OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [c-typeck.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Build expressions with type checking for C compiler.
/* Build expressions with type checking for C compiler.
   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
   Free Software Foundation, Inc.
   Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
 
 
/* This file is part of the C front end.
/* This file is part of the C front end.
   It contains routines to build C expressions given their operands,
   It contains routines to build C expressions given their operands,
   including computing the types of the result, C-specific error checks,
   including computing the types of the result, C-specific error checks,
   and some optimization.  */
   and some optimization.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "tree.h"
#include "tree.h"
#include "langhooks.h"
#include "langhooks.h"
#include "c-tree.h"
#include "c-tree.h"
#include "tm_p.h"
#include "tm_p.h"
#include "flags.h"
#include "flags.h"
#include "output.h"
#include "output.h"
#include "expr.h"
#include "expr.h"
#include "toplev.h"
#include "toplev.h"
#include "intl.h"
#include "intl.h"
#include "ggc.h"
#include "ggc.h"
#include "target.h"
#include "target.h"
#include "tree-iterator.h"
#include "tree-iterator.h"
#include "tree-gimple.h"
#include "tree-gimple.h"
#include "tree-flow.h"
#include "tree-flow.h"
 
 
/* Possible cases of implicit bad conversions.  Used to select
/* Possible cases of implicit bad conversions.  Used to select
   diagnostic messages in convert_for_assignment.  */
   diagnostic messages in convert_for_assignment.  */
enum impl_conv {
enum impl_conv {
  ic_argpass,
  ic_argpass,
  ic_argpass_nonproto,
  ic_argpass_nonproto,
  ic_assign,
  ic_assign,
  ic_init,
  ic_init,
  ic_return
  ic_return
};
};
 
 
/* The level of nesting inside "__alignof__".  */
/* The level of nesting inside "__alignof__".  */
int in_alignof;
int in_alignof;
 
 
/* The level of nesting inside "sizeof".  */
/* The level of nesting inside "sizeof".  */
int in_sizeof;
int in_sizeof;
 
 
/* The level of nesting inside "typeof".  */
/* The level of nesting inside "typeof".  */
int in_typeof;
int in_typeof;
 
 
struct c_label_context_se *label_context_stack_se;
struct c_label_context_se *label_context_stack_se;
struct c_label_context_vm *label_context_stack_vm;
struct c_label_context_vm *label_context_stack_vm;
 
 
/* Nonzero if we've already printed a "missing braces around initializer"
/* Nonzero if we've already printed a "missing braces around initializer"
   message within this initializer.  */
   message within this initializer.  */
static int missing_braces_mentioned;
static int missing_braces_mentioned;
 
 
static int require_constant_value;
static int require_constant_value;
static int require_constant_elements;
static int require_constant_elements;
 
 
static bool null_pointer_constant_p (tree);
static bool null_pointer_constant_p (tree);
static tree qualify_type (tree, tree);
static tree qualify_type (tree, tree);
static int tagged_types_tu_compatible_p (tree, tree);
static int tagged_types_tu_compatible_p (tree, tree);
static int comp_target_types (tree, tree);
static int comp_target_types (tree, tree);
static int function_types_compatible_p (tree, tree);
static int function_types_compatible_p (tree, tree);
static int type_lists_compatible_p (tree, tree);
static int type_lists_compatible_p (tree, tree);
static tree decl_constant_value_for_broken_optimization (tree);
static tree decl_constant_value_for_broken_optimization (tree);
static tree lookup_field (tree, tree);
static tree lookup_field (tree, tree);
static tree convert_arguments (tree, tree, tree, tree);
static tree convert_arguments (tree, tree, tree, tree);
static tree pointer_diff (tree, tree);
static tree pointer_diff (tree, tree);
static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
static tree convert_for_assignment (tree, tree, enum impl_conv, tree, tree,
                                    int);
                                    int);
static tree valid_compound_expr_initializer (tree, tree);
static tree valid_compound_expr_initializer (tree, tree);
static void push_string (const char *);
static void push_string (const char *);
static void push_member_name (tree);
static void push_member_name (tree);
static int spelling_length (void);
static int spelling_length (void);
static char *print_spelling (char *);
static char *print_spelling (char *);
static void warning_init (const char *);
static void warning_init (const char *);
static tree digest_init (tree, tree, bool, int);
static tree digest_init (tree, tree, bool, int);
static void output_init_element (tree, bool, tree, tree, int);
static void output_init_element (tree, bool, tree, tree, int);
static void output_pending_init_elements (int);
static void output_pending_init_elements (int);
static int set_designator (int);
static int set_designator (int);
static void push_range_stack (tree);
static void push_range_stack (tree);
static void add_pending_init (tree, tree);
static void add_pending_init (tree, tree);
static void set_nonincremental_init (void);
static void set_nonincremental_init (void);
static void set_nonincremental_init_from_string (tree);
static void set_nonincremental_init_from_string (tree);
static tree find_init_member (tree);
static tree find_init_member (tree);
static void readonly_error (tree, enum lvalue_use);
static void readonly_error (tree, enum lvalue_use);
static int lvalue_or_else (tree, enum lvalue_use);
static int lvalue_or_else (tree, enum lvalue_use);
static int lvalue_p (tree);
static int lvalue_p (tree);
static void record_maybe_used_decl (tree);
static void record_maybe_used_decl (tree);
static int comptypes_internal (tree, tree);
static int comptypes_internal (tree, tree);


/* Return true if EXP is a null pointer constant, false otherwise.  */
/* Return true if EXP is a null pointer constant, false otherwise.  */
 
 
static bool
static bool
null_pointer_constant_p (tree expr)
null_pointer_constant_p (tree expr)
{
{
  /* This should really operate on c_expr structures, but they aren't
  /* This should really operate on c_expr structures, but they aren't
     yet available everywhere required.  */
     yet available everywhere required.  */
  tree type = TREE_TYPE (expr);
  tree type = TREE_TYPE (expr);
  return (TREE_CODE (expr) == INTEGER_CST
  return (TREE_CODE (expr) == INTEGER_CST
          && !TREE_CONSTANT_OVERFLOW (expr)
          && !TREE_CONSTANT_OVERFLOW (expr)
          && integer_zerop (expr)
          && integer_zerop (expr)
          && (INTEGRAL_TYPE_P (type)
          && (INTEGRAL_TYPE_P (type)
              || (TREE_CODE (type) == POINTER_TYPE
              || (TREE_CODE (type) == POINTER_TYPE
                  && VOID_TYPE_P (TREE_TYPE (type))
                  && VOID_TYPE_P (TREE_TYPE (type))
                  && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
                  && TYPE_QUALS (TREE_TYPE (type)) == TYPE_UNQUALIFIED)));
}
}
/* This is a cache to hold if two types are compatible or not.  */
/* This is a cache to hold if two types are compatible or not.  */
 
 
struct tagged_tu_seen_cache {
struct tagged_tu_seen_cache {
  const struct tagged_tu_seen_cache * next;
  const struct tagged_tu_seen_cache * next;
  tree t1;
  tree t1;
  tree t2;
  tree t2;
  /* The return value of tagged_types_tu_compatible_p if we had seen
  /* The return value of tagged_types_tu_compatible_p if we had seen
     these two types already.  */
     these two types already.  */
  int val;
  int val;
};
};
 
 
static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
static const struct tagged_tu_seen_cache * tagged_tu_seen_base;
static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
static void free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *);
 
 
/* Do `exp = require_complete_type (exp);' to make sure exp
/* Do `exp = require_complete_type (exp);' to make sure exp
   does not have an incomplete type.  (That includes void types.)  */
   does not have an incomplete type.  (That includes void types.)  */
 
 
tree
tree
require_complete_type (tree value)
require_complete_type (tree value)
{
{
  tree type = TREE_TYPE (value);
  tree type = TREE_TYPE (value);
 
 
  if (value == error_mark_node || type == error_mark_node)
  if (value == error_mark_node || type == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  /* First, detect a valid value with a complete type.  */
  /* First, detect a valid value with a complete type.  */
  if (COMPLETE_TYPE_P (type))
  if (COMPLETE_TYPE_P (type))
    return value;
    return value;
 
 
  c_incomplete_type_error (value, type);
  c_incomplete_type_error (value, type);
  return error_mark_node;
  return error_mark_node;
}
}
 
 
/* Print an error message for invalid use of an incomplete type.
/* Print an error message for invalid use of an incomplete type.
   VALUE is the expression that was used (or 0 if that isn't known)
   VALUE is the expression that was used (or 0 if that isn't known)
   and TYPE is the type that was invalid.  */
   and TYPE is the type that was invalid.  */
 
 
void
void
c_incomplete_type_error (tree value, tree type)
c_incomplete_type_error (tree value, tree type)
{
{
  const char *type_code_string;
  const char *type_code_string;
 
 
  /* Avoid duplicate error message.  */
  /* Avoid duplicate error message.  */
  if (TREE_CODE (type) == ERROR_MARK)
  if (TREE_CODE (type) == ERROR_MARK)
    return;
    return;
 
 
  if (value != 0 && (TREE_CODE (value) == VAR_DECL
  if (value != 0 && (TREE_CODE (value) == VAR_DECL
                     || TREE_CODE (value) == PARM_DECL))
                     || TREE_CODE (value) == PARM_DECL))
    error ("%qD has an incomplete type", value);
    error ("%qD has an incomplete type", value);
  else
  else
    {
    {
    retry:
    retry:
      /* We must print an error message.  Be clever about what it says.  */
      /* We must print an error message.  Be clever about what it says.  */
 
 
      switch (TREE_CODE (type))
      switch (TREE_CODE (type))
        {
        {
        case RECORD_TYPE:
        case RECORD_TYPE:
          type_code_string = "struct";
          type_code_string = "struct";
          break;
          break;
 
 
        case UNION_TYPE:
        case UNION_TYPE:
          type_code_string = "union";
          type_code_string = "union";
          break;
          break;
 
 
        case ENUMERAL_TYPE:
        case ENUMERAL_TYPE:
          type_code_string = "enum";
          type_code_string = "enum";
          break;
          break;
 
 
        case VOID_TYPE:
        case VOID_TYPE:
          error ("invalid use of void expression");
          error ("invalid use of void expression");
          return;
          return;
 
 
        case ARRAY_TYPE:
        case ARRAY_TYPE:
          if (TYPE_DOMAIN (type))
          if (TYPE_DOMAIN (type))
            {
            {
              if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
              if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL)
                {
                {
                  error ("invalid use of flexible array member");
                  error ("invalid use of flexible array member");
                  return;
                  return;
                }
                }
              type = TREE_TYPE (type);
              type = TREE_TYPE (type);
              goto retry;
              goto retry;
            }
            }
          error ("invalid use of array with unspecified bounds");
          error ("invalid use of array with unspecified bounds");
          return;
          return;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
 
 
      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
      if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
        error ("invalid use of undefined type %<%s %E%>",
        error ("invalid use of undefined type %<%s %E%>",
               type_code_string, TYPE_NAME (type));
               type_code_string, TYPE_NAME (type));
      else
      else
        /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
        /* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL.  */
        error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
        error ("invalid use of incomplete typedef %qD", TYPE_NAME (type));
    }
    }
}
}
 
 
/* Given a type, apply default promotions wrt unnamed function
/* Given a type, apply default promotions wrt unnamed function
   arguments and return the new type.  */
   arguments and return the new type.  */
 
 
tree
tree
c_type_promotes_to (tree type)
c_type_promotes_to (tree type)
{
{
  if (TYPE_MAIN_VARIANT (type) == float_type_node)
  if (TYPE_MAIN_VARIANT (type) == float_type_node)
    return double_type_node;
    return double_type_node;
 
 
  if (c_promoting_integer_type_p (type))
  if (c_promoting_integer_type_p (type))
    {
    {
      /* Preserve unsignedness if not really getting any wider.  */
      /* Preserve unsignedness if not really getting any wider.  */
      if (TYPE_UNSIGNED (type)
      if (TYPE_UNSIGNED (type)
          && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
          && (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
        return unsigned_type_node;
        return unsigned_type_node;
      return integer_type_node;
      return integer_type_node;
    }
    }
 
 
  return type;
  return type;
}
}
 
 
/* Return a variant of TYPE which has all the type qualifiers of LIKE
/* Return a variant of TYPE which has all the type qualifiers of LIKE
   as well as those of TYPE.  */
   as well as those of TYPE.  */
 
 
static tree
static tree
qualify_type (tree type, tree like)
qualify_type (tree type, tree like)
{
{
  return c_build_qualified_type (type,
  return c_build_qualified_type (type,
                                 TYPE_QUALS (type) | TYPE_QUALS (like));
                                 TYPE_QUALS (type) | TYPE_QUALS (like));
}
}
 
 
/* Return true iff the given tree T is a variable length array.  */
/* Return true iff the given tree T is a variable length array.  */
 
 
bool
bool
c_vla_type_p (tree t)
c_vla_type_p (tree t)
{
{
  if (TREE_CODE (t) == ARRAY_TYPE
  if (TREE_CODE (t) == ARRAY_TYPE
      && C_TYPE_VARIABLE_SIZE (t))
      && C_TYPE_VARIABLE_SIZE (t))
    return true;
    return true;
  return false;
  return false;
}
}


/* Return the composite type of two compatible types.
/* Return the composite type of two compatible types.
 
 
   We assume that comptypes has already been done and returned
   We assume that comptypes has already been done and returned
   nonzero; if that isn't so, this may crash.  In particular, we
   nonzero; if that isn't so, this may crash.  In particular, we
   assume that qualifiers match.  */
   assume that qualifiers match.  */
 
 
tree
tree
composite_type (tree t1, tree t2)
composite_type (tree t1, tree t2)
{
{
  enum tree_code code1;
  enum tree_code code1;
  enum tree_code code2;
  enum tree_code code2;
  tree attributes;
  tree attributes;
 
 
  /* Save time if the two types are the same.  */
  /* Save time if the two types are the same.  */
 
 
  if (t1 == t2) return t1;
  if (t1 == t2) return t1;
 
 
  /* If one type is nonsense, use the other.  */
  /* If one type is nonsense, use the other.  */
  if (t1 == error_mark_node)
  if (t1 == error_mark_node)
    return t2;
    return t2;
  if (t2 == error_mark_node)
  if (t2 == error_mark_node)
    return t1;
    return t1;
 
 
  code1 = TREE_CODE (t1);
  code1 = TREE_CODE (t1);
  code2 = TREE_CODE (t2);
  code2 = TREE_CODE (t2);
 
 
  /* Merge the attributes.  */
  /* Merge the attributes.  */
  attributes = targetm.merge_type_attributes (t1, t2);
  attributes = targetm.merge_type_attributes (t1, t2);
 
 
  /* If one is an enumerated type and the other is the compatible
  /* If one is an enumerated type and the other is the compatible
     integer type, the composite type might be either of the two
     integer type, the composite type might be either of the two
     (DR#013 question 3).  For consistency, use the enumerated type as
     (DR#013 question 3).  For consistency, use the enumerated type as
     the composite type.  */
     the composite type.  */
 
 
  if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
  if (code1 == ENUMERAL_TYPE && code2 == INTEGER_TYPE)
    return t1;
    return t1;
  if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
  if (code2 == ENUMERAL_TYPE && code1 == INTEGER_TYPE)
    return t2;
    return t2;
 
 
  gcc_assert (code1 == code2);
  gcc_assert (code1 == code2);
 
 
  switch (code1)
  switch (code1)
    {
    {
    case POINTER_TYPE:
    case POINTER_TYPE:
      /* For two pointers, do this recursively on the target type.  */
      /* For two pointers, do this recursively on the target type.  */
      {
      {
        tree pointed_to_1 = TREE_TYPE (t1);
        tree pointed_to_1 = TREE_TYPE (t1);
        tree pointed_to_2 = TREE_TYPE (t2);
        tree pointed_to_2 = TREE_TYPE (t2);
        tree target = composite_type (pointed_to_1, pointed_to_2);
        tree target = composite_type (pointed_to_1, pointed_to_2);
        t1 = build_pointer_type (target);
        t1 = build_pointer_type (target);
        t1 = build_type_attribute_variant (t1, attributes);
        t1 = build_type_attribute_variant (t1, attributes);
        return qualify_type (t1, t2);
        return qualify_type (t1, t2);
      }
      }
 
 
    case ARRAY_TYPE:
    case ARRAY_TYPE:
      {
      {
        tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
        tree elt = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
        int quals;
        int quals;
        tree unqual_elt;
        tree unqual_elt;
        tree d1 = TYPE_DOMAIN (t1);
        tree d1 = TYPE_DOMAIN (t1);
        tree d2 = TYPE_DOMAIN (t2);
        tree d2 = TYPE_DOMAIN (t2);
        bool d1_variable, d2_variable;
        bool d1_variable, d2_variable;
        bool d1_zero, d2_zero;
        bool d1_zero, d2_zero;
 
 
        /* We should not have any type quals on arrays at all.  */
        /* We should not have any type quals on arrays at all.  */
        gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
        gcc_assert (!TYPE_QUALS (t1) && !TYPE_QUALS (t2));
 
 
        d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
        d1_zero = d1 == 0 || !TYPE_MAX_VALUE (d1);
        d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
        d2_zero = d2 == 0 || !TYPE_MAX_VALUE (d2);
 
 
        d1_variable = (!d1_zero
        d1_variable = (!d1_zero
                       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
                       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
                           || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
                           || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
        d2_variable = (!d2_zero
        d2_variable = (!d2_zero
                       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
                       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
                           || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
                           || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
        d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
        d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
        d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
        d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
 
 
        /* Save space: see if the result is identical to one of the args.  */
        /* Save space: see if the result is identical to one of the args.  */
        if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
        if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1)
            && (d2_variable || d2_zero || !d1_variable))
            && (d2_variable || d2_zero || !d1_variable))
          return build_type_attribute_variant (t1, attributes);
          return build_type_attribute_variant (t1, attributes);
        if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
        if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2)
            && (d1_variable || d1_zero || !d2_variable))
            && (d1_variable || d1_zero || !d2_variable))
          return build_type_attribute_variant (t2, attributes);
          return build_type_attribute_variant (t2, attributes);
 
 
        if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
        if (elt == TREE_TYPE (t1) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
          return build_type_attribute_variant (t1, attributes);
          return build_type_attribute_variant (t1, attributes);
        if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
        if (elt == TREE_TYPE (t2) && !TYPE_DOMAIN (t2) && !TYPE_DOMAIN (t1))
          return build_type_attribute_variant (t2, attributes);
          return build_type_attribute_variant (t2, attributes);
 
 
        /* Merge the element types, and have a size if either arg has
        /* Merge the element types, and have a size if either arg has
           one.  We may have qualifiers on the element types.  To set
           one.  We may have qualifiers on the element types.  To set
           up TYPE_MAIN_VARIANT correctly, we need to form the
           up TYPE_MAIN_VARIANT correctly, we need to form the
           composite of the unqualified types and add the qualifiers
           composite of the unqualified types and add the qualifiers
           back at the end.  */
           back at the end.  */
        quals = TYPE_QUALS (strip_array_types (elt));
        quals = TYPE_QUALS (strip_array_types (elt));
        unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
        unqual_elt = c_build_qualified_type (elt, TYPE_UNQUALIFIED);
        t1 = build_array_type (unqual_elt,
        t1 = build_array_type (unqual_elt,
                               TYPE_DOMAIN ((TYPE_DOMAIN (t1)
                               TYPE_DOMAIN ((TYPE_DOMAIN (t1)
                                             && (d2_variable
                                             && (d2_variable
                                                 || d2_zero
                                                 || d2_zero
                                                 || !d1_variable))
                                                 || !d1_variable))
                                            ? t1
                                            ? t1
                                            : t2));
                                            : t2));
        t1 = c_build_qualified_type (t1, quals);
        t1 = c_build_qualified_type (t1, quals);
        return build_type_attribute_variant (t1, attributes);
        return build_type_attribute_variant (t1, attributes);
      }
      }
 
 
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
    case RECORD_TYPE:
    case RECORD_TYPE:
    case UNION_TYPE:
    case UNION_TYPE:
      if (attributes != NULL)
      if (attributes != NULL)
        {
        {
          /* Try harder not to create a new aggregate type.  */
          /* Try harder not to create a new aggregate type.  */
          if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
          if (attribute_list_equal (TYPE_ATTRIBUTES (t1), attributes))
            return t1;
            return t1;
          if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
          if (attribute_list_equal (TYPE_ATTRIBUTES (t2), attributes))
            return t2;
            return t2;
        }
        }
      return build_type_attribute_variant (t1, attributes);
      return build_type_attribute_variant (t1, attributes);
 
 
    case FUNCTION_TYPE:
    case FUNCTION_TYPE:
      /* Function types: prefer the one that specified arg types.
      /* Function types: prefer the one that specified arg types.
         If both do, merge the arg types.  Also merge the return types.  */
         If both do, merge the arg types.  Also merge the return types.  */
      {
      {
        tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
        tree valtype = composite_type (TREE_TYPE (t1), TREE_TYPE (t2));
        tree p1 = TYPE_ARG_TYPES (t1);
        tree p1 = TYPE_ARG_TYPES (t1);
        tree p2 = TYPE_ARG_TYPES (t2);
        tree p2 = TYPE_ARG_TYPES (t2);
        int len;
        int len;
        tree newargs, n;
        tree newargs, n;
        int i;
        int i;
 
 
        /* Save space: see if the result is identical to one of the args.  */
        /* Save space: see if the result is identical to one of the args.  */
        if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
        if (valtype == TREE_TYPE (t1) && !TYPE_ARG_TYPES (t2))
          return build_type_attribute_variant (t1, attributes);
          return build_type_attribute_variant (t1, attributes);
        if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
        if (valtype == TREE_TYPE (t2) && !TYPE_ARG_TYPES (t1))
          return build_type_attribute_variant (t2, attributes);
          return build_type_attribute_variant (t2, attributes);
 
 
        /* Simple way if one arg fails to specify argument types.  */
        /* Simple way if one arg fails to specify argument types.  */
        if (TYPE_ARG_TYPES (t1) == 0)
        if (TYPE_ARG_TYPES (t1) == 0)
         {
         {
            t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
            t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
            t1 = build_type_attribute_variant (t1, attributes);
            t1 = build_type_attribute_variant (t1, attributes);
            return qualify_type (t1, t2);
            return qualify_type (t1, t2);
         }
         }
        if (TYPE_ARG_TYPES (t2) == 0)
        if (TYPE_ARG_TYPES (t2) == 0)
         {
         {
           t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
           t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
           t1 = build_type_attribute_variant (t1, attributes);
           t1 = build_type_attribute_variant (t1, attributes);
           return qualify_type (t1, t2);
           return qualify_type (t1, t2);
         }
         }
 
 
        /* If both args specify argument types, we must merge the two
        /* If both args specify argument types, we must merge the two
           lists, argument by argument.  */
           lists, argument by argument.  */
        /* Tell global_bindings_p to return false so that variable_size
        /* Tell global_bindings_p to return false so that variable_size
           doesn't die on VLAs in parameter types.  */
           doesn't die on VLAs in parameter types.  */
        c_override_global_bindings_to_false = true;
        c_override_global_bindings_to_false = true;
 
 
        len = list_length (p1);
        len = list_length (p1);
        newargs = 0;
        newargs = 0;
 
 
        for (i = 0; i < len; i++)
        for (i = 0; i < len; i++)
          newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
          newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
 
 
        n = newargs;
        n = newargs;
 
 
        for (; p1;
        for (; p1;
             p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
             p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
          {
          {
            /* A null type means arg type is not specified.
            /* A null type means arg type is not specified.
               Take whatever the other function type has.  */
               Take whatever the other function type has.  */
            if (TREE_VALUE (p1) == 0)
            if (TREE_VALUE (p1) == 0)
              {
              {
                TREE_VALUE (n) = TREE_VALUE (p2);
                TREE_VALUE (n) = TREE_VALUE (p2);
                goto parm_done;
                goto parm_done;
              }
              }
            if (TREE_VALUE (p2) == 0)
            if (TREE_VALUE (p2) == 0)
              {
              {
                TREE_VALUE (n) = TREE_VALUE (p1);
                TREE_VALUE (n) = TREE_VALUE (p1);
                goto parm_done;
                goto parm_done;
              }
              }
 
 
            /* Given  wait (union {union wait *u; int *i} *)
            /* Given  wait (union {union wait *u; int *i} *)
               and  wait (union wait *),
               and  wait (union wait *),
               prefer  union wait *  as type of parm.  */
               prefer  union wait *  as type of parm.  */
            if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
            if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
                && TREE_VALUE (p1) != TREE_VALUE (p2))
                && TREE_VALUE (p1) != TREE_VALUE (p2))
              {
              {
                tree memb;
                tree memb;
                tree mv2 = TREE_VALUE (p2);
                tree mv2 = TREE_VALUE (p2);
                if (mv2 && mv2 != error_mark_node
                if (mv2 && mv2 != error_mark_node
                    && TREE_CODE (mv2) != ARRAY_TYPE)
                    && TREE_CODE (mv2) != ARRAY_TYPE)
                  mv2 = TYPE_MAIN_VARIANT (mv2);
                  mv2 = TYPE_MAIN_VARIANT (mv2);
                for (memb = TYPE_FIELDS (TREE_VALUE (p1));
                for (memb = TYPE_FIELDS (TREE_VALUE (p1));
                     memb; memb = TREE_CHAIN (memb))
                     memb; memb = TREE_CHAIN (memb))
                  {
                  {
                    tree mv3 = TREE_TYPE (memb);
                    tree mv3 = TREE_TYPE (memb);
                    if (mv3 && mv3 != error_mark_node
                    if (mv3 && mv3 != error_mark_node
                        && TREE_CODE (mv3) != ARRAY_TYPE)
                        && TREE_CODE (mv3) != ARRAY_TYPE)
                      mv3 = TYPE_MAIN_VARIANT (mv3);
                      mv3 = TYPE_MAIN_VARIANT (mv3);
                    if (comptypes (mv3, mv2))
                    if (comptypes (mv3, mv2))
                      {
                      {
                        TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
                        TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
                                                         TREE_VALUE (p2));
                                                         TREE_VALUE (p2));
                        if (pedantic)
                        if (pedantic)
                          pedwarn ("function types not truly compatible in ISO C");
                          pedwarn ("function types not truly compatible in ISO C");
                        goto parm_done;
                        goto parm_done;
                      }
                      }
                  }
                  }
              }
              }
            if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
            if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
                && TREE_VALUE (p2) != TREE_VALUE (p1))
                && TREE_VALUE (p2) != TREE_VALUE (p1))
              {
              {
                tree memb;
                tree memb;
                tree mv1 = TREE_VALUE (p1);
                tree mv1 = TREE_VALUE (p1);
                if (mv1 && mv1 != error_mark_node
                if (mv1 && mv1 != error_mark_node
                    && TREE_CODE (mv1) != ARRAY_TYPE)
                    && TREE_CODE (mv1) != ARRAY_TYPE)
                  mv1 = TYPE_MAIN_VARIANT (mv1);
                  mv1 = TYPE_MAIN_VARIANT (mv1);
                for (memb = TYPE_FIELDS (TREE_VALUE (p2));
                for (memb = TYPE_FIELDS (TREE_VALUE (p2));
                     memb; memb = TREE_CHAIN (memb))
                     memb; memb = TREE_CHAIN (memb))
                  {
                  {
                    tree mv3 = TREE_TYPE (memb);
                    tree mv3 = TREE_TYPE (memb);
                    if (mv3 && mv3 != error_mark_node
                    if (mv3 && mv3 != error_mark_node
                        && TREE_CODE (mv3) != ARRAY_TYPE)
                        && TREE_CODE (mv3) != ARRAY_TYPE)
                      mv3 = TYPE_MAIN_VARIANT (mv3);
                      mv3 = TYPE_MAIN_VARIANT (mv3);
                    if (comptypes (mv3, mv1))
                    if (comptypes (mv3, mv1))
                      {
                      {
                        TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
                        TREE_VALUE (n) = composite_type (TREE_TYPE (memb),
                                                         TREE_VALUE (p1));
                                                         TREE_VALUE (p1));
                        if (pedantic)
                        if (pedantic)
                          pedwarn ("function types not truly compatible in ISO C");
                          pedwarn ("function types not truly compatible in ISO C");
                        goto parm_done;
                        goto parm_done;
                      }
                      }
                  }
                  }
              }
              }
            TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
            TREE_VALUE (n) = composite_type (TREE_VALUE (p1), TREE_VALUE (p2));
          parm_done: ;
          parm_done: ;
          }
          }
 
 
        c_override_global_bindings_to_false = false;
        c_override_global_bindings_to_false = false;
        t1 = build_function_type (valtype, newargs);
        t1 = build_function_type (valtype, newargs);
        t1 = qualify_type (t1, t2);
        t1 = qualify_type (t1, t2);
        /* ... falls through ...  */
        /* ... falls through ...  */
      }
      }
 
 
    default:
    default:
      return build_type_attribute_variant (t1, attributes);
      return build_type_attribute_variant (t1, attributes);
    }
    }
 
 
}
}
 
 
/* Return the type of a conditional expression between pointers to
/* Return the type of a conditional expression between pointers to
   possibly differently qualified versions of compatible types.
   possibly differently qualified versions of compatible types.
 
 
   We assume that comp_target_types has already been done and returned
   We assume that comp_target_types has already been done and returned
   nonzero; if that isn't so, this may crash.  */
   nonzero; if that isn't so, this may crash.  */
 
 
static tree
static tree
common_pointer_type (tree t1, tree t2)
common_pointer_type (tree t1, tree t2)
{
{
  tree attributes;
  tree attributes;
  tree pointed_to_1, mv1;
  tree pointed_to_1, mv1;
  tree pointed_to_2, mv2;
  tree pointed_to_2, mv2;
  tree target;
  tree target;
 
 
  /* Save time if the two types are the same.  */
  /* Save time if the two types are the same.  */
 
 
  if (t1 == t2) return t1;
  if (t1 == t2) return t1;
 
 
  /* If one type is nonsense, use the other.  */
  /* If one type is nonsense, use the other.  */
  if (t1 == error_mark_node)
  if (t1 == error_mark_node)
    return t2;
    return t2;
  if (t2 == error_mark_node)
  if (t2 == error_mark_node)
    return t1;
    return t1;
 
 
  gcc_assert (TREE_CODE (t1) == POINTER_TYPE
  gcc_assert (TREE_CODE (t1) == POINTER_TYPE
              && TREE_CODE (t2) == POINTER_TYPE);
              && TREE_CODE (t2) == POINTER_TYPE);
 
 
  /* Merge the attributes.  */
  /* Merge the attributes.  */
  attributes = targetm.merge_type_attributes (t1, t2);
  attributes = targetm.merge_type_attributes (t1, t2);
 
 
  /* Find the composite type of the target types, and combine the
  /* Find the composite type of the target types, and combine the
     qualifiers of the two types' targets.  Do not lose qualifiers on
     qualifiers of the two types' targets.  Do not lose qualifiers on
     array element types by taking the TYPE_MAIN_VARIANT.  */
     array element types by taking the TYPE_MAIN_VARIANT.  */
  mv1 = pointed_to_1 = TREE_TYPE (t1);
  mv1 = pointed_to_1 = TREE_TYPE (t1);
  mv2 = pointed_to_2 = TREE_TYPE (t2);
  mv2 = pointed_to_2 = TREE_TYPE (t2);
  if (TREE_CODE (mv1) != ARRAY_TYPE)
  if (TREE_CODE (mv1) != ARRAY_TYPE)
    mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
    mv1 = TYPE_MAIN_VARIANT (pointed_to_1);
  if (TREE_CODE (mv2) != ARRAY_TYPE)
  if (TREE_CODE (mv2) != ARRAY_TYPE)
    mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
    mv2 = TYPE_MAIN_VARIANT (pointed_to_2);
  target = composite_type (mv1, mv2);
  target = composite_type (mv1, mv2);
  t1 = build_pointer_type (c_build_qualified_type
  t1 = build_pointer_type (c_build_qualified_type
                           (target,
                           (target,
                            TYPE_QUALS (pointed_to_1) |
                            TYPE_QUALS (pointed_to_1) |
                            TYPE_QUALS (pointed_to_2)));
                            TYPE_QUALS (pointed_to_2)));
  return build_type_attribute_variant (t1, attributes);
  return build_type_attribute_variant (t1, attributes);
}
}
 
 
/* Return the common type for two arithmetic types under the usual
/* Return the common type for two arithmetic types under the usual
   arithmetic conversions.  The default conversions have already been
   arithmetic conversions.  The default conversions have already been
   applied, and enumerated types converted to their compatible integer
   applied, and enumerated types converted to their compatible integer
   types.  The resulting type is unqualified and has no attributes.
   types.  The resulting type is unqualified and has no attributes.
 
 
   This is the type for the result of most arithmetic operations
   This is the type for the result of most arithmetic operations
   if the operands have the given two types.  */
   if the operands have the given two types.  */
 
 
static tree
static tree
c_common_type (tree t1, tree t2)
c_common_type (tree t1, tree t2)
{
{
  enum tree_code code1;
  enum tree_code code1;
  enum tree_code code2;
  enum tree_code code2;
 
 
  /* If one type is nonsense, use the other.  */
  /* If one type is nonsense, use the other.  */
  if (t1 == error_mark_node)
  if (t1 == error_mark_node)
    return t2;
    return t2;
  if (t2 == error_mark_node)
  if (t2 == error_mark_node)
    return t1;
    return t1;
 
 
  if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
  if (TYPE_QUALS (t1) != TYPE_UNQUALIFIED)
    t1 = TYPE_MAIN_VARIANT (t1);
    t1 = TYPE_MAIN_VARIANT (t1);
 
 
  if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
  if (TYPE_QUALS (t2) != TYPE_UNQUALIFIED)
    t2 = TYPE_MAIN_VARIANT (t2);
    t2 = TYPE_MAIN_VARIANT (t2);
 
 
  if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
  if (TYPE_ATTRIBUTES (t1) != NULL_TREE)
    t1 = build_type_attribute_variant (t1, NULL_TREE);
    t1 = build_type_attribute_variant (t1, NULL_TREE);
 
 
  if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
  if (TYPE_ATTRIBUTES (t2) != NULL_TREE)
    t2 = build_type_attribute_variant (t2, NULL_TREE);
    t2 = build_type_attribute_variant (t2, NULL_TREE);
 
 
  /* Save time if the two types are the same.  */
  /* Save time if the two types are the same.  */
 
 
  if (t1 == t2) return t1;
  if (t1 == t2) return t1;
 
 
  code1 = TREE_CODE (t1);
  code1 = TREE_CODE (t1);
  code2 = TREE_CODE (t2);
  code2 = TREE_CODE (t2);
 
 
  gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
  gcc_assert (code1 == VECTOR_TYPE || code1 == COMPLEX_TYPE
              || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
              || code1 == REAL_TYPE || code1 == INTEGER_TYPE);
  gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
  gcc_assert (code2 == VECTOR_TYPE || code2 == COMPLEX_TYPE
              || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
              || code2 == REAL_TYPE || code2 == INTEGER_TYPE);
 
 
  /* When one operand is a decimal float type, the other operand cannot be
  /* When one operand is a decimal float type, the other operand cannot be
     a generic float type or a complex type.  We also disallow vector types
     a generic float type or a complex type.  We also disallow vector types
     here.  */
     here.  */
  if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
  if ((DECIMAL_FLOAT_TYPE_P (t1) || DECIMAL_FLOAT_TYPE_P (t2))
      && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
      && !(DECIMAL_FLOAT_TYPE_P (t1) && DECIMAL_FLOAT_TYPE_P (t2)))
    {
    {
      if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
      if (code1 == VECTOR_TYPE || code2 == VECTOR_TYPE)
        {
        {
          error ("can%'t mix operands of decimal float and vector types");
          error ("can%'t mix operands of decimal float and vector types");
          return error_mark_node;
          return error_mark_node;
        }
        }
      if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
      if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
        {
        {
          error ("can%'t mix operands of decimal float and complex types");
          error ("can%'t mix operands of decimal float and complex types");
          return error_mark_node;
          return error_mark_node;
        }
        }
      if (code1 == REAL_TYPE && code2 == REAL_TYPE)
      if (code1 == REAL_TYPE && code2 == REAL_TYPE)
        {
        {
          error ("can%'t mix operands of decimal float and other float types");
          error ("can%'t mix operands of decimal float and other float types");
          return error_mark_node;
          return error_mark_node;
        }
        }
    }
    }
 
 
  /* If one type is a vector type, return that type.  (How the usual
  /* If one type is a vector type, return that type.  (How the usual
     arithmetic conversions apply to the vector types extension is not
     arithmetic conversions apply to the vector types extension is not
     precisely specified.)  */
     precisely specified.)  */
  if (code1 == VECTOR_TYPE)
  if (code1 == VECTOR_TYPE)
    return t1;
    return t1;
 
 
  if (code2 == VECTOR_TYPE)
  if (code2 == VECTOR_TYPE)
    return t2;
    return t2;
 
 
  /* If one type is complex, form the common type of the non-complex
  /* If one type is complex, form the common type of the non-complex
     components, then make that complex.  Use T1 or T2 if it is the
     components, then make that complex.  Use T1 or T2 if it is the
     required type.  */
     required type.  */
  if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
  if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
    {
    {
      tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
      tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
      tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
      tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
      tree subtype = c_common_type (subtype1, subtype2);
      tree subtype = c_common_type (subtype1, subtype2);
 
 
      if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
      if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
        return t1;
        return t1;
      else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
      else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
        return t2;
        return t2;
      else
      else
        return build_complex_type (subtype);
        return build_complex_type (subtype);
    }
    }
 
 
  /* If only one is real, use it as the result.  */
  /* If only one is real, use it as the result.  */
 
 
  if (code1 == REAL_TYPE && code2 != REAL_TYPE)
  if (code1 == REAL_TYPE && code2 != REAL_TYPE)
    return t1;
    return t1;
 
 
  if (code2 == REAL_TYPE && code1 != REAL_TYPE)
  if (code2 == REAL_TYPE && code1 != REAL_TYPE)
    return t2;
    return t2;
 
 
  /* If both are real and either are decimal floating point types, use
  /* If both are real and either are decimal floating point types, use
     the decimal floating point type with the greater precision. */
     the decimal floating point type with the greater precision. */
 
 
  if (code1 == REAL_TYPE && code2 == REAL_TYPE)
  if (code1 == REAL_TYPE && code2 == REAL_TYPE)
    {
    {
      if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
      if (TYPE_MAIN_VARIANT (t1) == dfloat128_type_node
          || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
          || TYPE_MAIN_VARIANT (t2) == dfloat128_type_node)
        return dfloat128_type_node;
        return dfloat128_type_node;
      else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
      else if (TYPE_MAIN_VARIANT (t1) == dfloat64_type_node
               || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
               || TYPE_MAIN_VARIANT (t2) == dfloat64_type_node)
        return dfloat64_type_node;
        return dfloat64_type_node;
      else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
      else if (TYPE_MAIN_VARIANT (t1) == dfloat32_type_node
               || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
               || TYPE_MAIN_VARIANT (t2) == dfloat32_type_node)
        return dfloat32_type_node;
        return dfloat32_type_node;
    }
    }
 
 
  /* Both real or both integers; use the one with greater precision.  */
  /* Both real or both integers; use the one with greater precision.  */
 
 
  if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
  if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
    return t1;
    return t1;
  else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
  else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
    return t2;
    return t2;
 
 
  /* Same precision.  Prefer long longs to longs to ints when the
  /* Same precision.  Prefer long longs to longs to ints when the
     same precision, following the C99 rules on integer type rank
     same precision, following the C99 rules on integer type rank
     (which are equivalent to the C90 rules for C90 types).  */
     (which are equivalent to the C90 rules for C90 types).  */
 
 
  if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
  if (TYPE_MAIN_VARIANT (t1) == long_long_unsigned_type_node
      || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
      || TYPE_MAIN_VARIANT (t2) == long_long_unsigned_type_node)
    return long_long_unsigned_type_node;
    return long_long_unsigned_type_node;
 
 
  if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
  if (TYPE_MAIN_VARIANT (t1) == long_long_integer_type_node
      || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
      || TYPE_MAIN_VARIANT (t2) == long_long_integer_type_node)
    {
    {
      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
        return long_long_unsigned_type_node;
        return long_long_unsigned_type_node;
      else
      else
        return long_long_integer_type_node;
        return long_long_integer_type_node;
    }
    }
 
 
  if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
  if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
      || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
      || TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
    return long_unsigned_type_node;
    return long_unsigned_type_node;
 
 
  if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
  if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
      || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
      || TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
    {
    {
      /* But preserve unsignedness from the other type,
      /* But preserve unsignedness from the other type,
         since long cannot hold all the values of an unsigned int.  */
         since long cannot hold all the values of an unsigned int.  */
      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
      if (TYPE_UNSIGNED (t1) || TYPE_UNSIGNED (t2))
        return long_unsigned_type_node;
        return long_unsigned_type_node;
      else
      else
        return long_integer_type_node;
        return long_integer_type_node;
    }
    }
 
 
  /* Likewise, prefer long double to double even if same size.  */
  /* Likewise, prefer long double to double even if same size.  */
  if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
  if (TYPE_MAIN_VARIANT (t1) == long_double_type_node
      || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
      || TYPE_MAIN_VARIANT (t2) == long_double_type_node)
    return long_double_type_node;
    return long_double_type_node;
 
 
  /* Otherwise prefer the unsigned one.  */
  /* Otherwise prefer the unsigned one.  */
 
 
  if (TYPE_UNSIGNED (t1))
  if (TYPE_UNSIGNED (t1))
    return t1;
    return t1;
  else
  else
    return t2;
    return t2;
}
}


/* Wrapper around c_common_type that is used by c-common.c and other
/* Wrapper around c_common_type that is used by c-common.c and other
   front end optimizations that remove promotions.  ENUMERAL_TYPEs
   front end optimizations that remove promotions.  ENUMERAL_TYPEs
   are allowed here and are converted to their compatible integer types.
   are allowed here and are converted to their compatible integer types.
   BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
   BOOLEAN_TYPEs are allowed here and return either boolean_type_node or
   preferably a non-Boolean type as the common type.  */
   preferably a non-Boolean type as the common type.  */
tree
tree
common_type (tree t1, tree t2)
common_type (tree t1, tree t2)
{
{
  if (TREE_CODE (t1) == ENUMERAL_TYPE)
  if (TREE_CODE (t1) == ENUMERAL_TYPE)
    t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
    t1 = c_common_type_for_size (TYPE_PRECISION (t1), 1);
  if (TREE_CODE (t2) == ENUMERAL_TYPE)
  if (TREE_CODE (t2) == ENUMERAL_TYPE)
    t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
    t2 = c_common_type_for_size (TYPE_PRECISION (t2), 1);
 
 
  /* If both types are BOOLEAN_TYPE, then return boolean_type_node.  */
  /* If both types are BOOLEAN_TYPE, then return boolean_type_node.  */
  if (TREE_CODE (t1) == BOOLEAN_TYPE
  if (TREE_CODE (t1) == BOOLEAN_TYPE
      && TREE_CODE (t2) == BOOLEAN_TYPE)
      && TREE_CODE (t2) == BOOLEAN_TYPE)
    return boolean_type_node;
    return boolean_type_node;
 
 
  /* If either type is BOOLEAN_TYPE, then return the other.  */
  /* If either type is BOOLEAN_TYPE, then return the other.  */
  if (TREE_CODE (t1) == BOOLEAN_TYPE)
  if (TREE_CODE (t1) == BOOLEAN_TYPE)
    return t2;
    return t2;
  if (TREE_CODE (t2) == BOOLEAN_TYPE)
  if (TREE_CODE (t2) == BOOLEAN_TYPE)
    return t1;
    return t1;
 
 
  return c_common_type (t1, t2);
  return c_common_type (t1, t2);
}
}
 
 
/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
   or various other operations.  Return 2 if they are compatible
   or various other operations.  Return 2 if they are compatible
   but a warning may be needed if you use them together.  */
   but a warning may be needed if you use them together.  */
 
 
int
int
comptypes (tree type1, tree type2)
comptypes (tree type1, tree type2)
{
{
  const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
  const struct tagged_tu_seen_cache * tagged_tu_seen_base1 = tagged_tu_seen_base;
  int val;
  int val;
 
 
  val = comptypes_internal (type1, type2);
  val = comptypes_internal (type1, type2);
  free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
  free_all_tagged_tu_seen_up_to (tagged_tu_seen_base1);
 
 
  return val;
  return val;
}
}


/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
   or various other operations.  Return 2 if they are compatible
   or various other operations.  Return 2 if they are compatible
   but a warning may be needed if you use them together.  This
   but a warning may be needed if you use them together.  This
   differs from comptypes, in that we don't free the seen types.  */
   differs from comptypes, in that we don't free the seen types.  */
 
 
static int
static int
comptypes_internal (tree type1, tree type2)
comptypes_internal (tree type1, tree type2)
{
{
  tree t1 = type1;
  tree t1 = type1;
  tree t2 = type2;
  tree t2 = type2;
  int attrval, val;
  int attrval, val;
 
 
  /* Suppress errors caused by previously reported errors.  */
  /* Suppress errors caused by previously reported errors.  */
 
 
  if (t1 == t2 || !t1 || !t2
  if (t1 == t2 || !t1 || !t2
      || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
      || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
    return 1;
    return 1;
 
 
  /* If either type is the internal version of sizetype, return the
  /* If either type is the internal version of sizetype, return the
     language version.  */
     language version.  */
  if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
  if (TREE_CODE (t1) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t1)
      && TYPE_ORIG_SIZE_TYPE (t1))
      && TYPE_ORIG_SIZE_TYPE (t1))
    t1 = TYPE_ORIG_SIZE_TYPE (t1);
    t1 = TYPE_ORIG_SIZE_TYPE (t1);
 
 
  if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
  if (TREE_CODE (t2) == INTEGER_TYPE && TYPE_IS_SIZETYPE (t2)
      && TYPE_ORIG_SIZE_TYPE (t2))
      && TYPE_ORIG_SIZE_TYPE (t2))
    t2 = TYPE_ORIG_SIZE_TYPE (t2);
    t2 = TYPE_ORIG_SIZE_TYPE (t2);
 
 
 
 
  /* Enumerated types are compatible with integer types, but this is
  /* Enumerated types are compatible with integer types, but this is
     not transitive: two enumerated types in the same translation unit
     not transitive: two enumerated types in the same translation unit
     are compatible with each other only if they are the same type.  */
     are compatible with each other only if they are the same type.  */
 
 
  if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
  if (TREE_CODE (t1) == ENUMERAL_TYPE && TREE_CODE (t2) != ENUMERAL_TYPE)
    t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
    t1 = c_common_type_for_size (TYPE_PRECISION (t1), TYPE_UNSIGNED (t1));
  else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
  else if (TREE_CODE (t2) == ENUMERAL_TYPE && TREE_CODE (t1) != ENUMERAL_TYPE)
    t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
    t2 = c_common_type_for_size (TYPE_PRECISION (t2), TYPE_UNSIGNED (t2));
 
 
  if (t1 == t2)
  if (t1 == t2)
    return 1;
    return 1;
 
 
  /* Different classes of types can't be compatible.  */
  /* Different classes of types can't be compatible.  */
 
 
  if (TREE_CODE (t1) != TREE_CODE (t2))
  if (TREE_CODE (t1) != TREE_CODE (t2))
    return 0;
    return 0;
 
 
  /* Qualifiers must match. C99 6.7.3p9 */
  /* Qualifiers must match. C99 6.7.3p9 */
 
 
  if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
  if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
    return 0;
    return 0;
 
 
  /* Allow for two different type nodes which have essentially the same
  /* Allow for two different type nodes which have essentially the same
     definition.  Note that we already checked for equality of the type
     definition.  Note that we already checked for equality of the type
     qualifiers (just above).  */
     qualifiers (just above).  */
 
 
  if (TREE_CODE (t1) != ARRAY_TYPE
  if (TREE_CODE (t1) != ARRAY_TYPE
      && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
      && TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
    return 1;
    return 1;
 
 
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
  if (!(attrval = targetm.comp_type_attributes (t1, t2)))
  if (!(attrval = targetm.comp_type_attributes (t1, t2)))
     return 0;
     return 0;
 
 
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
  val = 0;
  val = 0;
 
 
  switch (TREE_CODE (t1))
  switch (TREE_CODE (t1))
    {
    {
    case POINTER_TYPE:
    case POINTER_TYPE:
      /* Do not remove mode or aliasing information.  */
      /* Do not remove mode or aliasing information.  */
      if (TYPE_MODE (t1) != TYPE_MODE (t2)
      if (TYPE_MODE (t1) != TYPE_MODE (t2)
          || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
          || TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
        break;
        break;
      val = (TREE_TYPE (t1) == TREE_TYPE (t2)
      val = (TREE_TYPE (t1) == TREE_TYPE (t2)
             ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
             ? 1 : comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2)));
      break;
      break;
 
 
    case FUNCTION_TYPE:
    case FUNCTION_TYPE:
      val = function_types_compatible_p (t1, t2);
      val = function_types_compatible_p (t1, t2);
      break;
      break;
 
 
    case ARRAY_TYPE:
    case ARRAY_TYPE:
      {
      {
        tree d1 = TYPE_DOMAIN (t1);
        tree d1 = TYPE_DOMAIN (t1);
        tree d2 = TYPE_DOMAIN (t2);
        tree d2 = TYPE_DOMAIN (t2);
        bool d1_variable, d2_variable;
        bool d1_variable, d2_variable;
        bool d1_zero, d2_zero;
        bool d1_zero, d2_zero;
        val = 1;
        val = 1;
 
 
        /* Target types must match incl. qualifiers.  */
        /* Target types must match incl. qualifiers.  */
        if (TREE_TYPE (t1) != TREE_TYPE (t2)
        if (TREE_TYPE (t1) != TREE_TYPE (t2)
            && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
            && 0 == (val = comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2))))
          return 0;
          return 0;
 
 
        /* Sizes must match unless one is missing or variable.  */
        /* Sizes must match unless one is missing or variable.  */
        if (d1 == 0 || d2 == 0 || d1 == d2)
        if (d1 == 0 || d2 == 0 || d1 == d2)
          break;
          break;
 
 
        d1_zero = !TYPE_MAX_VALUE (d1);
        d1_zero = !TYPE_MAX_VALUE (d1);
        d2_zero = !TYPE_MAX_VALUE (d2);
        d2_zero = !TYPE_MAX_VALUE (d2);
 
 
        d1_variable = (!d1_zero
        d1_variable = (!d1_zero
                       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
                       && (TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
                           || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
                           || TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST));
        d2_variable = (!d2_zero
        d2_variable = (!d2_zero
                       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
                       && (TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
                           || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
                           || TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST));
        d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
        d1_variable = d1_variable || (d1_zero && c_vla_type_p (t1));
        d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
        d2_variable = d2_variable || (d2_zero && c_vla_type_p (t2));
 
 
        if (d1_variable || d2_variable)
        if (d1_variable || d2_variable)
          break;
          break;
        if (d1_zero && d2_zero)
        if (d1_zero && d2_zero)
          break;
          break;
        if (d1_zero || d2_zero
        if (d1_zero || d2_zero
            || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
            || !tree_int_cst_equal (TYPE_MIN_VALUE (d1), TYPE_MIN_VALUE (d2))
            || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
            || !tree_int_cst_equal (TYPE_MAX_VALUE (d1), TYPE_MAX_VALUE (d2)))
          val = 0;
          val = 0;
 
 
        break;
        break;
      }
      }
 
 
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
    case RECORD_TYPE:
    case RECORD_TYPE:
    case UNION_TYPE:
    case UNION_TYPE:
      if (val != 1 && !same_translation_unit_p (t1, t2))
      if (val != 1 && !same_translation_unit_p (t1, t2))
        {
        {
          tree a1 = TYPE_ATTRIBUTES (t1);
          tree a1 = TYPE_ATTRIBUTES (t1);
          tree a2 = TYPE_ATTRIBUTES (t2);
          tree a2 = TYPE_ATTRIBUTES (t2);
 
 
          if (! attribute_list_contained (a1, a2)
          if (! attribute_list_contained (a1, a2)
              && ! attribute_list_contained (a2, a1))
              && ! attribute_list_contained (a2, a1))
            break;
            break;
 
 
          if (attrval != 2)
          if (attrval != 2)
            return tagged_types_tu_compatible_p (t1, t2);
            return tagged_types_tu_compatible_p (t1, t2);
          val = tagged_types_tu_compatible_p (t1, t2);
          val = tagged_types_tu_compatible_p (t1, t2);
        }
        }
      break;
      break;
 
 
    case VECTOR_TYPE:
    case VECTOR_TYPE:
      val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
      val = TYPE_VECTOR_SUBPARTS (t1) == TYPE_VECTOR_SUBPARTS (t2)
            && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
            && comptypes_internal (TREE_TYPE (t1), TREE_TYPE (t2));
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
  return attrval == 2 && val == 1 ? 2 : val;
  return attrval == 2 && val == 1 ? 2 : val;
}
}
 
 
/* Return 1 if TTL and TTR are pointers to types that are equivalent,
/* Return 1 if TTL and TTR are pointers to types that are equivalent,
   ignoring their qualifiers.  */
   ignoring their qualifiers.  */
 
 
static int
static int
comp_target_types (tree ttl, tree ttr)
comp_target_types (tree ttl, tree ttr)
{
{
  int val;
  int val;
  tree mvl, mvr;
  tree mvl, mvr;
 
 
  /* Do not lose qualifiers on element types of array types that are
  /* Do not lose qualifiers on element types of array types that are
     pointer targets by taking their TYPE_MAIN_VARIANT.  */
     pointer targets by taking their TYPE_MAIN_VARIANT.  */
  mvl = TREE_TYPE (ttl);
  mvl = TREE_TYPE (ttl);
  mvr = TREE_TYPE (ttr);
  mvr = TREE_TYPE (ttr);
  if (TREE_CODE (mvl) != ARRAY_TYPE)
  if (TREE_CODE (mvl) != ARRAY_TYPE)
    mvl = TYPE_MAIN_VARIANT (mvl);
    mvl = TYPE_MAIN_VARIANT (mvl);
  if (TREE_CODE (mvr) != ARRAY_TYPE)
  if (TREE_CODE (mvr) != ARRAY_TYPE)
    mvr = TYPE_MAIN_VARIANT (mvr);
    mvr = TYPE_MAIN_VARIANT (mvr);
  val = comptypes (mvl, mvr);
  val = comptypes (mvl, mvr);
 
 
  if (val == 2 && pedantic)
  if (val == 2 && pedantic)
    pedwarn ("types are not quite compatible");
    pedwarn ("types are not quite compatible");
  return val;
  return val;
}
}


/* Subroutines of `comptypes'.  */
/* Subroutines of `comptypes'.  */
 
 
/* Determine whether two trees derive from the same translation unit.
/* Determine whether two trees derive from the same translation unit.
   If the CONTEXT chain ends in a null, that tree's context is still
   If the CONTEXT chain ends in a null, that tree's context is still
   being parsed, so if two trees have context chains ending in null,
   being parsed, so if two trees have context chains ending in null,
   they're in the same translation unit.  */
   they're in the same translation unit.  */
int
int
same_translation_unit_p (tree t1, tree t2)
same_translation_unit_p (tree t1, tree t2)
{
{
  while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
  while (t1 && TREE_CODE (t1) != TRANSLATION_UNIT_DECL)
    switch (TREE_CODE_CLASS (TREE_CODE (t1)))
    switch (TREE_CODE_CLASS (TREE_CODE (t1)))
      {
      {
      case tcc_declaration:
      case tcc_declaration:
        t1 = DECL_CONTEXT (t1); break;
        t1 = DECL_CONTEXT (t1); break;
      case tcc_type:
      case tcc_type:
        t1 = TYPE_CONTEXT (t1); break;
        t1 = TYPE_CONTEXT (t1); break;
      case tcc_exceptional:
      case tcc_exceptional:
        t1 = BLOCK_SUPERCONTEXT (t1); break;  /* assume block */
        t1 = BLOCK_SUPERCONTEXT (t1); break;  /* assume block */
      default: gcc_unreachable ();
      default: gcc_unreachable ();
      }
      }
 
 
  while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
  while (t2 && TREE_CODE (t2) != TRANSLATION_UNIT_DECL)
    switch (TREE_CODE_CLASS (TREE_CODE (t2)))
    switch (TREE_CODE_CLASS (TREE_CODE (t2)))
      {
      {
      case tcc_declaration:
      case tcc_declaration:
        t2 = DECL_CONTEXT (t2); break;
        t2 = DECL_CONTEXT (t2); break;
      case tcc_type:
      case tcc_type:
        t2 = TYPE_CONTEXT (t2); break;
        t2 = TYPE_CONTEXT (t2); break;
      case tcc_exceptional:
      case tcc_exceptional:
        t2 = BLOCK_SUPERCONTEXT (t2); break;  /* assume block */
        t2 = BLOCK_SUPERCONTEXT (t2); break;  /* assume block */
      default: gcc_unreachable ();
      default: gcc_unreachable ();
      }
      }
 
 
  return t1 == t2;
  return t1 == t2;
}
}
 
 
/* Allocate the seen two types, assuming that they are compatible. */
/* Allocate the seen two types, assuming that they are compatible. */
 
 
static struct tagged_tu_seen_cache *
static struct tagged_tu_seen_cache *
alloc_tagged_tu_seen_cache (tree t1, tree t2)
alloc_tagged_tu_seen_cache (tree t1, tree t2)
{
{
  struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
  struct tagged_tu_seen_cache *tu = XNEW (struct tagged_tu_seen_cache);
  tu->next = tagged_tu_seen_base;
  tu->next = tagged_tu_seen_base;
  tu->t1 = t1;
  tu->t1 = t1;
  tu->t2 = t2;
  tu->t2 = t2;
 
 
  tagged_tu_seen_base = tu;
  tagged_tu_seen_base = tu;
 
 
  /* The C standard says that two structures in different translation
  /* The C standard says that two structures in different translation
     units are compatible with each other only if the types of their
     units are compatible with each other only if the types of their
     fields are compatible (among other things).  We assume that they
     fields are compatible (among other things).  We assume that they
     are compatible until proven otherwise when building the cache.
     are compatible until proven otherwise when building the cache.
     An example where this can occur is:
     An example where this can occur is:
     struct a
     struct a
     {
     {
       struct a *next;
       struct a *next;
     };
     };
     If we are comparing this against a similar struct in another TU,
     If we are comparing this against a similar struct in another TU,
     and did not assume they were compatible, we end up with an infinite
     and did not assume they were compatible, we end up with an infinite
     loop.  */
     loop.  */
  tu->val = 1;
  tu->val = 1;
  return tu;
  return tu;
}
}
 
 
/* Free the seen types until we get to TU_TIL. */
/* Free the seen types until we get to TU_TIL. */
 
 
static void
static void
free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
free_all_tagged_tu_seen_up_to (const struct tagged_tu_seen_cache *tu_til)
{
{
  const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
  const struct tagged_tu_seen_cache *tu = tagged_tu_seen_base;
  while (tu != tu_til)
  while (tu != tu_til)
    {
    {
      struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
      struct tagged_tu_seen_cache *tu1 = (struct tagged_tu_seen_cache*)tu;
      tu = tu1->next;
      tu = tu1->next;
      free (tu1);
      free (tu1);
    }
    }
  tagged_tu_seen_base = tu_til;
  tagged_tu_seen_base = tu_til;
}
}
 
 
/* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
/* Return 1 if two 'struct', 'union', or 'enum' types T1 and T2 are
   compatible.  If the two types are not the same (which has been
   compatible.  If the two types are not the same (which has been
   checked earlier), this can only happen when multiple translation
   checked earlier), this can only happen when multiple translation
   units are being compiled.  See C99 6.2.7 paragraph 1 for the exact
   units are being compiled.  See C99 6.2.7 paragraph 1 for the exact
   rules.  */
   rules.  */
 
 
static int
static int
tagged_types_tu_compatible_p (tree t1, tree t2)
tagged_types_tu_compatible_p (tree t1, tree t2)
{
{
  tree s1, s2;
  tree s1, s2;
  bool needs_warning = false;
  bool needs_warning = false;
 
