stmt (build_stmt (DECL_EXPR, decl));
        add_stmt (build_stmt (DECL_EXPR, decl));
 
 
      rest_of_decl_compilation (decl, DECL_FILE_SCOPE_P (decl), 0);
      rest_of_decl_compilation (decl, DECL_FILE_SCOPE_P (decl), 0);
    }
    }
 
 
  /* At the end of a declaration, throw away any variable type sizes
  /* At the end of a declaration, throw away any variable type sizes
     of types defined inside that declaration.  There is no use
     of types defined inside that declaration.  There is no use
     computing them in the following function definition.  */
     computing them in the following function definition.  */
  if (current_scope == file_scope)
  if (current_scope == file_scope)
    get_pending_sizes ();
    get_pending_sizes ();
 
 
  /* Install a cleanup (aka destructor) if one was given.  */
  /* Install a cleanup (aka destructor) if one was given.  */
  if (TREE_CODE (decl) == VAR_DECL && !TREE_STATIC (decl))
  if (TREE_CODE (decl) == VAR_DECL && !TREE_STATIC (decl))
    {
    {
      tree attr = lookup_attribute ("cleanup", DECL_ATTRIBUTES (decl));
      tree attr = lookup_attribute ("cleanup", DECL_ATTRIBUTES (decl));
      if (attr)
      if (attr)
        {
        {
          tree cleanup_id = TREE_VALUE (TREE_VALUE (attr));
          tree cleanup_id = TREE_VALUE (TREE_VALUE (attr));
          tree cleanup_decl = lookup_name (cleanup_id);
          tree cleanup_decl = lookup_name (cleanup_id);
          tree cleanup;
          tree cleanup;
 
 
          /* Build "cleanup(&decl)" for the destructor.  */
          /* Build "cleanup(&decl)" for the destructor.  */
          cleanup = build_unary_op (ADDR_EXPR, decl, 0);
          cleanup = build_unary_op (ADDR_EXPR, decl, 0);
          cleanup = build_tree_list (NULL_TREE, cleanup);
          cleanup = build_tree_list (NULL_TREE, cleanup);
          cleanup = build_function_call (cleanup_decl, cleanup);
          cleanup = build_function_call (cleanup_decl, cleanup);
 
 
          /* Don't warn about decl unused; the cleanup uses it.  */
          /* Don't warn about decl unused; the cleanup uses it.  */
          TREE_USED (decl) = 1;
          TREE_USED (decl) = 1;
          TREE_USED (cleanup_decl) = 1;
          TREE_USED (cleanup_decl) = 1;
 
 
          /* Initialize EH, if we've been told to do so.  */
          /* Initialize EH, if we've been told to do so.  */
          c_maybe_initialize_eh ();
          c_maybe_initialize_eh ();
 
 
          push_cleanup (decl, cleanup, false);
          push_cleanup (decl, cleanup, false);
        }
        }
    }
    }
}
}
 
 
/* Given a parsed parameter declaration, decode it into a PARM_DECL.  */
/* Given a parsed parameter declaration, decode it into a PARM_DECL.  */
 
 
tree
tree
grokparm (const struct c_parm *parm)
grokparm (const struct c_parm *parm)
{
{
  tree decl = grokdeclarator (parm->declarator, parm->specs, PARM, false,
  tree decl = grokdeclarator (parm->declarator, parm->specs, PARM, false,
                              NULL);
                              NULL);
 
 
  decl_attributes (&decl, parm->attrs, 0);
  decl_attributes (&decl, parm->attrs, 0);
 
 
  return decl;
  return decl;
}
}
 
 
/* Given a parsed parameter declaration, decode it into a PARM_DECL
/* Given a parsed parameter declaration, decode it into a PARM_DECL
   and push that on the current scope.  */
   and push that on the current scope.  */
 
 
void
void
push_parm_decl (const struct c_parm *parm)
push_parm_decl (const struct c_parm *parm)
{
{
  tree decl;
  tree decl;
 
 
  decl = grokdeclarator (parm->declarator, parm->specs, PARM, false, NULL);
  decl = grokdeclarator (parm->declarator, parm->specs, PARM, false, NULL);
  decl_attributes (&decl, parm->attrs, 0);
  decl_attributes (&decl, parm->attrs, 0);
 
 
  decl = pushdecl (decl);
  decl = pushdecl (decl);
 
 
  finish_decl (decl, NULL_TREE, NULL_TREE);
  finish_decl (decl, NULL_TREE, NULL_TREE);
}
}
 
 
/* Mark all the parameter declarations to date as forward decls.
/* Mark all the parameter declarations to date as forward decls.
   Also diagnose use of this extension.  */
   Also diagnose use of this extension.  */
 
 
void
void
mark_forward_parm_decls (void)
mark_forward_parm_decls (void)
{
{
  struct c_binding *b;
  struct c_binding *b;
 
 
  if (pedantic && !current_scope->warned_forward_parm_decls)
  if (pedantic && !current_scope->warned_forward_parm_decls)
    {
    {
      pedwarn ("ISO C forbids forward parameter declarations");
      pedwarn ("ISO C forbids forward parameter declarations");
      current_scope->warned_forward_parm_decls = true;
      current_scope->warned_forward_parm_decls = true;
    }
    }
 
 
  for (b = current_scope->bindings; b; b = b->prev)
  for (b = current_scope->bindings; b; b = b->prev)
    if (TREE_CODE (b->decl) == PARM_DECL)
    if (TREE_CODE (b->decl) == PARM_DECL)
      TREE_ASM_WRITTEN (b->decl) = 1;
      TREE_ASM_WRITTEN (b->decl) = 1;
}
}


/* Build a COMPOUND_LITERAL_EXPR.  TYPE is the type given in the compound
/* Build a COMPOUND_LITERAL_EXPR.  TYPE is the type given in the compound
   literal, which may be an incomplete array type completed by the
   literal, which may be an incomplete array type completed by the
   initializer; INIT is a CONSTRUCTOR that initializes the compound
   initializer; INIT is a CONSTRUCTOR that initializes the compound
   literal.  */
   literal.  */
 
 
tree
tree
build_compound_literal (tree type, tree init)
build_compound_literal (tree type, tree init)
{
{
  /* We do not use start_decl here because we have a type, not a declarator;
  /* We do not use start_decl here because we have a type, not a declarator;
     and do not use finish_decl because the decl should be stored inside
     and do not use finish_decl because the decl should be stored inside
     the COMPOUND_LITERAL_EXPR rather than added elsewhere as a DECL_EXPR.  */
     the COMPOUND_LITERAL_EXPR rather than added elsewhere as a DECL_EXPR.  */
  tree decl;
  tree decl;
  tree complit;
  tree complit;
  tree stmt;
  tree stmt;
 
 
  if (type == error_mark_node)
  if (type == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  decl = build_decl (VAR_DECL, NULL_TREE, type);
  decl = build_decl (VAR_DECL, NULL_TREE, type);
  DECL_EXTERNAL (decl) = 0;
  DECL_EXTERNAL (decl) = 0;
  TREE_PUBLIC (decl) = 0;
  TREE_PUBLIC (decl) = 0;
  TREE_STATIC (decl) = (current_scope == file_scope);
  TREE_STATIC (decl) = (current_scope == file_scope);
  DECL_CONTEXT (decl) = current_function_decl;
  DECL_CONTEXT (decl) = current_function_decl;
  TREE_USED (decl) = 1;
  TREE_USED (decl) = 1;
  TREE_TYPE (decl) = type;
  TREE_TYPE (decl) = type;
  TREE_READONLY (decl) = TYPE_READONLY (type);
  TREE_READONLY (decl) = TYPE_READONLY (type);
  store_init_value (decl, init);
  store_init_value (decl, init);
 
 
  if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type))
  if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type))
    {
    {
      int failure = complete_array_type (&TREE_TYPE (decl),
      int failure = complete_array_type (&TREE_TYPE (decl),
                                         DECL_INITIAL (decl), true);
                                         DECL_INITIAL (decl), true);
      gcc_assert (!failure);
      gcc_assert (!failure);
 
 
      type = TREE_TYPE (decl);
      type = TREE_TYPE (decl);
      TREE_TYPE (DECL_INITIAL (decl)) = type;
      TREE_TYPE (DECL_INITIAL (decl)) = type;
    }
    }
 
 
  if (type == error_mark_node || !COMPLETE_TYPE_P (type))
  if (type == error_mark_node || !COMPLETE_TYPE_P (type))
    return error_mark_node;
    return error_mark_node;
 
 
  stmt = build_stmt (DECL_EXPR, decl);
  stmt = build_stmt (DECL_EXPR, decl);
  complit = build1 (COMPOUND_LITERAL_EXPR, type, stmt);
  complit = build1 (COMPOUND_LITERAL_EXPR, type, stmt);
  TREE_SIDE_EFFECTS (complit) = 1;
  TREE_SIDE_EFFECTS (complit) = 1;
 
 
  layout_decl (decl, 0);
  layout_decl (decl, 0);
 
 
  if (TREE_STATIC (decl))
  if (TREE_STATIC (decl))
    {
    {
      /* This decl needs a name for the assembler output.  */
      /* This decl needs a name for the assembler output.  */
      set_compound_literal_name (decl);
      set_compound_literal_name (decl);
      DECL_DEFER_OUTPUT (decl) = 1;
      DECL_DEFER_OUTPUT (decl) = 1;
      DECL_COMDAT (decl) = 1;
      DECL_COMDAT (decl) = 1;
      DECL_ARTIFICIAL (decl) = 1;
      DECL_ARTIFICIAL (decl) = 1;
      DECL_IGNORED_P (decl) = 1;
      DECL_IGNORED_P (decl) = 1;
      pushdecl (decl);
      pushdecl (decl);
      rest_of_decl_compilation (decl, 1, 0);
      rest_of_decl_compilation (decl, 1, 0);
    }
    }
 
 
  return complit;
  return complit;
}
}


/* Determine whether TYPE is a structure with a flexible array member,
/* Determine whether TYPE is a structure with a flexible array member,
   or a union containing such a structure (possibly recursively).  */
   or a union containing such a structure (possibly recursively).  */
 
 
static bool
static bool
flexible_array_type_p (tree type)
flexible_array_type_p (tree type)
{
{
  tree x;
  tree x;
  switch (TREE_CODE (type))
  switch (TREE_CODE (type))
    {
    {
    case RECORD_TYPE:
    case RECORD_TYPE:
      x = TYPE_FIELDS (type);
      x = TYPE_FIELDS (type);
      if (x == NULL_TREE)
      if (x == NULL_TREE)
        return false;
        return false;
      while (TREE_CHAIN (x) != NULL_TREE)
      while (TREE_CHAIN (x) != NULL_TREE)
        x = TREE_CHAIN (x);
        x = TREE_CHAIN (x);
      if (TREE_CODE (TREE_TYPE (x)) == ARRAY_TYPE
      if (TREE_CODE (TREE_TYPE (x)) == ARRAY_TYPE
          && TYPE_SIZE (TREE_TYPE (x)) == NULL_TREE
          && TYPE_SIZE (TREE_TYPE (x)) == NULL_TREE
          && TYPE_DOMAIN (TREE_TYPE (x)) != NULL_TREE
          && TYPE_DOMAIN (TREE_TYPE (x)) != NULL_TREE
          && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (x))) == NULL_TREE)
          && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (x))) == NULL_TREE)
        return true;
        return true;
      return false;
      return false;
    case UNION_TYPE:
    case UNION_TYPE:
      for (x = TYPE_FIELDS (type); x != NULL_TREE; x = TREE_CHAIN (x))
      for (x = TYPE_FIELDS (type); x != NULL_TREE; x = TREE_CHAIN (x))
        {
        {
          if (flexible_array_type_p (TREE_TYPE (x)))
          if (flexible_array_type_p (TREE_TYPE (x)))
            return true;
            return true;
        }
        }
      return false;
      return false;
    default:
    default:
    return false;
    return false;
  }
  }
}
}


/* Performs sanity checks on the TYPE and WIDTH of the bit-field NAME,
/* Performs sanity checks on the TYPE and WIDTH of the bit-field NAME,
   replacing with appropriate values if they are invalid.  */
   replacing with appropriate values if they are invalid.  */
static void
static void
check_bitfield_type_and_width (tree *type, tree *width, const char *orig_name)
check_bitfield_type_and_width (tree *type, tree *width, const char *orig_name)
{
{
  tree type_mv;
  tree type_mv;
  unsigned int max_width;
  unsigned int max_width;
  unsigned HOST_WIDE_INT w;
  unsigned HOST_WIDE_INT w;
  const char *name = orig_name ? orig_name: _("<anonymous>");
  const char *name = orig_name ? orig_name: _("<anonymous>");
 
 
  /* Detect and ignore out of range field width and process valid
  /* Detect and ignore out of range field width and process valid
     field widths.  */
     field widths.  */
  if (!INTEGRAL_TYPE_P (TREE_TYPE (*width))
  if (!INTEGRAL_TYPE_P (TREE_TYPE (*width))
      || TREE_CODE (*width) != INTEGER_CST)
      || TREE_CODE (*width) != INTEGER_CST)
    {
    {
      error ("bit-field %qs width not an integer constant", name);
      error ("bit-field %qs width not an integer constant", name);
      *width = integer_one_node;
      *width = integer_one_node;
    }
    }
  else
  else
    {
    {
      constant_expression_warning (*width);
      constant_expression_warning (*width);
      if (tree_int_cst_sgn (*width) < 0)
      if (tree_int_cst_sgn (*width) < 0)
        {
        {
          error ("negative width in bit-field %qs", name);
          error ("negative width in bit-field %qs", name);
          *width = integer_one_node;
          *width = integer_one_node;
        }
        }
      else if (integer_zerop (*width) && orig_name)
      else if (integer_zerop (*width) && orig_name)
        {
        {
          error ("zero width for bit-field %qs", name);
          error ("zero width for bit-field %qs", name);
          *width = integer_one_node;
          *width = integer_one_node;
        }
        }
    }
    }
 
 
  /* Detect invalid bit-field type.  */
  /* Detect invalid bit-field type.  */
  if (TREE_CODE (*type) != INTEGER_TYPE
  if (TREE_CODE (*type) != INTEGER_TYPE
      && TREE_CODE (*type) != BOOLEAN_TYPE
      && TREE_CODE (*type) != BOOLEAN_TYPE
      && TREE_CODE (*type) != ENUMERAL_TYPE)
      && TREE_CODE (*type) != ENUMERAL_TYPE)
    {
    {
      error ("bit-field %qs has invalid type", name);
      error ("bit-field %qs has invalid type", name);
      *type = unsigned_type_node;
      *type = unsigned_type_node;
    }
    }
 
 
  type_mv = TYPE_MAIN_VARIANT (*type);
  type_mv = TYPE_MAIN_VARIANT (*type);
  if (pedantic
  if (pedantic
      && !in_system_header
      && !in_system_header
      && type_mv != integer_type_node
      && type_mv != integer_type_node
      && type_mv != unsigned_type_node
      && type_mv != unsigned_type_node
      && type_mv != boolean_type_node)
      && type_mv != boolean_type_node)
    pedwarn ("type of bit-field %qs is a GCC extension", name);
    pedwarn ("type of bit-field %qs is a GCC extension", name);
 
 
  if (type_mv == boolean_type_node)
  if (type_mv == boolean_type_node)
    max_width = CHAR_TYPE_SIZE;
    max_width = CHAR_TYPE_SIZE;
  else
  else
    max_width = TYPE_PRECISION (*type);
    max_width = TYPE_PRECISION (*type);
 
 
  if (0 < compare_tree_int (*width, max_width))
  if (0 < compare_tree_int (*width, max_width))
    {
    {
      error ("width of %qs exceeds its type", name);
      error ("width of %qs exceeds its type", name);
      w = max_width;
      w = max_width;
      *width = build_int_cst (NULL_TREE, w);
      *width = build_int_cst (NULL_TREE, w);
    }
    }
  else
  else
    w = tree_low_cst (*width, 1);
    w = tree_low_cst (*width, 1);
 
 
  if (TREE_CODE (*type) == ENUMERAL_TYPE)
  if (TREE_CODE (*type) == ENUMERAL_TYPE)
    {
    {
      struct lang_type *lt = TYPE_LANG_SPECIFIC (*type);
      struct lang_type *lt = TYPE_LANG_SPECIFIC (*type);
      if (!lt
      if (!lt
          || w < min_precision (lt->enum_min, TYPE_UNSIGNED (*type))
          || w < min_precision (lt->enum_min, TYPE_UNSIGNED (*type))
          || w < min_precision (lt->enum_max, TYPE_UNSIGNED (*type)))
          || w < min_precision (lt->enum_max, TYPE_UNSIGNED (*type)))
        warning (0, "%qs is narrower than values of its type", name);
        warning (0, "%qs is narrower than values of its type", name);
    }
    }
}
}
 
 


/* Given declspecs and a declarator,
/* Given declspecs and a declarator,
   determine the name and type of the object declared
   determine the name and type of the object declared
   and construct a ..._DECL node for it.
   and construct a ..._DECL node for it.
   (In one case we can return a ..._TYPE node instead.
   (In one case we can return a ..._TYPE node instead.
    For invalid input we sometimes return 0.)
    For invalid input we sometimes return 0.)
 
 
   DECLSPECS is a c_declspecs structure for the declaration specifiers.
   DECLSPECS is a c_declspecs structure for the declaration specifiers.
 
 
   DECL_CONTEXT says which syntactic context this declaration is in:
   DECL_CONTEXT says which syntactic context this declaration is in:
     NORMAL for most contexts.  Make a VAR_DECL or FUNCTION_DECL or TYPE_DECL.
     NORMAL for most contexts.  Make a VAR_DECL or FUNCTION_DECL or TYPE_DECL.
     FUNCDEF for a function definition.  Like NORMAL but a few different
     FUNCDEF for a function definition.  Like NORMAL but a few different
      error messages in each case.  Return value may be zero meaning
      error messages in each case.  Return value may be zero meaning
      this definition is too screwy to try to parse.
      this definition is too screwy to try to parse.
     PARM for a parameter declaration (either within a function prototype
     PARM for a parameter declaration (either within a function prototype
      or before a function body).  Make a PARM_DECL, or return void_type_node.
      or before a function body).  Make a PARM_DECL, or return void_type_node.
     TYPENAME if for a typename (in a cast or sizeof).
     TYPENAME if for a typename (in a cast or sizeof).
      Don't make a DECL node; just return the ..._TYPE node.
      Don't make a DECL node; just return the ..._TYPE node.
     FIELD for a struct or union field; make a FIELD_DECL.
     FIELD for a struct or union field; make a FIELD_DECL.
   INITIALIZED is true if the decl has an initializer.
   INITIALIZED is true if the decl has an initializer.
   WIDTH is non-NULL for bit-fields, and is a pointer to an INTEGER_CST node
   WIDTH is non-NULL for bit-fields, and is a pointer to an INTEGER_CST node
   representing the width of the bit-field.
   representing the width of the bit-field.
 
 
   In the TYPENAME case, DECLARATOR is really an absolute declarator.
   In the TYPENAME case, DECLARATOR is really an absolute declarator.
   It may also be so in the PARM case, for a prototype where the
   It may also be so in the PARM case, for a prototype where the
   argument type is specified but not the name.
   argument type is specified but not the name.
 
 
   This function is where the complicated C meanings of `static'
   This function is where the complicated C meanings of `static'
   and `extern' are interpreted.  */
   and `extern' are interpreted.  */
 
 
static tree
static tree
grokdeclarator (const struct c_declarator *declarator,
grokdeclarator (const struct c_declarator *declarator,
                struct c_declspecs *declspecs,
                struct c_declspecs *declspecs,
                enum decl_context decl_context, bool initialized, tree *width)
                enum decl_context decl_context, bool initialized, tree *width)
{
{
  tree type = declspecs->type;
  tree type = declspecs->type;
  bool threadp = declspecs->thread_p;
  bool threadp = declspecs->thread_p;
  enum c_storage_class storage_class = declspecs->storage_class;
  enum c_storage_class storage_class = declspecs->storage_class;
  int constp;
  int constp;
  int restrictp;
  int restrictp;
  int volatilep;
  int volatilep;
  int type_quals = TYPE_UNQUALIFIED;
  int type_quals = TYPE_UNQUALIFIED;
  const char *name, *orig_name;
  const char *name, *orig_name;
  tree typedef_type = 0;
  tree typedef_type = 0;
  bool funcdef_flag = false;
  bool funcdef_flag = false;
  bool funcdef_syntax = false;
  bool funcdef_syntax = false;
  int size_varies = 0;
  int size_varies = 0;
  tree decl_attr = declspecs->decl_attr;
  tree decl_attr = declspecs->decl_attr;
  int array_ptr_quals = TYPE_UNQUALIFIED;
  int array_ptr_quals = TYPE_UNQUALIFIED;
  tree array_ptr_attrs = NULL_TREE;
  tree array_ptr_attrs = NULL_TREE;
  int array_parm_static = 0;
  int array_parm_static = 0;
  bool array_parm_vla_unspec_p = false;
  bool array_parm_vla_unspec_p = false;
  tree returned_attrs = NULL_TREE;
  tree returned_attrs = NULL_TREE;
  bool bitfield = width != NULL;
  bool bitfield = width != NULL;
  tree element_type;
  tree element_type;
  struct c_arg_info *arg_info = 0;
  struct c_arg_info *arg_info = 0;
 
 
  if (decl_context == FUNCDEF)
  if (decl_context == FUNCDEF)
    funcdef_flag = true, decl_context = NORMAL;
    funcdef_flag = true, decl_context = NORMAL;
 
 
  /* Look inside a declarator for the name being declared
  /* Look inside a declarator for the name being declared
     and get it as a string, for an error message.  */
     and get it as a string, for an error message.  */
  {
  {
    const struct c_declarator *decl = declarator;
    const struct c_declarator *decl = declarator;
    name = 0;
    name = 0;
 
 
    while (decl)
    while (decl)
      switch (decl->kind)
      switch (decl->kind)
        {
        {
        case cdk_function:
        case cdk_function:
        case cdk_array:
        case cdk_array:
        case cdk_pointer:
        case cdk_pointer:
          funcdef_syntax = (decl->kind == cdk_function);
          funcdef_syntax = (decl->kind == cdk_function);
          decl = decl->declarator;
          decl = decl->declarator;
          break;
          break;
 
 
        case cdk_attrs:
        case cdk_attrs:
          decl = decl->declarator;
          decl = decl->declarator;
          break;
          break;
 
 
        case cdk_id:
        case cdk_id:
          if (decl->u.id)
          if (decl->u.id)
            name = IDENTIFIER_POINTER (decl->u.id);
            name = IDENTIFIER_POINTER (decl->u.id);
          decl = 0;
          decl = 0;
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    orig_name = name;
    orig_name = name;
    if (name == 0)
    if (name == 0)
      name = "type name";
      name = "type name";
  }
  }
 
 
  /* A function definition's declarator must have the form of
  /* A function definition's declarator must have the form of
     a function declarator.  */
     a function declarator.  */
 
 
  if (funcdef_flag && !funcdef_syntax)
  if (funcdef_flag && !funcdef_syntax)
    return 0;
    return 0;
 
 
  /* If this looks like a function definition, make it one,
  /* If this looks like a function definition, make it one,
     even if it occurs where parms are expected.
     even if it occurs where parms are expected.
     Then store_parm_decls will reject it and not use it as a parm.  */
     Then store_parm_decls will reject it and not use it as a parm.  */
  if (decl_context == NORMAL && !funcdef_flag && current_scope->parm_flag)
  if (decl_context == NORMAL && !funcdef_flag && current_scope->parm_flag)
    decl_context = PARM;
    decl_context = PARM;
 
 
  if (declspecs->deprecated_p && deprecated_state != DEPRECATED_SUPPRESS)
  if (declspecs->deprecated_p && deprecated_state != DEPRECATED_SUPPRESS)
    warn_deprecated_use (declspecs->type);
    warn_deprecated_use (declspecs->type);
 
 
  if ((decl_context == NORMAL || decl_context == FIELD)
  if ((decl_context == NORMAL || decl_context == FIELD)
      && current_scope == file_scope
      && current_scope == file_scope
      && variably_modified_type_p (type, NULL_TREE))
      && variably_modified_type_p (type, NULL_TREE))
    {
    {
      error ("variably modified %qs at file scope", name);
      error ("variably modified %qs at file scope", name);
      type = integer_type_node;
      type = integer_type_node;
    }
    }
 
 
  typedef_type = type;
  typedef_type = type;
  size_varies = C_TYPE_VARIABLE_SIZE (type);
  size_varies = C_TYPE_VARIABLE_SIZE (type);
 
 
  /* Diagnose defaulting to "int".  */
  /* Diagnose defaulting to "int".  */
 
 
  if (declspecs->default_int_p && !in_system_header)
  if (declspecs->default_int_p && !in_system_header)
    {
    {
      /* Issue a warning if this is an ISO C 99 program or if
      /* Issue a warning if this is an ISO C 99 program or if
         -Wreturn-type and this is a function, or if -Wimplicit;
         -Wreturn-type and this is a function, or if -Wimplicit;
         prefer the former warning since it is more explicit.  */
         prefer the former warning since it is more explicit.  */
      if ((warn_implicit_int || warn_return_type || flag_isoc99)
      if ((warn_implicit_int || warn_return_type || flag_isoc99)
          && funcdef_flag)
          && funcdef_flag)
        warn_about_return_type = 1;
        warn_about_return_type = 1;
      else if (warn_implicit_int || flag_isoc99)
      else if (warn_implicit_int || flag_isoc99)
        pedwarn_c99 ("type defaults to %<int%> in declaration of %qs", name);
        pedwarn_c99 ("type defaults to %<int%> in declaration of %qs", name);
    }
    }
 
 
  /* Adjust the type if a bit-field is being declared,
  /* Adjust the type if a bit-field is being declared,
     -funsigned-bitfields applied and the type is not explicitly
     -funsigned-bitfields applied and the type is not explicitly
     "signed".  */
     "signed".  */
  if (bitfield && !flag_signed_bitfields && !declspecs->explicit_signed_p
  if (bitfield && !flag_signed_bitfields && !declspecs->explicit_signed_p
      && TREE_CODE (type) == INTEGER_TYPE)
      && TREE_CODE (type) == INTEGER_TYPE)
    type = c_common_unsigned_type (type);
    type = c_common_unsigned_type (type);
 
 
  /* Figure out the type qualifiers for the declaration.  There are
  /* Figure out the type qualifiers for the declaration.  There are
     two ways a declaration can become qualified.  One is something
     two ways a declaration can become qualified.  One is something
     like `const int i' where the `const' is explicit.  Another is
     like `const int i' where the `const' is explicit.  Another is
     something like `typedef const int CI; CI i' where the type of the
     something like `typedef const int CI; CI i' where the type of the
     declaration contains the `const'.  A third possibility is that
     declaration contains the `const'.  A third possibility is that
     there is a type qualifier on the element type of a typedefed
     there is a type qualifier on the element type of a typedefed
     array type, in which case we should extract that qualifier so
     array type, in which case we should extract that qualifier so
     that c_apply_type_quals_to_decls receives the full list of
     that c_apply_type_quals_to_decls receives the full list of
     qualifiers to work with (C90 is not entirely clear about whether
     qualifiers to work with (C90 is not entirely clear about whether
     duplicate qualifiers should be diagnosed in this case, but it
     duplicate qualifiers should be diagnosed in this case, but it
     seems most appropriate to do so).  */
     seems most appropriate to do so).  */
  element_type = strip_array_types (type);
  element_type = strip_array_types (type);
  constp = declspecs->const_p + TYPE_READONLY (element_type);
  constp = declspecs->const_p + TYPE_READONLY (element_type);
  restrictp = declspecs->restrict_p + TYPE_RESTRICT (element_type);
  restrictp = declspecs->restrict_p + TYPE_RESTRICT (element_type);
  volatilep = declspecs->volatile_p + TYPE_VOLATILE (element_type);
  volatilep = declspecs->volatile_p + TYPE_VOLATILE (element_type);
  if (pedantic && !flag_isoc99)
  if (pedantic && !flag_isoc99)
    {
    {
      if (constp > 1)
      if (constp > 1)
        pedwarn ("duplicate %<const%>");
        pedwarn ("duplicate %<const%>");
      if (restrictp > 1)
      if (restrictp > 1)
        pedwarn ("duplicate %<restrict%>");
        pedwarn ("duplicate %<restrict%>");
      if (volatilep > 1)
      if (volatilep > 1)
        pedwarn ("duplicate %<volatile%>");
        pedwarn ("duplicate %<volatile%>");
    }
    }
  if (!flag_gen_aux_info && (TYPE_QUALS (element_type)))
  if (!flag_gen_aux_info && (TYPE_QUALS (element_type)))
    type = TYPE_MAIN_VARIANT (type);
    type = TYPE_MAIN_VARIANT (type);
  type_quals = ((constp ? TYPE_QUAL_CONST : 0)
  type_quals = ((constp ? TYPE_QUAL_CONST : 0)
                | (restrictp ? TYPE_QUAL_RESTRICT : 0)
                | (restrictp ? TYPE_QUAL_RESTRICT : 0)
                | (volatilep ? TYPE_QUAL_VOLATILE : 0));
                | (volatilep ? TYPE_QUAL_VOLATILE : 0));
 
 
  /* Warn about storage classes that are invalid for certain
  /* Warn about storage classes that are invalid for certain
     kinds of declarations (parameters, typenames, etc.).  */
     kinds of declarations (parameters, typenames, etc.).  */
 
 
  if (funcdef_flag
  if (funcdef_flag
      && (threadp
      && (threadp
          || storage_class == csc_auto
          || storage_class == csc_auto
          || storage_class == csc_register
          || storage_class == csc_register
          || storage_class == csc_typedef))
          || storage_class == csc_typedef))
    {
    {
      if (storage_class == csc_auto
      if (storage_class == csc_auto
          && (pedantic || current_scope == file_scope))
          && (pedantic || current_scope == file_scope))
        pedwarn ("function definition declared %<auto%>");
        pedwarn ("function definition declared %<auto%>");
      if (storage_class == csc_register)
      if (storage_class == csc_register)
        error ("function definition declared %<register%>");
        error ("function definition declared %<register%>");
      if (storage_class == csc_typedef)
      if (storage_class == csc_typedef)
        error ("function definition declared %<typedef%>");
        error ("function definition declared %<typedef%>");
      if (threadp)
      if (threadp)
        error ("function definition declared %<__thread%>");
        error ("function definition declared %<__thread%>");
      threadp = false;
      threadp = false;
      if (storage_class == csc_auto
      if (storage_class == csc_auto
          || storage_class == csc_register
          || storage_class == csc_register
          || storage_class == csc_typedef)
          || storage_class == csc_typedef)
        storage_class = csc_none;
        storage_class = csc_none;
    }
    }
  else if (decl_context != NORMAL && (storage_class != csc_none || threadp))
  else if (decl_context != NORMAL && (storage_class != csc_none || threadp))
    {
    {
      if (decl_context == PARM && storage_class == csc_register)
      if (decl_context == PARM && storage_class == csc_register)
        ;
        ;
      else
      else
        {
        {
          switch (decl_context)
          switch (decl_context)
            {
            {
            case FIELD:
            case FIELD:
              error ("storage class specified for structure field %qs",
              error ("storage class specified for structure field %qs",
                     name);
                     name);
              break;
              break;
            case PARM:
            case PARM:
              error ("storage class specified for parameter %qs", name);
              error ("storage class specified for parameter %qs", name);
              break;
              break;
            default:
            default:
              error ("storage class specified for typename");
              error ("storage class specified for typename");
              break;
              break;
            }
            }
          storage_class = csc_none;
          storage_class = csc_none;
          threadp = false;
          threadp = false;
        }
        }
    }
    }
  else if (storage_class == csc_extern
  else if (storage_class == csc_extern
           && initialized
           && initialized
           && !funcdef_flag)
           && !funcdef_flag)
    {
    {
      /* 'extern' with initialization is invalid if not at file scope.  */
      /* 'extern' with initialization is invalid if not at file scope.  */
       if (current_scope == file_scope)
       if (current_scope == file_scope)
         {
         {
           /* It is fine to have 'extern const' when compiling at C
           /* It is fine to have 'extern const' when compiling at C
              and C++ intersection.  */
              and C++ intersection.  */
           if (!(warn_cxx_compat && constp))
           if (!(warn_cxx_compat && constp))
             warning (0, "%qs initialized and declared %<extern%>", name);
             warning (0, "%qs initialized and declared %<extern%>", name);
         }
         }
      else
      else
        error ("%qs has both %<extern%> and initializer", name);
        error ("%qs has both %<extern%> and initializer", name);
    }
    }
  else if (current_scope == file_scope)
  else if (current_scope == file_scope)
    {
    {
      if (storage_class == csc_auto)
      if (storage_class == csc_auto)
        error ("file-scope declaration of %qs specifies %<auto%>", name);
        error ("file-scope declaration of %qs specifies %<auto%>", name);
      if (pedantic && storage_class == csc_register)
      if (pedantic && storage_class == csc_register)
        pedwarn ("file-scope declaration of %qs specifies %<register%>", name);
        pedwarn ("file-scope declaration of %qs specifies %<register%>", name);
    }
    }
  else
  else
    {
    {
      if (storage_class == csc_extern && funcdef_flag)
      if (storage_class == csc_extern && funcdef_flag)
        error ("nested function %qs declared %<extern%>", name);
        error ("nested function %qs declared %<extern%>", name);
      else if (threadp && storage_class == csc_none)
      else if (threadp && storage_class == csc_none)
        {
        {
          error ("function-scope %qs implicitly auto and declared "
          error ("function-scope %qs implicitly auto and declared "
                 "%<__thread%>",
                 "%<__thread%>",
                 name);
                 name);
          threadp = false;
          threadp = false;
        }
        }
    }
    }
 
 
  /* Now figure out the structure of the declarator proper.
  /* Now figure out the structure of the declarator proper.
     Descend through it, creating more complex types, until we reach
     Descend through it, creating more complex types, until we reach
     the declared identifier (or NULL_TREE, in an absolute declarator).
     the declared identifier (or NULL_TREE, in an absolute declarator).
     At each stage we maintain an unqualified version of the type
     At each stage we maintain an unqualified version of the type
     together with any qualifiers that should be applied to it with
     together with any qualifiers that should be applied to it with
     c_build_qualified_type; this way, array types including
     c_build_qualified_type; this way, array types including
     multidimensional array types are first built up in unqualified
     multidimensional array types are first built up in unqualified
     form and then the qualified form is created with
     form and then the qualified form is created with
     TYPE_MAIN_VARIANT pointing to the unqualified form.  */
     TYPE_MAIN_VARIANT pointing to the unqualified form.  */
 
 
  while (declarator && declarator->kind != cdk_id)
  while (declarator && declarator->kind != cdk_id)
    {
    {
      if (type == error_mark_node)
      if (type == error_mark_node)
        {
        {
          declarator = declarator->declarator;
          declarator = declarator->declarator;
          continue;
          continue;
        }
        }
 
 
      /* Each level of DECLARATOR is either a cdk_array (for ...[..]),
      /* Each level of DECLARATOR is either a cdk_array (for ...[..]),
         a cdk_pointer (for *...),
         a cdk_pointer (for *...),
         a cdk_function (for ...(...)),
         a cdk_function (for ...(...)),
         a cdk_attrs (for nested attributes),
         a cdk_attrs (for nested attributes),
         or a cdk_id (for the name being declared
         or a cdk_id (for the name being declared
         or the place in an absolute declarator
         or the place in an absolute declarator
         where the name was omitted).
         where the name was omitted).
         For the last case, we have just exited the loop.
         For the last case, we have just exited the loop.
 
 
         At this point, TYPE is the type of elements of an array,
         At this point, TYPE is the type of elements of an array,
         or for a function to return, or for a pointer to point to.
         or for a function to return, or for a pointer to point to.
         After this sequence of ifs, TYPE is the type of the
         After this sequence of ifs, TYPE is the type of the
         array or function or pointer, and DECLARATOR has had its
         array or function or pointer, and DECLARATOR has had its
         outermost layer removed.  */
         outermost layer removed.  */
 
 
      if (array_ptr_quals != TYPE_UNQUALIFIED
      if (array_ptr_quals != TYPE_UNQUALIFIED
          || array_ptr_attrs != NULL_TREE
          || array_ptr_attrs != NULL_TREE
          || array_parm_static)
          || array_parm_static)
        {
        {
          /* Only the innermost declarator (making a parameter be of
          /* Only the innermost declarator (making a parameter be of
             array type which is converted to pointer type)
             array type which is converted to pointer type)
             may have static or type qualifiers.  */
             may have static or type qualifiers.  */
          error ("static or type qualifiers in non-parameter array declarator");
          error ("static or type qualifiers in non-parameter array declarator");
          array_ptr_quals = TYPE_UNQUALIFIED;
          array_ptr_quals = TYPE_UNQUALIFIED;
          array_ptr_attrs = NULL_TREE;
          array_ptr_attrs = NULL_TREE;
          array_parm_static = 0;
          array_parm_static = 0;
        }
        }
 
 
      switch (declarator->kind)
      switch (declarator->kind)
        {
        {
        case cdk_attrs:
        case cdk_attrs:
          {
          {
            /* A declarator with embedded attributes.  */
            /* A declarator with embedded attributes.  */
            tree attrs = declarator->u.attrs;
            tree attrs = declarator->u.attrs;
            const struct c_declarator *inner_decl;
            const struct c_declarator *inner_decl;
            int attr_flags = 0;
            int attr_flags = 0;
            declarator = declarator->declarator;
            declarator = declarator->declarator;
            inner_decl = declarator;
            inner_decl = declarator;
            while (inner_decl->kind == cdk_attrs)
            while (inner_decl->kind == cdk_attrs)
              inner_decl = inner_decl->declarator;
              inner_decl = inner_decl->declarator;
            if (inner_decl->kind == cdk_id)
            if (inner_decl->kind == cdk_id)
              attr_flags |= (int) ATTR_FLAG_DECL_NEXT;
              attr_flags |= (int) ATTR_FLAG_DECL_NEXT;
            else if (inner_decl->kind == cdk_function)
            else if (inner_decl->kind == cdk_function)
              attr_flags |= (int) ATTR_FLAG_FUNCTION_NEXT;
              attr_flags |= (int) ATTR_FLAG_FUNCTION_NEXT;
            else if (inner_decl->kind == cdk_array)
            else if (inner_decl->kind == cdk_array)
              attr_flags |= (int) ATTR_FLAG_ARRAY_NEXT;
              attr_flags |= (int) ATTR_FLAG_ARRAY_NEXT;
            returned_attrs = decl_attributes (&type,
            returned_attrs = decl_attributes (&type,
                                              chainon (returned_attrs, attrs),
                                              chainon (returned_attrs, attrs),
                                              attr_flags);
                                              attr_flags);
            break;
            break;
          }
          }
        case cdk_array:
        case cdk_array:
          {
          {
            tree itype = NULL_TREE;
            tree itype = NULL_TREE;
            tree size = declarator->u.array.dimen;
            tree size = declarator->u.array.dimen;
            /* The index is a signed object `sizetype' bits wide.  */
            /* The index is a signed object `sizetype' bits wide.  */
            tree index_type = c_common_signed_type (sizetype);
            tree index_type = c_common_signed_type (sizetype);
 
 
            array_ptr_quals = declarator->u.array.quals;
            array_ptr_quals = declarator->u.array.quals;
            array_ptr_attrs = declarator->u.array.attrs;
            array_ptr_attrs = declarator->u.array.attrs;
            array_parm_static = declarator->u.array.static_p;
            array_parm_static = declarator->u.array.static_p;
            array_parm_vla_unspec_p = declarator->u.array.vla_unspec_p;
            array_parm_vla_unspec_p = declarator->u.array.vla_unspec_p;
 
 
            declarator = declarator->declarator;
            declarator = declarator->declarator;
 
 
            /* Check for some types that there cannot be arrays of.  */
            /* Check for some types that there cannot be arrays of.  */
 
 
            if (VOID_TYPE_P (type))
            if (VOID_TYPE_P (type))
              {
              {
                error ("declaration of %qs as array of voids", name);
                error ("declaration of %qs as array of voids", name);
                type = error_mark_node;
                type = error_mark_node;
              }
              }
 
 
            if (TREE_CODE (type) == FUNCTION_TYPE)
            if (TREE_CODE (type) == FUNCTION_TYPE)
              {
              {
                error ("declaration of %qs as array of functions", name);
                error ("declaration of %qs as array of functions", name);
                type = error_mark_node;
                type = error_mark_node;
              }
              }
 
 
            if (pedantic && !in_system_header && flexible_array_type_p (type))
            if (pedantic && !in_system_header && flexible_array_type_p (type))
              pedwarn ("invalid use of structure with flexible array member");
              pedwarn ("invalid use of structure with flexible array member");
 
 
            if (size == error_mark_node)
            if (size == error_mark_node)
              type = error_mark_node;
              type = error_mark_node;
 
 
            if (type == error_mark_node)
            if (type == error_mark_node)
              continue;
              continue;
 
 
            /* If size was specified, set ITYPE to a range-type for
            /* If size was specified, set ITYPE to a range-type for
               that size.  Otherwise, ITYPE remains null.  finish_decl
               that size.  Otherwise, ITYPE remains null.  finish_decl
               may figure it out from an initial value.  */
               may figure it out from an initial value.  */
 
 
            if (size)
            if (size)
              {
              {
                /* Strip NON_LVALUE_EXPRs since we aren't using as an
                /* Strip NON_LVALUE_EXPRs since we aren't using as an
                   lvalue.  */
                   lvalue.  */
                STRIP_TYPE_NOPS (size);
                STRIP_TYPE_NOPS (size);
 
 
                if (!INTEGRAL_TYPE_P (TREE_TYPE (size)))
                if (!INTEGRAL_TYPE_P (TREE_TYPE (size)))
                  {
                  {
                    error ("size of array %qs has non-integer type", name);
                    error ("size of array %qs has non-integer type", name);
                    size = integer_one_node;
                    size = integer_one_node;
                  }
                  }
 
 
                if (pedantic && integer_zerop (size))
                if (pedantic && integer_zerop (size))
                  pedwarn ("ISO C forbids zero-size array %qs", name);
                  pedwarn ("ISO C forbids zero-size array %qs", name);
 
 
                if (TREE_CODE (size) == INTEGER_CST)
                if (TREE_CODE (size) == INTEGER_CST)
                  {
                  {
                    constant_expression_warning (size);
                    constant_expression_warning (size);
                    if (tree_int_cst_sgn (size) < 0)
                    if (tree_int_cst_sgn (size) < 0)
                      {
                      {
                        error ("size of array %qs is negative", name);
                        error ("size of array %qs is negative", name);
                        size = integer_one_node;
                        size = integer_one_node;
                      }
                      }
                  }
                  }
                else if ((decl_context == NORMAL || decl_context == FIELD)
                else if ((decl_context == NORMAL || decl_context == FIELD)
                         && current_scope == file_scope)
                         && current_scope == file_scope)
                  {
                  {
                    error ("variably modified %qs at file scope", name);
                    error ("variably modified %qs at file scope", name);
                    size = integer_one_node;
                    size = integer_one_node;
                  }
                  }
                else
                else
                  {
                  {
                    /* Make sure the array size remains visibly
                    /* Make sure the array size remains visibly
                       nonconstant even if it is (eg) a const variable
                       nonconstant even if it is (eg) a const variable
                       with known value.  */
                       with known value.  */
                    size_varies = 1;
                    size_varies = 1;
 
 
                    if (!flag_isoc99 && pedantic)
                    if (!flag_isoc99 && pedantic)
                      {
                      {
                        if (TREE_CONSTANT (size))
                        if (TREE_CONSTANT (size))
                          pedwarn ("ISO C90 forbids array %qs whose size "
                          pedwarn ("ISO C90 forbids array %qs whose size "
                                   "can%'t be evaluated",
                                   "can%'t be evaluated",
                                   name);
                                   name);
                        else
                        else
                          pedwarn ("ISO C90 forbids variable-size array %qs",
                          pedwarn ("ISO C90 forbids variable-size array %qs",
                                   name);
                                   name);
                      }
                      }
                  }
                  }
 
 
                if (integer_zerop (size))
                if (integer_zerop (size))
                  {
                  {
                    /* A zero-length array cannot be represented with
                    /* A zero-length array cannot be represented with
                       an unsigned index type, which is what we'll
                       an unsigned index type, which is what we'll
                       get with build_index_type.  Create an
                       get with build_index_type.  Create an
                       open-ended range instead.  */
                       open-ended range instead.  */
                    itype = build_range_type (sizetype, size, NULL_TREE);
                    itype = build_range_type (sizetype, size, NULL_TREE);
                  }
                  }
                else
                else
                  {
                  {
                    /* Arrange for the SAVE_EXPR on the inside of the
                    /* Arrange for the SAVE_EXPR on the inside of the
                       MINUS_EXPR, which allows the -1 to get folded
                       MINUS_EXPR, which allows the -1 to get folded
                       with the +1 that happens when building TYPE_SIZE.  */
                       with the +1 that happens when building TYPE_SIZE.  */
                    if (size_varies)
                    if (size_varies)
                      size = variable_size (size);
                      size = variable_size (size);
 
 
                    /* Compute the maximum valid index, that is, size
                    /* Compute the maximum valid index, that is, size
                       - 1.  Do the calculation in index_type, so that
                       - 1.  Do the calculation in index_type, so that
                       if it is a variable the computations will be
                       if it is a variable the computations will be
                       done in the proper mode.  */
                       done in the proper mode.  */
                    itype = fold_build2 (MINUS_EXPR, index_type,
                    itype = fold_build2 (MINUS_EXPR, index_type,
                                         convert (index_type, size),
                                         convert (index_type, size),
                                         convert (index_type,
                                         convert (index_type,
                                                  size_one_node));
                                                  size_one_node));
 
 
                    /* If that overflowed, the array is too big.  ???
                    /* If that overflowed, the array is too big.  ???
                       While a size of INT_MAX+1 technically shouldn't
                       While a size of INT_MAX+1 technically shouldn't
                       cause an overflow (because we subtract 1), the
                       cause an overflow (because we subtract 1), the
                       overflow is recorded during the conversion to
                       overflow is recorded during the conversion to
                       index_type, before the subtraction.  Handling
                       index_type, before the subtraction.  Handling
                       this case seems like an unnecessary
                       this case seems like an unnecessary
                       complication.  */
                       complication.  */
                    if (TREE_CODE (itype) == INTEGER_CST
                    if (TREE_CODE (itype) == INTEGER_CST
                        && TREE_OVERFLOW (itype))
                        && TREE_OVERFLOW (itype))
                      {
                      {
                        error ("size of array %qs is too large", name);
                        error ("size of array %qs is too large", name);
                        type = error_mark_node;
                        type = error_mark_node;
                        continue;
                        continue;
                      }
                      }
 
 
                    itype = build_index_type (itype);
                    itype = build_index_type (itype);
                  }
                  }
              }
              }
            else if (decl_context == FIELD)
            else if (decl_context == FIELD)
              {
              {
                if (pedantic && !flag_isoc99 && !in_system_header)
                if (pedantic && !flag_isoc99 && !in_system_header)
                  pedwarn ("ISO C90 does not support flexible array members");
                  pedwarn ("ISO C90 does not support flexible array members");
 
 
                /* ISO C99 Flexible array members are effectively
                /* ISO C99 Flexible array members are effectively
                   identical to GCC's zero-length array extension.  */
                   identical to GCC's zero-length array extension.  */
                itype = build_range_type (sizetype, size_zero_node, NULL_TREE);
                itype = build_range_type (sizetype, size_zero_node, NULL_TREE);
              }
              }
            else if (decl_context == PARM)
            else if (decl_context == PARM)
              {
              {
                if (array_parm_vla_unspec_p)
                if (array_parm_vla_unspec_p)
                  {
                  {
                    if (! orig_name)
                    if (! orig_name)
                      {
                      {
                        /* C99 6.7.5.2p4 */
                        /* C99 6.7.5.2p4 */
                        error ("%<[*]%> not allowed in other than a declaration");
                        error ("%<[*]%> not allowed in other than a declaration");
                      }
                      }
 
 
                    itype = build_range_type (sizetype, size_zero_node, NULL_TREE);
                    itype = build_range_type (sizetype, size_zero_node, NULL_TREE);
                    size_varies = 1;
                    size_varies = 1;
                  }
                  }
              }
              }
            else if (decl_context == TYPENAME)
            else if (decl_context == TYPENAME)
              {
              {
                if (array_parm_vla_unspec_p)
                if (array_parm_vla_unspec_p)
                  {
                  {
                    /* The error is printed elsewhere.  We use this to
                    /* The error is printed elsewhere.  We use this to
                       avoid messing up with incomplete array types of
                       avoid messing up with incomplete array types of
                       the same type, that would otherwise be modified
                       the same type, that would otherwise be modified
                       below.  */
                       below.  */
                    itype = build_range_type (sizetype, size_zero_node,
                    itype = build_range_type (sizetype, size_zero_node,
                                              NULL_TREE);
                                              NULL_TREE);
                  }
                  }
              }
              }
 
 
             /* Complain about arrays of incomplete types.  */
             /* Complain about arrays of incomplete types.  */
            if (!COMPLETE_TYPE_P (type))
            if (!COMPLETE_TYPE_P (type))
              {
              {
                error ("array type has incomplete element type");
                error ("array type has incomplete element type");
                type = error_mark_node;
                type = error_mark_node;
              }
              }
            else
            else
            /* When itype is NULL, a shared incomplete array type is
            /* When itype is NULL, a shared incomplete array type is
               returned for all array of a given type.  Elsewhere we
               returned for all array of a given type.  Elsewhere we
               make sure we don't complete that type before copying
               make sure we don't complete that type before copying
               it, but here we want to make sure we don't ever
               it, but here we want to make sure we don't ever
               modify the shared type, so we gcc_assert (itype)
               modify the shared type, so we gcc_assert (itype)
               below.  */
               below.  */
              type = build_array_type (type, itype);
              type = build_array_type (type, itype);
 
 
            if (type != error_mark_node)
            if (type != error_mark_node)
              {
              {
                if (size_varies)
                if (size_varies)
                  {
                  {
                    /* It is ok to modify type here even if itype is
                    /* It is ok to modify type here even if itype is
                       NULL: if size_varies, we're in a
                       NULL: if size_varies, we're in a
                       multi-dimensional array and the inner type has
                       multi-dimensional array and the inner type has
                       variable size, so the enclosing shared array type
                       variable size, so the enclosing shared array type
                       must too.  */
                       must too.  */
                    if (size && TREE_CODE (size) == INTEGER_CST)
                    if (size && TREE_CODE (size) == INTEGER_CST)
                      type
                      type
                        = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
                        = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
                    C_TYPE_VARIABLE_SIZE (type) = 1;
                    C_TYPE_VARIABLE_SIZE (type) = 1;
                  }
                  }
 
 
                /* The GCC extension for zero-length arrays differs from
                /* The GCC extension for zero-length arrays differs from
                   ISO flexible array members in that sizeof yields
                   ISO flexible array members in that sizeof yields
                   zero.  */
                   zero.  */
                if (size && integer_zerop (size))
                if (size && integer_zerop (size))
                  {
                  {
                    gcc_assert (itype);
                    gcc_assert (itype);
                    TYPE_SIZE (type) = bitsize_zero_node;
                    TYPE_SIZE (type) = bitsize_zero_node;
                    TYPE_SIZE_UNIT (type) = size_zero_node;
                    TYPE_SIZE_UNIT (type) = size_zero_node;
                  }
                  }
                if (array_parm_vla_unspec_p)
                if (array_parm_vla_unspec_p)
                  {
                  {
                    gcc_assert (itype);
                    gcc_assert (itype);
                    /* The type is complete.  C99 6.7.5.2p4  */
                    /* The type is complete.  C99 6.7.5.2p4  */
                    TYPE_SIZE (type) = bitsize_zero_node;
                    TYPE_SIZE (type) = bitsize_zero_node;
                    TYPE_SIZE_UNIT (type) = size_zero_node;
                    TYPE_SIZE_UNIT (type) = size_zero_node;
                  }
                  }
              }
              }
 
 
            if (decl_context != PARM
            if (decl_context != PARM
                && (array_ptr_quals != TYPE_UNQUALIFIED
                && (array_ptr_quals != TYPE_UNQUALIFIED
                    || array_ptr_attrs != NULL_TREE
                    || array_ptr_attrs != NULL_TREE
                    || array_parm_static))
                    || array_parm_static))
              {
              {
                error ("static or type qualifiers in non-parameter array declarator");
                error ("static or type qualifiers in non-parameter array declarator");
                array_ptr_quals = TYPE_UNQUALIFIED;
                array_ptr_quals = TYPE_UNQUALIFIED;
                array_ptr_attrs = NULL_TREE;
                array_ptr_attrs = NULL_TREE;
                array_parm_static = 0;
                array_parm_static = 0;
              }
              }
            break;
            break;
          }
          }
        case cdk_function:
        case cdk_function:
          {
          {
            /* Say it's a definition only for the declarator closest
            /* Say it's a definition only for the declarator closest
               to the identifier, apart possibly from some
               to the identifier, apart possibly from some
               attributes.  */
               attributes.  */
            bool really_funcdef = false;
            bool really_funcdef = false;
            tree arg_types;
            tree arg_types;
            if (funcdef_flag)
            if (funcdef_flag)
              {
              {
                const struct c_declarator *t = declarator->declarator;
                const struct c_declarator *t = declarator->declarator;
                while (t->kind == cdk_attrs)
                while (t->kind == cdk_attrs)
                  t = t->declarator;
                  t = t->declarator;
                really_funcdef = (t->kind == cdk_id);
                really_funcdef = (t->kind == cdk_id);
              }
              }
 
 
            /* Declaring a function type.  Make sure we have a valid
            /* Declaring a function type.  Make sure we have a valid
               type for the function to return.  */
               type for the function to return.  */
            if (type == error_mark_node)
            if (type == error_mark_node)
              continue;
              continue;
 
 
            size_varies = 0;
            size_varies = 0;
 
 
            /* Warn about some types functions can't return.  */
            /* Warn about some types functions can't return.  */
            if (TREE_CODE (type) == FUNCTION_TYPE)
            if (TREE_CODE (type) == FUNCTION_TYPE)
              {
              {
                error ("%qs declared as function returning a function", name);
                error ("%qs declared as function returning a function", name);
                type = integer_type_node;
                type = integer_type_node;
              }
              }
            if (TREE_CODE (type) == ARRAY_TYPE)
            if (TREE_CODE (type) == ARRAY_TYPE)
              {
              {
                error ("%qs declared as function returning an array", name);
                error ("%qs declared as function returning an array", name);
                type = integer_type_node;
                type = integer_type_node;
              }
              }
 
 
            /* Construct the function type and go to the next
            /* Construct the function type and go to the next
               inner layer of declarator.  */
               inner layer of declarator.  */
            arg_info = declarator->u.arg_info;
            arg_info = declarator->u.arg_info;
            arg_types = grokparms (arg_info, really_funcdef);
            arg_types = grokparms (arg_info, really_funcdef);
            if (really_funcdef)
            if (really_funcdef)
              put_pending_sizes (arg_info->pending_sizes);
              put_pending_sizes (arg_info->pending_sizes);
 
 
            /* Type qualifiers before the return type of the function
            /* Type qualifiers before the return type of the function
               qualify the return type, not the function type.  */
               qualify the return type, not the function type.  */
            if (type_quals)
            if (type_quals)
              {
              {
                /* Type qualifiers on a function return type are
                /* Type qualifiers on a function return type are
                   normally permitted by the standard but have no
                   normally permitted by the standard but have no
                   effect, so give a warning at -Wreturn-type.
                   effect, so give a warning at -Wreturn-type.
                   Qualifiers on a void return type are banned on
                   Qualifiers on a void return type are banned on
                   function definitions in ISO C; GCC used to used
                   function definitions in ISO C; GCC used to used
                   them for noreturn functions.  */
                   them for noreturn functions.  */
                if (VOID_TYPE_P (type) && really_funcdef)
                if (VOID_TYPE_P (type) && really_funcdef)
                  pedwarn ("function definition has qualified void return type");
                  pedwarn ("function definition has qualified void return type");
                else
                else
                  warning (OPT_Wreturn_type,
                  warning (OPT_Wreturn_type,
                           "type qualifiers ignored on function return type");
                           "type qualifiers ignored on function return type");
 
 
                type = c_build_qualified_type (type, type_quals);
                type = c_build_qualified_type (type, type_quals);
              }
              }
            type_quals = TYPE_UNQUALIFIED;
            type_quals = TYPE_UNQUALIFIED;
 
 
            type = build_function_type (type, arg_types);
            type = build_function_type (type, arg_types);
            declarator = declarator->declarator;
            declarator = declarator->declarator;
 
 
            /* Set the TYPE_CONTEXTs for each tagged type which is local to
            /* Set the TYPE_CONTEXTs for each tagged type which is local to
               the formal parameter list of this FUNCTION_TYPE to point to
               the formal parameter list of this FUNCTION_TYPE to point to
               the FUNCTION_TYPE node itself.  */
               the FUNCTION_TYPE node itself.  */
            {
            {
              tree link;
              tree link;
 
 
              for (link = arg_info->tags;
              for (link = arg_info->tags;
                   link;
                   link;
                   link = TREE_CHAIN (link))
                   link = TREE_CHAIN (link))
                TYPE_CONTEXT (TREE_VALUE (link)) = type;
                TYPE_CONTEXT (TREE_VALUE (link)) = type;
            }
            }
            break;
            break;
          }
          }
        case cdk_pointer:
        case cdk_pointer:
          {
          {
            /* Merge any constancy or volatility into the target type
            /* Merge any constancy or volatility into the target type
               for the pointer.  */
               for the pointer.  */
 
 
            if (pedantic && TREE_CODE (type) == FUNCTION_TYPE
            if (pedantic && TREE_CODE (type) == FUNCTION_TYPE
                && type_quals)
                && type_quals)
              pedwarn ("ISO C forbids qualified function types");
              pedwarn ("ISO C forbids qualified function types");
            if (type_quals)
            if (type_quals)
              type = c_build_qualified_type (type, type_quals);
              type = c_build_qualified_type (type, type_quals);
            size_varies = 0;
            size_varies = 0;
 
 
            /* When the pointed-to type involves components of variable size,
            /* When the pointed-to type involves components of variable size,
               care must be taken to ensure that the size evaluation code is
               care must be taken to ensure that the size evaluation code is
               emitted early enough to dominate all the possible later uses
               emitted early enough to dominate all the possible later uses
               and late enough for the variables on which it depends to have
               and late enough for the variables on which it depends to have
               been assigned.
               been assigned.
 
 
               This is expected to happen automatically when the pointed-to
               This is expected to happen automatically when the pointed-to
               type has a name/declaration of it's own, but special attention
               type has a name/declaration of it's own, but special attention
               is required if the type is anonymous.
               is required if the type is anonymous.
 
 
               We handle the NORMAL and FIELD contexts here by attaching an
               We handle the NORMAL and FIELD contexts here by attaching an
               artificial TYPE_DECL to such pointed-to type.  This forces the
               artificial TYPE_DECL to such pointed-to type.  This forces the
               sizes evaluation at a safe point and ensures it is not deferred
               sizes evaluation at a safe point and ensures it is not deferred
               until e.g. within a deeper conditional context.
               until e.g. within a deeper conditional context.
 
 
               We expect nothing to be needed here for PARM or TYPENAME.
               We expect nothing to be needed here for PARM or TYPENAME.
               Pushing a TYPE_DECL at this point for TYPENAME would actually
               Pushing a TYPE_DECL at this point for TYPENAME would actually
               be incorrect, as we might be in the middle of an expression
               be incorrect, as we might be in the middle of an expression
               with side effects on the pointed-to type size "arguments" prior
               with side effects on the pointed-to type size "arguments" prior
               to the pointer declaration point and the fake TYPE_DECL in the
               to the pointer declaration point and the fake TYPE_DECL in the
               enclosing context would force the size evaluation prior to the
               enclosing context would force the size evaluation prior to the
               side effects.  */
               side effects.  */
 
 
            if (!TYPE_NAME (type)
            if (!TYPE_NAME (type)
                && (decl_context == NORMAL || decl_context == FIELD)
                && (decl_context == NORMAL || decl_context == FIELD)
                && variably_modified_type_p (type, NULL_TREE))
                && variably_modified_type_p (type, NULL_TREE))
              {
              {
                tree decl = build_decl (TYPE_DECL, NULL_TREE, type);
                tree decl = build_decl (TYPE_DECL, NULL_TREE, type);
                DECL_ARTIFICIAL (decl) = 1;
                DECL_ARTIFICIAL (decl) = 1;
                pushdecl (decl);
                pushdecl (decl);
                finish_decl (decl, NULL_TREE, NULL_TREE);
                finish_decl (decl, NULL_TREE, NULL_TREE);
                TYPE_NAME (type) = decl;
                TYPE_NAME (type) = decl;
              }
              }
 
 
            type = build_pointer_type (type);
            type = build_pointer_type (type);
 
 
            /* Process type qualifiers (such as const or volatile)
            /* Process type qualifiers (such as const or volatile)
               that were given inside the `*'.  */
               that were given inside the `*'.  */
            type_quals = declarator->u.pointer_quals;
            type_quals = declarator->u.pointer_quals;
 
 
            declarator = declarator->declarator;
            declarator = declarator->declarator;
            break;
            break;
          }
          }
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
 
 
  /* Now TYPE has the actual type, apart from any qualifiers in
  /* Now TYPE has the actual type, apart from any qualifiers in
     TYPE_QUALS.  */
     TYPE_QUALS.  */
 
 
  /* Check the type and width of a bit-field.  */
  /* Check the type and width of a bit-field.  */
  if (bitfield)
  if (bitfield)
    check_bitfield_type_and_width (&type, width, orig_name);
    check_bitfield_type_and_width (&type, width, orig_name);
 
 
  /* Did array size calculations overflow?  */
  /* Did array size calculations overflow?  */
 
 
  if (TREE_CODE (type) == ARRAY_TYPE
  if (TREE_CODE (type) == ARRAY_TYPE
      && COMPLETE_TYPE_P (type)
      && COMPLETE_TYPE_P (type)
      && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST
      && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST
      && TREE_OVERFLOW (TYPE_SIZE_UNIT (type)))
      && TREE_OVERFLOW (TYPE_SIZE_UNIT (type)))
    {
    {
      error ("size of array %qs is too large", name);
      error ("size of array %qs is too large", name);
      /* If we proceed with the array type as it is, we'll eventually
      /* If we proceed with the array type as it is, we'll eventually
         crash in tree_low_cst().  */
         crash in tree_low_cst().  */
      type = error_mark_node;
      type = error_mark_node;
    }
    }
 
 
  /* If this is declaring a typedef name, return a TYPE_DECL.  */
  /* If this is declaring a typedef name, return a TYPE_DECL.  */
 
 
  if (storage_class == csc_typedef)
  if (storage_class == csc_typedef)
    {
    {
      tree decl;
      tree decl;
      if (pedantic && TREE_CODE (type) == FUNCTION_TYPE
      if (pedantic && TREE_CODE (type) == FUNCTION_TYPE
          && type_quals)
          && type_quals)
        pedwarn ("ISO C forbids qualified function types");
        pedwarn ("ISO C forbids qualified function types");
      if (type_quals)
      if (type_quals)
        type = c_build_qualified_type (type, type_quals);
        type = c_build_qualified_type (type, type_quals);
      decl = build_decl (TYPE_DECL, declarator->u.id, type);
      decl = build_decl (TYPE_DECL, declarator->u.id, type);
      if (declspecs->explicit_signed_p)
      if (declspecs->explicit_signed_p)
        C_TYPEDEF_EXPLICITLY_SIGNED (decl) = 1;
        C_TYPEDEF_EXPLICITLY_SIGNED (decl) = 1;
      decl_attributes (&decl, returned_attrs, 0);
      decl_attributes (&decl, returned_attrs, 0);
      if (declspecs->inline_p)
      if (declspecs->inline_p)
        pedwarn ("typedef %q+D declared %<inline%>", decl);
        pedwarn ("typedef %q+D declared %<inline%>", decl);
      return decl;
      return decl;
    }
    }
 
 
  /* If this is a type name (such as, in a cast or sizeof),
  /* If this is a type name (such as, in a cast or sizeof),
     compute the type and return it now.  */
     compute the type and return it now.  */
 
 
  if (decl_context == TYPENAME)
  if (decl_context == TYPENAME)
    {
    {
      /* Note that the grammar rejects storage classes in typenames
      /* Note that the grammar rejects storage classes in typenames
         and fields.  */
         and fields.  */
      gcc_assert (storage_class == csc_none && !threadp
      gcc_assert (storage_class == csc_none && !threadp
                  && !declspecs->inline_p);
                  && !declspecs->inline_p);
      if (pedantic && TREE_CODE (type) == FUNCTION_TYPE
      if (pedantic && TREE_CODE (type) == FUNCTION_TYPE
          && type_quals)
          && type_quals)
        pedwarn ("ISO C forbids const or volatile function types");
        pedwarn ("ISO C forbids const or volatile function types");
      if (type_quals)
      if (type_quals)
        type = c_build_qualified_type (type, type_quals);
        type = c_build_qualified_type (type, type_quals);
      decl_attributes (&type, returned_attrs, 0);
      decl_attributes (&type, returned_attrs, 0);
      return type;
      return type;
    }
    }
 
 
  if (pedantic && decl_context == FIELD
  if (pedantic && decl_context == FIELD
      && variably_modified_type_p (type, NULL_TREE))
      && variably_modified_type_p (type, NULL_TREE))
    {
    {
      /* C99 6.7.2.1p8 */
      /* C99 6.7.2.1p8 */
      pedwarn ("a member of a structure or union cannot have a variably modified type");
      pedwarn ("a member of a structure or union cannot have a variably modified type");
    }
    }
 
 
  /* Aside from typedefs and type names (handle above),
  /* Aside from typedefs and type names (handle above),
     `void' at top level (not within pointer)
     `void' at top level (not within pointer)
     is allowed only in public variables.
     is allowed only in public variables.
     We don't complain about parms either, but that is because
     We don't complain about parms either, but that is because
     a better error message can be made later.  */
     a better error message can be made later.  */
 
 
  if (VOID_TYPE_P (type) && decl_context != PARM
  if (VOID_TYPE_P (type) && decl_context != PARM
      && !((decl_context != FIELD && TREE_CODE (type) != FUNCTION_TYPE)
      && !((decl_context != FIELD && TREE_CODE (type) != FUNCTION_TYPE)
            && (storage_class == csc_extern
            && (storage_class == csc_extern
                || (current_scope == file_scope
                || (current_scope == file_scope
                    && !(storage_class == csc_static
                    && !(storage_class == csc_static
                         || storage_class == csc_register)))))
                         || storage_class == csc_register)))))
    {
    {
      error ("variable or field %qs declared void", name);
      error ("variable or field %qs declared void", name);
      type = integer_type_node;
      type = integer_type_node;
    }
    }
 
 
  /* Now create the decl, which may be a VAR_DECL, a PARM_DECL
  /* Now create the decl, which may be a VAR_DECL, a PARM_DECL
     or a FUNCTION_DECL, depending on DECL_CONTEXT and TYPE.  */
     or a FUNCTION_DECL, depending on DECL_CONTEXT and TYPE.  */
 
 
  {
  {
    tree decl;
    tree decl;
 
 
    if (decl_context == PARM)
    if (decl_context == PARM)
      {
      {
        tree type_as_written;
        tree type_as_written;
        tree promoted_type;
        tree promoted_type;
 
 
        /* A parameter declared as an array of T is really a pointer to T.
        /* A parameter declared as an array of T is really a pointer to T.
           One declared as a function is really a pointer to a function.  */
           One declared as a function is really a pointer to a function.  */
 
 
        if (TREE_CODE (type) == ARRAY_TYPE)
        if (TREE_CODE (type) == ARRAY_TYPE)
          {
          {
            /* Transfer const-ness of array into that of type pointed to.  */
            /* Transfer const-ness of array into that of type pointed to.  */
            type = TREE_TYPE (type);
            type = TREE_TYPE (type);
            if (type_quals)
            if (type_quals)
              type = c_build_qualified_type (type, type_quals);
              type = c_build_qualified_type (type, type_quals);
            type = build_pointer_type (type);
            type = build_pointer_type (type);
            type_quals = array_ptr_quals;
            type_quals = array_ptr_quals;
 
 
            /* We don't yet implement attributes in this context.  */
            /* We don't yet implement attributes in this context.  */
            if (array_ptr_attrs != NULL_TREE)
            if (array_ptr_attrs != NULL_TREE)
              warning (OPT_Wattributes,
              warning (OPT_Wattributes,
                       "attributes in parameter array declarator ignored");
                       "attributes in parameter array declarator ignored");
 
 
            size_varies = 0;
            size_varies = 0;
          }
          }
        else if (TREE_CODE (type) == FUNCTION_TYPE)
        else if (TREE_CODE (type) == FUNCTION_TYPE)
          {
          {
            if (pedantic && type_quals)
            if (pedantic && type_quals)
              pedwarn ("ISO C forbids qualified function types");
              pedwarn ("ISO C forbids qualified function types");
            if (type_quals)
            if (type_quals)
              type = c_build_qualified_type (type, type_quals);
              type = c_build_qualified_type (type, type_quals);
            type = build_pointer_type (type);
            type = build_pointer_type (type);
            type_quals = TYPE_UNQUALIFIED;
            type_quals = TYPE_UNQUALIFIED;
          }
          }
        else if (type_quals)
        else if (type_quals)
          type = c_build_qualified_type (type, type_quals);
          type = c_build_qualified_type (type, type_quals);
 
 
        type_as_written = type;
        type_as_written = type;
 
 
        decl = build_decl (PARM_DECL, declarator->u.id, type);
        decl = build_decl (PARM_DECL, declarator->u.id, type);
        if (size_varies)
        if (size_varies)
          C_DECL_VARIABLE_SIZE (decl) = 1;
          C_DECL_VARIABLE_SIZE (decl) = 1;
 
 
        /* Compute the type actually passed in the parmlist,
        /* Compute the type actually passed in the parmlist,
           for the case where there is no prototype.
           for the case where there is no prototype.
           (For example, shorts and chars are passed as ints.)
           (For example, shorts and chars are passed as ints.)
           When there is a prototype, this is overridden later.  */
           When there is a prototype, this is overridden later.  */
 
 
        if (type == error_mark_node)
        if (type == error_mark_node)
          promoted_type = type;
          promoted_type = type;
        else
        else
          promoted_type = c_type_promotes_to (type);
          promoted_type = c_type_promotes_to (type);
 
 
        DECL_ARG_TYPE (decl) = promoted_type;
        DECL_ARG_TYPE (decl) = promoted_type;
        if (declspecs->inline_p)
        if (declspecs->inline_p)
          pedwarn ("parameter %q+D declared %<inline%>", decl);
          pedwarn ("parameter %q+D declared %<inline%>", decl);
      }
      }
    else if (decl_context == FIELD)
    else if (decl_context == FIELD)
      {
      {
        /* Note that the grammar rejects storage classes in typenames
        /* Note that the grammar rejects storage classes in typenames
           and fields.  */
           and fields.  */
        gcc_assert (storage_class == csc_none && !threadp
        gcc_assert (storage_class == csc_none && !threadp
                    && !declspecs->inline_p);
                    && !declspecs->inline_p);
 