 
  /* We have to verify that the tags of the types are the same.  This
  /* We have to verify that the tags of the types are the same.  This
     is harder than it looks because this may be a typedef, so we have
     is harder than it looks because this may be a typedef, so we have
     to go look at the original type.  It may even be a typedef of a
     to go look at the original type.  It may even be a typedef of a
     typedef...
     typedef...
     In the case of compiler-created builtin structs the TYPE_DECL
     In the case of compiler-created builtin structs the TYPE_DECL
     may be a dummy, with no DECL_ORIGINAL_TYPE.  Don't fault.  */
     may be a dummy, with no DECL_ORIGINAL_TYPE.  Don't fault.  */
  while (TYPE_NAME (t1)
  while (TYPE_NAME (t1)
         && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
         && TREE_CODE (TYPE_NAME (t1)) == TYPE_DECL
         && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
         && DECL_ORIGINAL_TYPE (TYPE_NAME (t1)))
    t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
    t1 = DECL_ORIGINAL_TYPE (TYPE_NAME (t1));
 
 
  while (TYPE_NAME (t2)
  while (TYPE_NAME (t2)
         && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
         && TREE_CODE (TYPE_NAME (t2)) == TYPE_DECL
         && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
         && DECL_ORIGINAL_TYPE (TYPE_NAME (t2)))
    t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
    t2 = DECL_ORIGINAL_TYPE (TYPE_NAME (t2));
 
 
  /* C90 didn't have the requirement that the two tags be the same.  */
  /* C90 didn't have the requirement that the two tags be the same.  */
  if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
  if (flag_isoc99 && TYPE_NAME (t1) != TYPE_NAME (t2))
    return 0;
    return 0;
 
 
  /* C90 didn't say what happened if one or both of the types were
  /* C90 didn't say what happened if one or both of the types were
     incomplete; we choose to follow C99 rules here, which is that they
     incomplete; we choose to follow C99 rules here, which is that they
     are compatible.  */
     are compatible.  */
  if (TYPE_SIZE (t1) == NULL
  if (TYPE_SIZE (t1) == NULL
      || TYPE_SIZE (t2) == NULL)
      || TYPE_SIZE (t2) == NULL)
    return 1;
    return 1;
 
 
  {
  {
    const struct tagged_tu_seen_cache * tts_i;
    const struct tagged_tu_seen_cache * tts_i;
    for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
    for (tts_i = tagged_tu_seen_base; tts_i != NULL; tts_i = tts_i->next)
      if (tts_i->t1 == t1 && tts_i->t2 == t2)
      if (tts_i->t1 == t1 && tts_i->t2 == t2)
        return tts_i->val;
        return tts_i->val;
  }
  }
 
 
  switch (TREE_CODE (t1))
  switch (TREE_CODE (t1))
    {
    {
    case ENUMERAL_TYPE:
    case ENUMERAL_TYPE:
      {
      {
        struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
        struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
        /* Speed up the case where the type values are in the same order.  */
        /* Speed up the case where the type values are in the same order.  */
        tree tv1 = TYPE_VALUES (t1);
        tree tv1 = TYPE_VALUES (t1);
        tree tv2 = TYPE_VALUES (t2);
        tree tv2 = TYPE_VALUES (t2);
 
 
        if (tv1 == tv2)
        if (tv1 == tv2)
          {
          {
            return 1;
            return 1;
          }
          }
 
 
        for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
        for (;tv1 && tv2; tv1 = TREE_CHAIN (tv1), tv2 = TREE_CHAIN (tv2))
          {
          {
            if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
            if (TREE_PURPOSE (tv1) != TREE_PURPOSE (tv2))
              break;
              break;
            if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
            if (simple_cst_equal (TREE_VALUE (tv1), TREE_VALUE (tv2)) != 1)
              {
              {
                tu->val = 0;
                tu->val = 0;
                return 0;
                return 0;
              }
              }
          }
          }
 
 
        if (tv1 == NULL_TREE && tv2 == NULL_TREE)
        if (tv1 == NULL_TREE && tv2 == NULL_TREE)
          {
          {
            return 1;
            return 1;
          }
          }
        if (tv1 == NULL_TREE || tv2 == NULL_TREE)
        if (tv1 == NULL_TREE || tv2 == NULL_TREE)
          {
          {
            tu->val = 0;
            tu->val = 0;
            return 0;
            return 0;
          }
          }
 
 
        if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
        if (list_length (TYPE_VALUES (t1)) != list_length (TYPE_VALUES (t2)))
          {
          {
            tu->val = 0;
            tu->val = 0;
            return 0;
            return 0;
          }
          }
 
 
        for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
        for (s1 = TYPE_VALUES (t1); s1; s1 = TREE_CHAIN (s1))
          {
          {
            s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
            s2 = purpose_member (TREE_PURPOSE (s1), TYPE_VALUES (t2));
            if (s2 == NULL
            if (s2 == NULL
                || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
                || simple_cst_equal (TREE_VALUE (s1), TREE_VALUE (s2)) != 1)
              {
              {
                tu->val = 0;
                tu->val = 0;
                return 0;
                return 0;
              }
              }
          }
          }
        return 1;
        return 1;
      }
      }
 
 
    case UNION_TYPE:
    case UNION_TYPE:
      {
      {
        struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
        struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
        if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
        if (list_length (TYPE_FIELDS (t1)) != list_length (TYPE_FIELDS (t2)))
          {
          {
            tu->val = 0;
            tu->val = 0;
            return 0;
            return 0;
          }
          }
 
 
        /*  Speed up the common case where the fields are in the same order. */
        /*  Speed up the common case where the fields are in the same order. */
        for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
        for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2); s1 && s2;
             s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
             s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
          {
          {
            int result;
            int result;
 
 
 
 
            if (DECL_NAME (s1) == NULL
            if (DECL_NAME (s1) == NULL
                || DECL_NAME (s1) != DECL_NAME (s2))
                || DECL_NAME (s1) != DECL_NAME (s2))
              break;
              break;
            result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
            result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
            if (result == 0)
            if (result == 0)
              {
              {
                tu->val = 0;
                tu->val = 0;
                return 0;
                return 0;
              }
              }
            if (result == 2)
            if (result == 2)
              needs_warning = true;
              needs_warning = true;
 
 
            if (TREE_CODE (s1) == FIELD_DECL
            if (TREE_CODE (s1) == FIELD_DECL
                && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
                && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
                                     DECL_FIELD_BIT_OFFSET (s2)) != 1)
                                     DECL_FIELD_BIT_OFFSET (s2)) != 1)
              {
              {
                tu->val = 0;
                tu->val = 0;
                return 0;
                return 0;
              }
              }
          }
          }
        if (!s1 && !s2)
        if (!s1 && !s2)
          {
          {
            tu->val = needs_warning ? 2 : 1;
            tu->val = needs_warning ? 2 : 1;
            return tu->val;
            return tu->val;
          }
          }
 
 
        for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
        for (s1 = TYPE_FIELDS (t1); s1; s1 = TREE_CHAIN (s1))
          {
          {
            bool ok = false;
            bool ok = false;
 
 
            if (DECL_NAME (s1) != NULL)
            if (DECL_NAME (s1) != NULL)
              for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
              for (s2 = TYPE_FIELDS (t2); s2; s2 = TREE_CHAIN (s2))
                if (DECL_NAME (s1) == DECL_NAME (s2))
                if (DECL_NAME (s1) == DECL_NAME (s2))
                  {
                  {
                    int result;
                    int result;
                    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
                    result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
                    if (result == 0)
                    if (result == 0)
                      {
                      {
                        tu->val = 0;
                        tu->val = 0;
                        return 0;
                        return 0;
                      }
                      }
                    if (result == 2)
                    if (result == 2)
                      needs_warning = true;
                      needs_warning = true;
 
 
                    if (TREE_CODE (s1) == FIELD_DECL
                    if (TREE_CODE (s1) == FIELD_DECL
                        && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
                        && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
                                             DECL_FIELD_BIT_OFFSET (s2)) != 1)
                                             DECL_FIELD_BIT_OFFSET (s2)) != 1)
                      break;
                      break;
 
 
                    ok = true;
                    ok = true;
                    break;
                    break;
                  }
                  }
            if (!ok)
            if (!ok)
              {
              {
                tu->val = 0;
                tu->val = 0;
                return 0;
                return 0;
              }
              }
          }
          }
        tu->val = needs_warning ? 2 : 10;
        tu->val = needs_warning ? 2 : 10;
        return tu->val;
        return tu->val;
      }
      }
 
 
    case RECORD_TYPE:
    case RECORD_TYPE:
      {
      {
        struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
        struct tagged_tu_seen_cache *tu = alloc_tagged_tu_seen_cache (t1, t2);
 
 
        for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
        for (s1 = TYPE_FIELDS (t1), s2 = TYPE_FIELDS (t2);
             s1 && s2;
             s1 && s2;
             s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
             s1 = TREE_CHAIN (s1), s2 = TREE_CHAIN (s2))
          {
          {
            int result;
            int result;
            if (TREE_CODE (s1) != TREE_CODE (s2)
            if (TREE_CODE (s1) != TREE_CODE (s2)
                || DECL_NAME (s1) != DECL_NAME (s2))
                || DECL_NAME (s1) != DECL_NAME (s2))
              break;
              break;
            result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
            result = comptypes_internal (TREE_TYPE (s1), TREE_TYPE (s2));
            if (result == 0)
            if (result == 0)
              break;
              break;
            if (result == 2)
            if (result == 2)
              needs_warning = true;
              needs_warning = true;
 
 
            if (TREE_CODE (s1) == FIELD_DECL
            if (TREE_CODE (s1) == FIELD_DECL
                && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
                && simple_cst_equal (DECL_FIELD_BIT_OFFSET (s1),
                                     DECL_FIELD_BIT_OFFSET (s2)) != 1)
                                     DECL_FIELD_BIT_OFFSET (s2)) != 1)
              break;
              break;
          }
          }
        if (s1 && s2)
        if (s1 && s2)
          tu->val = 0;
          tu->val = 0;
        else
        else
          tu->val = needs_warning ? 2 : 1;
          tu->val = needs_warning ? 2 : 1;
        return tu->val;
        return tu->val;
      }
      }
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Return 1 if two function types F1 and F2 are compatible.
/* Return 1 if two function types F1 and F2 are compatible.
   If either type specifies no argument types,
   If either type specifies no argument types,
   the other must specify a fixed number of self-promoting arg types.
   the other must specify a fixed number of self-promoting arg types.
   Otherwise, if one type specifies only the number of arguments,
   Otherwise, if one type specifies only the number of arguments,
   the other must specify that number of self-promoting arg types.
   the other must specify that number of self-promoting arg types.
   Otherwise, the argument types must match.  */
   Otherwise, the argument types must match.  */
 
 
static int
static int
function_types_compatible_p (tree f1, tree f2)
function_types_compatible_p (tree f1, tree f2)
{
{
  tree args1, args2;
  tree args1, args2;
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
  int val = 1;
  int val = 1;
  int val1;
  int val1;
  tree ret1, ret2;
  tree ret1, ret2;
 
 
  ret1 = TREE_TYPE (f1);
  ret1 = TREE_TYPE (f1);
  ret2 = TREE_TYPE (f2);
  ret2 = TREE_TYPE (f2);
 
 
  /* 'volatile' qualifiers on a function's return type used to mean
  /* 'volatile' qualifiers on a function's return type used to mean
     the function is noreturn.  */
     the function is noreturn.  */
  if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
  if (TYPE_VOLATILE (ret1) != TYPE_VOLATILE (ret2))
    pedwarn ("function return types not compatible due to %<volatile%>");
    pedwarn ("function return types not compatible due to %<volatile%>");
  if (TYPE_VOLATILE (ret1))
  if (TYPE_VOLATILE (ret1))
    ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
    ret1 = build_qualified_type (TYPE_MAIN_VARIANT (ret1),
                                 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
                                 TYPE_QUALS (ret1) & ~TYPE_QUAL_VOLATILE);
  if (TYPE_VOLATILE (ret2))
  if (TYPE_VOLATILE (ret2))
    ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
    ret2 = build_qualified_type (TYPE_MAIN_VARIANT (ret2),
                                 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
                                 TYPE_QUALS (ret2) & ~TYPE_QUAL_VOLATILE);
  val = comptypes_internal (ret1, ret2);
  val = comptypes_internal (ret1, ret2);
  if (val == 0)
  if (val == 0)
    return 0;
    return 0;
 
 
  args1 = TYPE_ARG_TYPES (f1);
  args1 = TYPE_ARG_TYPES (f1);
  args2 = TYPE_ARG_TYPES (f2);
  args2 = TYPE_ARG_TYPES (f2);
 
 
  /* An unspecified parmlist matches any specified parmlist
  /* An unspecified parmlist matches any specified parmlist
     whose argument types don't need default promotions.  */
     whose argument types don't need default promotions.  */
 
 
  if (args1 == 0)
  if (args1 == 0)
    {
    {
      if (!self_promoting_args_p (args2))
      if (!self_promoting_args_p (args2))
        return 0;
        return 0;
      /* If one of these types comes from a non-prototype fn definition,
      /* If one of these types comes from a non-prototype fn definition,
         compare that with the other type's arglist.
         compare that with the other type's arglist.
         If they don't match, ask for a warning (but no error).  */
         If they don't match, ask for a warning (but no error).  */
      if (TYPE_ACTUAL_ARG_TYPES (f1)
      if (TYPE_ACTUAL_ARG_TYPES (f1)
          && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
          && 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
        val = 2;
        val = 2;
      return val;
      return val;
    }
    }
  if (args2 == 0)
  if (args2 == 0)
    {
    {
      if (!self_promoting_args_p (args1))
      if (!self_promoting_args_p (args1))
        return 0;
        return 0;
      if (TYPE_ACTUAL_ARG_TYPES (f2)
      if (TYPE_ACTUAL_ARG_TYPES (f2)
          && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
          && 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
        val = 2;
        val = 2;
      return val;
      return val;
    }
    }
 
 
  /* Both types have argument lists: compare them and propagate results.  */
  /* Both types have argument lists: compare them and propagate results.  */
  val1 = type_lists_compatible_p (args1, args2);
  val1 = type_lists_compatible_p (args1, args2);
  return val1 != 1 ? val1 : val;
  return val1 != 1 ? val1 : val;
}
}
 
 
/* Check two lists of types for compatibility,
/* Check two lists of types for compatibility,
   returning 0 for incompatible, 1 for compatible,
   returning 0 for incompatible, 1 for compatible,
   or 2 for compatible with warning.  */
   or 2 for compatible with warning.  */
 
 
static int
static int
type_lists_compatible_p (tree args1, tree args2)
type_lists_compatible_p (tree args1, tree args2)
{
{
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
  /* 1 if no need for warning yet, 2 if warning cause has been seen.  */
  int val = 1;
  int val = 1;
  int newval = 0;
  int newval = 0;
 
 
  while (1)
  while (1)
    {
    {
      tree a1, mv1, a2, mv2;
      tree a1, mv1, a2, mv2;
      if (args1 == 0 && args2 == 0)
      if (args1 == 0 && args2 == 0)
        return val;
        return val;
      /* If one list is shorter than the other,
      /* If one list is shorter than the other,
         they fail to match.  */
         they fail to match.  */
      if (args1 == 0 || args2 == 0)
      if (args1 == 0 || args2 == 0)
        return 0;
        return 0;
      mv1 = a1 = TREE_VALUE (args1);
      mv1 = a1 = TREE_VALUE (args1);
      mv2 = a2 = TREE_VALUE (args2);
      mv2 = a2 = TREE_VALUE (args2);
      if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
      if (mv1 && mv1 != error_mark_node && TREE_CODE (mv1) != ARRAY_TYPE)
        mv1 = TYPE_MAIN_VARIANT (mv1);
        mv1 = TYPE_MAIN_VARIANT (mv1);
      if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
      if (mv2 && mv2 != error_mark_node && TREE_CODE (mv2) != ARRAY_TYPE)
        mv2 = TYPE_MAIN_VARIANT (mv2);
        mv2 = TYPE_MAIN_VARIANT (mv2);
      /* A null pointer instead of a type
      /* A null pointer instead of a type
         means there is supposed to be an argument
         means there is supposed to be an argument
         but nothing is specified about what type it has.
         but nothing is specified about what type it has.
         So match anything that self-promotes.  */
         So match anything that self-promotes.  */
      if (a1 == 0)
      if (a1 == 0)
        {
        {
          if (c_type_promotes_to (a2) != a2)
          if (c_type_promotes_to (a2) != a2)
            return 0;
            return 0;
        }
        }
      else if (a2 == 0)
      else if (a2 == 0)
        {
        {
          if (c_type_promotes_to (a1) != a1)
          if (c_type_promotes_to (a1) != a1)
            return 0;
            return 0;
        }
        }
      /* If one of the lists has an error marker, ignore this arg.  */
      /* If one of the lists has an error marker, ignore this arg.  */
      else if (TREE_CODE (a1) == ERROR_MARK
      else if (TREE_CODE (a1) == ERROR_MARK
               || TREE_CODE (a2) == ERROR_MARK)
               || TREE_CODE (a2) == ERROR_MARK)
        ;
        ;
      else if (!(newval = comptypes_internal (mv1, mv2)))
      else if (!(newval = comptypes_internal (mv1, mv2)))
        {
        {
          /* Allow  wait (union {union wait *u; int *i} *)
          /* Allow  wait (union {union wait *u; int *i} *)
             and  wait (union wait *)  to be compatible.  */
             and  wait (union wait *)  to be compatible.  */
          if (TREE_CODE (a1) == UNION_TYPE
          if (TREE_CODE (a1) == UNION_TYPE
              && (TYPE_NAME (a1) == 0
              && (TYPE_NAME (a1) == 0
                  || TYPE_TRANSPARENT_UNION (a1))
                  || TYPE_TRANSPARENT_UNION (a1))
              && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
              && TREE_CODE (TYPE_SIZE (a1)) == INTEGER_CST
              && tree_int_cst_equal (TYPE_SIZE (a1),
              && tree_int_cst_equal (TYPE_SIZE (a1),
                                     TYPE_SIZE (a2)))
                                     TYPE_SIZE (a2)))
            {
            {
              tree memb;
              tree memb;
              for (memb = TYPE_FIELDS (a1);
              for (memb = TYPE_FIELDS (a1);
                   memb; memb = TREE_CHAIN (memb))
                   memb; memb = TREE_CHAIN (memb))
                {
                {
                  tree mv3 = TREE_TYPE (memb);
                  tree mv3 = TREE_TYPE (memb);
                  if (mv3 && mv3 != error_mark_node
                  if (mv3 && mv3 != error_mark_node
                      && TREE_CODE (mv3) != ARRAY_TYPE)
                      && TREE_CODE (mv3) != ARRAY_TYPE)
                    mv3 = TYPE_MAIN_VARIANT (mv3);
                    mv3 = TYPE_MAIN_VARIANT (mv3);
                  if (comptypes_internal (mv3, mv2))
                  if (comptypes_internal (mv3, mv2))
                    break;
                    break;
                }
                }
              if (memb == 0)
              if (memb == 0)
                return 0;
                return 0;
            }
            }
          else if (TREE_CODE (a2) == UNION_TYPE
          else if (TREE_CODE (a2) == UNION_TYPE
                   && (TYPE_NAME (a2) == 0
                   && (TYPE_NAME (a2) == 0
                       || TYPE_TRANSPARENT_UNION (a2))
                       || TYPE_TRANSPARENT_UNION (a2))
                   && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
                   && TREE_CODE (TYPE_SIZE (a2)) == INTEGER_CST
                   && tree_int_cst_equal (TYPE_SIZE (a2),
                   && tree_int_cst_equal (TYPE_SIZE (a2),
                                          TYPE_SIZE (a1)))
                                          TYPE_SIZE (a1)))
            {
            {
              tree memb;
              tree memb;
              for (memb = TYPE_FIELDS (a2);
              for (memb = TYPE_FIELDS (a2);
                   memb; memb = TREE_CHAIN (memb))
                   memb; memb = TREE_CHAIN (memb))
                {
                {
                  tree mv3 = TREE_TYPE (memb);
                  tree mv3 = TREE_TYPE (memb);
                  if (mv3 && mv3 != error_mark_node
                  if (mv3 && mv3 != error_mark_node
                      && TREE_CODE (mv3) != ARRAY_TYPE)
                      && TREE_CODE (mv3) != ARRAY_TYPE)
                    mv3 = TYPE_MAIN_VARIANT (mv3);
                    mv3 = TYPE_MAIN_VARIANT (mv3);
                  if (comptypes_internal (mv3, mv1))
                  if (comptypes_internal (mv3, mv1))
                    break;
                    break;
                }
                }
              if (memb == 0)
              if (memb == 0)
                return 0;
                return 0;
            }
            }
          else
          else
            return 0;
            return 0;
        }
        }
 
 
      /* comptypes said ok, but record if it said to warn.  */
      /* comptypes said ok, but record if it said to warn.  */
      if (newval > val)
      if (newval > val)
        val = newval;
        val = newval;
 
 
      args1 = TREE_CHAIN (args1);
      args1 = TREE_CHAIN (args1);
      args2 = TREE_CHAIN (args2);
      args2 = TREE_CHAIN (args2);
    }
    }
}
}


/* Compute the size to increment a pointer by.  */
/* Compute the size to increment a pointer by.  */
 
 
static tree
static tree
c_size_in_bytes (tree type)
c_size_in_bytes (tree type)
{
{
  enum tree_code code = TREE_CODE (type);
  enum tree_code code = TREE_CODE (type);
 
 
  if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
  if (code == FUNCTION_TYPE || code == VOID_TYPE || code == ERROR_MARK)
    return size_one_node;
    return size_one_node;
 
 
  if (!COMPLETE_OR_VOID_TYPE_P (type))
  if (!COMPLETE_OR_VOID_TYPE_P (type))
    {
    {
      error ("arithmetic on pointer to an incomplete type");
      error ("arithmetic on pointer to an incomplete type");
      return size_one_node;
      return size_one_node;
    }
    }
 
 
  /* Convert in case a char is more than one unit.  */
  /* Convert in case a char is more than one unit.  */
  return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
  return size_binop (CEIL_DIV_EXPR, TYPE_SIZE_UNIT (type),
                     size_int (TYPE_PRECISION (char_type_node)
                     size_int (TYPE_PRECISION (char_type_node)
                               / BITS_PER_UNIT));
                               / BITS_PER_UNIT));
}
}


/* Return either DECL or its known constant value (if it has one).  */
/* Return either DECL or its known constant value (if it has one).  */
 
 
tree
tree
decl_constant_value (tree decl)
decl_constant_value (tree decl)
{
{
  if (/* Don't change a variable array bound or initial value to a constant
  if (/* Don't change a variable array bound or initial value to a constant
         in a place where a variable is invalid.  Note that DECL_INITIAL
         in a place where a variable is invalid.  Note that DECL_INITIAL
         isn't valid for a PARM_DECL.  */
         isn't valid for a PARM_DECL.  */
      current_function_decl != 0
      current_function_decl != 0
      && TREE_CODE (decl) != PARM_DECL
      && TREE_CODE (decl) != PARM_DECL
      && !TREE_THIS_VOLATILE (decl)
      && !TREE_THIS_VOLATILE (decl)
      && TREE_READONLY (decl)
      && TREE_READONLY (decl)
      && DECL_INITIAL (decl) != 0
      && DECL_INITIAL (decl) != 0
      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
      && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
      /* This is invalid if initial value is not constant.
      /* This is invalid if initial value is not constant.
         If it has either a function call, a memory reference,
         If it has either a function call, a memory reference,
         or a variable, then re-evaluating it could give different results.  */
         or a variable, then re-evaluating it could give different results.  */
      && TREE_CONSTANT (DECL_INITIAL (decl))
      && TREE_CONSTANT (DECL_INITIAL (decl))
      /* Check for cases where this is sub-optimal, even though valid.  */
      /* Check for cases where this is sub-optimal, even though valid.  */
      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
      && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
    return DECL_INITIAL (decl);
    return DECL_INITIAL (decl);
  return decl;
  return decl;
}
}
 
 
/* Return either DECL or its known constant value (if it has one), but
/* Return either DECL or its known constant value (if it has one), but
   return DECL if pedantic or DECL has mode BLKmode.  This is for
   return DECL if pedantic or DECL has mode BLKmode.  This is for
   bug-compatibility with the old behavior of decl_constant_value
   bug-compatibility with the old behavior of decl_constant_value
   (before GCC 3.0); every use of this function is a bug and it should
   (before GCC 3.0); every use of this function is a bug and it should
   be removed before GCC 3.1.  It is not appropriate to use pedantic
   be removed before GCC 3.1.  It is not appropriate to use pedantic
   in a way that affects optimization, and BLKmode is probably not the
   in a way that affects optimization, and BLKmode is probably not the
   right test for avoiding misoptimizations either.  */
   right test for avoiding misoptimizations either.  */
 
 
static tree
static tree
decl_constant_value_for_broken_optimization (tree decl)
decl_constant_value_for_broken_optimization (tree decl)
{
{
  tree ret;
  tree ret;
 
 
  if (pedantic || DECL_MODE (decl) == BLKmode)
  if (pedantic || DECL_MODE (decl) == BLKmode)
    return decl;
    return decl;
 
 
  ret = decl_constant_value (decl);
  ret = decl_constant_value (decl);
  /* Avoid unwanted tree sharing between the initializer and current
  /* Avoid unwanted tree sharing between the initializer and current
     function's body where the tree can be modified e.g. by the
     function's body where the tree can be modified e.g. by the
     gimplifier.  */
     gimplifier.  */
  if (ret != decl && TREE_STATIC (decl))
  if (ret != decl && TREE_STATIC (decl))
    ret = unshare_expr (ret);
    ret = unshare_expr (ret);
  return ret;
  return ret;
}
}
 
 
/* Convert the array expression EXP to a pointer.  */
/* Convert the array expression EXP to a pointer.  */
static tree
static tree
array_to_pointer_conversion (tree exp)
array_to_pointer_conversion (tree exp)
{
{
  tree orig_exp = exp;
  tree orig_exp = exp;
  tree type = TREE_TYPE (exp);
  tree type = TREE_TYPE (exp);
  tree adr;
  tree adr;
  tree restype = TREE_TYPE (type);
  tree restype = TREE_TYPE (type);
  tree ptrtype;
  tree ptrtype;
 
 
  gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
  gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
 
 
  STRIP_TYPE_NOPS (exp);
  STRIP_TYPE_NOPS (exp);
 
 
  if (TREE_NO_WARNING (orig_exp))
  if (TREE_NO_WARNING (orig_exp))
    TREE_NO_WARNING (exp) = 1;
    TREE_NO_WARNING (exp) = 1;
 
 
  ptrtype = build_pointer_type (restype);
  ptrtype = build_pointer_type (restype);
 
 
  if (TREE_CODE (exp) == INDIRECT_REF)
  if (TREE_CODE (exp) == INDIRECT_REF)
    return convert (ptrtype, TREE_OPERAND (exp, 0));
    return convert (ptrtype, TREE_OPERAND (exp, 0));
 
 
  if (TREE_CODE (exp) == VAR_DECL)
  if (TREE_CODE (exp) == VAR_DECL)
    {
    {
      /* We are making an ADDR_EXPR of ptrtype.  This is a valid
      /* We are making an ADDR_EXPR of ptrtype.  This is a valid
         ADDR_EXPR because it's the best way of representing what
         ADDR_EXPR because it's the best way of representing what
         happens in C when we take the address of an array and place
         happens in C when we take the address of an array and place
         it in a pointer to the element type.  */
         it in a pointer to the element type.  */
      adr = build1 (ADDR_EXPR, ptrtype, exp);
      adr = build1 (ADDR_EXPR, ptrtype, exp);
      if (!c_mark_addressable (exp))
      if (!c_mark_addressable (exp))
        return error_mark_node;
        return error_mark_node;
      TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
      TREE_SIDE_EFFECTS (adr) = 0;   /* Default would be, same as EXP.  */
      return adr;
      return adr;
    }
    }
 
 
  /* This way is better for a COMPONENT_REF since it can
  /* This way is better for a COMPONENT_REF since it can
     simplify the offset for a component.  */
     simplify the offset for a component.  */
  adr = build_unary_op (ADDR_EXPR, exp, 1);
  adr = build_unary_op (ADDR_EXPR, exp, 1);
  return convert (ptrtype, adr);
  return convert (ptrtype, adr);
}
}
 
 
/* Convert the function expression EXP to a pointer.  */
/* Convert the function expression EXP to a pointer.  */
static tree
static tree
function_to_pointer_conversion (tree exp)
function_to_pointer_conversion (tree exp)
{
{
  tree orig_exp = exp;
  tree orig_exp = exp;
 
 
  gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
  gcc_assert (TREE_CODE (TREE_TYPE (exp)) == FUNCTION_TYPE);
 
 
  STRIP_TYPE_NOPS (exp);
  STRIP_TYPE_NOPS (exp);
 
 
  if (TREE_NO_WARNING (orig_exp))
  if (TREE_NO_WARNING (orig_exp))
    TREE_NO_WARNING (exp) = 1;
    TREE_NO_WARNING (exp) = 1;
 
 
  return build_unary_op (ADDR_EXPR, exp, 0);
  return build_unary_op (ADDR_EXPR, exp, 0);
}
}
 
 
/* Perform the default conversion of arrays and functions to pointers.
/* Perform the default conversion of arrays and functions to pointers.
   Return the result of converting EXP.  For any other expression, just
   Return the result of converting EXP.  For any other expression, just
   return EXP after removing NOPs.  */
   return EXP after removing NOPs.  */
 
 
struct c_expr
struct c_expr
default_function_array_conversion (struct c_expr exp)
default_function_array_conversion (struct c_expr exp)
{
{
  tree orig_exp = exp.value;
  tree orig_exp = exp.value;
  tree type = TREE_TYPE (exp.value);
  tree type = TREE_TYPE (exp.value);
  enum tree_code code = TREE_CODE (type);
  enum tree_code code = TREE_CODE (type);
 
 
  switch (code)
  switch (code)
    {
    {
    case ARRAY_TYPE:
    case ARRAY_TYPE:
      {
      {
        bool not_lvalue = false;
        bool not_lvalue = false;
        bool lvalue_array_p;
        bool lvalue_array_p;
 
 
        while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
        while ((TREE_CODE (exp.value) == NON_LVALUE_EXPR
                || TREE_CODE (exp.value) == NOP_EXPR
                || TREE_CODE (exp.value) == NOP_EXPR
                || TREE_CODE (exp.value) == CONVERT_EXPR)
                || TREE_CODE (exp.value) == CONVERT_EXPR)
               && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
               && TREE_TYPE (TREE_OPERAND (exp.value, 0)) == type)
          {
          {
            if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
            if (TREE_CODE (exp.value) == NON_LVALUE_EXPR)
              not_lvalue = true;
              not_lvalue = true;
            exp.value = TREE_OPERAND (exp.value, 0);
            exp.value = TREE_OPERAND (exp.value, 0);
          }
          }
 
 
        if (TREE_NO_WARNING (orig_exp))
        if (TREE_NO_WARNING (orig_exp))
          TREE_NO_WARNING (exp.value) = 1;
          TREE_NO_WARNING (exp.value) = 1;
 
 
        lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
        lvalue_array_p = !not_lvalue && lvalue_p (exp.value);
        if (!flag_isoc99 && !lvalue_array_p)
        if (!flag_isoc99 && !lvalue_array_p)
          {
          {
            /* Before C99, non-lvalue arrays do not decay to pointers.
            /* Before C99, non-lvalue arrays do not decay to pointers.
               Normally, using such an array would be invalid; but it can
               Normally, using such an array would be invalid; but it can
               be used correctly inside sizeof or as a statement expression.
               be used correctly inside sizeof or as a statement expression.
               Thus, do not give an error here; an error will result later.  */
               Thus, do not give an error here; an error will result later.  */
            return exp;
            return exp;
          }
          }
 
 
        exp.value = array_to_pointer_conversion (exp.value);
        exp.value = array_to_pointer_conversion (exp.value);
      }
      }
      break;
      break;
    case FUNCTION_TYPE:
    case FUNCTION_TYPE:
      exp.value = function_to_pointer_conversion (exp.value);
      exp.value = function_to_pointer_conversion (exp.value);
      break;
      break;
    default:
    default:
      STRIP_TYPE_NOPS (exp.value);
      STRIP_TYPE_NOPS (exp.value);
      if (TREE_NO_WARNING (orig_exp))
      if (TREE_NO_WARNING (orig_exp))
        TREE_NO_WARNING (exp.value) = 1;
        TREE_NO_WARNING (exp.value) = 1;
      break;
      break;
    }
    }
 
 
  return exp;
  return exp;
}
}
 
 
 
 
/* EXP is an expression of integer type.  Apply the integer promotions
/* EXP is an expression of integer type.  Apply the integer promotions
   to it and return the promoted value.  */
   to it and return the promoted value.  */
 
 
tree
tree
perform_integral_promotions (tree exp)
perform_integral_promotions (tree exp)
{
{
  tree type = TREE_TYPE (exp);
  tree type = TREE_TYPE (exp);
  enum tree_code code = TREE_CODE (type);
  enum tree_code code = TREE_CODE (type);
 
 
  gcc_assert (INTEGRAL_TYPE_P (type));
  gcc_assert (INTEGRAL_TYPE_P (type));
 
 
  /* Normally convert enums to int,
  /* Normally convert enums to int,
     but convert wide enums to something wider.  */
     but convert wide enums to something wider.  */
  if (code == ENUMERAL_TYPE)
  if (code == ENUMERAL_TYPE)
    {
    {
      type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
      type = c_common_type_for_size (MAX (TYPE_PRECISION (type),
                                          TYPE_PRECISION (integer_type_node)),
                                          TYPE_PRECISION (integer_type_node)),
                                     ((TYPE_PRECISION (type)
                                     ((TYPE_PRECISION (type)
                                       >= TYPE_PRECISION (integer_type_node))
                                       >= TYPE_PRECISION (integer_type_node))
                                      && TYPE_UNSIGNED (type)));
                                      && TYPE_UNSIGNED (type)));
 
 
      return convert (type, exp);
      return convert (type, exp);
    }
    }
 
 
  /* ??? This should no longer be needed now bit-fields have their
  /* ??? This should no longer be needed now bit-fields have their
     proper types.  */
     proper types.  */
  if (TREE_CODE (exp) == COMPONENT_REF
  if (TREE_CODE (exp) == COMPONENT_REF
      && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
      && DECL_C_BIT_FIELD (TREE_OPERAND (exp, 1))
      /* If it's thinner than an int, promote it like a
      /* If it's thinner than an int, promote it like a
         c_promoting_integer_type_p, otherwise leave it alone.  */
         c_promoting_integer_type_p, otherwise leave it alone.  */
      && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
      && 0 > compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)),
                               TYPE_PRECISION (integer_type_node)))
                               TYPE_PRECISION (integer_type_node)))
    return convert (integer_type_node, exp);
    return convert (integer_type_node, exp);
 
 
  if (c_promoting_integer_type_p (type))
  if (c_promoting_integer_type_p (type))
    {
    {
      /* Preserve unsignedness if not really getting any wider.  */
      /* Preserve unsignedness if not really getting any wider.  */
      if (TYPE_UNSIGNED (type)
      if (TYPE_UNSIGNED (type)
          && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
          && TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
        return convert (unsigned_type_node, exp);
        return convert (unsigned_type_node, exp);
 
 
      return convert (integer_type_node, exp);
      return convert (integer_type_node, exp);
    }
    }
 
 
  return exp;
  return exp;
}
}
 
 
 
 
/* Perform default promotions for C data used in expressions.
/* Perform default promotions for C data used in expressions.
   Enumeral types or short or char are converted to int.
   Enumeral types or short or char are converted to int.
   In addition, manifest constants symbols are replaced by their values.  */
   In addition, manifest constants symbols are replaced by their values.  */
 
 
tree
tree
default_conversion (tree exp)
default_conversion (tree exp)
{
{
  tree orig_exp;
  tree orig_exp;
  tree type = TREE_TYPE (exp);
  tree type = TREE_TYPE (exp);
  enum tree_code code = TREE_CODE (type);
  enum tree_code code = TREE_CODE (type);
 
 
  /* Functions and arrays have been converted during parsing.  */
  /* Functions and arrays have been converted during parsing.  */
  gcc_assert (code != FUNCTION_TYPE);
  gcc_assert (code != FUNCTION_TYPE);
  if (code == ARRAY_TYPE)
  if (code == ARRAY_TYPE)
    return exp;
    return exp;
 
 
  /* Constants can be used directly unless they're not loadable.  */
  /* Constants can be used directly unless they're not loadable.  */
  if (TREE_CODE (exp) == CONST_DECL)
  if (TREE_CODE (exp) == CONST_DECL)
    exp = DECL_INITIAL (exp);
    exp = DECL_INITIAL (exp);
 
 
  /* Replace a nonvolatile const static variable with its value unless
  /* Replace a nonvolatile const static variable with its value unless
     it is an array, in which case we must be sure that taking the
     it is an array, in which case we must be sure that taking the
     address of the array produces consistent results.  */
     address of the array produces consistent results.  */
  else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
  else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
    {
    {
      exp = decl_constant_value_for_broken_optimization (exp);
      exp = decl_constant_value_for_broken_optimization (exp);
      type = TREE_TYPE (exp);
      type = TREE_TYPE (exp);
    }
    }
 
 
  /* Strip no-op conversions.  */
  /* Strip no-op conversions.  */
  orig_exp = exp;
  orig_exp = exp;
  STRIP_TYPE_NOPS (exp);
  STRIP_TYPE_NOPS (exp);
 
 
  if (TREE_NO_WARNING (orig_exp))
  if (TREE_NO_WARNING (orig_exp))
    TREE_NO_WARNING (exp) = 1;
    TREE_NO_WARNING (exp) = 1;
 
 
  if (INTEGRAL_TYPE_P (type))
  if (INTEGRAL_TYPE_P (type))
    return perform_integral_promotions (exp);
    return perform_integral_promotions (exp);
 
 
  if (code == VOID_TYPE)
  if (code == VOID_TYPE)
    {
    {
      error ("void value not ignored as it ought to be");
      error ("void value not ignored as it ought to be");
      return error_mark_node;
      return error_mark_node;
    }
    }
  return exp;
  return exp;
}
}


/* Look up COMPONENT in a structure or union DECL.
/* Look up COMPONENT in a structure or union DECL.
 
 
   If the component name is not found, returns NULL_TREE.  Otherwise,
   If the component name is not found, returns NULL_TREE.  Otherwise,
   the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
   the return value is a TREE_LIST, with each TREE_VALUE a FIELD_DECL
   stepping down the chain to the component, which is in the last
   stepping down the chain to the component, which is in the last
   TREE_VALUE of the list.  Normally the list is of length one, but if
   TREE_VALUE of the list.  Normally the list is of length one, but if
   the component is embedded within (nested) anonymous structures or
   the component is embedded within (nested) anonymous structures or
   unions, the list steps down the chain to the component.  */
   unions, the list steps down the chain to the component.  */
 
 
static tree
static tree
lookup_field (tree decl, tree component)
lookup_field (tree decl, tree component)
{
{
  tree type = TREE_TYPE (decl);
  tree type = TREE_TYPE (decl);
  tree field;
  tree field;
 
 
  /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
  /* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
     to the field elements.  Use a binary search on this array to quickly
     to the field elements.  Use a binary search on this array to quickly
     find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
     find the element.  Otherwise, do a linear search.  TYPE_LANG_SPECIFIC
     will always be set for structures which have many elements.  */
     will always be set for structures which have many elements.  */
 
 
  if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
  if (TYPE_LANG_SPECIFIC (type) && TYPE_LANG_SPECIFIC (type)->s)
    {
    {
      int bot, top, half;
      int bot, top, half;
      tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
      tree *field_array = &TYPE_LANG_SPECIFIC (type)->s->elts[0];
 
 
      field = TYPE_FIELDS (type);
      field = TYPE_FIELDS (type);
      bot = 0;
      bot = 0;
      top = TYPE_LANG_SPECIFIC (type)->s->len;
      top = TYPE_LANG_SPECIFIC (type)->s->len;
      while (top - bot > 1)
      while (top - bot > 1)
        {
        {
          half = (top - bot + 1) >> 1;
          half = (top - bot + 1) >> 1;
          field = field_array[bot+half];
          field = field_array[bot+half];
 
 
          if (DECL_NAME (field) == NULL_TREE)
          if (DECL_NAME (field) == NULL_TREE)
            {
            {
              /* Step through all anon unions in linear fashion.  */
              /* Step through all anon unions in linear fashion.  */
              while (DECL_NAME (field_array[bot]) == NULL_TREE)
              while (DECL_NAME (field_array[bot]) == NULL_TREE)
                {
                {
                  field = field_array[bot++];
                  field = field_array[bot++];
                  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
                  if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
                      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
                      || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
                    {
                    {
                      tree anon = lookup_field (field, component);
                      tree anon = lookup_field (field, component);
 
 
                      if (anon)
                      if (anon)
                        return tree_cons (NULL_TREE, field, anon);
                        return tree_cons (NULL_TREE, field, anon);
                    }
                    }
                }
                }
 
 
              /* Entire record is only anon unions.  */
              /* Entire record is only anon unions.  */
              if (bot > top)
              if (bot > top)
                return NULL_TREE;
                return NULL_TREE;
 
 
              /* Restart the binary search, with new lower bound.  */
              /* Restart the binary search, with new lower bound.  */
              continue;
              continue;
            }
            }
 
 
          if (DECL_NAME (field) == component)
          if (DECL_NAME (field) == component)
            break;
            break;
          if (DECL_NAME (field) < component)
          if (DECL_NAME (field) < component)
            bot += half;
            bot += half;
          else
          else
            top = bot + half;
            top = bot + half;
        }
        }
 
 
      if (DECL_NAME (field_array[bot]) == component)
      if (DECL_NAME (field_array[bot]) == component)
        field = field_array[bot];
        field = field_array[bot];
      else if (DECL_NAME (field) != component)
      else if (DECL_NAME (field) != component)
        return NULL_TREE;
        return NULL_TREE;
    }
    }
  else
  else
    {
    {
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
        {
        {
          if (DECL_NAME (field) == NULL_TREE
          if (DECL_NAME (field) == NULL_TREE
              && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
              && (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
                  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
                  || TREE_CODE (TREE_TYPE (field)) == UNION_TYPE))
            {
            {
              tree anon = lookup_field (field, component);
              tree anon = lookup_field (field, component);
 
 
              if (anon)
              if (anon)
                return tree_cons (NULL_TREE, field, anon);
                return tree_cons (NULL_TREE, field, anon);
            }
            }
 
 
          if (DECL_NAME (field) == component)
          if (DECL_NAME (field) == component)
            break;
            break;
        }
        }
 
 
      if (field == NULL_TREE)
      if (field == NULL_TREE)
        return NULL_TREE;
        return NULL_TREE;
    }
    }
 
 
  return tree_cons (NULL_TREE, field, NULL_TREE);
  return tree_cons (NULL_TREE, field, NULL_TREE);
}
}
 
 
/* Make an expression to refer to the COMPONENT field of
/* Make an expression to refer to the COMPONENT field of
   structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
   structure or union value DATUM.  COMPONENT is an IDENTIFIER_NODE.  */
 
 
tree
tree
build_component_ref (tree datum, tree component)
build_component_ref (tree datum, tree component)
{
{
  tree type = TREE_TYPE (datum);
  tree type = TREE_TYPE (datum);
  enum tree_code code = TREE_CODE (type);
  enum tree_code code = TREE_CODE (type);
  tree field = NULL;
  tree field = NULL;
  tree ref;
  tree ref;
 
 
  if (!objc_is_public (datum, component))
  if (!objc_is_public (datum, component))
    return error_mark_node;
    return error_mark_node;
 
 
  /* See if there is a field or component with name COMPONENT.  */
  /* See if there is a field or component with name COMPONENT.  */
 
 
  if (code == RECORD_TYPE || code == UNION_TYPE)
  if (code == RECORD_TYPE || code == UNION_TYPE)
    {
    {
      if (!COMPLETE_TYPE_P (type))
      if (!COMPLETE_TYPE_P (type))
        {
        {
          c_incomplete_type_error (NULL_TREE, type);
          c_incomplete_type_error (NULL_TREE, type);
          return error_mark_node;
          return error_mark_node;
        }
        }
 
 
      field = lookup_field (datum, component);
      field = lookup_field (datum, component);
 
 
      if (!field)
      if (!field)
        {
        {
          error ("%qT has no member named %qE", type, component);
          error ("%qT has no member named %qE", type, component);
          return error_mark_node;
          return error_mark_node;
        }
        }
 
 
      /* Chain the COMPONENT_REFs if necessary down to the FIELD.
      /* Chain the COMPONENT_REFs if necessary down to the FIELD.
         This might be better solved in future the way the C++ front
         This might be better solved in future the way the C++ front
         end does it - by giving the anonymous entities each a
         end does it - by giving the anonymous entities each a
         separate name and type, and then have build_component_ref
         separate name and type, and then have build_component_ref
         recursively call itself.  We can't do that here.  */
         recursively call itself.  We can't do that here.  */
      do
      do
        {
        {
          tree subdatum = TREE_VALUE (field);
          tree subdatum = TREE_VALUE (field);
          int quals;
          int quals;
          tree subtype;
          tree subtype;
 
 
          if (TREE_TYPE (subdatum) == error_mark_node)
          if (TREE_TYPE (subdatum) == error_mark_node)
            return error_mark_node;
            return error_mark_node;
 
 
          quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
          quals = TYPE_QUALS (strip_array_types (TREE_TYPE (subdatum)));
          quals |= TYPE_QUALS (TREE_TYPE (datum));
          quals |= TYPE_QUALS (TREE_TYPE (datum));
          subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
          subtype = c_build_qualified_type (TREE_TYPE (subdatum), quals);
 
 
          ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
          ref = build3 (COMPONENT_REF, subtype, datum, subdatum,
                        NULL_TREE);
                        NULL_TREE);
          if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
          if (TREE_READONLY (datum) || TREE_READONLY (subdatum))
            TREE_READONLY (ref) = 1;
            TREE_READONLY (ref) = 1;
          if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
          if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (subdatum))
            TREE_THIS_VOLATILE (ref) = 1;
            TREE_THIS_VOLATILE (ref) = 1;
 
 
          if (TREE_DEPRECATED (subdatum))
          if (TREE_DEPRECATED (subdatum))
            warn_deprecated_use (subdatum);
            warn_deprecated_use (subdatum);
 
 
          datum = ref;
          datum = ref;
 
 
          field = TREE_CHAIN (field);
          field = TREE_CHAIN (field);
        }
        }
      while (field);
      while (field);
 
 
      return ref;
      return ref;
    }
    }
  else if (code != ERROR_MARK)
  else if (code != ERROR_MARK)
    error ("request for member %qE in something not a structure or union",
    error ("request for member %qE in something not a structure or union",
           component);
           component);
 
 
  return error_mark_node;
  return error_mark_node;
}
}


/* Given an expression PTR for a pointer, return an expression
/* Given an expression PTR for a pointer, return an expression
   for the value pointed to.
   for the value pointed to.
   ERRORSTRING is the name of the operator to appear in error messages.  */
   ERRORSTRING is the name of the operator to appear in error messages.  */
 
 
tree
tree
build_indirect_ref (tree ptr, const char *errorstring)
build_indirect_ref (tree ptr, const char *errorstring)
{
{
  tree pointer = default_conversion (ptr);
  tree pointer = default_conversion (ptr);
  tree type = TREE_TYPE (pointer);
  tree type = TREE_TYPE (pointer);
 
 
  if (TREE_CODE (type) == POINTER_TYPE)
  if (TREE_CODE (type) == POINTER_TYPE)
    {
    {
      if (TREE_CODE (pointer) == ADDR_EXPR
      if (TREE_CODE (pointer) == ADDR_EXPR
          && (TREE_TYPE (TREE_OPERAND (pointer, 0))
          && (TREE_TYPE (TREE_OPERAND (pointer, 0))
              == TREE_TYPE (type)))
              == TREE_TYPE (type)))
        return TREE_OPERAND (pointer, 0);
        return TREE_OPERAND (pointer, 0);
      else
      else
        {
        {
          tree t = TREE_TYPE (type);
          tree t = TREE_TYPE (type);
          tree ref;
          tree ref;
 
 
          ref = build1 (INDIRECT_REF, t, pointer);
          ref = build1 (INDIRECT_REF, t, pointer);
 
 
          if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
          if (!COMPLETE_OR_VOID_TYPE_P (t) && TREE_CODE (t) != ARRAY_TYPE)
            {
            {
              error ("dereferencing pointer to incomplete type");
              error ("dereferencing pointer to incomplete type");
              return error_mark_node;
              return error_mark_node;
            }
            }
          if (VOID_TYPE_P (t) && skip_evaluation == 0)
          if (VOID_TYPE_P (t) && skip_evaluation == 0)
            warning (0, "dereferencing %<void *%> pointer");
            warning (0, "dereferencing %<void *%> pointer");
 
 
          /* We *must* set TREE_READONLY when dereferencing a pointer to const,
          /* We *must* set TREE_READONLY when dereferencing a pointer to const,
             so that we get the proper error message if the result is used
             so that we get the proper error message if the result is used
             to assign to.  Also, &* is supposed to be a no-op.
             to assign to.  Also, &* is supposed to be a no-op.
             And ANSI C seems to specify that the type of the result
             And ANSI C seems to specify that the type of the result
             should be the const type.  */
             should be the const type.  */
          /* A de-reference of a pointer to const is not a const.  It is valid
          /* A de-reference of a pointer to const is not a const.  It is valid
             to change it via some other pointer.  */
             to change it via some other pointer.  */
          TREE_READONLY (ref) = TYPE_READONLY (t);
          TREE_READONLY (ref) = TYPE_READONLY (t);
          TREE_SIDE_EFFECTS (ref)
          TREE_SIDE_EFFECTS (ref)
            = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
            = TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer);
          TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
          TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
          return ref;
          return ref;
        }
        }
    }
    }
  else if (TREE_CODE (pointer) != ERROR_MARK)
  else if (TREE_CODE (pointer) != ERROR_MARK)
    error ("invalid type argument of %qs", errorstring);
    error ("invalid type argument of %qs", errorstring);
  return error_mark_node;
  return error_mark_node;
}
}
 
 
/* This handles expressions of the form "a[i]", which denotes
/* This handles expressions of the form "a[i]", which denotes
   an array reference.
   an array reference.
 
 
   This is logically equivalent in C to *(a+i), but we may do it differently.
   This is logically equivalent in C to *(a+i), but we may do it differently.
   If A is a variable or a member, we generate a primitive ARRAY_REF.
   If A is a variable or a member, we generate a primitive ARRAY_REF.
   This avoids forcing the array out of registers, and can work on
   This avoids forcing the array out of registers, and can work on
   arrays that are not lvalues (for example, members of structures returned
   arrays that are not lvalues (for example, members of structures returned
   by functions).  */
   by functions).  */
 
 
tree
tree
build_array_ref (tree array, tree index)
build_array_ref (tree array, tree index)
{
{
  bool swapped = false;
  bool swapped = false;
  if (TREE_TYPE (array) == error_mark_node
  if (TREE_TYPE (array) == error_mark_node
      || TREE_TYPE (index) == error_mark_node)
      || TREE_TYPE (index) == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
  if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE
      && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
      && TREE_CODE (TREE_TYPE (array)) != POINTER_TYPE)
    {
    {
      tree temp;
      tree temp;
      if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
      if (TREE_CODE (TREE_TYPE (index)) != ARRAY_TYPE
          && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
          && TREE_CODE (TREE_TYPE (index)) != POINTER_TYPE)
        {
        {
          error ("subscripted value is neither array nor pointer");
          error ("subscripted value is neither array nor pointer");
          return error_mark_node;
          return error_mark_node;
        }
        }
      temp = array;
      temp = array;
      array = index;
      array = index;
      index = temp;
      index = temp;
      swapped = true;
      swapped = true;
    }
    }
 
 
  if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
  if (!INTEGRAL_TYPE_P (TREE_TYPE (index)))
    {
    {
      error ("array subscript is not an integer");
      error ("array subscript is not an integer");
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
  if (TREE_CODE (TREE_TYPE (TREE_TYPE (array))) == FUNCTION_TYPE)
    {
    {
      error ("subscripted value is pointer to function");
      error ("subscripted value is pointer to function");
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* ??? Existing practice has been to warn only when the char
  /* ??? Existing practice has been to warn only when the char
     index is syntactically the index, not for char[array].  */
     index is syntactically the index, not for char[array].  */
  if (!swapped)
  if (!swapped)
     warn_array_subscript_with_type_char (index);
     warn_array_subscript_with_type_char (index);
 
 
  /* Apply default promotions *after* noticing character types.  */
  /* Apply default promotions *after* noticing character types.  */
  index = default_conversion (index);
  index = default_conversion (index);
 
 
  gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
  gcc_assert (TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE);
 
 
  if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
  if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE)
    {
    {
      tree rval, type;
      tree rval, type;
 
 
      /* An array that is indexed by a non-constant
      /* An array that is indexed by a non-constant
         cannot be stored in a register; we must be able to do
         cannot be stored in a register; we must be able to do
         address arithmetic on its address.
         address arithmetic on its address.
         Likewise an array of elements of variable size.  */
         Likewise an array of elements of variable size.  */
      if (TREE_CODE (index) != INTEGER_CST
      if (TREE_CODE (index) != INTEGER_CST
          || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
          || (COMPLETE_TYPE_P (TREE_TYPE (TREE_TYPE (array)))
              && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
              && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
        {
        {
          if (!c_mark_addressable (array))
          if (!c_mark_addressable (array))
            return error_mark_node;
            return error_mark_node;
        }
        }
      /* An array that is indexed by a constant value which is not within
      /* An array that is indexed by a constant value which is not within
         the array bounds cannot be stored in a register either; because we
         the array bounds cannot be stored in a register either; because we
         would get a crash in store_bit_field/extract_bit_field when trying
         would get a crash in store_bit_field/extract_bit_field when trying
         to access a non-existent part of the register.  */
         to access a non-existent part of the register.  */
      if (TREE_CODE (index) == INTEGER_CST
      if (TREE_CODE (index) == INTEGER_CST
          && TYPE_DOMAIN (TREE_TYPE (array))
          && TYPE_DOMAIN (TREE_TYPE (array))
          && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
          && !int_fits_type_p (index, TYPE_DOMAIN (TREE_TYPE (array))))
        {
        {
          if (!c_mark_addressable (array))
          if (!c_mark_addressable (array))
            return error_mark_node;
            return error_mark_node;
        }
        }
 
 
      if (pedantic)
      if (pedantic)
        {
        {
          tree foo = array;
          tree foo = array;
          while (TREE_CODE (foo) == COMPONENT_REF)
          while (TREE_CODE (foo) == COMPONENT_REF)
            foo = TREE_OPERAND (foo, 0);
            foo = TREE_OPERAND (foo, 0);
          if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
          if (TREE_CODE (foo) == VAR_DECL && C_DECL_REGISTER (foo))
            pedwarn ("ISO C forbids subscripting %<register%> array");
            pedwarn ("ISO C forbids subscripting %<register%> array");
          else if (!flag_isoc99 && !lvalue_p (foo))
          else if (!flag_isoc99 && !lvalue_p (foo))
            pedwarn ("ISO C90 forbids subscripting non-lvalue array");
            pedwarn ("ISO C90 forbids subscripting non-lvalue array");
        }
        }
 
 
      type = TREE_TYPE (TREE_TYPE (array));
      type = TREE_TYPE (TREE_TYPE (array));
      if (TREE_CODE (type) != ARRAY_TYPE)
      if (TREE_CODE (type) != ARRAY_TYPE)
        type = TYPE_MAIN_VARIANT (type);
        type = TYPE_MAIN_VARIANT (type);
      rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
      rval = build4 (ARRAY_REF, type, array, index, NULL_TREE, NULL_TREE);
      /* Array ref is const/volatile if the array elements are
      /* Array ref is const/volatile if the array elements are
         or if the array is.  */
         or if the array is.  */
      TREE_READONLY (rval)
      TREE_READONLY (rval)
        |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
        |= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
            | TREE_READONLY (array));
            | TREE_READONLY (array));
      TREE_SIDE_EFFECTS (rval)
      TREE_SIDE_EFFECTS (rval)
        |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
        |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
            | TREE_SIDE_EFFECTS (array));
            | TREE_SIDE_EFFECTS (array));
      TREE_THIS_VOLATILE (rval)
      TREE_THIS_VOLATILE (rval)
        |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
        |= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
            /* This was added by rms on 16 Nov 91.
            /* This was added by rms on 16 Nov 91.
               It fixes  vol struct foo *a;  a->elts[1]
               It fixes  vol struct foo *a;  a->elts[1]
               in an inline function.
               in an inline function.
               Hope it doesn't break something else.  */
               Hope it doesn't break something else.  */
            | TREE_THIS_VOLATILE (array));
            | TREE_THIS_VOLATILE (array));
      return require_complete_type (fold (rval));
      return require_complete_type (fold (rval));
    }
    }
  else
  else
    {
    {
      tree ar = default_conversion (array);
      tree ar = default_conversion (array);
 
 
      if (ar == error_mark_node)
      if (ar == error_mark_node)
        return ar;
        return ar;
 
 
      gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
      gcc_assert (TREE_CODE (TREE_TYPE (ar)) == POINTER_TYPE);
      gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
      gcc_assert (TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) != FUNCTION_TYPE);
 
 
      return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
      return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, index, 0),
                                 "array indexing");
                                 "array indexing");
    }
    }
}
}


/* Build an external reference to identifier ID.  FUN indicates
/* Build an external reference to identifier ID.  FUN indicates
   whether this will be used for a function call.  LOC is the source
   whether this will be used for a function call.  LOC is the source
   location of the identifier.  */
   location of the identifier.  */
tree
tree
build_external_ref (tree id, int fun, location_t loc)
build_external_ref (tree id, int fun, location_t loc)
{
{
  tree ref;
  tree ref;
  tree decl = lookup_name (id);
  tree decl = lookup_name (id);
 
 
  /* In Objective-C, an instance variable (ivar) may be preferred to
  /* In Objective-C, an instance variable (ivar) may be preferred to
     whatever lookup_name() found.  */
     whatever lookup_name() found.  */
  decl = objc_lookup_ivar (decl, id);
  decl = objc_lookup_ivar (decl, id);
 
 
  if (decl && decl != error_mark_node)
  if (decl && decl != error_mark_node)
    ref = decl;
    ref = decl;
  else if (fun)
  else if (fun)
    /* Implicit function declaration.  */
    /* Implicit function declaration.  */
    ref = implicitly_declare (id);
    ref = implicitly_declare (id);
  else if (decl == error_mark_node)
  else if (decl == error_mark_node)
    /* Don't complain about something that's already been
    /* Don't complain about something that's already been
       complained about.  */
       complained about.  */
    return error_mark_node;
    return error_mark_node;
  else
  else
    {
    {
      undeclared_variable (id, loc);
      undeclared_variable (id, loc);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  if (TREE_TYPE (ref) == error_mark_node)
  if (TREE_TYPE (ref) == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  if (TREE_DEPRECATED (ref))
  if (TREE_DEPRECATED (ref))
    warn_deprecated_use (ref);
    warn_deprecated_use (ref);
 
 
  if (!skip_evaluation)
  if (!skip_evaluation)
    assemble_external (ref);
    assemble_external (ref);
  TREE_USED (ref) = 1;
  TREE_USED (ref) = 1;
 
 
  if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
  if (TREE_CODE (ref) == FUNCTION_DECL && !in_alignof)
    {
    {
      if (!in_sizeof && !in_typeof)
      if (!in_sizeof && !in_typeof)
        C_DECL_USED (ref) = 1;
        C_DECL_USED (ref) = 1;
      else if (DECL_INITIAL (ref) == 0
      else if (DECL_INITIAL (ref) == 0
               && DECL_EXTERNAL (ref)
               && DECL_EXTERNAL (ref)
               && !TREE_PUBLIC (ref))
               && !TREE_PUBLIC (ref))
        record_maybe_used_decl (ref);
        record_maybe_used_decl (ref);
    }
    }
 
 
  if (TREE_CODE (ref) == CONST_DECL)
  if (TREE_CODE (ref) == CONST_DECL)
    {
    {
      used_types_insert (TREE_TYPE (ref));
      used_types_insert (TREE_TYPE (ref));
      ref = DECL_INITIAL (ref);
      ref = DECL_INITIAL (ref);
      TREE_CONSTANT (ref) = 1;
      TREE_CONSTANT (ref) = 1;
      TREE_INVARIANT (ref) = 1;
      TREE_INVARIANT (ref) = 1;
    }
    }
  else if (current_function_decl != 0
  else if (current_function_decl != 0
           && !DECL_FILE_SCOPE_P (current_function_decl)
           && !DECL_FILE_SCOPE_P (current_function_decl)
           && (TREE_CODE (ref) == VAR_DECL
           && (TREE_CODE (ref) == VAR_DECL
               || TREE_CODE (ref) == PARM_DECL
               || TREE_CODE (ref) == PARM_DECL
               || TREE_CODE (ref) == FUNCTION_DECL))
               || TREE_CODE (ref) == FUNCTION_DECL))
    {
    {
      tree context = decl_function_context (ref);
      tree context = decl_function_context (ref);
 
 
      if (context != 0 && context != current_function_decl)
      if (context != 0 && context != current_function_decl)
        DECL_NONLOCAL (ref) = 1;
        DECL_NONLOCAL (ref) = 1;
    }
    }
 
 
  return ref;
  return ref;
}
}
 
 
/* Record details of decls possibly used inside sizeof or typeof.  */
/* Record details of decls possibly used inside sizeof or typeof.  */
struct maybe_used_decl
struct maybe_used_decl
{
{
  /* The decl.  */
  /* The decl.  */
  tree decl;
  tree decl;
  /* The level seen at (in_sizeof + in_typeof).  */
  /* The level seen at (in_sizeof + in_typeof).  */
  int level;
  int level;
  /* The next one at this level or above, or NULL.  */
  /* The next one at this level or above, or NULL.  */
  struct maybe_used_decl *next;
  struct maybe_used_decl *next;
};
};
 
 
static struct maybe_used_decl *maybe_used_decls;
static struct maybe_used_decl *maybe_used_decls;
 
 
/* Record that DECL, an undefined static function reference seen
/* Record that DECL, an undefined static function reference seen
   inside sizeof or typeof, might be used if the operand of sizeof is
   inside sizeof or typeof, might be used if the operand of sizeof is
   a VLA type or the operand of typeof is a variably modified
   a VLA type or the operand of typeof is a variably modified
   type.  */
   type.  */
 
 
static void
static void
record_maybe_used_decl (tree decl)
record_maybe_used_decl (tree decl)
{
{
  struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
  struct maybe_used_decl *t = XOBNEW (&parser_obstack, struct maybe_used_decl);
  t->decl = decl;
  t->decl = decl;
  t->level = in_sizeof + in_typeof;
  t->level = in_sizeof + in_typeof;
  t->next = maybe_used_decls;
  t->next = maybe_used_decls;
  maybe_used_decls = t;
  maybe_used_decls = t;
}
}
 
 
/* Pop the stack of decls possibly used inside sizeof or typeof.  If
/* Pop the stack of decls possibly used inside sizeof or typeof.  If
   USED is false, just discard them.  If it is true, mark them used
   USED is false, just discard them.  If it is true, mark them used
   (if no longer inside sizeof or typeof) or move them to the next
   (if no longer inside sizeof or typeof) or move them to the next
   level up (if still inside sizeof or typeof).  */
   level up (if still inside sizeof or typeof).  */
 
 
void
void
pop_maybe_used (bool used)
pop_maybe_used (bool used)
{
{
  struct maybe_used_decl *p = maybe_used_decls;
  struct maybe_used_decl *p = maybe_used_decls;
  int cur_level = in_sizeof + in_typeof;
  int cur_level = in_sizeof + in_typeof;
  while (p && p->level > cur_level)
  while (p && p->level > cur_level)
    {
    {
      if (used)
      if (used)
        {
        {
          if (cur_level == 0)
          if (cur_level == 0)
            C_DECL_USED (p->decl) = 1;
            C_DECL_USED (p->decl) = 1;
          else
          else
            p->level = cur_level;
            p->level = cur_level;
        }
        }
      p = p->next;
      p = p->next;
    }
    }
  if (!used || cur_level == 0)
  if (!used || cur_level == 0)
    maybe_used_decls = p;
    maybe_used_decls = p;
}
}
 
 
/* Return the result of sizeof applied to EXPR.  */
/* Return the result of sizeof applied to EXPR.  */
 
 
struct c_expr
struct c_expr
c_expr_sizeof_expr (struct c_expr expr)
c_expr_sizeof_expr (struct c_expr expr)
{
{
  struct c_expr ret;
  struct c_expr ret;
  if (expr.value == error_mark_node)
  if (expr.value == error_mark_node)
    {
    {
      ret.value = error_mark_node;
      ret.value = error_mark_node;
      ret.original_code = ERROR_MARK;
      ret.original_code = ERROR_MARK;
      pop_maybe_used (false);
      pop_maybe_used (false);
    }
    }
  else
  else
    {
    {
      ret.value = c_sizeof (TREE_TYPE (expr.value));
      ret.value = c_sizeof (TREE_TYPE (expr.value));
      ret.original_code = ERROR_MARK;
      ret.original_code = ERROR_MARK;
      if (c_vla_type_p (TREE_TYPE (expr.value)))
      if (c_vla_type_p (TREE_TYPE (expr.value)))
        {
        {
          /* sizeof is evaluated when given a vla (C99 6.5.3.4p2).  */
          /* sizeof is evaluated when given a vla (C99 6.5.3.4p2).  */
          ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
          ret.value = build2 (COMPOUND_EXPR, TREE_TYPE (ret.value), expr.value, ret.value);
        }
        }
      pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
      pop_maybe_used (C_TYPE_VARIABLE_SIZE (TREE_TYPE (expr.value)));
    }
    }
  return ret;
  return ret;
}
}
 
 
/* Return the result of sizeof applied to T, a structure for the type
/* Return the result of sizeof applied to T, a structure for the type
   name passed to sizeof (rather than the type itself).  */
   name passed to sizeof (rather than the type itself).  */
 
 
struct c_expr
struct c_expr
c_expr_sizeof_type (struct c_type_name *t)
c_expr_sizeof_type (struct c_type_name *t)
{
{
  tree type;
  tree type;
  struct c_expr ret;
  struct c_expr ret;
  type = groktypename (t);
  type = groktypename (t);
  ret.value = c_sizeof (type);
  ret.value = c_sizeof (type);
  ret.original_code = ERROR_MARK;
  ret.original_code = ERROR_MARK;
  pop_maybe_used (type != error_mark_node
  pop_maybe_used (type != error_mark_node
                  ? C_TYPE_VARIABLE_SIZE (type) : false);
                  ? C_TYPE_VARIABLE_SIZE (type) : false);
  return ret;
  return ret;
}
}
 
 
/* Build a function call to function FUNCTION with parameters PARAMS.
/* Build a function call to function FUNCTION with parameters PARAMS.
   PARAMS is a list--a chain of TREE_LIST nodes--in which the
   PARAMS is a list--a chain of TREE_LIST nodes--in which the
   TREE_VALUE of each node is a parameter-expression.
   TREE_VALUE of each node is a parameter-expression.
   FUNCTION's data type may be a function type or a pointer-to-function.  */
   FUNCTION's data type may be a function type or a pointer-to-function.  */
 
 
tree
tree
build_function_call (tree function, tree params)
build_function_call (tree function, tree params)
{
{
  tree fntype, fundecl = 0;
  tree fntype, fundecl = 0;
  tree coerced_params;
  tree coerced_params;
  tree name = NULL_TREE, result;
  tree name = NULL_TREE, result;
  tree tem;
  tree tem;
 
 
  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
  STRIP_TYPE_NOPS (function);
  STRIP_TYPE_NOPS (function);
 
 
  /* Convert anything with function type to a pointer-to-function.  */
  /* Convert anything with function type to a pointer-to-function.  */
  if (TREE_CODE (function) == FUNCTION_DECL)
  if (TREE_CODE (function) == FUNCTION_DECL)
    {
    {
      /* Implement type-directed function overloading for builtins.
      /* Implement type-directed function overloading for builtins.
         resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
         resolve_overloaded_builtin and targetm.resolve_overloaded_builtin
         handle all the type checking.  The result is a complete expression
         handle all the type checking.  The result is a complete expression
         that implements this function call.  */
         that implements this function call.  */
      tem = resolve_overloaded_builtin (function, params);
      tem = resolve_overloaded_builtin (function, params);
      if (tem)
      if (tem)
        return tem;
        return tem;
 
 
      name = DECL_NAME (function);
      name = DECL_NAME (function);
      fundecl = function;
      fundecl = function;
    }
    }
  if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
  if (TREE_CODE (TREE_TYPE (function)) == FUNCTION_TYPE)
    function = function_to_pointer_conversion (function);
    function = function_to_pointer_conversion (function);
 
 
  /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
  /* For Objective-C, convert any calls via a cast to OBJC_TYPE_REF
     expressions, like those used for ObjC messenger dispatches.  */
     expressions, like those used for ObjC messenger dispatches.  */
  function = objc_rewrite_function_call (function, params);
  function = objc_rewrite_function_call (function, params);
 
 
  fntype = TREE_TYPE (function);
  fntype = TREE_TYPE (function);
 
 
  if (TREE_CODE (fntype) == ERROR_MARK)
  if (TREE_CODE (fntype) == ERROR_MARK)
    return error_mark_node;
    return error_mark_node;
 
 
  if (!(TREE_CODE (fntype) == POINTER_TYPE
  if (!(TREE_CODE (fntype) == POINTER_TYPE
        && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
        && TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
    {
    {
      error ("called object %qE is not a function", function);
      error ("called object %qE is not a function", function);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  if (fundecl && TREE_THIS_VOLATILE (fundecl))
  if (fundecl && TREE_THIS_VOLATILE (fundecl))
    current_function_returns_abnormally = 1;
    current_function_returns_abnormally = 1;
 
 
  /* fntype now gets the type of function pointed to.  */
  /* fntype now gets the type of function pointed to.  */
  fntype = TREE_TYPE (fntype);
  fntype = TREE_TYPE (fntype);
 
 
  /* Check that the function is called through a compatible prototype.
  /* Check that the function is called through a compatible prototype.
     If it is not, replace the call by a trap, wrapped up in a compound
     If it is not, replace the call by a trap, wrapped up in a compound
     expression if necessary.  This has the nice side-effect to prevent
     expression if necessary.  This has the nice side-effect to prevent
     the tree-inliner from generating invalid assignment trees which may
     the tree-inliner from generating invalid assignment trees which may
     blow up in the RTL expander later.  */
     blow up in the RTL expander later.  */
  if ((TREE_CODE (function) == NOP_EXPR
  if ((TREE_CODE (function) == NOP_EXPR
       || TREE_CODE (function) == CONVERT_EXPR)
       || TREE_CODE (function) == CONVERT_EXPR)
      && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
      && TREE_CODE (tem = TREE_OPERAND (function, 0)) == ADDR_EXPR
      && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
      && TREE_CODE (tem = TREE_OPERAND (tem, 0)) == FUNCTION_DECL
      && !comptypes (fntype, TREE_TYPE (tem)))
      && !comptypes (fntype, TREE_TYPE (tem)))
    {
    {
      tree return_type = TREE_TYPE (fntype);
      tree return_type = TREE_TYPE (fntype);
      tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
      tree trap = build_function_call (built_in_decls[BUILT_IN_TRAP],
                                       NULL_TREE);
                                       NULL_TREE);
 
 
      /* This situation leads to run-time undefined behavior.  We can't,
      /* This situation leads to run-time undefined behavior.  We can't,
         therefore, simply error unless we can prove that all possible
         therefore, simply error unless we can prove that all possible
         executions of the program must execute the code.  */
         executions of the program must execute the code.  */
      warning (0, "function called through a non-compatible type");
      warning (0, "function called through a non-compatible type");
 
 
      /* We can, however, treat "undefined" any way we please.
      /* We can, however, treat "undefined" any way we please.
         Call abort to encourage the user to fix the program.  */
         Call abort to encourage the user to fix the program.  */
      inform ("if this code is reached, the program will abort");
      inform ("if this code is reached, the program will abort");
 
 
      if (VOID_TYPE_P (return_type))
      if (VOID_TYPE_P (return_type))
        return trap;
        return trap;
      else
      else
        {
        {
          tree rhs;
          tree rhs;
 
 
          if (AGGREGATE_TYPE_P (return_type))
          if (AGGREGATE_TYPE_P (return_type))
            rhs = build_compound_literal (return_type,
            rhs = build_compound_literal (return_type,
                                          build_constructor (return_type, 0));
                                          build_constructor (return_type, 0));
          else
          else
            rhs = fold_convert (return_type, integer_zero_node);
            rhs = fold_convert (return_type, integer_zero_node);
 
 
          return build2 (COMPOUND_EXPR, return_type, trap, rhs);
          return build2 (COMPOUND_EXPR, return_type, trap, rhs);
        }
        }
    }
    }
 
 
  /* Convert the parameters to the types declared in the
  /* Convert the parameters to the types declared in the
     function prototype, or apply default promotions.  */
     function prototype, or apply default promotions.  */
 
 
  coerced_params
  coerced_params
    = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
    = convert_arguments (TYPE_ARG_TYPES (fntype), params, function, fundecl);
 
 
  if (coerced_params == error_mark_node)
  if (coerced_params == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  /* Check that the arguments to the function are valid.  */
  /* Check that the arguments to the function are valid.  */
 
 
  check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
  check_function_arguments (TYPE_ATTRIBUTES (fntype), coerced_params,
                            TYPE_ARG_TYPES (fntype));
                            TYPE_ARG_TYPES (fntype));
 
 
  if (require_constant_value)
  if (require_constant_value)
    {
    {
      result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
      result = fold_build3_initializer (CALL_EXPR, TREE_TYPE (fntype),
                                        function, coerced_params, NULL_TREE);
                                        function, coerced_params, NULL_TREE);
 
 
      if (TREE_CONSTANT (result)
      if (TREE_CONSTANT (result)
          && (name == NULL_TREE
          && (name == NULL_TREE
              || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
              || strncmp (IDENTIFIER_POINTER (name), "__builtin_", 10) != 0))
        pedwarn_init ("initializer element is not constant");
        pedwarn_init ("initializer element is not constant");
    }
    }
  else
  else
    result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
    result = fold_build3 (CALL_EXPR, TREE_TYPE (fntype),
                          function, coerced_params, NULL_TREE);
                          function, coerced_params, NULL_TREE);
 
 
  if (VOID_TYPE_P (TREE_TYPE (result)))
  if (VOID_TYPE_P (TREE_TYPE (result)))
    return result;
    return result;
  return require_complete_type (result);
  return require_complete_type (result);
}
}


/* Convert the argument expressions in the list VALUES
/* Convert the argument expressions in the list VALUES
   to the types in the list TYPELIST.  The result is a list of converted
   to the types in the list TYPELIST.  The result is a list of converted
   argument expressions, unless there are too few arguments in which
   argument expressions, unless there are too few arguments in which
   case it is error_mark_node.
   case it is error_mark_node.
 
 
   If TYPELIST is exhausted, or when an element has NULL as its type,
   If TYPELIST is exhausted, or when an element has NULL as its type,
   perform the default conversions.
   perform the default conversions.
 
 
   PARMLIST is the chain of parm decls for the function being called.
   PARMLIST is the chain of parm decls for the function being called.
   It may be 0, if that info is not available.
   It may be 0, if that info is not available.
   It is used only for generating error messages.
   It is used only for generating error messages.
 
 
   FUNCTION is a tree for the called function.  It is used only for
   FUNCTION is a tree for the called function.  It is used only for
   error messages, where it is formatted with %qE.
   error messages, where it is formatted with %qE.
 
 
   This is also where warnings about wrong number of args are generated.
   This is also where warnings about wrong number of args are generated.
 
 
   Both VALUES and the returned value are chains of TREE_LIST nodes
   Both VALUES and the returned value are chains of TREE_LIST nodes
   with the elements of the list in the TREE_VALUE slots of those nodes.  */
   with the elements of the list in the TREE_VALUE slots of those nodes.  */
 
 
static tree
static tree
convert_arguments (tree typelist, tree values, tree function, tree fundecl)
convert_arguments (tree typelist, tree values, tree function, tree fundecl)
{
{
  tree typetail, valtail;
  tree typetail, valtail;
  tree result = NULL;
  tree result = NULL;
  int parmnum;
  int parmnum;
  tree selector;
  tree selector;
 
 
  /* Change pointer to function to the function itself for
  /* Change pointer to function to the function itself for
     diagnostics.  */
     diagnostics.  */
  if (TREE_CODE (function) == ADDR_EXPR
  if (TREE_CODE (function) == ADDR_EXPR
      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
      && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
    function = TREE_OPERAND (function, 0);
    function = TREE_OPERAND (function, 0);
 
 
  /* Handle an ObjC selector specially for diagnostics.  */
  /* Handle an ObjC selector specially for diagnostics.  */
  selector = objc_message_selector ();
  selector = objc_message_selector ();
 
 
  /* Scan the given expressions and types, producing individual
  /* Scan the given expressions and types, producing individual
     converted arguments and pushing them on RESULT in reverse order.  */
     converted arguments and pushing them on RESULT in reverse order.  */
 
 
  for (valtail = values, typetail = typelist, parmnum = 0;
  for (valtail = values, typetail = typelist, parmnum = 0;
       valtail;
       valtail;
       valtail = TREE_CHAIN (valtail), parmnum++)
       valtail = TREE_CHAIN (valtail), parmnum++)
    {
    {
      tree type = typetail ? TREE_VALUE (typetail) : 0;
      tree type = typetail ? TREE_VALUE (typetail) : 0;
      tree val = TREE_VALUE (valtail);
      tree val = TREE_VALUE (valtail);
      tree rname = function;
      tree rname = function;
      int argnum = parmnum + 1;
      int argnum = parmnum + 1;
      const char *invalid_func_diag;
      const char *invalid_func_diag;
 
 
      if (type == void_type_node)
      if (type == void_type_node)
        {
        {
          error ("too many arguments to function %qE", function);
          error ("too many arguments to function %qE", function);
          break;
          break;
        }
        }
 
 
      if (selector && argnum > 2)
      if (selector && argnum > 2)
        {
        {
          rname = selector;
          rname = selector;
          argnum -= 2;
          argnum -= 2;
        }
        }
 
 
      STRIP_TYPE_NOPS (val);
      STRIP_TYPE_NOPS (val);
 
 
      val = require_complete_type (val);
      val = require_complete_type (val);
 
 
      if (type != 0)
      if (type != 0)
        {
        {
          /* Formal parm type is specified by a function prototype.  */
          /* Formal parm type is specified by a function prototype.  */
          tree parmval;
          tree parmval;
 
 
          if (type == error_mark_node || !COMPLETE_TYPE_P (type))
          if (type == error_mark_node || !COMPLETE_TYPE_P (type))
            {
            {
              error ("type of formal parameter %d is incomplete", parmnum + 1);
              error ("type of formal parameter %d is incomplete", parmnum + 1);
              parmval = val;
              parmval = val;
            }
            }
          else
          else
            {
            {
              /* Optionally warn about conversions that
              /* Optionally warn about conversions that
                 differ from the default conversions.  */
                 differ from the default conversions.  */
              if (warn_conversion || warn_traditional)
              if (warn_conversion || warn_traditional)
                {
                {
                  unsigned int formal_prec = TYPE_PRECISION (type);
                  unsigned int formal_prec = TYPE_PRECISION (type);
 
 
                  if (INTEGRAL_TYPE_P (type)
                  if (INTEGRAL_TYPE_P (type)
                      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
                      && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
                    warning (0, "passing argument %d of %qE as integer "
                    warning (0, "passing argument %d of %qE as integer "
                             "rather than floating due to prototype",
                             "rather than floating due to prototype",
                             argnum, rname);
                             argnum, rname);
                  if (INTEGRAL_TYPE_P (type)
                  if (INTEGRAL_TYPE_P (type)
                      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
                      && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
                    warning (0, "passing argument %d of %qE as integer "
                    warning (0, "passing argument %d of %qE as integer "
                             "rather than complex due to prototype",
                             "rather than complex due to prototype",
                             argnum, rname);
                             argnum, rname);
                  else if (TREE_CODE (type) == COMPLEX_TYPE
                  else if (TREE_CODE (type) == COMPLEX_TYPE
                           && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
                           && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
                    warning (0, "passing argument %d of %qE as complex "
                    warning (0, "passing argument %d of %qE as complex "
                             "rather than floating due to prototype",
                             "rather than floating due to prototype",
                             argnum, rname);
                             argnum, rname);
                  else if (TREE_CODE (type) == REAL_TYPE
                  else if (TREE_CODE (type) == REAL_TYPE
                           && INTEGRAL_TYPE_P (TREE_TYPE (val)))
                           && INTEGRAL_TYPE_P (TREE_TYPE (val)))
                    warning (0, "passing argument %d of %qE as floating "
                    warning (0, "passing argument %d of %qE as floating "
                             "rather than integer due to prototype",
                             "rather than integer due to prototype",
                             argnum, rname);
                             argnum, rname);
                  else if (TREE_CODE (type) == COMPLEX_TYPE
                  else if (TREE_CODE (type) == COMPLEX_TYPE
                           && INTEGRAL_TYPE_P (TREE_TYPE (val)))
                           && INTEGRAL_TYPE_P (TREE_TYPE (val)))
                    warning (0, "passing argument %d of %qE as complex "
                    warning (0, "passing argument %d of %qE as complex "
                             "rather than integer due to prototype",
                             "rather than integer due to prototype",
                             argnum, rname);
                             argnum, rname);
                  else if (TREE_CODE (type) == REAL_TYPE
                  else if (TREE_CODE (type) == REAL_TYPE
                           && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
                           && TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
                    warning (0, "passing argument %d of %qE as floating "
                    warning (0, "passing argument %d of %qE as floating "
                             "rather than complex due to prototype",
                             "rather than complex due to prototype",
                             argnum, rname);
                             argnum, rname);
                  /* ??? At some point, messages should be written about
                  /* ??? At some point, messages should be written about
                     conversions between complex types, but that's too messy
                     conversions between complex types, but that's too messy
                     to do now.  */
                     to do now.  */
                  else if (TREE_CODE (type) == REAL_TYPE
                  else if (TREE_CODE (type) == REAL_TYPE
                           && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
                           && TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
                    {
                    {
                      /* Warn if any argument is passed as `float',
                      /* Warn if any argument is passed as `float',
                         since without a prototype it would be `double'.  */
                         since without a prototype it would be `double'.  */
                      if (formal_prec == TYPE_PRECISION (float_type_node)
                      if (formal_prec == TYPE_PRECISION (float_type_node)
                          && type != dfloat32_type_node)
                          && type != dfloat32_type_node)
                        warning (0, "passing argument %d of %qE as %<float%> "
                        warning (0, "passing argument %d of %qE as %<float%> "
                                 "rather than %<double%> due to prototype",
                                 "rather than %<double%> due to prototype",
                                 argnum, rname);
                                 argnum, rname);
 
 
                      /* Warn if mismatch between argument and prototype
                      /* Warn if mismatch between argument and prototype
                         for decimal float types.  Warn of conversions with
                         for decimal float types.  Warn of conversions with
                         binary float types and of precision narrowing due to
                         binary float types and of precision narrowing due to
                         prototype. */
                         prototype. */
                      else if (type != TREE_TYPE (val)
                      else if (type != TREE_TYPE (val)
                               && (type == dfloat32_type_node
                               && (type == dfloat32_type_node
                                   || type == dfloat64_type_node
                                   || type == dfloat64_type_node
                                   || type == dfloat128_type_node
                                   || type == dfloat128_type_node
                                   || TREE_TYPE (val) == dfloat32_type_node
                                   || TREE_TYPE (val) == dfloat32_type_node
                                   || TREE_TYPE (val) == dfloat64_type_node
                                   || TREE_TYPE (val) == dfloat64_type_node
                                   || TREE_TYPE (val) == dfloat128_type_node)
                                   || TREE_TYPE (val) == dfloat128_type_node)
                               && (formal_prec
                               && (formal_prec
                                   <= TYPE_PRECISION (TREE_TYPE (val))
                                   <= TYPE_PRECISION (TREE_TYPE (val))
                                   || (type == dfloat128_type_node
                                   || (type == dfloat128_type_node
                                       && (TREE_TYPE (val)
                                       && (TREE_TYPE (val)
                                           != dfloat64_type_node
                                           != dfloat64_type_node
                                           && (TREE_TYPE (val)
                                           && (TREE_TYPE (val)
                                               != dfloat32_type_node)))
                                               != dfloat32_type_node)))
                                   || (type == dfloat64_type_node
                                   || (type == dfloat64_type_node
                                       && (TREE_TYPE (val)
                                       && (TREE_TYPE (val)
                                           != dfloat32_type_node))))
                                           != dfloat32_type_node))))
                        warning (0, "passing argument %d of %qE as %qT "
                        warning (0, "passing argument %d of %qE as %qT "
                                 "rather than %qT due to prototype",
                                 "rather than %qT due to prototype",
                                 argnum, rname, type, TREE_TYPE (val));
                                 argnum, rname, type, TREE_TYPE (val));
 
 
                    }
                    }
                  /* Detect integer changing in width or signedness.
                  /* Detect integer changing in width or signedness.
                     These warnings are only activated with
                     These warnings are only activated with
                     -Wconversion, not with -Wtraditional.  */
                     -Wconversion, not with -Wtraditional.  */
                  else if (warn_conversion && INTEGRAL_TYPE_P (type)
                  else if (warn_conversion && INTEGRAL_TYPE_P (type)
                           && INTEGRAL_TYPE_P (TREE_TYPE (val)))
                           && INTEGRAL_TYPE_P (TREE_TYPE (val)))
                    {
                    {
                      tree would_have_been = default_conversion (val);
                      tree would_have_been = default_conversion (val);
                      tree type1 = TREE_TYPE (would_have_been);
                      tree type1 = TREE_TYPE (would_have_been);
 
 
                      if (TREE_CODE (type) == ENUMERAL_TYPE
                      if (TREE_CODE (type) == ENUMERAL_TYPE
                          && (TYPE_MAIN_VARIANT (type)
                          && (TYPE_MAIN_VARIANT (type)
                              == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
                              == TYPE_MAIN_VARIANT (TREE_TYPE (val))))
                        /* No warning if function asks for enum
                        /* No warning if function asks for enum
                           and the actual arg is that enum type.  */
                           and the actual arg is that enum type.  */
                        ;
                        ;
                      else if (formal_prec != TYPE_PRECISION (type1))
                      else if (formal_prec != TYPE_PRECISION (type1))
                        warning (OPT_Wconversion, "passing argument %d of %qE "
                        warning (OPT_Wconversion, "passing argument %d of %qE "
                                 "with different width due to prototype",
                                 "with different width due to prototype",
                                 argnum, rname);
                                 argnum, rname);
                      else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
                      else if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (type1))
                        ;
                        ;
                      /* Don't complain if the formal parameter type
                      /* Don't complain if the formal parameter type
                         is an enum, because we can't tell now whether
                         is an enum, because we can't tell now whether
                         the value was an enum--even the same enum.  */
                         the value was an enum--even the same enum.  */
                      else if (TREE_CODE (type) == ENUMERAL_TYPE)
                      else if (TREE_CODE (type) == ENUMERAL_TYPE)
                        ;
                        ;
                      else if (TREE_CODE (val) == INTEGER_CST
                      else if (TREE_CODE (val) == INTEGER_CST
                               && int_fits_type_p (val, type))
                               && int_fits_type_p (val, type))
                        /* Change in signedness doesn't matter
                        /* Change in signedness doesn't matter
                           if a constant value is unaffected.  */
                           if a constant value is unaffected.  */
                        ;
                        ;
                      /* If the value is extended from a narrower
                      /* If the value is extended from a narrower
                         unsigned type, it doesn't matter whether we
                         unsigned type, it doesn't matter whether we
                         pass it as signed or unsigned; the value
                         pass it as signed or unsigned; the value
                         certainly is the same either way.  */
                         certainly is the same either way.  */
                      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
                      else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
                               && TYPE_UNSIGNED (TREE_TYPE (val)))
                               && TYPE_UNSIGNED (TREE_TYPE (val)))
                        ;
                        ;
                      else if (TYPE_UNSIGNED (type))
                      else if (TYPE_UNSIGNED (type))
                        warning (OPT_Wconversion, "passing argument %d of %qE "
                        warning (OPT_Wconversion, "passing argument %d of %qE "
                                 "as unsigned due to prototype",
                                 "as unsigned due to prototype",
                                 argnum, rname);
                                 argnum, rname);
                      else
                      else
                        warning (OPT_Wconversion, "passing argument %d of %qE "
                        warning (OPT_Wconversion, "passing argument %d of %qE "
                                 "as signed due to prototype", argnum, rname);
                                 "as signed due to prototype", argnum, rname);
                    }
                    }
                }
                }
 
 
              parmval = convert_for_assignment (type, val, ic_argpass,
              parmval = convert_for_assignment (type, val, ic_argpass,
                                                fundecl, function,
                                                fundecl, function,
                                                parmnum + 1);
                                                parmnum + 1);
 
 
              if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
              if (targetm.calls.promote_prototypes (fundecl ? TREE_TYPE (fundecl) : 0)
                  && INTEGRAL_TYPE_P (type)
                  && INTEGRAL_TYPE_P (type)
                  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
                  && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
                parmval = default_conversion (parmval);
                parmval = default_conversion (parmval);
            }
            }
          result = tree_cons (NULL_TREE, parmval, result);
          result = tree_cons (NULL_TREE, parmval, result);
        }
        }
      else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
      else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
               && (TYPE_PRECISION (TREE_TYPE (val))
               && (TYPE_PRECISION (TREE_TYPE (val))
                   < TYPE_PRECISION (double_type_node))
                   < TYPE_PRECISION (double_type_node))
               && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
               && !DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (val))))
        /* Convert `float' to `double'.  */
        /* Convert `float' to `double'.  */
        result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
        result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
      else if ((invalid_func_diag =
      else if ((invalid_func_diag =
                targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
                targetm.calls.invalid_arg_for_unprototyped_fn (typelist, fundecl, val)))
        {
        {
          error (invalid_func_diag);
          error (invalid_func_diag);
          return error_mark_node;
          return error_mark_node;
        }
        }
      else
      else
        /* Convert `short' and `char' to full-size `int'.  */
        /* Convert `short' and `char' to full-size `int'.  */
        result = tree_cons (NULL_TREE, default_conversion (val), result);
        result = tree_cons (NULL_TREE, default_conversion (val), result);
 
 
      if (typetail)
      if (typetail)
        typetail = TREE_CHAIN (typetail);
        typetail = TREE_CHAIN (typetail);
    }
    }
 
 
  if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
  if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
    {
    {
      error ("too few arguments to function %qE", function);
      error ("too few arguments to function %qE", function);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  return nreverse (result);
  return nreverse (result);
}
}


/* This is the entry point used by the parser to build unary operators
/* This is the entry point used by the parser to build unary operators
   in the input.  CODE, a tree_code, specifies the unary operator, and
   in the input.  CODE, a tree_code, specifies the unary operator, and
   ARG is the operand.  For unary plus, the C parser currently uses
   ARG is the operand.  For unary plus, the C parser currently uses
   CONVERT_EXPR for code.  */
   CONVERT_EXPR for code.  */
 
 
struct c_expr
struct c_expr
parser_build_unary_op (enum tree_code code, struct c_expr arg)
parser_build_unary_op (enum tree_code code, struct c_expr arg)
{
{
  struct c_expr result;
  struct c_expr result;
 
 
  result.original_code = ERROR_MARK;
  result.original_code = ERROR_MARK;
  result.value = build_unary_op (code, arg.value, 0);
  result.value = build_unary_op (code, arg.value, 0);
  overflow_warning (result.value);
  overflow_warning (result.value);
  return result;
  return result;
}
}
 
 
/* This is the entry point used by the parser to build binary operators
/* This is the entry point used by the parser to build binary operators
   in the input.  CODE, a tree_code, specifies the binary operator, and
   in the input.  CODE, a tree_code, specifies the binary operator, and
   ARG1 and ARG2 are the operands.  In addition to constructing the
   ARG1 and ARG2 are the operands.  In addition to constructing the
   expression, we check for operands that were written with other binary
   expression, we check for operands that were written with other binary
   operators in a way that is likely to confuse the user.  */
   operators in a way that is likely to confuse the user.  */
 
 
struct c_expr
struct c_expr
parser_build_binary_op (enum tree_code code, struct c_expr arg1,
parser_build_binary_op (enum tree_code code, struct c_expr arg1,
                        struct c_expr arg2)
                        struct c_expr arg2)
{
{
  struct c_expr result;
  struct c_expr result;
 
 
  enum tree_code code1 = arg1.original_code;
  enum tree_code code1 = arg1.original_code;
  enum tree_code code2 = arg2.original_code;
  enum tree_code code2 = arg2.original_code;
 
 
  result.value = build_binary_op (code, arg1.value, arg2.value, 1);
  result.value = build_binary_op (code, arg1.value, arg2.value, 1);
  result.original_code = code;
  result.original_code = code;
 
 
  if (TREE_CODE (result.value) == ERROR_MARK)
  if (TREE_CODE (result.value) == ERROR_MARK)
    return result;
    return result;
 
 
  /* Check for cases such as x+y<<z which users are likely
  /* Check for cases such as x+y<<z which users are likely
     to misinterpret.  */
     to misinterpret.  */
  if (warn_parentheses)
  if (warn_parentheses)
    {
    {
      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
      if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
        {
        {
          if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
          if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
              || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
              || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
            warning (OPT_Wparentheses,
            warning (OPT_Wparentheses,
                     "suggest parentheses around + or - inside shift");
                     "suggest parentheses around + or - inside shift");
        }
        }
 
 
      if (code == TRUTH_ORIF_EXPR)
      if (code == TRUTH_ORIF_EXPR)
        {
        {
          if (code1 == TRUTH_ANDIF_EXPR
          if (code1 == TRUTH_ANDIF_EXPR
              || code2 == TRUTH_ANDIF_EXPR)
              || code2 == TRUTH_ANDIF_EXPR)
            warning (OPT_Wparentheses,
            warning (OPT_Wparentheses,
                     "suggest parentheses around && within ||");
                     "suggest parentheses around && within ||");
        }
        }
 
 
      if (code == BIT_IOR_EXPR)
      if (code == BIT_IOR_EXPR)
        {
        {
          if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
          if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
              || code1 == PLUS_EXPR || code1 == MINUS_EXPR
              || code1 == PLUS_EXPR || code1 == MINUS_EXPR
              || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
              || code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
              || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
              || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
            warning (OPT_Wparentheses,
            warning (OPT_Wparentheses,
                     "suggest parentheses around arithmetic in operand of |");
                     "suggest parentheses around arithmetic in operand of |");
          /* Check cases like x|y==z */
          /* Check cases like x|y==z */
          if (TREE_CODE_CLASS (code1) == tcc_comparison
          if (TREE_CODE_CLASS (code1) == tcc_comparison
              || TREE_CODE_CLASS (code2) == tcc_comparison)
              || TREE_CODE_CLASS (code2) == tcc_comparison)
            warning (OPT_Wparentheses,
            warning (OPT_Wparentheses,
                     "suggest parentheses around comparison in operand of |");
                     "suggest parentheses around comparison in operand of |");
        }
        }
 
 
      if (code == BIT_XOR_EXPR)
      if (code == BIT_XOR_EXPR)
        {
        {
          if (code1 == BIT_AND_EXPR
          if (code1 == BIT_AND_EXPR
              || code1 == PLUS_EXPR || code1 == MINUS_EXPR
              || code1 == PLUS_EXPR || code1 == MINUS_EXPR
              || code2 == BIT_AND_EXPR
              || code2 == BIT_AND_EXPR
              || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
              || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
            warning (OPT_Wparentheses,
            warning (OPT_Wparentheses,
                     "suggest parentheses around arithmetic in operand of ^");
                     "suggest parentheses around arithmetic in operand of ^");
          /* Check cases like x^y==z */
          /* Check cases like x^y==z */
          if (TREE_CODE_CLASS (code1) == tcc_comparison
          if (TREE_CODE_CLASS (code1) == tcc_comparison
              || TREE_CODE_CLASS (code2) == tcc_comparison)
              || TREE_CODE_CLASS (code2) == tcc_comparison)
            warning (OPT_Wparentheses,
            warning (OPT_Wparentheses,
                     "suggest parentheses around comparison in operand of ^");
                     "suggest parentheses around comparison in operand of ^");
        }
        }
 
 
      if (code == BIT_AND_EXPR)
      if (code == BIT_AND_EXPR)
        {
        {
          if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
          if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
              || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
              || code2 == PLUS_EXPR || code2 == MINUS_EXPR)
            warning (OPT_Wparentheses,
            warning (OPT_Wparentheses,
                     "suggest parentheses around + or - in operand of &");
                     "suggest parentheses around + or - in operand of &");
          /* Check cases like x&y==z */
          /* Check cases like x&y==z */
          if (TREE_CODE_CLASS (code1) == tcc_comparison
          if (TREE_CODE_CLASS (code1) == tcc_comparison
              || TREE_CODE_CLASS (code2) == tcc_comparison)
              || TREE_CODE_CLASS (code2) == tcc_comparison)
            warning (OPT_Wparentheses,
            warning (OPT_Wparentheses,
                     "suggest parentheses around comparison in operand of &");
                     "suggest parentheses around comparison in operand of &");
        }
        }
      /* Similarly, check for cases like 1<=i<=10 that are probably errors.  */
      /* Similarly, check for cases like 1<=i<=10 that are probably errors.  */
      if (TREE_CODE_CLASS (code) == tcc_comparison
      if (TREE_CODE_CLASS (code) == tcc_comparison
          && (TREE_CODE_CLASS (code1) == tcc_comparison
          && (TREE_CODE_CLASS (code1) == tcc_comparison
              || TREE_CODE_CLASS (code2) == tcc_comparison))
              || TREE_CODE_CLASS (code2) == tcc_comparison))
        warning (OPT_Wparentheses, "comparisons like X<=Y<=Z do not "
        warning (OPT_Wparentheses, "comparisons like X<=Y<=Z do not "
                 "have their mathematical meaning");
                 "have their mathematical meaning");
 
 
    }
    }
 
 
  /* Warn about comparisons against string literals, with the exception
  /* Warn about comparisons against string literals, with the exception
     of testing for equality or inequality of a string literal with NULL.  */
     of testing for equality or inequality of a string literal with NULL.  */
  if (code == EQ_EXPR || code == NE_EXPR)
  if (code == EQ_EXPR || code == NE_EXPR)
    {
    {
      if ((code1 == STRING_CST && !integer_zerop (arg2.value))
      if ((code1 == STRING_CST && !integer_zerop (arg2.value))
          || (code2 == STRING_CST && !integer_zerop (arg1.value)))
          || (code2 == STRING_CST && !integer_zerop (arg1.value)))
        warning (OPT_Waddress,
        warning (OPT_Waddress,
                 "comparison with string literal results in unspecified behaviour");
                 "comparison with string literal results in unspecified behaviour");
    }
    }
  else if (TREE_CODE_CLASS (code) == tcc_comparison
  else if (TREE_CODE_CLASS (code) == tcc_comparison
           && (code1 == STRING_CST || code2 == STRING_CST))
           && (code1 == STRING_CST || code2 == STRING_CST))
    warning (OPT_Waddress,
    warning (OPT_Waddress,
             "comparison with string literal results in unspecified behaviour");
             "comparison with string literal results in unspecified behaviour");
 
 
  overflow_warning (result.value);
  overflow_warning (result.value);
 
 
  return result;
  return result;
}
}


/* Return a tree for the difference of pointers OP0 and OP1.
/* Return a tree for the difference of pointers OP0 and OP1.
   The resulting tree has type int.  */
   The resulting tree has type int.  */
 
 
static tree
static tree
pointer_diff (tree op0, tree op1)
pointer_diff (tree op0, tree op1)
{
{
  tree restype = ptrdiff_type_node;
  tree restype = ptrdiff_type_node;
 
 
  tree target_type = TREE_TYPE (TREE_TYPE (op0));
  tree target_type = TREE_TYPE (TREE_TYPE (op0));
  tree con0, con1, lit0, lit1;
  tree con0, con1, lit0, lit1;
  tree orig_op1 = op1;
  tree orig_op1 = op1;
 
 
  if (pedantic || warn_pointer_arith)
  if (pedantic || warn_pointer_arith)
    {
    {
      if (TREE_CODE (target_type) == VOID_TYPE)
      if (TREE_CODE (target_type) == VOID_TYPE)
        pedwarn ("pointer of type %<void *%> used in subtraction");
        pedwarn ("pointer of type %<void *%> used in subtraction");
      if (TREE_CODE (target_type) == FUNCTION_TYPE)
      if (TREE_CODE (target_type) == FUNCTION_TYPE)
        pedwarn ("pointer to a function used in subtraction");
        pedwarn ("pointer to a function used in subtraction");
    }
    }
 
 
  /* If the conversion to ptrdiff_type does anything like widening or
  /* If the conversion to ptrdiff_type does anything like widening or
     converting a partial to an integral mode, we get a convert_expression
     converting a partial to an integral mode, we get a convert_expression
     that is in the way to do any simplifications.
     that is in the way to do any simplifications.
     (fold-const.c doesn't know that the extra bits won't be needed.
     (fold-const.c doesn't know that the extra bits won't be needed.
     split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
     split_tree uses STRIP_SIGN_NOPS, which leaves conversions to a
     different mode in place.)
     different mode in place.)
     So first try to find a common term here 'by hand'; we want to cover
     So first try to find a common term here 'by hand'; we want to cover
     at least the cases that occur in legal static initializers.  */
     at least the cases that occur in legal static initializers.  */
  if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
  if ((TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == CONVERT_EXPR)
      && (TYPE_PRECISION (TREE_TYPE (op0))
      && (TYPE_PRECISION (TREE_TYPE (op0))
          == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
          == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
    con0 = TREE_OPERAND (op0, 0);
    con0 = TREE_OPERAND (op0, 0);
  else
  else
    con0 = op0;
    con0 = op0;
  if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
  if ((TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == CONVERT_EXPR)
      && (TYPE_PRECISION (TREE_TYPE (op1))
      && (TYPE_PRECISION (TREE_TYPE (op1))
          == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
          == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))))
    con1 = TREE_OPERAND (op1, 0);
    con1 = TREE_OPERAND (op1, 0);
  else
  else
    con1 = op1;
    con1 = op1;
 
 
  if (TREE_CODE (con0) == PLUS_EXPR)
  if (TREE_CODE (con0) == PLUS_EXPR)
    {
    {
      lit0 = TREE_OPERAND (con0, 1);
      lit0 = TREE_OPERAND (con0, 1);
      con0 = TREE_OPERAND (con0, 0);
      con0 = TREE_OPERAND (con0, 0);
    }
    }
  else
  else
    lit0 = integer_zero_node;
    lit0 = integer_zero_node;
 
 
  if (TREE_CODE (con1) == PLUS_EXPR)
  if (TREE_CODE (con1) == PLUS_EXPR)
    {
    {
      lit1 = TREE_OPERAND (con1, 1);
      lit1 = TREE_OPERAND (con1, 1);
      con1 = TREE_OPERAND (con1, 0);
      con1 = TREE_OPERAND (con1, 0);
    }
    }
  else
  else
    lit1 = integer_zero_node;
    lit1 = integer_zero_node;
 
 
  if (operand_equal_p (con0, con1, 0))
  if (operand_equal_p (con0, con1, 0))
    {
    {
      op0 = lit0;
      op0 = lit0;
      op1 = lit1;
      op1 = lit1;
    }
    }
 
 
 
 
  /* First do the subtraction as integers;
  /* First do the subtraction as integers;
     then drop through to build the divide operator.
     then drop through to build the divide operator.
     Do not do default conversions on the minus operator
     Do not do default conversions on the minus operator
     in case restype is a short type.  */
     in case restype is a short type.  */
 
 
  op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
  op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
                         convert (restype, op1), 0);
                         convert (restype, op1), 0);
  /* This generates an error if op1 is pointer to incomplete type.  */
  /* This generates an error if op1 is pointer to incomplete type.  */
  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
  if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (TREE_TYPE (orig_op1))))
    error ("arithmetic on pointer to an incomplete type");
    error ("arithmetic on pointer to an incomplete type");
 
 
  /* This generates an error if op0 is pointer to incomplete type.  */
  /* This generates an error if op0 is pointer to incomplete type.  */
  op1 = c_size_in_bytes (target_type);
  op1 = c_size_in_bytes (target_type);
 
 
  /* Divide by the size, in easiest possible way.  */
  /* Divide by the size, in easiest possible way.  */
  return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
  return fold_build2 (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
}
}


/* Construct and perhaps optimize a tree representation
/* Construct and perhaps optimize a tree representation
   for a unary operation.  CODE, a tree_code, specifies the operation
   for a unary operation.  CODE, a tree_code, specifies the operation
   and XARG is the operand.
   and XARG is the operand.
   For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
   For any CODE other than ADDR_EXPR, FLAG nonzero suppresses
   the default promotions (such as from short to int).
   the default promotions (such as from short to int).
   For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
   For ADDR_EXPR, the default promotions are not applied; FLAG nonzero
   allows non-lvalues; this is only used to handle conversion of non-lvalue
   allows non-lvalues; this is only used to handle conversion of non-lvalue
   arrays to pointers in C99.  */
   arrays to pointers in C99.  */
 
 
tree
tree
build_unary_op (enum tree_code code, tree xarg, int flag)
build_unary_op (enum tree_code code, tree xarg, int flag)
{
{
  /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
  /* No default_conversion here.  It causes trouble for ADDR_EXPR.  */
  tree arg = xarg;
  tree arg = xarg;
  tree argtype = 0;
  tree argtype = 0;
  enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
  enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
  tree val;
  tree val;
  int noconvert = flag;
  int noconvert = flag;
  const char *invalid_op_diag;
  const char *invalid_op_diag;
 
 
  if (typecode == ERROR_MARK)
  if (typecode == ERROR_MARK)
    return error_mark_node;
    return error_mark_node;
  if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
  if (typecode == ENUMERAL_TYPE || typecode == BOOLEAN_TYPE)
    typecode = INTEGER_TYPE;
    typecode = INTEGER_TYPE;
 
 
  if ((invalid_op_diag
  if ((invalid_op_diag
       = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
       = targetm.invalid_unary_op (code, TREE_TYPE (xarg))))
    {
    {
      error (invalid_op_diag);
      error (invalid_op_diag);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  switch (code)
  switch (code)
    {
    {
    case CONVERT_EXPR:
    case CONVERT_EXPR:
      /* This is used for unary plus, because a CONVERT_EXPR
      /* This is used for unary plus, because a CONVERT_EXPR
         is enough to prevent anybody from looking inside for
         is enough to prevent anybody from looking inside for
         associativity, but won't generate any code.  */
         associativity, but won't generate any code.  */
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
            || typecode == COMPLEX_TYPE
            || typecode == COMPLEX_TYPE
            || typecode == VECTOR_TYPE))
            || typecode == VECTOR_TYPE))
        {
        {
          error ("wrong type argument to unary plus");
          error ("wrong type argument to unary plus");
          return error_mark_node;
          return error_mark_node;
        }
        }
      else if (!noconvert)
      else if (!noconvert)
        arg = default_conversion (arg);
        arg = default_conversion (arg);
      arg = non_lvalue (arg);
      arg = non_lvalue (arg);
      break;
      break;
 
 
    case NEGATE_EXPR:
    case NEGATE_EXPR:
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
            || typecode == COMPLEX_TYPE
            || typecode == COMPLEX_TYPE
            || typecode == VECTOR_TYPE))
            || typecode == VECTOR_TYPE))
        {
        {
          error ("wrong type argument to unary minus");
          error ("wrong type argument to unary minus");
          return error_mark_node;
          return error_mark_node;
        }
        }
      else if (!noconvert)
      else if (!noconvert)
        arg = default_conversion (arg);
        arg = default_conversion (arg);
      break;
      break;
 
 
    case BIT_NOT_EXPR:
    case BIT_NOT_EXPR:
      if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
      if (typecode == INTEGER_TYPE || typecode == VECTOR_TYPE)
        {
        {
          if (!noconvert)
          if (!noconvert)
            arg = default_conversion (arg);
            arg = default_conversion (arg);
        }
        }
      else if (typecode == COMPLEX_TYPE)
      else if (typecode == COMPLEX_TYPE)
        {
        {
          code = CONJ_EXPR;
          code = CONJ_EXPR;
          if (pedantic)
          if (pedantic)
            pedwarn ("ISO C does not support %<~%> for complex conjugation");
            pedwarn ("ISO C does not support %<~%> for complex conjugation");
          if (!noconvert)
          if (!noconvert)
            arg = default_conversion (arg);
            arg = default_conversion (arg);
        }
        }
      else
      else
        {
        {
          error ("wrong type argument to bit-complement");
          error ("wrong type argument to bit-complement");
          return error_mark_node;
          return error_mark_node;
        }
        }
      break;
      break;
 
 
    case ABS_EXPR:
    case ABS_EXPR:
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE))
        {
        {
          error ("wrong type argument to abs");
          error ("wrong type argument to abs");
          return error_mark_node;
          return error_mark_node;
        }
        }
      else if (!noconvert)
      else if (!noconvert)
        arg = default_conversion (arg);
        arg = default_conversion (arg);
      break;
      break;
 
 
    case CONJ_EXPR:
    case CONJ_EXPR:
      /* Conjugating a real value is a no-op, but allow it anyway.  */
      /* Conjugating a real value is a no-op, but allow it anyway.  */
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
      if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
            || typecode == COMPLEX_TYPE))
            || typecode == COMPLEX_TYPE))
        {
        {
          error ("wrong type argument to conjugation");
          error ("wrong type argument to conjugation");
          return error_mark_node;
          return error_mark_node;
        }
        }
      else if (!noconvert)
      else if (!noconvert)
        arg = default_conversion (arg);
        arg = default_conversion (arg);
      break;
      break;
 
 
    case TRUTH_NOT_EXPR:
    case TRUTH_NOT_EXPR:
      if (typecode != INTEGER_TYPE
      if (typecode != INTEGER_TYPE
          && typecode != REAL_TYPE && typecode != POINTER_TYPE
          && typecode != REAL_TYPE && typecode != POINTER_TYPE
          && typecode != COMPLEX_TYPE)
          && typecode != COMPLEX_TYPE)
        {
        {
          error ("wrong type argument to unary exclamation mark");
          error ("wrong type argument to unary exclamation mark");
          return error_mark_node;
          return error_mark_node;
        }
        }
      arg = c_objc_common_truthvalue_conversion (arg);
      arg = c_objc_common_truthvalue_conversion (arg);
      return invert_truthvalue (arg);
      return invert_truthvalue (arg);
 
 
    case REALPART_EXPR:
    case REALPART_EXPR:
      if (TREE_CODE (arg) == COMPLEX_CST)
      if (TREE_CODE (arg) == COMPLEX_CST)
        return TREE_REALPART (arg);
        return TREE_REALPART (arg);
      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
        return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
        return fold_build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
      else
      else
        return arg;
        return arg;
 
 
    case IMAGPART_EXPR:
    case IMAGPART_EXPR:
      if (TREE_CODE (arg) == COMPLEX_CST)
      if (TREE_CODE (arg) == COMPLEX_CST)
        return TREE_IMAGPART (arg);
        return TREE_IMAGPART (arg);
      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
      else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
        return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
        return fold_build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg);
      else
      else
        return convert (TREE_TYPE (arg), integer_zero_node);
        return convert (TREE_TYPE (arg), integer_zero_node);
 
 
    case PREINCREMENT_EXPR:
    case PREINCREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case POSTDECREMENT_EXPR:
 
 
      /* Increment or decrement the real part of the value,
      /* Increment or decrement the real part of the value,
         and don't change the imaginary part.  */
         and don't change the imaginary part.  */
      if (typecode == COMPLEX_TYPE)
      if (typecode == COMPLEX_TYPE)
        {
        {
          tree real, imag;
          tree real, imag;
 
 
          if (pedantic)
          if (pedantic)
            pedwarn ("ISO C does not support %<++%> and %<--%>"
            pedwarn ("ISO C does not support %<++%> and %<--%>"
                     " on complex types");
                     " on complex types");
 
 
          arg = stabilize_reference (arg);
          arg = stabilize_reference (arg);
          real = build_unary_op (REALPART_EXPR, arg, 1);
          real = build_unary_op (REALPART_EXPR, arg, 1);
          imag = build_unary_op (IMAGPART_EXPR, arg, 1);
          imag = build_unary_op (IMAGPART_EXPR, arg, 1);
          return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
          return build2 (COMPLEX_EXPR, TREE_TYPE (arg),
                         build_unary_op (code, real, 1), imag);
                         build_unary_op (code, real, 1), imag);
        }
        }
 
 
      /* Report invalid types.  */
      /* Report invalid types.  */
 
 
      if (typecode != POINTER_TYPE
      if (typecode != POINTER_TYPE
          && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
          && typecode != INTEGER_TYPE && typecode != REAL_TYPE)
        {
        {
          if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
          if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
            error ("wrong type argument to increment");
            error ("wrong type argument to increment");
          else
          else
            error ("wrong type argument to decrement");
            error ("wrong type argument to decrement");
 
 
          return error_mark_node;
          return error_mark_node;
        }
        }
 
 
      {
      {
        tree inc;
        tree inc;
        tree result_type = TREE_TYPE (arg);
        tree result_type = TREE_TYPE (arg);
 
 
        arg = get_unwidened (arg, 0);
        arg = get_unwidened (arg, 0);
        argtype = TREE_TYPE (arg);
        argtype = TREE_TYPE (arg);
 
 
        /* Compute the increment.  */
        /* Compute the increment.  */
 
 
        if (typecode == POINTER_TYPE)
        if (typecode == POINTER_TYPE)
          {
          {
            /* If pointer target is an undefined struct,
            /* If pointer target is an undefined struct,
               we just cannot know how to do the arithmetic.  */
               we just cannot know how to do the arithmetic.  */
            if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
            if (!COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (result_type)))
              {
              {
                if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
                if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
                  error ("increment of pointer to unknown structure");
                  error ("increment of pointer to unknown structure");
                else
                else
                  error ("decrement of pointer to unknown structure");
                  error ("decrement of pointer to unknown structure");
              }
              }
            else if ((pedantic || warn_pointer_arith)
            else if ((pedantic || warn_pointer_arith)
                     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
                     && (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
                         || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
                         || TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
              {
              {
                if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
                if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
                  pedwarn ("wrong type argument to increment");
                  pedwarn ("wrong type argument to increment");
                else
                else
                  pedwarn ("wrong type argument to decrement");
                  pedwarn ("wrong type argument to decrement");
              }
              }
 
 
            inc = c_size_in_bytes (TREE_TYPE (result_type));
            inc = c_size_in_bytes (TREE_TYPE (result_type));
          }
          }
        else
        else
          inc = integer_one_node;
          inc = integer_one_node;
 
 
        inc = convert (argtype, inc);
        inc = convert (argtype, inc);
 
 
        /* Complain about anything else that is not a true lvalue.  */
        /* Complain about anything else that is not a true lvalue.  */
        if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
        if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
                                    || code == POSTINCREMENT_EXPR)
                                    || code == POSTINCREMENT_EXPR)
                                   ? lv_increment
                                   ? lv_increment
                                   : lv_decrement)))
                                   : lv_decrement)))
          return error_mark_node;
          return error_mark_node;
 
 
        /* Report a read-only lvalue.  */
        /* Report a read-only lvalue.  */
        if (TREE_READONLY (arg))
        if (TREE_READONLY (arg))
          {
          {
            readonly_error (arg,
            readonly_error (arg,
                            ((code == PREINCREMENT_EXPR
                            ((code == PREINCREMENT_EXPR
                              || code == POSTINCREMENT_EXPR)
                              || code == POSTINCREMENT_EXPR)
                             ? lv_increment : lv_decrement));
                             ? lv_increment : lv_decrement));
            return error_mark_node;
            return error_mark_node;
          }
          }
 
 
        if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
        if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
          val = boolean_increment (code, arg);
          val = boolean_increment (code, arg);
        else
        else
          val = build2 (code, TREE_TYPE (arg), arg, inc);
          val = build2 (code, TREE_TYPE (arg), arg, inc);
        TREE_SIDE_EFFECTS (val) = 1;
        TREE_SIDE_EFFECTS (val) = 1;
        val = convert (result_type, val);
        val = convert (result_type, val);
        if (TREE_CODE (val) != code)
        if (TREE_CODE (val) != code)
          TREE_NO_WARNING (val) = 1;
          TREE_NO_WARNING (val) = 1;
        return val;
        return val;
      }
      }
 
 
    case ADDR_EXPR:
    case ADDR_EXPR:
      /* Note that this operation never does default_conversion.  */
      /* Note that this operation never does default_conversion.  */
 
 
      /* Let &* cancel out to simplify resulting code.  */
      /* Let &* cancel out to simplify resulting code.  */
      if (TREE_CODE (arg) == INDIRECT_REF)
      if (TREE_CODE (arg) == INDIRECT_REF)
        {
        {
          /* Don't let this be an lvalue.  */
          /* Don't let this be an lvalue.  */
          if (lvalue_p (TREE_OPERAND (arg, 0)))
          if (lvalue_p (TREE_OPERAND (arg, 0)))
            return non_lvalue (TREE_OPERAND (arg, 0));
            return non_lvalue (TREE_OPERAND (arg, 0));
          return TREE_OPERAND (arg, 0);
          return TREE_OPERAND (arg, 0);
        }
        }
 
 
      /* For &x[y], return x+y */
      /* For &x[y], return x+y */
      if (TREE_CODE (arg) == ARRAY_REF)
      if (TREE_CODE (arg) == ARRAY_REF)
        {
        {
          tree op0 = TREE_OPERAND (arg, 0);
          tree op0 = TREE_OPERAND (arg, 0);
          if (!c_mark_addressable (op0))
          if (!c_mark_addressable (op0))
            return error_mark_node;
            return error_mark_node;
          return build_binary_op (PLUS_EXPR,
          return build_binary_op (PLUS_EXPR,
                                  (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
                                  (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE
                                   ? array_to_pointer_conversion (op0)
                                   ? array_to_pointer_conversion (op0)
                                   : op0),
                                   : op0),
                                  TREE_OPERAND (arg, 1), 1);
                                  TREE_OPERAND (arg, 1), 1);
        }
        }
 
 
      /* Anything not already handled and not a true memory reference
      /* Anything not already handled and not a true memory reference
         or a non-lvalue array is an error.  */
         or a non-lvalue array is an error.  */
      else if (typecode != FUNCTION_TYPE && !flag
      else if (typecode != FUNCTION_TYPE && !flag
               && !lvalue_or_else (arg, lv_addressof))
               && !lvalue_or_else (arg, lv_addressof))
        return error_mark_node;
        return error_mark_node;
 
 
      /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
      /* Ordinary case; arg is a COMPONENT_REF or a decl.  */
      argtype = TREE_TYPE (arg);
      argtype = TREE_TYPE (arg);
 
 
      /* If the lvalue is const or volatile, merge that into the type
      /* If the lvalue is const or volatile, merge that into the type
         to which the address will point.  Note that you can't get a
         to which the address will point.  Note that you can't get a
         restricted pointer by taking the address of something, so we
         restricted pointer by taking the address of something, so we
         only have to deal with `const' and `volatile' here.  */
         only have to deal with `const' and `volatile' here.  */
      if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
      if ((DECL_P (arg) || REFERENCE_CLASS_P (arg))
          && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
          && (TREE_READONLY (arg) || TREE_THIS_VOLATILE (arg)))
          argtype = c_build_type_variant (argtype,
          argtype = c_build_type_variant (argtype,
                                          TREE_READONLY (arg),
                                          TREE_READONLY (arg),
                                          TREE_THIS_VOLATILE (arg));
                                          TREE_THIS_VOLATILE (arg));
 
 
      if (!c_mark_addressable (arg))
      if (!c_mark_addressable (arg))
        return error_mark_node;
        return error_mark_node;
 
 
      gcc_assert (TREE_CODE (arg) != COMPONENT_REF
      gcc_assert (TREE_CODE (arg) != COMPONENT_REF
                  || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
                  || !DECL_C_BIT_FIELD (TREE_OPERAND (arg, 1)));
 
 
      argtype = build_pointer_type (argtype);
      argtype = build_pointer_type (argtype);
 
 
      /* ??? Cope with user tricks that amount to offsetof.  Delete this
      /* ??? Cope with user tricks that amount to offsetof.  Delete this
         when we have proper support for integer constant expressions.  */
         when we have proper support for integer constant expressions.  */
      val = get_base_address (arg);
      val = get_base_address (arg);
      if (val && TREE_CODE (val) == INDIRECT_REF
      if (val && TREE_CODE (val) == INDIRECT_REF
          && TREE_CONSTANT (TREE_OPERAND (val, 0)))
          && TREE_CONSTANT (TREE_OPERAND (val, 0)))
        {
        {
          tree op0 = fold_convert (argtype, fold_offsetof (arg, val)), op1;
          tree op0 = fold_convert (argtype, fold_offsetof (arg, val)), op1;
 
 
          op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
          op1 = fold_convert (argtype, TREE_OPERAND (val, 0));
          return fold_build2 (PLUS_EXPR, argtype, op0, op1);
          return fold_build2 (PLUS_EXPR, argtype, op0, op1);
        }
        }
 
 
      val = build1 (ADDR_EXPR, argtype, arg);
      val = build1 (ADDR_EXPR, argtype, arg);
 
 
      return val;
      return val;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  if (argtype == 0)
  if (argtype == 0)
    argtype = TREE_TYPE (arg);
    argtype = TREE_TYPE (arg);
  return require_constant_value ? fold_build1_initializer (code, argtype, arg)
  return require_constant_value ? fold_build1_initializer (code, argtype, arg)
                                : fold_build1 (code, argtype, arg);
                                : fold_build1 (code, argtype, arg);
}
}
 