 
        /* Structure field.  It may not be a function.  */
        /* Structure field.  It may not be a function.  */
 
 
        if (TREE_CODE (type) == FUNCTION_TYPE)
        if (TREE_CODE (type) == FUNCTION_TYPE)
          {
          {
            error ("field %qs declared as a function", name);
            error ("field %qs declared as a function", name);
            type = build_pointer_type (type);
            type = build_pointer_type (type);
          }
          }
        else if (TREE_CODE (type) != ERROR_MARK
        else if (TREE_CODE (type) != ERROR_MARK
                 && !COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (type))
                 && !COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (type))
          {
          {
            error ("field %qs has incomplete type", name);
            error ("field %qs has incomplete type", name);
            type = error_mark_node;
            type = error_mark_node;
          }
          }
        type = c_build_qualified_type (type, type_quals);
        type = c_build_qualified_type (type, type_quals);
        decl = build_decl (FIELD_DECL, declarator->u.id, type);
        decl = build_decl (FIELD_DECL, declarator->u.id, type);
        DECL_NONADDRESSABLE_P (decl) = bitfield;
        DECL_NONADDRESSABLE_P (decl) = bitfield;
 
 
        if (size_varies)
        if (size_varies)
          C_DECL_VARIABLE_SIZE (decl) = 1;
          C_DECL_VARIABLE_SIZE (decl) = 1;
      }
      }
    else if (TREE_CODE (type) == FUNCTION_TYPE)
    else if (TREE_CODE (type) == FUNCTION_TYPE)
      {
      {
        if (storage_class == csc_register || threadp)
        if (storage_class == csc_register || threadp)
          {
          {
            error ("invalid storage class for function %qs", name);
            error ("invalid storage class for function %qs", name);
           }
           }
        else if (current_scope != file_scope)
        else if (current_scope != file_scope)
          {
          {
            /* Function declaration not at file scope.  Storage
            /* Function declaration not at file scope.  Storage
               classes other than `extern' are not allowed, C99
               classes other than `extern' are not allowed, C99
               6.7.1p5, and `extern' makes no difference.  However,
               6.7.1p5, and `extern' makes no difference.  However,
               GCC allows 'auto', perhaps with 'inline', to support
               GCC allows 'auto', perhaps with 'inline', to support
               nested functions.  */
               nested functions.  */
            if (storage_class == csc_auto)
            if (storage_class == csc_auto)
              {
              {
                if (pedantic)
                if (pedantic)
                  pedwarn ("invalid storage class for function %qs", name);
                  pedwarn ("invalid storage class for function %qs", name);
              }
              }
            else if (storage_class == csc_static)
            else if (storage_class == csc_static)
              {
              {
                error ("invalid storage class for function %qs", name);
                error ("invalid storage class for function %qs", name);
                if (funcdef_flag)
                if (funcdef_flag)
                  storage_class = declspecs->storage_class = csc_none;
                  storage_class = declspecs->storage_class = csc_none;
                else
                else
                  return 0;
                  return 0;
              }
              }
          }
          }
 
 
        decl = build_decl (FUNCTION_DECL, declarator->u.id, type);
        decl = build_decl (FUNCTION_DECL, declarator->u.id, type);
        decl = build_decl_attribute_variant (decl, decl_attr);
        decl = build_decl_attribute_variant (decl, decl_attr);
 
 
        DECL_LANG_SPECIFIC (decl) = GGC_CNEW (struct lang_decl);
        DECL_LANG_SPECIFIC (decl) = GGC_CNEW (struct lang_decl);
 
 
        if (pedantic && type_quals && !DECL_IN_SYSTEM_HEADER (decl))
        if (pedantic && type_quals && !DECL_IN_SYSTEM_HEADER (decl))
          pedwarn ("ISO C forbids qualified function types");
          pedwarn ("ISO C forbids qualified function types");
 
 
        /* GNU C interprets a volatile-qualified function type to indicate
        /* GNU C interprets a volatile-qualified function type to indicate
           that the function does not return.  */
           that the function does not return.  */
        if ((type_quals & TYPE_QUAL_VOLATILE)
        if ((type_quals & TYPE_QUAL_VOLATILE)
            && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
            && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl))))
          warning (0, "%<noreturn%> function returns non-void value");
          warning (0, "%<noreturn%> function returns non-void value");
 
 
        /* Every function declaration is an external reference
        /* Every function declaration is an external reference
           (DECL_EXTERNAL) except for those which are not at file
           (DECL_EXTERNAL) except for those which are not at file
           scope and are explicitly declared "auto".  This is
           scope and are explicitly declared "auto".  This is
           forbidden by standard C (C99 6.7.1p5) and is interpreted by
           forbidden by standard C (C99 6.7.1p5) and is interpreted by
           GCC to signify a forward declaration of a nested function.  */
           GCC to signify a forward declaration of a nested function.  */
        if (storage_class == csc_auto && current_scope != file_scope)
        if (storage_class == csc_auto && current_scope != file_scope)
          DECL_EXTERNAL (decl) = 0;
          DECL_EXTERNAL (decl) = 0;
        else
        else
          DECL_EXTERNAL (decl) = 1;
          DECL_EXTERNAL (decl) = 1;
 
 
        /* Record absence of global scope for `static' or `auto'.  */
        /* Record absence of global scope for `static' or `auto'.  */
        TREE_PUBLIC (decl)
        TREE_PUBLIC (decl)
          = !(storage_class == csc_static || storage_class == csc_auto);
          = !(storage_class == csc_static || storage_class == csc_auto);
 
 
        /* For a function definition, record the argument information
        /* For a function definition, record the argument information
           block where store_parm_decls will look for it.  */
           block where store_parm_decls will look for it.  */
        if (funcdef_flag)
        if (funcdef_flag)
          current_function_arg_info = arg_info;
          current_function_arg_info = arg_info;
 
 
        if (declspecs->default_int_p)
        if (declspecs->default_int_p)
          C_FUNCTION_IMPLICIT_INT (decl) = 1;
          C_FUNCTION_IMPLICIT_INT (decl) = 1;
 
 
        /* Record presence of `inline', if it is reasonable.  */
        /* Record presence of `inline', if it is reasonable.  */
        if (flag_hosted && MAIN_NAME_P (declarator->u.id))
        if (flag_hosted && MAIN_NAME_P (declarator->u.id))
          {
          {
            if (declspecs->inline_p)
            if (declspecs->inline_p)
              pedwarn ("cannot inline function %<main%>");
              pedwarn ("cannot inline function %<main%>");
          }
          }
        else if (declspecs->inline_p)
        else if (declspecs->inline_p)
          {
          {
            /* Record that the function is declared `inline'.  */
            /* Record that the function is declared `inline'.  */
            DECL_DECLARED_INLINE_P (decl) = 1;
            DECL_DECLARED_INLINE_P (decl) = 1;
 
 
            /* Do not mark bare declarations as DECL_INLINE.  Doing so
            /* Do not mark bare declarations as DECL_INLINE.  Doing so
               in the presence of multiple declarations can result in
               in the presence of multiple declarations can result in
               the abstract origin pointing between the declarations,
               the abstract origin pointing between the declarations,
               which will confuse dwarf2out.  */
               which will confuse dwarf2out.  */
            if (initialized)
            if (initialized)
              {
              {
                DECL_INLINE (decl) = 1;
                DECL_INLINE (decl) = 1;
                if (storage_class == csc_extern)
                if (storage_class == csc_extern)
                  current_extern_inline = 1;
                  current_extern_inline = 1;
              }
              }
          }
          }
        /* If -finline-functions, assume it can be inlined.  This does
        /* If -finline-functions, assume it can be inlined.  This does
           two things: let the function be deferred until it is actually
           two things: let the function be deferred until it is actually
           needed, and let dwarf2 know that the function is inlinable.  */
           needed, and let dwarf2 know that the function is inlinable.  */
        else if (flag_inline_trees == 2 && initialized)
        else if (flag_inline_trees == 2 && initialized)
          DECL_INLINE (decl) = 1;
          DECL_INLINE (decl) = 1;
      }
      }
    else
    else
      {
      {
        /* It's a variable.  */
        /* It's a variable.  */
        /* An uninitialized decl with `extern' is a reference.  */
        /* An uninitialized decl with `extern' is a reference.  */
        int extern_ref = !initialized && storage_class == csc_extern;
        int extern_ref = !initialized && storage_class == csc_extern;
 
 
        type = c_build_qualified_type (type, type_quals);
        type = c_build_qualified_type (type, type_quals);
 
 
        /* C99 6.2.2p7: It is invalid (compile-time undefined
        /* C99 6.2.2p7: It is invalid (compile-time undefined
           behavior) to create an 'extern' declaration for a
           behavior) to create an 'extern' declaration for a
           variable if there is a global declaration that is
           variable if there is a global declaration that is
           'static' and the global declaration is not visible.
           'static' and the global declaration is not visible.
           (If the static declaration _is_ currently visible,
           (If the static declaration _is_ currently visible,
           the 'extern' declaration is taken to refer to that decl.) */
           the 'extern' declaration is taken to refer to that decl.) */
        if (extern_ref && current_scope != file_scope)
        if (extern_ref && current_scope != file_scope)
          {
          {
            tree global_decl  = identifier_global_value (declarator->u.id);
            tree global_decl  = identifier_global_value (declarator->u.id);
            tree visible_decl = lookup_name (declarator->u.id);
            tree visible_decl = lookup_name (declarator->u.id);
 
 
            if (global_decl
            if (global_decl
                && global_decl != visible_decl
                && global_decl != visible_decl
                && TREE_CODE (global_decl) == VAR_DECL
                && TREE_CODE (global_decl) == VAR_DECL
                && !TREE_PUBLIC (global_decl))
                && !TREE_PUBLIC (global_decl))
              error ("variable previously declared %<static%> redeclared "
              error ("variable previously declared %<static%> redeclared "
                     "%<extern%>");
                     "%<extern%>");
          }
          }
 
 
        decl = build_decl (VAR_DECL, declarator->u.id, type);
        decl = build_decl (VAR_DECL, declarator->u.id, type);
        DECL_SOURCE_LOCATION (decl) = declarator->id_loc;
        DECL_SOURCE_LOCATION (decl) = declarator->id_loc;
        if (size_varies)
        if (size_varies)
          C_DECL_VARIABLE_SIZE (decl) = 1;
          C_DECL_VARIABLE_SIZE (decl) = 1;
 
 
        if (declspecs->inline_p)
        if (declspecs->inline_p)
          pedwarn ("variable %q+D declared %<inline%>", decl);
          pedwarn ("variable %q+D declared %<inline%>", decl);
 
 
        /* At file scope, an initialized extern declaration may follow
        /* At file scope, an initialized extern declaration may follow
           a static declaration.  In that case, DECL_EXTERNAL will be
           a static declaration.  In that case, DECL_EXTERNAL will be
           reset later in start_decl.  */
           reset later in start_decl.  */
        DECL_EXTERNAL (decl) = (storage_class == csc_extern);
        DECL_EXTERNAL (decl) = (storage_class == csc_extern);
 
 
        /* At file scope, the presence of a `static' or `register' storage
        /* At file scope, the presence of a `static' or `register' storage
           class specifier, or the absence of all storage class specifiers
           class specifier, or the absence of all storage class specifiers
           makes this declaration a definition (perhaps tentative).  Also,
           makes this declaration a definition (perhaps tentative).  Also,
           the absence of `static' makes it public.  */
           the absence of `static' makes it public.  */
        if (current_scope == file_scope)
        if (current_scope == file_scope)
          {
          {
            TREE_PUBLIC (decl) = storage_class != csc_static;
            TREE_PUBLIC (decl) = storage_class != csc_static;
            TREE_STATIC (decl) = !extern_ref;
            TREE_STATIC (decl) = !extern_ref;
          }
          }
        /* Not at file scope, only `static' makes a static definition.  */
        /* Not at file scope, only `static' makes a static definition.  */
        else
        else
          {
          {
            TREE_STATIC (decl) = (storage_class == csc_static);
            TREE_STATIC (decl) = (storage_class == csc_static);
            TREE_PUBLIC (decl) = extern_ref;
            TREE_PUBLIC (decl) = extern_ref;
          }
          }
 
 
        if (threadp)
        if (threadp)
          {
          {
            if (targetm.have_tls)
            if (targetm.have_tls)
              DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
              DECL_TLS_MODEL (decl) = decl_default_tls_model (decl);
            else
            else
              /* A mere warning is sure to result in improper semantics
              /* A mere warning is sure to result in improper semantics
                 at runtime.  Don't bother to allow this to compile.  */
                 at runtime.  Don't bother to allow this to compile.  */
              error ("thread-local storage not supported for this target");
              error ("thread-local storage not supported for this target");
          }
          }
      }
      }
 
 
    if (storage_class == csc_extern
    if (storage_class == csc_extern
        && variably_modified_type_p (type, NULL_TREE))
        && variably_modified_type_p (type, NULL_TREE))
      {
      {
        /* C99 6.7.5.2p2 */
        /* C99 6.7.5.2p2 */
        error ("object with variably modified type must have no linkage");
        error ("object with variably modified type must have no linkage");
      }
      }
 
 
    /* Record `register' declaration for warnings on &
    /* Record `register' declaration for warnings on &
       and in case doing stupid register allocation.  */
       and in case doing stupid register allocation.  */
 
 
    if (storage_class == csc_register)
    if (storage_class == csc_register)
      {
      {
        C_DECL_REGISTER (decl) = 1;
        C_DECL_REGISTER (decl) = 1;
        DECL_REGISTER (decl) = 1;
        DECL_REGISTER (decl) = 1;
      }
      }
 
 
    /* Record constancy and volatility.  */
    /* Record constancy and volatility.  */
    c_apply_type_quals_to_decl (type_quals, decl);
    c_apply_type_quals_to_decl (type_quals, decl);
 
 
    /* If a type has volatile components, it should be stored in memory.
    /* If a type has volatile components, it should be stored in memory.
       Otherwise, the fact that those components are volatile
       Otherwise, the fact that those components are volatile
       will be ignored, and would even crash the compiler.
       will be ignored, and would even crash the compiler.
       Of course, this only makes sense on  VAR,PARM, and RESULT decl's.   */
       Of course, this only makes sense on  VAR,PARM, and RESULT decl's.   */
    if (C_TYPE_FIELDS_VOLATILE (TREE_TYPE (decl))
    if (C_TYPE_FIELDS_VOLATILE (TREE_TYPE (decl))
        && (TREE_CODE (decl) == VAR_DECL ||  TREE_CODE (decl) == PARM_DECL
        && (TREE_CODE (decl) == VAR_DECL ||  TREE_CODE (decl) == PARM_DECL
          || TREE_CODE (decl) == RESULT_DECL))
          || TREE_CODE (decl) == RESULT_DECL))
      {
      {
        /* It is not an error for a structure with volatile fields to
        /* It is not an error for a structure with volatile fields to
           be declared register, but reset DECL_REGISTER since it
           be declared register, but reset DECL_REGISTER since it
           cannot actually go in a register.  */
           cannot actually go in a register.  */
        int was_reg = C_DECL_REGISTER (decl);
        int was_reg = C_DECL_REGISTER (decl);
        C_DECL_REGISTER (decl) = 0;
        C_DECL_REGISTER (decl) = 0;
        DECL_REGISTER (decl) = 0;
        DECL_REGISTER (decl) = 0;
        c_mark_addressable (decl);
        c_mark_addressable (decl);
        C_DECL_REGISTER (decl) = was_reg;
        C_DECL_REGISTER (decl) = was_reg;
      }
      }
 
 
  /* This is the earliest point at which we might know the assembler
  /* This is the earliest point at which we might know the assembler
     name of a variable.  Thus, if it's known before this, die horribly.  */
     name of a variable.  Thus, if it's known before this, die horribly.  */
    gcc_assert (!DECL_ASSEMBLER_NAME_SET_P (decl));
    gcc_assert (!DECL_ASSEMBLER_NAME_SET_P (decl));
 
 
    decl_attributes (&decl, returned_attrs, 0);
    decl_attributes (&decl, returned_attrs, 0);
 
 
    return decl;
    return decl;
  }
  }
}
}


/* Decode the parameter-list info for a function type or function definition.
/* Decode the parameter-list info for a function type or function definition.
   The argument is the value returned by `get_parm_info' (or made in c-parse.c
   The argument is the value returned by `get_parm_info' (or made in c-parse.c
   if there is an identifier list instead of a parameter decl list).
   if there is an identifier list instead of a parameter decl list).
   These two functions are separate because when a function returns
   These two functions are separate because when a function returns
   or receives functions then each is called multiple times but the order
   or receives functions then each is called multiple times but the order
   of calls is different.  The last call to `grokparms' is always the one
   of calls is different.  The last call to `grokparms' is always the one
   that contains the formal parameter names of a function definition.
   that contains the formal parameter names of a function definition.
 
 
   Return a list of arg types to use in the FUNCTION_TYPE for this function.
   Return a list of arg types to use in the FUNCTION_TYPE for this function.
 
 
   FUNCDEF_FLAG is true for a function definition, false for
   FUNCDEF_FLAG is true for a function definition, false for
   a mere declaration.  A nonempty identifier-list gets an error message
   a mere declaration.  A nonempty identifier-list gets an error message
   when FUNCDEF_FLAG is false.  */
   when FUNCDEF_FLAG is false.  */
 
 
static tree
static tree
grokparms (struct c_arg_info *arg_info, bool funcdef_flag)
grokparms (struct c_arg_info *arg_info, bool funcdef_flag)
{
{
  tree arg_types = arg_info->types;
  tree arg_types = arg_info->types;
 
 
  if (funcdef_flag && arg_info->had_vla_unspec)
  if (funcdef_flag && arg_info->had_vla_unspec)
    {
    {
      /* A function definition isn't function prototype scope C99 6.2.1p4.  */
      /* A function definition isn't function prototype scope C99 6.2.1p4.  */
      /* C99 6.7.5.2p4 */
      /* C99 6.7.5.2p4 */
      error ("%<[*]%> not allowed in other than function prototype scope");
      error ("%<[*]%> not allowed in other than function prototype scope");
    }
    }
 
 
  if (arg_types == 0 && !funcdef_flag && !in_system_header)
  if (arg_types == 0 && !funcdef_flag && !in_system_header)
    warning (OPT_Wstrict_prototypes,
    warning (OPT_Wstrict_prototypes,
             "function declaration isn%'t a prototype");
             "function declaration isn%'t a prototype");
 
 
  if (arg_types == error_mark_node)
  if (arg_types == error_mark_node)
    return 0;  /* don't set TYPE_ARG_TYPES in this case */
    return 0;  /* don't set TYPE_ARG_TYPES in this case */
 
 
  else if (arg_types && TREE_CODE (TREE_VALUE (arg_types)) == IDENTIFIER_NODE)
  else if (arg_types && TREE_CODE (TREE_VALUE (arg_types)) == IDENTIFIER_NODE)
    {
    {
      if (!funcdef_flag)
      if (!funcdef_flag)
        pedwarn ("parameter names (without types) in function declaration");
        pedwarn ("parameter names (without types) in function declaration");
 
 
      arg_info->parms = arg_info->types;
      arg_info->parms = arg_info->types;
      arg_info->types = 0;
      arg_info->types = 0;
      return 0;
      return 0;
    }
    }
  else
  else
    {
    {
      tree parm, type, typelt;
      tree parm, type, typelt;
      unsigned int parmno;
      unsigned int parmno;
 
 
      /* If there is a parameter of incomplete type in a definition,
      /* If there is a parameter of incomplete type in a definition,
         this is an error.  In a declaration this is valid, and a
         this is an error.  In a declaration this is valid, and a
         struct or union type may be completed later, before any calls
         struct or union type may be completed later, before any calls
         or definition of the function.  In the case where the tag was
         or definition of the function.  In the case where the tag was
         first declared within the parameter list, a warning has
         first declared within the parameter list, a warning has
         already been given.  If a parameter has void type, then
         already been given.  If a parameter has void type, then
         however the function cannot be defined or called, so
         however the function cannot be defined or called, so
         warn.  */
         warn.  */
 
 
      for (parm = arg_info->parms, typelt = arg_types, parmno = 1;
      for (parm = arg_info->parms, typelt = arg_types, parmno = 1;
           parm;
           parm;
           parm = TREE_CHAIN (parm), typelt = TREE_CHAIN (typelt), parmno++)
           parm = TREE_CHAIN (parm), typelt = TREE_CHAIN (typelt), parmno++)
        {
        {
          type = TREE_VALUE (typelt);
          type = TREE_VALUE (typelt);
          if (type == error_mark_node)
          if (type == error_mark_node)
            continue;
            continue;
 
 
          if (!COMPLETE_TYPE_P (type))
          if (!COMPLETE_TYPE_P (type))
            {
            {
              if (funcdef_flag)
              if (funcdef_flag)
                {
                {
                  if (DECL_NAME (parm))
                  if (DECL_NAME (parm))
                    error ("parameter %u (%q+D) has incomplete type",
                    error ("parameter %u (%q+D) has incomplete type",
                           parmno, parm);
                           parmno, parm);
                  else
                  else
                    error ("%Jparameter %u has incomplete type",
                    error ("%Jparameter %u has incomplete type",
                           parm, parmno);
                           parm, parmno);
 
 
                  TREE_VALUE (typelt) = error_mark_node;
                  TREE_VALUE (typelt) = error_mark_node;
                  TREE_TYPE (parm) = error_mark_node;
                  TREE_TYPE (parm) = error_mark_node;
                }
                }
              else if (VOID_TYPE_P (type))
              else if (VOID_TYPE_P (type))
                {
                {
                  if (DECL_NAME (parm))
                  if (DECL_NAME (parm))
                    warning (0, "parameter %u (%q+D) has void type",
                    warning (0, "parameter %u (%q+D) has void type",
                             parmno, parm);
                             parmno, parm);
                  else
                  else
                    warning (0, "%Jparameter %u has void type",
                    warning (0, "%Jparameter %u has void type",
                             parm, parmno);
                             parm, parmno);
                }
                }
            }
            }
 
 
          if (DECL_NAME (parm) && TREE_USED (parm))
          if (DECL_NAME (parm) && TREE_USED (parm))
            warn_if_shadowing (parm);
            warn_if_shadowing (parm);
        }
        }
      return arg_types;
      return arg_types;
    }
    }
}
}
 
 
/* Take apart the current scope and return a c_arg_info structure with
/* Take apart the current scope and return a c_arg_info structure with
   info on a parameter list just parsed.
   info on a parameter list just parsed.
 
 
   This structure is later fed to 'grokparms' and 'store_parm_decls'.
   This structure is later fed to 'grokparms' and 'store_parm_decls'.
 
 
   ELLIPSIS being true means the argument list ended in '...' so don't
   ELLIPSIS being true means the argument list ended in '...' so don't
   append a sentinel (void_list_node) to the end of the type-list.  */
   append a sentinel (void_list_node) to the end of the type-list.  */
 
 
struct c_arg_info *
struct c_arg_info *
get_parm_info (bool ellipsis)
get_parm_info (bool ellipsis)
{
{
  struct c_binding *b = current_scope->bindings;
  struct c_binding *b = current_scope->bindings;
  struct c_arg_info *arg_info = XOBNEW (&parser_obstack,
  struct c_arg_info *arg_info = XOBNEW (&parser_obstack,
                                        struct c_arg_info);
                                        struct c_arg_info);
  tree parms    = 0;
  tree parms    = 0;
  tree tags     = 0;
  tree tags     = 0;
  tree types    = 0;
  tree types    = 0;
  tree others   = 0;
  tree others   = 0;
 
 
  static bool explained_incomplete_types = false;
  static bool explained_incomplete_types = false;
  bool gave_void_only_once_err = false;
  bool gave_void_only_once_err = false;
 
 
  arg_info->parms = 0;
  arg_info->parms = 0;
  arg_info->tags = 0;
  arg_info->tags = 0;
  arg_info->types = 0;
  arg_info->types = 0;
  arg_info->others = 0;
  arg_info->others = 0;
  arg_info->pending_sizes = 0;
  arg_info->pending_sizes = 0;
  arg_info->had_vla_unspec = current_scope->had_vla_unspec;
  arg_info->had_vla_unspec = current_scope->had_vla_unspec;
 
 
  /* The bindings in this scope must not get put into a block.
  /* The bindings in this scope must not get put into a block.
     We will take care of deleting the binding nodes.  */
     We will take care of deleting the binding nodes.  */
  current_scope->bindings = 0;
  current_scope->bindings = 0;
 
 
  /* This function is only called if there was *something* on the
  /* This function is only called if there was *something* on the
     parameter list.  */
     parameter list.  */
  gcc_assert (b);
  gcc_assert (b);
 
 
  /* A parameter list consisting solely of 'void' indicates that the
  /* A parameter list consisting solely of 'void' indicates that the
     function takes no arguments.  But if the 'void' is qualified
     function takes no arguments.  But if the 'void' is qualified
     (by 'const' or 'volatile'), or has a storage class specifier
     (by 'const' or 'volatile'), or has a storage class specifier
     ('register'), then the behavior is undefined; issue an error.
     ('register'), then the behavior is undefined; issue an error.
     Typedefs for 'void' are OK (see DR#157).  */
     Typedefs for 'void' are OK (see DR#157).  */
  if (b->prev == 0                           /* one binding */
  if (b->prev == 0                           /* one binding */
      && TREE_CODE (b->decl) == PARM_DECL   /* which is a parameter */
      && TREE_CODE (b->decl) == PARM_DECL   /* which is a parameter */
      && !DECL_NAME (b->decl)               /* anonymous */
      && !DECL_NAME (b->decl)               /* anonymous */
      && VOID_TYPE_P (TREE_TYPE (b->decl))) /* of void type */
      && VOID_TYPE_P (TREE_TYPE (b->decl))) /* of void type */
    {
    {
      if (TREE_THIS_VOLATILE (b->decl)
      if (TREE_THIS_VOLATILE (b->decl)
          || TREE_READONLY (b->decl)
          || TREE_READONLY (b->decl)
          || C_DECL_REGISTER (b->decl))
          || C_DECL_REGISTER (b->decl))
        error ("%<void%> as only parameter may not be qualified");
        error ("%<void%> as only parameter may not be qualified");
 
 
      /* There cannot be an ellipsis.  */
      /* There cannot be an ellipsis.  */
      if (ellipsis)
      if (ellipsis)
        error ("%<void%> must be the only parameter");
        error ("%<void%> must be the only parameter");
 
 
      arg_info->types = void_list_node;
      arg_info->types = void_list_node;
      return arg_info;
      return arg_info;
    }
    }
 
 
  if (!ellipsis)
  if (!ellipsis)
    types = void_list_node;
    types = void_list_node;
 
 
  /* Break up the bindings list into parms, tags, types, and others;
  /* Break up the bindings list into parms, tags, types, and others;
     apply sanity checks; purge the name-to-decl bindings.  */
     apply sanity checks; purge the name-to-decl bindings.  */
  while (b)
  while (b)
    {
    {
      tree decl = b->decl;
      tree decl = b->decl;
      tree type = TREE_TYPE (decl);
      tree type = TREE_TYPE (decl);
      const char *keyword;
      const char *keyword;
 
 
      switch (TREE_CODE (decl))
      switch (TREE_CODE (decl))
        {
        {
        case PARM_DECL:
        case PARM_DECL:
          if (b->id)
          if (b->id)
            {
            {
              gcc_assert (I_SYMBOL_BINDING (b->id) == b);
              gcc_assert (I_SYMBOL_BINDING (b->id) == b);
              I_SYMBOL_BINDING (b->id) = b->shadowed;
              I_SYMBOL_BINDING (b->id) = b->shadowed;
            }
            }
 
 
          /* Check for forward decls that never got their actual decl.  */
          /* Check for forward decls that never got their actual decl.  */
          if (TREE_ASM_WRITTEN (decl))
          if (TREE_ASM_WRITTEN (decl))
            error ("parameter %q+D has just a forward declaration", decl);
            error ("parameter %q+D has just a forward declaration", decl);
          /* Check for (..., void, ...) and issue an error.  */
          /* Check for (..., void, ...) and issue an error.  */
          else if (VOID_TYPE_P (type) && !DECL_NAME (decl))
          else if (VOID_TYPE_P (type) && !DECL_NAME (decl))
            {
            {
              if (!gave_void_only_once_err)
              if (!gave_void_only_once_err)
                {
                {
                  error ("%<void%> must be the only parameter");
                  error ("%<void%> must be the only parameter");
                  gave_void_only_once_err = true;
                  gave_void_only_once_err = true;
                }
                }
            }
            }
          else
          else
            {
            {
              /* Valid parameter, add it to the list.  */
              /* Valid parameter, add it to the list.  */
              TREE_CHAIN (decl) = parms;
              TREE_CHAIN (decl) = parms;
              parms = decl;
              parms = decl;
 
 
              /* Since there is a prototype, args are passed in their
              /* Since there is a prototype, args are passed in their
                 declared types.  The back end may override this later.  */
                 declared types.  The back end may override this later.  */
              DECL_ARG_TYPE (decl) = type;
              DECL_ARG_TYPE (decl) = type;
              types = tree_cons (0, type, types);
              types = tree_cons (0, type, types);
            }
            }
          break;
          break;
 
 
        case ENUMERAL_TYPE: keyword = "enum"; goto tag;
        case ENUMERAL_TYPE: keyword = "enum"; goto tag;
        case UNION_TYPE:    keyword = "union"; goto tag;
        case UNION_TYPE:    keyword = "union"; goto tag;
        case RECORD_TYPE:   keyword = "struct"; goto tag;
        case RECORD_TYPE:   keyword = "struct"; goto tag;
        tag:
        tag:
          /* Types may not have tag-names, in which case the type
          /* Types may not have tag-names, in which case the type
             appears in the bindings list with b->id NULL.  */
             appears in the bindings list with b->id NULL.  */
          if (b->id)
          if (b->id)
            {
            {
              gcc_assert (I_TAG_BINDING (b->id) == b);
              gcc_assert (I_TAG_BINDING (b->id) == b);
              I_TAG_BINDING (b->id) = b->shadowed;
              I_TAG_BINDING (b->id) = b->shadowed;
            }
            }
 
 
          /* Warn about any struct, union or enum tags defined in a
          /* Warn about any struct, union or enum tags defined in a
             parameter list.  The scope of such types is limited to
             parameter list.  The scope of such types is limited to
             the parameter list, which is rarely if ever desirable
             the parameter list, which is rarely if ever desirable
             (it's impossible to call such a function with type-
             (it's impossible to call such a function with type-
             correct arguments).  An anonymous union parm type is
             correct arguments).  An anonymous union parm type is
             meaningful as a GNU extension, so don't warn for that.  */
             meaningful as a GNU extension, so don't warn for that.  */
          if (TREE_CODE (decl) != UNION_TYPE || b->id != 0)
          if (TREE_CODE (decl) != UNION_TYPE || b->id != 0)
            {
            {
              if (b->id)
              if (b->id)
                /* The %s will be one of 'struct', 'union', or 'enum'.  */
                /* The %s will be one of 'struct', 'union', or 'enum'.  */
                warning (0, "%<%s %E%> declared inside parameter list",
                warning (0, "%<%s %E%> declared inside parameter list",
                         keyword, b->id);
                         keyword, b->id);
              else
              else
                /* The %s will be one of 'struct', 'union', or 'enum'.  */
                /* The %s will be one of 'struct', 'union', or 'enum'.  */
                warning (0, "anonymous %s declared inside parameter list",
                warning (0, "anonymous %s declared inside parameter list",
                         keyword);
                         keyword);
 
 
              if (!explained_incomplete_types)
              if (!explained_incomplete_types)
                {
                {
                  warning (0, "its scope is only this definition or declaration,"
                  warning (0, "its scope is only this definition or declaration,"
                           " which is probably not what you want");
                           " which is probably not what you want");
                  explained_incomplete_types = true;
                  explained_incomplete_types = true;
                }
                }
            }
            }
 
 
          tags = tree_cons (b->id, decl, tags);
          tags = tree_cons (b->id, decl, tags);
          break;
          break;
 
 
        case CONST_DECL:
        case CONST_DECL:
        case TYPE_DECL:
        case TYPE_DECL:
        case FUNCTION_DECL:
        case FUNCTION_DECL:
          /* CONST_DECLs appear here when we have an embedded enum,
          /* CONST_DECLs appear here when we have an embedded enum,
             and TYPE_DECLs appear here when we have an embedded struct
             and TYPE_DECLs appear here when we have an embedded struct
             or union.  No warnings for this - we already warned about the
             or union.  No warnings for this - we already warned about the
             type itself.  FUNCTION_DECLs appear when there is an implicit
             type itself.  FUNCTION_DECLs appear when there is an implicit
             function declaration in the parameter list.  */
             function declaration in the parameter list.  */
 
 
          TREE_CHAIN (decl) = others;
          TREE_CHAIN (decl) = others;
          others = decl;
          others = decl;
          /* fall through */
          /* fall through */
 
 
        case ERROR_MARK:
        case ERROR_MARK:
          /* error_mark_node appears here when we have an undeclared
          /* error_mark_node appears here when we have an undeclared
             variable.  Just throw it away.  */
             variable.  Just throw it away.  */
          if (b->id)
          if (b->id)
            {
            {
              gcc_assert (I_SYMBOL_BINDING (b->id) == b);
              gcc_assert (I_SYMBOL_BINDING (b->id) == b);
              I_SYMBOL_BINDING (b->id) = b->shadowed;
              I_SYMBOL_BINDING (b->id) = b->shadowed;
            }
            }
          break;
          break;
 
 
          /* Other things that might be encountered.  */
          /* Other things that might be encountered.  */
        case LABEL_DECL:
        case LABEL_DECL:
        case VAR_DECL:
        case VAR_DECL:
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
 
 
      b = free_binding_and_advance (b);
      b = free_binding_and_advance (b);
    }
    }
 
 
  arg_info->parms = parms;
  arg_info->parms = parms;
  arg_info->tags = tags;
  arg_info->tags = tags;
  arg_info->types = types;
  arg_info->types = types;
  arg_info->others = others;
  arg_info->others = others;
  arg_info->pending_sizes = get_pending_sizes ();
  arg_info->pending_sizes = get_pending_sizes ();
  return arg_info;
  return arg_info;
}
}


/* Get the struct, enum or union (CODE says which) with tag NAME.
/* Get the struct, enum or union (CODE says which) with tag NAME.
   Define the tag as a forward-reference if it is not defined.
   Define the tag as a forward-reference if it is not defined.
   Return a c_typespec structure for the type specifier.  */
   Return a c_typespec structure for the type specifier.  */
 
 
struct c_typespec
struct c_typespec
parser_xref_tag (enum tree_code code, tree name)
parser_xref_tag (enum tree_code code, tree name)
{
{
  struct c_typespec ret;
  struct c_typespec ret;
  /* If a cross reference is requested, look up the type
  /* If a cross reference is requested, look up the type
     already defined for this tag and return it.  */
     already defined for this tag and return it.  */
 
 
  tree ref = lookup_tag (code, name, 0);
  tree ref = lookup_tag (code, name, 0);
  /* If this is the right type of tag, return what we found.
  /* If this is the right type of tag, return what we found.
     (This reference will be shadowed by shadow_tag later if appropriate.)
     (This reference will be shadowed by shadow_tag later if appropriate.)
     If this is the wrong type of tag, do not return it.  If it was the
     If this is the wrong type of tag, do not return it.  If it was the
     wrong type in the same scope, we will have had an error
     wrong type in the same scope, we will have had an error
     message already; if in a different scope and declaring
     message already; if in a different scope and declaring
     a name, pending_xref_error will give an error message; but if in a
     a name, pending_xref_error will give an error message; but if in a
     different scope and not declaring a name, this tag should
     different scope and not declaring a name, this tag should
     shadow the previous declaration of a different type of tag, and
     shadow the previous declaration of a different type of tag, and
     this would not work properly if we return the reference found.
     this would not work properly if we return the reference found.
     (For example, with "struct foo" in an outer scope, "union foo;"
     (For example, with "struct foo" in an outer scope, "union foo;"
     must shadow that tag with a new one of union type.)  */
     must shadow that tag with a new one of union type.)  */
  ret.kind = (ref ? ctsk_tagref : ctsk_tagfirstref);
  ret.kind = (ref ? ctsk_tagref : ctsk_tagfirstref);
  if (ref && TREE_CODE (ref) == code)
  if (ref && TREE_CODE (ref) == code)
    {
    {
      ret.spec = ref;
      ret.spec = ref;
      return ret;
      return ret;
    }
    }
 
 
  /* If no such tag is yet defined, create a forward-reference node
  /* If no such tag is yet defined, create a forward-reference node
     and record it as the "definition".
     and record it as the "definition".
     When a real declaration of this type is found,
     When a real declaration of this type is found,
     the forward-reference will be altered into a real type.  */
     the forward-reference will be altered into a real type.  */
 
 
  ref = make_node (code);
  ref = make_node (code);
  if (code == ENUMERAL_TYPE)
  if (code == ENUMERAL_TYPE)
    {
    {
      /* Give the type a default layout like unsigned int
      /* Give the type a default layout like unsigned int
         to avoid crashing if it does not get defined.  */
         to avoid crashing if it does not get defined.  */
      TYPE_MODE (ref) = TYPE_MODE (unsigned_type_node);
      TYPE_MODE (ref) = TYPE_MODE (unsigned_type_node);
      TYPE_ALIGN (ref) = TYPE_ALIGN (unsigned_type_node);
      TYPE_ALIGN (ref) = TYPE_ALIGN (unsigned_type_node);
      TYPE_USER_ALIGN (ref) = 0;
      TYPE_USER_ALIGN (ref) = 0;
      TYPE_UNSIGNED (ref) = 1;
      TYPE_UNSIGNED (ref) = 1;
      TYPE_PRECISION (ref) = TYPE_PRECISION (unsigned_type_node);
      TYPE_PRECISION (ref) = TYPE_PRECISION (unsigned_type_node);
      TYPE_MIN_VALUE (ref) = TYPE_MIN_VALUE (unsigned_type_node);
      TYPE_MIN_VALUE (ref) = TYPE_MIN_VALUE (unsigned_type_node);
      TYPE_MAX_VALUE (ref) = TYPE_MAX_VALUE (unsigned_type_node);
      TYPE_MAX_VALUE (ref) = TYPE_MAX_VALUE (unsigned_type_node);
    }
    }
 
 
  pushtag (name, ref);
  pushtag (name, ref);
 
 
  ret.spec = ref;
  ret.spec = ref;
  return ret;
  return ret;
}
}
 
 
/* Get the struct, enum or union (CODE says which) with tag NAME.
/* Get the struct, enum or union (CODE says which) with tag NAME.
   Define the tag as a forward-reference if it is not defined.
   Define the tag as a forward-reference if it is not defined.
   Return a tree for the type.  */
   Return a tree for the type.  */
 
 
tree
tree
xref_tag (enum tree_code code, tree name)
xref_tag (enum tree_code code, tree name)
{
{
  return parser_xref_tag (code, name).spec;
  return parser_xref_tag (code, name).spec;
}
}


/* Make sure that the tag NAME is defined *in the current scope*
/* Make sure that the tag NAME is defined *in the current scope*
   at least as a forward reference.
   at least as a forward reference.
   CODE says which kind of tag NAME ought to be.  */
   CODE says which kind of tag NAME ought to be.  */
 
 
tree
tree
start_struct (enum tree_code code, tree name)
start_struct (enum tree_code code, tree name)
{
{
  /* If there is already a tag defined at this scope
  /* If there is already a tag defined at this scope
     (as a forward reference), just return it.  */
     (as a forward reference), just return it.  */
 
 
  tree ref = 0;
  tree ref = 0;
 
 
  if (name != 0)
  if (name != 0)
    ref = lookup_tag (code, name, 1);
    ref = lookup_tag (code, name, 1);
  if (ref && TREE_CODE (ref) == code)
  if (ref && TREE_CODE (ref) == code)
    {
    {
      if (TYPE_SIZE (ref))
      if (TYPE_SIZE (ref))
        {
        {
          if (code == UNION_TYPE)
          if (code == UNION_TYPE)
            error ("redefinition of %<union %E%>", name);
            error ("redefinition of %<union %E%>", name);
          else
          else
            error ("redefinition of %<struct %E%>", name);
            error ("redefinition of %<struct %E%>", name);
        }
        }
      else if (C_TYPE_BEING_DEFINED (ref))
      else if (C_TYPE_BEING_DEFINED (ref))
        {
        {
          if (code == UNION_TYPE)
          if (code == UNION_TYPE)
            error ("nested redefinition of %<union %E%>", name);
            error ("nested redefinition of %<union %E%>", name);
          else
          else
            error ("nested redefinition of %<struct %E%>", name);
            error ("nested redefinition of %<struct %E%>", name);
        }
        }
    }
    }
  else
  else
    {
    {
      /* Otherwise create a forward-reference just so the tag is in scope.  */
      /* Otherwise create a forward-reference just so the tag is in scope.  */
 
 
      ref = make_node (code);
      ref = make_node (code);
      pushtag (name, ref);
      pushtag (name, ref);
    }
    }
 
 
  C_TYPE_BEING_DEFINED (ref) = 1;
  C_TYPE_BEING_DEFINED (ref) = 1;
  TYPE_PACKED (ref) = flag_pack_struct;
  TYPE_PACKED (ref) = flag_pack_struct;
  return ref;
  return ref;
}
}
 
 
/* Process the specs, declarator and width (NULL if omitted)
/* Process the specs, declarator and width (NULL if omitted)
   of a structure component, returning a FIELD_DECL node.
   of a structure component, returning a FIELD_DECL node.
   WIDTH is non-NULL for bit-fields only, and is an INTEGER_CST node.
   WIDTH is non-NULL for bit-fields only, and is an INTEGER_CST node.
 
 
   This is done during the parsing of the struct declaration.
   This is done during the parsing of the struct declaration.
   The FIELD_DECL nodes are chained together and the lot of them
   The FIELD_DECL nodes are chained together and the lot of them
   are ultimately passed to `build_struct' to make the RECORD_TYPE node.  */
   are ultimately passed to `build_struct' to make the RECORD_TYPE node.  */
 
 
tree
tree
grokfield (struct c_declarator *declarator, struct c_declspecs *declspecs,
grokfield (struct c_declarator *declarator, struct c_declspecs *declspecs,
           tree width)
           tree width)
{
{
  tree value;
  tree value;
 
 
  if (declarator->kind == cdk_id && declarator->u.id == NULL_TREE
  if (declarator->kind == cdk_id && declarator->u.id == NULL_TREE
      && width == NULL_TREE)
      && width == NULL_TREE)
    {
    {
      /* This is an unnamed decl.
      /* This is an unnamed decl.
 
 
         If we have something of the form "union { list } ;" then this
         If we have something of the form "union { list } ;" then this
         is the anonymous union extension.  Similarly for struct.
         is the anonymous union extension.  Similarly for struct.
 
 
         If this is something of the form "struct foo;", then
         If this is something of the form "struct foo;", then
           If MS extensions are enabled, this is handled as an
           If MS extensions are enabled, this is handled as an
             anonymous struct.
             anonymous struct.
           Otherwise this is a forward declaration of a structure tag.
           Otherwise this is a forward declaration of a structure tag.
 
 
         If this is something of the form "foo;" and foo is a TYPE_DECL, then
         If this is something of the form "foo;" and foo is a TYPE_DECL, then
           If MS extensions are enabled and foo names a structure, then
           If MS extensions are enabled and foo names a structure, then
             again this is an anonymous struct.
             again this is an anonymous struct.
           Otherwise this is an error.
           Otherwise this is an error.
 
 
         Oh what a horrid tangled web we weave.  I wonder if MS consciously
         Oh what a horrid tangled web we weave.  I wonder if MS consciously
         took this from Plan 9 or if it was an accident of implementation
         took this from Plan 9 or if it was an accident of implementation
         that took root before someone noticed the bug...  */
         that took root before someone noticed the bug...  */
 
 
      tree type = declspecs->type;
      tree type = declspecs->type;
      bool type_ok = (TREE_CODE (type) == RECORD_TYPE
      bool type_ok = (TREE_CODE (type) == RECORD_TYPE
                      || TREE_CODE (type) == UNION_TYPE);
                      || TREE_CODE (type) == UNION_TYPE);
      bool ok = false;
      bool ok = false;
 
 
      if (type_ok
      if (type_ok
          && (flag_ms_extensions || !declspecs->typedef_p))
          && (flag_ms_extensions || !declspecs->typedef_p))
        {
        {
          if (flag_ms_extensions)
          if (flag_ms_extensions)
            ok = true;
            ok = true;
          else if (flag_iso)
          else if (flag_iso)
            ok = false;
            ok = false;
          else if (TYPE_NAME (type) == NULL)
          else if (TYPE_NAME (type) == NULL)
            ok = true;
            ok = true;
          else
          else
            ok = false;
            ok = false;
        }
        }
      if (!ok)
      if (!ok)
        {
        {
          pedwarn ("declaration does not declare anything");
          pedwarn ("declaration does not declare anything");
          return NULL_TREE;
          return NULL_TREE;
        }
        }
      if (pedantic)
      if (pedantic)
        pedwarn ("ISO C doesn%'t support unnamed structs/unions");
        pedwarn ("ISO C doesn%'t support unnamed structs/unions");
    }
    }
 
 
  value = grokdeclarator (declarator, declspecs, FIELD, false,
  value = grokdeclarator (declarator, declspecs, FIELD, false,
                          width ? &width : NULL);
                          width ? &width : NULL);
 
 
  finish_decl (value, NULL_TREE, NULL_TREE);
  finish_decl (value, NULL_TREE, NULL_TREE);
  DECL_INITIAL (value) = width;
  DECL_INITIAL (value) = width;
 
 
  return value;
  return value;
}
}


/* Generate an error for any duplicate field names in FIELDLIST.  Munge
/* Generate an error for any duplicate field names in FIELDLIST.  Munge
   the list such that this does not present a problem later.  */
   the list such that this does not present a problem later.  */
 
 
static void
static void
detect_field_duplicates (tree fieldlist)
detect_field_duplicates (tree fieldlist)
{
{
  tree x, y;
  tree x, y;
  int timeout = 10;
  int timeout = 10;
 
 
  /* First, see if there are more than "a few" fields.
  /* First, see if there are more than "a few" fields.
     This is trivially true if there are zero or one fields.  */
     This is trivially true if there are zero or one fields.  */
  if (!fieldlist)
  if (!fieldlist)
    return;
    return;
  x = TREE_CHAIN (fieldlist);
  x = TREE_CHAIN (fieldlist);
  if (!x)
  if (!x)
    return;
    return;
  do {
  do {
    timeout--;
    timeout--;
    x = TREE_CHAIN (x);
    x = TREE_CHAIN (x);
  } while (timeout > 0 && x);
  } while (timeout > 0 && x);
 
 
  /* If there were "few" fields, avoid the overhead of allocating
  /* If there were "few" fields, avoid the overhead of allocating
     a hash table.  Instead just do the nested traversal thing.  */
     a hash table.  Instead just do the nested traversal thing.  */
  if (timeout > 0)
  if (timeout > 0)
    {
    {
      for (x = TREE_CHAIN (fieldlist); x ; x = TREE_CHAIN (x))
      for (x = TREE_CHAIN (fieldlist); x ; x = TREE_CHAIN (x))
        if (DECL_NAME (x))
        if (DECL_NAME (x))
          {
          {
            for (y = fieldlist; y != x; y = TREE_CHAIN (y))
            for (y = fieldlist; y != x; y = TREE_CHAIN (y))
              if (DECL_NAME (y) == DECL_NAME (x))
              if (DECL_NAME (y) == DECL_NAME (x))
                {
                {
                  error ("duplicate member %q+D", x);
                  error ("duplicate member %q+D", x);
                  DECL_NAME (x) = NULL_TREE;
                  DECL_NAME (x) = NULL_TREE;
                }
                }
          }
          }
    }
    }
  else
  else
    {
    {
      htab_t htab = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
      htab_t htab = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
      void **slot;
      void **slot;
 
 
      for (x = fieldlist; x ; x = TREE_CHAIN (x))
      for (x = fieldlist; x ; x = TREE_CHAIN (x))
        if ((y = DECL_NAME (x)) != 0)
        if ((y = DECL_NAME (x)) != 0)
          {
          {
            slot = htab_find_slot (htab, y, INSERT);
            slot = htab_find_slot (htab, y, INSERT);
            if (*slot)
            if (*slot)
              {
              {
                error ("duplicate member %q+D", x);
                error ("duplicate member %q+D", x);
                DECL_NAME (x) = NULL_TREE;
                DECL_NAME (x) = NULL_TREE;
              }
              }
            *slot = y;
            *slot = y;
          }
          }
 
 
      htab_delete (htab);
      htab_delete (htab);
    }
    }
}
}
 
 
/* Fill in the fields of a RECORD_TYPE or UNION_TYPE node, T.
/* Fill in the fields of a RECORD_TYPE or UNION_TYPE node, T.
   FIELDLIST is a chain of FIELD_DECL nodes for the fields.
   FIELDLIST is a chain of FIELD_DECL nodes for the fields.
   ATTRIBUTES are attributes to be applied to the structure.  */
   ATTRIBUTES are attributes to be applied to the structure.  */
 
 
tree
tree
finish_struct (tree t, tree fieldlist, tree attributes)
finish_struct (tree t, tree fieldlist, tree attributes)
{
{
  tree x;
  tree x;
  bool toplevel = file_scope == current_scope;
  bool toplevel = file_scope == current_scope;
  int saw_named_field;
  int saw_named_field;
 
 
  /* If this type was previously laid out as a forward reference,
  /* If this type was previously laid out as a forward reference,
     make sure we lay it out again.  */
     make sure we lay it out again.  */
 
 
  TYPE_SIZE (t) = 0;
  TYPE_SIZE (t) = 0;
 
 
  decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
  decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
 
 
  if (pedantic)
  if (pedantic)
    {
    {
      for (x = fieldlist; x; x = TREE_CHAIN (x))
      for (x = fieldlist; x; x = TREE_CHAIN (x))
        if (DECL_NAME (x) != 0)
        if (DECL_NAME (x) != 0)
          break;
          break;
 
 
      if (x == 0)
      if (x == 0)
        {
        {
          if (TREE_CODE (t) == UNION_TYPE)
          if (TREE_CODE (t) == UNION_TYPE)
            {
            {
              if (fieldlist)
              if (fieldlist)
                pedwarn ("union has no named members");
                pedwarn ("union has no named members");
              else
              else
                pedwarn ("union has no members");
                pedwarn ("union has no members");
            }
            }
          else
          else
            {
            {
              if (fieldlist)
              if (fieldlist)
                pedwarn ("struct has no named members");
                pedwarn ("struct has no named members");
              else
              else
                pedwarn ("struct has no members");
                pedwarn ("struct has no members");
            }
            }
        }
        }
    }
    }
 
 
  /* Install struct as DECL_CONTEXT of each field decl.
  /* Install struct as DECL_CONTEXT of each field decl.
     Also process specified field sizes, found in the DECL_INITIAL,
     Also process specified field sizes, found in the DECL_INITIAL,
     storing 0 there after the type has been changed to precision equal
     storing 0 there after the type has been changed to precision equal
     to its width, rather than the precision of the specified standard
     to its width, rather than the precision of the specified standard
     type.  (Correct layout requires the original type to have been preserved
     type.  (Correct layout requires the original type to have been preserved
     until now.)  */
     until now.)  */
 
 
  saw_named_field = 0;
  saw_named_field = 0;
  for (x = fieldlist; x; x = TREE_CHAIN (x))
  for (x = fieldlist; x; x = TREE_CHAIN (x))
    {
    {
      if (TREE_TYPE (x) == error_mark_node)
      if (TREE_TYPE (x) == error_mark_node)
        continue;
        continue;
 
 
      DECL_CONTEXT (x) = t;
      DECL_CONTEXT (x) = t;
 
 
      if (TYPE_PACKED (t) && TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
      if (TYPE_PACKED (t) && TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
        DECL_PACKED (x) = 1;
        DECL_PACKED (x) = 1;
 
 
      /* If any field is const, the structure type is pseudo-const.  */
      /* If any field is const, the structure type is pseudo-const.  */
      if (TREE_READONLY (x))
      if (TREE_READONLY (x))
        C_TYPE_FIELDS_READONLY (t) = 1;
        C_TYPE_FIELDS_READONLY (t) = 1;
      else
      else
        {
        {
          /* A field that is pseudo-const makes the structure likewise.  */
          /* A field that is pseudo-const makes the structure likewise.  */
          tree t1 = TREE_TYPE (x);
          tree t1 = TREE_TYPE (x);
          while (TREE_CODE (t1) == ARRAY_TYPE)
          while (TREE_CODE (t1) == ARRAY_TYPE)
            t1 = TREE_TYPE (t1);
            t1 = TREE_TYPE (t1);
          if ((TREE_CODE (t1) == RECORD_TYPE || TREE_CODE (t1) == UNION_TYPE)
          if ((TREE_CODE (t1) == RECORD_TYPE || TREE_CODE (t1) == UNION_TYPE)
              && C_TYPE_FIELDS_READONLY (t1))
              && C_TYPE_FIELDS_READONLY (t1))
            C_TYPE_FIELDS_READONLY (t) = 1;
            C_TYPE_FIELDS_READONLY (t) = 1;
        }
        }
 
 
      /* Any field that is volatile means variables of this type must be
      /* Any field that is volatile means variables of this type must be
         treated in some ways as volatile.  */
         treated in some ways as volatile.  */
      if (TREE_THIS_VOLATILE (x))
      if (TREE_THIS_VOLATILE (x))
        C_TYPE_FIELDS_VOLATILE (t) = 1;
        C_TYPE_FIELDS_VOLATILE (t) = 1;
 
 
      /* Any field of nominal variable size implies structure is too.  */
      /* Any field of nominal variable size implies structure is too.  */
      if (C_DECL_VARIABLE_SIZE (x))
      if (C_DECL_VARIABLE_SIZE (x))
        C_TYPE_VARIABLE_SIZE (t) = 1;
        C_TYPE_VARIABLE_SIZE (t) = 1;
 
 
      if (DECL_INITIAL (x))
      if (DECL_INITIAL (x))
        {
        {
          unsigned HOST_WIDE_INT width = tree_low_cst (DECL_INITIAL (x), 1);
          unsigned HOST_WIDE_INT width = tree_low_cst (DECL_INITIAL (x), 1);
          DECL_SIZE (x) = bitsize_int (width);
          DECL_SIZE (x) = bitsize_int (width);
          DECL_BIT_FIELD (x) = 1;
          DECL_BIT_FIELD (x) = 1;
          SET_DECL_C_BIT_FIELD (x);
          SET_DECL_C_BIT_FIELD (x);
        }
        }
 
 
      /* Detect flexible array member in an invalid context.  */
      /* Detect flexible array member in an invalid context.  */
      if (TREE_CODE (TREE_TYPE (x)) == ARRAY_TYPE
      if (TREE_CODE (TREE_TYPE (x)) == ARRAY_TYPE
          && TYPE_SIZE (TREE_TYPE (x)) == NULL_TREE
          && TYPE_SIZE (TREE_TYPE (x)) == NULL_TREE
          && TYPE_DOMAIN (TREE_TYPE (x)) != NULL_TREE
          && TYPE_DOMAIN (TREE_TYPE (x)) != NULL_TREE
          && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (x))) == NULL_TREE)
          && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (x))) == NULL_TREE)
        {
        {
          if (TREE_CODE (t) == UNION_TYPE)
          if (TREE_CODE (t) == UNION_TYPE)
            {
            {
              error ("%Jflexible array member in union", x);
              error ("%Jflexible array member in union", x);
              TREE_TYPE (x) = error_mark_node;
              TREE_TYPE (x) = error_mark_node;
            }
            }
          else if (TREE_CHAIN (x) != NULL_TREE)
          else if (TREE_CHAIN (x) != NULL_TREE)
            {
            {
              error ("%Jflexible array member not at end of struct", x);
              error ("%Jflexible array member not at end of struct", x);
              TREE_TYPE (x) = error_mark_node;
              TREE_TYPE (x) = error_mark_node;
            }
            }
          else if (!saw_named_field)
          else if (!saw_named_field)
            {
            {
              error ("%Jflexible array member in otherwise empty struct", x);
              error ("%Jflexible array member in otherwise empty struct", x);
              TREE_TYPE (x) = error_mark_node;
              TREE_TYPE (x) = error_mark_node;
            }
            }
        }
        }
 
 
      if (pedantic && !in_system_header && TREE_CODE (t) == RECORD_TYPE
      if (pedantic && !in_system_header && TREE_CODE (t) == RECORD_TYPE
          && flexible_array_type_p (TREE_TYPE (x)))
          && flexible_array_type_p (TREE_TYPE (x)))
        pedwarn ("%Jinvalid use of structure with flexible array member", x);
        pedwarn ("%Jinvalid use of structure with flexible array member", x);
 
 
      if (DECL_NAME (x))
      if (DECL_NAME (x))
        saw_named_field = 1;
        saw_named_field = 1;
    }
    }
 
 
  detect_field_duplicates (fieldlist);
  detect_field_duplicates (fieldlist);
 
 
  /* Now we have the nearly final fieldlist.  Record it,
  /* Now we have the nearly final fieldlist.  Record it,
     then lay out the structure or union (including the fields).  */
     then lay out the structure or union (including the fields).  */
 
 
  TYPE_FIELDS (t) = fieldlist;
  TYPE_FIELDS (t) = fieldlist;
 
 
  layout_type (t);
  layout_type (t);
 
 
  /* Give bit-fields their proper types.  */
  /* Give bit-fields their proper types.  */
  {
  {
    tree *fieldlistp = &fieldlist;
    tree *fieldlistp = &fieldlist;
    while (*fieldlistp)
    while (*fieldlistp)
      if (TREE_CODE (*fieldlistp) == FIELD_DECL && DECL_INITIAL (*fieldlistp)
      if (TREE_CODE (*fieldlistp) == FIELD_DECL && DECL_INITIAL (*fieldlistp)
          && TREE_TYPE (*fieldlistp) != error_mark_node)
          && TREE_TYPE (*fieldlistp) != error_mark_node)
        {
        {
          unsigned HOST_WIDE_INT width
          unsigned HOST_WIDE_INT width
            = tree_low_cst (DECL_INITIAL (*fieldlistp), 1);
            = tree_low_cst (DECL_INITIAL (*fieldlistp), 1);
          tree type = TREE_TYPE (*fieldlistp);
          tree type = TREE_TYPE (*fieldlistp);
          if (width != TYPE_PRECISION (type))
          if (width != TYPE_PRECISION (type))
            {
            {
              TREE_TYPE (*fieldlistp)
              TREE_TYPE (*fieldlistp)
                = c_build_bitfield_integer_type (width, TYPE_UNSIGNED (type));
                = c_build_bitfield_integer_type (width, TYPE_UNSIGNED (type));
              DECL_MODE (*fieldlistp) = TYPE_MODE (TREE_TYPE (*fieldlistp));
              DECL_MODE (*fieldlistp) = TYPE_MODE (TREE_TYPE (*fieldlistp));
            }
            }
          DECL_INITIAL (*fieldlistp) = 0;
          DECL_INITIAL (*fieldlistp) = 0;
        }
        }
      else
      else
        fieldlistp = &TREE_CHAIN (*fieldlistp);
        fieldlistp = &TREE_CHAIN (*fieldlistp);
  }
  }
 
 
  /* Now we have the truly final field list.
  /* Now we have the truly final field list.
     Store it in this type and in the variants.  */
     Store it in this type and in the variants.  */
 
 
  TYPE_FIELDS (t) = fieldlist;
  TYPE_FIELDS (t) = fieldlist;
 
 
  /* If there are lots of fields, sort so we can look through them fast.
  /* If there are lots of fields, sort so we can look through them fast.
     We arbitrarily consider 16 or more elts to be "a lot".  */
     We arbitrarily consider 16 or more elts to be "a lot".  */
 
 
  {
  {
    int len = 0;
    int len = 0;
 
 
    for (x = fieldlist; x; x = TREE_CHAIN (x))
    for (x = fieldlist; x; x = TREE_CHAIN (x))
      {
      {
        if (len > 15 || DECL_NAME (x) == NULL)
        if (len > 15 || DECL_NAME (x) == NULL)
          break;
          break;
        len += 1;
        len += 1;
      }
      }
 
 
    if (len > 15)
    if (len > 15)
      {
      {
        tree *field_array;
        tree *field_array;
        struct lang_type *space;
        struct lang_type *space;
        struct sorted_fields_type *space2;
        struct sorted_fields_type *space2;
 
 
        len += list_length (x);
        len += list_length (x);
 
 
        /* Use the same allocation policy here that make_node uses, to
        /* Use the same allocation policy here that make_node uses, to
          ensure that this lives as long as the rest of the struct decl.
          ensure that this lives as long as the rest of the struct decl.
          All decls in an inline function need to be saved.  */
          All decls in an inline function need to be saved.  */
 
 
        space = GGC_CNEW (struct lang_type);
        space = GGC_CNEW (struct lang_type);
        space2 = GGC_NEWVAR (struct sorted_fields_type,
        space2 = GGC_NEWVAR (struct sorted_fields_type,
                             sizeof (struct sorted_fields_type) + len * sizeof (tree));
                             sizeof (struct sorted_fields_type) + len * sizeof (tree));
 
 
        len = 0;
        len = 0;
        space->s = space2;
        space->s = space2;
        field_array = &space2->elts[0];
        field_array = &space2->elts[0];
        for (x = fieldlist; x; x = TREE_CHAIN (x))
        for (x = fieldlist; x; x = TREE_CHAIN (x))
          {
          {
            field_array[len++] = x;
            field_array[len++] = x;
 
 
            /* If there is anonymous struct or union, break out of the loop.  */
            /* If there is anonymous struct or union, break out of the loop.  */
            if (DECL_NAME (x) == NULL)
            if (DECL_NAME (x) == NULL)
              break;
              break;
          }
          }
        /* Found no anonymous struct/union.  Add the TYPE_LANG_SPECIFIC.  */
        /* Found no anonymous struct/union.  Add the TYPE_LANG_SPECIFIC.  */
        if (x == NULL)
        if (x == NULL)
          {
          {
            TYPE_LANG_SPECIFIC (t) = space;
            TYPE_LANG_SPECIFIC (t) = space;
            TYPE_LANG_SPECIFIC (t)->s->len = len;
            TYPE_LANG_SPECIFIC (t)->s->len = len;
            field_array = TYPE_LANG_SPECIFIC (t)->s->elts;
            field_array = TYPE_LANG_SPECIFIC (t)->s->elts;
            qsort (field_array, len, sizeof (tree), field_decl_cmp);
            qsort (field_array, len, sizeof (tree), field_decl_cmp);
          }
          }
      }
      }
  }
  }
 
 
  for (x = TYPE_MAIN_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
  for (x = TYPE_MAIN_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
    {
    {
      TYPE_FIELDS (x) = TYPE_FIELDS (t);
      TYPE_FIELDS (x) = TYPE_FIELDS (t);
      TYPE_LANG_SPECIFIC (x) = TYPE_LANG_SPECIFIC (t);
      TYPE_LANG_SPECIFIC (x) = TYPE_LANG_SPECIFIC (t);
      C_TYPE_FIELDS_READONLY (x) = C_TYPE_FIELDS_READONLY (t);
      C_TYPE_FIELDS_READONLY (x) = C_TYPE_FIELDS_READONLY (t);
      C_TYPE_FIELDS_VOLATILE (x) = C_TYPE_FIELDS_VOLATILE (t);
      C_TYPE_FIELDS_VOLATILE (x) = C_TYPE_FIELDS_VOLATILE (t);
      C_TYPE_VARIABLE_SIZE (x) = C_TYPE_VARIABLE_SIZE (t);
      C_TYPE_VARIABLE_SIZE (x) = C_TYPE_VARIABLE_SIZE (t);
    }
    }
 
 
  /* If this was supposed to be a transparent union, but we can't
  /* If this was supposed to be a transparent union, but we can't
     make it one, warn and turn off the flag.  */
     make it one, warn and turn off the flag.  */
  if (TREE_CODE (t) == UNION_TYPE
  if (TREE_CODE (t) == UNION_TYPE
      && TYPE_TRANSPARENT_UNION (t)
      && TYPE_TRANSPARENT_UNION (t)
      && (!TYPE_FIELDS (t) || TYPE_MODE (t) != DECL_MODE (TYPE_FIELDS (t))))
      && (!TYPE_FIELDS (t) || TYPE_MODE (t) != DECL_MODE (TYPE_FIELDS (t))))
    {
    {
      TYPE_TRANSPARENT_UNION (t) = 0;
      TYPE_TRANSPARENT_UNION (t) = 0;
      warning (0, "union cannot be made transparent");
      warning (0, "union cannot be made transparent");
    }
    }
 
 
  /* If this structure or union completes the type of any previous
  /* If this structure or union completes the type of any previous
     variable declaration, lay it out and output its rtl.  */
     variable declaration, lay it out and output its rtl.  */
  for (x = C_TYPE_INCOMPLETE_VARS (TYPE_MAIN_VARIANT (t));
  for (x = C_TYPE_INCOMPLETE_VARS (TYPE_MAIN_VARIANT (t));
       x;
       x;
       x = TREE_CHAIN (x))
       x = TREE_CHAIN (x))
    {
    {
      tree decl = TREE_VALUE (x);
      tree decl = TREE_VALUE (x);
      if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
      if (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
        layout_array_type (TREE_TYPE (decl));
        layout_array_type (TREE_TYPE (decl));
      if (TREE_CODE (decl) != TYPE_DECL)
      if (TREE_CODE (decl) != TYPE_DECL)
        {
        {
          layout_decl (decl, 0);
          layout_decl (decl, 0);
          if (c_dialect_objc ())
          if (c_dialect_objc ())
            objc_check_decl (decl);
            objc_check_decl (decl);
          rest_of_decl_compilation (decl, toplevel, 0);
          rest_of_decl_compilation (decl, toplevel, 0);
          if (!toplevel)
          if (!toplevel)
            expand_decl (decl);
            expand_decl (decl);
        }
        }
    }
    }
  C_TYPE_INCOMPLETE_VARS (TYPE_MAIN_VARIANT (t)) = 0;
  C_TYPE_INCOMPLETE_VARS (TYPE_MAIN_VARIANT (t)) = 0;
 
 
  /* Finish debugging output for this type.  */
  /* Finish debugging output for this type.  */
  rest_of_type_compilation (t, toplevel);
  rest_of_type_compilation (t, toplevel);
 
 
  /* If we're inside a function proper, i.e. not file-scope and not still
  /* If we're inside a function proper, i.e. not file-scope and not still
     parsing parameters, then arrange for the size of a variable sized type
     parsing parameters, then arrange for the size of a variable sized type
     to be bound now.  */
     to be bound now.  */
  if (cur_stmt_list && variably_modified_type_p (t, NULL_TREE))
  if (cur_stmt_list && variably_modified_type_p (t, NULL_TREE))
    add_stmt (build_stmt (DECL_EXPR, build_decl (TYPE_DECL, NULL, t)));
    add_stmt (build_stmt (DECL_EXPR, build_decl (TYPE_DECL, NULL, t)));
 
 
  return t;
  return t;
}
}
 
 
/* Lay out the type T, and its element type, and so on.  */
/* Lay out the type T, and its element type, and so on.  */
 
 
static void
static void
layout_array_type (tree t)
layout_array_type (tree t)
{
{
  if (TREE_CODE (TREE_TYPE (t)) == ARRAY_TYPE)
  if (TREE_CODE (TREE_TYPE (t)) == ARRAY_TYPE)
    layout_array_type (TREE_TYPE (t));
    layout_array_type (TREE_TYPE (t));
  layout_type (t);
  layout_type (t);
}
}


/* Begin compiling the definition of an enumeration type.
/* Begin compiling the definition of an enumeration type.
   NAME is its name (or null if anonymous).
   NAME is its name (or null if anonymous).
   Returns the type object, as yet incomplete.
   Returns the type object, as yet incomplete.
   Also records info about it so that build_enumerator
   Also records info about it so that build_enumerator
   may be used to declare the individual values as they are read.  */
   may be used to declare the individual values as they are read.  */
 
 
tree
tree
start_enum (tree name)
start_enum (tree name)
{
{
  tree enumtype = 0;
  tree enumtype = 0;
 
 
  /* If this is the real definition for a previous forward reference,
  /* If this is the real definition for a previous forward reference,
     fill in the contents in the same object that used to be the
     fill in the contents in the same object that used to be the
     forward reference.  */
     forward reference.  */
 
 
  if (name != 0)
  if (name != 0)
    enumtype = lookup_tag (ENUMERAL_TYPE, name, 1);
    enumtype = lookup_tag (ENUMERAL_TYPE, name, 1);
 
 
  if (enumtype == 0 || TREE_CODE (enumtype) != ENUMERAL_TYPE)
  if (enumtype == 0 || TREE_CODE (enumtype) != ENUMERAL_TYPE)
    {
    {
      enumtype = make_node (ENUMERAL_TYPE);
      enumtype = make_node (ENUMERAL_TYPE);
      pushtag (name, enumtype);
      pushtag (name, enumtype);
    }
    }
 
 
  if (C_TYPE_BEING_DEFINED (enumtype))
  if (C_TYPE_BEING_DEFINED (enumtype))
    error ("nested redefinition of %<enum %E%>", name);
    error ("nested redefinition of %<enum %E%>", name);
 
 
  C_TYPE_BEING_DEFINED (enumtype) = 1;
  C_TYPE_BEING_DEFINED (enumtype) = 1;
 
 
  if (TYPE_VALUES (enumtype) != 0)
  if (TYPE_VALUES (enumtype) != 0)
    {
    {
      /* This enum is a named one that has been declared already.  */
      /* This enum is a named one that has been declared already.  */
      error ("redeclaration of %<enum %E%>", name);
      error ("redeclaration of %<enum %E%>", name);
 
 
      /* Completely replace its old definition.
      /* Completely replace its old definition.
         The old enumerators remain defined, however.  */
         The old enumerators remain defined, however.  */
      TYPE_VALUES (enumtype) = 0;
      TYPE_VALUES (enumtype) = 0;
    }
    }
 
 
  enum_next_value = integer_zero_node;
  enum_next_value = integer_zero_node;
  enum_overflow = 0;
  enum_overflow = 0;
 
 
  if (flag_short_enums)
  if (flag_short_enums)
    TYPE_PACKED (enumtype) = 1;
    TYPE_PACKED (enumtype) = 1;
 
 
  return enumtype;
  return enumtype;
}
}
 
 
/* After processing and defining all the values of an enumeration type,
/* After processing and defining all the values of an enumeration type,
   install their decls in the enumeration type and finish it off.
   install their decls in the enumeration type and finish it off.
   ENUMTYPE is the type object, VALUES a list of decl-value pairs,
   ENUMTYPE is the type object, VALUES a list of decl-value pairs,
   and ATTRIBUTES are the specified attributes.
   and ATTRIBUTES are the specified attributes.
   Returns ENUMTYPE.  */
   Returns ENUMTYPE.  */
 
 
tree
tree
finish_enum (tree enumtype, tree values, tree attributes)
finish_enum (tree enumtype, tree values, tree attributes)
{
{
  tree pair, tem;
  tree pair, tem;
  tree minnode = 0, maxnode = 0;
  tree minnode = 0, maxnode = 0;
  int precision, unsign;
  int precision, unsign;
  bool toplevel = (file_scope == current_scope);
  bool toplevel = (file_scope == current_scope);
  struct lang_type *lt;
  struct lang_type *lt;
 
 
  decl_attributes (&enumtype, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
  decl_attributes (&enumtype, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
 
 
  /* Calculate the maximum value of any enumerator in this type.  */
  /* Calculate the maximum value of any enumerator in this type.  */
 
 
  if (values == error_mark_node)
  if (values == error_mark_node)
    minnode = maxnode = integer_zero_node;
    minnode = maxnode = integer_zero_node;
  else
  else
    {
    {
      minnode = maxnode = TREE_VALUE (values);
      minnode = maxnode = TREE_VALUE (values);
      for (pair = TREE_CHAIN (values); pair; pair = TREE_CHAIN (pair))
      for (pair = TREE_CHAIN (values); pair; pair = TREE_CHAIN (pair))
        {
        {
          tree value = TREE_VALUE (pair);
          tree value = TREE_VALUE (pair);
          if (tree_int_cst_lt (maxnode, value))
          if (tree_int_cst_lt (maxnode, value))
            maxnode = value;
            maxnode = value;
          if (tree_int_cst_lt (value, minnode))
          if (tree_int_cst_lt (value, minnode))
            minnode = value;
            minnode = value;
        }
        }
    }
    }
 