 
/* Return nonzero if REF is an lvalue valid for this language.
/* Return nonzero if REF is an lvalue valid for this language.
   Lvalues can be assigned, unless their type has TYPE_READONLY.
   Lvalues can be assigned, unless their type has TYPE_READONLY.
   Lvalues can have their address taken, unless they have C_DECL_REGISTER.  */
   Lvalues can have their address taken, unless they have C_DECL_REGISTER.  */
 
 
static int
static int
lvalue_p (tree ref)
lvalue_p (tree ref)
{
{
  enum tree_code code = TREE_CODE (ref);
  enum tree_code code = TREE_CODE (ref);
 
 
  switch (code)
  switch (code)
    {
    {
    case REALPART_EXPR:
    case REALPART_EXPR:
    case IMAGPART_EXPR:
    case IMAGPART_EXPR:
    case COMPONENT_REF:
    case COMPONENT_REF:
      return lvalue_p (TREE_OPERAND (ref, 0));
      return lvalue_p (TREE_OPERAND (ref, 0));
 
 
    case COMPOUND_LITERAL_EXPR:
    case COMPOUND_LITERAL_EXPR:
    case STRING_CST:
    case STRING_CST:
      return 1;
      return 1;
 
 
    case INDIRECT_REF:
    case INDIRECT_REF:
    case ARRAY_REF:
    case ARRAY_REF:
    case VAR_DECL:
    case VAR_DECL:
    case PARM_DECL:
    case PARM_DECL:
    case RESULT_DECL:
    case RESULT_DECL:
    case ERROR_MARK:
    case ERROR_MARK:
      return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
      return (TREE_CODE (TREE_TYPE (ref)) != FUNCTION_TYPE
              && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
              && TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE);
 
 
    case BIND_EXPR:
    case BIND_EXPR:
      return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
      return TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE;
 
 
    default:
    default:
      return 0;
      return 0;
    }
    }
}
}


/* Give an error for storing in something that is 'const'.  */
/* Give an error for storing in something that is 'const'.  */
 
 
static void
static void
readonly_error (tree arg, enum lvalue_use use)
readonly_error (tree arg, enum lvalue_use use)
{
{
  gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
  gcc_assert (use == lv_assign || use == lv_increment || use == lv_decrement
              || use == lv_asm);
              || use == lv_asm);
  /* Using this macro rather than (for example) arrays of messages
  /* Using this macro rather than (for example) arrays of messages
     ensures that all the format strings are checked at compile
     ensures that all the format strings are checked at compile
     time.  */
     time.  */
#define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A)               \
#define READONLY_MSG(A, I, D, AS) (use == lv_assign ? (A)               \
                                   : (use == lv_increment ? (I)         \
                                   : (use == lv_increment ? (I)         \
                                   : (use == lv_decrement ? (D) : (AS))))
                                   : (use == lv_decrement ? (D) : (AS))))
  if (TREE_CODE (arg) == COMPONENT_REF)
  if (TREE_CODE (arg) == COMPONENT_REF)
    {
    {
      if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
      if (TYPE_READONLY (TREE_TYPE (TREE_OPERAND (arg, 0))))
        readonly_error (TREE_OPERAND (arg, 0), use);
        readonly_error (TREE_OPERAND (arg, 0), use);
      else
      else
        error (READONLY_MSG (G_("assignment of read-only member %qD"),
        error (READONLY_MSG (G_("assignment of read-only member %qD"),
                             G_("increment of read-only member %qD"),
                             G_("increment of read-only member %qD"),
                             G_("decrement of read-only member %qD"),
                             G_("decrement of read-only member %qD"),
                             G_("read-only member %qD used as %<asm%> output")),
                             G_("read-only member %qD used as %<asm%> output")),
               TREE_OPERAND (arg, 1));
               TREE_OPERAND (arg, 1));
    }
    }
  else if (TREE_CODE (arg) == VAR_DECL)
  else if (TREE_CODE (arg) == VAR_DECL)
    error (READONLY_MSG (G_("assignment of read-only variable %qD"),
    error (READONLY_MSG (G_("assignment of read-only variable %qD"),
                         G_("increment of read-only variable %qD"),
                         G_("increment of read-only variable %qD"),
                         G_("decrement of read-only variable %qD"),
                         G_("decrement of read-only variable %qD"),
                         G_("read-only variable %qD used as %<asm%> output")),
                         G_("read-only variable %qD used as %<asm%> output")),
           arg);
           arg);
  else
  else
    error (READONLY_MSG (G_("assignment of read-only location"),
    error (READONLY_MSG (G_("assignment of read-only location"),
                         G_("increment of read-only location"),
                         G_("increment of read-only location"),
                         G_("decrement of read-only location"),
                         G_("decrement of read-only location"),
                         G_("read-only location used as %<asm%> output")));
                         G_("read-only location used as %<asm%> output")));
}
}
 
 
 
 
/* Return nonzero if REF is an lvalue valid for this language;
/* Return nonzero if REF is an lvalue valid for this language;
   otherwise, print an error message and return zero.  USE says
   otherwise, print an error message and return zero.  USE says
   how the lvalue is being used and so selects the error message.  */
   how the lvalue is being used and so selects the error message.  */
 
 
static int
static int
lvalue_or_else (tree ref, enum lvalue_use use)
lvalue_or_else (tree ref, enum lvalue_use use)
{
{
  int win = lvalue_p (ref);
  int win = lvalue_p (ref);
 
 
  if (!win)
  if (!win)
    lvalue_error (use);
    lvalue_error (use);
 
 
  return win;
  return win;
}
}


/* Mark EXP saying that we need to be able to take the
/* Mark EXP saying that we need to be able to take the
   address of it; it should not be allocated in a register.
   address of it; it should not be allocated in a register.
   Returns true if successful.  */
   Returns true if successful.  */
 
 
bool
bool
c_mark_addressable (tree exp)
c_mark_addressable (tree exp)
{
{
  tree x = exp;
  tree x = exp;
 
 
  while (1)
  while (1)
    switch (TREE_CODE (x))
    switch (TREE_CODE (x))
      {
      {
      case COMPONENT_REF:
      case COMPONENT_REF:
        if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
        if (DECL_C_BIT_FIELD (TREE_OPERAND (x, 1)))
          {
          {
            error
            error
              ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
              ("cannot take address of bit-field %qD", TREE_OPERAND (x, 1));
            return false;
            return false;
          }
          }
 
 
        /* ... fall through ...  */
        /* ... fall through ...  */
 
 
      case ADDR_EXPR:
      case ADDR_EXPR:
      case ARRAY_REF:
      case ARRAY_REF:
      case REALPART_EXPR:
      case REALPART_EXPR:
      case IMAGPART_EXPR:
      case IMAGPART_EXPR:
        x = TREE_OPERAND (x, 0);
        x = TREE_OPERAND (x, 0);
        break;
        break;
 
 
      case COMPOUND_LITERAL_EXPR:
      case COMPOUND_LITERAL_EXPR:
      case CONSTRUCTOR:
      case CONSTRUCTOR:
        TREE_ADDRESSABLE (x) = 1;
        TREE_ADDRESSABLE (x) = 1;
        return true;
        return true;
 
 
      case VAR_DECL:
      case VAR_DECL:
      case CONST_DECL:
      case CONST_DECL:
      case PARM_DECL:
      case PARM_DECL:
      case RESULT_DECL:
      case RESULT_DECL:
        if (C_DECL_REGISTER (x)
        if (C_DECL_REGISTER (x)
            && DECL_NONLOCAL (x))
            && DECL_NONLOCAL (x))
          {
          {
            if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
            if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
              {
              {
                error
                error
                  ("global register variable %qD used in nested function", x);
                  ("global register variable %qD used in nested function", x);
                return false;
                return false;
              }
              }
            pedwarn ("register variable %qD used in nested function", x);
            pedwarn ("register variable %qD used in nested function", x);
          }
          }
        else if (C_DECL_REGISTER (x))
        else if (C_DECL_REGISTER (x))
          {
          {
            if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
            if (TREE_PUBLIC (x) || TREE_STATIC (x) || DECL_EXTERNAL (x))
              error ("address of global register variable %qD requested", x);
              error ("address of global register variable %qD requested", x);
            else
            else
              error ("address of register variable %qD requested", x);
              error ("address of register variable %qD requested", x);
            return false;
            return false;
          }
          }
 
 
        /* drops in */
        /* drops in */
      case FUNCTION_DECL:
      case FUNCTION_DECL:
        TREE_ADDRESSABLE (x) = 1;
        TREE_ADDRESSABLE (x) = 1;
        /* drops out */
        /* drops out */
      default:
      default:
        return true;
        return true;
    }
    }
}
}


/* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
/* Build and return a conditional expression IFEXP ? OP1 : OP2.  */
 
 
tree
tree
build_conditional_expr (tree ifexp, tree op1, tree op2)
build_conditional_expr (tree ifexp, tree op1, tree op2)
{
{
  tree type1;
  tree type1;
  tree type2;
  tree type2;
  enum tree_code code1;
  enum tree_code code1;
  enum tree_code code2;
  enum tree_code code2;
  tree result_type = NULL;
  tree result_type = NULL;
  tree orig_op1 = op1, orig_op2 = op2;
  tree orig_op1 = op1, orig_op2 = op2;
 
 
  /* Promote both alternatives.  */
  /* Promote both alternatives.  */
 
 
  if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
  if (TREE_CODE (TREE_TYPE (op1)) != VOID_TYPE)
    op1 = default_conversion (op1);
    op1 = default_conversion (op1);
  if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
  if (TREE_CODE (TREE_TYPE (op2)) != VOID_TYPE)
    op2 = default_conversion (op2);
    op2 = default_conversion (op2);
 
 
  if (TREE_CODE (ifexp) == ERROR_MARK
  if (TREE_CODE (ifexp) == ERROR_MARK
      || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
      || TREE_CODE (TREE_TYPE (op1)) == ERROR_MARK
      || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
      || TREE_CODE (TREE_TYPE (op2)) == ERROR_MARK)
    return error_mark_node;
    return error_mark_node;
 
 
  type1 = TREE_TYPE (op1);
  type1 = TREE_TYPE (op1);
  code1 = TREE_CODE (type1);
  code1 = TREE_CODE (type1);
  type2 = TREE_TYPE (op2);
  type2 = TREE_TYPE (op2);
  code2 = TREE_CODE (type2);
  code2 = TREE_CODE (type2);
 
 
  /* C90 does not permit non-lvalue arrays in conditional expressions.
  /* C90 does not permit non-lvalue arrays in conditional expressions.
     In C99 they will be pointers by now.  */
     In C99 they will be pointers by now.  */
  if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
  if (code1 == ARRAY_TYPE || code2 == ARRAY_TYPE)
    {
    {
      error ("non-lvalue array in conditional expression");
      error ("non-lvalue array in conditional expression");
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* Quickly detect the usual case where op1 and op2 have the same type
  /* Quickly detect the usual case where op1 and op2 have the same type
     after promotion.  */
     after promotion.  */
  if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
  if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
    {
    {
      if (type1 == type2)
      if (type1 == type2)
        result_type = type1;
        result_type = type1;
      else
      else
        result_type = TYPE_MAIN_VARIANT (type1);
        result_type = TYPE_MAIN_VARIANT (type1);
    }
    }
  else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
  else if ((code1 == INTEGER_TYPE || code1 == REAL_TYPE
            || code1 == COMPLEX_TYPE)
            || code1 == COMPLEX_TYPE)
           && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
           && (code2 == INTEGER_TYPE || code2 == REAL_TYPE
               || code2 == COMPLEX_TYPE))
               || code2 == COMPLEX_TYPE))
    {
    {
      result_type = c_common_type (type1, type2);
      result_type = c_common_type (type1, type2);
 
 
      /* If -Wsign-compare, warn here if type1 and type2 have
      /* If -Wsign-compare, warn here if type1 and type2 have
         different signedness.  We'll promote the signed to unsigned
         different signedness.  We'll promote the signed to unsigned
         and later code won't know it used to be different.
         and later code won't know it used to be different.
         Do this check on the original types, so that explicit casts
         Do this check on the original types, so that explicit casts
         will be considered, but default promotions won't.  */
         will be considered, but default promotions won't.  */
      if (warn_sign_compare && !skip_evaluation)
      if (warn_sign_compare && !skip_evaluation)
        {
        {
          int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
          int unsigned_op1 = TYPE_UNSIGNED (TREE_TYPE (orig_op1));
          int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
          int unsigned_op2 = TYPE_UNSIGNED (TREE_TYPE (orig_op2));
 
 
          if (unsigned_op1 ^ unsigned_op2)
          if (unsigned_op1 ^ unsigned_op2)
            {
            {
              bool ovf;
              bool ovf;
 
 
              /* Do not warn if the result type is signed, since the
              /* Do not warn if the result type is signed, since the
                 signed type will only be chosen if it can represent
                 signed type will only be chosen if it can represent
                 all the values of the unsigned type.  */
                 all the values of the unsigned type.  */
              if (!TYPE_UNSIGNED (result_type))
              if (!TYPE_UNSIGNED (result_type))
                /* OK */;
                /* OK */;
              /* Do not warn if the signed quantity is an unsuffixed
              /* Do not warn if the signed quantity is an unsuffixed
                 integer literal (or some static constant expression
                 integer literal (or some static constant expression
                 involving such literals) and it is non-negative.  */
                 involving such literals) and it is non-negative.  */
              else if ((unsigned_op2
              else if ((unsigned_op2
                        && tree_expr_nonnegative_warnv_p (op1, &ovf))
                        && tree_expr_nonnegative_warnv_p (op1, &ovf))
                       || (unsigned_op1
                       || (unsigned_op1
                           && tree_expr_nonnegative_warnv_p (op2, &ovf)))
                           && tree_expr_nonnegative_warnv_p (op2, &ovf)))
                /* OK */;
                /* OK */;
              else
              else
                warning (0, "signed and unsigned type in conditional expression");
                warning (0, "signed and unsigned type in conditional expression");
            }
            }
        }
        }
    }
    }
  else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
  else if (code1 == VOID_TYPE || code2 == VOID_TYPE)
    {
    {
      if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
      if (pedantic && (code1 != VOID_TYPE || code2 != VOID_TYPE))
        pedwarn ("ISO C forbids conditional expr with only one void side");
        pedwarn ("ISO C forbids conditional expr with only one void side");
      result_type = void_type_node;
      result_type = void_type_node;
    }
    }
  else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
  else if (code1 == POINTER_TYPE && code2 == POINTER_TYPE)
    {
    {
      if (comp_target_types (type1, type2))
      if (comp_target_types (type1, type2))
        result_type = common_pointer_type (type1, type2);
        result_type = common_pointer_type (type1, type2);
      else if (null_pointer_constant_p (orig_op1))
      else if (null_pointer_constant_p (orig_op1))
        result_type = qualify_type (type2, type1);
        result_type = qualify_type (type2, type1);
      else if (null_pointer_constant_p (orig_op2))
      else if (null_pointer_constant_p (orig_op2))
        result_type = qualify_type (type1, type2);
        result_type = qualify_type (type1, type2);
      else if (VOID_TYPE_P (TREE_TYPE (type1)))
      else if (VOID_TYPE_P (TREE_TYPE (type1)))
        {
        {
          if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
          if (pedantic && TREE_CODE (TREE_TYPE (type2)) == FUNCTION_TYPE)
            pedwarn ("ISO C forbids conditional expr between "
            pedwarn ("ISO C forbids conditional expr between "
                     "%<void *%> and function pointer");
                     "%<void *%> and function pointer");
          result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
          result_type = build_pointer_type (qualify_type (TREE_TYPE (type1),
                                                          TREE_TYPE (type2)));
                                                          TREE_TYPE (type2)));
        }
        }
      else if (VOID_TYPE_P (TREE_TYPE (type2)))
      else if (VOID_TYPE_P (TREE_TYPE (type2)))
        {
        {
          if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
          if (pedantic && TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE)
            pedwarn ("ISO C forbids conditional expr between "
            pedwarn ("ISO C forbids conditional expr between "
                     "%<void *%> and function pointer");
                     "%<void *%> and function pointer");
          result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
          result_type = build_pointer_type (qualify_type (TREE_TYPE (type2),
                                                          TREE_TYPE (type1)));
                                                          TREE_TYPE (type1)));
        }
        }
      else
      else
        {
        {
          pedwarn ("pointer type mismatch in conditional expression");
          pedwarn ("pointer type mismatch in conditional expression");
          result_type = build_pointer_type (void_type_node);
          result_type = build_pointer_type (void_type_node);
        }
        }
    }
    }
  else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
  else if (code1 == POINTER_TYPE && code2 == INTEGER_TYPE)
    {
    {
      if (!null_pointer_constant_p (orig_op2))
      if (!null_pointer_constant_p (orig_op2))
        pedwarn ("pointer/integer type mismatch in conditional expression");
        pedwarn ("pointer/integer type mismatch in conditional expression");
      else
      else
        {
        {
          op2 = null_pointer_node;
          op2 = null_pointer_node;
        }
        }
      result_type = type1;
      result_type = type1;
    }
    }
  else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
  else if (code2 == POINTER_TYPE && code1 == INTEGER_TYPE)
    {
    {
      if (!null_pointer_constant_p (orig_op1))
      if (!null_pointer_constant_p (orig_op1))
        pedwarn ("pointer/integer type mismatch in conditional expression");
        pedwarn ("pointer/integer type mismatch in conditional expression");
      else
      else
        {
        {
          op1 = null_pointer_node;
          op1 = null_pointer_node;
        }
        }
      result_type = type2;
      result_type = type2;
    }
    }
 
 
  if (!result_type)
  if (!result_type)
    {
    {
      if (flag_cond_mismatch)
      if (flag_cond_mismatch)
        result_type = void_type_node;
        result_type = void_type_node;
      else
      else
        {
        {
          error ("type mismatch in conditional expression");
          error ("type mismatch in conditional expression");
          return error_mark_node;
          return error_mark_node;
        }
        }
    }
    }
 
 
  /* Merge const and volatile flags of the incoming types.  */
  /* Merge const and volatile flags of the incoming types.  */
  result_type
  result_type
    = build_type_variant (result_type,
    = build_type_variant (result_type,
                          TREE_READONLY (op1) || TREE_READONLY (op2),
                          TREE_READONLY (op1) || TREE_READONLY (op2),
                          TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
                          TREE_THIS_VOLATILE (op1) || TREE_THIS_VOLATILE (op2));
 
 
  if (result_type != TREE_TYPE (op1))
  if (result_type != TREE_TYPE (op1))
    op1 = convert_and_check (result_type, op1);
    op1 = convert_and_check (result_type, op1);
  if (result_type != TREE_TYPE (op2))
  if (result_type != TREE_TYPE (op2))
    op2 = convert_and_check (result_type, op2);
    op2 = convert_and_check (result_type, op2);
 
 
  return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
  return fold_build3 (COND_EXPR, result_type, ifexp, op1, op2);
}
}


/* Return a compound expression that performs two expressions and
/* Return a compound expression that performs two expressions and
   returns the value of the second of them.  */
   returns the value of the second of them.  */
 
 
tree
tree
build_compound_expr (tree expr1, tree expr2)
build_compound_expr (tree expr1, tree expr2)
{
{
  if (!TREE_SIDE_EFFECTS (expr1))
  if (!TREE_SIDE_EFFECTS (expr1))
    {
    {
      /* The left-hand operand of a comma expression is like an expression
      /* The left-hand operand of a comma expression is like an expression
         statement: with -Wextra or -Wunused, we should warn if it doesn't have
         statement: with -Wextra or -Wunused, we should warn if it doesn't have
         any side-effects, unless it was explicitly cast to (void).  */
         any side-effects, unless it was explicitly cast to (void).  */
      if (warn_unused_value)
      if (warn_unused_value)
        {
        {
          if (VOID_TYPE_P (TREE_TYPE (expr1))
          if (VOID_TYPE_P (TREE_TYPE (expr1))
              && (TREE_CODE (expr1) == NOP_EXPR
              && (TREE_CODE (expr1) == NOP_EXPR
                  || TREE_CODE (expr1) == CONVERT_EXPR))
                  || TREE_CODE (expr1) == CONVERT_EXPR))
            ; /* (void) a, b */
            ; /* (void) a, b */
          else if (VOID_TYPE_P (TREE_TYPE (expr1))
          else if (VOID_TYPE_P (TREE_TYPE (expr1))
                   && TREE_CODE (expr1) == COMPOUND_EXPR
                   && TREE_CODE (expr1) == COMPOUND_EXPR
                   && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
                   && (TREE_CODE (TREE_OPERAND (expr1, 1)) == CONVERT_EXPR
                       || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
                       || TREE_CODE (TREE_OPERAND (expr1, 1)) == NOP_EXPR))
            ; /* (void) a, (void) b, c */
            ; /* (void) a, (void) b, c */
          else
          else
            warning (0, "left-hand operand of comma expression has no effect");
            warning (0, "left-hand operand of comma expression has no effect");
        }
        }
    }
    }
 
 
  /* With -Wunused, we should also warn if the left-hand operand does have
  /* With -Wunused, we should also warn if the left-hand operand does have
     side-effects, but computes a value which is not used.  For example, in
     side-effects, but computes a value which is not used.  For example, in
     `foo() + bar(), baz()' the result of the `+' operator is not used,
     `foo() + bar(), baz()' the result of the `+' operator is not used,
     so we should issue a warning.  */
     so we should issue a warning.  */
  else if (warn_unused_value)
  else if (warn_unused_value)
    warn_if_unused_value (expr1, input_location);
    warn_if_unused_value (expr1, input_location);
 
 
  if (expr2 == error_mark_node)
  if (expr2 == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
  return build2 (COMPOUND_EXPR, TREE_TYPE (expr2), expr1, expr2);
}
}
 
 
/* Build an expression representing a cast to type TYPE of expression EXPR.  */
/* Build an expression representing a cast to type TYPE of expression EXPR.  */
 
 
tree
tree
build_c_cast (tree type, tree expr)
build_c_cast (tree type, tree expr)
{
{
  tree value = expr;
  tree value = expr;
 
 
  if (type == error_mark_node || expr == error_mark_node)
  if (type == error_mark_node || expr == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
  /* The ObjC front-end uses TYPE_MAIN_VARIANT to tie together types differing
     only in <protocol> qualifications.  But when constructing cast expressions,
     only in <protocol> qualifications.  But when constructing cast expressions,
     the protocols do matter and must be kept around.  */
     the protocols do matter and must be kept around.  */
  if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
  if (objc_is_object_ptr (type) && objc_is_object_ptr (TREE_TYPE (expr)))
    return build1 (NOP_EXPR, type, expr);
    return build1 (NOP_EXPR, type, expr);
 
 
  type = TYPE_MAIN_VARIANT (type);
  type = TYPE_MAIN_VARIANT (type);
 
 
  if (TREE_CODE (type) == ARRAY_TYPE)
  if (TREE_CODE (type) == ARRAY_TYPE)
    {
    {
      error ("cast specifies array type");
      error ("cast specifies array type");
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  if (TREE_CODE (type) == FUNCTION_TYPE)
  if (TREE_CODE (type) == FUNCTION_TYPE)
    {
    {
      error ("cast specifies function type");
      error ("cast specifies function type");
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
  if (type == TYPE_MAIN_VARIANT (TREE_TYPE (value)))
    {
    {
      if (pedantic)
      if (pedantic)
        {
        {
          if (TREE_CODE (type) == RECORD_TYPE
          if (TREE_CODE (type) == RECORD_TYPE
              || TREE_CODE (type) == UNION_TYPE)
              || TREE_CODE (type) == UNION_TYPE)
            pedwarn ("ISO C forbids casting nonscalar to the same type");
            pedwarn ("ISO C forbids casting nonscalar to the same type");
        }
        }
    }
    }
  else if (TREE_CODE (type) == UNION_TYPE)
  else if (TREE_CODE (type) == UNION_TYPE)
    {
    {
      tree field;
      tree field;
 
 
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
        if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
        if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (field)),
                       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
                       TYPE_MAIN_VARIANT (TREE_TYPE (value))))
          break;
          break;
 
 
      if (field)
      if (field)
        {
        {
          tree t;
          tree t;
 
 
          if (pedantic)
          if (pedantic)
            pedwarn ("ISO C forbids casts to union type");
            pedwarn ("ISO C forbids casts to union type");
          t = digest_init (type,
          t = digest_init (type,
                           build_constructor_single (type, field, value),
                           build_constructor_single (type, field, value),
                           true, 0);
                           true, 0);
          TREE_CONSTANT (t) = TREE_CONSTANT (value);
          TREE_CONSTANT (t) = TREE_CONSTANT (value);
          TREE_INVARIANT (t) = TREE_INVARIANT (value);
          TREE_INVARIANT (t) = TREE_INVARIANT (value);
          return t;
          return t;
        }
        }
      error ("cast to union type from type not present in union");
      error ("cast to union type from type not present in union");
      return error_mark_node;
      return error_mark_node;
    }
    }
  else
  else
    {
    {
      tree otype, ovalue;
      tree otype, ovalue;
 
 
      if (type == void_type_node)
      if (type == void_type_node)
        return build1 (CONVERT_EXPR, type, value);
        return build1 (CONVERT_EXPR, type, value);
 
 
      otype = TREE_TYPE (value);
      otype = TREE_TYPE (value);
 
 
      /* Optionally warn about potentially worrisome casts.  */
      /* Optionally warn about potentially worrisome casts.  */
 
 
      if (warn_cast_qual
      if (warn_cast_qual
          && TREE_CODE (type) == POINTER_TYPE
          && TREE_CODE (type) == POINTER_TYPE
          && TREE_CODE (otype) == POINTER_TYPE)
          && TREE_CODE (otype) == POINTER_TYPE)
        {
        {
          tree in_type = type;
          tree in_type = type;
          tree in_otype = otype;
          tree in_otype = otype;
          int added = 0;
          int added = 0;
          int discarded = 0;
          int discarded = 0;
 
 
          /* Check that the qualifiers on IN_TYPE are a superset of
          /* Check that the qualifiers on IN_TYPE are a superset of
             the qualifiers of IN_OTYPE.  The outermost level of
             the qualifiers of IN_OTYPE.  The outermost level of
             POINTER_TYPE nodes is uninteresting and we stop as soon
             POINTER_TYPE nodes is uninteresting and we stop as soon
             as we hit a non-POINTER_TYPE node on either type.  */
             as we hit a non-POINTER_TYPE node on either type.  */
          do
          do
            {
            {
              in_otype = TREE_TYPE (in_otype);
              in_otype = TREE_TYPE (in_otype);
              in_type = TREE_TYPE (in_type);
              in_type = TREE_TYPE (in_type);
 
 
              /* GNU C allows cv-qualified function types.  'const'
              /* GNU C allows cv-qualified function types.  'const'
                 means the function is very pure, 'volatile' means it
                 means the function is very pure, 'volatile' means it
                 can't return.  We need to warn when such qualifiers
                 can't return.  We need to warn when such qualifiers
                 are added, not when they're taken away.  */
                 are added, not when they're taken away.  */
              if (TREE_CODE (in_otype) == FUNCTION_TYPE
              if (TREE_CODE (in_otype) == FUNCTION_TYPE
                  && TREE_CODE (in_type) == FUNCTION_TYPE)
                  && TREE_CODE (in_type) == FUNCTION_TYPE)
                added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
                added |= (TYPE_QUALS (in_type) & ~TYPE_QUALS (in_otype));
              else
              else
                discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
                discarded |= (TYPE_QUALS (in_otype) & ~TYPE_QUALS (in_type));
            }
            }
          while (TREE_CODE (in_type) == POINTER_TYPE
          while (TREE_CODE (in_type) == POINTER_TYPE
                 && TREE_CODE (in_otype) == POINTER_TYPE);
                 && TREE_CODE (in_otype) == POINTER_TYPE);
 
 
          if (added)
          if (added)
            warning (0, "cast adds new qualifiers to function type");
            warning (0, "cast adds new qualifiers to function type");
 
 
          if (discarded)
          if (discarded)
            /* There are qualifiers present in IN_OTYPE that are not
            /* There are qualifiers present in IN_OTYPE that are not
               present in IN_TYPE.  */
               present in IN_TYPE.  */
            warning (0, "cast discards qualifiers from pointer target type");
            warning (0, "cast discards qualifiers from pointer target type");
        }
        }
 
 
      /* Warn about possible alignment problems.  */
      /* Warn about possible alignment problems.  */
      if (STRICT_ALIGNMENT
      if (STRICT_ALIGNMENT
          && TREE_CODE (type) == POINTER_TYPE
          && TREE_CODE (type) == POINTER_TYPE
          && TREE_CODE (otype) == POINTER_TYPE
          && TREE_CODE (otype) == POINTER_TYPE
          && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
          && TREE_CODE (TREE_TYPE (otype)) != VOID_TYPE
          && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
          && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
          /* Don't warn about opaque types, where the actual alignment
          /* Don't warn about opaque types, where the actual alignment
             restriction is unknown.  */
             restriction is unknown.  */
          && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
          && !((TREE_CODE (TREE_TYPE (otype)) == UNION_TYPE
                || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
                || TREE_CODE (TREE_TYPE (otype)) == RECORD_TYPE)
               && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
               && TYPE_MODE (TREE_TYPE (otype)) == VOIDmode)
          && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
          && TYPE_ALIGN (TREE_TYPE (type)) > TYPE_ALIGN (TREE_TYPE (otype)))
        warning (OPT_Wcast_align,
        warning (OPT_Wcast_align,
                 "cast increases required alignment of target type");
                 "cast increases required alignment of target type");
 
 
      if (TREE_CODE (type) == INTEGER_TYPE
      if (TREE_CODE (type) == INTEGER_TYPE
          && TREE_CODE (otype) == POINTER_TYPE
          && TREE_CODE (otype) == POINTER_TYPE
          && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
          && TYPE_PRECISION (type) != TYPE_PRECISION (otype))
      /* Unlike conversion of integers to pointers, where the
      /* Unlike conversion of integers to pointers, where the
         warning is disabled for converting constants because
         warning is disabled for converting constants because
         of cases such as SIG_*, warn about converting constant
         of cases such as SIG_*, warn about converting constant
         pointers to integers. In some cases it may cause unwanted
         pointers to integers. In some cases it may cause unwanted
         sign extension, and a warning is appropriate.  */
         sign extension, and a warning is appropriate.  */
        warning (OPT_Wpointer_to_int_cast,
        warning (OPT_Wpointer_to_int_cast,
                 "cast from pointer to integer of different size");
                 "cast from pointer to integer of different size");
 
 
      if (TREE_CODE (value) == CALL_EXPR
      if (TREE_CODE (value) == CALL_EXPR
          && TREE_CODE (type) != TREE_CODE (otype))
          && TREE_CODE (type) != TREE_CODE (otype))
        warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
        warning (OPT_Wbad_function_cast, "cast from function call of type %qT "
                 "to non-matching type %qT", otype, type);
                 "to non-matching type %qT", otype, type);
 
 
      if (TREE_CODE (type) == POINTER_TYPE
      if (TREE_CODE (type) == POINTER_TYPE
          && TREE_CODE (otype) == INTEGER_TYPE
          && TREE_CODE (otype) == INTEGER_TYPE
          && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
          && TYPE_PRECISION (type) != TYPE_PRECISION (otype)
          /* Don't warn about converting any constant.  */
          /* Don't warn about converting any constant.  */
          && !TREE_CONSTANT (value))
          && !TREE_CONSTANT (value))
        warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
        warning (OPT_Wint_to_pointer_cast, "cast to pointer from integer "
                 "of different size");
                 "of different size");
 
 
      strict_aliasing_warning (otype, type, expr);
      strict_aliasing_warning (otype, type, expr);
 
 
      /* If pedantic, warn for conversions between function and object
      /* If pedantic, warn for conversions between function and object
         pointer types, except for converting a null pointer constant
         pointer types, except for converting a null pointer constant
         to function pointer type.  */
         to function pointer type.  */
      if (pedantic
      if (pedantic
          && TREE_CODE (type) == POINTER_TYPE
          && TREE_CODE (type) == POINTER_TYPE
          && TREE_CODE (otype) == POINTER_TYPE
          && TREE_CODE (otype) == POINTER_TYPE
          && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
          && TREE_CODE (TREE_TYPE (otype)) == FUNCTION_TYPE
          && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
          && TREE_CODE (TREE_TYPE (type)) != FUNCTION_TYPE)
        pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
        pedwarn ("ISO C forbids conversion of function pointer to object pointer type");
 
 
      if (pedantic
      if (pedantic
          && TREE_CODE (type) == POINTER_TYPE
          && TREE_CODE (type) == POINTER_TYPE
          && TREE_CODE (otype) == POINTER_TYPE
          && TREE_CODE (otype) == POINTER_TYPE
          && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
          && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
          && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
          && TREE_CODE (TREE_TYPE (otype)) != FUNCTION_TYPE
          && !null_pointer_constant_p (value))
          && !null_pointer_constant_p (value))
        pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
        pedwarn ("ISO C forbids conversion of object pointer to function pointer type");
 
 
      ovalue = value;
      ovalue = value;
      value = convert (type, value);
      value = convert (type, value);
 
 
      /* Ignore any integer overflow caused by the cast.  */
      /* Ignore any integer overflow caused by the cast.  */
      if (TREE_CODE (value) == INTEGER_CST)
      if (TREE_CODE (value) == INTEGER_CST)
        {
        {
          if (CONSTANT_CLASS_P (ovalue)
          if (CONSTANT_CLASS_P (ovalue)
              && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
              && (TREE_OVERFLOW (ovalue) || TREE_CONSTANT_OVERFLOW (ovalue)))
            {
            {
              /* Avoid clobbering a shared constant.  */
              /* Avoid clobbering a shared constant.  */
              value = copy_node (value);
              value = copy_node (value);
              TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
              TREE_OVERFLOW (value) = TREE_OVERFLOW (ovalue);
              TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
              TREE_CONSTANT_OVERFLOW (value) = TREE_CONSTANT_OVERFLOW (ovalue);
            }
            }
          else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
          else if (TREE_OVERFLOW (value) || TREE_CONSTANT_OVERFLOW (value))
            /* Reset VALUE's overflow flags, ensuring constant sharing.  */
            /* Reset VALUE's overflow flags, ensuring constant sharing.  */
            value = build_int_cst_wide (TREE_TYPE (value),
            value = build_int_cst_wide (TREE_TYPE (value),
                                        TREE_INT_CST_LOW (value),
                                        TREE_INT_CST_LOW (value),
                                        TREE_INT_CST_HIGH (value));
                                        TREE_INT_CST_HIGH (value));
        }
        }
    }
    }
 
 
  /* Don't let a cast be an lvalue.  */
  /* Don't let a cast be an lvalue.  */
  if (value == expr)
  if (value == expr)
    value = non_lvalue (value);
    value = non_lvalue (value);
 
 
  return value;
  return value;
}
}
 
 
/* Interpret a cast of expression EXPR to type TYPE.  */
/* Interpret a cast of expression EXPR to type TYPE.  */
tree
tree
c_cast_expr (struct c_type_name *type_name, tree expr)
c_cast_expr (struct c_type_name *type_name, tree expr)
{
{
  tree type;
  tree type;
  int saved_wsp = warn_strict_prototypes;
  int saved_wsp = warn_strict_prototypes;
 
 
  /* This avoids warnings about unprototyped casts on
  /* This avoids warnings about unprototyped casts on
     integers.  E.g. "#define SIG_DFL (void(*)())0".  */
     integers.  E.g. "#define SIG_DFL (void(*)())0".  */
  if (TREE_CODE (expr) == INTEGER_CST)
  if (TREE_CODE (expr) == INTEGER_CST)
    warn_strict_prototypes = 0;
    warn_strict_prototypes = 0;
  type = groktypename (type_name);
  type = groktypename (type_name);
  warn_strict_prototypes = saved_wsp;
  warn_strict_prototypes = saved_wsp;
 
 
  return build_c_cast (type, expr);
  return build_c_cast (type, expr);
}
}


/* Build an assignment expression of lvalue LHS from value RHS.
/* Build an assignment expression of lvalue LHS from value RHS.
   MODIFYCODE is the code for a binary operator that we use
   MODIFYCODE is the code for a binary operator that we use
   to combine the old value of LHS with RHS to get the new value.
   to combine the old value of LHS with RHS to get the new value.
   Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
   Or else MODIFYCODE is NOP_EXPR meaning do a simple assignment.  */
 
 
tree
tree
build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
build_modify_expr (tree lhs, enum tree_code modifycode, tree rhs)
{
{
  tree result;
  tree result;
  tree newrhs;
  tree newrhs;
  tree lhstype = TREE_TYPE (lhs);
  tree lhstype = TREE_TYPE (lhs);
  tree olhstype = lhstype;
  tree olhstype = lhstype;
 
 
  /* Types that aren't fully specified cannot be used in assignments.  */
  /* Types that aren't fully specified cannot be used in assignments.  */
  lhs = require_complete_type (lhs);
  lhs = require_complete_type (lhs);
 
 
  /* Avoid duplicate error messages from operands that had errors.  */
  /* Avoid duplicate error messages from operands that had errors.  */
  if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
  if (TREE_CODE (lhs) == ERROR_MARK || TREE_CODE (rhs) == ERROR_MARK)
    return error_mark_node;
    return error_mark_node;
 
 
  if (!lvalue_or_else (lhs, lv_assign))
  if (!lvalue_or_else (lhs, lv_assign))
    return error_mark_node;
    return error_mark_node;
 
 
  STRIP_TYPE_NOPS (rhs);
  STRIP_TYPE_NOPS (rhs);
 
 
  newrhs = rhs;
  newrhs = rhs;
 
 
  /* If a binary op has been requested, combine the old LHS value with the RHS
  /* If a binary op has been requested, combine the old LHS value with the RHS
     producing the value we should actually store into the LHS.  */
     producing the value we should actually store into the LHS.  */
 
 
  if (modifycode != NOP_EXPR)
  if (modifycode != NOP_EXPR)
    {
    {
      lhs = stabilize_reference (lhs);
      lhs = stabilize_reference (lhs);
      newrhs = build_binary_op (modifycode, lhs, rhs, 1);
      newrhs = build_binary_op (modifycode, lhs, rhs, 1);
    }
    }
 
 
  /* Give an error for storing in something that is 'const'.  */
  /* Give an error for storing in something that is 'const'.  */
 
 
  if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
  if (TREE_READONLY (lhs) || TYPE_READONLY (lhstype)
      || ((TREE_CODE (lhstype) == RECORD_TYPE
      || ((TREE_CODE (lhstype) == RECORD_TYPE
           || TREE_CODE (lhstype) == UNION_TYPE)
           || TREE_CODE (lhstype) == UNION_TYPE)
          && C_TYPE_FIELDS_READONLY (lhstype)))
          && C_TYPE_FIELDS_READONLY (lhstype)))
    {
    {
      readonly_error (lhs, lv_assign);
      readonly_error (lhs, lv_assign);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  /* If storing into a structure or union member,
  /* If storing into a structure or union member,
     it has probably been given type `int'.
     it has probably been given type `int'.
     Compute the type that would go with
     Compute the type that would go with
     the actual amount of storage the member occupies.  */
     the actual amount of storage the member occupies.  */
 
 
  if (TREE_CODE (lhs) == COMPONENT_REF
  if (TREE_CODE (lhs) == COMPONENT_REF
      && (TREE_CODE (lhstype) == INTEGER_TYPE
      && (TREE_CODE (lhstype) == INTEGER_TYPE
          || TREE_CODE (lhstype) == BOOLEAN_TYPE
          || TREE_CODE (lhstype) == BOOLEAN_TYPE
          || TREE_CODE (lhstype) == REAL_TYPE
          || TREE_CODE (lhstype) == REAL_TYPE
          || TREE_CODE (lhstype) == ENUMERAL_TYPE))
          || TREE_CODE (lhstype) == ENUMERAL_TYPE))
    lhstype = TREE_TYPE (get_unwidened (lhs, 0));
    lhstype = TREE_TYPE (get_unwidened (lhs, 0));
 
 
  /* If storing in a field that is in actuality a short or narrower than one,
  /* If storing in a field that is in actuality a short or narrower than one,
     we must store in the field in its actual type.  */
     we must store in the field in its actual type.  */
 
 
  if (lhstype != TREE_TYPE (lhs))
  if (lhstype != TREE_TYPE (lhs))
    {
    {
      lhs = copy_node (lhs);
      lhs = copy_node (lhs);
      TREE_TYPE (lhs) = lhstype;
      TREE_TYPE (lhs) = lhstype;
    }
    }
 
 
  /* Convert new value to destination type.  */
  /* Convert new value to destination type.  */
 
 
  newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
  newrhs = convert_for_assignment (lhstype, newrhs, ic_assign,
                                   NULL_TREE, NULL_TREE, 0);
                                   NULL_TREE, NULL_TREE, 0);
  if (TREE_CODE (newrhs) == ERROR_MARK)
  if (TREE_CODE (newrhs) == ERROR_MARK)
    return error_mark_node;
    return error_mark_node;
 
 
  /* Emit ObjC write barrier, if necessary.  */
  /* Emit ObjC write barrier, if necessary.  */
  if (c_dialect_objc () && flag_objc_gc)
  if (c_dialect_objc () && flag_objc_gc)
    {
    {
      result = objc_generate_write_barrier (lhs, modifycode, newrhs);
      result = objc_generate_write_barrier (lhs, modifycode, newrhs);
      if (result)
      if (result)
        return result;
        return result;
    }
    }
 
 
  /* Scan operands.  */
  /* Scan operands.  */
 
 
  result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
  result = build2 (MODIFY_EXPR, lhstype, lhs, newrhs);
  TREE_SIDE_EFFECTS (result) = 1;
  TREE_SIDE_EFFECTS (result) = 1;
 
 
  /* If we got the LHS in a different type for storing in,
  /* If we got the LHS in a different type for storing in,
     convert the result back to the nominal type of LHS
     convert the result back to the nominal type of LHS
     so that the value we return always has the same type
     so that the value we return always has the same type
     as the LHS argument.  */
     as the LHS argument.  */
 
 
  if (olhstype == TREE_TYPE (result))
  if (olhstype == TREE_TYPE (result))
    return result;
    return result;
  return convert_for_assignment (olhstype, result, ic_assign,
  return convert_for_assignment (olhstype, result, ic_assign,
                                 NULL_TREE, NULL_TREE, 0);
                                 NULL_TREE, NULL_TREE, 0);
}
}


/* Convert value RHS to type TYPE as preparation for an assignment
/* Convert value RHS to type TYPE as preparation for an assignment
   to an lvalue of type TYPE.
   to an lvalue of type TYPE.
   The real work of conversion is done by `convert'.
   The real work of conversion is done by `convert'.
   The purpose of this function is to generate error messages
   The purpose of this function is to generate error messages
   for assignments that are not allowed in C.
   for assignments that are not allowed in C.
   ERRTYPE says whether it is argument passing, assignment,
   ERRTYPE says whether it is argument passing, assignment,
   initialization or return.
   initialization or return.
 
 
   FUNCTION is a tree for the function being called.
   FUNCTION is a tree for the function being called.
   PARMNUM is the number of the argument, for printing in error messages.  */
   PARMNUM is the number of the argument, for printing in error messages.  */
 
 
static tree
static tree
convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
convert_for_assignment (tree type, tree rhs, enum impl_conv errtype,
                        tree fundecl, tree function, int parmnum)
                        tree fundecl, tree function, int parmnum)
{
{
  enum tree_code codel = TREE_CODE (type);
  enum tree_code codel = TREE_CODE (type);
  tree rhstype;
  tree rhstype;
  enum tree_code coder;
  enum tree_code coder;
  tree rname = NULL_TREE;
  tree rname = NULL_TREE;
  bool objc_ok = false;
  bool objc_ok = false;
 
 
  if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
  if (errtype == ic_argpass || errtype == ic_argpass_nonproto)
    {
    {
      tree selector;
      tree selector;
      /* Change pointer to function to the function itself for
      /* Change pointer to function to the function itself for
         diagnostics.  */
         diagnostics.  */
      if (TREE_CODE (function) == ADDR_EXPR
      if (TREE_CODE (function) == ADDR_EXPR
          && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
          && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
        function = TREE_OPERAND (function, 0);
        function = TREE_OPERAND (function, 0);
 
 
      /* Handle an ObjC selector specially for diagnostics.  */
      /* Handle an ObjC selector specially for diagnostics.  */
      selector = objc_message_selector ();
      selector = objc_message_selector ();
      rname = function;
      rname = function;
      if (selector && parmnum > 2)
      if (selector && parmnum > 2)
        {
        {
          rname = selector;
          rname = selector;
          parmnum -= 2;
          parmnum -= 2;
        }
        }
    }
    }
 
 
  /* This macro is used to emit diagnostics to ensure that all format
  /* This macro is used to emit diagnostics to ensure that all format
     strings are complete sentences, visible to gettext and checked at
     strings are complete sentences, visible to gettext and checked at
     compile time.  */
     compile time.  */
#define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE)     \
#define WARN_FOR_ASSIGNMENT(AR, AS, IN, RE)     \
  do {                                          \
  do {                                          \
    switch (errtype)                            \
    switch (errtype)                            \
      {                                         \
      {                                         \
      case ic_argpass:                          \
      case ic_argpass:                          \
        pedwarn (AR, parmnum, rname);           \
        pedwarn (AR, parmnum, rname);           \
        break;                                  \
        break;                                  \
      case ic_argpass_nonproto:                 \
      case ic_argpass_nonproto:                 \
        warning (0, AR, parmnum, rname);         \
        warning (0, AR, parmnum, rname);         \
        break;                                  \
        break;                                  \
      case ic_assign:                           \
      case ic_assign:                           \
        pedwarn (AS);                           \
        pedwarn (AS);                           \
        break;                                  \
        break;                                  \
      case ic_init:                             \
      case ic_init:                             \
        pedwarn (IN);                           \
        pedwarn (IN);                           \
        break;                                  \
        break;                                  \
      case ic_return:                           \
      case ic_return:                           \
        pedwarn (RE);                           \
        pedwarn (RE);                           \
        break;                                  \
        break;                                  \
      default:                                  \
      default:                                  \
        gcc_unreachable ();                     \
        gcc_unreachable ();                     \
      }                                         \
      }                                         \
  } while (0)
  } while (0)
 
 
  STRIP_TYPE_NOPS (rhs);
  STRIP_TYPE_NOPS (rhs);
 
 
  if (optimize && TREE_CODE (rhs) == VAR_DECL
  if (optimize && TREE_CODE (rhs) == VAR_DECL
           && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
           && TREE_CODE (TREE_TYPE (rhs)) != ARRAY_TYPE)
    rhs = decl_constant_value_for_broken_optimization (rhs);
    rhs = decl_constant_value_for_broken_optimization (rhs);
 
 
  rhstype = TREE_TYPE (rhs);
  rhstype = TREE_TYPE (rhs);
  coder = TREE_CODE (rhstype);
  coder = TREE_CODE (rhstype);
 
 
  if (coder == ERROR_MARK)
  if (coder == ERROR_MARK)
    return error_mark_node;
    return error_mark_node;
 
 
  if (c_dialect_objc ())
  if (c_dialect_objc ())
    {
    {
      int parmno;
      int parmno;
 
 
      switch (errtype)
      switch (errtype)
        {
        {
        case ic_return:
        case ic_return:
          parmno = 0;
          parmno = 0;
          break;
          break;
 
 
        case ic_assign:
        case ic_assign:
          parmno = -1;
          parmno = -1;
          break;
          break;
 
 
        case ic_init:
        case ic_init:
          parmno = -2;
          parmno = -2;
          break;
          break;
 
 
        default:
        default:
          parmno = parmnum;
          parmno = parmnum;
          break;
          break;
        }
        }
 
 
      objc_ok = objc_compare_types (type, rhstype, parmno, rname);
      objc_ok = objc_compare_types (type, rhstype, parmno, rname);
    }
    }
 
 
  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
  if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (rhstype))
    {
    {
      overflow_warning (rhs);
      overflow_warning (rhs);
      return rhs;
      return rhs;
    }
    }
 
 
  if (coder == VOID_TYPE)
  if (coder == VOID_TYPE)
    {
    {
      /* Except for passing an argument to an unprototyped function,
      /* Except for passing an argument to an unprototyped function,
         this is a constraint violation.  When passing an argument to
         this is a constraint violation.  When passing an argument to
         an unprototyped function, it is compile-time undefined;
         an unprototyped function, it is compile-time undefined;
         making it a constraint in that case was rejected in
         making it a constraint in that case was rejected in
         DR#252.  */
         DR#252.  */
      error ("void value not ignored as it ought to be");
      error ("void value not ignored as it ought to be");
      return error_mark_node;
      return error_mark_node;
    }
    }
  /* A type converts to a reference to it.
  /* A type converts to a reference to it.
     This code doesn't fully support references, it's just for the
     This code doesn't fully support references, it's just for the
     special case of va_start and va_copy.  */
     special case of va_start and va_copy.  */
  if (codel == REFERENCE_TYPE
  if (codel == REFERENCE_TYPE
      && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
      && comptypes (TREE_TYPE (type), TREE_TYPE (rhs)) == 1)
    {
    {
      if (!lvalue_p (rhs))
      if (!lvalue_p (rhs))
        {
        {
          error ("cannot pass rvalue to reference parameter");
          error ("cannot pass rvalue to reference parameter");
          return error_mark_node;
          return error_mark_node;
        }
        }
      if (!c_mark_addressable (rhs))
      if (!c_mark_addressable (rhs))
        return error_mark_node;
        return error_mark_node;
      rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
      rhs = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (rhs)), rhs);
 
 
      /* We already know that these two types are compatible, but they
      /* We already know that these two types are compatible, but they
         may not be exactly identical.  In fact, `TREE_TYPE (type)' is
         may not be exactly identical.  In fact, `TREE_TYPE (type)' is
         likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
         likely to be __builtin_va_list and `TREE_TYPE (rhs)' is
         likely to be va_list, a typedef to __builtin_va_list, which
         likely to be va_list, a typedef to __builtin_va_list, which
         is different enough that it will cause problems later.  */
         is different enough that it will cause problems later.  */
      if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
      if (TREE_TYPE (TREE_TYPE (rhs)) != TREE_TYPE (type))
        rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
        rhs = build1 (NOP_EXPR, build_pointer_type (TREE_TYPE (type)), rhs);
 
 
      rhs = build1 (NOP_EXPR, type, rhs);
      rhs = build1 (NOP_EXPR, type, rhs);
      return rhs;
      return rhs;
    }
    }
  /* Some types can interconvert without explicit casts.  */
  /* Some types can interconvert without explicit casts.  */
  else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
  else if (codel == VECTOR_TYPE && coder == VECTOR_TYPE
           && vector_types_convertible_p (type, TREE_TYPE (rhs)))
           && vector_types_convertible_p (type, TREE_TYPE (rhs)))
    return convert (type, rhs);
    return convert (type, rhs);
  /* Arithmetic types all interconvert, and enum is treated like int.  */
  /* Arithmetic types all interconvert, and enum is treated like int.  */
  else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
  else if ((codel == INTEGER_TYPE || codel == REAL_TYPE
            || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
            || codel == ENUMERAL_TYPE || codel == COMPLEX_TYPE
            || codel == BOOLEAN_TYPE)
            || codel == BOOLEAN_TYPE)
           && (coder == INTEGER_TYPE || coder == REAL_TYPE
           && (coder == INTEGER_TYPE || coder == REAL_TYPE
               || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
               || coder == ENUMERAL_TYPE || coder == COMPLEX_TYPE
               || coder == BOOLEAN_TYPE))
               || coder == BOOLEAN_TYPE))
    return convert_and_check (type, rhs);
    return convert_and_check (type, rhs);
 
 
  /* Aggregates in different TUs might need conversion.  */
  /* Aggregates in different TUs might need conversion.  */
  if ((codel == RECORD_TYPE || codel == UNION_TYPE)
  if ((codel == RECORD_TYPE || codel == UNION_TYPE)
      && codel == coder
      && codel == coder
      && comptypes (type, rhstype))
      && comptypes (type, rhstype))
    return convert_and_check (type, rhs);
    return convert_and_check (type, rhs);
 
 
  /* Conversion to a transparent union from its member types.
  /* Conversion to a transparent union from its member types.
     This applies only to function arguments.  */
     This applies only to function arguments.  */
  if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
  if (codel == UNION_TYPE && TYPE_TRANSPARENT_UNION (type)
      && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
      && (errtype == ic_argpass || errtype == ic_argpass_nonproto))
    {
    {
      tree memb, marginal_memb = NULL_TREE;
      tree memb, marginal_memb = NULL_TREE;
 
 
      for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
      for (memb = TYPE_FIELDS (type); memb ; memb = TREE_CHAIN (memb))
        {
        {
          tree memb_type = TREE_TYPE (memb);
          tree memb_type = TREE_TYPE (memb);
 
 
          if (comptypes (TYPE_MAIN_VARIANT (memb_type),
          if (comptypes (TYPE_MAIN_VARIANT (memb_type),
                         TYPE_MAIN_VARIANT (rhstype)))
                         TYPE_MAIN_VARIANT (rhstype)))
            break;
            break;
 
 
          if (TREE_CODE (memb_type) != POINTER_TYPE)
          if (TREE_CODE (memb_type) != POINTER_TYPE)
            continue;
            continue;
 
 
          if (coder == POINTER_TYPE)
          if (coder == POINTER_TYPE)
            {
            {
              tree ttl = TREE_TYPE (memb_type);
              tree ttl = TREE_TYPE (memb_type);
              tree ttr = TREE_TYPE (rhstype);
              tree ttr = TREE_TYPE (rhstype);
 
 
              /* Any non-function converts to a [const][volatile] void *
              /* Any non-function converts to a [const][volatile] void *
                 and vice versa; otherwise, targets must be the same.
                 and vice versa; otherwise, targets must be the same.
                 Meanwhile, the lhs target must have all the qualifiers of
                 Meanwhile, the lhs target must have all the qualifiers of
                 the rhs.  */
                 the rhs.  */
              if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
              if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
                  || comp_target_types (memb_type, rhstype))
                  || comp_target_types (memb_type, rhstype))
                {
                {
                  /* If this type won't generate any warnings, use it.  */
                  /* If this type won't generate any warnings, use it.  */
                  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
                  if (TYPE_QUALS (ttl) == TYPE_QUALS (ttr)
                      || ((TREE_CODE (ttr) == FUNCTION_TYPE
                      || ((TREE_CODE (ttr) == FUNCTION_TYPE
                           && TREE_CODE (ttl) == FUNCTION_TYPE)
                           && TREE_CODE (ttl) == FUNCTION_TYPE)
                          ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
                          ? ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
                             == TYPE_QUALS (ttr))
                             == TYPE_QUALS (ttr))
                          : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
                          : ((TYPE_QUALS (ttl) | TYPE_QUALS (ttr))
                             == TYPE_QUALS (ttl))))
                             == TYPE_QUALS (ttl))))
                    break;
                    break;
 
 
                  /* Keep looking for a better type, but remember this one.  */
                  /* Keep looking for a better type, but remember this one.  */
                  if (!marginal_memb)
                  if (!marginal_memb)
                    marginal_memb = memb;
                    marginal_memb = memb;
                }
                }
            }
            }
 
 
          /* Can convert integer zero to any pointer type.  */
          /* Can convert integer zero to any pointer type.  */
          if (null_pointer_constant_p (rhs))
          if (null_pointer_constant_p (rhs))
            {
            {
              rhs = null_pointer_node;
              rhs = null_pointer_node;
              break;
              break;
            }
            }
        }
        }
 
 
      if (memb || marginal_memb)
      if (memb || marginal_memb)
        {
        {
          if (!memb)
          if (!memb)
            {
            {
              /* We have only a marginally acceptable member type;
              /* We have only a marginally acceptable member type;
                 it needs a warning.  */
                 it needs a warning.  */
              tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
              tree ttl = TREE_TYPE (TREE_TYPE (marginal_memb));
              tree ttr = TREE_TYPE (rhstype);
              tree ttr = TREE_TYPE (rhstype);
 
 
              /* Const and volatile mean something different for function
              /* Const and volatile mean something different for function
                 types, so the usual warnings are not appropriate.  */
                 types, so the usual warnings are not appropriate.  */
              if (TREE_CODE (ttr) == FUNCTION_TYPE
              if (TREE_CODE (ttr) == FUNCTION_TYPE
                  && TREE_CODE (ttl) == FUNCTION_TYPE)
                  && TREE_CODE (ttl) == FUNCTION_TYPE)
                {
                {
                  /* Because const and volatile on functions are
                  /* Because const and volatile on functions are
                     restrictions that say the function will not do
                     restrictions that say the function will not do
                     certain things, it is okay to use a const or volatile
                     certain things, it is okay to use a const or volatile
                     function where an ordinary one is wanted, but not
                     function where an ordinary one is wanted, but not
                     vice-versa.  */
                     vice-versa.  */
                  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
                  if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
                    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
                    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE "
                                            "makes qualified function "
                                            "makes qualified function "
                                            "pointer from unqualified"),
                                            "pointer from unqualified"),
                                         G_("assignment makes qualified "
                                         G_("assignment makes qualified "
                                            "function pointer from "
                                            "function pointer from "
                                            "unqualified"),
                                            "unqualified"),
                                         G_("initialization makes qualified "
                                         G_("initialization makes qualified "
                                            "function pointer from "
                                            "function pointer from "
                                            "unqualified"),
                                            "unqualified"),
                                         G_("return makes qualified function "
                                         G_("return makes qualified function "
                                            "pointer from unqualified"));
                                            "pointer from unqualified"));
                }
                }
              else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
              else if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
                WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
                WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
                                        "qualifiers from pointer target type"),
                                        "qualifiers from pointer target type"),
                                     G_("assignment discards qualifiers "
                                     G_("assignment discards qualifiers "
                                        "from pointer target type"),
                                        "from pointer target type"),
                                     G_("initialization discards qualifiers "
                                     G_("initialization discards qualifiers "
                                        "from pointer target type"),
                                        "from pointer target type"),
                                     G_("return discards qualifiers from "
                                     G_("return discards qualifiers from "
                                        "pointer target type"));
                                        "pointer target type"));
 
 
              memb = marginal_memb;
              memb = marginal_memb;
            }
            }
 
 
          if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
          if (pedantic && (!fundecl || !DECL_IN_SYSTEM_HEADER (fundecl)))
            pedwarn ("ISO C prohibits argument conversion to union type");
            pedwarn ("ISO C prohibits argument conversion to union type");
 
 
          return build_constructor_single (type, memb, rhs);
          return build_constructor_single (type, memb, rhs);
        }
        }
    }
    }
 
 
  /* Conversions among pointers */
  /* Conversions among pointers */
  else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
  else if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
           && (coder == codel))
           && (coder == codel))
    {
    {
      tree ttl = TREE_TYPE (type);
      tree ttl = TREE_TYPE (type);
      tree ttr = TREE_TYPE (rhstype);
      tree ttr = TREE_TYPE (rhstype);
      tree mvl = ttl;
      tree mvl = ttl;
      tree mvr = ttr;
      tree mvr = ttr;
      bool is_opaque_pointer;
      bool is_opaque_pointer;
      int target_cmp = 0;   /* Cache comp_target_types () result.  */
      int target_cmp = 0;   /* Cache comp_target_types () result.  */
 
 
      if (TREE_CODE (mvl) != ARRAY_TYPE)
      if (TREE_CODE (mvl) != ARRAY_TYPE)
        mvl = TYPE_MAIN_VARIANT (mvl);
        mvl = TYPE_MAIN_VARIANT (mvl);
      if (TREE_CODE (mvr) != ARRAY_TYPE)
      if (TREE_CODE (mvr) != ARRAY_TYPE)
        mvr = TYPE_MAIN_VARIANT (mvr);
        mvr = TYPE_MAIN_VARIANT (mvr);
      /* Opaque pointers are treated like void pointers.  */
      /* Opaque pointers are treated like void pointers.  */
      is_opaque_pointer = (targetm.vector_opaque_p (type)
      is_opaque_pointer = (targetm.vector_opaque_p (type)
                           || targetm.vector_opaque_p (rhstype))
                           || targetm.vector_opaque_p (rhstype))
        && TREE_CODE (ttl) == VECTOR_TYPE
        && TREE_CODE (ttl) == VECTOR_TYPE
        && TREE_CODE (ttr) == VECTOR_TYPE;
        && TREE_CODE (ttr) == VECTOR_TYPE;
 