 
  /* Construct the final type of this enumeration.  It is the same
  /* Construct the final type of this enumeration.  It is the same
     as one of the integral types - the narrowest one that fits, except
     as one of the integral types - the narrowest one that fits, except
     that normally we only go as narrow as int - and signed iff any of
     that normally we only go as narrow as int - and signed iff any of
     the values are negative.  */
     the values are negative.  */
  unsign = (tree_int_cst_sgn (minnode) >= 0);
  unsign = (tree_int_cst_sgn (minnode) >= 0);
  precision = MAX (min_precision (minnode, unsign),
  precision = MAX (min_precision (minnode, unsign),
                   min_precision (maxnode, unsign));
                   min_precision (maxnode, unsign));
 
 
  if (TYPE_PACKED (enumtype) || precision > TYPE_PRECISION (integer_type_node))
  if (TYPE_PACKED (enumtype) || precision > TYPE_PRECISION (integer_type_node))
    {
    {
      tem = c_common_type_for_size (precision, unsign);
      tem = c_common_type_for_size (precision, unsign);
      if (tem == NULL)
      if (tem == NULL)
        {
        {
          warning (0, "enumeration values exceed range of largest integer");
          warning (0, "enumeration values exceed range of largest integer");
          tem = long_long_integer_type_node;
          tem = long_long_integer_type_node;
        }
        }
    }
    }
  else
  else
    tem = unsign ? unsigned_type_node : integer_type_node;
    tem = unsign ? unsigned_type_node : integer_type_node;
 
 
  TYPE_MIN_VALUE (enumtype) = TYPE_MIN_VALUE (tem);
  TYPE_MIN_VALUE (enumtype) = TYPE_MIN_VALUE (tem);
  TYPE_MAX_VALUE (enumtype) = TYPE_MAX_VALUE (tem);
  TYPE_MAX_VALUE (enumtype) = TYPE_MAX_VALUE (tem);
  TYPE_UNSIGNED (enumtype) = TYPE_UNSIGNED (tem);
  TYPE_UNSIGNED (enumtype) = TYPE_UNSIGNED (tem);
  TYPE_SIZE (enumtype) = 0;
  TYPE_SIZE (enumtype) = 0;
 
 
  /* If the precision of the type was specific with an attribute and it
  /* If the precision of the type was specific with an attribute and it
     was too small, give an error.  Otherwise, use it.  */
     was too small, give an error.  Otherwise, use it.  */
  if (TYPE_PRECISION (enumtype))
  if (TYPE_PRECISION (enumtype))
    {
    {
      if (precision > TYPE_PRECISION (enumtype))
      if (precision > TYPE_PRECISION (enumtype))
        error ("specified mode too small for enumeral values");
        error ("specified mode too small for enumeral values");
    }
    }
  else
  else
    TYPE_PRECISION (enumtype) = TYPE_PRECISION (tem);
    TYPE_PRECISION (enumtype) = TYPE_PRECISION (tem);
 
 
  layout_type (enumtype);
  layout_type (enumtype);
 
 
  if (values != error_mark_node)
  if (values != error_mark_node)
    {
    {
      /* Change the type of the enumerators to be the enum type.  We
      /* Change the type of the enumerators to be the enum type.  We
         need to do this irrespective of the size of the enum, for
         need to do this irrespective of the size of the enum, for
         proper type checking.  Replace the DECL_INITIALs of the
         proper type checking.  Replace the DECL_INITIALs of the
         enumerators, and the value slots of the list, with copies
         enumerators, and the value slots of the list, with copies
         that have the enum type; they cannot be modified in place
         that have the enum type; they cannot be modified in place
         because they may be shared (e.g.  integer_zero_node) Finally,
         because they may be shared (e.g.  integer_zero_node) Finally,
         change the purpose slots to point to the names of the decls.  */
         change the purpose slots to point to the names of the decls.  */
      for (pair = values; pair; pair = TREE_CHAIN (pair))
      for (pair = values; pair; pair = TREE_CHAIN (pair))
        {
        {
          tree enu = TREE_PURPOSE (pair);
          tree enu = TREE_PURPOSE (pair);
          tree ini = DECL_INITIAL (enu);
          tree ini = DECL_INITIAL (enu);
 
 
          TREE_TYPE (enu) = enumtype;
          TREE_TYPE (enu) = enumtype;
 
 
          /* The ISO C Standard mandates enumerators to have type int,
          /* The ISO C Standard mandates enumerators to have type int,
             even though the underlying type of an enum type is
             even though the underlying type of an enum type is
             unspecified.  Here we convert any enumerators that fit in
             unspecified.  Here we convert any enumerators that fit in
             an int to type int, to avoid promotions to unsigned types
             an int to type int, to avoid promotions to unsigned types
             when comparing integers with enumerators that fit in the
             when comparing integers with enumerators that fit in the
             int range.  When -pedantic is given, build_enumerator()
             int range.  When -pedantic is given, build_enumerator()
             would have already taken care of those that don't fit.  */
             would have already taken care of those that don't fit.  */
          if (int_fits_type_p (ini, integer_type_node))
          if (int_fits_type_p (ini, integer_type_node))
            tem = integer_type_node;
            tem = integer_type_node;
          else
          else
            tem = enumtype;
            tem = enumtype;
          ini = convert (tem, ini);
          ini = convert (tem, ini);
 
 
          DECL_INITIAL (enu) = ini;
          DECL_INITIAL (enu) = ini;
          TREE_PURPOSE (pair) = DECL_NAME (enu);
          TREE_PURPOSE (pair) = DECL_NAME (enu);
          TREE_VALUE (pair) = ini;
          TREE_VALUE (pair) = ini;
        }
        }
 
 
      TYPE_VALUES (enumtype) = values;
      TYPE_VALUES (enumtype) = values;
    }
    }
 
 
  /* Record the min/max values so that we can warn about bit-field
  /* Record the min/max values so that we can warn about bit-field
     enumerations that are too small for the values.  */
     enumerations that are too small for the values.  */
  lt = GGC_CNEW (struct lang_type);
  lt = GGC_CNEW (struct lang_type);
  lt->enum_min = minnode;
  lt->enum_min = minnode;
  lt->enum_max = maxnode;
  lt->enum_max = maxnode;
  TYPE_LANG_SPECIFIC (enumtype) = lt;
  TYPE_LANG_SPECIFIC (enumtype) = lt;
 
 
  /* Fix up all variant types of this enum type.  */
  /* Fix up all variant types of this enum type.  */
  for (tem = TYPE_MAIN_VARIANT (enumtype); tem; tem = TYPE_NEXT_VARIANT (tem))
  for (tem = TYPE_MAIN_VARIANT (enumtype); tem; tem = TYPE_NEXT_VARIANT (tem))
    {
    {
      if (tem == enumtype)
      if (tem == enumtype)
        continue;
        continue;
      TYPE_VALUES (tem) = TYPE_VALUES (enumtype);
      TYPE_VALUES (tem) = TYPE_VALUES (enumtype);
      TYPE_MIN_VALUE (tem) = TYPE_MIN_VALUE (enumtype);
      TYPE_MIN_VALUE (tem) = TYPE_MIN_VALUE (enumtype);
      TYPE_MAX_VALUE (tem) = TYPE_MAX_VALUE (enumtype);
      TYPE_MAX_VALUE (tem) = TYPE_MAX_VALUE (enumtype);
      TYPE_SIZE (tem) = TYPE_SIZE (enumtype);
      TYPE_SIZE (tem) = TYPE_SIZE (enumtype);
      TYPE_SIZE_UNIT (tem) = TYPE_SIZE_UNIT (enumtype);
      TYPE_SIZE_UNIT (tem) = TYPE_SIZE_UNIT (enumtype);
      TYPE_MODE (tem) = TYPE_MODE (enumtype);
      TYPE_MODE (tem) = TYPE_MODE (enumtype);
      TYPE_PRECISION (tem) = TYPE_PRECISION (enumtype);
      TYPE_PRECISION (tem) = TYPE_PRECISION (enumtype);
      TYPE_ALIGN (tem) = TYPE_ALIGN (enumtype);
      TYPE_ALIGN (tem) = TYPE_ALIGN (enumtype);
      TYPE_USER_ALIGN (tem) = TYPE_USER_ALIGN (enumtype);
      TYPE_USER_ALIGN (tem) = TYPE_USER_ALIGN (enumtype);
      TYPE_UNSIGNED (tem) = TYPE_UNSIGNED (enumtype);
      TYPE_UNSIGNED (tem) = TYPE_UNSIGNED (enumtype);
      TYPE_LANG_SPECIFIC (tem) = TYPE_LANG_SPECIFIC (enumtype);
      TYPE_LANG_SPECIFIC (tem) = TYPE_LANG_SPECIFIC (enumtype);
    }
    }
 
 
  /* Finish debugging output for this type.  */
  /* Finish debugging output for this type.  */
  rest_of_type_compilation (enumtype, toplevel);
  rest_of_type_compilation (enumtype, toplevel);
 
 
  return enumtype;
  return enumtype;
}
}
 
 
/* Build and install a CONST_DECL for one value of the
/* Build and install a CONST_DECL for one value of the
   current enumeration type (one that was begun with start_enum).
   current enumeration type (one that was begun with start_enum).
   Return a tree-list containing the CONST_DECL and its value.
   Return a tree-list containing the CONST_DECL and its value.
   Assignment of sequential values by default is handled here.  */
   Assignment of sequential values by default is handled here.  */
 
 
tree
tree
build_enumerator (tree name, tree value)
build_enumerator (tree name, tree value)
{
{
  tree decl, type;
  tree decl, type;
 
 
  /* Validate and default VALUE.  */
  /* Validate and default VALUE.  */
 
 
  if (value != 0)
  if (value != 0)
    {
    {
      /* Don't issue more errors for error_mark_node (i.e. an
      /* Don't issue more errors for error_mark_node (i.e. an
         undeclared identifier) - just ignore the value expression.  */
         undeclared identifier) - just ignore the value expression.  */
      if (value == error_mark_node)
      if (value == error_mark_node)
        value = 0;
        value = 0;
      else if (!INTEGRAL_TYPE_P (TREE_TYPE (value))
      else if (!INTEGRAL_TYPE_P (TREE_TYPE (value))
               || TREE_CODE (value) != INTEGER_CST)
               || TREE_CODE (value) != INTEGER_CST)
        {
        {
          error ("enumerator value for %qE is not an integer constant", name);
          error ("enumerator value for %qE is not an integer constant", name);
          value = 0;
          value = 0;
        }
        }
      else
      else
        {
        {
          value = default_conversion (value);
          value = default_conversion (value);
          constant_expression_warning (value);
          constant_expression_warning (value);
        }
        }
    }
    }
 
 
  /* Default based on previous value.  */
  /* Default based on previous value.  */
  /* It should no longer be possible to have NON_LVALUE_EXPR
  /* It should no longer be possible to have NON_LVALUE_EXPR
     in the default.  */
     in the default.  */
  if (value == 0)
  if (value == 0)
    {
    {
      value = enum_next_value;
      value = enum_next_value;
      if (enum_overflow)
      if (enum_overflow)
        error ("overflow in enumeration values");
        error ("overflow in enumeration values");
    }
    }
 
 
  if (pedantic && !int_fits_type_p (value, integer_type_node))
  if (pedantic && !int_fits_type_p (value, integer_type_node))
    {
    {
      pedwarn ("ISO C restricts enumerator values to range of %<int%>");
      pedwarn ("ISO C restricts enumerator values to range of %<int%>");
      /* XXX This causes -pedantic to change the meaning of the program.
      /* XXX This causes -pedantic to change the meaning of the program.
         Remove?  -zw 2004-03-15  */
         Remove?  -zw 2004-03-15  */
      value = convert (integer_type_node, value);
      value = convert (integer_type_node, value);
    }
    }
 
 
  /* Set basis for default for next value.  */
  /* Set basis for default for next value.  */
  enum_next_value = build_binary_op (PLUS_EXPR, value, integer_one_node, 0);
  enum_next_value = build_binary_op (PLUS_EXPR, value, integer_one_node, 0);
  enum_overflow = tree_int_cst_lt (enum_next_value, value);
  enum_overflow = tree_int_cst_lt (enum_next_value, value);
 
 
  /* Now create a declaration for the enum value name.  */
  /* Now create a declaration for the enum value name.  */
 
 
  type = TREE_TYPE (value);
  type = TREE_TYPE (value);
  type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
  type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
                                      TYPE_PRECISION (integer_type_node)),
                                      TYPE_PRECISION (integer_type_node)),
                                 (TYPE_PRECISION (type)
                                 (TYPE_PRECISION (type)
                                  >= TYPE_PRECISION (integer_type_node)
                                  >= TYPE_PRECISION (integer_type_node)
                                  && TYPE_UNSIGNED (type)));
                                  && TYPE_UNSIGNED (type)));
 
 
  decl = build_decl (CONST_DECL, name, type);
  decl = build_decl (CONST_DECL, name, type);
  DECL_INITIAL (decl) = convert (type, value);
  DECL_INITIAL (decl) = convert (type, value);
  pushdecl (decl);
  pushdecl (decl);
 
 
  return tree_cons (decl, value, NULL_TREE);
  return tree_cons (decl, value, NULL_TREE);
}
}
 
 


/* Create the FUNCTION_DECL for a function definition.
/* Create the FUNCTION_DECL for a function definition.
   DECLSPECS, DECLARATOR and ATTRIBUTES are the parts of
   DECLSPECS, DECLARATOR and ATTRIBUTES are the parts of
   the declaration; they describe the function's name and the type it returns,
   the declaration; they describe the function's name and the type it returns,
   but twisted together in a fashion that parallels the syntax of C.
   but twisted together in a fashion that parallels the syntax of C.
 
 
   This function creates a binding context for the function body
   This function creates a binding context for the function body
   as well as setting up the FUNCTION_DECL in current_function_decl.
   as well as setting up the FUNCTION_DECL in current_function_decl.
 
 
   Returns 1 on success.  If the DECLARATOR is not suitable for a function
   Returns 1 on success.  If the DECLARATOR is not suitable for a function
   (it defines a datum instead), we return 0, which tells
   (it defines a datum instead), we return 0, which tells
   yyparse to report a parse error.  */
   yyparse to report a parse error.  */
 
 
int
int
start_function (struct c_declspecs *declspecs, struct c_declarator *declarator,
start_function (struct c_declspecs *declspecs, struct c_declarator *declarator,
                tree attributes)
                tree attributes)
{
{
  tree decl1, old_decl;
  tree decl1, old_decl;
  tree restype, resdecl;
  tree restype, resdecl;
  struct c_label_context_se *nstack_se;
  struct c_label_context_se *nstack_se;
  struct c_label_context_vm *nstack_vm;
  struct c_label_context_vm *nstack_vm;
 
 
  current_function_returns_value = 0;  /* Assume, until we see it does.  */
  current_function_returns_value = 0;  /* Assume, until we see it does.  */
  current_function_returns_null = 0;
  current_function_returns_null = 0;
  current_function_returns_abnormally = 0;
  current_function_returns_abnormally = 0;
  warn_about_return_type = 0;
  warn_about_return_type = 0;
  current_extern_inline = 0;
  current_extern_inline = 0;
  c_switch_stack = NULL;
  c_switch_stack = NULL;
 
 
  nstack_se = XOBNEW (&parser_obstack, struct c_label_context_se);
  nstack_se = XOBNEW (&parser_obstack, struct c_label_context_se);
  nstack_se->labels_def = NULL;
  nstack_se->labels_def = NULL;
  nstack_se->labels_used = NULL;
  nstack_se->labels_used = NULL;
  nstack_se->next = label_context_stack_se;
  nstack_se->next = label_context_stack_se;
  label_context_stack_se = nstack_se;
  label_context_stack_se = nstack_se;
 
 
  nstack_vm = XOBNEW (&parser_obstack, struct c_label_context_vm);
  nstack_vm = XOBNEW (&parser_obstack, struct c_label_context_vm);
  nstack_vm->labels_def = NULL;
  nstack_vm->labels_def = NULL;
  nstack_vm->labels_used = NULL;
  nstack_vm->labels_used = NULL;
  nstack_vm->scope = 0;
  nstack_vm->scope = 0;
  nstack_vm->next = label_context_stack_vm;
  nstack_vm->next = label_context_stack_vm;
  label_context_stack_vm = nstack_vm;
  label_context_stack_vm = nstack_vm;
 
 
  /* Indicate no valid break/continue context by setting these variables
  /* Indicate no valid break/continue context by setting these variables
     to some non-null, non-label value.  We'll notice and emit the proper
     to some non-null, non-label value.  We'll notice and emit the proper
     error message in c_finish_bc_stmt.  */
     error message in c_finish_bc_stmt.  */
  c_break_label = c_cont_label = size_zero_node;
  c_break_label = c_cont_label = size_zero_node;
 
 
  decl1 = grokdeclarator (declarator, declspecs, FUNCDEF, true, NULL);
  decl1 = grokdeclarator (declarator, declspecs, FUNCDEF, true, NULL);
 
 
  /* If the declarator is not suitable for a function definition,
  /* If the declarator is not suitable for a function definition,
     cause a syntax error.  */
     cause a syntax error.  */
  if (decl1 == 0)
  if (decl1 == 0)
    {
    {
      label_context_stack_se = label_context_stack_se->next;
      label_context_stack_se = label_context_stack_se->next;
      label_context_stack_vm = label_context_stack_vm->next;
      label_context_stack_vm = label_context_stack_vm->next;
      return 0;
      return 0;
    }
    }
 
 
  decl_attributes (&decl1, attributes, 0);
  decl_attributes (&decl1, attributes, 0);
 
 
  if (DECL_DECLARED_INLINE_P (decl1)
  if (DECL_DECLARED_INLINE_P (decl1)
      && DECL_UNINLINABLE (decl1)
      && DECL_UNINLINABLE (decl1)
      && lookup_attribute ("noinline", DECL_ATTRIBUTES (decl1)))
      && lookup_attribute ("noinline", DECL_ATTRIBUTES (decl1)))
    warning (OPT_Wattributes, "inline function %q+D given attribute noinline",
    warning (OPT_Wattributes, "inline function %q+D given attribute noinline",
             decl1);
             decl1);
 
 
  announce_function (decl1);
  announce_function (decl1);
 
 
  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl1))))
  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl1))))
    {
    {
      error ("return type is an incomplete type");
      error ("return type is an incomplete type");
      /* Make it return void instead.  */
      /* Make it return void instead.  */
      TREE_TYPE (decl1)
      TREE_TYPE (decl1)
        = build_function_type (void_type_node,
        = build_function_type (void_type_node,
                               TYPE_ARG_TYPES (TREE_TYPE (decl1)));
                               TYPE_ARG_TYPES (TREE_TYPE (decl1)));
    }
    }
 
 
  if (warn_about_return_type)
  if (warn_about_return_type)
    pedwarn_c99 ("return type defaults to %<int%>");
    pedwarn_c99 ("return type defaults to %<int%>");
 
 
  /* Make the init_value nonzero so pushdecl knows this is not tentative.
  /* Make the init_value nonzero so pushdecl knows this is not tentative.
     error_mark_node is replaced below (in pop_scope) with the BLOCK.  */
     error_mark_node is replaced below (in pop_scope) with the BLOCK.  */
  DECL_INITIAL (decl1) = error_mark_node;
  DECL_INITIAL (decl1) = error_mark_node;
 
 
  /* If this definition isn't a prototype and we had a prototype declaration
  /* If this definition isn't a prototype and we had a prototype declaration
     before, copy the arg type info from that prototype.  */
     before, copy the arg type info from that prototype.  */
  old_decl = lookup_name_in_scope (DECL_NAME (decl1), current_scope);
  old_decl = lookup_name_in_scope (DECL_NAME (decl1), current_scope);
  if (old_decl && TREE_CODE (old_decl) != FUNCTION_DECL)
  if (old_decl && TREE_CODE (old_decl) != FUNCTION_DECL)
    old_decl = 0;
    old_decl = 0;
  current_function_prototype_locus = UNKNOWN_LOCATION;
  current_function_prototype_locus = UNKNOWN_LOCATION;
  current_function_prototype_built_in = false;
  current_function_prototype_built_in = false;
  current_function_prototype_arg_types = NULL_TREE;
  current_function_prototype_arg_types = NULL_TREE;
  if (TYPE_ARG_TYPES (TREE_TYPE (decl1)) == 0)
  if (TYPE_ARG_TYPES (TREE_TYPE (decl1)) == 0)
    {
    {
      if (old_decl != 0 && TREE_CODE (TREE_TYPE (old_decl)) == FUNCTION_TYPE
      if (old_decl != 0 && TREE_CODE (TREE_TYPE (old_decl)) == FUNCTION_TYPE
          && comptypes (TREE_TYPE (TREE_TYPE (decl1)),
          && comptypes (TREE_TYPE (TREE_TYPE (decl1)),
                        TREE_TYPE (TREE_TYPE (old_decl))))
                        TREE_TYPE (TREE_TYPE (old_decl))))
        {
        {
          TREE_TYPE (decl1) = composite_type (TREE_TYPE (old_decl),
          TREE_TYPE (decl1) = composite_type (TREE_TYPE (old_decl),
                                              TREE_TYPE (decl1));
                                              TREE_TYPE (decl1));
          current_function_prototype_locus = DECL_SOURCE_LOCATION (old_decl);
          current_function_prototype_locus = DECL_SOURCE_LOCATION (old_decl);
          current_function_prototype_built_in
          current_function_prototype_built_in
            = C_DECL_BUILTIN_PROTOTYPE (old_decl);
            = C_DECL_BUILTIN_PROTOTYPE (old_decl);
          current_function_prototype_arg_types
          current_function_prototype_arg_types
            = TYPE_ARG_TYPES (TREE_TYPE (decl1));
            = TYPE_ARG_TYPES (TREE_TYPE (decl1));
        }
        }
      if (TREE_PUBLIC (decl1))
      if (TREE_PUBLIC (decl1))
        {
        {
          /* If there is an external prototype declaration of this
          /* If there is an external prototype declaration of this
             function, record its location but do not copy information
             function, record its location but do not copy information
             to this decl.  This may be an invisible declaration
             to this decl.  This may be an invisible declaration
             (built-in or in a scope which has finished) or simply
             (built-in or in a scope which has finished) or simply
             have more refined argument types than any declaration
             have more refined argument types than any declaration
             found above.  */
             found above.  */
          struct c_binding *b;
          struct c_binding *b;
          for (b = I_SYMBOL_BINDING (DECL_NAME (decl1)); b; b = b->shadowed)
          for (b = I_SYMBOL_BINDING (DECL_NAME (decl1)); b; b = b->shadowed)
            if (B_IN_SCOPE (b, external_scope))
            if (B_IN_SCOPE (b, external_scope))
              break;
              break;
          if (b)
          if (b)
            {
            {
              tree ext_decl, ext_type;
              tree ext_decl, ext_type;
              ext_decl = b->decl;
              ext_decl = b->decl;
              ext_type = b->type ? b->type : TREE_TYPE (ext_decl);
              ext_type = b->type ? b->type : TREE_TYPE (ext_decl);
              if (TREE_CODE (ext_type) == FUNCTION_TYPE
              if (TREE_CODE (ext_type) == FUNCTION_TYPE
                  && comptypes (TREE_TYPE (TREE_TYPE (decl1)),
                  && comptypes (TREE_TYPE (TREE_TYPE (decl1)),
                                TREE_TYPE (ext_type)))
                                TREE_TYPE (ext_type)))
                {
                {
                  current_function_prototype_locus
                  current_function_prototype_locus
                    = DECL_SOURCE_LOCATION (ext_decl);
                    = DECL_SOURCE_LOCATION (ext_decl);
                  current_function_prototype_built_in
                  current_function_prototype_built_in
                    = C_DECL_BUILTIN_PROTOTYPE (ext_decl);
                    = C_DECL_BUILTIN_PROTOTYPE (ext_decl);
                  current_function_prototype_arg_types
                  current_function_prototype_arg_types
                    = TYPE_ARG_TYPES (ext_type);
                    = TYPE_ARG_TYPES (ext_type);
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  /* Optionally warn of old-fashioned def with no previous prototype.  */
  /* Optionally warn of old-fashioned def with no previous prototype.  */
  if (warn_strict_prototypes
  if (warn_strict_prototypes
      && old_decl != error_mark_node
      && old_decl != error_mark_node
      && TYPE_ARG_TYPES (TREE_TYPE (decl1)) == 0
      && TYPE_ARG_TYPES (TREE_TYPE (decl1)) == 0
      && C_DECL_ISNT_PROTOTYPE (old_decl))
      && C_DECL_ISNT_PROTOTYPE (old_decl))
    warning (OPT_Wstrict_prototypes,
    warning (OPT_Wstrict_prototypes,
             "function declaration isn%'t a prototype");
             "function declaration isn%'t a prototype");
  /* Optionally warn of any global def with no previous prototype.  */
  /* Optionally warn of any global def with no previous prototype.  */
  else if (warn_missing_prototypes
  else if (warn_missing_prototypes
           && old_decl != error_mark_node
           && old_decl != error_mark_node
           && TREE_PUBLIC (decl1)
           && TREE_PUBLIC (decl1)
           && !MAIN_NAME_P (DECL_NAME (decl1))
           && !MAIN_NAME_P (DECL_NAME (decl1))
           && C_DECL_ISNT_PROTOTYPE (old_decl))
           && C_DECL_ISNT_PROTOTYPE (old_decl))
    warning (OPT_Wmissing_prototypes, "no previous prototype for %q+D", decl1);
    warning (OPT_Wmissing_prototypes, "no previous prototype for %q+D", decl1);
  /* Optionally warn of any def with no previous prototype
  /* Optionally warn of any def with no previous prototype
     if the function has already been used.  */
     if the function has already been used.  */
  else if (warn_missing_prototypes
  else if (warn_missing_prototypes
           && old_decl != 0
           && old_decl != 0
           && old_decl != error_mark_node
           && old_decl != error_mark_node
           && TREE_USED (old_decl)
           && TREE_USED (old_decl)
           && TYPE_ARG_TYPES (TREE_TYPE (old_decl)) == 0)
           && TYPE_ARG_TYPES (TREE_TYPE (old_decl)) == 0)
    warning (OPT_Wmissing_prototypes,
    warning (OPT_Wmissing_prototypes,
             "%q+D was used with no prototype before its definition", decl1);
             "%q+D was used with no prototype before its definition", decl1);
  /* Optionally warn of any global def with no previous declaration.  */
  /* Optionally warn of any global def with no previous declaration.  */
  else if (warn_missing_declarations
  else if (warn_missing_declarations
           && TREE_PUBLIC (decl1)
           && TREE_PUBLIC (decl1)
           && old_decl == 0
           && old_decl == 0
           && !MAIN_NAME_P (DECL_NAME (decl1)))
           && !MAIN_NAME_P (DECL_NAME (decl1)))
    warning (OPT_Wmissing_declarations, "no previous declaration for %q+D",
    warning (OPT_Wmissing_declarations, "no previous declaration for %q+D",
             decl1);
             decl1);
  /* Optionally warn of any def with no previous declaration
  /* Optionally warn of any def with no previous declaration
     if the function has already been used.  */
     if the function has already been used.  */
  else if (warn_missing_declarations
  else if (warn_missing_declarations
           && old_decl != 0
           && old_decl != 0
           && old_decl != error_mark_node
           && old_decl != error_mark_node
           && TREE_USED (old_decl)
           && TREE_USED (old_decl)
           && C_DECL_IMPLICIT (old_decl))
           && C_DECL_IMPLICIT (old_decl))
    warning (OPT_Wmissing_declarations,
    warning (OPT_Wmissing_declarations,
             "%q+D was used with no declaration before its definition", decl1);
             "%q+D was used with no declaration before its definition", decl1);
 
 
  /* This is a definition, not a reference.
  /* This is a definition, not a reference.
     So normally clear DECL_EXTERNAL.
     So normally clear DECL_EXTERNAL.
     However, `extern inline' acts like a declaration
     However, `extern inline' acts like a declaration
     except for defining how to inline.  So set DECL_EXTERNAL in that case.  */
     except for defining how to inline.  So set DECL_EXTERNAL in that case.  */
  DECL_EXTERNAL (decl1) = current_extern_inline;
  DECL_EXTERNAL (decl1) = current_extern_inline;
 
 
  /* C99 specified different behaviour for non-static inline
  /* C99 specified different behaviour for non-static inline
     functions, compared with the traditional GNU behaviour.  We don't
     functions, compared with the traditional GNU behaviour.  We don't
     support the C99 behaviour, but we do warn about non-static inline
     support the C99 behaviour, but we do warn about non-static inline
     functions here.  The warning can be disabled via an explicit use
     functions here.  The warning can be disabled via an explicit use
     of -fgnu89-inline, or by using the gnu_inline attribute.  */
     of -fgnu89-inline, or by using the gnu_inline attribute.  */
  if (DECL_DECLARED_INLINE_P (decl1)
  if (DECL_DECLARED_INLINE_P (decl1)
      && TREE_PUBLIC (decl1)
      && TREE_PUBLIC (decl1)
      && flag_isoc99
      && flag_isoc99
      && flag_gnu89_inline != 1
      && flag_gnu89_inline != 1
      && !lookup_attribute ("gnu_inline", DECL_ATTRIBUTES (decl1))
      && !lookup_attribute ("gnu_inline", DECL_ATTRIBUTES (decl1))
      && diagnostic_report_warnings_p ())
      && diagnostic_report_warnings_p ())
    {
    {
      static bool info = false;
      static bool info = false;
 
 
      warning (0, "C99 inline functions are not supported; using GNU89");
      warning (0, "C99 inline functions are not supported; using GNU89");
      if (!info)
      if (!info)
        {
        {
          warning (0,
          warning (0,
                   "to disable this warning use -fgnu89-inline or "
                   "to disable this warning use -fgnu89-inline or "
                   "the gnu_inline function attribute");
                   "the gnu_inline function attribute");
          info = true;
          info = true;
        }
        }
    }
    }
 
 
  /* This function exists in static storage.
  /* This function exists in static storage.
     (This does not mean `static' in the C sense!)  */
     (This does not mean `static' in the C sense!)  */
  TREE_STATIC (decl1) = 1;
  TREE_STATIC (decl1) = 1;
 
 
  /* A nested function is not global.  */
  /* A nested function is not global.  */
  if (current_function_decl != 0)
  if (current_function_decl != 0)
    TREE_PUBLIC (decl1) = 0;
    TREE_PUBLIC (decl1) = 0;
 
 
  /* This is the earliest point at which we might know the assembler
  /* This is the earliest point at which we might know the assembler
     name of the function.  Thus, if it's set before this, die horribly.  */
     name of the function.  Thus, if it's set before this, die horribly.  */
  gcc_assert (!DECL_ASSEMBLER_NAME_SET_P (decl1));
  gcc_assert (!DECL_ASSEMBLER_NAME_SET_P (decl1));
 
 
  /* If #pragma weak was used, mark the decl weak now.  */
  /* If #pragma weak was used, mark the decl weak now.  */
  if (current_scope == file_scope)
  if (current_scope == file_scope)
    maybe_apply_pragma_weak (decl1);
    maybe_apply_pragma_weak (decl1);
 
 
  /* Warn for unlikely, improbable, or stupid declarations of `main'.  */
  /* Warn for unlikely, improbable, or stupid declarations of `main'.  */
  if (warn_main > 0 && MAIN_NAME_P (DECL_NAME (decl1)))
  if (warn_main > 0 && MAIN_NAME_P (DECL_NAME (decl1)))
    {
    {
      tree args;
      tree args;
      int argct = 0;
      int argct = 0;
 
 
      if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (decl1)))
      if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (decl1)))
          != integer_type_node)
          != integer_type_node)
        pedwarn ("return type of %q+D is not %<int%>", decl1);
        pedwarn ("return type of %q+D is not %<int%>", decl1);
 
 
      for (args = TYPE_ARG_TYPES (TREE_TYPE (decl1)); args;
      for (args = TYPE_ARG_TYPES (TREE_TYPE (decl1)); args;
           args = TREE_CHAIN (args))
           args = TREE_CHAIN (args))
        {
        {
          tree type = args ? TREE_VALUE (args) : 0;
          tree type = args ? TREE_VALUE (args) : 0;
 
 
          if (type == void_type_node)
          if (type == void_type_node)
            break;
            break;
 
 
          ++argct;
          ++argct;
          switch (argct)
          switch (argct)
            {
            {
            case 1:
            case 1:
              if (TYPE_MAIN_VARIANT (type) != integer_type_node)
              if (TYPE_MAIN_VARIANT (type) != integer_type_node)
                pedwarn ("first argument of %q+D should be %<int%>", decl1);
                pedwarn ("first argument of %q+D should be %<int%>", decl1);
              break;
              break;
 
 
            case 2:
            case 2:
              if (TREE_CODE (type) != POINTER_TYPE
              if (TREE_CODE (type) != POINTER_TYPE
                  || TREE_CODE (TREE_TYPE (type)) != POINTER_TYPE
                  || TREE_CODE (TREE_TYPE (type)) != POINTER_TYPE
                  || (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (type)))
                  || (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (type)))
                      != char_type_node))
                      != char_type_node))
                pedwarn ("second argument of %q+D should be %<char **%>",
                pedwarn ("second argument of %q+D should be %<char **%>",
                         decl1);
                         decl1);
              break;
              break;
 
 
            case 3:
            case 3:
              if (TREE_CODE (type) != POINTER_TYPE
              if (TREE_CODE (type) != POINTER_TYPE
                  || TREE_CODE (TREE_TYPE (type)) != POINTER_TYPE
                  || TREE_CODE (TREE_TYPE (type)) != POINTER_TYPE
                  || (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (type)))
                  || (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (type)))
                      != char_type_node))
                      != char_type_node))
                pedwarn ("third argument of %q+D should probably be "
                pedwarn ("third argument of %q+D should probably be "
                         "%<char **%>", decl1);
                         "%<char **%>", decl1);
              break;
              break;
            }
            }
        }
        }
 
 
      /* It is intentional that this message does not mention the third
      /* It is intentional that this message does not mention the third
         argument because it's only mentioned in an appendix of the
         argument because it's only mentioned in an appendix of the
         standard.  */
         standard.  */
      if (argct > 0 && (argct < 2 || argct > 3))
      if (argct > 0 && (argct < 2 || argct > 3))
        pedwarn ("%q+D takes only zero or two arguments", decl1);
        pedwarn ("%q+D takes only zero or two arguments", decl1);
 
 
      if (!TREE_PUBLIC (decl1))
      if (!TREE_PUBLIC (decl1))
        pedwarn ("%q+D is normally a non-static function", decl1);
        pedwarn ("%q+D is normally a non-static function", decl1);
    }
    }
 
 
  /* Record the decl so that the function name is defined.
  /* Record the decl so that the function name is defined.
     If we already have a decl for this name, and it is a FUNCTION_DECL,
     If we already have a decl for this name, and it is a FUNCTION_DECL,
     use the old decl.  */
     use the old decl.  */
 
 
  current_function_decl = pushdecl (decl1);
  current_function_decl = pushdecl (decl1);
 
 
  push_scope ();
  push_scope ();
  declare_parm_level ();
  declare_parm_level ();
 
 
  restype = TREE_TYPE (TREE_TYPE (current_function_decl));
  restype = TREE_TYPE (TREE_TYPE (current_function_decl));
  /* Promote the value to int before returning it.  */
  /* Promote the value to int before returning it.  */
  if (c_promoting_integer_type_p (restype))
  if (c_promoting_integer_type_p (restype))
    {
    {
      /* It retains unsignedness if not really getting wider.  */
      /* It retains unsignedness if not really getting wider.  */
      if (TYPE_UNSIGNED (restype)
      if (TYPE_UNSIGNED (restype)
          && (TYPE_PRECISION (restype)
          && (TYPE_PRECISION (restype)
                  == TYPE_PRECISION (integer_type_node)))
                  == TYPE_PRECISION (integer_type_node)))
        restype = unsigned_type_node;
        restype = unsigned_type_node;
      else
      else
        restype = integer_type_node;
        restype = integer_type_node;
    }
    }
 
 
  resdecl = build_decl (RESULT_DECL, NULL_TREE, restype);
  resdecl = build_decl (RESULT_DECL, NULL_TREE, restype);
  DECL_ARTIFICIAL (resdecl) = 1;
  DECL_ARTIFICIAL (resdecl) = 1;
  DECL_IGNORED_P (resdecl) = 1;
  DECL_IGNORED_P (resdecl) = 1;
  DECL_RESULT (current_function_decl) = resdecl;
  DECL_RESULT (current_function_decl) = resdecl;
 
 
  start_fname_decls ();
  start_fname_decls ();
 
 
  return 1;
  return 1;
}
}


/* Subroutine of store_parm_decls which handles new-style function
/* Subroutine of store_parm_decls which handles new-style function
   definitions (prototype format). The parms already have decls, so we
   definitions (prototype format). The parms already have decls, so we
   need only record them as in effect and complain if any redundant
   need only record them as in effect and complain if any redundant
   old-style parm decls were written.  */
   old-style parm decls were written.  */
static void
static void
store_parm_decls_newstyle (tree fndecl, const struct c_arg_info *arg_info)
store_parm_decls_newstyle (tree fndecl, const struct c_arg_info *arg_info)
{
{
  tree decl;
  tree decl;
 
 
  if (current_scope->bindings)
  if (current_scope->bindings)
    {
    {
      error ("%Jold-style parameter declarations in prototyped "
      error ("%Jold-style parameter declarations in prototyped "
             "function definition", fndecl);
             "function definition", fndecl);
 
 
      /* Get rid of the old-style declarations.  */
      /* Get rid of the old-style declarations.  */
      pop_scope ();
      pop_scope ();
      push_scope ();
      push_scope ();
    }
    }
  /* Don't issue this warning for nested functions, and don't issue this
  /* Don't issue this warning for nested functions, and don't issue this
     warning if we got here because ARG_INFO_TYPES was error_mark_node
     warning if we got here because ARG_INFO_TYPES was error_mark_node
     (this happens when a function definition has just an ellipsis in
     (this happens when a function definition has just an ellipsis in
     its parameter list).  */
     its parameter list).  */
  else if (!in_system_header && !current_function_scope
  else if (!in_system_header && !current_function_scope
           && arg_info->types != error_mark_node)
           && arg_info->types != error_mark_node)
    warning (OPT_Wtraditional,
    warning (OPT_Wtraditional,
             "%Jtraditional C rejects ISO C style function definitions",
             "%Jtraditional C rejects ISO C style function definitions",
             fndecl);
             fndecl);
 
 
  /* Now make all the parameter declarations visible in the function body.
  /* Now make all the parameter declarations visible in the function body.
     We can bypass most of the grunt work of pushdecl.  */
     We can bypass most of the grunt work of pushdecl.  */
  for (decl = arg_info->parms; decl; decl = TREE_CHAIN (decl))
  for (decl = arg_info->parms; decl; decl = TREE_CHAIN (decl))
    {
    {
      DECL_CONTEXT (decl) = current_function_decl;
      DECL_CONTEXT (decl) = current_function_decl;
      if (DECL_NAME (decl))
      if (DECL_NAME (decl))
        {
        {
          bind (DECL_NAME (decl), decl, current_scope,
          bind (DECL_NAME (decl), decl, current_scope,
                /*invisible=*/false, /*nested=*/false);
                /*invisible=*/false, /*nested=*/false);
          if (!TREE_USED (decl))
          if (!TREE_USED (decl))
            warn_if_shadowing (decl);
            warn_if_shadowing (decl);
        }
        }
      else
      else
        error ("%Jparameter name omitted", decl);
        error ("%Jparameter name omitted", decl);
    }
    }
 
 
  /* Record the parameter list in the function declaration.  */
  /* Record the parameter list in the function declaration.  */
  DECL_ARGUMENTS (fndecl) = arg_info->parms;
  DECL_ARGUMENTS (fndecl) = arg_info->parms;
 
 
  /* Now make all the ancillary declarations visible, likewise.  */
  /* Now make all the ancillary declarations visible, likewise.  */
  for (decl = arg_info->others; decl; decl = TREE_CHAIN (decl))
  for (decl = arg_info->others; decl; decl = TREE_CHAIN (decl))
    {
    {
      DECL_CONTEXT (decl) = current_function_decl;
      DECL_CONTEXT (decl) = current_function_decl;
      if (DECL_NAME (decl))
      if (DECL_NAME (decl))
        bind (DECL_NAME (decl), decl, current_scope,
        bind (DECL_NAME (decl), decl, current_scope,
              /*invisible=*/false, /*nested=*/false);
              /*invisible=*/false, /*nested=*/false);
    }
    }
 
 
  /* And all the tag declarations.  */
  /* And all the tag declarations.  */
  for (decl = arg_info->tags; decl; decl = TREE_CHAIN (decl))
  for (decl = arg_info->tags; decl; decl = TREE_CHAIN (decl))
    if (TREE_PURPOSE (decl))
    if (TREE_PURPOSE (decl))
      bind (TREE_PURPOSE (decl), TREE_VALUE (decl), current_scope,
      bind (TREE_PURPOSE (decl), TREE_VALUE (decl), current_scope,
            /*invisible=*/false, /*nested=*/false);
            /*invisible=*/false, /*nested=*/false);
}
}
 
 
/* Subroutine of store_parm_decls which handles old-style function
/* Subroutine of store_parm_decls which handles old-style function
   definitions (separate parameter list and declarations).  */
   definitions (separate parameter list and declarations).  */
 
 
static void
static void
store_parm_decls_oldstyle (tree fndecl, const struct c_arg_info *arg_info)
store_parm_decls_oldstyle (tree fndecl, const struct c_arg_info *arg_info)
{
{
  struct c_binding *b;
  struct c_binding *b;
  tree parm, decl, last;
  tree parm, decl, last;
  tree parmids = arg_info->parms;
  tree parmids = arg_info->parms;
  struct pointer_set_t *seen_args = pointer_set_create ();
  struct pointer_set_t *seen_args = pointer_set_create ();
 
 
  if (!in_system_header)
  if (!in_system_header)
    warning (OPT_Wold_style_definition, "%Jold-style function definition",
    warning (OPT_Wold_style_definition, "%Jold-style function definition",
             fndecl);
             fndecl);
 
 
  /* Match each formal parameter name with its declaration.  Save each
  /* Match each formal parameter name with its declaration.  Save each
     decl in the appropriate TREE_PURPOSE slot of the parmids chain.  */
     decl in the appropriate TREE_PURPOSE slot of the parmids chain.  */
  for (parm = parmids; parm; parm = TREE_CHAIN (parm))
  for (parm = parmids; parm; parm = TREE_CHAIN (parm))
    {
    {
      if (TREE_VALUE (parm) == 0)
      if (TREE_VALUE (parm) == 0)
        {
        {
          error ("%Jparameter name missing from parameter list", fndecl);
          error ("%Jparameter name missing from parameter list", fndecl);
          TREE_PURPOSE (parm) = 0;
          TREE_PURPOSE (parm) = 0;
          continue;
          continue;
        }
        }
 
 
      b = I_SYMBOL_BINDING (TREE_VALUE (parm));
      b = I_SYMBOL_BINDING (TREE_VALUE (parm));
      if (b && B_IN_CURRENT_SCOPE (b))
      if (b && B_IN_CURRENT_SCOPE (b))
        {
        {
          decl = b->decl;
          decl = b->decl;
          /* If we got something other than a PARM_DECL it is an error.  */
          /* If we got something other than a PARM_DECL it is an error.  */
          if (TREE_CODE (decl) != PARM_DECL)
          if (TREE_CODE (decl) != PARM_DECL)
            error ("%q+D declared as a non-parameter", decl);
            error ("%q+D declared as a non-parameter", decl);
          /* If the declaration is already marked, we have a duplicate
          /* If the declaration is already marked, we have a duplicate
             name.  Complain and ignore the duplicate.  */
             name.  Complain and ignore the duplicate.  */
          else if (pointer_set_contains (seen_args, decl))
          else if (pointer_set_contains (seen_args, decl))
            {
            {
              error ("multiple parameters named %q+D", decl);
              error ("multiple parameters named %q+D", decl);
              TREE_PURPOSE (parm) = 0;
              TREE_PURPOSE (parm) = 0;
              continue;
              continue;
            }
            }
          /* If the declaration says "void", complain and turn it into
          /* If the declaration says "void", complain and turn it into
             an int.  */
             an int.  */
          else if (VOID_TYPE_P (TREE_TYPE (decl)))
          else if (VOID_TYPE_P (TREE_TYPE (decl)))
            {
            {
              error ("parameter %q+D declared with void type", decl);
              error ("parameter %q+D declared with void type", decl);
              TREE_TYPE (decl) = integer_type_node;
              TREE_TYPE (decl) = integer_type_node;
              DECL_ARG_TYPE (decl) = integer_type_node;
              DECL_ARG_TYPE (decl) = integer_type_node;
              layout_decl (decl, 0);
              layout_decl (decl, 0);
            }
            }
          warn_if_shadowing (decl);
          warn_if_shadowing (decl);
        }
        }
      /* If no declaration found, default to int.  */
      /* If no declaration found, default to int.  */
      else
      else
        {
        {
          decl = build_decl (PARM_DECL, TREE_VALUE (parm), integer_type_node);
          decl = build_decl (PARM_DECL, TREE_VALUE (parm), integer_type_node);
          DECL_ARG_TYPE (decl) = TREE_TYPE (decl);
          DECL_ARG_TYPE (decl) = TREE_TYPE (decl);
          DECL_SOURCE_LOCATION (decl) = DECL_SOURCE_LOCATION (fndecl);
          DECL_SOURCE_LOCATION (decl) = DECL_SOURCE_LOCATION (fndecl);
          pushdecl (decl);
          pushdecl (decl);
          warn_if_shadowing (decl);
          warn_if_shadowing (decl);
 
 
          if (flag_isoc99)
          if (flag_isoc99)
            pedwarn ("type of %q+D defaults to %<int%>", decl);
            pedwarn ("type of %q+D defaults to %<int%>", decl);
          else if (extra_warnings)
          else if (extra_warnings)
            warning (OPT_Wextra, "type of %q+D defaults to %<int%>", decl);
            warning (OPT_Wextra, "type of %q+D defaults to %<int%>", decl);
        }
        }
 
 
      TREE_PURPOSE (parm) = decl;
      TREE_PURPOSE (parm) = decl;
      pointer_set_insert (seen_args, decl);
      pointer_set_insert (seen_args, decl);
    }
    }
 
 
  /* Now examine the parms chain for incomplete declarations
  /* Now examine the parms chain for incomplete declarations
     and declarations with no corresponding names.  */
     and declarations with no corresponding names.  */
 
 
  for (b = current_scope->bindings; b; b = b->prev)
  for (b = current_scope->bindings; b; b = b->prev)
    {
    {
      parm = b->decl;
      parm = b->decl;
      if (TREE_CODE (parm) != PARM_DECL)
      if (TREE_CODE (parm) != PARM_DECL)
        continue;
        continue;
 
 
      if (TREE_TYPE (parm) != error_mark_node
      if (TREE_TYPE (parm) != error_mark_node
          && !COMPLETE_TYPE_P (TREE_TYPE (parm)))
          && !COMPLETE_TYPE_P (TREE_TYPE (parm)))
        {
        {
          error ("parameter %q+D has incomplete type", parm);
          error ("parameter %q+D has incomplete type", parm);
          TREE_TYPE (parm) = error_mark_node;
          TREE_TYPE (parm) = error_mark_node;
        }
        }
 
 
      if (!pointer_set_contains (seen_args, parm))
      if (!pointer_set_contains (seen_args, parm))
        {
        {
          error ("declaration for parameter %q+D but no such parameter", parm);
          error ("declaration for parameter %q+D but no such parameter", parm);
 
 
          /* Pretend the parameter was not missing.
          /* Pretend the parameter was not missing.
             This gets us to a standard state and minimizes
             This gets us to a standard state and minimizes
             further error messages.  */
             further error messages.  */
          parmids = chainon (parmids, tree_cons (parm, 0, 0));
          parmids = chainon (parmids, tree_cons (parm, 0, 0));
        }
        }
    }
    }
 
 
  /* Chain the declarations together in the order of the list of
  /* Chain the declarations together in the order of the list of
     names.  Store that chain in the function decl, replacing the
     names.  Store that chain in the function decl, replacing the
     list of names.  Update the current scope to match.  */
     list of names.  Update the current scope to match.  */
  DECL_ARGUMENTS (fndecl) = 0;
  DECL_ARGUMENTS (fndecl) = 0;
 
 
  for (parm = parmids; parm; parm = TREE_CHAIN (parm))
  for (parm = parmids; parm; parm = TREE_CHAIN (parm))
    if (TREE_PURPOSE (parm))
    if (TREE_PURPOSE (parm))
      break;
      break;
  if (parm && TREE_PURPOSE (parm))
  if (parm && TREE_PURPOSE (parm))
    {
    {
      last = TREE_PURPOSE (parm);
      last = TREE_PURPOSE (parm);
      DECL_ARGUMENTS (fndecl) = last;
      DECL_ARGUMENTS (fndecl) = last;
 
 
      for (parm = TREE_CHAIN (parm); parm; parm = TREE_CHAIN (parm))
      for (parm = TREE_CHAIN (parm); parm; parm = TREE_CHAIN (parm))
        if (TREE_PURPOSE (parm))
        if (TREE_PURPOSE (parm))
          {
          {
            TREE_CHAIN (last) = TREE_PURPOSE (parm);
            TREE_CHAIN (last) = TREE_PURPOSE (parm);
            last = TREE_PURPOSE (parm);
            last = TREE_PURPOSE (parm);
          }
          }
      TREE_CHAIN (last) = 0;
      TREE_CHAIN (last) = 0;
    }
    }
 
 
  pointer_set_destroy (seen_args);
  pointer_set_destroy (seen_args);
 
 
  /* If there was a previous prototype,
  /* If there was a previous prototype,
     set the DECL_ARG_TYPE of each argument according to
     set the DECL_ARG_TYPE of each argument according to
     the type previously specified, and report any mismatches.  */
     the type previously specified, and report any mismatches.  */
 
 
  if (current_function_prototype_arg_types)
  if (current_function_prototype_arg_types)
    {
    {
      tree type;
      tree type;
      for (parm = DECL_ARGUMENTS (fndecl),
      for (parm = DECL_ARGUMENTS (fndecl),
             type = current_function_prototype_arg_types;
             type = current_function_prototype_arg_types;
           parm || (type && (TYPE_MAIN_VARIANT (TREE_VALUE (type))
           parm || (type && (TYPE_MAIN_VARIANT (TREE_VALUE (type))
                             != void_type_node));
                             != void_type_node));
           parm = TREE_CHAIN (parm), type = TREE_CHAIN (type))
           parm = TREE_CHAIN (parm), type = TREE_CHAIN (type))
        {
        {
          if (parm == 0 || type == 0
          if (parm == 0 || type == 0
              || TYPE_MAIN_VARIANT (TREE_VALUE (type)) == void_type_node)
              || TYPE_MAIN_VARIANT (TREE_VALUE (type)) == void_type_node)
            {
            {
              if (current_function_prototype_built_in)
              if (current_function_prototype_built_in)
                warning (0, "number of arguments doesn%'t match "
                warning (0, "number of arguments doesn%'t match "
                         "built-in prototype");
                         "built-in prototype");
              else
              else
                {
                {
                  error ("number of arguments doesn%'t match prototype");
                  error ("number of arguments doesn%'t match prototype");
                  error ("%Hprototype declaration",
                  error ("%Hprototype declaration",
                         &current_function_prototype_locus);
                         &current_function_prototype_locus);
                }
                }
              break;
              break;
            }
            }
          /* Type for passing arg must be consistent with that
          /* Type for passing arg must be consistent with that
             declared for the arg.  ISO C says we take the unqualified
             declared for the arg.  ISO C says we take the unqualified
             type for parameters declared with qualified type.  */
             type for parameters declared with qualified type.  */
          if (!comptypes (TYPE_MAIN_VARIANT (DECL_ARG_TYPE (parm)),
          if (!comptypes (TYPE_MAIN_VARIANT (DECL_ARG_TYPE (parm)),
                          TYPE_MAIN_VARIANT (TREE_VALUE (type))))
                          TYPE_MAIN_VARIANT (TREE_VALUE (type))))
            {
            {
              if (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
              if (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
                  == TYPE_MAIN_VARIANT (TREE_VALUE (type)))
                  == TYPE_MAIN_VARIANT (TREE_VALUE (type)))
                {
                {
                  /* Adjust argument to match prototype.  E.g. a previous
                  /* Adjust argument to match prototype.  E.g. a previous
                     `int foo(float);' prototype causes
                     `int foo(float);' prototype causes
                     `int foo(x) float x; {...}' to be treated like
                     `int foo(x) float x; {...}' to be treated like
                     `int foo(float x) {...}'.  This is particularly
                     `int foo(float x) {...}'.  This is particularly
                     useful for argument types like uid_t.  */
                     useful for argument types like uid_t.  */
                  DECL_ARG_TYPE (parm) = TREE_TYPE (parm);
                  DECL_ARG_TYPE (parm) = TREE_TYPE (parm);
 
 
                  if (targetm.calls.promote_prototypes (TREE_TYPE (current_function_decl))
                  if (targetm.calls.promote_prototypes (TREE_TYPE (current_function_decl))
                      && INTEGRAL_TYPE_P (TREE_TYPE (parm))
                      && INTEGRAL_TYPE_P (TREE_TYPE (parm))
                      && TYPE_PRECISION (TREE_TYPE (parm))
                      && TYPE_PRECISION (TREE_TYPE (parm))
                      < TYPE_PRECISION (integer_type_node))
                      < TYPE_PRECISION (integer_type_node))
                    DECL_ARG_TYPE (parm) = integer_type_node;
                    DECL_ARG_TYPE (parm) = integer_type_node;
 
 
                  if (pedantic)
                  if (pedantic)
                    {
                    {
                      /* ??? Is it possible to get here with a
                      /* ??? Is it possible to get here with a
                         built-in prototype or will it always have
                         built-in prototype or will it always have
                         been diagnosed as conflicting with an
                         been diagnosed as conflicting with an
                         old-style definition and discarded?  */
                         old-style definition and discarded?  */
                      if (current_function_prototype_built_in)
                      if (current_function_prototype_built_in)
                        warning (0, "promoted argument %qD "
                        warning (0, "promoted argument %qD "
                                 "doesn%'t match built-in prototype", parm);
                                 "doesn%'t match built-in prototype", parm);
                      else
                      else
                        {
                        {
                          pedwarn ("promoted argument %qD "
                          pedwarn ("promoted argument %qD "
                                   "doesn%'t match prototype", parm);
                                   "doesn%'t match prototype", parm);
                          pedwarn ("%Hprototype declaration",
                          pedwarn ("%Hprototype declaration",
                                   &current_function_prototype_locus);
                                   &current_function_prototype_locus);
                        }
                        }
                    }
                    }
                }
                }
              else
              else
                {
                {
                  if (current_function_prototype_built_in)
                  if (current_function_prototype_built_in)
                    warning (0, "argument %qD doesn%'t match "
                    warning (0, "argument %qD doesn%'t match "
                             "built-in prototype", parm);
                             "built-in prototype", parm);
                  else
                  else
                    {
                    {
                      error ("argument %qD doesn%'t match prototype", parm);
                      error ("argument %qD doesn%'t match prototype", parm);
                      error ("%Hprototype declaration",
                      error ("%Hprototype declaration",
                             &current_function_prototype_locus);
                             &current_function_prototype_locus);
                    }
                    }
                }
                }
            }
            }
        }
        }
      TYPE_ACTUAL_ARG_TYPES (TREE_TYPE (fndecl)) = 0;
      TYPE_ACTUAL_ARG_TYPES (TREE_TYPE (fndecl)) = 0;
    }
    }
 
 
  /* Otherwise, create a prototype that would match.  */
  /* Otherwise, create a prototype that would match.  */
 
 
  else
  else
    {
    {
      tree actual = 0, last = 0, type;
      tree actual = 0, last = 0, type;
 
 
      for (parm = DECL_ARGUMENTS (fndecl); parm; parm = TREE_CHAIN (parm))
      for (parm = DECL_ARGUMENTS (fndecl); parm; parm = TREE_CHAIN (parm))
        {
        {
          type = tree_cons (NULL_TREE, DECL_ARG_TYPE (parm), NULL_TREE);
          type = tree_cons (NULL_TREE, DECL_ARG_TYPE (parm), NULL_TREE);
          if (last)
          if (last)
            TREE_CHAIN (last) = type;
            TREE_CHAIN (last) = type;
          else
          else
            actual = type;
            actual = type;
          last = type;
          last = type;
        }
        }
      type = tree_cons (NULL_TREE, void_type_node, NULL_TREE);
      type = tree_cons (NULL_TREE, void_type_node, NULL_TREE);
      if (last)
      if (last)
        TREE_CHAIN (last) = type;
        TREE_CHAIN (last) = type;
      else
      else
        actual = type;
        actual = type;
 
 
      /* We are going to assign a new value for the TYPE_ACTUAL_ARG_TYPES
      /* We are going to assign a new value for the TYPE_ACTUAL_ARG_TYPES
         of the type of this function, but we need to avoid having this
         of the type of this function, but we need to avoid having this
         affect the types of other similarly-typed functions, so we must
         affect the types of other similarly-typed functions, so we must
         first force the generation of an identical (but separate) type
         first force the generation of an identical (but separate) type
         node for the relevant function type.  The new node we create
         node for the relevant function type.  The new node we create
         will be a variant of the main variant of the original function
         will be a variant of the main variant of the original function
         type.  */
         type.  */
 
 
      TREE_TYPE (fndecl) = build_variant_type_copy (TREE_TYPE (fndecl));
      TREE_TYPE (fndecl) = build_variant_type_copy (TREE_TYPE (fndecl));
 
 
      TYPE_ACTUAL_ARG_TYPES (TREE_TYPE (fndecl)) = actual;
      TYPE_ACTUAL_ARG_TYPES (TREE_TYPE (fndecl)) = actual;
    }
    }
}
}
 
 
/* Store parameter declarations passed in ARG_INFO into the current
/* Store parameter declarations passed in ARG_INFO into the current
   function declaration.  */
   function declaration.  */
 
 
void
void
store_parm_decls_from (struct c_arg_info *arg_info)
store_parm_decls_from (struct c_arg_info *arg_info)
{
{
  current_function_arg_info = arg_info;
  current_function_arg_info = arg_info;
  store_parm_decls ();
  store_parm_decls ();
}
}
 
 
/* Store the parameter declarations into the current function declaration.
/* Store the parameter declarations into the current function declaration.
   This is called after parsing the parameter declarations, before
   This is called after parsing the parameter declarations, before
   digesting the body of the function.
   digesting the body of the function.
 
 
   For an old-style definition, construct a prototype out of the old-style
   For an old-style definition, construct a prototype out of the old-style
   parameter declarations and inject it into the function's type.  */
   parameter declarations and inject it into the function's type.  */
 
 
void
void
store_parm_decls (void)
store_parm_decls (void)
{
{
  tree fndecl = current_function_decl;
  tree fndecl = current_function_decl;
  bool proto;
  bool proto;
 
 
  /* The argument information block for FNDECL.  */
  /* The argument information block for FNDECL.  */
  struct c_arg_info *arg_info = current_function_arg_info;
  struct c_arg_info *arg_info = current_function_arg_info;
  current_function_arg_info = 0;
  current_function_arg_info = 0;
 
 
  /* True if this definition is written with a prototype.  Note:
  /* True if this definition is written with a prototype.  Note:
     despite C99 6.7.5.3p14, we can *not* treat an empty argument
     despite C99 6.7.5.3p14, we can *not* treat an empty argument
     list in a function definition as equivalent to (void) -- an
     list in a function definition as equivalent to (void) -- an
     empty argument list specifies the function has no parameters,
     empty argument list specifies the function has no parameters,
     but only (void) sets up a prototype for future calls.  */
     but only (void) sets up a prototype for future calls.  */
  proto = arg_info->types != 0;
  proto = arg_info->types != 0;
 
 
  if (proto)
  if (proto)
    store_parm_decls_newstyle (fndecl, arg_info);
    store_parm_decls_newstyle (fndecl, arg_info);
  else
  else
    store_parm_decls_oldstyle (fndecl, arg_info);
    store_parm_decls_oldstyle (fndecl, arg_info);
 
 
  /* The next call to push_scope will be a function body.  */
  /* The next call to push_scope will be a function body.  */
 
 
  next_is_function_body = true;
  next_is_function_body = true;
 
 
  /* Write a record describing this function definition to the prototypes
  /* Write a record describing this function definition to the prototypes
     file (if requested).  */
     file (if requested).  */
 
 
  gen_aux_info_record (fndecl, 1, 0, proto);
  gen_aux_info_record (fndecl, 1, 0, proto);
 
 
  /* Initialize the RTL code for the function.  */
  /* Initialize the RTL code for the function.  */
  allocate_struct_function (fndecl);
  allocate_struct_function (fndecl);
 
 
  /* Begin the statement tree for this function.  */
  /* Begin the statement tree for this function.  */
  DECL_SAVED_TREE (fndecl) = push_stmt_list ();
  DECL_SAVED_TREE (fndecl) = push_stmt_list ();
 
 
  /* ??? Insert the contents of the pending sizes list into the function
  /* ??? Insert the contents of the pending sizes list into the function
     to be evaluated.  The only reason left to have this is
     to be evaluated.  The only reason left to have this is
        void foo(int n, int array[n++])
        void foo(int n, int array[n++])
     because we throw away the array type in favor of a pointer type, and
     because we throw away the array type in favor of a pointer type, and
     thus won't naturally see the SAVE_EXPR containing the increment.  All
     thus won't naturally see the SAVE_EXPR containing the increment.  All
     other pending sizes would be handled by gimplify_parameters.  */
     other pending sizes would be handled by gimplify_parameters.  */
  {
  {
    tree t;
    tree t;
    for (t = nreverse (get_pending_sizes ()); t ; t = TREE_CHAIN (t))
    for (t = nreverse (get_pending_sizes ()); t ; t = TREE_CHAIN (t))
      add_stmt (TREE_VALUE (t));
      add_stmt (TREE_VALUE (t));
  }
  }
 
 
  /* Even though we're inside a function body, we still don't want to
  /* Even though we're inside a function body, we still don't want to
     call expand_expr to calculate the size of a variable-sized array.
     call expand_expr to calculate the size of a variable-sized array.
     We haven't necessarily assigned RTL to all variables yet, so it's
     We haven't necessarily assigned RTL to all variables yet, so it's
     not safe to try to expand expressions involving them.  */
     not safe to try to expand expressions involving them.  */
  cfun->x_dont_save_pending_sizes_p = 1;
  cfun->x_dont_save_pending_sizes_p = 1;
}
}


/* Emit diagnostics that require gimple input for detection.  Operate on
/* Emit diagnostics that require gimple input for detection.  Operate on
   FNDECL and all its nested functions.  */
   FNDECL and all its nested functions.  */
 
 
static void
static void
c_gimple_diagnostics_recursively (tree fndecl)
c_gimple_diagnostics_recursively (tree fndecl)
{
{
  struct cgraph_node *cgn;
  struct cgraph_node *cgn;
 
 
  /* Handle attribute((warn_unused_result)).  Relies on gimple input.  */
  /* Handle attribute((warn_unused_result)).  Relies on gimple input.  */
  c_warn_unused_result (&DECL_SAVED_TREE (fndecl));
  c_warn_unused_result (&DECL_SAVED_TREE (fndecl));
 
 
  /* Notice when OpenMP structured block constraints are violated.  */
  /* Notice when OpenMP structured block constraints are violated.  */
  if (flag_openmp)
  if (flag_openmp)
    diagnose_omp_structured_block_errors (fndecl);
    diagnose_omp_structured_block_errors (fndecl);
 
 
  /* Finalize all nested functions now.  */
  /* Finalize all nested functions now.  */
  cgn = cgraph_node (fndecl);
  cgn = cgraph_node (fndecl);
  for (cgn = cgn->nested; cgn ; cgn = cgn->next_nested)
  for (cgn = cgn->nested; cgn ; cgn = cgn->next_nested)
    c_gimple_diagnostics_recursively (cgn->decl);
    c_gimple_diagnostics_recursively (cgn->decl);
}
}
 
 
/* Finish up a function declaration and compile that function
/* Finish up a function declaration and compile that function
   all the way to assembler language output.  The free the storage
   all the way to assembler language output.  The free the storage
   for the function definition.
   for the function definition.
 
 
   This is called after parsing the body of the function definition.  */
   This is called after parsing the body of the function definition.  */
 
 
void
void
finish_function (void)
finish_function (void)
{
{
  tree fndecl = current_function_decl;
  tree fndecl = current_function_decl;
 
 
  label_context_stack_se = label_context_stack_se->next;
  label_context_stack_se = label_context_stack_se->next;
  label_context_stack_vm = label_context_stack_vm->next;
  label_context_stack_vm = label_context_stack_vm->next;
 
 
  if (TREE_CODE (fndecl) == FUNCTION_DECL
  if (TREE_CODE (fndecl) == FUNCTION_DECL
      && targetm.calls.promote_prototypes (TREE_TYPE (fndecl)))
      && targetm.calls.promote_prototypes (TREE_TYPE (fndecl)))
    {
    {
      tree args = DECL_ARGUMENTS (fndecl);
      tree args = DECL_ARGUMENTS (fndecl);
      for (; args; args = TREE_CHAIN (args))
      for (; args; args = TREE_CHAIN (args))
        {
        {
          tree type = TREE_TYPE (args);
          tree type = TREE_TYPE (args);
          if (INTEGRAL_TYPE_P (type)
          if (INTEGRAL_TYPE_P (type)
              && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node))
              && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node))
            DECL_ARG_TYPE (args) = integer_type_node;
            DECL_ARG_TYPE (args) = integer_type_node;
        }
        }
    }
    }
 
 
  if (DECL_INITIAL (fndecl) && DECL_INITIAL (fndecl) != error_mark_node)
  if (DECL_INITIAL (fndecl) && DECL_INITIAL (fndecl) != error_mark_node)
    BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
    BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
 
 
  /* Must mark the RESULT_DECL as being in this function.  */
  /* Must mark the RESULT_DECL as being in this function.  */
 
 
  if (DECL_RESULT (fndecl) && DECL_RESULT (fndecl) != error_mark_node)
  if (DECL_RESULT (fndecl) && DECL_RESULT (fndecl) != error_mark_node)
    DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
    DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
 
 
  if (MAIN_NAME_P (DECL_NAME (fndecl)) && flag_hosted)
  if (MAIN_NAME_P (DECL_NAME (fndecl)) && flag_hosted)
    {
    {
      if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (fndecl)))
      if (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (fndecl)))
          != integer_type_node)
          != integer_type_node)
        {
        {
          /* If warn_main is 1 (-Wmain) or 2 (-Wall), we have already warned.
          /* If warn_main is 1 (-Wmain) or 2 (-Wall), we have already warned.
             If warn_main is -1 (-Wno-main) we don't want to be warned.  */
             If warn_main is -1 (-Wno-main) we don't want to be warned.  */
          if (!warn_main)
          if (!warn_main)
            pedwarn ("return type of %q+D is not %<int%>", fndecl);
            pedwarn ("return type of %q+D is not %<int%>", fndecl);
        }
        }
      else
      else
        {
        {
          if (flag_isoc99)
          if (flag_isoc99)
            {
            {
              tree stmt = c_finish_return (integer_zero_node);
              tree stmt = c_finish_return (integer_zero_node);
#ifdef USE_MAPPED_LOCATION
#ifdef USE_MAPPED_LOCATION
              /* Hack.  We don't want the middle-end to warn that this return
              /* Hack.  We don't want the middle-end to warn that this return
                 is unreachable, so we mark its location as special.  Using
                 is unreachable, so we mark its location as special.  Using
                 UNKNOWN_LOCATION has the problem that it gets clobbered in
                 UNKNOWN_LOCATION has the problem that it gets clobbered in
                 annotate_one_with_locus.  A cleaner solution might be to
                 annotate_one_with_locus.  A cleaner solution might be to
                 ensure ! should_carry_locus_p (stmt), but that needs a flag.
                 ensure ! should_carry_locus_p (stmt), but that needs a flag.
              */
              */
              SET_EXPR_LOCATION (stmt, BUILTINS_LOCATION);
              SET_EXPR_LOCATION (stmt, BUILTINS_LOCATION);
#else
#else
              /* Hack.  We don't want the middle-end to warn that this
              /* Hack.  We don't want the middle-end to warn that this
                 return is unreachable, so put the statement on the
                 return is unreachable, so put the statement on the
                 special line 0.  */
                 special line 0.  */
              annotate_with_file_line (stmt, input_filename, 0);
              annotate_with_file_line (stmt, input_filename, 0);
#endif
#endif
            }
            }
        }
        }
    }
    }
 
 
  /* Tie off the statement tree for this function.  */
  /* Tie off the statement tree for this function.  */
  DECL_SAVED_TREE (fndecl) = pop_stmt_list (DECL_SAVED_TREE (fndecl));
  DECL_SAVED_TREE (fndecl) = pop_stmt_list (DECL_SAVED_TREE (fndecl));
 
 
  finish_fname_decls ();
  finish_fname_decls ();
 
 
  /* Complain if there's just no return statement.  */
  /* Complain if there's just no return statement.  */
  if (warn_return_type
  if (warn_return_type
      && TREE_CODE (TREE_TYPE (TREE_TYPE (fndecl))) != VOID_TYPE
      && TREE_CODE (TREE_TYPE (TREE_TYPE (fndecl))) != VOID_TYPE
      && !current_function_returns_value && !current_function_returns_null
      && !current_function_returns_value && !current_function_returns_null
      /* Don't complain if we are no-return.  */
      /* Don't complain if we are no-return.  */
      && !current_function_returns_abnormally
      && !current_function_returns_abnormally
      /* Don't warn for main().  */
      /* Don't warn for main().  */
      && !MAIN_NAME_P (DECL_NAME (fndecl))
      && !MAIN_NAME_P (DECL_NAME (fndecl))
      /* Or if they didn't actually specify a return type.  */
      /* Or if they didn't actually specify a return type.  */
      && !C_FUNCTION_IMPLICIT_INT (fndecl)
      && !C_FUNCTION_IMPLICIT_INT (fndecl)
      /* Normally, with -Wreturn-type, flow will complain.  Unless we're an
      /* Normally, with -Wreturn-type, flow will complain.  Unless we're an
         inline function, as we might never be compiled separately.  */
         inline function, as we might never be compiled separately.  */
      && DECL_INLINE (fndecl))
      && DECL_INLINE (fndecl))
    {
    {
      warning (OPT_Wreturn_type,
      warning (OPT_Wreturn_type,
               "no return statement in function returning non-void");
               "no return statement in function returning non-void");
      TREE_NO_WARNING (fndecl) = 1;
      TREE_NO_WARNING (fndecl) = 1;
    }
    }
 
 
  /* With just -Wextra, complain only if function returns both with
  /* With just -Wextra, complain only if function returns both with
     and without a value.  */
     and without a value.  */
  if (extra_warnings
  if (extra_warnings
      && current_function_returns_value
      && current_function_returns_value
      && current_function_returns_null)
      && current_function_returns_null)
    warning (OPT_Wextra, "this function may return with or without a value");
    warning (OPT_Wextra, "this function may return with or without a value");
 
 
  /* Store the end of the function, so that we get good line number
  /* Store the end of the function, so that we get good line number
     info for the epilogue.  */
     info for the epilogue.  */
  cfun->function_end_locus = input_location;
  cfun->function_end_locus = input_location;
 