 
      /* C++ does not allow the implicit conversion void* -> T*.  However,
      /* C++ does not allow the implicit conversion void* -> T*.  However,
         for the purpose of reducing the number of false positives, we
         for the purpose of reducing the number of false positives, we
         tolerate the special case of
         tolerate the special case of
 
 
                int *p = NULL;
                int *p = NULL;
 
 
         where NULL is typically defined in C to be '(void *) 0'.  */
         where NULL is typically defined in C to be '(void *) 0'.  */
      if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
      if (VOID_TYPE_P (ttr) && rhs != null_pointer_node && !VOID_TYPE_P (ttl))
        warning (OPT_Wc___compat, "request for implicit conversion from "
        warning (OPT_Wc___compat, "request for implicit conversion from "
                 "%qT to %qT not permitted in C++", rhstype, type);
                 "%qT to %qT not permitted in C++", rhstype, type);
 
 
      /* Check if the right-hand side has a format attribute but the
      /* Check if the right-hand side has a format attribute but the
         left-hand side doesn't.  */
         left-hand side doesn't.  */
      if (warn_missing_format_attribute
      if (warn_missing_format_attribute
          && check_missing_format_attribute (type, rhstype))
          && check_missing_format_attribute (type, rhstype))
        {
        {
          switch (errtype)
          switch (errtype)
          {
          {
          case ic_argpass:
          case ic_argpass:
          case ic_argpass_nonproto:
          case ic_argpass_nonproto:
            warning (OPT_Wmissing_format_attribute,
            warning (OPT_Wmissing_format_attribute,
                     "argument %d of %qE might be "
                     "argument %d of %qE might be "
                     "a candidate for a format attribute",
                     "a candidate for a format attribute",
                     parmnum, rname);
                     parmnum, rname);
            break;
            break;
          case ic_assign:
          case ic_assign:
            warning (OPT_Wmissing_format_attribute,
            warning (OPT_Wmissing_format_attribute,
                     "assignment left-hand side might be "
                     "assignment left-hand side might be "
                     "a candidate for a format attribute");
                     "a candidate for a format attribute");
            break;
            break;
          case ic_init:
          case ic_init:
            warning (OPT_Wmissing_format_attribute,
            warning (OPT_Wmissing_format_attribute,
                     "initialization left-hand side might be "
                     "initialization left-hand side might be "
                     "a candidate for a format attribute");
                     "a candidate for a format attribute");
            break;
            break;
          case ic_return:
          case ic_return:
            warning (OPT_Wmissing_format_attribute,
            warning (OPT_Wmissing_format_attribute,
                     "return type might be "
                     "return type might be "
                     "a candidate for a format attribute");
                     "a candidate for a format attribute");
            break;
            break;
          default:
          default:
            gcc_unreachable ();
            gcc_unreachable ();
          }
          }
        }
        }
 
 
      /* Any non-function converts to a [const][volatile] void *
      /* Any non-function converts to a [const][volatile] void *
         and vice versa; otherwise, targets must be the same.
         and vice versa; otherwise, targets must be the same.
         Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
         Meanwhile, the lhs target must have all the qualifiers of the rhs.  */
      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
      if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
          || (target_cmp = comp_target_types (type, rhstype))
          || (target_cmp = comp_target_types (type, rhstype))
          || is_opaque_pointer
          || is_opaque_pointer
          || (c_common_unsigned_type (mvl)
          || (c_common_unsigned_type (mvl)
              == c_common_unsigned_type (mvr)))
              == c_common_unsigned_type (mvr)))
        {
        {
          if (pedantic
          if (pedantic
              && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
              && ((VOID_TYPE_P (ttl) && TREE_CODE (ttr) == FUNCTION_TYPE)
                  ||
                  ||
                  (VOID_TYPE_P (ttr)
                  (VOID_TYPE_P (ttr)
                   && !null_pointer_constant_p (rhs)
                   && !null_pointer_constant_p (rhs)
                   && TREE_CODE (ttl) == FUNCTION_TYPE)))
                   && TREE_CODE (ttl) == FUNCTION_TYPE)))
            WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
            WARN_FOR_ASSIGNMENT (G_("ISO C forbids passing argument %d of "
                                    "%qE between function pointer "
                                    "%qE between function pointer "
                                    "and %<void *%>"),
                                    "and %<void *%>"),
                                 G_("ISO C forbids assignment between "
                                 G_("ISO C forbids assignment between "
                                    "function pointer and %<void *%>"),
                                    "function pointer and %<void *%>"),
                                 G_("ISO C forbids initialization between "
                                 G_("ISO C forbids initialization between "
                                    "function pointer and %<void *%>"),
                                    "function pointer and %<void *%>"),
                                 G_("ISO C forbids return between function "
                                 G_("ISO C forbids return between function "
                                    "pointer and %<void *%>"));
                                    "pointer and %<void *%>"));
          /* Const and volatile mean something different for function types,
          /* Const and volatile mean something different for function types,
             so the usual warnings are not appropriate.  */
             so the usual warnings are not appropriate.  */
          else if (TREE_CODE (ttr) != FUNCTION_TYPE
          else if (TREE_CODE (ttr) != FUNCTION_TYPE
                   && TREE_CODE (ttl) != FUNCTION_TYPE)
                   && TREE_CODE (ttl) != FUNCTION_TYPE)
            {
            {
              if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
              if (TYPE_QUALS (ttr) & ~TYPE_QUALS (ttl))
                {
                {
                  /* Types differing only by the presence of the 'volatile'
                  /* Types differing only by the presence of the 'volatile'
                     qualifier are acceptable if the 'volatile' has been added
                     qualifier are acceptable if the 'volatile' has been added
                     in by the Objective-C EH machinery.  */
                     in by the Objective-C EH machinery.  */
                  if (!objc_type_quals_match (ttl, ttr))
                  if (!objc_type_quals_match (ttl, ttr))
                    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
                    WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE discards "
                                            "qualifiers from pointer target type"),
                                            "qualifiers from pointer target type"),
                                         G_("assignment discards qualifiers "
                                         G_("assignment discards qualifiers "
                                            "from pointer target type"),
                                            "from pointer target type"),
                                         G_("initialization discards qualifiers "
                                         G_("initialization discards qualifiers "
                                            "from pointer target type"),
                                            "from pointer target type"),
                                         G_("return discards qualifiers from "
                                         G_("return discards qualifiers from "
                                            "pointer target type"));
                                            "pointer target type"));
                }
                }
              /* If this is not a case of ignoring a mismatch in signedness,
              /* If this is not a case of ignoring a mismatch in signedness,
                 no warning.  */
                 no warning.  */
              else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
              else if (VOID_TYPE_P (ttl) || VOID_TYPE_P (ttr)
                       || target_cmp)
                       || target_cmp)
                ;
                ;
              /* If there is a mismatch, do warn.  */
              /* If there is a mismatch, do warn.  */
              else if (warn_pointer_sign)
              else if (warn_pointer_sign)
                WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
                WARN_FOR_ASSIGNMENT (G_("pointer targets in passing argument "
                                        "%d of %qE differ in signedness"),
                                        "%d of %qE differ in signedness"),
                                     G_("pointer targets in assignment "
                                     G_("pointer targets in assignment "
                                        "differ in signedness"),
                                        "differ in signedness"),
                                     G_("pointer targets in initialization "
                                     G_("pointer targets in initialization "
                                        "differ in signedness"),
                                        "differ in signedness"),
                                     G_("pointer targets in return differ "
                                     G_("pointer targets in return differ "
                                        "in signedness"));
                                        "in signedness"));
            }
            }
          else if (TREE_CODE (ttl) == FUNCTION_TYPE
          else if (TREE_CODE (ttl) == FUNCTION_TYPE
                   && TREE_CODE (ttr) == FUNCTION_TYPE)
                   && TREE_CODE (ttr) == FUNCTION_TYPE)
            {
            {
              /* Because const and volatile on functions are restrictions
              /* Because const and volatile on functions are restrictions
                 that say the function will not do certain things,
                 that say the function will not do certain things,
                 it is okay to use a const or volatile function
                 it is okay to use a const or volatile function
                 where an ordinary one is wanted, but not vice-versa.  */
                 where an ordinary one is wanted, but not vice-versa.  */
              if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
              if (TYPE_QUALS (ttl) & ~TYPE_QUALS (ttr))
                WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
                WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
                                        "qualified function pointer "
                                        "qualified function pointer "
                                        "from unqualified"),
                                        "from unqualified"),
                                     G_("assignment makes qualified function "
                                     G_("assignment makes qualified function "
                                        "pointer from unqualified"),
                                        "pointer from unqualified"),
                                     G_("initialization makes qualified "
                                     G_("initialization makes qualified "
                                        "function pointer from unqualified"),
                                        "function pointer from unqualified"),
                                     G_("return makes qualified function "
                                     G_("return makes qualified function "
                                        "pointer from unqualified"));
                                        "pointer from unqualified"));
            }
            }
        }
        }
      else
      else
        /* Avoid warning about the volatile ObjC EH puts on decls.  */
        /* Avoid warning about the volatile ObjC EH puts on decls.  */
        if (!objc_ok)
        if (!objc_ok)
          WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
          WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE from "
                                  "incompatible pointer type"),
                                  "incompatible pointer type"),
                               G_("assignment from incompatible pointer type"),
                               G_("assignment from incompatible pointer type"),
                               G_("initialization from incompatible "
                               G_("initialization from incompatible "
                                  "pointer type"),
                                  "pointer type"),
                               G_("return from incompatible pointer type"));
                               G_("return from incompatible pointer type"));
 
 
      return convert (type, rhs);
      return convert (type, rhs);
    }
    }
  else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
  else if (codel == POINTER_TYPE && coder == ARRAY_TYPE)
    {
    {
      /* ??? This should not be an error when inlining calls to
      /* ??? This should not be an error when inlining calls to
         unprototyped functions.  */
         unprototyped functions.  */
      error ("invalid use of non-lvalue array");
      error ("invalid use of non-lvalue array");
      return error_mark_node;
      return error_mark_node;
    }
    }
  else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
  else if (codel == POINTER_TYPE && coder == INTEGER_TYPE)
    {
    {
      /* An explicit constant 0 can convert to a pointer,
      /* An explicit constant 0 can convert to a pointer,
         or one that results from arithmetic, even including
         or one that results from arithmetic, even including
         a cast to integer type.  */
         a cast to integer type.  */
      if (!null_pointer_constant_p (rhs))
      if (!null_pointer_constant_p (rhs))
        WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
        WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes "
                                "pointer from integer without a cast"),
                                "pointer from integer without a cast"),
                             G_("assignment makes pointer from integer "
                             G_("assignment makes pointer from integer "
                                "without a cast"),
                                "without a cast"),
                             G_("initialization makes pointer from "
                             G_("initialization makes pointer from "
                                "integer without a cast"),
                                "integer without a cast"),
                             G_("return makes pointer from integer "
                             G_("return makes pointer from integer "
                                "without a cast"));
                                "without a cast"));
 
 
      return convert (type, rhs);
      return convert (type, rhs);
    }
    }
  else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
  else if (codel == INTEGER_TYPE && coder == POINTER_TYPE)
    {
    {
      WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
      WARN_FOR_ASSIGNMENT (G_("passing argument %d of %qE makes integer "
                              "from pointer without a cast"),
                              "from pointer without a cast"),
                           G_("assignment makes integer from pointer "
                           G_("assignment makes integer from pointer "
                              "without a cast"),
                              "without a cast"),
                           G_("initialization makes integer from pointer "
                           G_("initialization makes integer from pointer "
                              "without a cast"),
                              "without a cast"),
                           G_("return makes integer from pointer "
                           G_("return makes integer from pointer "
                              "without a cast"));
                              "without a cast"));
      return convert (type, rhs);
      return convert (type, rhs);
    }
    }
  else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
  else if (codel == BOOLEAN_TYPE && coder == POINTER_TYPE)
    return convert (type, rhs);
    return convert (type, rhs);
 
 
  switch (errtype)
  switch (errtype)
    {
    {
    case ic_argpass:
    case ic_argpass:
    case ic_argpass_nonproto:
    case ic_argpass_nonproto:
      /* ??? This should not be an error when inlining calls to
      /* ??? This should not be an error when inlining calls to
         unprototyped functions.  */
         unprototyped functions.  */
      error ("incompatible type for argument %d of %qE", parmnum, rname);
      error ("incompatible type for argument %d of %qE", parmnum, rname);
      break;
      break;
    case ic_assign:
    case ic_assign:
      error ("incompatible types in assignment");
      error ("incompatible types in assignment");
      break;
      break;
    case ic_init:
    case ic_init:
      error ("incompatible types in initialization");
      error ("incompatible types in initialization");
      break;
      break;
    case ic_return:
    case ic_return:
      error ("incompatible types in return");
      error ("incompatible types in return");
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  return error_mark_node;
  return error_mark_node;
}
}
 
 
/* Convert VALUE for assignment into inlined parameter PARM.  ARGNUM
/* Convert VALUE for assignment into inlined parameter PARM.  ARGNUM
   is used for error and warning reporting and indicates which argument
   is used for error and warning reporting and indicates which argument
   is being processed.  */
   is being processed.  */
 
 
tree
tree
c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
c_convert_parm_for_inlining (tree parm, tree value, tree fn, int argnum)
{
{
  tree ret, type;
  tree ret, type;
 
 
  /* If FN was prototyped at the call site, the value has been converted
  /* If FN was prototyped at the call site, the value has been converted
     already in convert_arguments.
     already in convert_arguments.
     However, we might see a prototype now that was not in place when
     However, we might see a prototype now that was not in place when
     the function call was seen, so check that the VALUE actually matches
     the function call was seen, so check that the VALUE actually matches
     PARM before taking an early exit.  */
     PARM before taking an early exit.  */
  if (!value
  if (!value
      || (TYPE_ARG_TYPES (TREE_TYPE (fn))
      || (TYPE_ARG_TYPES (TREE_TYPE (fn))
          && (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
          && (TYPE_MAIN_VARIANT (TREE_TYPE (parm))
              == TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
              == TYPE_MAIN_VARIANT (TREE_TYPE (value)))))
    return value;
    return value;
 
 
  type = TREE_TYPE (parm);
  type = TREE_TYPE (parm);
  ret = convert_for_assignment (type, value,
  ret = convert_for_assignment (type, value,
                                ic_argpass_nonproto, fn,
                                ic_argpass_nonproto, fn,
                                fn, argnum);
                                fn, argnum);
  if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
  if (targetm.calls.promote_prototypes (TREE_TYPE (fn))
      && INTEGRAL_TYPE_P (type)
      && INTEGRAL_TYPE_P (type)
      && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
      && (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
    ret = default_conversion (ret);
    ret = default_conversion (ret);
  return ret;
  return ret;
}
}


/* If VALUE is a compound expr all of whose expressions are constant, then
/* If VALUE is a compound expr all of whose expressions are constant, then
   return its value.  Otherwise, return error_mark_node.
   return its value.  Otherwise, return error_mark_node.
 
 
   This is for handling COMPOUND_EXPRs as initializer elements
   This is for handling COMPOUND_EXPRs as initializer elements
   which is allowed with a warning when -pedantic is specified.  */
   which is allowed with a warning when -pedantic is specified.  */
 
 
static tree
static tree
valid_compound_expr_initializer (tree value, tree endtype)
valid_compound_expr_initializer (tree value, tree endtype)
{
{
  if (TREE_CODE (value) == COMPOUND_EXPR)
  if (TREE_CODE (value) == COMPOUND_EXPR)
    {
    {
      if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
      if (valid_compound_expr_initializer (TREE_OPERAND (value, 0), endtype)
          == error_mark_node)
          == error_mark_node)
        return error_mark_node;
        return error_mark_node;
      return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
      return valid_compound_expr_initializer (TREE_OPERAND (value, 1),
                                              endtype);
                                              endtype);
    }
    }
  else if (!initializer_constant_valid_p (value, endtype))
  else if (!initializer_constant_valid_p (value, endtype))
    return error_mark_node;
    return error_mark_node;
  else
  else
    return value;
    return value;
}
}


/* Perform appropriate conversions on the initial value of a variable,
/* Perform appropriate conversions on the initial value of a variable,
   store it in the declaration DECL,
   store it in the declaration DECL,
   and print any error messages that are appropriate.
   and print any error messages that are appropriate.
   If the init is invalid, store an ERROR_MARK.  */
   If the init is invalid, store an ERROR_MARK.  */
 
 
void
void
store_init_value (tree decl, tree init)
store_init_value (tree decl, tree init)
{
{
  tree value, type;
  tree value, type;
 
 
  /* If variable's type was invalidly declared, just ignore it.  */
  /* If variable's type was invalidly declared, just ignore it.  */
 
 
  type = TREE_TYPE (decl);
  type = TREE_TYPE (decl);
  if (TREE_CODE (type) == ERROR_MARK)
  if (TREE_CODE (type) == ERROR_MARK)
    return;
    return;
 
 
  /* Digest the specified initializer into an expression.  */
  /* Digest the specified initializer into an expression.  */
 
 
  value = digest_init (type, init, true, TREE_STATIC (decl));
  value = digest_init (type, init, true, TREE_STATIC (decl));
 
 
  /* Store the expression if valid; else report error.  */
  /* Store the expression if valid; else report error.  */
 
 
  if (!in_system_header
  if (!in_system_header
      && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
      && AGGREGATE_TYPE_P (TREE_TYPE (decl)) && !TREE_STATIC (decl))
    warning (OPT_Wtraditional, "traditional C rejects automatic "
    warning (OPT_Wtraditional, "traditional C rejects automatic "
             "aggregate initialization");
             "aggregate initialization");
 
 
  DECL_INITIAL (decl) = value;
  DECL_INITIAL (decl) = value;
 
 
  /* ANSI wants warnings about out-of-range constant initializers.  */
  /* ANSI wants warnings about out-of-range constant initializers.  */
  STRIP_TYPE_NOPS (value);
  STRIP_TYPE_NOPS (value);
  constant_expression_warning (value);
  constant_expression_warning (value);
 
 
  /* Check if we need to set array size from compound literal size.  */
  /* Check if we need to set array size from compound literal size.  */
  if (TREE_CODE (type) == ARRAY_TYPE
  if (TREE_CODE (type) == ARRAY_TYPE
      && TYPE_DOMAIN (type) == 0
      && TYPE_DOMAIN (type) == 0
      && value != error_mark_node)
      && value != error_mark_node)
    {
    {
      tree inside_init = init;
      tree inside_init = init;
 
 
      STRIP_TYPE_NOPS (inside_init);
      STRIP_TYPE_NOPS (inside_init);
      inside_init = fold (inside_init);
      inside_init = fold (inside_init);
 
 
      if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
      if (TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
        {
        {
          tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
          tree cldecl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
 
 
          if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
          if (TYPE_DOMAIN (TREE_TYPE (cldecl)))
            {
            {
              /* For int foo[] = (int [3]){1}; we need to set array size
              /* For int foo[] = (int [3]){1}; we need to set array size
                 now since later on array initializer will be just the
                 now since later on array initializer will be just the
                 brace enclosed list of the compound literal.  */
                 brace enclosed list of the compound literal.  */
              type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
              type = build_distinct_type_copy (TYPE_MAIN_VARIANT (type));
              TREE_TYPE (decl) = type;
              TREE_TYPE (decl) = type;
              TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
              TYPE_DOMAIN (type) = TYPE_DOMAIN (TREE_TYPE (cldecl));
              layout_type (type);
              layout_type (type);
              layout_decl (cldecl, 0);
              layout_decl (cldecl, 0);
            }
            }
        }
        }
    }
    }
}
}


/* Methods for storing and printing names for error messages.  */
/* Methods for storing and printing names for error messages.  */
 
 
/* Implement a spelling stack that allows components of a name to be pushed
/* Implement a spelling stack that allows components of a name to be pushed
   and popped.  Each element on the stack is this structure.  */
   and popped.  Each element on the stack is this structure.  */
 
 
struct spelling
struct spelling
{
{
  int kind;
  int kind;
  union
  union
    {
    {
      unsigned HOST_WIDE_INT i;
      unsigned HOST_WIDE_INT i;
      const char *s;
      const char *s;
    } u;
    } u;
};
};
 
 
#define SPELLING_STRING 1
#define SPELLING_STRING 1
#define SPELLING_MEMBER 2
#define SPELLING_MEMBER 2
#define SPELLING_BOUNDS 3
#define SPELLING_BOUNDS 3
 
 
static struct spelling *spelling;       /* Next stack element (unused).  */
static struct spelling *spelling;       /* Next stack element (unused).  */
static struct spelling *spelling_base;  /* Spelling stack base.  */
static struct spelling *spelling_base;  /* Spelling stack base.  */
static int spelling_size;               /* Size of the spelling stack.  */
static int spelling_size;               /* Size of the spelling stack.  */
 
 
/* Macros to save and restore the spelling stack around push_... functions.
/* Macros to save and restore the spelling stack around push_... functions.
   Alternative to SAVE_SPELLING_STACK.  */
   Alternative to SAVE_SPELLING_STACK.  */
 
 
#define SPELLING_DEPTH() (spelling - spelling_base)
#define SPELLING_DEPTH() (spelling - spelling_base)
#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
#define RESTORE_SPELLING_DEPTH(DEPTH) (spelling = spelling_base + (DEPTH))
 
 
/* Push an element on the spelling stack with type KIND and assign VALUE
/* Push an element on the spelling stack with type KIND and assign VALUE
   to MEMBER.  */
   to MEMBER.  */
 
 
#define PUSH_SPELLING(KIND, VALUE, MEMBER)                              \
#define PUSH_SPELLING(KIND, VALUE, MEMBER)                              \
{                                                                       \
{                                                                       \
  int depth = SPELLING_DEPTH ();                                        \
  int depth = SPELLING_DEPTH ();                                        \
                                                                        \
                                                                        \
  if (depth >= spelling_size)                                           \
  if (depth >= spelling_size)                                           \
    {                                                                   \
    {                                                                   \
      spelling_size += 10;                                              \
      spelling_size += 10;                                              \
      spelling_base = XRESIZEVEC (struct spelling, spelling_base,       \
      spelling_base = XRESIZEVEC (struct spelling, spelling_base,       \
                                  spelling_size);                       \
                                  spelling_size);                       \
      RESTORE_SPELLING_DEPTH (depth);                                   \
      RESTORE_SPELLING_DEPTH (depth);                                   \
    }                                                                   \
    }                                                                   \
                                                                        \
                                                                        \
  spelling->kind = (KIND);                                              \
  spelling->kind = (KIND);                                              \
  spelling->MEMBER = (VALUE);                                           \
  spelling->MEMBER = (VALUE);                                           \
  spelling++;                                                           \
  spelling++;                                                           \
}
}
 
 
/* Push STRING on the stack.  Printed literally.  */
/* Push STRING on the stack.  Printed literally.  */
 
 
static void
static void
push_string (const char *string)
push_string (const char *string)
{
{
  PUSH_SPELLING (SPELLING_STRING, string, u.s);
  PUSH_SPELLING (SPELLING_STRING, string, u.s);
}
}
 
 
/* Push a member name on the stack.  Printed as '.' STRING.  */
/* Push a member name on the stack.  Printed as '.' STRING.  */
 
 
static void
static void
push_member_name (tree decl)
push_member_name (tree decl)
{
{
  const char *const string
  const char *const string
    = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
    = DECL_NAME (decl) ? IDENTIFIER_POINTER (DECL_NAME (decl)) : "<anonymous>";
  PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
  PUSH_SPELLING (SPELLING_MEMBER, string, u.s);
}
}
 
 
/* Push an array bounds on the stack.  Printed as [BOUNDS].  */
/* Push an array bounds on the stack.  Printed as [BOUNDS].  */
 
 
static void
static void
push_array_bounds (unsigned HOST_WIDE_INT bounds)
push_array_bounds (unsigned HOST_WIDE_INT bounds)
{
{
  PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
  PUSH_SPELLING (SPELLING_BOUNDS, bounds, u.i);
}
}
 
 
/* Compute the maximum size in bytes of the printed spelling.  */
/* Compute the maximum size in bytes of the printed spelling.  */
 
 
static int
static int
spelling_length (void)
spelling_length (void)
{
{
  int size = 0;
  int size = 0;
  struct spelling *p;
  struct spelling *p;
 
 
  for (p = spelling_base; p < spelling; p++)
  for (p = spelling_base; p < spelling; p++)
    {
    {
      if (p->kind == SPELLING_BOUNDS)
      if (p->kind == SPELLING_BOUNDS)
        size += 25;
        size += 25;
      else
      else
        size += strlen (p->u.s) + 1;
        size += strlen (p->u.s) + 1;
    }
    }
 
 
  return size;
  return size;
}
}
 
 
/* Print the spelling to BUFFER and return it.  */
/* Print the spelling to BUFFER and return it.  */
 
 
static char *
static char *
print_spelling (char *buffer)
print_spelling (char *buffer)
{
{
  char *d = buffer;
  char *d = buffer;
  struct spelling *p;
  struct spelling *p;
 
 
  for (p = spelling_base; p < spelling; p++)
  for (p = spelling_base; p < spelling; p++)
    if (p->kind == SPELLING_BOUNDS)
    if (p->kind == SPELLING_BOUNDS)
      {
      {
        sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
        sprintf (d, "[" HOST_WIDE_INT_PRINT_UNSIGNED "]", p->u.i);
        d += strlen (d);
        d += strlen (d);
      }
      }
    else
    else
      {
      {
        const char *s;
        const char *s;
        if (p->kind == SPELLING_MEMBER)
        if (p->kind == SPELLING_MEMBER)
          *d++ = '.';
          *d++ = '.';
        for (s = p->u.s; (*d = *s++); d++)
        for (s = p->u.s; (*d = *s++); d++)
          ;
          ;
      }
      }
  *d++ = '\0';
  *d++ = '\0';
  return buffer;
  return buffer;
}
}
 
 
/* Issue an error message for a bad initializer component.
/* Issue an error message for a bad initializer component.
   MSGID identifies the message.
   MSGID identifies the message.
   The component name is taken from the spelling stack.  */
   The component name is taken from the spelling stack.  */
 
 
void
void
error_init (const char *msgid)
error_init (const char *msgid)
{
{
  char *ofwhat;
  char *ofwhat;
 
 
  error ("%s", _(msgid));
  error ("%s", _(msgid));
  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
  if (*ofwhat)
  if (*ofwhat)
    error ("(near initialization for %qs)", ofwhat);
    error ("(near initialization for %qs)", ofwhat);
}
}
 
 
/* Issue a pedantic warning for a bad initializer component.
/* Issue a pedantic warning for a bad initializer component.
   MSGID identifies the message.
   MSGID identifies the message.
   The component name is taken from the spelling stack.  */
   The component name is taken from the spelling stack.  */
 
 
void
void
pedwarn_init (const char *msgid)
pedwarn_init (const char *msgid)
{
{
  char *ofwhat;
  char *ofwhat;
 
 
  pedwarn ("%s", _(msgid));
  pedwarn ("%s", _(msgid));
  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
  if (*ofwhat)
  if (*ofwhat)
    pedwarn ("(near initialization for %qs)", ofwhat);
    pedwarn ("(near initialization for %qs)", ofwhat);
}
}
 
 
/* Issue a warning for a bad initializer component.
/* Issue a warning for a bad initializer component.
   MSGID identifies the message.
   MSGID identifies the message.
   The component name is taken from the spelling stack.  */
   The component name is taken from the spelling stack.  */
 
 
static void
static void
warning_init (const char *msgid)
warning_init (const char *msgid)
{
{
  char *ofwhat;
  char *ofwhat;
 
 
  warning (0, "%s", _(msgid));
  warning (0, "%s", _(msgid));
  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
  ofwhat = print_spelling ((char *) alloca (spelling_length () + 1));
  if (*ofwhat)
  if (*ofwhat)
    warning (0, "(near initialization for %qs)", ofwhat);
    warning (0, "(near initialization for %qs)", ofwhat);
}
}


/* If TYPE is an array type and EXPR is a parenthesized string
/* If TYPE is an array type and EXPR is a parenthesized string
   constant, warn if pedantic that EXPR is being used to initialize an
   constant, warn if pedantic that EXPR is being used to initialize an
   object of type TYPE.  */
   object of type TYPE.  */
 
 
void
void
maybe_warn_string_init (tree type, struct c_expr expr)
maybe_warn_string_init (tree type, struct c_expr expr)
{
{
  if (pedantic
  if (pedantic
      && TREE_CODE (type) == ARRAY_TYPE
      && TREE_CODE (type) == ARRAY_TYPE
      && TREE_CODE (expr.value) == STRING_CST
      && TREE_CODE (expr.value) == STRING_CST
      && expr.original_code != STRING_CST)
      && expr.original_code != STRING_CST)
    pedwarn_init ("array initialized from parenthesized string constant");
    pedwarn_init ("array initialized from parenthesized string constant");
}
}
 
 
/* Digest the parser output INIT as an initializer for type TYPE.
/* Digest the parser output INIT as an initializer for type TYPE.
   Return a C expression of type TYPE to represent the initial value.
   Return a C expression of type TYPE to represent the initial value.
 
 
   If INIT is a string constant, STRICT_STRING is true if it is
   If INIT is a string constant, STRICT_STRING is true if it is
   unparenthesized or we should not warn here for it being parenthesized.
   unparenthesized or we should not warn here for it being parenthesized.
   For other types of INIT, STRICT_STRING is not used.
   For other types of INIT, STRICT_STRING is not used.
 
 
   REQUIRE_CONSTANT requests an error if non-constant initializers or
   REQUIRE_CONSTANT requests an error if non-constant initializers or
   elements are seen.  */
   elements are seen.  */
 
 
static tree
static tree
digest_init (tree type, tree init, bool strict_string, int require_constant)
digest_init (tree type, tree init, bool strict_string, int require_constant)
{
{
  enum tree_code code = TREE_CODE (type);
  enum tree_code code = TREE_CODE (type);
  tree inside_init = init;
  tree inside_init = init;
 
 
  if (type == error_mark_node
  if (type == error_mark_node
      || !init
      || !init
      || init == error_mark_node
      || init == error_mark_node
      || TREE_TYPE (init) == error_mark_node)
      || TREE_TYPE (init) == error_mark_node)
    return error_mark_node;
    return error_mark_node;
 
 
  STRIP_TYPE_NOPS (inside_init);
  STRIP_TYPE_NOPS (inside_init);
 
 
  inside_init = fold (inside_init);
  inside_init = fold (inside_init);
 
 
  /* Initialization of an array of chars from a string constant
  /* Initialization of an array of chars from a string constant
     optionally enclosed in braces.  */
     optionally enclosed in braces.  */
 
 
  if (code == ARRAY_TYPE && inside_init
  if (code == ARRAY_TYPE && inside_init
      && TREE_CODE (inside_init) == STRING_CST)
      && TREE_CODE (inside_init) == STRING_CST)
    {
    {
      tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
      tree typ1 = TYPE_MAIN_VARIANT (TREE_TYPE (type));
      /* Note that an array could be both an array of character type
      /* Note that an array could be both an array of character type
         and an array of wchar_t if wchar_t is signed char or unsigned
         and an array of wchar_t if wchar_t is signed char or unsigned
         char.  */
         char.  */
      bool char_array = (typ1 == char_type_node
      bool char_array = (typ1 == char_type_node
                         || typ1 == signed_char_type_node
                         || typ1 == signed_char_type_node
                         || typ1 == unsigned_char_type_node);
                         || typ1 == unsigned_char_type_node);
      bool wchar_array = !!comptypes (typ1, wchar_type_node);
      bool wchar_array = !!comptypes (typ1, wchar_type_node);
      if (char_array || wchar_array)
      if (char_array || wchar_array)
        {
        {
          struct c_expr expr;
          struct c_expr expr;
          bool char_string;
          bool char_string;
          expr.value = inside_init;
          expr.value = inside_init;
          expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
          expr.original_code = (strict_string ? STRING_CST : ERROR_MARK);
          maybe_warn_string_init (type, expr);
          maybe_warn_string_init (type, expr);
 
 
          char_string
          char_string
            = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
            = (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (inside_init)))
               == char_type_node);
               == char_type_node);
 
 
          if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
          if (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
                         TYPE_MAIN_VARIANT (type)))
                         TYPE_MAIN_VARIANT (type)))
            return inside_init;
            return inside_init;
 
 
          if (!wchar_array && !char_string)
          if (!wchar_array && !char_string)
            {
            {
              error_init ("char-array initialized from wide string");
              error_init ("char-array initialized from wide string");
              return error_mark_node;
              return error_mark_node;
            }
            }
          if (char_string && !char_array)
          if (char_string && !char_array)
            {
            {
              error_init ("wchar_t-array initialized from non-wide string");
              error_init ("wchar_t-array initialized from non-wide string");
              return error_mark_node;
              return error_mark_node;
            }
            }
 
 
          TREE_TYPE (inside_init) = type;
          TREE_TYPE (inside_init) = type;
          if (TYPE_DOMAIN (type) != 0
          if (TYPE_DOMAIN (type) != 0
              && TYPE_SIZE (type) != 0
              && TYPE_SIZE (type) != 0
              && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
              && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
              /* Subtract 1 (or sizeof (wchar_t))
              /* Subtract 1 (or sizeof (wchar_t))
                 because it's ok to ignore the terminating null char
                 because it's ok to ignore the terminating null char
                 that is counted in the length of the constant.  */
                 that is counted in the length of the constant.  */
              && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
              && 0 > compare_tree_int (TYPE_SIZE_UNIT (type),
                                       TREE_STRING_LENGTH (inside_init)
                                       TREE_STRING_LENGTH (inside_init)
                                       - ((TYPE_PRECISION (typ1)
                                       - ((TYPE_PRECISION (typ1)
                                           != TYPE_PRECISION (char_type_node))
                                           != TYPE_PRECISION (char_type_node))
                                          ? (TYPE_PRECISION (wchar_type_node)
                                          ? (TYPE_PRECISION (wchar_type_node)
                                             / BITS_PER_UNIT)
                                             / BITS_PER_UNIT)
                                          : 1)))
                                          : 1)))
            pedwarn_init ("initializer-string for array of chars is too long");
            pedwarn_init ("initializer-string for array of chars is too long");
 
 
          return inside_init;
          return inside_init;
        }
        }
      else if (INTEGRAL_TYPE_P (typ1))
      else if (INTEGRAL_TYPE_P (typ1))
        {
        {
          error_init ("array of inappropriate type initialized "
          error_init ("array of inappropriate type initialized "
                      "from string constant");
                      "from string constant");
          return error_mark_node;
          return error_mark_node;
        }
        }
    }
    }
 
 
  /* Build a VECTOR_CST from a *constant* vector constructor.  If the
  /* Build a VECTOR_CST from a *constant* vector constructor.  If the
     vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
     vector constructor is not constant (e.g. {1,2,3,foo()}) then punt
     below and handle as a constructor.  */
     below and handle as a constructor.  */
  if (code == VECTOR_TYPE
  if (code == VECTOR_TYPE
      && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
      && TREE_CODE (TREE_TYPE (inside_init)) == VECTOR_TYPE
      && vector_types_convertible_p (TREE_TYPE (inside_init), type)
      && vector_types_convertible_p (TREE_TYPE (inside_init), type)
      && TREE_CONSTANT (inside_init))
      && TREE_CONSTANT (inside_init))
    {
    {
      if (TREE_CODE (inside_init) == VECTOR_CST
      if (TREE_CODE (inside_init) == VECTOR_CST
          && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
          && comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
                        TYPE_MAIN_VARIANT (type)))
                        TYPE_MAIN_VARIANT (type)))
        return inside_init;
        return inside_init;
 
 
      if (TREE_CODE (inside_init) == CONSTRUCTOR)
      if (TREE_CODE (inside_init) == CONSTRUCTOR)
        {
        {
          unsigned HOST_WIDE_INT ix;
          unsigned HOST_WIDE_INT ix;
          tree value;
          tree value;
          bool constant_p = true;
          bool constant_p = true;
 
 
          /* Iterate through elements and check if all constructor
          /* Iterate through elements and check if all constructor
             elements are *_CSTs.  */
             elements are *_CSTs.  */
          FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
          FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (inside_init), ix, value)
            if (!CONSTANT_CLASS_P (value))
            if (!CONSTANT_CLASS_P (value))
              {
              {
                constant_p = false;
                constant_p = false;
                break;
                break;
              }
              }
 
 
          if (constant_p)
          if (constant_p)
            return build_vector_from_ctor (type,
            return build_vector_from_ctor (type,
                                           CONSTRUCTOR_ELTS (inside_init));
                                           CONSTRUCTOR_ELTS (inside_init));
        }
        }
    }
    }
 
 
  /* Any type can be initialized
  /* Any type can be initialized
     from an expression of the same type, optionally with braces.  */
     from an expression of the same type, optionally with braces.  */
 
 
  if (inside_init && TREE_TYPE (inside_init) != 0
  if (inside_init && TREE_TYPE (inside_init) != 0
      && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
      && (comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (inside_init)),
                     TYPE_MAIN_VARIANT (type))
                     TYPE_MAIN_VARIANT (type))
          || (code == ARRAY_TYPE
          || (code == ARRAY_TYPE
              && comptypes (TREE_TYPE (inside_init), type))
              && comptypes (TREE_TYPE (inside_init), type))
          || (code == VECTOR_TYPE
          || (code == VECTOR_TYPE
              && comptypes (TREE_TYPE (inside_init), type))
              && comptypes (TREE_TYPE (inside_init), type))
          || (code == POINTER_TYPE
          || (code == POINTER_TYPE
              && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
              && TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE
              && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
              && comptypes (TREE_TYPE (TREE_TYPE (inside_init)),
                            TREE_TYPE (type)))))
                            TREE_TYPE (type)))))
    {
    {
      if (code == POINTER_TYPE)
      if (code == POINTER_TYPE)
        {
        {
          if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
          if (TREE_CODE (TREE_TYPE (inside_init)) == ARRAY_TYPE)
            {
            {
              if (TREE_CODE (inside_init) == STRING_CST
              if (TREE_CODE (inside_init) == STRING_CST
                  || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
                  || TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
                inside_init = array_to_pointer_conversion (inside_init);
                inside_init = array_to_pointer_conversion (inside_init);
              else
              else
                {
                {
                  error_init ("invalid use of non-lvalue array");
                  error_init ("invalid use of non-lvalue array");
                  return error_mark_node;
                  return error_mark_node;
                }
                }
            }
            }
        }
        }
 
 
      if (code == VECTOR_TYPE)
      if (code == VECTOR_TYPE)
        /* Although the types are compatible, we may require a
        /* Although the types are compatible, we may require a
           conversion.  */
           conversion.  */
        inside_init = convert (type, inside_init);
        inside_init = convert (type, inside_init);
 
 
      if (require_constant
      if (require_constant
          && (code == VECTOR_TYPE || !flag_isoc99)
          && (code == VECTOR_TYPE || !flag_isoc99)
          && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
          && TREE_CODE (inside_init) == COMPOUND_LITERAL_EXPR)
        {
        {
          /* As an extension, allow initializing objects with static storage
          /* As an extension, allow initializing objects with static storage
             duration with compound literals (which are then treated just as
             duration with compound literals (which are then treated just as
             the brace enclosed list they contain).  Also allow this for
             the brace enclosed list they contain).  Also allow this for
             vectors, as we can only assign them with compound literals.  */
             vectors, as we can only assign them with compound literals.  */
          tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
          tree decl = COMPOUND_LITERAL_EXPR_DECL (inside_init);
          inside_init = DECL_INITIAL (decl);
          inside_init = DECL_INITIAL (decl);
        }
        }
 
 
      if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
      if (code == ARRAY_TYPE && TREE_CODE (inside_init) != STRING_CST
          && TREE_CODE (inside_init) != CONSTRUCTOR)
          && TREE_CODE (inside_init) != CONSTRUCTOR)
        {
        {
          error_init ("array initialized from non-constant array expression");
          error_init ("array initialized from non-constant array expression");
          return error_mark_node;
          return error_mark_node;
        }
        }
 
 
      if (optimize && TREE_CODE (inside_init) == VAR_DECL)
      if (optimize && TREE_CODE (inside_init) == VAR_DECL)
        inside_init = decl_constant_value_for_broken_optimization (inside_init);
        inside_init = decl_constant_value_for_broken_optimization (inside_init);
 
 
      /* Compound expressions can only occur here if -pedantic or
      /* Compound expressions can only occur here if -pedantic or
         -pedantic-errors is specified.  In the later case, we always want
         -pedantic-errors is specified.  In the later case, we always want
         an error.  In the former case, we simply want a warning.  */
         an error.  In the former case, we simply want a warning.  */
      if (require_constant && pedantic
      if (require_constant && pedantic
          && TREE_CODE (inside_init) == COMPOUND_EXPR)
          && TREE_CODE (inside_init) == COMPOUND_EXPR)
        {
        {
          inside_init
          inside_init
            = valid_compound_expr_initializer (inside_init,
            = valid_compound_expr_initializer (inside_init,
                                               TREE_TYPE (inside_init));
                                               TREE_TYPE (inside_init));
          if (inside_init == error_mark_node)
          if (inside_init == error_mark_node)
            error_init ("initializer element is not constant");
            error_init ("initializer element is not constant");
          else
          else
            pedwarn_init ("initializer element is not constant");
            pedwarn_init ("initializer element is not constant");
          if (flag_pedantic_errors)
          if (flag_pedantic_errors)
            inside_init = error_mark_node;
            inside_init = error_mark_node;
        }
        }
      else if (require_constant
      else if (require_constant
               && !initializer_constant_valid_p (inside_init,
               && !initializer_constant_valid_p (inside_init,
                                                 TREE_TYPE (inside_init)))
                                                 TREE_TYPE (inside_init)))
        {
        {
          error_init ("initializer element is not constant");
          error_init ("initializer element is not constant");
          inside_init = error_mark_node;
          inside_init = error_mark_node;
        }
        }
 
 
      /* Added to enable additional -Wmissing-format-attribute warnings.  */
      /* Added to enable additional -Wmissing-format-attribute warnings.  */
      if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
      if (TREE_CODE (TREE_TYPE (inside_init)) == POINTER_TYPE)
        inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
        inside_init = convert_for_assignment (type, inside_init, ic_init, NULL_TREE,
                                              NULL_TREE, 0);
                                              NULL_TREE, 0);
      return inside_init;
      return inside_init;
    }
    }
 
 
  /* Handle scalar types, including conversions.  */
  /* Handle scalar types, including conversions.  */
 
 
  if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
  if (code == INTEGER_TYPE || code == REAL_TYPE || code == POINTER_TYPE
      || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
      || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE || code == COMPLEX_TYPE
      || code == VECTOR_TYPE)
      || code == VECTOR_TYPE)
    {
    {
      if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
      if (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
          && (TREE_CODE (init) == STRING_CST
          && (TREE_CODE (init) == STRING_CST
              || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
              || TREE_CODE (init) == COMPOUND_LITERAL_EXPR))
        init = array_to_pointer_conversion (init);
        init = array_to_pointer_conversion (init);
      inside_init
      inside_init
        = convert_for_assignment (type, init, ic_init,
        = convert_for_assignment (type, init, ic_init,
                                  NULL_TREE, NULL_TREE, 0);
                                  NULL_TREE, NULL_TREE, 0);
 
 
      /* Check to see if we have already given an error message.  */
      /* Check to see if we have already given an error message.  */
      if (inside_init == error_mark_node)
      if (inside_init == error_mark_node)
        ;
        ;
      else if (require_constant && !TREE_CONSTANT (inside_init))
      else if (require_constant && !TREE_CONSTANT (inside_init))
        {
        {
          error_init ("initializer element is not constant");
          error_init ("initializer element is not constant");
          inside_init = error_mark_node;
          inside_init = error_mark_node;
        }
        }
      else if (require_constant
      else if (require_constant
               && !initializer_constant_valid_p (inside_init,
               && !initializer_constant_valid_p (inside_init,
                                                 TREE_TYPE (inside_init)))
                                                 TREE_TYPE (inside_init)))
        {
        {
          error_init ("initializer element is not computable at load time");
          error_init ("initializer element is not computable at load time");
          inside_init = error_mark_node;
          inside_init = error_mark_node;
        }
        }
 
 
      return inside_init;
      return inside_init;
    }
    }
 
 
  /* Come here only for records and arrays.  */
  /* Come here only for records and arrays.  */
 
 
  if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
  if (COMPLETE_TYPE_P (type) && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
    {
    {
      error_init ("variable-sized object may not be initialized");
      error_init ("variable-sized object may not be initialized");
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  error_init ("invalid initializer");
  error_init ("invalid initializer");
  return error_mark_node;
  return error_mark_node;
}
}


/* Handle initializers that use braces.  */
/* Handle initializers that use braces.  */
 
 
/* Type of object we are accumulating a constructor for.
/* Type of object we are accumulating a constructor for.
   This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
   This type is always a RECORD_TYPE, UNION_TYPE or ARRAY_TYPE.  */
static tree constructor_type;
static tree constructor_type;
 
 
/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
/* For a RECORD_TYPE or UNION_TYPE, this is the chain of fields
   left to fill.  */
   left to fill.  */
static tree constructor_fields;
static tree constructor_fields;
 
 
/* For an ARRAY_TYPE, this is the specified index
/* For an ARRAY_TYPE, this is the specified index
   at which to store the next element we get.  */
   at which to store the next element we get.  */
static tree constructor_index;
static tree constructor_index;
 
 
/* For an ARRAY_TYPE, this is the maximum index.  */
/* For an ARRAY_TYPE, this is the maximum index.  */
static tree constructor_max_index;
static tree constructor_max_index;
 
 
/* For a RECORD_TYPE, this is the first field not yet written out.  */
/* For a RECORD_TYPE, this is the first field not yet written out.  */
static tree constructor_unfilled_fields;
static tree constructor_unfilled_fields;
 
 
/* For an ARRAY_TYPE, this is the index of the first element
/* For an ARRAY_TYPE, this is the index of the first element
   not yet written out.  */
   not yet written out.  */
static tree constructor_unfilled_index;
static tree constructor_unfilled_index;
 
 
/* In a RECORD_TYPE, the byte index of the next consecutive field.
/* In a RECORD_TYPE, the byte index of the next consecutive field.
   This is so we can generate gaps between fields, when appropriate.  */
   This is so we can generate gaps between fields, when appropriate.  */
static tree constructor_bit_index;
static tree constructor_bit_index;
 
 
/* If we are saving up the elements rather than allocating them,
/* If we are saving up the elements rather than allocating them,
   this is the list of elements so far (in reverse order,
   this is the list of elements so far (in reverse order,
   most recent first).  */
   most recent first).  */
static VEC(constructor_elt,gc) *constructor_elements;
static VEC(constructor_elt,gc) *constructor_elements;
 
 
/* 1 if constructor should be incrementally stored into a constructor chain,
/* 1 if constructor should be incrementally stored into a constructor chain,
   0 if all the elements should be kept in AVL tree.  */
   0 if all the elements should be kept in AVL tree.  */
static int constructor_incremental;
static int constructor_incremental;
 
 
/* 1 if so far this constructor's elements are all compile-time constants.  */
/* 1 if so far this constructor's elements are all compile-time constants.  */
static int constructor_constant;
static int constructor_constant;
 
 
/* 1 if so far this constructor's elements are all valid address constants.  */
/* 1 if so far this constructor's elements are all valid address constants.  */
static int constructor_simple;
static int constructor_simple;
 
 
/* 1 if this constructor is erroneous so far.  */
/* 1 if this constructor is erroneous so far.  */
static int constructor_erroneous;
static int constructor_erroneous;
 
 
/* Structure for managing pending initializer elements, organized as an
/* Structure for managing pending initializer elements, organized as an
   AVL tree.  */
   AVL tree.  */
 
 
struct init_node
struct init_node
{
{
  struct init_node *left, *right;
  struct init_node *left, *right;
  struct init_node *parent;
  struct init_node *parent;
  int balance;
  int balance;
  tree purpose;
  tree purpose;
  tree value;
  tree value;
};
};
 
 
/* Tree of pending elements at this constructor level.
/* Tree of pending elements at this constructor level.
   These are elements encountered out of order
   These are elements encountered out of order
   which belong at places we haven't reached yet in actually
   which belong at places we haven't reached yet in actually
   writing the output.
   writing the output.
   Will never hold tree nodes across GC runs.  */
   Will never hold tree nodes across GC runs.  */
static struct init_node *constructor_pending_elts;
static struct init_node *constructor_pending_elts;
 
 
/* The SPELLING_DEPTH of this constructor.  */
/* The SPELLING_DEPTH of this constructor.  */
static int constructor_depth;
static int constructor_depth;
 
 
/* DECL node for which an initializer is being read.
/* DECL node for which an initializer is being read.
   0 means we are reading a constructor expression
   0 means we are reading a constructor expression
   such as (struct foo) {...}.  */
   such as (struct foo) {...}.  */
static tree constructor_decl;
static tree constructor_decl;
 
 
/* Nonzero if this is an initializer for a top-level decl.  */
/* Nonzero if this is an initializer for a top-level decl.  */
static int constructor_top_level;
static int constructor_top_level;
 
 
/* Nonzero if there were any member designators in this initializer.  */
/* Nonzero if there were any member designators in this initializer.  */
static int constructor_designated;
static int constructor_designated;
 
 
/* Nesting depth of designator list.  */
/* Nesting depth of designator list.  */
static int designator_depth;
static int designator_depth;
 
 
/* Nonzero if there were diagnosed errors in this designator list.  */
/* Nonzero if there were diagnosed errors in this designator list.  */
static int designator_erroneous;
static int designator_erroneous;
 
 


/* This stack has a level for each implicit or explicit level of
/* This stack has a level for each implicit or explicit level of
   structuring in the initializer, including the outermost one.  It
   structuring in the initializer, including the outermost one.  It
   saves the values of most of the variables above.  */
   saves the values of most of the variables above.  */
 
 
struct constructor_range_stack;
struct constructor_range_stack;
 
 
struct constructor_stack
struct constructor_stack
{
{
  struct constructor_stack *next;
  struct constructor_stack *next;
  tree type;
  tree type;
  tree fields;
  tree fields;
  tree index;
  tree index;
  tree max_index;
  tree max_index;
  tree unfilled_index;
  tree unfilled_index;
  tree unfilled_fields;
  tree unfilled_fields;
  tree bit_index;
  tree bit_index;
  VEC(constructor_elt,gc) *elements;
  VEC(constructor_elt,gc) *elements;
  struct init_node *pending_elts;
  struct init_node *pending_elts;
  int offset;
  int offset;
  int depth;
  int depth;
  /* If value nonzero, this value should replace the entire
  /* If value nonzero, this value should replace the entire
     constructor at this level.  */
     constructor at this level.  */
  struct c_expr replacement_value;
  struct c_expr replacement_value;
  struct constructor_range_stack *range_stack;
  struct constructor_range_stack *range_stack;
  char constant;
  char constant;
  char simple;
  char simple;
  char implicit;
  char implicit;
  char erroneous;
  char erroneous;
  char outer;
  char outer;
  char incremental;
  char incremental;
  char designated;
  char designated;
};
};
 
 
static struct constructor_stack *constructor_stack;
static struct constructor_stack *constructor_stack;
 
 
/* This stack represents designators from some range designator up to
/* This stack represents designators from some range designator up to
   the last designator in the list.  */
   the last designator in the list.  */
 
 
struct constructor_range_stack
struct constructor_range_stack
{
{
  struct constructor_range_stack *next, *prev;
  struct constructor_range_stack *next, *prev;
  struct constructor_stack *stack;
  struct constructor_stack *stack;
  tree range_start;
  tree range_start;
  tree index;
  tree index;
  tree range_end;
  tree range_end;
  tree fields;
  tree fields;
};
};
 
 
static struct constructor_range_stack *constructor_range_stack;
static struct constructor_range_stack *constructor_range_stack;
 
 
/* This stack records separate initializers that are nested.
/* This stack records separate initializers that are nested.
   Nested initializers can't happen in ANSI C, but GNU C allows them
   Nested initializers can't happen in ANSI C, but GNU C allows them
   in cases like { ... (struct foo) { ... } ... }.  */
   in cases like { ... (struct foo) { ... } ... }.  */
 
 
struct initializer_stack
struct initializer_stack
{
{
  struct initializer_stack *next;
  struct initializer_stack *next;
  tree decl;
  tree decl;
  struct constructor_stack *constructor_stack;
  struct constructor_stack *constructor_stack;
  struct constructor_range_stack *constructor_range_stack;
  struct constructor_range_stack *constructor_range_stack;
  VEC(constructor_elt,gc) *elements;
  VEC(constructor_elt,gc) *elements;
  struct spelling *spelling;
  struct spelling *spelling;
  struct spelling *spelling_base;
  struct spelling *spelling_base;
  int spelling_size;
  int spelling_size;
  char top_level;
  char top_level;
  char require_constant_value;
  char require_constant_value;
  char require_constant_elements;
  char require_constant_elements;
};
};
 
 
static struct initializer_stack *initializer_stack;
static struct initializer_stack *initializer_stack;


/* Prepare to parse and output the initializer for variable DECL.  */
/* Prepare to parse and output the initializer for variable DECL.  */
 
 
void
void
start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
start_init (tree decl, tree asmspec_tree ATTRIBUTE_UNUSED, int top_level)
{
{
  const char *locus;
  const char *locus;
  struct initializer_stack *p = XNEW (struct initializer_stack);
  struct initializer_stack *p = XNEW (struct initializer_stack);
 
 
  p->decl = constructor_decl;
  p->decl = constructor_decl;
  p->require_constant_value = require_constant_value;
  p->require_constant_value = require_constant_value;
  p->require_constant_elements = require_constant_elements;
  p->require_constant_elements = require_constant_elements;
  p->constructor_stack = constructor_stack;
  p->constructor_stack = constructor_stack;
  p->constructor_range_stack = constructor_range_stack;
  p->constructor_range_stack = constructor_range_stack;
  p->elements = constructor_elements;
  p->elements = constructor_elements;
  p->spelling = spelling;
  p->spelling = spelling;
  p->spelling_base = spelling_base;
  p->spelling_base = spelling_base;
  p->spelling_size = spelling_size;
  p->spelling_size = spelling_size;
  p->top_level = constructor_top_level;
  p->top_level = constructor_top_level;
  p->next = initializer_stack;
  p->next = initializer_stack;
  initializer_stack = p;
  initializer_stack = p;
 
 
  constructor_decl = decl;
  constructor_decl = decl;
  constructor_designated = 0;
  constructor_designated = 0;
  constructor_top_level = top_level;
  constructor_top_level = top_level;
 
 
  if (decl != 0 && decl != error_mark_node)
  if (decl != 0 && decl != error_mark_node)
    {
    {
      require_constant_value = TREE_STATIC (decl);
      require_constant_value = TREE_STATIC (decl);
      require_constant_elements
      require_constant_elements
        = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
        = ((TREE_STATIC (decl) || (pedantic && !flag_isoc99))
           /* For a scalar, you can always use any value to initialize,
           /* For a scalar, you can always use any value to initialize,
              even within braces.  */
              even within braces.  */
           && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
           && (TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
               || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
               || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE
               || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
               || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
               || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
               || TREE_CODE (TREE_TYPE (decl)) == QUAL_UNION_TYPE));
      locus = IDENTIFIER_POINTER (DECL_NAME (decl));
      locus = IDENTIFIER_POINTER (DECL_NAME (decl));
    }
    }
  else
  else
    {
    {
      require_constant_value = 0;
      require_constant_value = 0;
      require_constant_elements = 0;
      require_constant_elements = 0;
      locus = "(anonymous)";
      locus = "(anonymous)";
    }
    }
 
 
  constructor_stack = 0;
  constructor_stack = 0;
  constructor_range_stack = 0;
  constructor_range_stack = 0;
 
 
  missing_braces_mentioned = 0;
  missing_braces_mentioned = 0;
 
 
  spelling_base = 0;
  spelling_base = 0;
  spelling_size = 0;
  spelling_size = 0;
  RESTORE_SPELLING_DEPTH (0);
  RESTORE_SPELLING_DEPTH (0);
 
 
  if (locus)
  if (locus)
    push_string (locus);
    push_string (locus);
}
}
 
 
void
void
finish_init (void)
finish_init (void)
{
{
  struct initializer_stack *p = initializer_stack;
  struct initializer_stack *p = initializer_stack;
 
 
  /* Free the whole constructor stack of this initializer.  */
  /* Free the whole constructor stack of this initializer.  */
  while (constructor_stack)
  while (constructor_stack)
    {
    {
      struct constructor_stack *q = constructor_stack;
      struct constructor_stack *q = constructor_stack;
      constructor_stack = q->next;
      constructor_stack = q->next;
      free (q);
      free (q);
    }
    }
 
 
  gcc_assert (!constructor_range_stack);
  gcc_assert (!constructor_range_stack);
 
 
  /* Pop back to the data of the outer initializer (if any).  */
  /* Pop back to the data of the outer initializer (if any).  */
  free (spelling_base);
  free (spelling_base);
 
 
  constructor_decl = p->decl;
  constructor_decl = p->decl;
  require_constant_value = p->require_constant_value;
  require_constant_value = p->require_constant_value;
  require_constant_elements = p->require_constant_elements;
  require_constant_elements = p->require_constant_elements;
  constructor_stack = p->constructor_stack;
  constructor_stack = p->constructor_stack;
  constructor_range_stack = p->constructor_range_stack;
  constructor_range_stack = p->constructor_range_stack;
  constructor_elements = p->elements;
  constructor_elements = p->elements;
  spelling = p->spelling;
  spelling = p->spelling;
  spelling_base = p->spelling_base;
  spelling_base = p->spelling_base;
  spelling_size = p->spelling_size;
  spelling_size = p->spelling_size;
  constructor_top_level = p->top_level;
  constructor_top_level = p->top_level;
  initializer_stack = p->next;
  initializer_stack = p->next;
  free (p);
  free (p);
}
}


/* Call here when we see the initializer is surrounded by braces.
/* Call here when we see the initializer is surrounded by braces.
   This is instead of a call to push_init_level;
   This is instead of a call to push_init_level;
   it is matched by a call to pop_init_level.
   it is matched by a call to pop_init_level.
 