 
  /* If we don't have ctors/dtors sections, and this is a static
  /* If we don't have ctors/dtors sections, and this is a static
     constructor or destructor, it must be recorded now.  */
     constructor or destructor, it must be recorded now.  */
  if (DECL_STATIC_CONSTRUCTOR (fndecl)
  if (DECL_STATIC_CONSTRUCTOR (fndecl)
      && !targetm.have_ctors_dtors)
      && !targetm.have_ctors_dtors)
    static_ctors = tree_cons (NULL_TREE, fndecl, static_ctors);
    static_ctors = tree_cons (NULL_TREE, fndecl, static_ctors);
  if (DECL_STATIC_DESTRUCTOR (fndecl)
  if (DECL_STATIC_DESTRUCTOR (fndecl)
      && !targetm.have_ctors_dtors)
      && !targetm.have_ctors_dtors)
    static_dtors = tree_cons (NULL_TREE, fndecl, static_dtors);
    static_dtors = tree_cons (NULL_TREE, fndecl, static_dtors);
 
 
  /* Finalize the ELF visibility for the function.  */
  /* Finalize the ELF visibility for the function.  */
  c_determine_visibility (fndecl);
  c_determine_visibility (fndecl);
 
 
  /* Genericize before inlining.  Delay genericizing nested functions
  /* Genericize before inlining.  Delay genericizing nested functions
     until their parent function is genericized.  Since finalizing
     until their parent function is genericized.  Since finalizing
     requires GENERIC, delay that as well.  */
     requires GENERIC, delay that as well.  */
 
 
  if (DECL_INITIAL (fndecl) && DECL_INITIAL (fndecl) != error_mark_node
  if (DECL_INITIAL (fndecl) && DECL_INITIAL (fndecl) != error_mark_node
      && !undef_nested_function)
      && !undef_nested_function)
    {
    {
      if (!decl_function_context (fndecl))
      if (!decl_function_context (fndecl))
        {
        {
          c_genericize (fndecl);
          c_genericize (fndecl);
          c_gimple_diagnostics_recursively (fndecl);
          c_gimple_diagnostics_recursively (fndecl);
 
 
          /* ??? Objc emits functions after finalizing the compilation unit.
          /* ??? Objc emits functions after finalizing the compilation unit.
             This should be cleaned up later and this conditional removed.  */
             This should be cleaned up later and this conditional removed.  */
          if (cgraph_global_info_ready)
          if (cgraph_global_info_ready)
            {
            {
              c_expand_body (fndecl);
              c_expand_body (fndecl);
              return;
              return;
            }
            }
 
 
          cgraph_finalize_function (fndecl, false);
          cgraph_finalize_function (fndecl, false);
        }
        }
      else
      else
        {
        {
          /* Register this function with cgraph just far enough to get it
          /* Register this function with cgraph just far enough to get it
            added to our parent's nested function list.  Handy, since the
            added to our parent's nested function list.  Handy, since the
            C front end doesn't have such a list.  */
            C front end doesn't have such a list.  */
          (void) cgraph_node (fndecl);
          (void) cgraph_node (fndecl);
        }
        }
    }
    }
 
 
  if (!decl_function_context (fndecl))
  if (!decl_function_context (fndecl))
    undef_nested_function = false;
    undef_nested_function = false;
 
 
  /* We're leaving the context of this function, so zap cfun.
  /* We're leaving the context of this function, so zap cfun.
     It's still in DECL_STRUCT_FUNCTION, and we'll restore it in
     It's still in DECL_STRUCT_FUNCTION, and we'll restore it in
     tree_rest_of_compilation.  */
     tree_rest_of_compilation.  */
  cfun = NULL;
  cfun = NULL;
  current_function_decl = NULL;
  current_function_decl = NULL;
}
}
 
 
/* Generate the RTL for the body of FNDECL.  */
/* Generate the RTL for the body of FNDECL.  */
 
 
void
void
c_expand_body (tree fndecl)
c_expand_body (tree fndecl)
{
{
 
 
  if (!DECL_INITIAL (fndecl)
  if (!DECL_INITIAL (fndecl)
      || DECL_INITIAL (fndecl) == error_mark_node)
      || DECL_INITIAL (fndecl) == error_mark_node)
    return;
    return;
 
 
  tree_rest_of_compilation (fndecl);
  tree_rest_of_compilation (fndecl);
 
 
  if (DECL_STATIC_CONSTRUCTOR (fndecl)
  if (DECL_STATIC_CONSTRUCTOR (fndecl)
      && targetm.have_ctors_dtors)
      && targetm.have_ctors_dtors)
    targetm.asm_out.constructor (XEXP (DECL_RTL (fndecl), 0),
    targetm.asm_out.constructor (XEXP (DECL_RTL (fndecl), 0),
                                 DEFAULT_INIT_PRIORITY);
                                 DEFAULT_INIT_PRIORITY);
  if (DECL_STATIC_DESTRUCTOR (fndecl)
  if (DECL_STATIC_DESTRUCTOR (fndecl)
      && targetm.have_ctors_dtors)
      && targetm.have_ctors_dtors)
    targetm.asm_out.destructor (XEXP (DECL_RTL (fndecl), 0),
    targetm.asm_out.destructor (XEXP (DECL_RTL (fndecl), 0),
                                DEFAULT_INIT_PRIORITY);
                                DEFAULT_INIT_PRIORITY);
}
}


/* Check the declarations given in a for-loop for satisfying the C99
/* Check the declarations given in a for-loop for satisfying the C99
   constraints.  If exactly one such decl is found, return it.  */
   constraints.  If exactly one such decl is found, return it.  */
 
 
tree
tree
check_for_loop_decls (void)
check_for_loop_decls (void)
{
{
  struct c_binding *b;
  struct c_binding *b;
  tree one_decl = NULL_TREE;
  tree one_decl = NULL_TREE;
  int n_decls = 0;
  int n_decls = 0;
 
 
 
 
  if (!flag_isoc99)
  if (!flag_isoc99)
    {
    {
      /* If we get here, declarations have been used in a for loop without
      /* If we get here, declarations have been used in a for loop without
         the C99 for loop scope.  This doesn't make much sense, so don't
         the C99 for loop scope.  This doesn't make much sense, so don't
         allow it.  */
         allow it.  */
      error ("%<for%> loop initial declaration used outside C99 mode");
      error ("%<for%> loop initial declaration used outside C99 mode");
      return NULL_TREE;
      return NULL_TREE;
    }
    }
  /* C99 subclause 6.8.5 paragraph 3:
  /* C99 subclause 6.8.5 paragraph 3:
 
 
       [#3]  The  declaration  part  of  a for statement shall only
       [#3]  The  declaration  part  of  a for statement shall only
       declare identifiers for objects having storage class auto or
       declare identifiers for objects having storage class auto or
       register.
       register.
 
 
     It isn't clear whether, in this sentence, "identifiers" binds to
     It isn't clear whether, in this sentence, "identifiers" binds to
     "shall only declare" or to "objects" - that is, whether all identifiers
     "shall only declare" or to "objects" - that is, whether all identifiers
     declared must be identifiers for objects, or whether the restriction
     declared must be identifiers for objects, or whether the restriction
     only applies to those that are.  (A question on this in comp.std.c
     only applies to those that are.  (A question on this in comp.std.c
     in November 2000 received no answer.)  We implement the strictest
     in November 2000 received no answer.)  We implement the strictest
     interpretation, to avoid creating an extension which later causes
     interpretation, to avoid creating an extension which later causes
     problems.  */
     problems.  */
 
 
  for (b = current_scope->bindings; b; b = b->prev)
  for (b = current_scope->bindings; b; b = b->prev)
    {
    {
      tree id = b->id;
      tree id = b->id;
      tree decl = b->decl;
      tree decl = b->decl;
 
 
      if (!id)
      if (!id)
        continue;
        continue;
 
 
      switch (TREE_CODE (decl))
      switch (TREE_CODE (decl))
        {
        {
        case VAR_DECL:
        case VAR_DECL:
          if (TREE_STATIC (decl))
          if (TREE_STATIC (decl))
            error ("declaration of static variable %q+D in %<for%> loop "
            error ("declaration of static variable %q+D in %<for%> loop "
                   "initial declaration", decl);
                   "initial declaration", decl);
          else if (DECL_EXTERNAL (decl))
          else if (DECL_EXTERNAL (decl))
            error ("declaration of %<extern%> variable %q+D in %<for%> loop "
            error ("declaration of %<extern%> variable %q+D in %<for%> loop "
                   "initial declaration", decl);
                   "initial declaration", decl);
          break;
          break;
 
 
        case RECORD_TYPE:
        case RECORD_TYPE:
          error ("%<struct %E%> declared in %<for%> loop initial declaration",
          error ("%<struct %E%> declared in %<for%> loop initial declaration",
                 id);
                 id);
          break;
          break;
        case UNION_TYPE:
        case UNION_TYPE:
          error ("%<union %E%> declared in %<for%> loop initial declaration",
          error ("%<union %E%> declared in %<for%> loop initial declaration",
                 id);
                 id);
          break;
          break;
        case ENUMERAL_TYPE:
        case ENUMERAL_TYPE:
          error ("%<enum %E%> declared in %<for%> loop initial declaration",
          error ("%<enum %E%> declared in %<for%> loop initial declaration",
                 id);
                 id);
          break;
          break;
        default:
        default:
          error ("declaration of non-variable %q+D in %<for%> loop "
          error ("declaration of non-variable %q+D in %<for%> loop "
                 "initial declaration", decl);
                 "initial declaration", decl);
        }
        }
 
 
      n_decls++;
      n_decls++;
      one_decl = decl;
      one_decl = decl;
    }
    }
 
 
  return n_decls == 1 ? one_decl : NULL_TREE;
  return n_decls == 1 ? one_decl : NULL_TREE;
}
}


/* Save and reinitialize the variables
/* Save and reinitialize the variables
   used during compilation of a C function.  */
   used during compilation of a C function.  */
 
 
void
void
c_push_function_context (struct function *f)
c_push_function_context (struct function *f)
{
{
  struct language_function *p;
  struct language_function *p;
  p = GGC_NEW (struct language_function);
  p = GGC_NEW (struct language_function);
  f->language = p;
  f->language = p;
 
 
  p->base.x_stmt_tree = c_stmt_tree;
  p->base.x_stmt_tree = c_stmt_tree;
  p->x_break_label = c_break_label;
  p->x_break_label = c_break_label;
  p->x_cont_label = c_cont_label;
  p->x_cont_label = c_cont_label;
  p->x_switch_stack = c_switch_stack;
  p->x_switch_stack = c_switch_stack;
  p->arg_info = current_function_arg_info;
  p->arg_info = current_function_arg_info;
  p->returns_value = current_function_returns_value;
  p->returns_value = current_function_returns_value;
  p->returns_null = current_function_returns_null;
  p->returns_null = current_function_returns_null;
  p->returns_abnormally = current_function_returns_abnormally;
  p->returns_abnormally = current_function_returns_abnormally;
  p->warn_about_return_type = warn_about_return_type;
  p->warn_about_return_type = warn_about_return_type;
  p->extern_inline = current_extern_inline;
  p->extern_inline = current_extern_inline;
}
}
 
 
/* Restore the variables used during compilation of a C function.  */
/* Restore the variables used during compilation of a C function.  */
 
 
void
void
c_pop_function_context (struct function *f)
c_pop_function_context (struct function *f)
{
{
  struct language_function *p = f->language;
  struct language_function *p = f->language;
 
 
  if (DECL_STRUCT_FUNCTION (current_function_decl) == 0
  if (DECL_STRUCT_FUNCTION (current_function_decl) == 0
      && DECL_SAVED_TREE (current_function_decl) == NULL_TREE)
      && DECL_SAVED_TREE (current_function_decl) == NULL_TREE)
    {
    {
      /* Stop pointing to the local nodes about to be freed.  */
      /* Stop pointing to the local nodes about to be freed.  */
      /* But DECL_INITIAL must remain nonzero so we know this
      /* But DECL_INITIAL must remain nonzero so we know this
         was an actual function definition.  */
         was an actual function definition.  */
      DECL_INITIAL (current_function_decl) = error_mark_node;
      DECL_INITIAL (current_function_decl) = error_mark_node;
      DECL_ARGUMENTS (current_function_decl) = 0;
      DECL_ARGUMENTS (current_function_decl) = 0;
    }
    }
 
 
  c_stmt_tree = p->base.x_stmt_tree;
  c_stmt_tree = p->base.x_stmt_tree;
  c_break_label = p->x_break_label;
  c_break_label = p->x_break_label;
  c_cont_label = p->x_cont_label;
  c_cont_label = p->x_cont_label;
  c_switch_stack = p->x_switch_stack;
  c_switch_stack = p->x_switch_stack;
  current_function_arg_info = p->arg_info;
  current_function_arg_info = p->arg_info;
  current_function_returns_value = p->returns_value;
  current_function_returns_value = p->returns_value;
  current_function_returns_null = p->returns_null;
  current_function_returns_null = p->returns_null;
  current_function_returns_abnormally = p->returns_abnormally;
  current_function_returns_abnormally = p->returns_abnormally;
  warn_about_return_type = p->warn_about_return_type;
  warn_about_return_type = p->warn_about_return_type;
  current_extern_inline = p->extern_inline;
  current_extern_inline = p->extern_inline;
 
 
  f->language = NULL;
  f->language = NULL;
}
}
 
 
/* Copy the DECL_LANG_SPECIFIC data associated with DECL.  */
/* Copy the DECL_LANG_SPECIFIC data associated with DECL.  */
 
 
void
void
c_dup_lang_specific_decl (tree decl)
c_dup_lang_specific_decl (tree decl)
{
{
  struct lang_decl *ld;
  struct lang_decl *ld;
 
 
  if (!DECL_LANG_SPECIFIC (decl))
  if (!DECL_LANG_SPECIFIC (decl))
    return;
    return;
 
 
  ld = GGC_NEW (struct lang_decl);
  ld = GGC_NEW (struct lang_decl);
  memcpy (ld, DECL_LANG_SPECIFIC (decl), sizeof (struct lang_decl));
  memcpy (ld, DECL_LANG_SPECIFIC (decl), sizeof (struct lang_decl));
  DECL_LANG_SPECIFIC (decl) = ld;
  DECL_LANG_SPECIFIC (decl) = ld;
}
}
 
 
/* The functions below are required for functionality of doing
/* The functions below are required for functionality of doing
   function at once processing in the C front end. Currently these
   function at once processing in the C front end. Currently these
   functions are not called from anywhere in the C front end, but as
   functions are not called from anywhere in the C front end, but as
   these changes continue, that will change.  */
   these changes continue, that will change.  */
 
 
/* Returns the stmt_tree (if any) to which statements are currently
/* Returns the stmt_tree (if any) to which statements are currently
   being added.  If there is no active statement-tree, NULL is
   being added.  If there is no active statement-tree, NULL is
   returned.  */
   returned.  */
 
 
stmt_tree
stmt_tree
current_stmt_tree (void)
current_stmt_tree (void)
{
{
  return &c_stmt_tree;
  return &c_stmt_tree;
}
}
 
 
/* Nonzero if TYPE is an anonymous union or struct type.  Always 0 in
/* Nonzero if TYPE is an anonymous union or struct type.  Always 0 in
   C.  */
   C.  */
 
 
int
int
anon_aggr_type_p (tree ARG_UNUSED (node))
anon_aggr_type_p (tree ARG_UNUSED (node))
{
{
  return 0;
  return 0;
}
}
 
 
/* Return the global value of T as a symbol.  */
/* Return the global value of T as a symbol.  */
 
 
tree
tree
identifier_global_value (tree t)
identifier_global_value (tree t)
{
{
  struct c_binding *b;
  struct c_binding *b;
 
 
  for (b = I_SYMBOL_BINDING (t); b; b = b->shadowed)
  for (b = I_SYMBOL_BINDING (t); b; b = b->shadowed)
    if (B_IN_FILE_SCOPE (b) || B_IN_EXTERNAL_SCOPE (b))
    if (B_IN_FILE_SCOPE (b) || B_IN_EXTERNAL_SCOPE (b))
      return b->decl;
      return b->decl;
 
 
  return 0;
  return 0;
}
}
 
 
/* Record a builtin type for C.  If NAME is non-NULL, it is the name used;
/* Record a builtin type for C.  If NAME is non-NULL, it is the name used;
   otherwise the name is found in ridpointers from RID_INDEX.  */
   otherwise the name is found in ridpointers from RID_INDEX.  */
 
 
void
void
record_builtin_type (enum rid rid_index, const char *name, tree type)
record_builtin_type (enum rid rid_index, const char *name, tree type)
{
{
  tree id, decl;
  tree id, decl;
  if (name == 0)
  if (name == 0)
    id = ridpointers[(int) rid_index];
    id = ridpointers[(int) rid_index];
  else
  else
    id = get_identifier (name);
    id = get_identifier (name);
  decl = build_decl (TYPE_DECL, id, type);
  decl = build_decl (TYPE_DECL, id, type);
  pushdecl (decl);
  pushdecl (decl);
  if (debug_hooks->type_decl)
  if (debug_hooks->type_decl)
    debug_hooks->type_decl (decl, false);
    debug_hooks->type_decl (decl, false);
}
}
 
 
/* Build the void_list_node (void_type_node having been created).  */
/* Build the void_list_node (void_type_node having been created).  */
tree
tree
build_void_list_node (void)
build_void_list_node (void)
{
{
  tree t = build_tree_list (NULL_TREE, void_type_node);
  tree t = build_tree_list (NULL_TREE, void_type_node);
  return t;
  return t;
}
}
 
 
/* Return a c_parm structure with the given SPECS, ATTRS and DECLARATOR.  */
/* Return a c_parm structure with the given SPECS, ATTRS and DECLARATOR.  */
 
 
struct c_parm *
struct c_parm *
build_c_parm (struct c_declspecs *specs, tree attrs,
build_c_parm (struct c_declspecs *specs, tree attrs,
              struct c_declarator *declarator)
              struct c_declarator *declarator)
{
{
  struct c_parm *ret = XOBNEW (&parser_obstack, struct c_parm);
  struct c_parm *ret = XOBNEW (&parser_obstack, struct c_parm);
  ret->specs = specs;
  ret->specs = specs;
  ret->attrs = attrs;
  ret->attrs = attrs;
  ret->declarator = declarator;
  ret->declarator = declarator;
  return ret;
  return ret;
}
}
 
 
/* Return a declarator with nested attributes.  TARGET is the inner
/* Return a declarator with nested attributes.  TARGET is the inner
   declarator to which these attributes apply.  ATTRS are the
   declarator to which these attributes apply.  ATTRS are the
   attributes.  */
   attributes.  */
 
 
struct c_declarator *
struct c_declarator *
build_attrs_declarator (tree attrs, struct c_declarator *target)
build_attrs_declarator (tree attrs, struct c_declarator *target)
{
{
  struct c_declarator *ret = XOBNEW (&parser_obstack, struct c_declarator);
  struct c_declarator *ret = XOBNEW (&parser_obstack, struct c_declarator);
  ret->kind = cdk_attrs;
  ret->kind = cdk_attrs;
  ret->declarator = target;
  ret->declarator = target;
  ret->u.attrs = attrs;
  ret->u.attrs = attrs;
  return ret;
  return ret;
}
}
 
 
/* Return a declarator for a function with arguments specified by ARGS
/* Return a declarator for a function with arguments specified by ARGS
   and return type specified by TARGET.  */
   and return type specified by TARGET.  */
 
 
struct c_declarator *
struct c_declarator *
build_function_declarator (struct c_arg_info *args,
build_function_declarator (struct c_arg_info *args,
                           struct c_declarator *target)
                           struct c_declarator *target)
{
{
  struct c_declarator *ret = XOBNEW (&parser_obstack, struct c_declarator);
  struct c_declarator *ret = XOBNEW (&parser_obstack, struct c_declarator);
  ret->kind = cdk_function;
  ret->kind = cdk_function;
  ret->declarator = target;
  ret->declarator = target;
  ret->u.arg_info = args;
  ret->u.arg_info = args;
  return ret;
  return ret;
}
}
 
 
/* Return a declarator for the identifier IDENT (which may be
/* Return a declarator for the identifier IDENT (which may be
   NULL_TREE for an abstract declarator).  */
   NULL_TREE for an abstract declarator).  */
 
 
struct c_declarator *
struct c_declarator *
build_id_declarator (tree ident)
build_id_declarator (tree ident)
{
{
  struct c_declarator *ret = XOBNEW (&parser_obstack, struct c_declarator);
  struct c_declarator *ret = XOBNEW (&parser_obstack, struct c_declarator);
  ret->kind = cdk_id;
  ret->kind = cdk_id;
  ret->declarator = 0;
  ret->declarator = 0;
  ret->u.id = ident;
  ret->u.id = ident;
  /* Default value - may get reset to a more precise location. */
  /* Default value - may get reset to a more precise location. */
  ret->id_loc = input_location;
  ret->id_loc = input_location;
  return ret;
  return ret;
}
}
 
 
/* Return something to represent absolute declarators containing a *.
/* Return something to represent absolute declarators containing a *.
   TARGET is the absolute declarator that the * contains.
   TARGET is the absolute declarator that the * contains.
   TYPE_QUALS_ATTRS is a structure for type qualifiers and attributes
   TYPE_QUALS_ATTRS is a structure for type qualifiers and attributes
   to apply to the pointer type.  */
   to apply to the pointer type.  */
 
 
struct c_declarator *
struct c_declarator *
make_pointer_declarator (struct c_declspecs *type_quals_attrs,
make_pointer_declarator (struct c_declspecs *type_quals_attrs,
                         struct c_declarator *target)
                         struct c_declarator *target)
{
{
  tree attrs;
  tree attrs;
  int quals = 0;
  int quals = 0;
  struct c_declarator *itarget = target;
  struct c_declarator *itarget = target;
  struct c_declarator *ret = XOBNEW (&parser_obstack, struct c_declarator);
  struct c_declarator *ret = XOBNEW (&parser_obstack, struct c_declarator);
  if (type_quals_attrs)
  if (type_quals_attrs)
    {
    {
      attrs = type_quals_attrs->attrs;
      attrs = type_quals_attrs->attrs;
      quals = quals_from_declspecs (type_quals_attrs);
      quals = quals_from_declspecs (type_quals_attrs);
      if (attrs != NULL_TREE)
      if (attrs != NULL_TREE)
        itarget = build_attrs_declarator (attrs, target);
        itarget = build_attrs_declarator (attrs, target);
    }
    }
  ret->kind = cdk_pointer;
  ret->kind = cdk_pointer;
  ret->declarator = itarget;
  ret->declarator = itarget;
  ret->u.pointer_quals = quals;
  ret->u.pointer_quals = quals;
  return ret;
  return ret;
}
}
 
 
/* Return a pointer to a structure for an empty list of declaration
/* Return a pointer to a structure for an empty list of declaration
   specifiers.  */
   specifiers.  */
 
 
struct c_declspecs *
struct c_declspecs *
build_null_declspecs (void)
build_null_declspecs (void)
{
{
  struct c_declspecs *ret = XOBNEW (&parser_obstack, struct c_declspecs);
  struct c_declspecs *ret = XOBNEW (&parser_obstack, struct c_declspecs);
  ret->type = 0;
  ret->type = 0;
  ret->decl_attr = 0;
  ret->decl_attr = 0;
  ret->attrs = 0;
  ret->attrs = 0;
  ret->typespec_word = cts_none;
  ret->typespec_word = cts_none;
  ret->storage_class = csc_none;
  ret->storage_class = csc_none;
  ret->declspecs_seen_p = false;
  ret->declspecs_seen_p = false;
  ret->type_seen_p = false;
  ret->type_seen_p = false;
  ret->non_sc_seen_p = false;
  ret->non_sc_seen_p = false;
  ret->typedef_p = false;
  ret->typedef_p = false;
  ret->tag_defined_p = false;
  ret->tag_defined_p = false;
  ret->explicit_signed_p = false;
  ret->explicit_signed_p = false;
  ret->deprecated_p = false;
  ret->deprecated_p = false;
  ret->default_int_p = false;
  ret->default_int_p = false;
  ret->long_p = false;
  ret->long_p = false;
  ret->long_long_p = false;
  ret->long_long_p = false;
  ret->short_p = false;
  ret->short_p = false;
  ret->signed_p = false;
  ret->signed_p = false;
  ret->unsigned_p = false;
  ret->unsigned_p = false;
  ret->complex_p = false;
  ret->complex_p = false;
  ret->inline_p = false;
  ret->inline_p = false;
  ret->thread_p = false;
  ret->thread_p = false;
  ret->const_p = false;
  ret->const_p = false;
  ret->volatile_p = false;
  ret->volatile_p = false;
  ret->restrict_p = false;
  ret->restrict_p = false;
  return ret;
  return ret;
}
}
 
 
/* Add the type qualifier QUAL to the declaration specifiers SPECS,
/* Add the type qualifier QUAL to the declaration specifiers SPECS,
   returning SPECS.  */
   returning SPECS.  */
 
 
struct c_declspecs *
struct c_declspecs *
declspecs_add_qual (struct c_declspecs *specs, tree qual)
declspecs_add_qual (struct c_declspecs *specs, tree qual)
{
{
  enum rid i;
  enum rid i;
  bool dupe = false;
  bool dupe = false;
  specs->non_sc_seen_p = true;
  specs->non_sc_seen_p = true;
  specs->declspecs_seen_p = true;
  specs->declspecs_seen_p = true;
  gcc_assert (TREE_CODE (qual) == IDENTIFIER_NODE
  gcc_assert (TREE_CODE (qual) == IDENTIFIER_NODE
              && C_IS_RESERVED_WORD (qual));
              && C_IS_RESERVED_WORD (qual));
  i = C_RID_CODE (qual);
  i = C_RID_CODE (qual);
  switch (i)
  switch (i)
    {
    {
    case RID_CONST:
    case RID_CONST:
      dupe = specs->const_p;
      dupe = specs->const_p;
      specs->const_p = true;
      specs->const_p = true;
      break;
      break;
    case RID_VOLATILE:
    case RID_VOLATILE:
      dupe = specs->volatile_p;
      dupe = specs->volatile_p;
      specs->volatile_p = true;
      specs->volatile_p = true;
      break;
      break;
    case RID_RESTRICT:
    case RID_RESTRICT:
      dupe = specs->restrict_p;
      dupe = specs->restrict_p;
      specs->restrict_p = true;
      specs->restrict_p = true;
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
  if (dupe && pedantic && !flag_isoc99)
  if (dupe && pedantic && !flag_isoc99)
    pedwarn ("duplicate %qE", qual);
    pedwarn ("duplicate %qE", qual);
  return specs;
  return specs;
}
}
 
 
/* Add the type specifier TYPE to the declaration specifiers SPECS,
/* Add the type specifier TYPE to the declaration specifiers SPECS,
   returning SPECS.  */
   returning SPECS.  */
 
 
struct c_declspecs *
struct c_declspecs *
declspecs_add_type (struct c_declspecs *specs, struct c_typespec spec)
declspecs_add_type (struct c_declspecs *specs, struct c_typespec spec)
{
{
  tree type = spec.spec;
  tree type = spec.spec;
  specs->non_sc_seen_p = true;
  specs->non_sc_seen_p = true;
  specs->declspecs_seen_p = true;
  specs->declspecs_seen_p = true;
  specs->type_seen_p = true;
  specs->type_seen_p = true;
  if (TREE_DEPRECATED (type))
  if (TREE_DEPRECATED (type))
    specs->deprecated_p = true;
    specs->deprecated_p = true;
 
 
  /* Handle type specifier keywords.  */
  /* Handle type specifier keywords.  */
  if (TREE_CODE (type) == IDENTIFIER_NODE && C_IS_RESERVED_WORD (type))
  if (TREE_CODE (type) == IDENTIFIER_NODE && C_IS_RESERVED_WORD (type))
    {
    {
      enum rid i = C_RID_CODE (type);
      enum rid i = C_RID_CODE (type);
      if (specs->type)
      if (specs->type)
        {
        {
          error ("two or more data types in declaration specifiers");
          error ("two or more data types in declaration specifiers");
          return specs;
          return specs;
        }
        }
      if ((int) i <= (int) RID_LAST_MODIFIER)
      if ((int) i <= (int) RID_LAST_MODIFIER)
        {
        {
          /* "long", "short", "signed", "unsigned" or "_Complex".  */
          /* "long", "short", "signed", "unsigned" or "_Complex".  */
          bool dupe = false;
          bool dupe = false;
          switch (i)
          switch (i)
            {
            {
            case RID_LONG:
            case RID_LONG:
              if (specs->long_long_p)
              if (specs->long_long_p)
                {
                {
                  error ("%<long long long%> is too long for GCC");
                  error ("%<long long long%> is too long for GCC");
                  break;
                  break;
                }
                }
              if (specs->long_p)
              if (specs->long_p)
                {
                {
                  if (specs->typespec_word == cts_double)
                  if (specs->typespec_word == cts_double)
                    {
                    {
                      error ("both %<long long%> and %<double%> in "
                      error ("both %<long long%> and %<double%> in "
                             "declaration specifiers");
                             "declaration specifiers");
                      break;
                      break;
                    }
                    }
                  if (pedantic && !flag_isoc99 && !in_system_header
                  if (pedantic && !flag_isoc99 && !in_system_header
                      && warn_long_long)
                      && warn_long_long)
                    pedwarn ("ISO C90 does not support %<long long%>");
                    pedwarn ("ISO C90 does not support %<long long%>");
                  specs->long_long_p = 1;
                  specs->long_long_p = 1;
                  break;
                  break;
                }
                }
              if (specs->short_p)
              if (specs->short_p)
                error ("both %<long%> and %<short%> in "
                error ("both %<long%> and %<short%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_void)
              else if (specs->typespec_word == cts_void)
                error ("both %<long%> and %<void%> in "
                error ("both %<long%> and %<void%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_bool)
              else if (specs->typespec_word == cts_bool)
                error ("both %<long%> and %<_Bool%> in "
                error ("both %<long%> and %<_Bool%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_char)
              else if (specs->typespec_word == cts_char)
                error ("both %<long%> and %<char%> in "
                error ("both %<long%> and %<char%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_float)
              else if (specs->typespec_word == cts_float)
                error ("both %<long%> and %<float%> in "
                error ("both %<long%> and %<float%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat32)
              else if (specs->typespec_word == cts_dfloat32)
                error ("both %<long%> and %<_Decimal32%> in "
                error ("both %<long%> and %<_Decimal32%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat64)
              else if (specs->typespec_word == cts_dfloat64)
                error ("both %<long%> and %<_Decimal64%> in "
                error ("both %<long%> and %<_Decimal64%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat128)
              else if (specs->typespec_word == cts_dfloat128)
                error ("both %<long%> and %<_Decimal128%> in "
                error ("both %<long%> and %<_Decimal128%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else
              else
                specs->long_p = true;
                specs->long_p = true;
              break;
              break;
            case RID_SHORT:
            case RID_SHORT:
              dupe = specs->short_p;
              dupe = specs->short_p;
              if (specs->long_p)
              if (specs->long_p)
                error ("both %<long%> and %<short%> in "
                error ("both %<long%> and %<short%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_void)
              else if (specs->typespec_word == cts_void)
                error ("both %<short%> and %<void%> in "
                error ("both %<short%> and %<void%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_bool)
              else if (specs->typespec_word == cts_bool)
                error ("both %<short%> and %<_Bool%> in "
                error ("both %<short%> and %<_Bool%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_char)
              else if (specs->typespec_word == cts_char)
                error ("both %<short%> and %<char%> in "
                error ("both %<short%> and %<char%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_float)
              else if (specs->typespec_word == cts_float)
                error ("both %<short%> and %<float%> in "
                error ("both %<short%> and %<float%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_double)
              else if (specs->typespec_word == cts_double)
                error ("both %<short%> and %<double%> in "
                error ("both %<short%> and %<double%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat32)
              else if (specs->typespec_word == cts_dfloat32)
                error ("both %<short%> and %<_Decimal32%> in "
                error ("both %<short%> and %<_Decimal32%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat64)
              else if (specs->typespec_word == cts_dfloat64)
                error ("both %<short%> and %<_Decimal64%> in "
                error ("both %<short%> and %<_Decimal64%> in "
                                        "declaration specifiers");
                                        "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat128)
              else if (specs->typespec_word == cts_dfloat128)
                error ("both %<short%> and %<_Decimal128%> in "
                error ("both %<short%> and %<_Decimal128%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else
              else
                specs->short_p = true;
                specs->short_p = true;
              break;
              break;
            case RID_SIGNED:
            case RID_SIGNED:
              dupe = specs->signed_p;
              dupe = specs->signed_p;
              if (specs->unsigned_p)
              if (specs->unsigned_p)
                error ("both %<signed%> and %<unsigned%> in "
                error ("both %<signed%> and %<unsigned%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_void)
              else if (specs->typespec_word == cts_void)
                error ("both %<signed%> and %<void%> in "
                error ("both %<signed%> and %<void%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_bool)
              else if (specs->typespec_word == cts_bool)
                error ("both %<signed%> and %<_Bool%> in "
                error ("both %<signed%> and %<_Bool%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_float)
              else if (specs->typespec_word == cts_float)
                error ("both %<signed%> and %<float%> in "
                error ("both %<signed%> and %<float%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_double)
              else if (specs->typespec_word == cts_double)
                error ("both %<signed%> and %<double%> in "
                error ("both %<signed%> and %<double%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat32)
              else if (specs->typespec_word == cts_dfloat32)
                error ("both %<signed%> and %<_Decimal32%> in "
                error ("both %<signed%> and %<_Decimal32%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat64)
              else if (specs->typespec_word == cts_dfloat64)
                error ("both %<signed%> and %<_Decimal64%> in "
                error ("both %<signed%> and %<_Decimal64%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat128)
              else if (specs->typespec_word == cts_dfloat128)
                error ("both %<signed%> and %<_Decimal128%> in "
                error ("both %<signed%> and %<_Decimal128%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else
              else
                specs->signed_p = true;
                specs->signed_p = true;
              break;
              break;
            case RID_UNSIGNED:
            case RID_UNSIGNED:
              dupe = specs->unsigned_p;
              dupe = specs->unsigned_p;
              if (specs->signed_p)
              if (specs->signed_p)
                error ("both %<signed%> and %<unsigned%> in "
                error ("both %<signed%> and %<unsigned%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_void)
              else if (specs->typespec_word == cts_void)
                error ("both %<unsigned%> and %<void%> in "
                error ("both %<unsigned%> and %<void%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_bool)
              else if (specs->typespec_word == cts_bool)
                error ("both %<unsigned%> and %<_Bool%> in "
                error ("both %<unsigned%> and %<_Bool%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_float)
              else if (specs->typespec_word == cts_float)
                error ("both %<unsigned%> and %<float%> in "
                error ("both %<unsigned%> and %<float%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_double)
              else if (specs->typespec_word == cts_double)
                error ("both %<unsigned%> and %<double%> in "
                error ("both %<unsigned%> and %<double%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat32)
              else if (specs->typespec_word == cts_dfloat32)
                error ("both %<unsigned%> and %<_Decimal32%> in "
                error ("both %<unsigned%> and %<_Decimal32%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat64)
              else if (specs->typespec_word == cts_dfloat64)
                error ("both %<unsigned%> and %<_Decimal64%> in "
                error ("both %<unsigned%> and %<_Decimal64%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat128)
              else if (specs->typespec_word == cts_dfloat128)
                error ("both %<unsigned%> and %<_Decimal128%> in "
                error ("both %<unsigned%> and %<_Decimal128%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else
              else
                specs->unsigned_p = true;
                specs->unsigned_p = true;
              break;
              break;
            case RID_COMPLEX:
            case RID_COMPLEX:
              dupe = specs->complex_p;
              dupe = specs->complex_p;
              if (pedantic && !flag_isoc99 && !in_system_header)
              if (pedantic && !flag_isoc99 && !in_system_header)
                pedwarn ("ISO C90 does not support complex types");
                pedwarn ("ISO C90 does not support complex types");
              if (specs->typespec_word == cts_void)
              if (specs->typespec_word == cts_void)
                error ("both %<complex%> and %<void%> in "
                error ("both %<complex%> and %<void%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_bool)
              else if (specs->typespec_word == cts_bool)
                error ("both %<complex%> and %<_Bool%> in "
                error ("both %<complex%> and %<_Bool%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat32)
              else if (specs->typespec_word == cts_dfloat32)
                error ("both %<complex%> and %<_Decimal32%> in "
                error ("both %<complex%> and %<_Decimal32%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat64)
              else if (specs->typespec_word == cts_dfloat64)
                error ("both %<complex%> and %<_Decimal64%> in "
                error ("both %<complex%> and %<_Decimal64%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->typespec_word == cts_dfloat128)
              else if (specs->typespec_word == cts_dfloat128)
                error ("both %<complex%> and %<_Decimal128%> in "
                error ("both %<complex%> and %<_Decimal128%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else
              else
                specs->complex_p = true;
                specs->complex_p = true;
              break;
              break;
            default:
            default:
              gcc_unreachable ();
              gcc_unreachable ();
            }
            }
 