 
   TYPE is the type to initialize, for a constructor expression.
   TYPE is the type to initialize, for a constructor expression.
   For an initializer for a decl, TYPE is zero.  */
   For an initializer for a decl, TYPE is zero.  */
 
 
void
void
really_start_incremental_init (tree type)
really_start_incremental_init (tree type)
{
{
  struct constructor_stack *p = XNEW (struct constructor_stack);
  struct constructor_stack *p = XNEW (struct constructor_stack);
 
 
  if (type == 0)
  if (type == 0)
    type = TREE_TYPE (constructor_decl);
    type = TREE_TYPE (constructor_decl);
 
 
  if (targetm.vector_opaque_p (type))
  if (targetm.vector_opaque_p (type))
    error ("opaque vector types cannot be initialized");
    error ("opaque vector types cannot be initialized");
 
 
  p->type = constructor_type;
  p->type = constructor_type;
  p->fields = constructor_fields;
  p->fields = constructor_fields;
  p->index = constructor_index;
  p->index = constructor_index;
  p->max_index = constructor_max_index;
  p->max_index = constructor_max_index;
  p->unfilled_index = constructor_unfilled_index;
  p->unfilled_index = constructor_unfilled_index;
  p->unfilled_fields = constructor_unfilled_fields;
  p->unfilled_fields = constructor_unfilled_fields;
  p->bit_index = constructor_bit_index;
  p->bit_index = constructor_bit_index;
  p->elements = constructor_elements;
  p->elements = constructor_elements;
  p->constant = constructor_constant;
  p->constant = constructor_constant;
  p->simple = constructor_simple;
  p->simple = constructor_simple;
  p->erroneous = constructor_erroneous;
  p->erroneous = constructor_erroneous;
  p->pending_elts = constructor_pending_elts;
  p->pending_elts = constructor_pending_elts;
  p->depth = constructor_depth;
  p->depth = constructor_depth;
  p->replacement_value.value = 0;
  p->replacement_value.value = 0;
  p->replacement_value.original_code = ERROR_MARK;
  p->replacement_value.original_code = ERROR_MARK;
  p->implicit = 0;
  p->implicit = 0;
  p->range_stack = 0;
  p->range_stack = 0;
  p->outer = 0;
  p->outer = 0;
  p->incremental = constructor_incremental;
  p->incremental = constructor_incremental;
  p->designated = constructor_designated;
  p->designated = constructor_designated;
  p->next = 0;
  p->next = 0;
  constructor_stack = p;
  constructor_stack = p;
 
 
  constructor_constant = 1;
  constructor_constant = 1;
  constructor_simple = 1;
  constructor_simple = 1;
  constructor_depth = SPELLING_DEPTH ();
  constructor_depth = SPELLING_DEPTH ();
  constructor_elements = 0;
  constructor_elements = 0;
  constructor_pending_elts = 0;
  constructor_pending_elts = 0;
  constructor_type = type;
  constructor_type = type;
  constructor_incremental = 1;
  constructor_incremental = 1;
  constructor_designated = 0;
  constructor_designated = 0;
  designator_depth = 0;
  designator_depth = 0;
  designator_erroneous = 0;
  designator_erroneous = 0;
 
 
  if (TREE_CODE (constructor_type) == RECORD_TYPE
  if (TREE_CODE (constructor_type) == RECORD_TYPE
      || TREE_CODE (constructor_type) == UNION_TYPE)
      || TREE_CODE (constructor_type) == UNION_TYPE)
    {
    {
      constructor_fields = TYPE_FIELDS (constructor_type);
      constructor_fields = TYPE_FIELDS (constructor_type);
      /* Skip any nameless bit fields at the beginning.  */
      /* Skip any nameless bit fields at the beginning.  */
      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
             && DECL_NAME (constructor_fields) == 0)
             && DECL_NAME (constructor_fields) == 0)
        constructor_fields = TREE_CHAIN (constructor_fields);
        constructor_fields = TREE_CHAIN (constructor_fields);
 
 
      constructor_unfilled_fields = constructor_fields;
      constructor_unfilled_fields = constructor_fields;
      constructor_bit_index = bitsize_zero_node;
      constructor_bit_index = bitsize_zero_node;
    }
    }
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    {
    {
      if (TYPE_DOMAIN (constructor_type))
      if (TYPE_DOMAIN (constructor_type))
        {
        {
          constructor_max_index
          constructor_max_index
            = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
            = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
 
 
          /* Detect non-empty initializations of zero-length arrays.  */
          /* Detect non-empty initializations of zero-length arrays.  */
          if (constructor_max_index == NULL_TREE
          if (constructor_max_index == NULL_TREE
              && TYPE_SIZE (constructor_type))
              && TYPE_SIZE (constructor_type))
            constructor_max_index = build_int_cst (NULL_TREE, -1);
            constructor_max_index = build_int_cst (NULL_TREE, -1);
 
 
          /* constructor_max_index needs to be an INTEGER_CST.  Attempts
          /* constructor_max_index needs to be an INTEGER_CST.  Attempts
             to initialize VLAs will cause a proper error; avoid tree
             to initialize VLAs will cause a proper error; avoid tree
             checking errors as well by setting a safe value.  */
             checking errors as well by setting a safe value.  */
          if (constructor_max_index
          if (constructor_max_index
              && TREE_CODE (constructor_max_index) != INTEGER_CST)
              && TREE_CODE (constructor_max_index) != INTEGER_CST)
            constructor_max_index = build_int_cst (NULL_TREE, -1);
            constructor_max_index = build_int_cst (NULL_TREE, -1);
 
 
          constructor_index
          constructor_index
            = convert (bitsizetype,
            = convert (bitsizetype,
                       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
                       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
        }
        }
      else
      else
        {
        {
          constructor_index = bitsize_zero_node;
          constructor_index = bitsize_zero_node;
          constructor_max_index = NULL_TREE;
          constructor_max_index = NULL_TREE;
        }
        }
 
 
      constructor_unfilled_index = constructor_index;
      constructor_unfilled_index = constructor_index;
    }
    }
  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
    {
    {
      /* Vectors are like simple fixed-size arrays.  */
      /* Vectors are like simple fixed-size arrays.  */
      constructor_max_index =
      constructor_max_index =
        build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
        build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
      constructor_index = bitsize_zero_node;
      constructor_index = bitsize_zero_node;
      constructor_unfilled_index = constructor_index;
      constructor_unfilled_index = constructor_index;
    }
    }
  else
  else
    {
    {
      /* Handle the case of int x = {5}; */
      /* Handle the case of int x = {5}; */
      constructor_fields = constructor_type;
      constructor_fields = constructor_type;
      constructor_unfilled_fields = constructor_type;
      constructor_unfilled_fields = constructor_type;
    }
    }
}
}


/* Push down into a subobject, for initialization.
/* Push down into a subobject, for initialization.
   If this is for an explicit set of braces, IMPLICIT is 0.
   If this is for an explicit set of braces, IMPLICIT is 0.
   If it is because the next element belongs at a lower level,
   If it is because the next element belongs at a lower level,
   IMPLICIT is 1 (or 2 if the push is because of designator list).  */
   IMPLICIT is 1 (or 2 if the push is because of designator list).  */
 
 
void
void
push_init_level (int implicit)
push_init_level (int implicit)
{
{
  struct constructor_stack *p;
  struct constructor_stack *p;
  tree value = NULL_TREE;
  tree value = NULL_TREE;
 
 
  /* If we've exhausted any levels that didn't have braces,
  /* If we've exhausted any levels that didn't have braces,
     pop them now.  If implicit == 1, this will have been done in
     pop them now.  If implicit == 1, this will have been done in
     process_init_element; do not repeat it here because in the case
     process_init_element; do not repeat it here because in the case
     of excess initializers for an empty aggregate this leads to an
     of excess initializers for an empty aggregate this leads to an
     infinite cycle of popping a level and immediately recreating
     infinite cycle of popping a level and immediately recreating
     it.  */
     it.  */
  if (implicit != 1)
  if (implicit != 1)
    {
    {
      while (constructor_stack->implicit)
      while (constructor_stack->implicit)
        {
        {
          if ((TREE_CODE (constructor_type) == RECORD_TYPE
          if ((TREE_CODE (constructor_type) == RECORD_TYPE
               || TREE_CODE (constructor_type) == UNION_TYPE)
               || TREE_CODE (constructor_type) == UNION_TYPE)
              && constructor_fields == 0)
              && constructor_fields == 0)
            process_init_element (pop_init_level (1));
            process_init_element (pop_init_level (1));
          else if (TREE_CODE (constructor_type) == ARRAY_TYPE
          else if (TREE_CODE (constructor_type) == ARRAY_TYPE
                   && constructor_max_index
                   && constructor_max_index
                   && tree_int_cst_lt (constructor_max_index,
                   && tree_int_cst_lt (constructor_max_index,
                                       constructor_index))
                                       constructor_index))
            process_init_element (pop_init_level (1));
            process_init_element (pop_init_level (1));
          else
          else
            break;
            break;
        }
        }
    }
    }
 
 
  /* Unless this is an explicit brace, we need to preserve previous
  /* Unless this is an explicit brace, we need to preserve previous
     content if any.  */
     content if any.  */
  if (implicit)
  if (implicit)
    {
    {
      if ((TREE_CODE (constructor_type) == RECORD_TYPE
      if ((TREE_CODE (constructor_type) == RECORD_TYPE
           || TREE_CODE (constructor_type) == UNION_TYPE)
           || TREE_CODE (constructor_type) == UNION_TYPE)
          && constructor_fields)
          && constructor_fields)
        value = find_init_member (constructor_fields);
        value = find_init_member (constructor_fields);
      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
        value = find_init_member (constructor_index);
        value = find_init_member (constructor_index);
    }
    }
 
 
  p = XNEW (struct constructor_stack);
  p = XNEW (struct constructor_stack);
  p->type = constructor_type;
  p->type = constructor_type;
  p->fields = constructor_fields;
  p->fields = constructor_fields;
  p->index = constructor_index;
  p->index = constructor_index;
  p->max_index = constructor_max_index;
  p->max_index = constructor_max_index;
  p->unfilled_index = constructor_unfilled_index;
  p->unfilled_index = constructor_unfilled_index;
  p->unfilled_fields = constructor_unfilled_fields;
  p->unfilled_fields = constructor_unfilled_fields;
  p->bit_index = constructor_bit_index;
  p->bit_index = constructor_bit_index;
  p->elements = constructor_elements;
  p->elements = constructor_elements;
  p->constant = constructor_constant;
  p->constant = constructor_constant;
  p->simple = constructor_simple;
  p->simple = constructor_simple;
  p->erroneous = constructor_erroneous;
  p->erroneous = constructor_erroneous;
  p->pending_elts = constructor_pending_elts;
  p->pending_elts = constructor_pending_elts;
  p->depth = constructor_depth;
  p->depth = constructor_depth;
  p->replacement_value.value = 0;
  p->replacement_value.value = 0;
  p->replacement_value.original_code = ERROR_MARK;
  p->replacement_value.original_code = ERROR_MARK;
  p->implicit = implicit;
  p->implicit = implicit;
  p->outer = 0;
  p->outer = 0;
  p->incremental = constructor_incremental;
  p->incremental = constructor_incremental;
  p->designated = constructor_designated;
  p->designated = constructor_designated;
  p->next = constructor_stack;
  p->next = constructor_stack;
  p->range_stack = 0;
  p->range_stack = 0;
  constructor_stack = p;
  constructor_stack = p;
 
 
  constructor_constant = 1;
  constructor_constant = 1;
  constructor_simple = 1;
  constructor_simple = 1;
  constructor_depth = SPELLING_DEPTH ();
  constructor_depth = SPELLING_DEPTH ();
  constructor_elements = 0;
  constructor_elements = 0;
  constructor_incremental = 1;
  constructor_incremental = 1;
  constructor_designated = 0;
  constructor_designated = 0;
  constructor_pending_elts = 0;
  constructor_pending_elts = 0;
  if (!implicit)
  if (!implicit)
    {
    {
      p->range_stack = constructor_range_stack;
      p->range_stack = constructor_range_stack;
      constructor_range_stack = 0;
      constructor_range_stack = 0;
      designator_depth = 0;
      designator_depth = 0;
      designator_erroneous = 0;
      designator_erroneous = 0;
    }
    }
 
 
  /* Don't die if an entire brace-pair level is superfluous
  /* Don't die if an entire brace-pair level is superfluous
     in the containing level.  */
     in the containing level.  */
  if (constructor_type == 0)
  if (constructor_type == 0)
    ;
    ;
  else if (TREE_CODE (constructor_type) == RECORD_TYPE
  else if (TREE_CODE (constructor_type) == RECORD_TYPE
           || TREE_CODE (constructor_type) == UNION_TYPE)
           || TREE_CODE (constructor_type) == UNION_TYPE)
    {
    {
      /* Don't die if there are extra init elts at the end.  */
      /* Don't die if there are extra init elts at the end.  */
      if (constructor_fields == 0)
      if (constructor_fields == 0)
        constructor_type = 0;
        constructor_type = 0;
      else
      else
        {
        {
          constructor_type = TREE_TYPE (constructor_fields);
          constructor_type = TREE_TYPE (constructor_fields);
          push_member_name (constructor_fields);
          push_member_name (constructor_fields);
          constructor_depth++;
          constructor_depth++;
        }
        }
    }
    }
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    {
    {
      constructor_type = TREE_TYPE (constructor_type);
      constructor_type = TREE_TYPE (constructor_type);
      push_array_bounds (tree_low_cst (constructor_index, 1));
      push_array_bounds (tree_low_cst (constructor_index, 1));
      constructor_depth++;
      constructor_depth++;
    }
    }
 
 
  if (constructor_type == 0)
  if (constructor_type == 0)
    {
    {
      error_init ("extra brace group at end of initializer");
      error_init ("extra brace group at end of initializer");
      constructor_fields = 0;
      constructor_fields = 0;
      constructor_unfilled_fields = 0;
      constructor_unfilled_fields = 0;
      return;
      return;
    }
    }
 
 
  if (value && TREE_CODE (value) == CONSTRUCTOR)
  if (value && TREE_CODE (value) == CONSTRUCTOR)
    {
    {
      constructor_constant = TREE_CONSTANT (value);
      constructor_constant = TREE_CONSTANT (value);
      constructor_simple = TREE_STATIC (value);
      constructor_simple = TREE_STATIC (value);
      constructor_elements = CONSTRUCTOR_ELTS (value);
      constructor_elements = CONSTRUCTOR_ELTS (value);
      if (!VEC_empty (constructor_elt, constructor_elements)
      if (!VEC_empty (constructor_elt, constructor_elements)
          && (TREE_CODE (constructor_type) == RECORD_TYPE
          && (TREE_CODE (constructor_type) == RECORD_TYPE
              || TREE_CODE (constructor_type) == ARRAY_TYPE))
              || TREE_CODE (constructor_type) == ARRAY_TYPE))
        set_nonincremental_init ();
        set_nonincremental_init ();
    }
    }
 
 
  if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
  if (implicit == 1 && warn_missing_braces && !missing_braces_mentioned)
    {
    {
      missing_braces_mentioned = 1;
      missing_braces_mentioned = 1;
      warning_init ("missing braces around initializer");
      warning_init ("missing braces around initializer");
    }
    }
 
 
  if (TREE_CODE (constructor_type) == RECORD_TYPE
  if (TREE_CODE (constructor_type) == RECORD_TYPE
           || TREE_CODE (constructor_type) == UNION_TYPE)
           || TREE_CODE (constructor_type) == UNION_TYPE)
    {
    {
      constructor_fields = TYPE_FIELDS (constructor_type);
      constructor_fields = TYPE_FIELDS (constructor_type);
      /* Skip any nameless bit fields at the beginning.  */
      /* Skip any nameless bit fields at the beginning.  */
      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
      while (constructor_fields != 0 && DECL_C_BIT_FIELD (constructor_fields)
             && DECL_NAME (constructor_fields) == 0)
             && DECL_NAME (constructor_fields) == 0)
        constructor_fields = TREE_CHAIN (constructor_fields);
        constructor_fields = TREE_CHAIN (constructor_fields);
 
 
      constructor_unfilled_fields = constructor_fields;
      constructor_unfilled_fields = constructor_fields;
      constructor_bit_index = bitsize_zero_node;
      constructor_bit_index = bitsize_zero_node;
    }
    }
  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
  else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
    {
    {
      /* Vectors are like simple fixed-size arrays.  */
      /* Vectors are like simple fixed-size arrays.  */
      constructor_max_index =
      constructor_max_index =
        build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
        build_int_cst (NULL_TREE, TYPE_VECTOR_SUBPARTS (constructor_type) - 1);
      constructor_index = convert (bitsizetype, integer_zero_node);
      constructor_index = convert (bitsizetype, integer_zero_node);
      constructor_unfilled_index = constructor_index;
      constructor_unfilled_index = constructor_index;
    }
    }
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    {
    {
      if (TYPE_DOMAIN (constructor_type))
      if (TYPE_DOMAIN (constructor_type))
        {
        {
          constructor_max_index
          constructor_max_index
            = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
            = TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type));
 
 
          /* Detect non-empty initializations of zero-length arrays.  */
          /* Detect non-empty initializations of zero-length arrays.  */
          if (constructor_max_index == NULL_TREE
          if (constructor_max_index == NULL_TREE
              && TYPE_SIZE (constructor_type))
              && TYPE_SIZE (constructor_type))
            constructor_max_index = build_int_cst (NULL_TREE, -1);
            constructor_max_index = build_int_cst (NULL_TREE, -1);
 
 
          /* constructor_max_index needs to be an INTEGER_CST.  Attempts
          /* constructor_max_index needs to be an INTEGER_CST.  Attempts
             to initialize VLAs will cause a proper error; avoid tree
             to initialize VLAs will cause a proper error; avoid tree
             checking errors as well by setting a safe value.  */
             checking errors as well by setting a safe value.  */
          if (constructor_max_index
          if (constructor_max_index
              && TREE_CODE (constructor_max_index) != INTEGER_CST)
              && TREE_CODE (constructor_max_index) != INTEGER_CST)
            constructor_max_index = build_int_cst (NULL_TREE, -1);
            constructor_max_index = build_int_cst (NULL_TREE, -1);
 
 
          constructor_index
          constructor_index
            = convert (bitsizetype,
            = convert (bitsizetype,
                       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
                       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
        }
        }
      else
      else
        constructor_index = bitsize_zero_node;
        constructor_index = bitsize_zero_node;
 
 
      constructor_unfilled_index = constructor_index;
      constructor_unfilled_index = constructor_index;
      if (value && TREE_CODE (value) == STRING_CST)
      if (value && TREE_CODE (value) == STRING_CST)
        {
        {
          /* We need to split the char/wchar array into individual
          /* We need to split the char/wchar array into individual
             characters, so that we don't have to special case it
             characters, so that we don't have to special case it
             everywhere.  */
             everywhere.  */
          set_nonincremental_init_from_string (value);
          set_nonincremental_init_from_string (value);
        }
        }
    }
    }
  else
  else
    {
    {
      if (constructor_type != error_mark_node)
      if (constructor_type != error_mark_node)
        warning_init ("braces around scalar initializer");
        warning_init ("braces around scalar initializer");
      constructor_fields = constructor_type;
      constructor_fields = constructor_type;
      constructor_unfilled_fields = constructor_type;
      constructor_unfilled_fields = constructor_type;
    }
    }
}
}
 
 
/* At the end of an implicit or explicit brace level,
/* At the end of an implicit or explicit brace level,
   finish up that level of constructor.  If a single expression
   finish up that level of constructor.  If a single expression
   with redundant braces initialized that level, return the
   with redundant braces initialized that level, return the
   c_expr structure for that expression.  Otherwise, the original_code
   c_expr structure for that expression.  Otherwise, the original_code
   element is set to ERROR_MARK.
   element is set to ERROR_MARK.
   If we were outputting the elements as they are read, return 0 as the value
   If we were outputting the elements as they are read, return 0 as the value
   from inner levels (process_init_element ignores that),
   from inner levels (process_init_element ignores that),
   but return error_mark_node as the value from the outermost level
   but return error_mark_node as the value from the outermost level
   (that's what we want to put in DECL_INITIAL).
   (that's what we want to put in DECL_INITIAL).
   Otherwise, return a CONSTRUCTOR expression as the value.  */
   Otherwise, return a CONSTRUCTOR expression as the value.  */
 
 
struct c_expr
struct c_expr
pop_init_level (int implicit)
pop_init_level (int implicit)
{
{
  struct constructor_stack *p;
  struct constructor_stack *p;
  struct c_expr ret;
  struct c_expr ret;
  ret.value = 0;
  ret.value = 0;
  ret.original_code = ERROR_MARK;
  ret.original_code = ERROR_MARK;
 
 
  if (implicit == 0)
  if (implicit == 0)
    {
    {
      /* When we come to an explicit close brace,
      /* When we come to an explicit close brace,
         pop any inner levels that didn't have explicit braces.  */
         pop any inner levels that didn't have explicit braces.  */
      while (constructor_stack->implicit)
      while (constructor_stack->implicit)
        process_init_element (pop_init_level (1));
        process_init_element (pop_init_level (1));
 
 
      gcc_assert (!constructor_range_stack);
      gcc_assert (!constructor_range_stack);
    }
    }
 
 
  /* Now output all pending elements.  */
  /* Now output all pending elements.  */
  constructor_incremental = 1;
  constructor_incremental = 1;
  output_pending_init_elements (1);
  output_pending_init_elements (1);
 
 
  p = constructor_stack;
  p = constructor_stack;
 
 
  /* Error for initializing a flexible array member, or a zero-length
  /* Error for initializing a flexible array member, or a zero-length
     array member in an inappropriate context.  */
     array member in an inappropriate context.  */
  if (constructor_type && constructor_fields
  if (constructor_type && constructor_fields
      && TREE_CODE (constructor_type) == ARRAY_TYPE
      && TREE_CODE (constructor_type) == ARRAY_TYPE
      && TYPE_DOMAIN (constructor_type)
      && TYPE_DOMAIN (constructor_type)
      && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
      && !TYPE_MAX_VALUE (TYPE_DOMAIN (constructor_type)))
    {
    {
      /* Silently discard empty initializations.  The parser will
      /* Silently discard empty initializations.  The parser will
         already have pedwarned for empty brackets.  */
         already have pedwarned for empty brackets.  */
      if (integer_zerop (constructor_unfilled_index))
      if (integer_zerop (constructor_unfilled_index))
        constructor_type = NULL_TREE;
        constructor_type = NULL_TREE;
      else
      else
        {
        {
          gcc_assert (!TYPE_SIZE (constructor_type));
          gcc_assert (!TYPE_SIZE (constructor_type));
 
 
          if (constructor_depth > 2)
          if (constructor_depth > 2)
            error_init ("initialization of flexible array member in a nested context");
            error_init ("initialization of flexible array member in a nested context");
          else if (pedantic)
          else if (pedantic)
            pedwarn_init ("initialization of a flexible array member");
            pedwarn_init ("initialization of a flexible array member");
 
 
          /* We have already issued an error message for the existence
          /* We have already issued an error message for the existence
             of a flexible array member not at the end of the structure.
             of a flexible array member not at the end of the structure.
             Discard the initializer so that we do not die later.  */
             Discard the initializer so that we do not die later.  */
          if (TREE_CHAIN (constructor_fields) != NULL_TREE)
          if (TREE_CHAIN (constructor_fields) != NULL_TREE)
            constructor_type = NULL_TREE;
            constructor_type = NULL_TREE;
        }
        }
    }
    }
 
 
  /* Warn when some struct elements are implicitly initialized to zero.  */
  /* Warn when some struct elements are implicitly initialized to zero.  */
  if (warn_missing_field_initializers
  if (warn_missing_field_initializers
      && constructor_type
      && constructor_type
      && TREE_CODE (constructor_type) == RECORD_TYPE
      && TREE_CODE (constructor_type) == RECORD_TYPE
      && constructor_unfilled_fields)
      && constructor_unfilled_fields)
    {
    {
        /* Do not warn for flexible array members or zero-length arrays.  */
        /* Do not warn for flexible array members or zero-length arrays.  */
        while (constructor_unfilled_fields
        while (constructor_unfilled_fields
               && (!DECL_SIZE (constructor_unfilled_fields)
               && (!DECL_SIZE (constructor_unfilled_fields)
                   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
                   || integer_zerop (DECL_SIZE (constructor_unfilled_fields))))
          constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
          constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
 
 
        /* Do not warn if this level of the initializer uses member
        /* Do not warn if this level of the initializer uses member
           designators; it is likely to be deliberate.  */
           designators; it is likely to be deliberate.  */
        if (constructor_unfilled_fields && !constructor_designated)
        if (constructor_unfilled_fields && !constructor_designated)
          {
          {
            push_member_name (constructor_unfilled_fields);
            push_member_name (constructor_unfilled_fields);
            warning_init ("missing initializer");
            warning_init ("missing initializer");
            RESTORE_SPELLING_DEPTH (constructor_depth);
            RESTORE_SPELLING_DEPTH (constructor_depth);
          }
          }
    }
    }
 
 
  /* Pad out the end of the structure.  */
  /* Pad out the end of the structure.  */
  if (p->replacement_value.value)
  if (p->replacement_value.value)
    /* If this closes a superfluous brace pair,
    /* If this closes a superfluous brace pair,
       just pass out the element between them.  */
       just pass out the element between them.  */
    ret = p->replacement_value;
    ret = p->replacement_value;
  else if (constructor_type == 0)
  else if (constructor_type == 0)
    ;
    ;
  else if (TREE_CODE (constructor_type) != RECORD_TYPE
  else if (TREE_CODE (constructor_type) != RECORD_TYPE
           && TREE_CODE (constructor_type) != UNION_TYPE
           && TREE_CODE (constructor_type) != UNION_TYPE
           && TREE_CODE (constructor_type) != ARRAY_TYPE
           && TREE_CODE (constructor_type) != ARRAY_TYPE
           && TREE_CODE (constructor_type) != VECTOR_TYPE)
           && TREE_CODE (constructor_type) != VECTOR_TYPE)
    {
    {
      /* A nonincremental scalar initializer--just return
      /* A nonincremental scalar initializer--just return
         the element, after verifying there is just one.  */
         the element, after verifying there is just one.  */
      if (VEC_empty (constructor_elt,constructor_elements))
      if (VEC_empty (constructor_elt,constructor_elements))
        {
        {
          if (!constructor_erroneous)
          if (!constructor_erroneous)
            error_init ("empty scalar initializer");
            error_init ("empty scalar initializer");
          ret.value = error_mark_node;
          ret.value = error_mark_node;
        }
        }
      else if (VEC_length (constructor_elt,constructor_elements) != 1)
      else if (VEC_length (constructor_elt,constructor_elements) != 1)
        {
        {
          error_init ("extra elements in scalar initializer");
          error_init ("extra elements in scalar initializer");
          ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
          ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
        }
        }
      else
      else
        ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
        ret.value = VEC_index (constructor_elt,constructor_elements,0)->value;
    }
    }
  else
  else
    {
    {
      if (constructor_erroneous)
      if (constructor_erroneous)
        ret.value = error_mark_node;
        ret.value = error_mark_node;
      else
      else
        {
        {
          ret.value = build_constructor (constructor_type,
          ret.value = build_constructor (constructor_type,
                                         constructor_elements);
                                         constructor_elements);
          if (constructor_constant)
          if (constructor_constant)
            TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
            TREE_CONSTANT (ret.value) = TREE_INVARIANT (ret.value) = 1;
          if (constructor_constant && constructor_simple)
          if (constructor_constant && constructor_simple)
            TREE_STATIC (ret.value) = 1;
            TREE_STATIC (ret.value) = 1;
        }
        }
    }
    }
 
 
  constructor_type = p->type;
  constructor_type = p->type;
  constructor_fields = p->fields;
  constructor_fields = p->fields;
  constructor_index = p->index;
  constructor_index = p->index;
  constructor_max_index = p->max_index;
  constructor_max_index = p->max_index;
  constructor_unfilled_index = p->unfilled_index;
  constructor_unfilled_index = p->unfilled_index;
  constructor_unfilled_fields = p->unfilled_fields;
  constructor_unfilled_fields = p->unfilled_fields;
  constructor_bit_index = p->bit_index;
  constructor_bit_index = p->bit_index;
  constructor_elements = p->elements;
  constructor_elements = p->elements;
  constructor_constant = p->constant;
  constructor_constant = p->constant;
  constructor_simple = p->simple;
  constructor_simple = p->simple;
  constructor_erroneous = p->erroneous;
  constructor_erroneous = p->erroneous;
  constructor_incremental = p->incremental;
  constructor_incremental = p->incremental;
  constructor_designated = p->designated;
  constructor_designated = p->designated;
  constructor_pending_elts = p->pending_elts;
  constructor_pending_elts = p->pending_elts;
  constructor_depth = p->depth;
  constructor_depth = p->depth;
  if (!p->implicit)
  if (!p->implicit)
    constructor_range_stack = p->range_stack;
    constructor_range_stack = p->range_stack;
  RESTORE_SPELLING_DEPTH (constructor_depth);
  RESTORE_SPELLING_DEPTH (constructor_depth);
 
 
  constructor_stack = p->next;
  constructor_stack = p->next;
  free (p);
  free (p);
 
 
  if (ret.value == 0 && constructor_stack == 0)
  if (ret.value == 0 && constructor_stack == 0)
    ret.value = error_mark_node;
    ret.value = error_mark_node;
  return ret;
  return ret;
}
}
 
 
/* Common handling for both array range and field name designators.
/* Common handling for both array range and field name designators.
   ARRAY argument is nonzero for array ranges.  Returns zero for success.  */
   ARRAY argument is nonzero for array ranges.  Returns zero for success.  */
 
 
static int
static int
set_designator (int array)
set_designator (int array)
{
{
  tree subtype;
  tree subtype;
  enum tree_code subcode;
  enum tree_code subcode;
 
 
  /* Don't die if an entire brace-pair level is superfluous
  /* Don't die if an entire brace-pair level is superfluous
     in the containing level.  */
     in the containing level.  */
  if (constructor_type == 0)
  if (constructor_type == 0)
    return 1;
    return 1;
 
 
  /* If there were errors in this designator list already, bail out
  /* If there were errors in this designator list already, bail out
     silently.  */
     silently.  */
  if (designator_erroneous)
  if (designator_erroneous)
    return 1;
    return 1;
 
 
  if (!designator_depth)
  if (!designator_depth)
    {
    {
      gcc_assert (!constructor_range_stack);
      gcc_assert (!constructor_range_stack);
 
 
      /* Designator list starts at the level of closest explicit
      /* Designator list starts at the level of closest explicit
         braces.  */
         braces.  */
      while (constructor_stack->implicit)
      while (constructor_stack->implicit)
        process_init_element (pop_init_level (1));
        process_init_element (pop_init_level (1));
      constructor_designated = 1;
      constructor_designated = 1;
      return 0;
      return 0;
    }
    }
 
 
  switch (TREE_CODE (constructor_type))
  switch (TREE_CODE (constructor_type))
    {
    {
    case  RECORD_TYPE:
    case  RECORD_TYPE:
    case  UNION_TYPE:
    case  UNION_TYPE:
      subtype = TREE_TYPE (constructor_fields);
      subtype = TREE_TYPE (constructor_fields);
      if (subtype != error_mark_node)
      if (subtype != error_mark_node)
        subtype = TYPE_MAIN_VARIANT (subtype);
        subtype = TYPE_MAIN_VARIANT (subtype);
      break;
      break;
    case ARRAY_TYPE:
    case ARRAY_TYPE:
      subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
      subtype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
      break;
      break;
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  subcode = TREE_CODE (subtype);
  subcode = TREE_CODE (subtype);
  if (array && subcode != ARRAY_TYPE)
  if (array && subcode != ARRAY_TYPE)
    {
    {
      error_init ("array index in non-array initializer");
      error_init ("array index in non-array initializer");
      return 1;
      return 1;
    }
    }
  else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
  else if (!array && subcode != RECORD_TYPE && subcode != UNION_TYPE)
    {
    {
      error_init ("field name not in record or union initializer");
      error_init ("field name not in record or union initializer");
      return 1;
      return 1;
    }
    }
 
 
  constructor_designated = 1;
  constructor_designated = 1;
  push_init_level (2);
  push_init_level (2);
  return 0;
  return 0;
}
}
 
 
/* If there are range designators in designator list, push a new designator
/* If there are range designators in designator list, push a new designator
   to constructor_range_stack.  RANGE_END is end of such stack range or
   to constructor_range_stack.  RANGE_END is end of such stack range or
   NULL_TREE if there is no range designator at this level.  */
   NULL_TREE if there is no range designator at this level.  */
 
 
static void
static void
push_range_stack (tree range_end)
push_range_stack (tree range_end)
{
{
  struct constructor_range_stack *p;
  struct constructor_range_stack *p;
 
 
  p = GGC_NEW (struct constructor_range_stack);
  p = GGC_NEW (struct constructor_range_stack);
  p->prev = constructor_range_stack;
  p->prev = constructor_range_stack;
  p->next = 0;
  p->next = 0;
  p->fields = constructor_fields;
  p->fields = constructor_fields;
  p->range_start = constructor_index;
  p->range_start = constructor_index;
  p->index = constructor_index;
  p->index = constructor_index;
  p->stack = constructor_stack;
  p->stack = constructor_stack;
  p->range_end = range_end;
  p->range_end = range_end;
  if (constructor_range_stack)
  if (constructor_range_stack)
    constructor_range_stack->next = p;
    constructor_range_stack->next = p;
  constructor_range_stack = p;
  constructor_range_stack = p;
}
}
 
 
/* Within an array initializer, specify the next index to be initialized.
/* Within an array initializer, specify the next index to be initialized.
   FIRST is that index.  If LAST is nonzero, then initialize a range
   FIRST is that index.  If LAST is nonzero, then initialize a range
   of indices, running from FIRST through LAST.  */
   of indices, running from FIRST through LAST.  */
 
 
void
void
set_init_index (tree first, tree last)
set_init_index (tree first, tree last)
{
{
  if (set_designator (1))
  if (set_designator (1))
    return;
    return;
 
 
  designator_erroneous = 1;
  designator_erroneous = 1;
 
 
  if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
  if (!INTEGRAL_TYPE_P (TREE_TYPE (first))
      || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
      || (last && !INTEGRAL_TYPE_P (TREE_TYPE (last))))
    {
    {
      error_init ("array index in initializer not of integer type");
      error_init ("array index in initializer not of integer type");
      return;
      return;
    }
    }
 
 
  if (TREE_CODE (first) != INTEGER_CST)
  if (TREE_CODE (first) != INTEGER_CST)
    error_init ("nonconstant array index in initializer");
    error_init ("nonconstant array index in initializer");
  else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
  else if (last != 0 && TREE_CODE (last) != INTEGER_CST)
    error_init ("nonconstant array index in initializer");
    error_init ("nonconstant array index in initializer");
  else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
  else if (TREE_CODE (constructor_type) != ARRAY_TYPE)
    error_init ("array index in non-array initializer");
    error_init ("array index in non-array initializer");
  else if (tree_int_cst_sgn (first) == -1)
  else if (tree_int_cst_sgn (first) == -1)
    error_init ("array index in initializer exceeds array bounds");
    error_init ("array index in initializer exceeds array bounds");
  else if (constructor_max_index
  else if (constructor_max_index
           && tree_int_cst_lt (constructor_max_index, first))
           && tree_int_cst_lt (constructor_max_index, first))
    error_init ("array index in initializer exceeds array bounds");
    error_init ("array index in initializer exceeds array bounds");
  else
  else
    {
    {
      constructor_index = convert (bitsizetype, first);
      constructor_index = convert (bitsizetype, first);
 
 
      if (last)
      if (last)
        {
        {
          if (tree_int_cst_equal (first, last))
          if (tree_int_cst_equal (first, last))
            last = 0;
            last = 0;
          else if (tree_int_cst_lt (last, first))
          else if (tree_int_cst_lt (last, first))
            {
            {
              error_init ("empty index range in initializer");
              error_init ("empty index range in initializer");
              last = 0;
              last = 0;
            }
            }
          else
          else
            {
            {
              last = convert (bitsizetype, last);
              last = convert (bitsizetype, last);
              if (constructor_max_index != 0
              if (constructor_max_index != 0
                  && tree_int_cst_lt (constructor_max_index, last))
                  && tree_int_cst_lt (constructor_max_index, last))
                {
                {
                  error_init ("array index range in initializer exceeds array bounds");
                  error_init ("array index range in initializer exceeds array bounds");
                  last = 0;
                  last = 0;
                }
                }
            }
            }
        }
        }
 
 
      designator_depth++;
      designator_depth++;
      designator_erroneous = 0;
      designator_erroneous = 0;
      if (constructor_range_stack || last)
      if (constructor_range_stack || last)
        push_range_stack (last);
        push_range_stack (last);
    }
    }
}
}
 
 
/* Within a struct initializer, specify the next field to be initialized.  */
/* Within a struct initializer, specify the next field to be initialized.  */
 
 
void
void
set_init_label (tree fieldname)
set_init_label (tree fieldname)
{
{
  tree tail;
  tree tail;
 
 
  if (set_designator (0))
  if (set_designator (0))
    return;
    return;
 
 
  designator_erroneous = 1;
  designator_erroneous = 1;
 
 
  if (TREE_CODE (constructor_type) != RECORD_TYPE
  if (TREE_CODE (constructor_type) != RECORD_TYPE
      && TREE_CODE (constructor_type) != UNION_TYPE)
      && TREE_CODE (constructor_type) != UNION_TYPE)
    {
    {
      error_init ("field name not in record or union initializer");
      error_init ("field name not in record or union initializer");
      return;
      return;
    }
    }
 
 
  for (tail = TYPE_FIELDS (constructor_type); tail;
  for (tail = TYPE_FIELDS (constructor_type); tail;
       tail = TREE_CHAIN (tail))
       tail = TREE_CHAIN (tail))
    {
    {
      if (DECL_NAME (tail) == fieldname)
      if (DECL_NAME (tail) == fieldname)
        break;
        break;
    }
    }
 
 
  if (tail == 0)
  if (tail == 0)
    error ("unknown field %qE specified in initializer", fieldname);
    error ("unknown field %qE specified in initializer", fieldname);
  else
  else
    {
    {
      constructor_fields = tail;
      constructor_fields = tail;
      designator_depth++;
      designator_depth++;
      designator_erroneous = 0;
      designator_erroneous = 0;
      if (constructor_range_stack)
      if (constructor_range_stack)
        push_range_stack (NULL_TREE);
        push_range_stack (NULL_TREE);
    }
    }
}
}


/* Add a new initializer to the tree of pending initializers.  PURPOSE
/* Add a new initializer to the tree of pending initializers.  PURPOSE
   identifies the initializer, either array index or field in a structure.
   identifies the initializer, either array index or field in a structure.
   VALUE is the value of that index or field.  */
   VALUE is the value of that index or field.  */
 
 
static void
static void
add_pending_init (tree purpose, tree value)
add_pending_init (tree purpose, tree value)
{
{
  struct init_node *p, **q, *r;
  struct init_node *p, **q, *r;
 
 
  q = &constructor_pending_elts;
  q = &constructor_pending_elts;
  p = 0;
  p = 0;
 
 
  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    {
    {
      while (*q != 0)
      while (*q != 0)
        {
        {
          p = *q;
          p = *q;
          if (tree_int_cst_lt (purpose, p->purpose))
          if (tree_int_cst_lt (purpose, p->purpose))
            q = &p->left;
            q = &p->left;
          else if (tree_int_cst_lt (p->purpose, purpose))
          else if (tree_int_cst_lt (p->purpose, purpose))
            q = &p->right;
            q = &p->right;
          else
          else
            {
            {
              if (TREE_SIDE_EFFECTS (p->value))
              if (TREE_SIDE_EFFECTS (p->value))
                warning_init ("initialized field with side-effects overwritten");
                warning_init ("initialized field with side-effects overwritten");
              else if (warn_override_init)
              else if (warn_override_init)
                warning_init ("initialized field overwritten");
                warning_init ("initialized field overwritten");
              p->value = value;
              p->value = value;
              return;
              return;
            }
            }
        }
        }
    }
    }
  else
  else
    {
    {
      tree bitpos;
      tree bitpos;
 
 
      bitpos = bit_position (purpose);
      bitpos = bit_position (purpose);
      while (*q != NULL)
      while (*q != NULL)
        {
        {
          p = *q;
          p = *q;
          if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
          if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
            q = &p->left;
            q = &p->left;
          else if (p->purpose != purpose)
          else if (p->purpose != purpose)
            q = &p->right;
            q = &p->right;
          else
          else
            {
            {
              if (TREE_SIDE_EFFECTS (p->value))
              if (TREE_SIDE_EFFECTS (p->value))
                warning_init ("initialized field with side-effects overwritten");
                warning_init ("initialized field with side-effects overwritten");
              else if (warn_override_init)
              else if (warn_override_init)
                warning_init ("initialized field overwritten");
                warning_init ("initialized field overwritten");
              p->value = value;
              p->value = value;
              return;
              return;
            }
            }
        }
        }
    }
    }
 
 
  r = GGC_NEW (struct init_node);
  r = GGC_NEW (struct init_node);
  r->purpose = purpose;
  r->purpose = purpose;
  r->value = value;
  r->value = value;
 
 
  *q = r;
  *q = r;
  r->parent = p;
  r->parent = p;
  r->left = 0;
  r->left = 0;
  r->right = 0;
  r->right = 0;
  r->balance = 0;
  r->balance = 0;
 
 
  while (p)
  while (p)
    {
    {
      struct init_node *s;
      struct init_node *s;
 
 
      if (r == p->left)
      if (r == p->left)
        {
        {
          if (p->balance == 0)
          if (p->balance == 0)
            p->balance = -1;
            p->balance = -1;
          else if (p->balance < 0)
          else if (p->balance < 0)
            {
            {
              if (r->balance < 0)
              if (r->balance < 0)
                {
                {
                  /* L rotation.  */
                  /* L rotation.  */
                  p->left = r->right;
                  p->left = r->right;
                  if (p->left)
                  if (p->left)
                    p->left->parent = p;
                    p->left->parent = p;
                  r->right = p;
                  r->right = p;
 
 
                  p->balance = 0;
                  p->balance = 0;
                  r->balance = 0;
                  r->balance = 0;
 
 
                  s = p->parent;
                  s = p->parent;
                  p->parent = r;
                  p->parent = r;
                  r->parent = s;
                  r->parent = s;
                  if (s)
                  if (s)
                    {
                    {
                      if (s->left == p)
                      if (s->left == p)
                        s->left = r;
                        s->left = r;
                      else
                      else
                        s->right = r;
                        s->right = r;
                    }
                    }
                  else
                  else
                    constructor_pending_elts = r;
                    constructor_pending_elts = r;
                }
                }
              else
              else
                {
                {
                  /* LR rotation.  */
                  /* LR rotation.  */
                  struct init_node *t = r->right;
                  struct init_node *t = r->right;
 
 
                  r->right = t->left;
                  r->right = t->left;
                  if (r->right)
                  if (r->right)
                    r->right->parent = r;
                    r->right->parent = r;
                  t->left = r;
                  t->left = r;
 
 
                  p->left = t->right;
                  p->left = t->right;
                  if (p->left)
                  if (p->left)
                    p->left->parent = p;
                    p->left->parent = p;
                  t->right = p;
                  t->right = p;
 
 
                  p->balance = t->balance < 0;
                  p->balance = t->balance < 0;
                  r->balance = -(t->balance > 0);
                  r->balance = -(t->balance > 0);
                  t->balance = 0;
                  t->balance = 0;
 
 
                  s = p->parent;
                  s = p->parent;
                  p->parent = t;
                  p->parent = t;
                  r->parent = t;
                  r->parent = t;
                  t->parent = s;
                  t->parent = s;
                  if (s)
                  if (s)
                    {
                    {
                      if (s->left == p)
                      if (s->left == p)
                        s->left = t;
                        s->left = t;
                      else
                      else
                        s->right = t;
                        s->right = t;
                    }
                    }
                  else
                  else
                    constructor_pending_elts = t;
                    constructor_pending_elts = t;
                }
                }
              break;
              break;
            }
            }
          else
          else
            {
            {
              /* p->balance == +1; growth of left side balances the node.  */
              /* p->balance == +1; growth of left side balances the node.  */
              p->balance = 0;
              p->balance = 0;
              break;
              break;
            }
            }
        }
        }
      else /* r == p->right */
      else /* r == p->right */
        {
        {
          if (p->balance == 0)
          if (p->balance == 0)
            /* Growth propagation from right side.  */
            /* Growth propagation from right side.  */
            p->balance++;
            p->balance++;
          else if (p->balance > 0)
          else if (p->balance > 0)
            {
            {
              if (r->balance > 0)
              if (r->balance > 0)
                {
                {
                  /* R rotation.  */
                  /* R rotation.  */
                  p->right = r->left;
                  p->right = r->left;
                  if (p->right)
                  if (p->right)
                    p->right->parent = p;
                    p->right->parent = p;
                  r->left = p;
                  r->left = p;
 
 
                  p->balance = 0;
                  p->balance = 0;
                  r->balance = 0;
                  r->balance = 0;
 
 
                  s = p->parent;
                  s = p->parent;
                  p->parent = r;
                  p->parent = r;
                  r->parent = s;
                  r->parent = s;
                  if (s)
                  if (s)
                    {
                    {
                      if (s->left == p)
                      if (s->left == p)
                        s->left = r;
                        s->left = r;
                      else
                      else
                        s->right = r;
                        s->right = r;
                    }
                    }
                  else
                  else
                    constructor_pending_elts = r;
                    constructor_pending_elts = r;
                }
                }
              else /* r->balance == -1 */
              else /* r->balance == -1 */
                {
                {
                  /* RL rotation */
                  /* RL rotation */
                  struct init_node *t = r->left;
                  struct init_node *t = r->left;
 
 
                  r->left = t->right;
                  r->left = t->right;
                  if (r->left)
                  if (r->left)
                    r->left->parent = r;
                    r->left->parent = r;
                  t->right = r;
                  t->right = r;
 
 
                  p->right = t->left;
                  p->right = t->left;
                  if (p->right)
                  if (p->right)
                    p->right->parent = p;
                    p->right->parent = p;
                  t->left = p;
                  t->left = p;
 
 
                  r->balance = (t->balance < 0);
                  r->balance = (t->balance < 0);
                  p->balance = -(t->balance > 0);
                  p->balance = -(t->balance > 0);
                  t->balance = 0;
                  t->balance = 0;
 
 
                  s = p->parent;
                  s = p->parent;
                  p->parent = t;
                  p->parent = t;
                  r->parent = t;
                  r->parent = t;
                  t->parent = s;
                  t->parent = s;
                  if (s)
                  if (s)
                    {
                    {
                      if (s->left == p)
                      if (s->left == p)
                        s->left = t;
                        s->left = t;
                      else
                      else
                        s->right = t;
                        s->right = t;
                    }
                    }
                  else
                  else
                    constructor_pending_elts = t;
                    constructor_pending_elts = t;
                }
                }
              break;
              break;
            }
            }
          else
          else
            {
            {
              /* p->balance == -1; growth of right side balances the node.  */
              /* p->balance == -1; growth of right side balances the node.  */
              p->balance = 0;
              p->balance = 0;
              break;
              break;
            }
            }
        }
        }
 
 
      r = p;
      r = p;
      p = p->parent;
      p = p->parent;
    }
    }
}
}
 
 
/* Build AVL tree from a sorted chain.  */
/* Build AVL tree from a sorted chain.  */
 
 
static void
static void
set_nonincremental_init (void)
set_nonincremental_init (void)
{
{
  unsigned HOST_WIDE_INT ix;
  unsigned HOST_WIDE_INT ix;
  tree index, value;
  tree index, value;
 
 
  if (TREE_CODE (constructor_type) != RECORD_TYPE
  if (TREE_CODE (constructor_type) != RECORD_TYPE
      && TREE_CODE (constructor_type) != ARRAY_TYPE)
      && TREE_CODE (constructor_type) != ARRAY_TYPE)
    return;
    return;
 
 
  FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
  FOR_EACH_CONSTRUCTOR_ELT (constructor_elements, ix, index, value)
    add_pending_init (index, value);
    add_pending_init (index, value);
  constructor_elements = 0;
  constructor_elements = 0;
  if (TREE_CODE (constructor_type) == RECORD_TYPE)
  if (TREE_CODE (constructor_type) == RECORD_TYPE)
    {
    {
      constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
      constructor_unfilled_fields = TYPE_FIELDS (constructor_type);
      /* Skip any nameless bit fields at the beginning.  */
      /* Skip any nameless bit fields at the beginning.  */
      while (constructor_unfilled_fields != 0
      while (constructor_unfilled_fields != 0
             && DECL_C_BIT_FIELD (constructor_unfilled_fields)
             && DECL_C_BIT_FIELD (constructor_unfilled_fields)
             && DECL_NAME (constructor_unfilled_fields) == 0)
             && DECL_NAME (constructor_unfilled_fields) == 0)
        constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
        constructor_unfilled_fields = TREE_CHAIN (constructor_unfilled_fields);
 
 
    }
    }
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    {
    {
      if (TYPE_DOMAIN (constructor_type))
      if (TYPE_DOMAIN (constructor_type))
        constructor_unfilled_index
        constructor_unfilled_index
            = convert (bitsizetype,
            = convert (bitsizetype,
                       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
                       TYPE_MIN_VALUE (TYPE_DOMAIN (constructor_type)));
      else
      else
        constructor_unfilled_index = bitsize_zero_node;
        constructor_unfilled_index = bitsize_zero_node;
    }
    }
  constructor_incremental = 0;
  constructor_incremental = 0;
}
}
 
 
/* Build AVL tree from a string constant.  */
/* Build AVL tree from a string constant.  */
 
 
static void
static void
set_nonincremental_init_from_string (tree str)
set_nonincremental_init_from_string (tree str)
{
{
  tree value, purpose, type;
  tree value, purpose, type;
  HOST_WIDE_INT val[2];
  HOST_WIDE_INT val[2];
  const char *p, *end;
  const char *p, *end;
  int byte, wchar_bytes, charwidth, bitpos;
  int byte, wchar_bytes, charwidth, bitpos;
 
 
  gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
  gcc_assert (TREE_CODE (constructor_type) == ARRAY_TYPE);
 
 
  if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
  if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
      == TYPE_PRECISION (char_type_node))
      == TYPE_PRECISION (char_type_node))
    wchar_bytes = 1;
    wchar_bytes = 1;
  else
  else
    {
    {
      gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
      gcc_assert (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (str)))
                  == TYPE_PRECISION (wchar_type_node));
                  == TYPE_PRECISION (wchar_type_node));
      wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
      wchar_bytes = TYPE_PRECISION (wchar_type_node) / BITS_PER_UNIT;
    }
    }
  charwidth = TYPE_PRECISION (char_type_node);
  charwidth = TYPE_PRECISION (char_type_node);
  type = TREE_TYPE (constructor_type);
  type = TREE_TYPE (constructor_type);
  p = TREE_STRING_POINTER (str);
  p = TREE_STRING_POINTER (str);
  end = p + TREE_STRING_LENGTH (str);
  end = p + TREE_STRING_LENGTH (str);
 
 
  for (purpose = bitsize_zero_node;
  for (purpose = bitsize_zero_node;
       p < end && !tree_int_cst_lt (constructor_max_index, purpose);
       p < end && !tree_int_cst_lt (constructor_max_index, purpose);
       purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
       purpose = size_binop (PLUS_EXPR, purpose, bitsize_one_node))
    {
    {
      if (wchar_bytes == 1)
      if (wchar_bytes == 1)
        {
        {
          val[1] = (unsigned char) *p++;
          val[1] = (unsigned char) *p++;
          val[0] = 0;
          val[0] = 0;
        }
        }
      else
      else
        {
        {
          val[0] = 0;
          val[0] = 0;
          val[1] = 0;
          val[1] = 0;
          for (byte = 0; byte < wchar_bytes; byte++)
          for (byte = 0; byte < wchar_bytes; byte++)
            {
            {
              if (BYTES_BIG_ENDIAN)
              if (BYTES_BIG_ENDIAN)
                bitpos = (wchar_bytes - byte - 1) * charwidth;
                bitpos = (wchar_bytes - byte - 1) * charwidth;
              else
              else
                bitpos = byte * charwidth;
                bitpos = byte * charwidth;
              val[bitpos < HOST_BITS_PER_WIDE_INT]
              val[bitpos < HOST_BITS_PER_WIDE_INT]
                |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
                |= ((unsigned HOST_WIDE_INT) ((unsigned char) *p++))
                   << (bitpos % HOST_BITS_PER_WIDE_INT);
                   << (bitpos % HOST_BITS_PER_WIDE_INT);
            }
            }
        }
        }
 
 
      if (!TYPE_UNSIGNED (type))
      if (!TYPE_UNSIGNED (type))
        {
        {
          bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
          bitpos = ((wchar_bytes - 1) * charwidth) + HOST_BITS_PER_CHAR;
          if (bitpos < HOST_BITS_PER_WIDE_INT)
          if (bitpos < HOST_BITS_PER_WIDE_INT)
            {
            {
              if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
              if (val[1] & (((HOST_WIDE_INT) 1) << (bitpos - 1)))
                {
                {
                  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
                  val[1] |= ((HOST_WIDE_INT) -1) << bitpos;
                  val[0] = -1;
                  val[0] = -1;
                }
                }
            }
            }
          else if (bitpos == HOST_BITS_PER_WIDE_INT)
          else if (bitpos == HOST_BITS_PER_WIDE_INT)
            {
            {
              if (val[1] < 0)
              if (val[1] < 0)
                val[0] = -1;
                val[0] = -1;
            }
            }
          else if (val[0] & (((HOST_WIDE_INT) 1)
          else if (val[0] & (((HOST_WIDE_INT) 1)
                             << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
                             << (bitpos - 1 - HOST_BITS_PER_WIDE_INT)))
            val[0] |= ((HOST_WIDE_INT) -1)
            val[0] |= ((HOST_WIDE_INT) -1)
                      << (bitpos - HOST_BITS_PER_WIDE_INT);
                      << (bitpos - HOST_BITS_PER_WIDE_INT);
        }
        }
 
 
      value = build_int_cst_wide (type, val[1], val[0]);
      value = build_int_cst_wide (type, val[1], val[0]);
      add_pending_init (purpose, value);
      add_pending_init (purpose, value);
    }
    }
 
 
  constructor_incremental = 0;
  constructor_incremental = 0;
}
}
 
 
/* Return value of FIELD in pending initializer or zero if the field was
/* Return value of FIELD in pending initializer or zero if the field was
   not initialized yet.  */
   not initialized yet.  */
 
 
static tree
static tree
find_init_member (tree field)
find_init_member (tree field)
{
{
  struct init_node *p;
  struct init_node *p;
 
 
  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    {
    {
      if (constructor_incremental
      if (constructor_incremental
          && tree_int_cst_lt (field, constructor_unfilled_index))
          && tree_int_cst_lt (field, constructor_unfilled_index))
        set_nonincremental_init ();
        set_nonincremental_init ();
 
 
      p = constructor_pending_elts;
      p = constructor_pending_elts;
      while (p)
      while (p)
        {
        {
          if (tree_int_cst_lt (field, p->purpose))
          if (tree_int_cst_lt (field, p->purpose))
            p = p->left;
            p = p->left;
          else if (tree_int_cst_lt (p->purpose, field))
          else if (tree_int_cst_lt (p->purpose, field))
            p = p->right;
            p = p->right;
          else
          else
            return p->value;
            return p->value;
        }
        }
    }
    }
  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
    {
    {
      tree bitpos = bit_position (field);
      tree bitpos = bit_position (field);
 
 
      if (constructor_incremental
      if (constructor_incremental
          && (!constructor_unfilled_fields
          && (!constructor_unfilled_fields
              || tree_int_cst_lt (bitpos,
              || tree_int_cst_lt (bitpos,
                                  bit_position (constructor_unfilled_fields))))
                                  bit_position (constructor_unfilled_fields))))
        set_nonincremental_init ();
        set_nonincremental_init ();
 
 
      p = constructor_pending_elts;
      p = constructor_pending_elts;
      while (p)
      while (p)
        {
        {
          if (field == p->purpose)
          if (field == p->purpose)
            return p->value;
            return p->value;
          else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
          else if (tree_int_cst_lt (bitpos, bit_position (p->purpose)))
            p = p->left;
            p = p->left;
          else
          else
            p = p->right;
            p = p->right;
        }
        }
    }
    }
  else if (TREE_CODE (constructor_type) == UNION_TYPE)
  else if (TREE_CODE (constructor_type) == UNION_TYPE)
    {
    {
      if (!VEC_empty (constructor_elt, constructor_elements)
      if (!VEC_empty (constructor_elt, constructor_elements)
          && (VEC_last (constructor_elt, constructor_elements)->index
          && (VEC_last (constructor_elt, constructor_elements)->index
              == field))
              == field))
        return VEC_last (constructor_elt, constructor_elements)->value;
        return VEC_last (constructor_elt, constructor_elements)->value;
    }
    }
  return 0;
  return 0;
}
}
 
 
/* "Output" the next constructor element.
/* "Output" the next constructor element.
   At top level, really output it to assembler code now.
   At top level, really output it to assembler code now.
   Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
   Otherwise, collect it in a list from which we will make a CONSTRUCTOR.
   TYPE is the data type that the containing data type wants here.
   TYPE is the data type that the containing data type wants here.
   FIELD is the field (a FIELD_DECL) or the index that this element fills.
   FIELD is the field (a FIELD_DECL) or the index that this element fills.
   If VALUE is a string constant, STRICT_STRING is true if it is
   If VALUE is a string constant, STRICT_STRING is true if it is
   unparenthesized or we should not warn here for it being parenthesized.
   unparenthesized or we should not warn here for it being parenthesized.
   For other types of VALUE, STRICT_STRING is not used.
   For other types of VALUE, STRICT_STRING is not used.
 
 
   PENDING if non-nil means output pending elements that belong
   PENDING if non-nil means output pending elements that belong
   right after this element.  (PENDING is normally 1;
   right after this element.  (PENDING is normally 1;
   it is 0 while outputting pending elements, to avoid recursion.)  */
   it is 0 while outputting pending elements, to avoid recursion.)  */
 
 
static void
static void
output_init_element (tree value, bool strict_string, tree type, tree field,
output_init_element (tree value, bool strict_string, tree type, tree field,
                     int pending)
                     int pending)
{
{
  constructor_elt *celt;
  constructor_elt *celt;
 
 
  if (type == error_mark_node || value == error_mark_node)
  if (type == error_mark_node || value == error_mark_node)
    {
    {
      constructor_erroneous = 1;
      constructor_erroneous = 1;
      return;
      return;
    }
    }
  if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
  if (TREE_CODE (TREE_TYPE (value)) == ARRAY_TYPE
      && (TREE_CODE (value) == STRING_CST
      && (TREE_CODE (value) == STRING_CST
          || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
          || TREE_CODE (value) == COMPOUND_LITERAL_EXPR)
      && !(TREE_CODE (value) == STRING_CST
      && !(TREE_CODE (value) == STRING_CST
           && TREE_CODE (type) == ARRAY_TYPE
           && TREE_CODE (type) == ARRAY_TYPE
           && INTEGRAL_TYPE_P (TREE_TYPE (type)))
           && INTEGRAL_TYPE_P (TREE_TYPE (type)))
      && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
      && !comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (value)),
                     TYPE_MAIN_VARIANT (type)))
                     TYPE_MAIN_VARIANT (type)))
    value = array_to_pointer_conversion (value);
    value = array_to_pointer_conversion (value);
 
 
  if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
  if (TREE_CODE (value) == COMPOUND_LITERAL_EXPR
      && require_constant_value && !flag_isoc99 && pending)
      && require_constant_value && !flag_isoc99 && pending)
    {
    {
      /* As an extension, allow initializing objects with static storage
      /* As an extension, allow initializing objects with static storage
         duration with compound literals (which are then treated just as
         duration with compound literals (which are then treated just as
         the brace enclosed list they contain).  */
         the brace enclosed list they contain).  */
      tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
      tree decl = COMPOUND_LITERAL_EXPR_DECL (value);
      value = DECL_INITIAL (decl);
      value = DECL_INITIAL (decl);
    }
    }
 
 
  if (value == error_mark_node)
  if (value == error_mark_node)
    constructor_erroneous = 1;
    constructor_erroneous = 1;
  else if (!TREE_CONSTANT (value))
  else if (!TREE_CONSTANT (value))
    constructor_constant = 0;
    constructor_constant = 0;
  else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
  else if (!initializer_constant_valid_p (value, TREE_TYPE (value))
           || ((TREE_CODE (constructor_type) == RECORD_TYPE
           || ((TREE_CODE (constructor_type) == RECORD_TYPE
                || TREE_CODE (constructor_type) == UNION_TYPE)
                || TREE_CODE (constructor_type) == UNION_TYPE)
               && DECL_C_BIT_FIELD (field)
               && DECL_C_BIT_FIELD (field)
               && TREE_CODE (value) != INTEGER_CST))
               && TREE_CODE (value) != INTEGER_CST))
    constructor_simple = 0;
    constructor_simple = 0;
 
 
  if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
  if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
    {
    {
      if (require_constant_value)
      if (require_constant_value)
        {
        {
          error_init ("initializer element is not constant");
          error_init ("initializer element is not constant");
          value = error_mark_node;
          value = error_mark_node;
        }
        }
      else if (require_constant_elements)
      else if (require_constant_elements)
        pedwarn ("initializer element is not computable at load time");
        pedwarn ("initializer element is not computable at load time");
    }
    }
 
 
  /* If this field is empty (and not at the end of structure),
  /* If this field is empty (and not at the end of structure),
     don't do anything other than checking the initializer.  */
     don't do anything other than checking the initializer.  */
  if (field
  if (field
      && (TREE_TYPE (field) == error_mark_node
      && (TREE_TYPE (field) == error_mark_node
          || (COMPLETE_TYPE_P (TREE_TYPE (field))
          || (COMPLETE_TYPE_P (TREE_TYPE (field))
              && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
              && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))
              && (TREE_CODE (constructor_type) == ARRAY_TYPE
              && (TREE_CODE (constructor_type) == ARRAY_TYPE
                  || TREE_CHAIN (field)))))
                  || TREE_CHAIN (field)))))
    return;
    return;
 
 
  value = digest_init (type, value, strict_string, require_constant_value);
  value = digest_init (type, value, strict_string, require_constant_value);
  if (value == error_mark_node)
  if (value == error_mark_node)
    {
    {
      constructor_erroneous = 1;
      constructor_erroneous = 1;
      return;
      return;
    }
    }
 
 
  /* If this element doesn't come next in sequence,
  /* If this element doesn't come next in sequence,
     put it on constructor_pending_elts.  */
     put it on constructor_pending_elts.  */
  if (TREE_CODE (constructor_type) == ARRAY_TYPE
  if (TREE_CODE (constructor_type) == ARRAY_TYPE
      && (!constructor_incremental
      && (!constructor_incremental
          || !tree_int_cst_equal (field, constructor_unfilled_index)))
          || !tree_int_cst_equal (field, constructor_unfilled_index)))
    {
    {
      if (constructor_incremental
      if (constructor_incremental
          && tree_int_cst_lt (field, constructor_unfilled_index))
          && tree_int_cst_lt (field, constructor_unfilled_index))
        set_nonincremental_init ();
        set_nonincremental_init ();
 
 
      add_pending_init (field, value);
      add_pending_init (field, value);
      return;
      return;
    }
    }
  else if (TREE_CODE (constructor_type) == RECORD_TYPE
  else if (TREE_CODE (constructor_type) == RECORD_TYPE
           && (!constructor_incremental
           && (!constructor_incremental
               || field != constructor_unfilled_fields))
               || field != constructor_unfilled_fields))
    {
    {
      /* We do this for records but not for unions.  In a union,
      /* We do this for records but not for unions.  In a union,
         no matter which field is specified, it can be initialized
         no matter which field is specified, it can be initialized
         right away since it starts at the beginning of the union.  */
         right away since it starts at the beginning of the union.  */
      if (constructor_incremental)
      if (constructor_incremental)
        {
        {
          if (!constructor_unfilled_fields)
          if (!constructor_unfilled_fields)
            set_nonincremental_init ();
            set_nonincremental_init ();
          else
          else
            {
            {
              tree bitpos, unfillpos;
              tree bitpos, unfillpos;
 
 
              bitpos = bit_position (field);
              bitpos = bit_position (field);
              unfillpos = bit_position (constructor_unfilled_fields);
              unfillpos = bit_position (constructor_unfilled_fields);
 
 
              if (tree_int_cst_lt (bitpos, unfillpos))
              if (tree_int_cst_lt (bitpos, unfillpos))
                set_nonincremental_init ();
                set_nonincremental_init ();
            }
            }
        }
        }
 
 
      add_pending_init (field, value);
      add_pending_init (field, value);
      return;
      return;
    }
    }
  else if (TREE_CODE (constructor_type) == UNION_TYPE
  else if (TREE_CODE (constructor_type) == UNION_TYPE
           && !VEC_empty (constructor_elt, constructor_elements))
           && !VEC_empty (constructor_elt, constructor_elements))
    {
    {
      if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
      if (TREE_SIDE_EFFECTS (VEC_last (constructor_elt,
                                       constructor_elements)->value))
                                       constructor_elements)->value))
        warning_init ("initialized field with side-effects overwritten");
        warning_init ("initialized field with side-effects overwritten");
      else if (warn_override_init)
      else if (warn_override_init)
        warning_init ("initialized field overwritten");
        warning_init ("initialized field overwritten");
 
 
      /* We can have just one union field set.  */
      /* We can have just one union field set.  */
      constructor_elements = 0;
      constructor_elements = 0;
    }
    }
 
 
  /* Otherwise, output this element either to
  /* Otherwise, output this element either to
     constructor_elements or to the assembler file.  */
     constructor_elements or to the assembler file.  */
 
 
  celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
  celt = VEC_safe_push (constructor_elt, gc, constructor_elements, NULL);
  celt->index = field;
  celt->index = field;
  celt->value = value;
  celt->value = value;
 
 
  /* Advance the variable that indicates sequential elements output.  */
  /* Advance the variable that indicates sequential elements output.  */
  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
  if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    constructor_unfilled_index
    constructor_unfilled_index
      = size_binop (PLUS_EXPR, constructor_unfilled_index,
      = size_binop (PLUS_EXPR, constructor_unfilled_index,
                    bitsize_one_node);
                    bitsize_one_node);
  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
  else if (TREE_CODE (constructor_type) == RECORD_TYPE)
    {
    {
      constructor_unfilled_fields
      constructor_unfilled_fields
        = TREE_CHAIN (constructor_unfilled_fields);
        = TREE_CHAIN (constructor_unfilled_fields);
 
 
      /* Skip any nameless bit fields.  */
      /* Skip any nameless bit fields.  */
      while (constructor_unfilled_fields != 0
      while (constructor_unfilled_fields != 0
             && DECL_C_BIT_FIELD (constructor_unfilled_fields)
             && DECL_C_BIT_FIELD (constructor_unfilled_fields)
             && DECL_NAME (constructor_unfilled_fields) == 0)
             && DECL_NAME (constructor_unfilled_fields) == 0)
        constructor_unfilled_fields =
        constructor_unfilled_fields =
          TREE_CHAIN (constructor_unfilled_fields);
          TREE_CHAIN (constructor_unfilled_fields);
    }
    }
  else if (TREE_CODE (constructor_type) == UNION_TYPE)
  else if (TREE_CODE (constructor_type) == UNION_TYPE)
    constructor_unfilled_fields = 0;
    constructor_unfilled_fields = 0;
 
 
  /* Now output any pending elements which have become next.  */
  /* Now output any pending elements which have become next.  */
  if (pending)
  if (pending)
    output_pending_init_elements (0);
    output_pending_init_elements (0);
}
}
 
 
/* Output any pending elements which have become next.
/* Output any pending elements which have become next.
   As we output elements, constructor_unfilled_{fields,index}
   As we output elements, constructor_unfilled_{fields,index}
   advances, which may cause other elements to become next;
   advances, which may cause other elements to become next;
   if so, they too are output.
   if so, they too are output.
 
 
   If ALL is 0, we return when there are
   If ALL is 0, we return when there are
   no more pending elements to output now.
   no more pending elements to output now.
 
 
   If ALL is 1, we output space as necessary so that
   If ALL is 1, we output space as necessary so that
   we can output all the pending elements.  */
   we can output all the pending elements.  */
 
 
static void
static void
output_pending_init_elements (int all)
output_pending_init_elements (int all)
{
{
  struct init_node *elt = constructor_pending_elts;
  struct init_node *elt = constructor_pending_elts;
  tree next;
  tree next;
 
 
 retry:
 retry:
 
 
  /* Look through the whole pending tree.
  /* Look through the whole pending tree.
     If we find an element that should be output now,
     If we find an element that should be output now,
     output it.  Otherwise, set NEXT to the element
     output it.  Otherwise, set NEXT to the element
     that comes first among those still pending.  */
     that comes first among those still pending.  */
 
 
  next = 0;
  next = 0;
  while (elt)
  while (elt)
    {
    {
      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
      if (TREE_CODE (constructor_type) == ARRAY_TYPE)
        {
        {
          if (tree_int_cst_equal (elt->purpose,
          if (tree_int_cst_equal (elt->purpose,
                                  constructor_unfilled_index))
                                  constructor_unfilled_index))
            output_init_element (elt->value, true,
            output_init_element (elt->value, true,
                                 TREE_TYPE (constructor_type),
                                 TREE_TYPE (constructor_type),
                                 constructor_unfilled_index, 0);
                                 constructor_unfilled_index, 0);
          else if (tree_int_cst_lt (constructor_unfilled_index,
          else if (tree_int_cst_lt (constructor_unfilled_index,
                                    elt->purpose))
                                    elt->purpose))
            {
            {
              /* Advance to the next smaller node.  */
              /* Advance to the next smaller node.  */
              if (elt->left)
              if (elt->left)
                elt = elt->left;
                elt = elt->left;
              else
              else
                {
                {
                  /* We have reached the smallest node bigger than the
                  /* We have reached the smallest node bigger than the
                     current unfilled index.  Fill the space first.  */
                     current unfilled index.  Fill the space first.  */
                  next = elt->purpose;
                  next = elt->purpose;
                  break;
                  break;
                }
                }
            }
            }
          else
          else
            {
            {
              /* Advance to the next bigger node.  */
              /* Advance to the next bigger node.  */
              if (elt->right)
              if (elt->right)
                elt = elt->right;
                elt = elt->right;
              else
              else
                {
                {
                  /* We have reached the biggest node in a subtree.  Find
                  /* We have reached the biggest node in a subtree.  Find
                     the parent of it, which is the next bigger node.  */
                     the parent of it, which is the next bigger node.  */
                  while (elt->parent && elt->parent->right == elt)
                  while (elt->parent && elt->parent->right == elt)
                    elt = elt->parent;
                    elt = elt->parent;
                  elt = elt->parent;
                  elt = elt->parent;
                  if (elt && tree_int_cst_lt (constructor_unfilled_index,
                  if (elt && tree_int_cst_lt (constructor_unfilled_index,
                                              elt->purpose))
                                              elt->purpose))
                    {
                    {
                      next = elt->purpose;
                      next = elt->purpose;
                      break;
                      break;
                    }
                    }
                }
                }
            }
            }
        }
        }
      else if (TREE_CODE (constructor_type) == RECORD_TYPE
      else if (TREE_CODE (constructor_type) == RECORD_TYPE
               || TREE_CODE (constructor_type) == UNION_TYPE)
               || TREE_CODE (constructor_type) == UNION_TYPE)
        {
        {
          tree ctor_unfilled_bitpos, elt_bitpos;
          tree ctor_unfilled_bitpos, elt_bitpos;
 
 
          /* If the current record is complete we are done.  */
          /* If the current record is complete we are done.  */
          if (constructor_unfilled_fields == 0)
          if (constructor_unfilled_fields == 0)
            break;
            break;
 
 
          ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
          ctor_unfilled_bitpos = bit_position (constructor_unfilled_fields);
          elt_bitpos = bit_position (elt->purpose);
          elt_bitpos = bit_position (elt->purpose);
          /* We can't compare fields here because there might be empty
          /* We can't compare fields here because there might be empty
             fields in between.  */
             fields in between.  */
          if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
          if (tree_int_cst_equal (elt_bitpos, ctor_unfilled_bitpos))
            {
            {
              constructor_unfilled_fields = elt->purpose;
              constructor_unfilled_fields = elt->purpose;
              output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
              output_init_element (elt->value, true, TREE_TYPE (elt->purpose),
                                   elt->purpose, 0);
                                   elt->purpose, 0);
            }
            }
          else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
          else if (tree_int_cst_lt (ctor_unfilled_bitpos, elt_bitpos))
            {
            {
              /* Advance to the next smaller node.  */
              /* Advance to the next smaller node.  */
              if (elt->left)
              if (elt->left)
                elt = elt->left;
                elt = elt->left;
              else
              else
                {
                {
                  /* We have reached the smallest node bigger than the
                  /* We have reached the smallest node bigger than the
                     current unfilled field.  Fill the space first.  */
                     current unfilled field.  Fill the space first.  */
                  next = elt->purpose;
                  next = elt->purpose;
                  break;
                  break;
                }
                }
            }
            }
          else
          else
            {
            {
              /* Advance to the next bigger node.  */
              /* Advance to the next bigger node.  */
              if (elt->right)
              if (elt->right)
                elt = elt->right;
                elt = elt->right;
              else
              else
                {
                {
                  /* We have reached the biggest node in a subtree.  Find
                  /* We have reached the biggest node in a subtree.  Find
                     the parent of it, which is the next bigger node.  */
                     the parent of it, which is the next bigger node.  */
                  while (elt->parent && elt->parent->right == elt)
                  while (elt->parent && elt->parent->right == elt)
                    elt = elt->parent;
                    elt = elt->parent;
                  elt = elt->parent;
                  elt = elt->parent;
                  if (elt
                  if (elt
                      && (tree_int_cst_lt (ctor_unfilled_bitpos,
                      && (tree_int_cst_lt (ctor_unfilled_bitpos,
                                           bit_position (elt->purpose))))
                                           bit_position (elt->purpose))))
                    {
                    {
                      next = elt->purpose;
                      next = elt->purpose;
                      break;
                      break;
                    }
                    }
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  /* Ordinarily return, but not if we want to output all
  /* Ordinarily return, but not if we want to output all
     and there are elements left.  */
     and there are elements left.  */
  if (!(all && next != 0))
  if (!(all && next != 0))
    return;
    return;
 
 
  /* If it's not incremental, just skip over the gap, so that after
  /* If it's not incremental, just skip over the gap, so that after
     jumping to retry we will output the next successive element.  */
     jumping to retry we will output the next successive element.  */
  if (TREE_CODE (constructor_type) == RECORD_TYPE
  if (TREE_CODE (constructor_type) == RECORD_TYPE
      || TREE_CODE (constructor_type) == UNION_TYPE)
      || TREE_CODE (constructor_type) == UNION_TYPE)
    constructor_unfilled_fields = next;
    constructor_unfilled_fields = next;
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
  else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
    constructor_unfilled_index = next;
    constructor_unfilled_index = next;
 
 
  /* ELT now points to the node in the pending tree with the next
  /* ELT now points to the node in the pending tree with the next
     initializer to output.  */
     initializer to output.  */
  goto retry;
  goto retry;
}
}


/* Add one non-braced element to the current constructor level.
/* Add one non-braced element to the current constructor level.
   This adjusts the current position within the constructor's type.
   This adjusts the current position within the constructor's type.
   This may also start or terminate implicit levels
   This may also start or terminate implicit levels
   to handle a partly-braced initializer.
   to handle a partly-braced initializer.
 
 
   Once this has found the correct level for the new element,
   Once this has found the correct level for the new element,
   it calls output_init_element.  */
   it calls output_init_element.  */
 
 
void
void
process_init_element (struct c_expr value)
process_init_element (struct c_expr value)
{
{
  tree orig_value = value.value;
  tree orig_value = value.value;
  int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
  int string_flag = orig_value != 0 && TREE_CODE (orig_value) == STRING_CST;
  bool strict_string = value.original_code == STRING_CST;
  bool strict_string = value.original_code == STRING_CST;
 
 
  designator_depth = 0;
  designator_depth = 0;
  designator_erroneous = 0;
  designator_erroneous = 0;
 
 
  /* Handle superfluous braces around string cst as in
  /* Handle superfluous braces around string cst as in
     char x[] = {"foo"}; */
     char x[] = {"foo"}; */
  if (string_flag
  if (string_flag
      && constructor_type
      && constructor_type
      && TREE_CODE (constructor_type) == ARRAY_TYPE
      && TREE_CODE (constructor_type) == ARRAY_TYPE
      && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
      && INTEGRAL_TYPE_P (TREE_TYPE (constructor_type))
      && integer_zerop (constructor_unfilled_index))
      && integer_zerop (constructor_unfilled_index))
    {
    {
      if (constructor_stack->replacement_value.value)
      if (constructor_stack->replacement_value.value)
        error_init ("excess elements in char array initializer");
        error_init ("excess elements in char array initializer");
      constructor_stack->replacement_value = value;
      constructor_stack->replacement_value = value;
      return;
      return;
    }
    }
 
 
  if (constructor_stack->replacement_value.value != 0)
  if (constructor_stack->replacement_value.value != 0)
    {
    {
      error_init ("excess elements in struct initializer");
      error_init ("excess elements in struct initializer");
      return;
      return;
    }
    }
 
 
  /* Ignore elements of a brace group if it is entirely superfluous
  /* Ignore elements of a brace group if it is entirely superfluous
     and has already been diagnosed.  */
     and has already been diagnosed.  */
  if (constructor_type == 0)
  if (constructor_type == 0)
    return;
    return;
 
 
  /* If we've exhausted any levels that didn't have braces,
  /* If we've exhausted any levels that didn't have braces,
     pop them now.  */
     pop them now.  */
  while (constructor_stack->implicit)
  while (constructor_stack->implicit)
    {
    {
      if ((TREE_CODE (constructor_type) == RECORD_TYPE
      if ((TREE_CODE (constructor_type) == RECORD_TYPE
           || TREE_CODE (constructor_type) == UNION_TYPE)
           || TREE_CODE (constructor_type) == UNION_TYPE)
          && constructor_fields == 0)
          && constructor_fields == 0)
        process_init_element (pop_init_level (1));
        process_init_element (pop_init_level (1));
      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
      else if (TREE_CODE (constructor_type) == ARRAY_TYPE
               && (constructor_max_index == 0
               && (constructor_max_index == 0
                   || tree_int_cst_lt (constructor_max_index,
                   || tree_int_cst_lt (constructor_max_index,
                                       constructor_index)))
                                       constructor_index)))
        process_init_element (pop_init_level (1));
        process_init_element (pop_init_level (1));
      else
      else
        break;
        break;
    }
    }
 
 
  /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
  /* In the case of [LO ... HI] = VALUE, only evaluate VALUE once.  */
  if (constructor_range_stack)
  if (constructor_range_stack)
    {
    {
      /* If value is a compound literal and we'll be just using its
      /* If value is a compound literal and we'll be just using its
         content, don't put it into a SAVE_EXPR.  */
         content, don't put it into a SAVE_EXPR.  */
      if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
      if (TREE_CODE (value.value) != COMPOUND_LITERAL_EXPR
          || !require_constant_value
          || !require_constant_value
          || flag_isoc99)
          || flag_isoc99)
        value.value = save_expr (value.value);
        value.value = save_expr (value.value);
    }
    }
 
 
  while (1)
  while (1)
    {
    {
      if (TREE_CODE (constructor_type) == RECORD_TYPE)
      if (TREE_CODE (constructor_type) == RECORD_TYPE)
        {
        {
          tree fieldtype;
          tree fieldtype;
          enum tree_code fieldcode;
          enum tree_code fieldcode;
 
 
          if (constructor_fields == 0)
          if (constructor_fields == 0)
            {
            {
              pedwarn_init ("excess elements in struct initializer");
              pedwarn_init ("excess elements in struct initializer");
              break;
              break;
            }
            }
 
 
          fieldtype = TREE_TYPE (constructor_fields);
          fieldtype = TREE_TYPE (constructor_fields);
          if (fieldtype != error_mark_node)
          if (fieldtype != error_mark_node)
            fieldtype = TYPE_MAIN_VARIANT (fieldtype);
            fieldtype = TYPE_MAIN_VARIANT (fieldtype);
          fieldcode = TREE_CODE (fieldtype);
          fieldcode = TREE_CODE (fieldtype);
 
 
          /* Error for non-static initialization of a flexible array member.  */
          /* Error for non-static initialization of a flexible array member.  */
          if (fieldcode == ARRAY_TYPE
          if (fieldcode == ARRAY_TYPE
              && !require_constant_value
              && !require_constant_value
              && TYPE_SIZE (fieldtype) == NULL_TREE
              && TYPE_SIZE (fieldtype) == NULL_TREE
              && TREE_CHAIN (constructor_fields) == NULL_TREE)
              && TREE_CHAIN (constructor_fields) == NULL_TREE)
            {
            {
              error_init ("non-static initialization of a flexible array member");
              error_init ("non-static initialization of a flexible array member");
              break;
              break;
            }
            }
 
 
          /* Accept a string constant to initialize a subarray.  */
          /* Accept a string constant to initialize a subarray.  */
          if (value.value != 0
          if (value.value != 0
              && fieldcode == ARRAY_TYPE
              && fieldcode == ARRAY_TYPE
              && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
              && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
              && string_flag)
              && string_flag)
            value.value = orig_value;
            value.value = orig_value;
          /* Otherwise, if we have come to a subaggregate,
          /* Otherwise, if we have come to a subaggregate,
             and we don't have an element of its type, push into it.  */
             and we don't have an element of its type, push into it.  */
          else if (value.value != 0
          else if (value.value != 0
                   && value.value != error_mark_node
                   && value.value != error_mark_node
                   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
                   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
                   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
                   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
                       || fieldcode == UNION_TYPE))
                       || fieldcode == UNION_TYPE))
            {
            {
              push_init_level (1);
              push_init_level (1);
              continue;
              continue;
            }
            }
 
 
          if (value.value)
          if (value.value)
            {
            {
              push_member_name (constructor_fields);
              push_member_name (constructor_fields);
              output_init_element (value.value, strict_string,
              output_init_element (value.value, strict_string,
                                   fieldtype, constructor_fields, 1);
                                   fieldtype, constructor_fields, 1);
              RESTORE_SPELLING_DEPTH (constructor_depth);
              RESTORE_SPELLING_DEPTH (constructor_depth);
            }
            }
          else
          else
            /* Do the bookkeeping for an element that was
            /* Do the bookkeeping for an element that was
               directly output as a constructor.  */
               directly output as a constructor.  */
            {
            {
              /* For a record, keep track of end position of last field.  */
              /* For a record, keep track of end position of last field.  */
              if (DECL_SIZE (constructor_fields))
              if (DECL_SIZE (constructor_fields))
                constructor_bit_index
                constructor_bit_index
                  = size_binop (PLUS_EXPR,
                  = size_binop (PLUS_EXPR,
                                bit_position (constructor_fields),
                                bit_position (constructor_fields),
                                DECL_SIZE (constructor_fields));
                                DECL_SIZE (constructor_fields));
 
 
              /* If the current field was the first one not yet written out,
              /* If the current field was the first one not yet written out,
                 it isn't now, so update.  */
                 it isn't now, so update.  */
              if (constructor_unfilled_fields == constructor_fields)
              if (constructor_unfilled_fields == constructor_fields)
                {
                {
                  constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
                  constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
                  /* Skip any nameless bit fields.  */
                  /* Skip any nameless bit fields.  */
                  while (constructor_unfilled_fields != 0
                  while (constructor_unfilled_fields != 0
                         && DECL_C_BIT_FIELD (constructor_unfilled_fields)
                         && DECL_C_BIT_FIELD (constructor_unfilled_fields)
                         && DECL_NAME (constructor_unfilled_fields) == 0)
                         && DECL_NAME (constructor_unfilled_fields) == 0)
                    constructor_unfilled_fields =
                    constructor_unfilled_fields =
                      TREE_CHAIN (constructor_unfilled_fields);
                      TREE_CHAIN (constructor_unfilled_fields);
                }
                }
            }
            }
 
 
          constructor_fields = TREE_CHAIN (constructor_fields);
          constructor_fields = TREE_CHAIN (constructor_fields);
          /* Skip any nameless bit fields at the beginning.  */
          /* Skip any nameless bit fields at the beginning.  */
          while (constructor_fields != 0
          while (constructor_fields != 0
                 && DECL_C_BIT_FIELD (constructor_fields)
                 && DECL_C_BIT_FIELD (constructor_fields)
                 && DECL_NAME (constructor_fields) == 0)
                 && DECL_NAME (constructor_fields) == 0)
            constructor_fields = TREE_CHAIN (constructor_fields);
            constructor_fields = TREE_CHAIN (constructor_fields);
        }
        }
      else if (TREE_CODE (constructor_type) == UNION_TYPE)
      else if (TREE_CODE (constructor_type) == UNION_TYPE)
        {
        {
          tree fieldtype;
          tree fieldtype;
          enum tree_code fieldcode;
          enum tree_code fieldcode;
 
 
          if (constructor_fields == 0)
          if (constructor_fields == 0)
            {
            {
              pedwarn_init ("excess elements in union initializer");
              pedwarn_init ("excess elements in union initializer");
              break;
              break;
            }
            }
 
 
          fieldtype = TREE_TYPE (constructor_fields);
          fieldtype = TREE_TYPE (constructor_fields);
          if (fieldtype != error_mark_node)
          if (fieldtype != error_mark_node)
            fieldtype = TYPE_MAIN_VARIANT (fieldtype);
            fieldtype = TYPE_MAIN_VARIANT (fieldtype);
          fieldcode = TREE_CODE (fieldtype);
          fieldcode = TREE_CODE (fieldtype);
 
 
          /* Warn that traditional C rejects initialization of unions.
          /* Warn that traditional C rejects initialization of unions.
             We skip the warning if the value is zero.  This is done
             We skip the warning if the value is zero.  This is done
             under the assumption that the zero initializer in user
             under the assumption that the zero initializer in user
             code appears conditioned on e.g. __STDC__ to avoid
             code appears conditioned on e.g. __STDC__ to avoid
             "missing initializer" warnings and relies on default
             "missing initializer" warnings and relies on default
             initialization to zero in the traditional C case.
             initialization to zero in the traditional C case.
             We also skip the warning if the initializer is designated,
             We also skip the warning if the initializer is designated,
             again on the assumption that this must be conditional on
             again on the assumption that this must be conditional on
             __STDC__ anyway (and we've already complained about the
             __STDC__ anyway (and we've already complained about the
             member-designator already).  */
             member-designator already).  */
          if (!in_system_header && !constructor_designated
          if (!in_system_header && !constructor_designated
              && !(value.value && (integer_zerop (value.value)
              && !(value.value && (integer_zerop (value.value)
                                   || real_zerop (value.value))))
                                   || real_zerop (value.value))))
            warning (OPT_Wtraditional, "traditional C rejects initialization "
            warning (OPT_Wtraditional, "traditional C rejects initialization "
                     "of unions");
                     "of unions");
 
 
          /* Accept a string constant to initialize a subarray.  */
          /* Accept a string constant to initialize a subarray.  */
          if (value.value != 0
          if (value.value != 0
              && fieldcode == ARRAY_TYPE
              && fieldcode == ARRAY_TYPE
              && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
              && INTEGRAL_TYPE_P (TREE_TYPE (fieldtype))
              && string_flag)
              && string_flag)
            value.value = orig_value;
            value.value = orig_value;
          /* Otherwise, if we have come to a subaggregate,
          /* Otherwise, if we have come to a subaggregate,
             and we don't have an element of its type, push into it.  */
             and we don't have an element of its type, push into it.  */
          else if (value.value != 0
          else if (value.value != 0
                   && value.value != error_mark_node
                   && value.value != error_mark_node
                   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
                   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != fieldtype
                   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
                   && (fieldcode == RECORD_TYPE || fieldcode == ARRAY_TYPE
                       || fieldcode == UNION_TYPE))
                       || fieldcode == UNION_TYPE))
            {
            {
              push_init_level (1);
              push_init_level (1);
              continue;
              continue;
            }
            }
 
 
          if (value.value)
          if (value.value)
            {
            {
              push_member_name (constructor_fields);
              push_member_name (constructor_fields);
              output_init_element (value.value, strict_string,
              output_init_element (value.value, strict_string,
                                   fieldtype, constructor_fields, 1);
                                   fieldtype, constructor_fields, 1);
              RESTORE_SPELLING_DEPTH (constructor_depth);
              RESTORE_SPELLING_DEPTH (constructor_depth);
            }
            }
          else
          else
            /* Do the bookkeeping for an element that was
            /* Do the bookkeeping for an element that was
               directly output as a constructor.  */
               directly output as a constructor.  */
            {
            {
              constructor_bit_index = DECL_SIZE (constructor_fields);
              constructor_bit_index = DECL_SIZE (constructor_fields);
              constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
              constructor_unfilled_fields = TREE_CHAIN (constructor_fields);
            }
            }
 
 
          constructor_fields = 0;
          constructor_fields = 0;
        }
        }
      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
      else if (TREE_CODE (constructor_type) == ARRAY_TYPE)
        {
        {
          tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
          tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
          enum tree_code eltcode = TREE_CODE (elttype);
          enum tree_code eltcode = TREE_CODE (elttype);
 
 
          /* Accept a string constant to initialize a subarray.  */
          /* Accept a string constant to initialize a subarray.  */
          if (value.value != 0
          if (value.value != 0
              && eltcode == ARRAY_TYPE
              && eltcode == ARRAY_TYPE
              && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
              && INTEGRAL_TYPE_P (TREE_TYPE (elttype))
              && string_flag)
              && string_flag)
            value.value = orig_value;
            value.value = orig_value;
          /* Otherwise, if we have come to a subaggregate,
          /* Otherwise, if we have come to a subaggregate,
             and we don't have an element of its type, push into it.  */
             and we don't have an element of its type, push into it.  */
          else if (value.value != 0
          else if (value.value != 0
                   && value.value != error_mark_node
                   && value.value != error_mark_node
                   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
                   && TYPE_MAIN_VARIANT (TREE_TYPE (value.value)) != elttype
                   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
                   && (eltcode == RECORD_TYPE || eltcode == ARRAY_TYPE
                       || eltcode == UNION_TYPE))
                       || eltcode == UNION_TYPE))
            {
            {
              push_init_level (1);
              push_init_level (1);
              continue;
              continue;
            }
            }
 
 
          if (constructor_max_index != 0
          if (constructor_max_index != 0
              && (tree_int_cst_lt (constructor_max_index, constructor_index)
              && (tree_int_cst_lt (constructor_max_index, constructor_index)
                  || integer_all_onesp (constructor_max_index)))
                  || integer_all_onesp (constructor_max_index)))
            {
            {
              pedwarn_init ("excess elements in array initializer");
              pedwarn_init ("excess elements in array initializer");
              break;
              break;
            }
            }
 
 
          /* Now output the actual element.  */
          /* Now output the actual element.  */
          if (value.value)
          if (value.value)
            {
            {
              push_array_bounds (tree_low_cst (constructor_index, 1));
              push_array_bounds (tree_low_cst (constructor_index, 1));
              output_init_element (value.value, strict_string,
              output_init_element (value.value, strict_string,
                                   elttype, constructor_index, 1);
                                   elttype, constructor_index, 1);
              RESTORE_SPELLING_DEPTH (constructor_depth);
              RESTORE_SPELLING_DEPTH (constructor_depth);
            }
            }
 
 
          constructor_index
          constructor_index
            = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
            = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
 
 
          if (!value.value)
          if (!value.value)
            /* If we are doing the bookkeeping for an element that was
            /* If we are doing the bookkeeping for an element that was
               directly output as a constructor, we must update
               directly output as a constructor, we must update
               constructor_unfilled_index.  */
               constructor_unfilled_index.  */
            constructor_unfilled_index = constructor_index;
            constructor_unfilled_index = constructor_index;
        }
        }
      else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
      else if (TREE_CODE (constructor_type) == VECTOR_TYPE)
        {
        {
          tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
          tree elttype = TYPE_MAIN_VARIANT (TREE_TYPE (constructor_type));
 
 
         /* Do a basic check of initializer size.  Note that vectors
         /* Do a basic check of initializer size.  Note that vectors
            always have a fixed size derived from their type.  */
            always have a fixed size derived from their type.  */
          if (tree_int_cst_lt (constructor_max_index, constructor_index))
          if (tree_int_cst_lt (constructor_max_index, constructor_index))
            {
            {
              pedwarn_init ("excess elements in vector initializer");
              pedwarn_init ("excess elements in vector initializer");
              break;
              break;
            }
            }
 
 
          /* Now output the actual element.  */
          /* Now output the actual element.  */
          if (value.value)
          if (value.value)
            output_init_element (value.value, strict_string,
            output_init_element (value.value, strict_string,
                                 elttype, constructor_index, 1);
                                 elttype, constructor_index, 1);
 
 
          constructor_index
          constructor_index
            = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
            = size_binop (PLUS_EXPR, constructor_index, bitsize_one_node);
 
 
          if (!value.value)
          if (!value.value)
            /* If we are doing the bookkeeping for an element that was
            /* If we are doing the bookkeeping for an element that was
               directly output as a constructor, we must update
               directly output as a constructor, we must update
               constructor_unfilled_index.  */
               constructor_unfilled_index.  */
            constructor_unfilled_index = constructor_index;
            constructor_unfilled_index = constructor_index;
        }
        }
 
 
      /* Handle the sole element allowed in a braced initializer
      /* Handle the sole element allowed in a braced initializer
         for a scalar variable.  */
         for a scalar variable.  */
      else if (constructor_type != error_mark_node
      else if (constructor_type != error_mark_node
               && constructor_fields == 0)
               && constructor_fields == 0)
        {
        {
          pedwarn_init ("excess elements in scalar initializer");
          pedwarn_init ("excess elements in scalar initializer");
          break;
          break;
        }
        }
      else
      else
        {
        {
          if (value.value)
          if (value.value)
            output_init_element (value.value, strict_string,
            output_init_element (value.value, strict_string,
                                 constructor_type, NULL_TREE, 1);
                                 constructor_type, NULL_TREE, 1);
          constructor_fields = 0;
          constructor_fields = 0;
        }
        }
 
 
      /* Handle range initializers either at this level or anywhere higher
      /* Handle range initializers either at this level or anywhere higher
         in the designator stack.  */
         in the designator stack.  */
      if (constructor_range_stack)
      if (constructor_range_stack)
        {
        {
          struct constructor_range_stack *p, *range_stack;
          struct constructor_range_stack *p, *range_stack;
          int finish = 0;
          int finish = 0;
 
 
          range_stack = constructor_range_stack;
          range_stack = constructor_range_stack;
          constructor_range_stack = 0;
          constructor_range_stack = 0;
          while (constructor_stack != range_stack->stack)
          while (constructor_stack != range_stack->stack)
            {
            {
              gcc_assert (constructor_stack->implicit);
              gcc_assert (constructor_stack->implicit);
              process_init_element (pop_init_level (1));
              process_init_element (pop_init_level (1));
            }
            }
          for (p = range_stack;
          for (p = range_stack;
               !p->range_end || tree_int_cst_equal (p->index, p->range_end);
               !p->range_end || tree_int_cst_equal (p->index, p->range_end);
               p = p->prev)
               p = p->prev)
            {
            {
              gcc_assert (constructor_stack->implicit);
              gcc_assert (constructor_stack->implicit);
              process_init_element (pop_init_level (1));
              process_init_element (pop_init_level (1));
            }
            }
 
 
          p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
          p->index = size_binop (PLUS_EXPR, p->index, bitsize_one_node);
          if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
          if (tree_int_cst_equal (p->index, p->range_end) && !p->prev)
            finish = 1;
            finish = 1;
 
 
          while (1)
          while (1)
            {
            {
              constructor_index = p->index;
              constructor_index = p->index;
              constructor_fields = p->fields;
              constructor_fields = p->fields;
              if (finish && p->range_end && p->index == p->range_start)
              if (finish && p->range_end && p->index == p->range_start)
                {
                {
                  finish = 0;
                  finish = 0;
                  p->prev = 0;
                  p->prev = 0;
                }
                }
              p = p->next;
              p = p->next;
              if (!p)
              if (!p)
                break;
                break;
              push_init_level (2);
              push_init_level (2);
              p->stack = constructor_stack;
              p->stack = constructor_stack;
              if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
              if (p->range_end && tree_int_cst_equal (p->index, p->range_end))
                p->index = p->range_start;
                p->index = p->range_start;
            }
            }
 
 
          if (!finish)
          if (!finish)
            constructor_range_stack = range_stack;
            constructor_range_stack = range_stack;
          continue;
          continue;
        }
        }
 
 
      break;
      break;
    }
    }
 
 
  constructor_range_stack = 0;
  constructor_range_stack = 0;
}
}


/* Build a complete asm-statement, whose components are a CV_QUALIFIER
/* Build a complete asm-statement, whose components are a CV_QUALIFIER
   (guaranteed to be 'volatile' or null) and ARGS (represented using
   (guaranteed to be 'volatile' or null) and ARGS (represented using
   an ASM_EXPR node).  */
   an ASM_EXPR node).  */
tree
tree
build_asm_stmt (tree cv_qualifier, tree args)
build_asm_stmt (tree cv_qualifier, tree args)
{
{
  if (!ASM_VOLATILE_P (args) && cv_qualifier)
  if (!ASM_VOLATILE_P (args) && cv_qualifier)
    ASM_VOLATILE_P (args) = 1;
    ASM_VOLATILE_P (args) = 1;
  return add_stmt (args);
  return add_stmt (args);
}
}
 
 
/* Build an asm-expr, whose components are a STRING, some OUTPUTS,
/* Build an asm-expr, whose components are a STRING, some OUTPUTS,
   some INPUTS, and some CLOBBERS.  The latter three may be NULL.
   some INPUTS, and some CLOBBERS.  The latter three may be NULL.
   SIMPLE indicates whether there was anything at all after the
   SIMPLE indicates whether there was anything at all after the
   string in the asm expression -- asm("blah") and asm("blah" : )
   string in the asm expression -- asm("blah") and asm("blah" : )
   are subtly different.  We use a ASM_EXPR node to represent this.  */
   are subtly different.  We use a ASM_EXPR node to represent this.  */
tree
tree
build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
build_asm_expr (tree string, tree outputs, tree inputs, tree clobbers,
                bool simple)
                bool simple)
{
{
  tree tail;
  tree tail;
  tree args;
  tree args;
  int i;
  int i;
  const char *constraint;
  const char *constraint;
  const char **oconstraints;
  const char **oconstraints;
  bool allows_mem, allows_reg, is_inout;
  bool allows_mem, allows_reg, is_inout;
  int ninputs, noutputs;
  int ninputs, noutputs;
 
 
  ninputs = list_length (inputs);
  ninputs = list_length (inputs);
  noutputs = list_length (outputs);
  noutputs = list_length (outputs);
  oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
  oconstraints = (const char **) alloca (noutputs * sizeof (const char *));
 
 
  string = resolve_asm_operand_names (string, outputs, inputs);
  string = resolve_asm_operand_names (string, outputs, inputs);
 
 
  /* Remove output conversions that change the type but not the mode.  */
  /* Remove output conversions that change the type but not the mode.  */
  for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
  for (i = 0, tail = outputs; tail; ++i, tail = TREE_CHAIN (tail))
    {
    {
      tree output = TREE_VALUE (tail);
      tree output = TREE_VALUE (tail);
 
 
      /* ??? Really, this should not be here.  Users should be using a
      /* ??? Really, this should not be here.  Users should be using a
         proper lvalue, dammit.  But there's a long history of using casts
         proper lvalue, dammit.  But there's a long history of using casts
         in the output operands.  In cases like longlong.h, this becomes a
         in the output operands.  In cases like longlong.h, this becomes a
         primitive form of typechecking -- if the cast can be removed, then
         primitive form of typechecking -- if the cast can be removed, then
         the output operand had a type of the proper width; otherwise we'll
         the output operand had a type of the proper width; otherwise we'll
         get an error.  Gross, but ...  */
         get an error.  Gross, but ...  */
      STRIP_NOPS (output);
      STRIP_NOPS (output);
 
 
      if (!lvalue_or_else (output, lv_asm))
      if (!lvalue_or_else (output, lv_asm))
        output = error_mark_node;
        output = error_mark_node;
 
 
      if (output != error_mark_node
      if (output != error_mark_node
          && (TREE_READONLY (output)
          && (TREE_READONLY (output)
              || TYPE_READONLY (TREE_TYPE (output))
              || TYPE_READONLY (TREE_TYPE (output))
              || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
              || ((TREE_CODE (TREE_TYPE (output)) == RECORD_TYPE
                   || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
                   || TREE_CODE (TREE_TYPE (output)) == UNION_TYPE)
                  && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
                  && C_TYPE_FIELDS_READONLY (TREE_TYPE (output)))))
        readonly_error (output, lv_asm);
        readonly_error (output, lv_asm);
 
 
      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
      oconstraints[i] = constraint;
      oconstraints[i] = constraint;
 
 
      if (parse_output_constraint (&constraint, i, ninputs, noutputs,
      if (parse_output_constraint (&constraint, i, ninputs, noutputs,
                                   &allows_mem, &allows_reg, &is_inout))
                                   &allows_mem, &allows_reg, &is_inout))
        {
        {
          /* If the operand is going to end up in memory,
          /* If the operand is going to end up in memory,
             mark it addressable.  */
             mark it addressable.  */
          if (!allows_reg && !c_mark_addressable (output))
          if (!allows_reg && !c_mark_addressable (output))
            output = error_mark_node;
            output = error_mark_node;
        }
        }
      else
      else
        output = error_mark_node;
        output = error_mark_node;
 
 
      TREE_VALUE (tail) = output;
      TREE_VALUE (tail) = output;
    }
    }
 
 
  for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
  for (i = 0, tail = inputs; tail; ++i, tail = TREE_CHAIN (tail))
    {
    {
      tree input;
      tree input;
 
 
      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
      constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (tail)));
      input = TREE_VALUE (tail);
      input = TREE_VALUE (tail);
 
 
      if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
      if (parse_input_constraint (&constraint, i, ninputs, noutputs, 0,
                                  oconstraints, &allows_mem, &allows_reg))
                                  oconstraints, &allows_mem, &allows_reg))
        {
        {
          /* If the operand is going to end up in memory,
          /* If the operand is going to end up in memory,
             mark it addressable.  */
             mark it addressable.  */
          if (!allows_reg && allows_mem)
          if (!allows_reg && allows_mem)
            {
            {
              /* Strip the nops as we allow this case.  FIXME, this really
              /* Strip the nops as we allow this case.  FIXME, this really
                 should be rejected or made deprecated.  */
                 should be rejected or made deprecated.  */
              STRIP_NOPS (input);
              STRIP_NOPS (input);
              if (!c_mark_addressable (input))
              if (!c_mark_addressable (input))
                input = error_mark_node;
                input = error_mark_node;
          }
          }
        }
        }
      else
      else
        input = error_mark_node;
        input = error_mark_node;
 
 
      TREE_VALUE (tail) = input;
      TREE_VALUE (tail) = input;
    }
    }
 
 
  args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
  args = build_stmt (ASM_EXPR, string, outputs, inputs, clobbers);
 
 
  /* asm statements without outputs, including simple ones, are treated
  /* asm statements without outputs, including simple ones, are treated
     as volatile.  */
     as volatile.  */
  ASM_INPUT_P (args) = simple;
  ASM_INPUT_P (args) = simple;
  ASM_VOLATILE_P (args) = (noutputs == 0);
  ASM_VOLATILE_P (args) = (noutputs == 0);
 
 
  return args;
  return args;
}
}


/* Generate a goto statement to LABEL.  */
/* Generate a goto statement to LABEL.  */
 
 
tree
tree
c_finish_goto_label (tree label)
c_finish_goto_label (tree label)
{
{
  tree decl = lookup_label (label);
  tree decl = lookup_label (label);
  if (!decl)
  if (!decl)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
  if (C_DECL_UNJUMPABLE_STMT_EXPR (decl))
    {
    {
      error ("jump into statement expression");
      error ("jump into statement expression");
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  if (C_DECL_UNJUMPABLE_VM (decl))
  if (C_DECL_UNJUMPABLE_VM (decl))
    {
    {
      error ("jump into scope of identifier with variably modified type");
      error ("jump into scope of identifier with variably modified type");
      return NULL_TREE;
      return NULL_TREE;
    }
    }
 
 
  if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
  if (!C_DECL_UNDEFINABLE_STMT_EXPR (decl))
    {
    {
      /* No jump from outside this statement expression context, so
      /* No jump from outside this statement expression context, so
         record that there is a jump from within this context.  */
         record that there is a jump from within this context.  */
      struct c_label_list *nlist;
      struct c_label_list *nlist;
      nlist = XOBNEW (&parser_obstack, struct c_label_list);
      nlist = XOBNEW (&parser_obstack, struct c_label_list);
      nlist->next = label_context_stack_se->labels_used;
      nlist->next = label_context_stack_se->labels_used;
      nlist->label = decl;
      nlist->label = decl;
      label_context_stack_se->labels_used = nlist;
      label_context_stack_se->labels_used = nlist;
    }
    }
 
 
  if (!C_DECL_UNDEFINABLE_VM (decl))
  if (!C_DECL_UNDEFINABLE_VM (decl))
    {
    {
      /* No jump from outside this context context of identifiers with
      /* No jump from outside this context context of identifiers with
         variably modified type, so record that there is a jump from
         variably modified type, so record that there is a jump from
         within this context.  */
         within this context.  */
      struct c_label_list *nlist;
      struct c_label_list *nlist;
      nlist = XOBNEW (&parser_obstack, struct c_label_list);
      nlist = XOBNEW (&parser_obstack, struct c_label_list);
      nlist->next = label_context_stack_vm->labels_used;
      nlist->next = label_context_stack_vm->labels_used;
      nlist->label = decl;
      nlist->label = decl;
      label_context_stack_vm->labels_used = nlist;
      label_context_stack_vm->labels_used = nlist;
    }
    }
 
 
  TREE_USED (decl) = 1;
  TREE_USED (decl) = 1;
  return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
  return add_stmt (build1 (GOTO_EXPR, void_type_node, decl));
}
}
 
 
/* Generate a computed goto statement to EXPR.  */
/* Generate a computed goto statement to EXPR.  */
 
 
tree
tree
c_finish_goto_ptr (tree expr)
c_finish_goto_ptr (tree expr)
{
{
  if (pedantic)
  if (pedantic)
    pedwarn ("ISO C forbids %<goto *expr;%>");
    pedwarn ("ISO C forbids %<goto *expr;%>");
  expr = convert (ptr_type_node, expr);
  expr = convert (ptr_type_node, expr);
  return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
  return add_stmt (build1 (GOTO_EXPR, void_type_node, expr));
}
}
 
 
/* Generate a C `return' statement.  RETVAL is the expression for what
/* Generate a C `return' statement.  RETVAL is the expression for what
   to return, or a null pointer for `return;' with no value.  */
   to return, or a null pointer for `return;' with no value.  */
 
 
tree
tree
c_finish_return (tree retval)
c_finish_return (tree retval)
{
{
  tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
  tree valtype = TREE_TYPE (TREE_TYPE (current_function_decl)), ret_stmt;
  bool no_warning = false;
  bool no_warning = false;
 
 
  if (TREE_THIS_VOLATILE (current_function_decl))
  if (TREE_THIS_VOLATILE (current_function_decl))
    warning (0, "function declared %<noreturn%> has a %<return%> statement");
    warning (0, "function declared %<noreturn%> has a %<return%> statement");
 
 
  if (!retval)
  if (!retval)
    {
    {
      current_function_returns_null = 1;
      current_function_returns_null = 1;
      if ((warn_return_type || flag_isoc99)
      if ((warn_return_type || flag_isoc99)
          && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
          && valtype != 0 && TREE_CODE (valtype) != VOID_TYPE)
        {
        {
          pedwarn_c99 ("%<return%> with no value, in "
          pedwarn_c99 ("%<return%> with no value, in "
                       "function returning non-void");
                       "function returning non-void");
          no_warning = true;
          no_warning = true;
        }
        }
    }
    }
  else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
  else if (valtype == 0 || TREE_CODE (valtype) == VOID_TYPE)
    {
    {
      current_function_returns_null = 1;
      current_function_returns_null = 1;
      if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
      if (pedantic || TREE_CODE (TREE_TYPE (retval)) != VOID_TYPE)
        pedwarn ("%<return%> with a value, in function returning void");
        pedwarn ("%<return%> with a value, in function returning void");
    }
    }
  else
  else
    {
    {
      tree t = convert_for_assignment (valtype, retval, ic_return,
      tree t = convert_for_assignment (valtype, retval, ic_return,
                                       NULL_TREE, NULL_TREE, 0);
                                       NULL_TREE, NULL_TREE, 0);
      tree res = DECL_RESULT (current_function_decl);
      tree res = DECL_RESULT (current_function_decl);
      tree inner;
      tree inner;
 
 
      current_function_returns_value = 1;
      current_function_returns_value = 1;
      if (t == error_mark_node)
      if (t == error_mark_node)
        return NULL_TREE;
        return NULL_TREE;
 
 
      inner = t = convert (TREE_TYPE (res), t);
      inner = t = convert (TREE_TYPE (res), t);
 
 
      /* Strip any conversions, additions, and subtractions, and see if
      /* Strip any conversions, additions, and subtractions, and see if
         we are returning the address of a local variable.  Warn if so.  */
         we are returning the address of a local variable.  Warn if so.  */
      while (1)
      while (1)
        {
        {
          switch (TREE_CODE (inner))
          switch (TREE_CODE (inner))
            {
            {
            case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
            case NOP_EXPR:   case NON_LVALUE_EXPR:  case CONVERT_EXPR:
            case PLUS_EXPR:
            case PLUS_EXPR:
              inner = TREE_OPERAND (inner, 0);
              inner = TREE_OPERAND (inner, 0);
              continue;
              continue;
 
 
            case MINUS_EXPR:
            case MINUS_EXPR:
              /* If the second operand of the MINUS_EXPR has a pointer
              /* If the second operand of the MINUS_EXPR has a pointer
                 type (or is converted from it), this may be valid, so
                 type (or is converted from it), this may be valid, so
                 don't give a warning.  */
                 don't give a warning.  */
              {
              {
                tree op1 = TREE_OPERAND (inner, 1);
                tree op1 = TREE_OPERAND (inner, 1);
 
 
                while (!POINTER_TYPE_P (TREE_TYPE (op1))
                while (!POINTER_TYPE_P (TREE_TYPE (op1))
                       && (TREE_CODE (op1) == NOP_EXPR
                       && (TREE_CODE (op1) == NOP_EXPR
                           || TREE_CODE (op1) == NON_LVALUE_EXPR
                           || TREE_CODE (op1) == NON_LVALUE_EXPR
                           || TREE_CODE (op1) == CONVERT_EXPR))
                           || TREE_CODE (op1) == CONVERT_EXPR))
                  op1 = TREE_OPERAND (op1, 0);
                  op1 = TREE_OPERAND (op1, 0);
 
 
                if (POINTER_TYPE_P (TREE_TYPE (op1)))
                if (POINTER_TYPE_P (TREE_TYPE (op1)))
                  break;
                  break;
 
 
                inner = TREE_OPERAND (inner, 0);
                inner = TREE_OPERAND (inner, 0);
                continue;
                continue;
              }
              }
 
 
            case ADDR_EXPR:
            case ADDR_EXPR:
              inner = TREE_OPERAND (inner, 0);
              inner = TREE_OPERAND (inner, 0);
 
 
              while (REFERENCE_CLASS_P (inner)
              while (REFERENCE_CLASS_P (inner)
                     && TREE_CODE (inner) != INDIRECT_REF)
                     && TREE_CODE (inner) != INDIRECT_REF)
                inner = TREE_OPERAND (inner, 0);
                inner = TREE_OPERAND (inner, 0);
 
 
              if (DECL_P (inner)
              if (DECL_P (inner)
                  && !DECL_EXTERNAL (inner)
                  && !DECL_EXTERNAL (inner)
                  && !TREE_STATIC (inner)
                  && !TREE_STATIC (inner)
                  && DECL_CONTEXT (inner) == current_function_decl)
                  && DECL_CONTEXT (inner) == current_function_decl)
                warning (0, "function returns address of local variable");
                warning (0, "function returns address of local variable");
              break;
              break;
 
 
            default:
            default:
              break;
              break;
            }
            }
 
 
          break;
          break;
        }
        }
 
 
      retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
      retval = build2 (MODIFY_EXPR, TREE_TYPE (res), res, t);
    }
    }
 
 
  ret_stmt = build_stmt (RETURN_EXPR, retval);
  ret_stmt = build_stmt (RETURN_EXPR, retval);
  TREE_NO_WARNING (ret_stmt) |= no_warning;
  TREE_NO_WARNING (ret_stmt) |= no_warning;
  return add_stmt (ret_stmt);
  return add_stmt (ret_stmt);
}
}


struct c_switch {
struct c_switch {
  /* The SWITCH_EXPR being built.  */
  /* The SWITCH_EXPR being built.  */
  tree switch_expr;
  tree switch_expr;
 
 
  /* The original type of the testing expression, i.e. before the
  /* The original type of the testing expression, i.e. before the
     default conversion is applied.  */
     default conversion is applied.  */
  tree orig_type;
  tree orig_type;
 
 
  /* A splay-tree mapping the low element of a case range to the high
  /* A splay-tree mapping the low element of a case range to the high
     element, or NULL_TREE if there is no high element.  Used to
     element, or NULL_TREE if there is no high element.  Used to
     determine whether or not a new case label duplicates an old case
     determine whether or not a new case label duplicates an old case
     label.  We need a tree, rather than simply a hash table, because
     label.  We need a tree, rather than simply a hash table, because
     of the GNU case range extension.  */
     of the GNU case range extension.  */
  splay_tree cases;
  splay_tree cases;
 
 
  /* Number of nested statement expressions within this switch
  /* Number of nested statement expressions within this switch
     statement; if nonzero, case and default labels may not
     statement; if nonzero, case and default labels may not
     appear.  */
     appear.  */
  unsigned int blocked_stmt_expr;
  unsigned int blocked_stmt_expr;
 
 
  /* Scope of outermost declarations of identifiers with variably
  /* Scope of outermost declarations of identifiers with variably
     modified type within this switch statement; if nonzero, case and
     modified type within this switch statement; if nonzero, case and
     default labels may not appear.  */
     default labels may not appear.  */
  unsigned int blocked_vm;
  unsigned int blocked_vm;
 
 
  /* The next node on the stack.  */
  /* The next node on the stack.  */
  struct c_switch *next;
  struct c_switch *next;
};
};
 
 
/* A stack of the currently active switch statements.  The innermost
/* A stack of the currently active switch statements.  The innermost
   switch statement is on the top of the stack.  There is no need to
   switch statement is on the top of the stack.  There is no need to
   mark the stack for garbage collection because it is only active
   mark the stack for garbage collection because it is only active
   during the processing of the body of a function, and we never
   during the processing of the body of a function, and we never
   collect at that point.  */
   collect at that point.  */
 
 
struct c_switch *c_switch_stack;
struct c_switch *c_switch_stack;
 
 
/* Start a C switch statement, testing expression EXP.  Return the new
/* Start a C switch statement, testing expression EXP.  Return the new
   SWITCH_EXPR.  */
   SWITCH_EXPR.  */
 
 
tree
tree
c_start_case (tree exp)
c_start_case (tree exp)
{
{
  tree orig_type = error_mark_node;
  tree orig_type = error_mark_node;
  struct c_switch *cs;
  struct c_switch *cs;
 
 
  if (exp != error_mark_node)
  if (exp != error_mark_node)
    {
    {
      orig_type = TREE_TYPE (exp);
      orig_type = TREE_TYPE (exp);
 
 
      if (!INTEGRAL_TYPE_P (orig_type))
      if (!INTEGRAL_TYPE_P (orig_type))
        {
        {
          if (orig_type != error_mark_node)
          if (orig_type != error_mark_node)
            {
            {
              error ("switch quantity not an integer");
              error ("switch quantity not an integer");
              orig_type = error_mark_node;
              orig_type = error_mark_node;
            }
            }
          exp = integer_zero_node;
          exp = integer_zero_node;
        }
        }
      else
      else
        {
        {
          tree type = TYPE_MAIN_VARIANT (orig_type);
          tree type = TYPE_MAIN_VARIANT (orig_type);
 
 
          if (!in_system_header
          if (!in_system_header
              && (type == long_integer_type_node
              && (type == long_integer_type_node
                  || type == long_unsigned_type_node))
                  || type == long_unsigned_type_node))
            warning (OPT_Wtraditional, "%<long%> switch expression not "
            warning (OPT_Wtraditional, "%<long%> switch expression not "
                     "converted to %<int%> in ISO C");
                     "converted to %<int%> in ISO C");
 
 
          exp = default_conversion (exp);
          exp = default_conversion (exp);
        }
        }
    }
    }
 
 
  /* Add this new SWITCH_EXPR to the stack.  */
  /* Add this new SWITCH_EXPR to the stack.  */
  cs = XNEW (struct c_switch);
  cs = XNEW (struct c_switch);
  cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
  cs->switch_expr = build3 (SWITCH_EXPR, orig_type, exp, NULL_TREE, NULL_TREE);
  cs->orig_type = orig_type;
  cs->orig_type = orig_type;
  cs->cases = splay_tree_new (case_compare, NULL, NULL);
  cs->cases = splay_tree_new (case_compare, NULL, NULL);
  cs->blocked_stmt_expr = 0;
  cs->blocked_stmt_expr = 0;
  cs->blocked_vm = 0;
  cs->blocked_vm = 0;
  cs->next = c_switch_stack;
  cs->next = c_switch_stack;
  c_switch_stack = cs;
  c_switch_stack = cs;
 
 
  return add_stmt (cs->switch_expr);
  return add_stmt (cs->switch_expr);
}
}
 
 
/* Process a case label.  */
/* Process a case label.  */
 
 
tree
tree
do_case (tree low_value, tree high_value)
do_case (tree low_value, tree high_value)
{
{
  tree label = NULL_TREE;
  tree label = NULL_TREE;
 
 
  if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
  if (c_switch_stack && !c_switch_stack->blocked_stmt_expr
      && !c_switch_stack->blocked_vm)
      && !c_switch_stack->blocked_vm)
    {
    {
      label = c_add_case_label (c_switch_stack->cases,
      label = c_add_case_label (c_switch_stack->cases,
                                SWITCH_COND (c_switch_stack->switch_expr),
                                SWITCH_COND (c_switch_stack->switch_expr),
                                c_switch_stack->orig_type,
                                c_switch_stack->orig_type,
                                low_value, high_value);
                                low_value, high_value);
      if (label == error_mark_node)
      if (label == error_mark_node)
        label = NULL_TREE;
        label = NULL_TREE;
    }
    }
  else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
  else if (c_switch_stack && c_switch_stack->blocked_stmt_expr)
    {
    {
      if (low_value)
      if (low_value)
        error ("case label in statement expression not containing "
        error ("case label in statement expression not containing "
               "enclosing switch statement");
               "enclosing switch statement");
      else
      else
        error ("%<default%> label in statement expression not containing "
        error ("%<default%> label in statement expression not containing "
               "enclosing switch statement");
               "enclosing switch statement");
    }
    }
  else if (c_switch_stack && c_switch_stack->blocked_vm)
  else if (c_switch_stack && c_switch_stack->blocked_vm)
    {
    {
      if (low_value)
      if (low_value)
        error ("case label in scope of identifier with variably modified "
        error ("case label in scope of identifier with variably modified "
               "type not containing enclosing switch statement");
               "type not containing enclosing switch statement");
      else
      else
        error ("%<default%> label in scope of identifier with variably "
        error ("%<default%> label in scope of identifier with variably "
               "modified type not containing enclosing switch statement");
               "modified type not containing enclosing switch statement");
    }
    }
  else if (low_value)
  else if (low_value)
    error ("case label not within a switch statement");
    error ("case label not within a switch statement");
  else
  else
    error ("%<default%> label not within a switch statement");
    error ("%<default%> label not within a switch statement");
 
 
  return label;
  return label;
}
}
 
 
/* Finish the switch statement.  */
/* Finish the switch statement.  */
 
 
void
void
c_finish_case (tree body)
c_finish_case (tree body)
{
{
  struct c_switch *cs = c_switch_stack;
  struct c_switch *cs = c_switch_stack;
  location_t switch_location;
  location_t switch_location;
 
 
  SWITCH_BODY (cs->switch_expr) = body;
  SWITCH_BODY (cs->switch_expr) = body;
 
 
  /* We must not be within a statement expression nested in the switch
  /* We must not be within a statement expression nested in the switch
     at this point; we might, however, be within the scope of an
     at this point; we might, however, be within the scope of an
     identifier with variably modified type nested in the switch.  */
     identifier with variably modified type nested in the switch.  */
  gcc_assert (!cs->blocked_stmt_expr);
  gcc_assert (!cs->blocked_stmt_expr);
 
 
  /* Emit warnings as needed.  */
  /* Emit warnings as needed.  */
  if (EXPR_HAS_LOCATION (cs->switch_expr))
  if (EXPR_HAS_LOCATION (cs->switch_expr))
    switch_location = EXPR_LOCATION (cs->switch_expr);
    switch_location = EXPR_LOCATION (cs->switch_expr);
  else
  else
    switch_location = input_location;
    switch_location = input_location;
  c_do_switch_warnings (cs->cases, switch_location,
  c_do_switch_warnings (cs->cases, switch_location,
                        TREE_TYPE (cs->switch_expr),
                        TREE_TYPE (cs->switch_expr),
                        SWITCH_COND (cs->switch_expr));
                        SWITCH_COND (cs->switch_expr));
 
 
  /* Pop the stack.  */
  /* Pop the stack.  */
  c_switch_stack = cs->next;
  c_switch_stack = cs->next;
  splay_tree_delete (cs->cases);
  splay_tree_delete (cs->cases);
  XDELETE (cs);
  XDELETE (cs);
}
}


/* Emit an if statement.  IF_LOCUS is the location of the 'if'.  COND,
/* Emit an if statement.  IF_LOCUS is the location of the 'if'.  COND,
   THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
   THEN_BLOCK and ELSE_BLOCK are expressions to be used; ELSE_BLOCK
   may be null.  NESTED_IF is true if THEN_BLOCK contains another IF
   may be null.  NESTED_IF is true if THEN_BLOCK contains another IF
   statement, and was not surrounded with parenthesis.  */
   statement, and was not surrounded with parenthesis.  */
 
 
void
void
c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
c_finish_if_stmt (location_t if_locus, tree cond, tree then_block,
                  tree else_block, bool nested_if)
                  tree else_block, bool nested_if)
{
{
  tree stmt;
  tree stmt;
 
 
  /* Diagnose an ambiguous else if if-then-else is nested inside if-then.  */
  /* Diagnose an ambiguous else if if-then-else is nested inside if-then.  */
  if (warn_parentheses && nested_if && else_block == NULL)
  if (warn_parentheses && nested_if && else_block == NULL)
    {
    {
      tree inner_if = then_block;
      tree inner_if = then_block;
 