 
          if (dupe)
          if (dupe)
            error ("duplicate %qE", type);
            error ("duplicate %qE", type);
 
 
          return specs;
          return specs;
        }
        }
      else
      else
        {
        {
          /* "void", "_Bool", "char", "int", "float" or "double".  */
          /* "void", "_Bool", "char", "int", "float" or "double".  */
          if (specs->typespec_word != cts_none)
          if (specs->typespec_word != cts_none)
            {
            {
              error ("two or more data types in declaration specifiers");
              error ("two or more data types in declaration specifiers");
              return specs;
              return specs;
            }
            }
          switch (i)
          switch (i)
            {
            {
            case RID_VOID:
            case RID_VOID:
              if (specs->long_p)
              if (specs->long_p)
                error ("both %<long%> and %<void%> in "
                error ("both %<long%> and %<void%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->short_p)
              else if (specs->short_p)
                error ("both %<short%> and %<void%> in "
                error ("both %<short%> and %<void%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->signed_p)
              else if (specs->signed_p)
                error ("both %<signed%> and %<void%> in "
                error ("both %<signed%> and %<void%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->unsigned_p)
              else if (specs->unsigned_p)
                error ("both %<unsigned%> and %<void%> in "
                error ("both %<unsigned%> and %<void%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->complex_p)
              else if (specs->complex_p)
                error ("both %<complex%> and %<void%> in "
                error ("both %<complex%> and %<void%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else
              else
                specs->typespec_word = cts_void;
                specs->typespec_word = cts_void;
              return specs;
              return specs;
            case RID_BOOL:
            case RID_BOOL:
              if (specs->long_p)
              if (specs->long_p)
                error ("both %<long%> and %<_Bool%> in "
                error ("both %<long%> and %<_Bool%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->short_p)
              else if (specs->short_p)
                error ("both %<short%> and %<_Bool%> in "
                error ("both %<short%> and %<_Bool%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->signed_p)
              else if (specs->signed_p)
                error ("both %<signed%> and %<_Bool%> in "
                error ("both %<signed%> and %<_Bool%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->unsigned_p)
              else if (specs->unsigned_p)
                error ("both %<unsigned%> and %<_Bool%> in "
                error ("both %<unsigned%> and %<_Bool%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->complex_p)
              else if (specs->complex_p)
                error ("both %<complex%> and %<_Bool%> in "
                error ("both %<complex%> and %<_Bool%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else
              else
                specs->typespec_word = cts_bool;
                specs->typespec_word = cts_bool;
              return specs;
              return specs;
            case RID_CHAR:
            case RID_CHAR:
              if (specs->long_p)
              if (specs->long_p)
                error ("both %<long%> and %<char%> in "
                error ("both %<long%> and %<char%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->short_p)
              else if (specs->short_p)
                error ("both %<short%> and %<char%> in "
                error ("both %<short%> and %<char%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else
              else
                specs->typespec_word = cts_char;
                specs->typespec_word = cts_char;
              return specs;
              return specs;
            case RID_INT:
            case RID_INT:
              specs->typespec_word = cts_int;
              specs->typespec_word = cts_int;
              return specs;
              return specs;
            case RID_FLOAT:
            case RID_FLOAT:
              if (specs->long_p)
              if (specs->long_p)
                error ("both %<long%> and %<float%> in "
                error ("both %<long%> and %<float%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->short_p)
              else if (specs->short_p)
                error ("both %<short%> and %<float%> in "
                error ("both %<short%> and %<float%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->signed_p)
              else if (specs->signed_p)
                error ("both %<signed%> and %<float%> in "
                error ("both %<signed%> and %<float%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->unsigned_p)
              else if (specs->unsigned_p)
                error ("both %<unsigned%> and %<float%> in "
                error ("both %<unsigned%> and %<float%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else
              else
                specs->typespec_word = cts_float;
                specs->typespec_word = cts_float;
              return specs;
              return specs;
            case RID_DOUBLE:
            case RID_DOUBLE:
              if (specs->long_long_p)
              if (specs->long_long_p)
                error ("both %<long long%> and %<double%> in "
                error ("both %<long long%> and %<double%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->short_p)
              else if (specs->short_p)
                error ("both %<short%> and %<double%> in "
                error ("both %<short%> and %<double%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->signed_p)
              else if (specs->signed_p)
                error ("both %<signed%> and %<double%> in "
                error ("both %<signed%> and %<double%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else if (specs->unsigned_p)
              else if (specs->unsigned_p)
                error ("both %<unsigned%> and %<double%> in "
                error ("both %<unsigned%> and %<double%> in "
                       "declaration specifiers");
                       "declaration specifiers");
              else
              else
                specs->typespec_word = cts_double;
                specs->typespec_word = cts_double;
              return specs;
              return specs;
            case RID_DFLOAT32:
            case RID_DFLOAT32:
            case RID_DFLOAT64:
            case RID_DFLOAT64:
            case RID_DFLOAT128:
            case RID_DFLOAT128:
              {
              {
                const char *str;
                const char *str;
                if (i == RID_DFLOAT32)
                if (i == RID_DFLOAT32)
                  str = "_Decimal32";
                  str = "_Decimal32";
                else if (i == RID_DFLOAT64)
                else if (i == RID_DFLOAT64)
                  str = "_Decimal64";
                  str = "_Decimal64";
                else
                else
                  str = "_Decimal128";
                  str = "_Decimal128";
                if (specs->long_long_p)
                if (specs->long_long_p)
                  error ("both %<long long%> and %<%s%> in "
                  error ("both %<long long%> and %<%s%> in "
                         "declaration specifiers", str);
                         "declaration specifiers", str);
                if (specs->long_p)
                if (specs->long_p)
                  error ("both %<long%> and %<%s%> in "
                  error ("both %<long%> and %<%s%> in "
                         "declaration specifiers", str);
                         "declaration specifiers", str);
                else if (specs->short_p)
                else if (specs->short_p)
                  error ("both %<short%> and %<%s%> in "
                  error ("both %<short%> and %<%s%> in "
                         "declaration specifiers", str);
                         "declaration specifiers", str);
                else if (specs->signed_p)
                else if (specs->signed_p)
                  error ("both %<signed%> and %<%s%> in "
                  error ("both %<signed%> and %<%s%> in "
                         "declaration specifiers", str);
                         "declaration specifiers", str);
                else if (specs->unsigned_p)
                else if (specs->unsigned_p)
                  error ("both %<unsigned%> and %<%s%> in "
                  error ("both %<unsigned%> and %<%s%> in "
                         "declaration specifiers", str);
                         "declaration specifiers", str);
                else if (specs->complex_p)
                else if (specs->complex_p)
                  error ("both %<complex%> and %<%s%> in "
                  error ("both %<complex%> and %<%s%> in "
                         "declaration specifiers", str);
                         "declaration specifiers", str);
                else if (i == RID_DFLOAT32)
                else if (i == RID_DFLOAT32)
                  specs->typespec_word = cts_dfloat32;
                  specs->typespec_word = cts_dfloat32;
                else if (i == RID_DFLOAT64)
                else if (i == RID_DFLOAT64)
                  specs->typespec_word = cts_dfloat64;
                  specs->typespec_word = cts_dfloat64;
                else
                else
                  specs->typespec_word = cts_dfloat128;
                  specs->typespec_word = cts_dfloat128;
              }
              }
              if (!targetm.decimal_float_supported_p ())
              if (!targetm.decimal_float_supported_p ())
                error ("decimal floating point not supported for this target");
                error ("decimal floating point not supported for this target");
              if (pedantic)
              if (pedantic)
                pedwarn ("ISO C does not support decimal floating point");
                pedwarn ("ISO C does not support decimal floating point");
              return specs;
              return specs;
            default:
            default:
              /* ObjC reserved word "id", handled below.  */
              /* ObjC reserved word "id", handled below.  */
              break;
              break;
            }
            }
        }
        }
    }
    }
 
 
  /* Now we have a typedef (a TYPE_DECL node), an identifier (some
  /* Now we have a typedef (a TYPE_DECL node), an identifier (some
     form of ObjC type, cases such as "int" and "long" being handled
     form of ObjC type, cases such as "int" and "long" being handled
     above), a TYPE (struct, union, enum and typeof specifiers) or an
     above), a TYPE (struct, union, enum and typeof specifiers) or an
     ERROR_MARK.  In none of these cases may there have previously
     ERROR_MARK.  In none of these cases may there have previously
     been any type specifiers.  */
     been any type specifiers.  */
  if (specs->type || specs->typespec_word != cts_none
  if (specs->type || specs->typespec_word != cts_none
      || specs->long_p || specs->short_p || specs->signed_p
      || specs->long_p || specs->short_p || specs->signed_p
      || specs->unsigned_p || specs->complex_p)
      || specs->unsigned_p || specs->complex_p)
    error ("two or more data types in declaration specifiers");
    error ("two or more data types in declaration specifiers");
  else if (TREE_CODE (type) == TYPE_DECL)
  else if (TREE_CODE (type) == TYPE_DECL)
    {
    {
      if (TREE_TYPE (type) == error_mark_node)
      if (TREE_TYPE (type) == error_mark_node)
        ; /* Allow the type to default to int to avoid cascading errors.  */
        ; /* Allow the type to default to int to avoid cascading errors.  */
      else
      else
        {
        {
          specs->type = TREE_TYPE (type);
          specs->type = TREE_TYPE (type);
          specs->decl_attr = DECL_ATTRIBUTES (type);
          specs->decl_attr = DECL_ATTRIBUTES (type);
          specs->typedef_p = true;
          specs->typedef_p = true;
          specs->explicit_signed_p = C_TYPEDEF_EXPLICITLY_SIGNED (type);
          specs->explicit_signed_p = C_TYPEDEF_EXPLICITLY_SIGNED (type);
        }
        }
    }
    }
  else if (TREE_CODE (type) == IDENTIFIER_NODE)
  else if (TREE_CODE (type) == IDENTIFIER_NODE)
    {
    {
      tree t = lookup_name (type);
      tree t = lookup_name (type);
      if (!t || TREE_CODE (t) != TYPE_DECL)
      if (!t || TREE_CODE (t) != TYPE_DECL)
        error ("%qE fails to be a typedef or built in type", type);
        error ("%qE fails to be a typedef or built in type", type);
      else if (TREE_TYPE (t) == error_mark_node)
      else if (TREE_TYPE (t) == error_mark_node)
        ;
        ;
      else
      else
        specs->type = TREE_TYPE (t);
        specs->type = TREE_TYPE (t);
    }
    }
  else if (TREE_CODE (type) != ERROR_MARK)
  else if (TREE_CODE (type) != ERROR_MARK)
    {
    {
      if (spec.kind == ctsk_tagdef || spec.kind == ctsk_tagfirstref)
      if (spec.kind == ctsk_tagdef || spec.kind == ctsk_tagfirstref)
        specs->tag_defined_p = true;
        specs->tag_defined_p = true;
      if (spec.kind == ctsk_typeof)
      if (spec.kind == ctsk_typeof)
        specs->typedef_p = true;
        specs->typedef_p = true;
      specs->type = type;
      specs->type = type;
    }
    }
 
 
  return specs;
  return specs;
}
}
 
 
/* Add the storage class specifier or function specifier SCSPEC to the
/* Add the storage class specifier or function specifier SCSPEC to the
   declaration specifiers SPECS, returning SPECS.  */
   declaration specifiers SPECS, returning SPECS.  */
 
 
struct c_declspecs *
struct c_declspecs *
declspecs_add_scspec (struct c_declspecs *specs, tree scspec)
declspecs_add_scspec (struct c_declspecs *specs, tree scspec)
{
{
  enum rid i;
  enum rid i;
  enum c_storage_class n = csc_none;
  enum c_storage_class n = csc_none;
  bool dupe = false;
  bool dupe = false;
  specs->declspecs_seen_p = true;
  specs->declspecs_seen_p = true;
  gcc_assert (TREE_CODE (scspec) == IDENTIFIER_NODE
  gcc_assert (TREE_CODE (scspec) == IDENTIFIER_NODE
              && C_IS_RESERVED_WORD (scspec));
              && C_IS_RESERVED_WORD (scspec));
  i = C_RID_CODE (scspec);
  i = C_RID_CODE (scspec);
  if (extra_warnings && specs->non_sc_seen_p)
  if (extra_warnings && specs->non_sc_seen_p)
    warning (OPT_Wextra, "%qE is not at beginning of declaration", scspec);
    warning (OPT_Wextra, "%qE is not at beginning of declaration", scspec);
  switch (i)
  switch (i)
    {
    {
    case RID_INLINE:
    case RID_INLINE:
      /* C99 permits duplicate inline.  Although of doubtful utility,
      /* C99 permits duplicate inline.  Although of doubtful utility,
         it seems simplest to permit it in gnu89 mode as well, as
         it seems simplest to permit it in gnu89 mode as well, as
         there is also little utility in maintaining this as a
         there is also little utility in maintaining this as a
         difference between gnu89 and C99 inline.  */
         difference between gnu89 and C99 inline.  */
      dupe = false;
      dupe = false;
      specs->inline_p = true;
      specs->inline_p = true;
      break;
      break;
    case RID_THREAD:
    case RID_THREAD:
      dupe = specs->thread_p;
      dupe = specs->thread_p;
      if (specs->storage_class == csc_auto)
      if (specs->storage_class == csc_auto)
        error ("%<__thread%> used with %<auto%>");
        error ("%<__thread%> used with %<auto%>");
      else if (specs->storage_class == csc_register)
      else if (specs->storage_class == csc_register)
        error ("%<__thread%> used with %<register%>");
        error ("%<__thread%> used with %<register%>");
      else if (specs->storage_class == csc_typedef)
      else if (specs->storage_class == csc_typedef)
        error ("%<__thread%> used with %<typedef%>");
        error ("%<__thread%> used with %<typedef%>");
      else
      else
        specs->thread_p = true;
        specs->thread_p = true;
      break;
      break;
    case RID_AUTO:
    case RID_AUTO:
      n = csc_auto;
      n = csc_auto;
      break;
      break;
    case RID_EXTERN:
    case RID_EXTERN:
      n = csc_extern;
      n = csc_extern;
      /* Diagnose "__thread extern".  */
      /* Diagnose "__thread extern".  */
      if (specs->thread_p)
      if (specs->thread_p)
        error ("%<__thread%> before %<extern%>");
        error ("%<__thread%> before %<extern%>");
      break;
      break;
    case RID_REGISTER:
    case RID_REGISTER:
      n = csc_register;
      n = csc_register;
      break;
      break;
    case RID_STATIC:
    case RID_STATIC:
      n = csc_static;
      n = csc_static;
      /* Diagnose "__thread static".  */
      /* Diagnose "__thread static".  */
      if (specs->thread_p)
      if (specs->thread_p)
        error ("%<__thread%> before %<static%>");
        error ("%<__thread%> before %<static%>");
      break;
      break;
    case RID_TYPEDEF:
    case RID_TYPEDEF:
      n = csc_typedef;
      n = csc_typedef;
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
  if (n != csc_none && n == specs->storage_class)
  if (n != csc_none && n == specs->storage_class)
    dupe = true;
    dupe = true;
  if (dupe)
  if (dupe)
    error ("duplicate %qE", scspec);
    error ("duplicate %qE", scspec);
  if (n != csc_none)
  if (n != csc_none)
    {
    {
      if (specs->storage_class != csc_none && n != specs->storage_class)
      if (specs->storage_class != csc_none && n != specs->storage_class)
        {
        {
          error ("multiple storage classes in declaration specifiers");
          error ("multiple storage classes in declaration specifiers");
        }
        }
      else
      else
        {
        {
          specs->storage_class = n;
          specs->storage_class = n;
          if (n != csc_extern && n != csc_static && specs->thread_p)
          if (n != csc_extern && n != csc_static && specs->thread_p)
            {
            {
              error ("%<__thread%> used with %qE", scspec);
              error ("%<__thread%> used with %qE", scspec);
              specs->thread_p = false;
              specs->thread_p = false;
            }
            }
        }
        }
    }
    }
  return specs;
  return specs;
}
}
 
 
/* Add the attributes ATTRS to the declaration specifiers SPECS,
/* Add the attributes ATTRS to the declaration specifiers SPECS,
   returning SPECS.  */
   returning SPECS.  */
 
 
struct c_declspecs *
struct c_declspecs *
declspecs_add_attrs (struct c_declspecs *specs, tree attrs)
declspecs_add_attrs (struct c_declspecs *specs, tree attrs)
{
{
  specs->attrs = chainon (attrs, specs->attrs);
  specs->attrs = chainon (attrs, specs->attrs);
  specs->declspecs_seen_p = true;
  specs->declspecs_seen_p = true;
  return specs;
  return specs;
}
}
 
 
/* Combine "long", "short", "signed", "unsigned" and "_Complex" type
/* Combine "long", "short", "signed", "unsigned" and "_Complex" type
   specifiers with any other type specifier to determine the resulting
   specifiers with any other type specifier to determine the resulting
   type.  This is where ISO C checks on complex types are made, since
   type.  This is where ISO C checks on complex types are made, since
   "_Complex long" is a prefix of the valid ISO C type "_Complex long
   "_Complex long" is a prefix of the valid ISO C type "_Complex long
   double".  */
   double".  */
 
 
struct c_declspecs *
struct c_declspecs *
finish_declspecs (struct c_declspecs *specs)
finish_declspecs (struct c_declspecs *specs)
{
{
  /* If a type was specified as a whole, we have no modifiers and are
  /* If a type was specified as a whole, we have no modifiers and are
     done.  */
     done.  */
  if (specs->type != NULL_TREE)
  if (specs->type != NULL_TREE)
    {
    {
      gcc_assert (!specs->long_p && !specs->long_long_p && !specs->short_p
      gcc_assert (!specs->long_p && !specs->long_long_p && !specs->short_p
                  && !specs->signed_p && !specs->unsigned_p
                  && !specs->signed_p && !specs->unsigned_p
                  && !specs->complex_p);
                  && !specs->complex_p);
      return specs;
      return specs;
    }
    }
 
 
  /* If none of "void", "_Bool", "char", "int", "float" or "double"
  /* If none of "void", "_Bool", "char", "int", "float" or "double"
     has been specified, treat it as "int" unless "_Complex" is
     has been specified, treat it as "int" unless "_Complex" is
     present and there are no other specifiers.  If we just have
     present and there are no other specifiers.  If we just have
     "_Complex", it is equivalent to "_Complex double", but e.g.
     "_Complex", it is equivalent to "_Complex double", but e.g.
     "_Complex short" is equivalent to "_Complex short int".  */
     "_Complex short" is equivalent to "_Complex short int".  */
  if (specs->typespec_word == cts_none)
  if (specs->typespec_word == cts_none)
    {
    {
      if (specs->long_p || specs->short_p
      if (specs->long_p || specs->short_p
          || specs->signed_p || specs->unsigned_p)
          || specs->signed_p || specs->unsigned_p)
        {
        {
          specs->typespec_word = cts_int;
          specs->typespec_word = cts_int;
        }
        }
      else if (specs->complex_p)
      else if (specs->complex_p)
        {
        {
          specs->typespec_word = cts_double;
          specs->typespec_word = cts_double;
          if (pedantic)
          if (pedantic)
            pedwarn ("ISO C does not support plain %<complex%> meaning "
            pedwarn ("ISO C does not support plain %<complex%> meaning "
                     "%<double complex%>");
                     "%<double complex%>");
        }
        }
      else
      else
        {
        {
          specs->typespec_word = cts_int;
          specs->typespec_word = cts_int;
          specs->default_int_p = true;
          specs->default_int_p = true;
          /* We don't diagnose this here because grokdeclarator will
          /* We don't diagnose this here because grokdeclarator will
             give more specific diagnostics according to whether it is
             give more specific diagnostics according to whether it is
             a function definition.  */
             a function definition.  */
        }
        }
    }
    }
 
 
  /* If "signed" was specified, record this to distinguish "int" and
  /* If "signed" was specified, record this to distinguish "int" and
     "signed int" in the case of a bit-field with
     "signed int" in the case of a bit-field with
     -funsigned-bitfields.  */
     -funsigned-bitfields.  */
  specs->explicit_signed_p = specs->signed_p;
  specs->explicit_signed_p = specs->signed_p;
 
 
  /* Now compute the actual type.  */
  /* Now compute the actual type.  */
  switch (specs->typespec_word)
  switch (specs->typespec_word)
    {
    {
    case cts_void:
    case cts_void:
      gcc_assert (!specs->long_p && !specs->short_p
      gcc_assert (!specs->long_p && !specs->short_p
                  && !specs->signed_p && !specs->unsigned_p
                  && !specs->signed_p && !specs->unsigned_p
                  && !specs->complex_p);
                  && !specs->complex_p);
      specs->type = void_type_node;
      specs->type = void_type_node;
      break;
      break;
    case cts_bool:
    case cts_bool:
      gcc_assert (!specs->long_p && !specs->short_p
      gcc_assert (!specs->long_p && !specs->short_p
                  && !specs->signed_p && !specs->unsigned_p
                  && !specs->signed_p && !specs->unsigned_p
                  && !specs->complex_p);
                  && !specs->complex_p);
      specs->type = boolean_type_node;
      specs->type = boolean_type_node;
      break;
      break;
    case cts_char:
    case cts_char:
      gcc_assert (!specs->long_p && !specs->short_p);
      gcc_assert (!specs->long_p && !specs->short_p);
      gcc_assert (!(specs->signed_p && specs->unsigned_p));
      gcc_assert (!(specs->signed_p && specs->unsigned_p));
      if (specs->signed_p)
      if (specs->signed_p)
        specs->type = signed_char_type_node;
        specs->type = signed_char_type_node;
      else if (specs->unsigned_p)
      else if (specs->unsigned_p)
        specs->type = unsigned_char_type_node;
        specs->type = unsigned_char_type_node;
      else
      else
        specs->type = char_type_node;
        specs->type = char_type_node;
      if (specs->complex_p)
      if (specs->complex_p)
        {
        {
          if (pedantic)
          if (pedantic)
            pedwarn ("ISO C does not support complex integer types");
            pedwarn ("ISO C does not support complex integer types");
          specs->type = build_complex_type (specs->type);
          specs->type = build_complex_type (specs->type);
        }
        }
      break;
      break;
    case cts_int:
    case cts_int:
      gcc_assert (!(specs->long_p && specs->short_p));
      gcc_assert (!(specs->long_p && specs->short_p));
      gcc_assert (!(specs->signed_p && specs->unsigned_p));
      gcc_assert (!(specs->signed_p && specs->unsigned_p));
      if (specs->long_long_p)
      if (specs->long_long_p)
        specs->type = (specs->unsigned_p
        specs->type = (specs->unsigned_p
                       ? long_long_unsigned_type_node
                       ? long_long_unsigned_type_node
                       : long_long_integer_type_node);
                       : long_long_integer_type_node);
      else if (specs->long_p)
      else if (specs->long_p)
        specs->type = (specs->unsigned_p
        specs->type = (specs->unsigned_p
                       ? long_unsigned_type_node
                       ? long_unsigned_type_node
                       : long_integer_type_node);
                       : long_integer_type_node);
      else if (specs->short_p)
      else if (specs->short_p)
        specs->type = (specs->unsigned_p
        specs->type = (specs->unsigned_p
                       ? short_unsigned_type_node
                       ? short_unsigned_type_node
                       : short_integer_type_node);
                       : short_integer_type_node);
      else
      else
        specs->type = (specs->unsigned_p
        specs->type = (specs->unsigned_p
                       ? unsigned_type_node
                       ? unsigned_type_node
                       : integer_type_node);
                       : integer_type_node);
      if (specs->complex_p)
      if (specs->complex_p)
        {
        {
          if (pedantic)
          if (pedantic)
            pedwarn ("ISO C does not support complex integer types");
            pedwarn ("ISO C does not support complex integer types");
          specs->type = build_complex_type (specs->type);
          specs->type = build_complex_type (specs->type);
        }
        }
      break;
      break;
    case cts_float:
    case cts_float:
      gcc_assert (!specs->long_p && !specs->short_p
      gcc_assert (!specs->long_p && !specs->short_p
                  && !specs->signed_p && !specs->unsigned_p);
                  && !specs->signed_p && !specs->unsigned_p);
      specs->type = (specs->complex_p
      specs->type = (specs->complex_p
                     ? complex_float_type_node
                     ? complex_float_type_node
                     : float_type_node);
                     : float_type_node);
      break;
      break;
    case cts_double:
    case cts_double:
      gcc_assert (!specs->long_long_p && !specs->short_p
      gcc_assert (!specs->long_long_p && !specs->short_p
                  && !specs->signed_p && !specs->unsigned_p);
                  && !specs->signed_p && !specs->unsigned_p);
      if (specs->long_p)
      if (specs->long_p)
        {
        {
          specs->type = (specs->complex_p
          specs->type = (specs->complex_p
                         ? complex_long_double_type_node
                         ? complex_long_double_type_node
                         : long_double_type_node);
                         : long_double_type_node);
        }
        }
      else
      else
        {
        {
          specs->type = (specs->complex_p
          specs->type = (specs->complex_p
                         ? complex_double_type_node
                         ? complex_double_type_node
                         : double_type_node);
                         : double_type_node);
        }
        }
      break;
      break;
    case cts_dfloat32:
    case cts_dfloat32:
    case cts_dfloat64:
    case cts_dfloat64:
    case cts_dfloat128:
    case cts_dfloat128:
      gcc_assert (!specs->long_p && !specs->long_long_p && !specs->short_p
      gcc_assert (!specs->long_p && !specs->long_long_p && !specs->short_p
                  && !specs->signed_p && !specs->unsigned_p && !specs->complex_p);
                  && !specs->signed_p && !specs->unsigned_p && !specs->complex_p);
      if (specs->typespec_word == cts_dfloat32)
      if (specs->typespec_word == cts_dfloat32)
        specs->type = dfloat32_type_node;
        specs->type = dfloat32_type_node;
      else if (specs->typespec_word == cts_dfloat64)
      else if (specs->typespec_word == cts_dfloat64)
        specs->type = dfloat64_type_node;
        specs->type = dfloat64_type_node;
      else
      else
        specs->type = dfloat128_type_node;
        specs->type = dfloat128_type_node;
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  return specs;
  return specs;
}
}
 
 
/* Synthesize a function which calls all the global ctors or global
/* Synthesize a function which calls all the global ctors or global
   dtors in this file.  This is only used for targets which do not
   dtors in this file.  This is only used for targets which do not
   support .ctors/.dtors sections.  FIXME: Migrate into cgraph.  */
   support .ctors/.dtors sections.  FIXME: Migrate into cgraph.  */
static void
static void
build_cdtor (int method_type, tree cdtors)
build_cdtor (int method_type, tree cdtors)
{
{
  tree body = 0;
  tree body = 0;
 
 
  if (!cdtors)
  if (!cdtors)
    return;
    return;
 
 
  for (; cdtors; cdtors = TREE_CHAIN (cdtors))
  for (; cdtors; cdtors = TREE_CHAIN (cdtors))
    append_to_statement_list (build_function_call (TREE_VALUE (cdtors), 0),
    append_to_statement_list (build_function_call (TREE_VALUE (cdtors), 0),
                              &body);
                              &body);
 
 
  cgraph_build_static_cdtor (method_type, body, DEFAULT_INIT_PRIORITY);
  cgraph_build_static_cdtor (method_type, body, DEFAULT_INIT_PRIORITY);
}
}
 
 
/* A subroutine of c_write_global_declarations.  Perform final processing
/* A subroutine of c_write_global_declarations.  Perform final processing
   on one file scope's declarations (or the external scope's declarations),
   on one file scope's declarations (or the external scope's declarations),
   GLOBALS.  */
   GLOBALS.  */
 
 
static void
static void
c_write_global_declarations_1 (tree globals)
c_write_global_declarations_1 (tree globals)
{
{
  tree decl;
  tree decl;
  bool reconsider;
  bool reconsider;
 
 
  /* Process the decls in the order they were written.  */
  /* Process the decls in the order they were written.  */
  for (decl = globals; decl; decl = TREE_CHAIN (decl))
  for (decl = globals; decl; decl = TREE_CHAIN (decl))
    {
    {
      /* Check for used but undefined static functions using the C
      /* Check for used but undefined static functions using the C
         standard's definition of "used", and set TREE_NO_WARNING so
         standard's definition of "used", and set TREE_NO_WARNING so
         that check_global_declarations doesn't repeat the check.  */
         that check_global_declarations doesn't repeat the check.  */
      if (TREE_CODE (decl) == FUNCTION_DECL
      if (TREE_CODE (decl) == FUNCTION_DECL
          && DECL_INITIAL (decl) == 0
          && DECL_INITIAL (decl) == 0
          && DECL_EXTERNAL (decl)
          && DECL_EXTERNAL (decl)
          && !TREE_PUBLIC (decl)
          && !TREE_PUBLIC (decl)
          && C_DECL_USED (decl))
          && C_DECL_USED (decl))
        {
        {
          pedwarn ("%q+F used but never defined", decl);
          pedwarn ("%q+F used but never defined", decl);
          TREE_NO_WARNING (decl) = 1;
          TREE_NO_WARNING (decl) = 1;
        }
        }
 
 
      wrapup_global_declaration_1 (decl);
      wrapup_global_declaration_1 (decl);
    }
    }
 
 
  do
  do
    {
    {
      reconsider = false;
      reconsider = false;
      for (decl = globals; decl; decl = TREE_CHAIN (decl))
      for (decl = globals; decl; decl = TREE_CHAIN (decl))
        reconsider |= wrapup_global_declaration_2 (decl);
        reconsider |= wrapup_global_declaration_2 (decl);
    }
    }
  while (reconsider);
  while (reconsider);
 
 
  for (decl = globals; decl; decl = TREE_CHAIN (decl))
  for (decl = globals; decl; decl = TREE_CHAIN (decl))
    check_global_declaration_1 (decl);
    check_global_declaration_1 (decl);
}
}
 
 
/* A subroutine of c_write_global_declarations Emit debug information for each
/* A subroutine of c_write_global_declarations Emit debug information for each
   of the declarations in GLOBALS.  */
   of the declarations in GLOBALS.  */
 
 
static void
static void
c_write_global_declarations_2 (tree globals)
c_write_global_declarations_2 (tree globals)
{
{
  tree decl;
  tree decl;
 
 
  for (decl = globals; decl ; decl = TREE_CHAIN (decl))
  for (decl = globals; decl ; decl = TREE_CHAIN (decl))
    debug_hooks->global_decl (decl);
    debug_hooks->global_decl (decl);
}
}
 
 
/* Preserve the external declarations scope across a garbage collect.  */
/* Preserve the external declarations scope across a garbage collect.  */
static GTY(()) tree ext_block;
static GTY(()) tree ext_block;
 
 
void
void
c_write_global_declarations (void)
c_write_global_declarations (void)
{
{
  tree t;
  tree t;
 
 
  /* We don't want to do this if generating a PCH.  */
  /* We don't want to do this if generating a PCH.  */
  if (pch_file)
  if (pch_file)
    return;
    return;
 
 
  /* Don't waste time on further processing if -fsyntax-only or we've
  /* Don't waste time on further processing if -fsyntax-only or we've
     encountered errors.  */
     encountered errors.  */
  if (flag_syntax_only || errorcount || sorrycount || cpp_errors (parse_in))
  if (flag_syntax_only || errorcount || sorrycount || cpp_errors (parse_in))
    return;
    return;
 
 
  /* Close the external scope.  */
  /* Close the external scope.  */
  ext_block = pop_scope ();
  ext_block = pop_scope ();
  external_scope = 0;
  external_scope = 0;
  gcc_assert (!current_scope);
  gcc_assert (!current_scope);
 
 
  if (ext_block)
  if (ext_block)
    {
    {
      tree tmp = BLOCK_VARS (ext_block);
      tree tmp = BLOCK_VARS (ext_block);
      int flags;
      int flags;
      FILE * stream = dump_begin (TDI_tu, &flags);
      FILE * stream = dump_begin (TDI_tu, &flags);
      if (stream && tmp)
      if (stream && tmp)
        {
        {
          dump_node (tmp, flags & ~TDF_SLIM, stream);
          dump_node (tmp, flags & ~TDF_SLIM, stream);
          dump_end (TDI_tu, stream);
          dump_end (TDI_tu, stream);
        }
        }
    }
    }
 
 
  /* Process all file scopes in this compilation, and the external_scope,
  /* Process all file scopes in this compilation, and the external_scope,
     through wrapup_global_declarations and check_global_declarations.  */
     through wrapup_global_declarations and check_global_declarations.  */
  for (t = all_translation_units; t; t = TREE_CHAIN (t))
  for (t = all_translation_units; t; t = TREE_CHAIN (t))
    c_write_global_declarations_1 (BLOCK_VARS (DECL_INITIAL (t)));
    c_write_global_declarations_1 (BLOCK_VARS (DECL_INITIAL (t)));
  c_write_global_declarations_1 (BLOCK_VARS (ext_block));
  c_write_global_declarations_1 (BLOCK_VARS (ext_block));
 
 
  /* Generate functions to call static constructors and destructors
  /* Generate functions to call static constructors and destructors
     for targets that do not support .ctors/.dtors sections.  These
     for targets that do not support .ctors/.dtors sections.  These
     functions have magic names which are detected by collect2.  */
     functions have magic names which are detected by collect2.  */
  build_cdtor ('I', static_ctors); static_ctors = 0;
  build_cdtor ('I', static_ctors); static_ctors = 0;
  build_cdtor ('D', static_dtors); static_dtors = 0;
  build_cdtor ('D', static_dtors); static_dtors = 0;
 
 
  /* We're done parsing; proceed to optimize and emit assembly.
  /* We're done parsing; proceed to optimize and emit assembly.
     FIXME: shouldn't be the front end's responsibility to call this.  */
     FIXME: shouldn't be the front end's responsibility to call this.  */
  cgraph_optimize ();
  cgraph_optimize ();
 
 
  /* After cgraph has had a chance to emit everything that's going to
  /* After cgraph has had a chance to emit everything that's going to
     be emitted, output debug information for globals.  */
     be emitted, output debug information for globals.  */
  if (errorcount == 0 && sorrycount == 0)
  if (errorcount == 0 && sorrycount == 0)
    {
    {
      timevar_push (TV_SYMOUT);
      timevar_push (TV_SYMOUT);
      for (t = all_translation_units; t; t = TREE_CHAIN (t))
      for (t = all_translation_units; t; t = TREE_CHAIN (t))
        c_write_global_declarations_2 (BLOCK_VARS (DECL_INITIAL (t)));
        c_write_global_declarations_2 (BLOCK_VARS (DECL_INITIAL (t)));
      c_write_global_declarations_2 (BLOCK_VARS (ext_block));
      c_write_global_declarations_2 (BLOCK_VARS (ext_block));
      timevar_pop (TV_SYMOUT);
      timevar_pop (TV_SYMOUT);
    }
    }
 
 
  ext_block = NULL;
  ext_block = NULL;
}
}
 
 
#include "gt-c-decl.h"
#include "gt-c-decl.h"
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.