 
      /* We know from the grammar productions that there is an IF nested
      /* We know from the grammar productions that there is an IF nested
         within THEN_BLOCK.  Due to labels and c99 conditional declarations,
         within THEN_BLOCK.  Due to labels and c99 conditional declarations,
         it might not be exactly THEN_BLOCK, but should be the last
         it might not be exactly THEN_BLOCK, but should be the last
         non-container statement within.  */
         non-container statement within.  */
      while (1)
      while (1)
        switch (TREE_CODE (inner_if))
        switch (TREE_CODE (inner_if))
          {
          {
          case COND_EXPR:
          case COND_EXPR:
            goto found;
            goto found;
          case BIND_EXPR:
          case BIND_EXPR:
            inner_if = BIND_EXPR_BODY (inner_if);
            inner_if = BIND_EXPR_BODY (inner_if);
            break;
            break;
          case STATEMENT_LIST:
          case STATEMENT_LIST:
            inner_if = expr_last (then_block);
            inner_if = expr_last (then_block);
            break;
            break;
          case TRY_FINALLY_EXPR:
          case TRY_FINALLY_EXPR:
          case TRY_CATCH_EXPR:
          case TRY_CATCH_EXPR:
            inner_if = TREE_OPERAND (inner_if, 0);
            inner_if = TREE_OPERAND (inner_if, 0);
            break;
            break;
          default:
          default:
            gcc_unreachable ();
            gcc_unreachable ();
          }
          }
    found:
    found:
 
 
      if (COND_EXPR_ELSE (inner_if))
      if (COND_EXPR_ELSE (inner_if))
         warning (OPT_Wparentheses,
         warning (OPT_Wparentheses,
                  "%Hsuggest explicit braces to avoid ambiguous %<else%>",
                  "%Hsuggest explicit braces to avoid ambiguous %<else%>",
                  &if_locus);
                  &if_locus);
    }
    }
 
 
  empty_body_warning (then_block, else_block);
  empty_body_warning (then_block, else_block);
 
 
  stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
  stmt = build3 (COND_EXPR, void_type_node, cond, then_block, else_block);
  SET_EXPR_LOCATION (stmt, if_locus);
  SET_EXPR_LOCATION (stmt, if_locus);
  add_stmt (stmt);
  add_stmt (stmt);
}
}
 
 
/* Emit a general-purpose loop construct.  START_LOCUS is the location of
/* Emit a general-purpose loop construct.  START_LOCUS is the location of
   the beginning of the loop.  COND is the loop condition.  COND_IS_FIRST
   the beginning of the loop.  COND is the loop condition.  COND_IS_FIRST
   is false for DO loops.  INCR is the FOR increment expression.  BODY is
   is false for DO loops.  INCR is the FOR increment expression.  BODY is
   the statement controlled by the loop.  BLAB is the break label.  CLAB is
   the statement controlled by the loop.  BLAB is the break label.  CLAB is
   the continue label.  Everything is allowed to be NULL.  */
   the continue label.  Everything is allowed to be NULL.  */
 
 
void
void
c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
c_finish_loop (location_t start_locus, tree cond, tree incr, tree body,
               tree blab, tree clab, bool cond_is_first)
               tree blab, tree clab, bool cond_is_first)
{
{
  tree entry = NULL, exit = NULL, t;
  tree entry = NULL, exit = NULL, t;
 
 
  /* If the condition is zero don't generate a loop construct.  */
  /* If the condition is zero don't generate a loop construct.  */
  if (cond && integer_zerop (cond))
  if (cond && integer_zerop (cond))
    {
    {
      if (cond_is_first)
      if (cond_is_first)
        {
        {
          t = build_and_jump (&blab);
          t = build_and_jump (&blab);
          SET_EXPR_LOCATION (t, start_locus);
          SET_EXPR_LOCATION (t, start_locus);
          add_stmt (t);
          add_stmt (t);
        }
        }
    }
    }
  else
  else
    {
    {
      tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
      tree top = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
 
 
      /* If we have an exit condition, then we build an IF with gotos either
      /* If we have an exit condition, then we build an IF with gotos either
         out of the loop, or to the top of it.  If there's no exit condition,
         out of the loop, or to the top of it.  If there's no exit condition,
         then we just build a jump back to the top.  */
         then we just build a jump back to the top.  */
      exit = build_and_jump (&LABEL_EXPR_LABEL (top));
      exit = build_and_jump (&LABEL_EXPR_LABEL (top));
 
 
      if (cond && !integer_nonzerop (cond))
      if (cond && !integer_nonzerop (cond))
        {
        {
          /* Canonicalize the loop condition to the end.  This means
          /* Canonicalize the loop condition to the end.  This means
             generating a branch to the loop condition.  Reuse the
             generating a branch to the loop condition.  Reuse the
             continue label, if possible.  */
             continue label, if possible.  */
          if (cond_is_first)
          if (cond_is_first)
            {
            {
              if (incr || !clab)
              if (incr || !clab)
                {
                {
                  entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
                  entry = build1 (LABEL_EXPR, void_type_node, NULL_TREE);
                  t = build_and_jump (&LABEL_EXPR_LABEL (entry));
                  t = build_and_jump (&LABEL_EXPR_LABEL (entry));
                }
                }
              else
              else
                t = build1 (GOTO_EXPR, void_type_node, clab);
                t = build1 (GOTO_EXPR, void_type_node, clab);
              SET_EXPR_LOCATION (t, start_locus);
              SET_EXPR_LOCATION (t, start_locus);
              add_stmt (t);
              add_stmt (t);
            }
            }
 
 
          t = build_and_jump (&blab);
          t = build_and_jump (&blab);
          exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
          exit = fold_build3 (COND_EXPR, void_type_node, cond, exit, t);
          if (cond_is_first)
          if (cond_is_first)
            SET_EXPR_LOCATION (exit, start_locus);
            SET_EXPR_LOCATION (exit, start_locus);
          else
          else
            SET_EXPR_LOCATION (exit, input_location);
            SET_EXPR_LOCATION (exit, input_location);
        }
        }
 
 
      add_stmt (top);
      add_stmt (top);
    }
    }
 
 
  if (body)
  if (body)
    add_stmt (body);
    add_stmt (body);
  if (clab)
  if (clab)
    add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
    add_stmt (build1 (LABEL_EXPR, void_type_node, clab));
  if (incr)
  if (incr)
    add_stmt (incr);
    add_stmt (incr);
  if (entry)
  if (entry)
    add_stmt (entry);
    add_stmt (entry);
  if (exit)
  if (exit)
    add_stmt (exit);
    add_stmt (exit);
  if (blab)
  if (blab)
    add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
    add_stmt (build1 (LABEL_EXPR, void_type_node, blab));
}
}
 
 
tree
tree
c_finish_bc_stmt (tree *label_p, bool is_break)
c_finish_bc_stmt (tree *label_p, bool is_break)
{
{
  bool skip;
  bool skip;
  tree label = *label_p;
  tree label = *label_p;
 
 
  /* In switch statements break is sometimes stylistically used after
  /* In switch statements break is sometimes stylistically used after
     a return statement.  This can lead to spurious warnings about
     a return statement.  This can lead to spurious warnings about
     control reaching the end of a non-void function when it is
     control reaching the end of a non-void function when it is
     inlined.  Note that we are calling block_may_fallthru with
     inlined.  Note that we are calling block_may_fallthru with
     language specific tree nodes; this works because
     language specific tree nodes; this works because
     block_may_fallthru returns true when given something it does not
     block_may_fallthru returns true when given something it does not
     understand.  */
     understand.  */
  skip = !block_may_fallthru (cur_stmt_list);
  skip = !block_may_fallthru (cur_stmt_list);
 
 
  if (!label)
  if (!label)
    {
    {
      if (!skip)
      if (!skip)
        *label_p = label = create_artificial_label ();
        *label_p = label = create_artificial_label ();
    }
    }
  else if (TREE_CODE (label) == LABEL_DECL)
  else if (TREE_CODE (label) == LABEL_DECL)
    ;
    ;
  else switch (TREE_INT_CST_LOW (label))
  else switch (TREE_INT_CST_LOW (label))
    {
    {
    case 0:
    case 0:
      if (is_break)
      if (is_break)
        error ("break statement not within loop or switch");
        error ("break statement not within loop or switch");
      else
      else
        error ("continue statement not within a loop");
        error ("continue statement not within a loop");
      return NULL_TREE;
      return NULL_TREE;
 
 
    case 1:
    case 1:
      gcc_assert (is_break);
      gcc_assert (is_break);
      error ("break statement used with OpenMP for loop");
      error ("break statement used with OpenMP for loop");
      return NULL_TREE;
      return NULL_TREE;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  if (skip)
  if (skip)
    return NULL_TREE;
    return NULL_TREE;
 
 
  return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
  return add_stmt (build1 (GOTO_EXPR, void_type_node, label));
}
}
 
 
/* A helper routine for c_process_expr_stmt and c_finish_stmt_expr.  */
/* A helper routine for c_process_expr_stmt and c_finish_stmt_expr.  */
 
 
static void
static void
emit_side_effect_warnings (tree expr)
emit_side_effect_warnings (tree expr)
{
{
  if (expr == error_mark_node)
  if (expr == error_mark_node)
    ;
    ;
  else if (!TREE_SIDE_EFFECTS (expr))
  else if (!TREE_SIDE_EFFECTS (expr))
    {
    {
      if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
      if (!VOID_TYPE_P (TREE_TYPE (expr)) && !TREE_NO_WARNING (expr))
        warning (0, "%Hstatement with no effect",
        warning (0, "%Hstatement with no effect",
                 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
                 EXPR_HAS_LOCATION (expr) ? EXPR_LOCUS (expr) : &input_location);
    }
    }
  else if (warn_unused_value)
  else if (warn_unused_value)
    warn_if_unused_value (expr, input_location);
    warn_if_unused_value (expr, input_location);
}
}
 
 
/* Process an expression as if it were a complete statement.  Emit
/* Process an expression as if it were a complete statement.  Emit
   diagnostics, but do not call ADD_STMT.  */
   diagnostics, but do not call ADD_STMT.  */
 
 
tree
tree
c_process_expr_stmt (tree expr)
c_process_expr_stmt (tree expr)
{
{
  if (!expr)
  if (!expr)
    return NULL_TREE;
    return NULL_TREE;
 
 
  if (warn_sequence_point)
  if (warn_sequence_point)
    verify_sequence_points (expr);
    verify_sequence_points (expr);
 
 
  if (TREE_TYPE (expr) != error_mark_node
  if (TREE_TYPE (expr) != error_mark_node
      && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
      && !COMPLETE_OR_VOID_TYPE_P (TREE_TYPE (expr))
      && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
      && TREE_CODE (TREE_TYPE (expr)) != ARRAY_TYPE)
    error ("expression statement has incomplete type");
    error ("expression statement has incomplete type");
 
 
  /* If we're not processing a statement expression, warn about unused values.
  /* If we're not processing a statement expression, warn about unused values.
     Warnings for statement expressions will be emitted later, once we figure
     Warnings for statement expressions will be emitted later, once we figure
     out which is the result.  */
     out which is the result.  */
  if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
  if (!STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
      && (extra_warnings || warn_unused_value))
      && (extra_warnings || warn_unused_value))
    emit_side_effect_warnings (expr);
    emit_side_effect_warnings (expr);
 
 
  /* If the expression is not of a type to which we cannot assign a line
  /* If the expression is not of a type to which we cannot assign a line
     number, wrap the thing in a no-op NOP_EXPR.  */
     number, wrap the thing in a no-op NOP_EXPR.  */
  if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
  if (DECL_P (expr) || CONSTANT_CLASS_P (expr))
    expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
    expr = build1 (NOP_EXPR, TREE_TYPE (expr), expr);
 
 
  if (EXPR_P (expr))
  if (EXPR_P (expr))
    SET_EXPR_LOCATION (expr, input_location);
    SET_EXPR_LOCATION (expr, input_location);
 
 
  return expr;
  return expr;
}
}
 
 
/* Emit an expression as a statement.  */
/* Emit an expression as a statement.  */
 
 
tree
tree
c_finish_expr_stmt (tree expr)
c_finish_expr_stmt (tree expr)
{
{
  if (expr)
  if (expr)
    return add_stmt (c_process_expr_stmt (expr));
    return add_stmt (c_process_expr_stmt (expr));
  else
  else
    return NULL;
    return NULL;
}
}
 
 
/* Do the opposite and emit a statement as an expression.  To begin,
/* Do the opposite and emit a statement as an expression.  To begin,
   create a new binding level and return it.  */
   create a new binding level and return it.  */
 
 
tree
tree
c_begin_stmt_expr (void)
c_begin_stmt_expr (void)
{
{
  tree ret;
  tree ret;
  struct c_label_context_se *nstack;
  struct c_label_context_se *nstack;
  struct c_label_list *glist;
  struct c_label_list *glist;
 
 
  /* We must force a BLOCK for this level so that, if it is not expanded
  /* We must force a BLOCK for this level so that, if it is not expanded
     later, there is a way to turn off the entire subtree of blocks that
     later, there is a way to turn off the entire subtree of blocks that
     are contained in it.  */
     are contained in it.  */
  keep_next_level ();
  keep_next_level ();
  ret = c_begin_compound_stmt (true);
  ret = c_begin_compound_stmt (true);
  if (c_switch_stack)
  if (c_switch_stack)
    {
    {
      c_switch_stack->blocked_stmt_expr++;
      c_switch_stack->blocked_stmt_expr++;
      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
    }
    }
  for (glist = label_context_stack_se->labels_used;
  for (glist = label_context_stack_se->labels_used;
       glist != NULL;
       glist != NULL;
       glist = glist->next)
       glist = glist->next)
    {
    {
      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 1;
    }
    }
  nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
  nstack = XOBNEW (&parser_obstack, struct c_label_context_se);
  nstack->labels_def = NULL;
  nstack->labels_def = NULL;
  nstack->labels_used = NULL;
  nstack->labels_used = NULL;
  nstack->next = label_context_stack_se;
  nstack->next = label_context_stack_se;
  label_context_stack_se = nstack;
  label_context_stack_se = nstack;
 
 
  /* Mark the current statement list as belonging to a statement list.  */
  /* Mark the current statement list as belonging to a statement list.  */
  STATEMENT_LIST_STMT_EXPR (ret) = 1;
  STATEMENT_LIST_STMT_EXPR (ret) = 1;
 
 
  return ret;
  return ret;
}
}
 
 
tree
tree
c_finish_stmt_expr (tree body)
c_finish_stmt_expr (tree body)
{
{
  tree last, type, tmp, val;
  tree last, type, tmp, val;
  tree *last_p;
  tree *last_p;
  struct c_label_list *dlist, *glist, *glist_prev = NULL;
  struct c_label_list *dlist, *glist, *glist_prev = NULL;
 
 
  body = c_end_compound_stmt (body, true);
  body = c_end_compound_stmt (body, true);
  if (c_switch_stack)
  if (c_switch_stack)
    {
    {
      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
      gcc_assert (c_switch_stack->blocked_stmt_expr != 0);
      c_switch_stack->blocked_stmt_expr--;
      c_switch_stack->blocked_stmt_expr--;
    }
    }
  /* It is no longer possible to jump to labels defined within this
  /* It is no longer possible to jump to labels defined within this
     statement expression.  */
     statement expression.  */
  for (dlist = label_context_stack_se->labels_def;
  for (dlist = label_context_stack_se->labels_def;
       dlist != NULL;
       dlist != NULL;
       dlist = dlist->next)
       dlist = dlist->next)
    {
    {
      C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
      C_DECL_UNJUMPABLE_STMT_EXPR (dlist->label) = 1;
    }
    }
  /* It is again possible to define labels with a goto just outside
  /* It is again possible to define labels with a goto just outside
     this statement expression.  */
     this statement expression.  */
  for (glist = label_context_stack_se->next->labels_used;
  for (glist = label_context_stack_se->next->labels_used;
       glist != NULL;
       glist != NULL;
       glist = glist->next)
       glist = glist->next)
    {
    {
      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
      C_DECL_UNDEFINABLE_STMT_EXPR (glist->label) = 0;
      glist_prev = glist;
      glist_prev = glist;
    }
    }
  if (glist_prev != NULL)
  if (glist_prev != NULL)
    glist_prev->next = label_context_stack_se->labels_used;
    glist_prev->next = label_context_stack_se->labels_used;
  else
  else
    label_context_stack_se->next->labels_used
    label_context_stack_se->next->labels_used
      = label_context_stack_se->labels_used;
      = label_context_stack_se->labels_used;
  label_context_stack_se = label_context_stack_se->next;
  label_context_stack_se = label_context_stack_se->next;
 
 
  /* Locate the last statement in BODY.  See c_end_compound_stmt
  /* Locate the last statement in BODY.  See c_end_compound_stmt
     about always returning a BIND_EXPR.  */
     about always returning a BIND_EXPR.  */
  last_p = &BIND_EXPR_BODY (body);
  last_p = &BIND_EXPR_BODY (body);
  last = BIND_EXPR_BODY (body);
  last = BIND_EXPR_BODY (body);
 
 
 continue_searching:
 continue_searching:
  if (TREE_CODE (last) == STATEMENT_LIST)
  if (TREE_CODE (last) == STATEMENT_LIST)
    {
    {
      tree_stmt_iterator i;
      tree_stmt_iterator i;
 
 
      /* This can happen with degenerate cases like ({ }).  No value.  */
      /* This can happen with degenerate cases like ({ }).  No value.  */
      if (!TREE_SIDE_EFFECTS (last))
      if (!TREE_SIDE_EFFECTS (last))
        return body;
        return body;
 
 
      /* If we're supposed to generate side effects warnings, process
      /* If we're supposed to generate side effects warnings, process
         all of the statements except the last.  */
         all of the statements except the last.  */
      if (extra_warnings || warn_unused_value)
      if (extra_warnings || warn_unused_value)
        {
        {
          for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
          for (i = tsi_start (last); !tsi_one_before_end_p (i); tsi_next (&i))
            emit_side_effect_warnings (tsi_stmt (i));
            emit_side_effect_warnings (tsi_stmt (i));
        }
        }
      else
      else
        i = tsi_last (last);
        i = tsi_last (last);
      last_p = tsi_stmt_ptr (i);
      last_p = tsi_stmt_ptr (i);
      last = *last_p;
      last = *last_p;
    }
    }
 
 
  /* If the end of the list is exception related, then the list was split
  /* If the end of the list is exception related, then the list was split
     by a call to push_cleanup.  Continue searching.  */
     by a call to push_cleanup.  Continue searching.  */
  if (TREE_CODE (last) == TRY_FINALLY_EXPR
  if (TREE_CODE (last) == TRY_FINALLY_EXPR
      || TREE_CODE (last) == TRY_CATCH_EXPR)
      || TREE_CODE (last) == TRY_CATCH_EXPR)
    {
    {
      last_p = &TREE_OPERAND (last, 0);
      last_p = &TREE_OPERAND (last, 0);
      last = *last_p;
      last = *last_p;
      goto continue_searching;
      goto continue_searching;
    }
    }
 
 
  /* In the case that the BIND_EXPR is not necessary, return the
  /* In the case that the BIND_EXPR is not necessary, return the
     expression out from inside it.  */
     expression out from inside it.  */
  if (last == error_mark_node
  if (last == error_mark_node
      || (last == BIND_EXPR_BODY (body)
      || (last == BIND_EXPR_BODY (body)
          && BIND_EXPR_VARS (body) == NULL))
          && BIND_EXPR_VARS (body) == NULL))
    {
    {
      /* Do not warn if the return value of a statement expression is
      /* Do not warn if the return value of a statement expression is
         unused.  */
         unused.  */
      if (EXPR_P (last))
      if (EXPR_P (last))
        TREE_NO_WARNING (last) = 1;
        TREE_NO_WARNING (last) = 1;
      return last;
      return last;
    }
    }
 
 
  /* Extract the type of said expression.  */
  /* Extract the type of said expression.  */
  type = TREE_TYPE (last);
  type = TREE_TYPE (last);
 
 
  /* If we're not returning a value at all, then the BIND_EXPR that
  /* If we're not returning a value at all, then the BIND_EXPR that
     we already have is a fine expression to return.  */
     we already have is a fine expression to return.  */
  if (!type || VOID_TYPE_P (type))
  if (!type || VOID_TYPE_P (type))
    return body;
    return body;
 
 
  /* Now that we've located the expression containing the value, it seems
  /* Now that we've located the expression containing the value, it seems
     silly to make voidify_wrapper_expr repeat the process.  Create a
     silly to make voidify_wrapper_expr repeat the process.  Create a
     temporary of the appropriate type and stick it in a TARGET_EXPR.  */
     temporary of the appropriate type and stick it in a TARGET_EXPR.  */
  tmp = create_tmp_var_raw (type, NULL);
  tmp = create_tmp_var_raw (type, NULL);
 
 
  /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt.  This avoids
  /* Unwrap a no-op NOP_EXPR as added by c_finish_expr_stmt.  This avoids
     tree_expr_nonnegative_p giving up immediately.  */
     tree_expr_nonnegative_p giving up immediately.  */
  val = last;
  val = last;
  if (TREE_CODE (val) == NOP_EXPR
  if (TREE_CODE (val) == NOP_EXPR
      && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
      && TREE_TYPE (val) == TREE_TYPE (TREE_OPERAND (val, 0)))
    val = TREE_OPERAND (val, 0);
    val = TREE_OPERAND (val, 0);
 
 
  *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
  *last_p = build2 (MODIFY_EXPR, void_type_node, tmp, val);
  SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
  SET_EXPR_LOCUS (*last_p, EXPR_LOCUS (last));
 
 
  return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
  return build4 (TARGET_EXPR, type, tmp, body, NULL_TREE, NULL_TREE);
}
}
 
 
/* Begin the scope of an identifier of variably modified type, scope
/* Begin the scope of an identifier of variably modified type, scope
   number SCOPE.  Jumping from outside this scope to inside it is not
   number SCOPE.  Jumping from outside this scope to inside it is not
   permitted.  */
   permitted.  */
 
 
void
void
c_begin_vm_scope (unsigned int scope)
c_begin_vm_scope (unsigned int scope)
{
{
  struct c_label_context_vm *nstack;
  struct c_label_context_vm *nstack;
  struct c_label_list *glist;
  struct c_label_list *glist;
 
 
  gcc_assert (scope > 0);
  gcc_assert (scope > 0);
 
 
  /* At file_scope, we don't have to do any processing.  */
  /* At file_scope, we don't have to do any processing.  */
  if (label_context_stack_vm == NULL)
  if (label_context_stack_vm == NULL)
    return;
    return;
 
 
  if (c_switch_stack && !c_switch_stack->blocked_vm)
  if (c_switch_stack && !c_switch_stack->blocked_vm)
    c_switch_stack->blocked_vm = scope;
    c_switch_stack->blocked_vm = scope;
  for (glist = label_context_stack_vm->labels_used;
  for (glist = label_context_stack_vm->labels_used;
       glist != NULL;
       glist != NULL;
       glist = glist->next)
       glist = glist->next)
    {
    {
      C_DECL_UNDEFINABLE_VM (glist->label) = 1;
      C_DECL_UNDEFINABLE_VM (glist->label) = 1;
    }
    }
  nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
  nstack = XOBNEW (&parser_obstack, struct c_label_context_vm);
  nstack->labels_def = NULL;
  nstack->labels_def = NULL;
  nstack->labels_used = NULL;
  nstack->labels_used = NULL;
  nstack->scope = scope;
  nstack->scope = scope;
  nstack->next = label_context_stack_vm;
  nstack->next = label_context_stack_vm;
  label_context_stack_vm = nstack;
  label_context_stack_vm = nstack;
}
}
 
 
/* End a scope which may contain identifiers of variably modified
/* End a scope which may contain identifiers of variably modified
   type, scope number SCOPE.  */
   type, scope number SCOPE.  */
 
 
void
void
c_end_vm_scope (unsigned int scope)
c_end_vm_scope (unsigned int scope)
{
{
  if (label_context_stack_vm == NULL)
  if (label_context_stack_vm == NULL)
    return;
    return;
  if (c_switch_stack && c_switch_stack->blocked_vm == scope)
  if (c_switch_stack && c_switch_stack->blocked_vm == scope)
    c_switch_stack->blocked_vm = 0;
    c_switch_stack->blocked_vm = 0;
  /* We may have a number of nested scopes of identifiers with
  /* We may have a number of nested scopes of identifiers with
     variably modified type, all at this depth.  Pop each in turn.  */
     variably modified type, all at this depth.  Pop each in turn.  */
  while (label_context_stack_vm->scope == scope)
  while (label_context_stack_vm->scope == scope)
    {
    {
      struct c_label_list *dlist, *glist, *glist_prev = NULL;
      struct c_label_list *dlist, *glist, *glist_prev = NULL;
 
 
      /* It is no longer possible to jump to labels defined within this
      /* It is no longer possible to jump to labels defined within this
         scope.  */
         scope.  */
      for (dlist = label_context_stack_vm->labels_def;
      for (dlist = label_context_stack_vm->labels_def;
           dlist != NULL;
           dlist != NULL;
           dlist = dlist->next)
           dlist = dlist->next)
        {
        {
          C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
          C_DECL_UNJUMPABLE_VM (dlist->label) = 1;
        }
        }
      /* It is again possible to define labels with a goto just outside
      /* It is again possible to define labels with a goto just outside
         this scope.  */
         this scope.  */
      for (glist = label_context_stack_vm->next->labels_used;
      for (glist = label_context_stack_vm->next->labels_used;
           glist != NULL;
           glist != NULL;
           glist = glist->next)
           glist = glist->next)
        {
        {
          C_DECL_UNDEFINABLE_VM (glist->label) = 0;
          C_DECL_UNDEFINABLE_VM (glist->label) = 0;
          glist_prev = glist;
          glist_prev = glist;
        }
        }
      if (glist_prev != NULL)
      if (glist_prev != NULL)
        glist_prev->next = label_context_stack_vm->labels_used;
        glist_prev->next = label_context_stack_vm->labels_used;
      else
      else
        label_context_stack_vm->next->labels_used
        label_context_stack_vm->next->labels_used
          = label_context_stack_vm->labels_used;
          = label_context_stack_vm->labels_used;
      label_context_stack_vm = label_context_stack_vm->next;
      label_context_stack_vm = label_context_stack_vm->next;
    }
    }
}
}


/* Begin and end compound statements.  This is as simple as pushing
/* Begin and end compound statements.  This is as simple as pushing
   and popping new statement lists from the tree.  */
   and popping new statement lists from the tree.  */
 
 
tree
tree
c_begin_compound_stmt (bool do_scope)
c_begin_compound_stmt (bool do_scope)
{
{
  tree stmt = push_stmt_list ();
  tree stmt = push_stmt_list ();
  if (do_scope)
  if (do_scope)
    push_scope ();
    push_scope ();
  return stmt;
  return stmt;
}
}
 
 
tree
tree
c_end_compound_stmt (tree stmt, bool do_scope)
c_end_compound_stmt (tree stmt, bool do_scope)
{
{
  tree block = NULL;
  tree block = NULL;
 
 
  if (do_scope)
  if (do_scope)
    {
    {
      if (c_dialect_objc ())
      if (c_dialect_objc ())
        objc_clear_super_receiver ();
        objc_clear_super_receiver ();
      block = pop_scope ();
      block = pop_scope ();
    }
    }
 
 
  stmt = pop_stmt_list (stmt);
  stmt = pop_stmt_list (stmt);
  stmt = c_build_bind_expr (block, stmt);
  stmt = c_build_bind_expr (block, stmt);
 
 
  /* If this compound statement is nested immediately inside a statement
  /* If this compound statement is nested immediately inside a statement
     expression, then force a BIND_EXPR to be created.  Otherwise we'll
     expression, then force a BIND_EXPR to be created.  Otherwise we'll
     do the wrong thing for ({ { 1; } }) or ({ 1; { } }).  In particular,
     do the wrong thing for ({ { 1; } }) or ({ 1; { } }).  In particular,
     STATEMENT_LISTs merge, and thus we can lose track of what statement
     STATEMENT_LISTs merge, and thus we can lose track of what statement
     was really last.  */
     was really last.  */
  if (cur_stmt_list
  if (cur_stmt_list
      && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
      && STATEMENT_LIST_STMT_EXPR (cur_stmt_list)
      && TREE_CODE (stmt) != BIND_EXPR)
      && TREE_CODE (stmt) != BIND_EXPR)
    {
    {
      stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
      stmt = build3 (BIND_EXPR, void_type_node, NULL, stmt, NULL);
      TREE_SIDE_EFFECTS (stmt) = 1;
      TREE_SIDE_EFFECTS (stmt) = 1;
    }
    }
 
 
  return stmt;
  return stmt;
}
}
 
 
/* Queue a cleanup.  CLEANUP is an expression/statement to be executed
/* Queue a cleanup.  CLEANUP is an expression/statement to be executed
   when the current scope is exited.  EH_ONLY is true when this is not
   when the current scope is exited.  EH_ONLY is true when this is not
   meant to apply to normal control flow transfer.  */
   meant to apply to normal control flow transfer.  */
 
 
void
void
push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
push_cleanup (tree ARG_UNUSED (decl), tree cleanup, bool eh_only)
{
{
  enum tree_code code;
  enum tree_code code;
  tree stmt, list;
  tree stmt, list;
  bool stmt_expr;
  bool stmt_expr;
 
 
  code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
  code = eh_only ? TRY_CATCH_EXPR : TRY_FINALLY_EXPR;
  stmt = build_stmt (code, NULL, cleanup);
  stmt = build_stmt (code, NULL, cleanup);
  add_stmt (stmt);
  add_stmt (stmt);
  stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
  stmt_expr = STATEMENT_LIST_STMT_EXPR (cur_stmt_list);
  list = push_stmt_list ();
  list = push_stmt_list ();
  TREE_OPERAND (stmt, 0) = list;
  TREE_OPERAND (stmt, 0) = list;
  STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
  STATEMENT_LIST_STMT_EXPR (list) = stmt_expr;
}
}


/* Build a binary-operation expression without default conversions.
/* Build a binary-operation expression without default conversions.
   CODE is the kind of expression to build.
   CODE is the kind of expression to build.
   This function differs from `build' in several ways:
   This function differs from `build' in several ways:
   the data type of the result is computed and recorded in it,
   the data type of the result is computed and recorded in it,
   warnings are generated if arg data types are invalid,
   warnings are generated if arg data types are invalid,
   special handling for addition and subtraction of pointers is known,
   special handling for addition and subtraction of pointers is known,
   and some optimization is done (operations on narrow ints
   and some optimization is done (operations on narrow ints
   are done in the narrower type when that gives the same result).
   are done in the narrower type when that gives the same result).
   Constant folding is also done before the result is returned.
   Constant folding is also done before the result is returned.
 
 
   Note that the operands will never have enumeral types, or function
   Note that the operands will never have enumeral types, or function
   or array types, because either they will have the default conversions
   or array types, because either they will have the default conversions
   performed or they have both just been converted to some other type in which
   performed or they have both just been converted to some other type in which
   the arithmetic is to be done.  */
   the arithmetic is to be done.  */
 
 
tree
tree
build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
build_binary_op (enum tree_code code, tree orig_op0, tree orig_op1,
                 int convert_p)
                 int convert_p)
{
{
  tree type0, type1;
  tree type0, type1;
  enum tree_code code0, code1;
  enum tree_code code0, code1;
  tree op0, op1;
  tree op0, op1;
  const char *invalid_op_diag;
  const char *invalid_op_diag;
 
 
  /* Expression code to give to the expression when it is built.
  /* Expression code to give to the expression when it is built.
     Normally this is CODE, which is what the caller asked for,
     Normally this is CODE, which is what the caller asked for,
     but in some special cases we change it.  */
     but in some special cases we change it.  */
  enum tree_code resultcode = code;
  enum tree_code resultcode = code;
 
 
  /* Data type in which the computation is to be performed.
  /* Data type in which the computation is to be performed.
     In the simplest cases this is the common type of the arguments.  */
     In the simplest cases this is the common type of the arguments.  */
  tree result_type = NULL;
  tree result_type = NULL;
 
 
  /* Nonzero means operands have already been type-converted
  /* Nonzero means operands have already been type-converted
     in whatever way is necessary.
     in whatever way is necessary.
     Zero means they need to be converted to RESULT_TYPE.  */
     Zero means they need to be converted to RESULT_TYPE.  */
  int converted = 0;
  int converted = 0;
 
 
  /* Nonzero means create the expression with this type, rather than
  /* Nonzero means create the expression with this type, rather than
     RESULT_TYPE.  */
     RESULT_TYPE.  */
  tree build_type = 0;
  tree build_type = 0;
 
 
  /* Nonzero means after finally constructing the expression
  /* Nonzero means after finally constructing the expression
     convert it to this type.  */
     convert it to this type.  */
  tree final_type = 0;
  tree final_type = 0;
 
 
  /* Nonzero if this is an operation like MIN or MAX which can
  /* Nonzero if this is an operation like MIN or MAX which can
     safely be computed in short if both args are promoted shorts.
     safely be computed in short if both args are promoted shorts.
     Also implies COMMON.
     Also implies COMMON.
     -1 indicates a bitwise operation; this makes a difference
     -1 indicates a bitwise operation; this makes a difference
     in the exact conditions for when it is safe to do the operation
     in the exact conditions for when it is safe to do the operation
     in a narrower mode.  */
     in a narrower mode.  */
  int shorten = 0;
  int shorten = 0;
 
 
  /* Nonzero if this is a comparison operation;
  /* Nonzero if this is a comparison operation;
     if both args are promoted shorts, compare the original shorts.
     if both args are promoted shorts, compare the original shorts.
     Also implies COMMON.  */
     Also implies COMMON.  */
  int short_compare = 0;
  int short_compare = 0;
 
 
  /* Nonzero if this is a right-shift operation, which can be computed on the
  /* Nonzero if this is a right-shift operation, which can be computed on the
     original short and then promoted if the operand is a promoted short.  */
     original short and then promoted if the operand is a promoted short.  */
  int short_shift = 0;
  int short_shift = 0;
 
 
  /* Nonzero means set RESULT_TYPE to the common type of the args.  */
  /* Nonzero means set RESULT_TYPE to the common type of the args.  */
  int common = 0;
  int common = 0;
 
 
  /* True means types are compatible as far as ObjC is concerned.  */
  /* True means types are compatible as far as ObjC is concerned.  */
  bool objc_ok;
  bool objc_ok;
 
 
  if (convert_p)
  if (convert_p)
    {
    {
      op0 = default_conversion (orig_op0);
      op0 = default_conversion (orig_op0);
      op1 = default_conversion (orig_op1);
      op1 = default_conversion (orig_op1);
    }
    }
  else
  else
    {
    {
      op0 = orig_op0;
      op0 = orig_op0;
      op1 = orig_op1;
      op1 = orig_op1;
    }
    }
 
 
  type0 = TREE_TYPE (op0);
  type0 = TREE_TYPE (op0);
  type1 = TREE_TYPE (op1);
  type1 = TREE_TYPE (op1);
 
 
  /* The expression codes of the data types of the arguments tell us
  /* The expression codes of the data types of the arguments tell us
     whether the arguments are integers, floating, pointers, etc.  */
     whether the arguments are integers, floating, pointers, etc.  */
  code0 = TREE_CODE (type0);
  code0 = TREE_CODE (type0);
  code1 = TREE_CODE (type1);
  code1 = TREE_CODE (type1);
 
 
  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
  /* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue.  */
  STRIP_TYPE_NOPS (op0);
  STRIP_TYPE_NOPS (op0);
  STRIP_TYPE_NOPS (op1);
  STRIP_TYPE_NOPS (op1);
 
 
  /* If an error was already reported for one of the arguments,
  /* If an error was already reported for one of the arguments,
     avoid reporting another error.  */
     avoid reporting another error.  */
 
 
  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
    return error_mark_node;
    return error_mark_node;
 
 
  if ((invalid_op_diag
  if ((invalid_op_diag
       = targetm.invalid_binary_op (code, type0, type1)))
       = targetm.invalid_binary_op (code, type0, type1)))
    {
    {
      error (invalid_op_diag);
      error (invalid_op_diag);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
  objc_ok = objc_compare_types (type0, type1, -3, NULL_TREE);
 
 
  switch (code)
  switch (code)
    {
    {
    case PLUS_EXPR:
    case PLUS_EXPR:
      /* Handle the pointer + int case.  */
      /* Handle the pointer + int case.  */
      if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
      if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
        return pointer_int_sum (PLUS_EXPR, op0, op1);
        return pointer_int_sum (PLUS_EXPR, op0, op1);
      else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
      else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
        return pointer_int_sum (PLUS_EXPR, op1, op0);
        return pointer_int_sum (PLUS_EXPR, op1, op0);
      else
      else
        common = 1;
        common = 1;
      break;
      break;
 
 
    case MINUS_EXPR:
    case MINUS_EXPR:
      /* Subtraction of two similar pointers.
      /* Subtraction of two similar pointers.
         We must subtract them as integers, then divide by object size.  */
         We must subtract them as integers, then divide by object size.  */
      if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
      if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
          && comp_target_types (type0, type1))
          && comp_target_types (type0, type1))
        return pointer_diff (op0, op1);
        return pointer_diff (op0, op1);
      /* Handle pointer minus int.  Just like pointer plus int.  */
      /* Handle pointer minus int.  Just like pointer plus int.  */
      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
        return pointer_int_sum (MINUS_EXPR, op0, op1);
        return pointer_int_sum (MINUS_EXPR, op0, op1);
      else
      else
        common = 1;
        common = 1;
      break;
      break;
 
 
    case MULT_EXPR:
    case MULT_EXPR:
      common = 1;
      common = 1;
      break;
      break;
 
 
    case TRUNC_DIV_EXPR:
    case TRUNC_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case EXACT_DIV_EXPR:
    case EXACT_DIV_EXPR:
      /* Floating point division by zero is a legitimate way to obtain
      /* Floating point division by zero is a legitimate way to obtain
         infinities and NaNs.  */
         infinities and NaNs.  */
      if (skip_evaluation == 0 && integer_zerop (op1))
      if (skip_evaluation == 0 && integer_zerop (op1))
        warning (OPT_Wdiv_by_zero, "division by zero");
        warning (OPT_Wdiv_by_zero, "division by zero");
 
 
      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
           || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
           || code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
          && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
          && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
              || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
              || code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE))
        {
        {
          enum tree_code tcode0 = code0, tcode1 = code1;
          enum tree_code tcode0 = code0, tcode1 = code1;
 
 
          if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
          if (code0 == COMPLEX_TYPE || code0 == VECTOR_TYPE)
            tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
            tcode0 = TREE_CODE (TREE_TYPE (TREE_TYPE (op0)));
          if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
          if (code1 == COMPLEX_TYPE || code1 == VECTOR_TYPE)
            tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
            tcode1 = TREE_CODE (TREE_TYPE (TREE_TYPE (op1)));
 
 
          if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
          if (!(tcode0 == INTEGER_TYPE && tcode1 == INTEGER_TYPE))
            resultcode = RDIV_EXPR;
            resultcode = RDIV_EXPR;
          else
          else
            /* Although it would be tempting to shorten always here, that
            /* Although it would be tempting to shorten always here, that
               loses on some targets, since the modulo instruction is
               loses on some targets, since the modulo instruction is
               undefined if the quotient can't be represented in the
               undefined if the quotient can't be represented in the
               computation mode.  We shorten only if unsigned or if
               computation mode.  We shorten only if unsigned or if
               dividing by something we know != -1.  */
               dividing by something we know != -1.  */
            shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
            shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
                       || (TREE_CODE (op1) == INTEGER_CST
                       || (TREE_CODE (op1) == INTEGER_CST
                           && !integer_all_onesp (op1)));
                           && !integer_all_onesp (op1)));
          common = 1;
          common = 1;
        }
        }
      break;
      break;
 
 
    case BIT_AND_EXPR:
    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_XOR_EXPR:
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
        shorten = -1;
        shorten = -1;
      else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
      else if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE)
        common = 1;
        common = 1;
      break;
      break;
 
 
    case TRUNC_MOD_EXPR:
    case TRUNC_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case FLOOR_MOD_EXPR:
      if (skip_evaluation == 0 && integer_zerop (op1))
      if (skip_evaluation == 0 && integer_zerop (op1))
        warning (OPT_Wdiv_by_zero, "division by zero");
        warning (OPT_Wdiv_by_zero, "division by zero");
 
 
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
        {
        {
          /* Although it would be tempting to shorten always here, that loses
          /* Although it would be tempting to shorten always here, that loses
             on some targets, since the modulo instruction is undefined if the
             on some targets, since the modulo instruction is undefined if the
             quotient can't be represented in the computation mode.  We shorten
             quotient can't be represented in the computation mode.  We shorten
             only if unsigned or if dividing by something we know != -1.  */
             only if unsigned or if dividing by something we know != -1.  */
          shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
          shorten = (TYPE_UNSIGNED (TREE_TYPE (orig_op0))
                     || (TREE_CODE (op1) == INTEGER_CST
                     || (TREE_CODE (op1) == INTEGER_CST
                         && !integer_all_onesp (op1)));
                         && !integer_all_onesp (op1)));
          common = 1;
          common = 1;
        }
        }
      break;
      break;
 
 
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_XOR_EXPR:
    case TRUTH_XOR_EXPR:
      if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
      if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
           || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
           || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
          && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
          && (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
              || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
              || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
        {
        {
          /* Result of these operations is always an int,
          /* Result of these operations is always an int,
             but that does not mean the operands should be
             but that does not mean the operands should be
             converted to ints!  */
             converted to ints!  */
          result_type = integer_type_node;
          result_type = integer_type_node;
          op0 = c_common_truthvalue_conversion (op0);
          op0 = c_common_truthvalue_conversion (op0);
          op1 = c_common_truthvalue_conversion (op1);
          op1 = c_common_truthvalue_conversion (op1);
          converted = 1;
          converted = 1;
        }
        }
      break;
      break;
 
 
      /* Shift operations: result has same type as first operand;
      /* Shift operations: result has same type as first operand;
         always convert second operand to int.
         always convert second operand to int.
         Also set SHORT_SHIFT if shifting rightward.  */
         Also set SHORT_SHIFT if shifting rightward.  */
 
 
    case RSHIFT_EXPR:
    case RSHIFT_EXPR:
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
        {
        {
          if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
          if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
            {
            {
              if (tree_int_cst_sgn (op1) < 0)
              if (tree_int_cst_sgn (op1) < 0)
                warning (0, "right shift count is negative");
                warning (0, "right shift count is negative");
              else
              else
                {
                {
                  if (!integer_zerop (op1))
                  if (!integer_zerop (op1))
                    short_shift = 1;
                    short_shift = 1;
 
 
                  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
                  if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
                    warning (0, "right shift count >= width of type");
                    warning (0, "right shift count >= width of type");
                }
                }
            }
            }
 
 
          /* Use the type of the value to be shifted.  */
          /* Use the type of the value to be shifted.  */
          result_type = type0;
          result_type = type0;
          /* Convert the shift-count to an integer, regardless of size
          /* Convert the shift-count to an integer, regardless of size
             of value being shifted.  */
             of value being shifted.  */
          if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
          if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
            op1 = convert (integer_type_node, op1);
            op1 = convert (integer_type_node, op1);
          /* Avoid converting op1 to result_type later.  */
          /* Avoid converting op1 to result_type later.  */
          converted = 1;
          converted = 1;
        }
        }
      break;
      break;
 
 
    case LSHIFT_EXPR:
    case LSHIFT_EXPR:
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
      if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
        {
        {
          if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
          if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
            {
            {
              if (tree_int_cst_sgn (op1) < 0)
              if (tree_int_cst_sgn (op1) < 0)
                warning (0, "left shift count is negative");
                warning (0, "left shift count is negative");
 
 
              else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
              else if (compare_tree_int (op1, TYPE_PRECISION (type0)) >= 0)
                warning (0, "left shift count >= width of type");
                warning (0, "left shift count >= width of type");
            }
            }
 
 
          /* Use the type of the value to be shifted.  */
          /* Use the type of the value to be shifted.  */
          result_type = type0;
          result_type = type0;
          /* Convert the shift-count to an integer, regardless of size
          /* Convert the shift-count to an integer, regardless of size
             of value being shifted.  */
             of value being shifted.  */
          if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
          if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
            op1 = convert (integer_type_node, op1);
            op1 = convert (integer_type_node, op1);
          /* Avoid converting op1 to result_type later.  */
          /* Avoid converting op1 to result_type later.  */
          converted = 1;
          converted = 1;
        }
        }
      break;
      break;
 
 
    case EQ_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case NE_EXPR:
      if (code0 == REAL_TYPE || code1 == REAL_TYPE)
      if (code0 == REAL_TYPE || code1 == REAL_TYPE)
        warning (OPT_Wfloat_equal,
        warning (OPT_Wfloat_equal,
                 "comparing floating point with == or != is unsafe");
                 "comparing floating point with == or != is unsafe");
      /* Result of comparison is always int,
      /* Result of comparison is always int,
         but don't convert the args to int!  */
         but don't convert the args to int!  */
      build_type = integer_type_node;
      build_type = integer_type_node;
      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
           || code0 == COMPLEX_TYPE)
           || code0 == COMPLEX_TYPE)
          && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
          && (code1 == INTEGER_TYPE || code1 == REAL_TYPE
              || code1 == COMPLEX_TYPE))
              || code1 == COMPLEX_TYPE))
        short_compare = 1;
        short_compare = 1;
      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
        {
        {
          tree tt0 = TREE_TYPE (type0);
          tree tt0 = TREE_TYPE (type0);
          tree tt1 = TREE_TYPE (type1);
          tree tt1 = TREE_TYPE (type1);
          /* Anything compares with void *.  void * compares with anything.
          /* Anything compares with void *.  void * compares with anything.
             Otherwise, the targets must be compatible
             Otherwise, the targets must be compatible
             and both must be object or both incomplete.  */
             and both must be object or both incomplete.  */
          if (comp_target_types (type0, type1))
          if (comp_target_types (type0, type1))
            result_type = common_pointer_type (type0, type1);
            result_type = common_pointer_type (type0, type1);
          else if (VOID_TYPE_P (tt0))
          else if (VOID_TYPE_P (tt0))
            {
            {
              /* op0 != orig_op0 detects the case of something
              /* op0 != orig_op0 detects the case of something
                 whose value is 0 but which isn't a valid null ptr const.  */
                 whose value is 0 but which isn't a valid null ptr const.  */
              if (pedantic && !null_pointer_constant_p (orig_op0)
              if (pedantic && !null_pointer_constant_p (orig_op0)
                  && TREE_CODE (tt1) == FUNCTION_TYPE)
                  && TREE_CODE (tt1) == FUNCTION_TYPE)
                pedwarn ("ISO C forbids comparison of %<void *%>"
                pedwarn ("ISO C forbids comparison of %<void *%>"
                         " with function pointer");
                         " with function pointer");
            }
            }
          else if (VOID_TYPE_P (tt1))
          else if (VOID_TYPE_P (tt1))
            {
            {
              if (pedantic && !null_pointer_constant_p (orig_op1)
              if (pedantic && !null_pointer_constant_p (orig_op1)
                  && TREE_CODE (tt0) == FUNCTION_TYPE)
                  && TREE_CODE (tt0) == FUNCTION_TYPE)
                pedwarn ("ISO C forbids comparison of %<void *%>"
                pedwarn ("ISO C forbids comparison of %<void *%>"
                         " with function pointer");
                         " with function pointer");
            }
            }
          else
          else
            /* Avoid warning about the volatile ObjC EH puts on decls.  */
            /* Avoid warning about the volatile ObjC EH puts on decls.  */
            if (!objc_ok)
            if (!objc_ok)
              pedwarn ("comparison of distinct pointer types lacks a cast");
              pedwarn ("comparison of distinct pointer types lacks a cast");
 
 
          if (result_type == NULL_TREE)
          if (result_type == NULL_TREE)
            result_type = ptr_type_node;
            result_type = ptr_type_node;
        }
        }
      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
        {
        {
          if (TREE_CODE (op0) == ADDR_EXPR
          if (TREE_CODE (op0) == ADDR_EXPR
              && DECL_P (TREE_OPERAND (op0, 0))
              && DECL_P (TREE_OPERAND (op0, 0))
              && (TREE_CODE (TREE_OPERAND (op0, 0)) == PARM_DECL
              && (TREE_CODE (TREE_OPERAND (op0, 0)) == PARM_DECL
                  || TREE_CODE (TREE_OPERAND (op0, 0)) == LABEL_DECL
                  || TREE_CODE (TREE_OPERAND (op0, 0)) == LABEL_DECL
                  || !DECL_WEAK (TREE_OPERAND (op0, 0))))
                  || !DECL_WEAK (TREE_OPERAND (op0, 0))))
            warning (OPT_Waddress, "the address of %qD will never be NULL",
            warning (OPT_Waddress, "the address of %qD will never be NULL",
                     TREE_OPERAND (op0, 0));
                     TREE_OPERAND (op0, 0));
          result_type = type0;
          result_type = type0;
        }
        }
      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
        {
        {
          if (TREE_CODE (op1) == ADDR_EXPR
          if (TREE_CODE (op1) == ADDR_EXPR
              && DECL_P (TREE_OPERAND (op1, 0))
              && DECL_P (TREE_OPERAND (op1, 0))
              && (TREE_CODE (TREE_OPERAND (op1, 0)) == PARM_DECL
              && (TREE_CODE (TREE_OPERAND (op1, 0)) == PARM_DECL
                  || TREE_CODE (TREE_OPERAND (op1, 0)) == LABEL_DECL
                  || TREE_CODE (TREE_OPERAND (op1, 0)) == LABEL_DECL
                  || !DECL_WEAK (TREE_OPERAND (op1, 0))))
                  || !DECL_WEAK (TREE_OPERAND (op1, 0))))
            warning (OPT_Waddress, "the address of %qD will never be NULL",
            warning (OPT_Waddress, "the address of %qD will never be NULL",
                     TREE_OPERAND (op1, 0));
                     TREE_OPERAND (op1, 0));
          result_type = type1;
          result_type = type1;
        }
        }
      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
        {
        {
          result_type = type0;
          result_type = type0;
          pedwarn ("comparison between pointer and integer");
          pedwarn ("comparison between pointer and integer");
        }
        }
      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
        {
        {
          result_type = type1;
          result_type = type1;
          pedwarn ("comparison between pointer and integer");
          pedwarn ("comparison between pointer and integer");
        }
        }
      break;
      break;
 
 
    case LE_EXPR:
    case LE_EXPR:
    case GE_EXPR:
    case GE_EXPR:
    case LT_EXPR:
    case LT_EXPR:
    case GT_EXPR:
    case GT_EXPR:
      build_type = integer_type_node;
      build_type = integer_type_node;
      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
      if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
          && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
          && (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
        short_compare = 1;
        short_compare = 1;
      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
      else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
        {
        {
          if (comp_target_types (type0, type1))
          if (comp_target_types (type0, type1))
            {
            {
              result_type = common_pointer_type (type0, type1);
              result_type = common_pointer_type (type0, type1);
              if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
              if (!COMPLETE_TYPE_P (TREE_TYPE (type0))
                  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
                  != !COMPLETE_TYPE_P (TREE_TYPE (type1)))
                pedwarn ("comparison of complete and incomplete pointers");
                pedwarn ("comparison of complete and incomplete pointers");
              else if (pedantic
              else if (pedantic
                       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
                       && TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
                pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
                pedwarn ("ISO C forbids ordered comparisons of pointers to functions");
            }
            }
          else
          else
            {
            {
              result_type = ptr_type_node;
              result_type = ptr_type_node;
              pedwarn ("comparison of distinct pointer types lacks a cast");
              pedwarn ("comparison of distinct pointer types lacks a cast");
            }
            }
        }
        }
      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
      else if (code0 == POINTER_TYPE && null_pointer_constant_p (orig_op1))
        {
        {
          result_type = type0;
          result_type = type0;
          if (pedantic || extra_warnings)
          if (pedantic || extra_warnings)
            pedwarn ("ordered comparison of pointer with integer zero");
            pedwarn ("ordered comparison of pointer with integer zero");
        }
        }
      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
      else if (code1 == POINTER_TYPE && null_pointer_constant_p (orig_op0))
        {
        {
          result_type = type1;
          result_type = type1;
          if (pedantic)
          if (pedantic)
            pedwarn ("ordered comparison of pointer with integer zero");
            pedwarn ("ordered comparison of pointer with integer zero");
        }
        }
      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
      else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
        {
        {
          result_type = type0;
          result_type = type0;
          pedwarn ("comparison between pointer and integer");
          pedwarn ("comparison between pointer and integer");
        }
        }
      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
      else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
        {
        {
          result_type = type1;
          result_type = type1;
          pedwarn ("comparison between pointer and integer");
          pedwarn ("comparison between pointer and integer");
        }
        }
      break;
      break;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
 
 
  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
  if (code0 == ERROR_MARK || code1 == ERROR_MARK)
    return error_mark_node;
    return error_mark_node;
 
 
  if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
  if (code0 == VECTOR_TYPE && code1 == VECTOR_TYPE
      && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
      && (!tree_int_cst_equal (TYPE_SIZE (type0), TYPE_SIZE (type1))
          || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
          || !same_scalar_type_ignoring_signedness (TREE_TYPE (type0),
                                                    TREE_TYPE (type1))))
                                                    TREE_TYPE (type1))))
    {
    {
      binary_op_error (code);
      binary_op_error (code);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
  if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE
       || code0 == VECTOR_TYPE)
       || code0 == VECTOR_TYPE)
      &&
      &&
      (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
      (code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE
       || code1 == VECTOR_TYPE))
       || code1 == VECTOR_TYPE))
    {
    {
      int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
      int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
 
 
      if (shorten || common || short_compare)
      if (shorten || common || short_compare)
        result_type = c_common_type (type0, type1);
        result_type = c_common_type (type0, type1);
 
 
      /* For certain operations (which identify themselves by shorten != 0)
      /* For certain operations (which identify themselves by shorten != 0)
         if both args were extended from the same smaller type,
         if both args were extended from the same smaller type,
         do the arithmetic in that type and then extend.
         do the arithmetic in that type and then extend.
 
 
         shorten !=0 and !=1 indicates a bitwise operation.
         shorten !=0 and !=1 indicates a bitwise operation.
         For them, this optimization is safe only if
         For them, this optimization is safe only if
         both args are zero-extended or both are sign-extended.
         both args are zero-extended or both are sign-extended.
         Otherwise, we might change the result.
         Otherwise, we might change the result.
         Eg, (short)-1 | (unsigned short)-1 is (int)-1
         Eg, (short)-1 | (unsigned short)-1 is (int)-1
         but calculated in (unsigned short) it would be (unsigned short)-1.  */
         but calculated in (unsigned short) it would be (unsigned short)-1.  */
 
 
      if (shorten && none_complex)
      if (shorten && none_complex)
        {
        {
          int unsigned0, unsigned1;
          int unsigned0, unsigned1;
          tree arg0, arg1;
          tree arg0, arg1;
          int uns;
          int uns;
          tree type;
          tree type;
 
 
          /* Cast OP0 and OP1 to RESULT_TYPE.  Doing so prevents
          /* Cast OP0 and OP1 to RESULT_TYPE.  Doing so prevents
             excessive narrowing when we call get_narrower below.  For
             excessive narrowing when we call get_narrower below.  For
             example, suppose that OP0 is of unsigned int extended
             example, suppose that OP0 is of unsigned int extended
             from signed char and that RESULT_TYPE is long long int.
             from signed char and that RESULT_TYPE is long long int.
             If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
             If we explicitly cast OP0 to RESULT_TYPE, OP0 would look
             like
             like
 
 
               (long long int) (unsigned int) signed_char
               (long long int) (unsigned int) signed_char
 
 
             which get_narrower would narrow down to
             which get_narrower would narrow down to
 
 
               (unsigned int) signed char
               (unsigned int) signed char
 
 
             If we do not cast OP0 first, get_narrower would return
             If we do not cast OP0 first, get_narrower would return
             signed_char, which is inconsistent with the case of the
             signed_char, which is inconsistent with the case of the
             explicit cast.  */
             explicit cast.  */
          op0 = convert (result_type, op0);
          op0 = convert (result_type, op0);
          op1 = convert (result_type, op1);
          op1 = convert (result_type, op1);
 
 
          arg0 = get_narrower (op0, &unsigned0);
          arg0 = get_narrower (op0, &unsigned0);
          arg1 = get_narrower (op1, &unsigned1);
          arg1 = get_narrower (op1, &unsigned1);
 
 
          /* UNS is 1 if the operation to be done is an unsigned one.  */
          /* UNS is 1 if the operation to be done is an unsigned one.  */
          uns = TYPE_UNSIGNED (result_type);
          uns = TYPE_UNSIGNED (result_type);
 
 
          final_type = result_type;
          final_type = result_type;
 
 
          /* Handle the case that OP0 (or OP1) does not *contain* a conversion
          /* Handle the case that OP0 (or OP1) does not *contain* a conversion
             but it *requires* conversion to FINAL_TYPE.  */
             but it *requires* conversion to FINAL_TYPE.  */
 
 
          if ((TYPE_PRECISION (TREE_TYPE (op0))
          if ((TYPE_PRECISION (TREE_TYPE (op0))
               == TYPE_PRECISION (TREE_TYPE (arg0)))
               == TYPE_PRECISION (TREE_TYPE (arg0)))
              && TREE_TYPE (op0) != final_type)
              && TREE_TYPE (op0) != final_type)
            unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
            unsigned0 = TYPE_UNSIGNED (TREE_TYPE (op0));
          if ((TYPE_PRECISION (TREE_TYPE (op1))
          if ((TYPE_PRECISION (TREE_TYPE (op1))
               == TYPE_PRECISION (TREE_TYPE (arg1)))
               == TYPE_PRECISION (TREE_TYPE (arg1)))
              && TREE_TYPE (op1) != final_type)
              && TREE_TYPE (op1) != final_type)
            unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
            unsigned1 = TYPE_UNSIGNED (TREE_TYPE (op1));
 
 
          /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
          /* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE.  */
 
 
          /* For bitwise operations, signedness of nominal type
          /* For bitwise operations, signedness of nominal type
             does not matter.  Consider only how operands were extended.  */
             does not matter.  Consider only how operands were extended.  */
          if (shorten == -1)
          if (shorten == -1)
            uns = unsigned0;
            uns = unsigned0;
 
 
          /* Note that in all three cases below we refrain from optimizing
          /* Note that in all three cases below we refrain from optimizing
             an unsigned operation on sign-extended args.
             an unsigned operation on sign-extended args.
             That would not be valid.  */
             That would not be valid.  */
 
 
          /* Both args variable: if both extended in same way
          /* Both args variable: if both extended in same way
             from same width, do it in that width.
             from same width, do it in that width.
             Do it unsigned if args were zero-extended.  */
             Do it unsigned if args were zero-extended.  */
          if ((TYPE_PRECISION (TREE_TYPE (arg0))
          if ((TYPE_PRECISION (TREE_TYPE (arg0))
               < TYPE_PRECISION (result_type))
               < TYPE_PRECISION (result_type))
              && (TYPE_PRECISION (TREE_TYPE (arg1))
              && (TYPE_PRECISION (TREE_TYPE (arg1))
                  == TYPE_PRECISION (TREE_TYPE (arg0)))
                  == TYPE_PRECISION (TREE_TYPE (arg0)))
              && unsigned0 == unsigned1
              && unsigned0 == unsigned1
              && (unsigned0 || !uns))
              && (unsigned0 || !uns))
            result_type
            result_type
              = c_common_signed_or_unsigned_type
              = c_common_signed_or_unsigned_type
              (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
              (unsigned0, common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
          else if (TREE_CODE (arg0) == INTEGER_CST
          else if (TREE_CODE (arg0) == INTEGER_CST
                   && (unsigned1 || !uns)
                   && (unsigned1 || !uns)
                   && (TYPE_PRECISION (TREE_TYPE (arg1))
                   && (TYPE_PRECISION (TREE_TYPE (arg1))
                       < TYPE_PRECISION (result_type))
                       < TYPE_PRECISION (result_type))
                   && (type
                   && (type
                       = c_common_signed_or_unsigned_type (unsigned1,
                       = c_common_signed_or_unsigned_type (unsigned1,
                                                           TREE_TYPE (arg1)),
                                                           TREE_TYPE (arg1)),
                       int_fits_type_p (arg0, type)))
                       int_fits_type_p (arg0, type)))
            result_type = type;
            result_type = type;
          else if (TREE_CODE (arg1) == INTEGER_CST
          else if (TREE_CODE (arg1) == INTEGER_CST
                   && (unsigned0 || !uns)
                   && (unsigned0 || !uns)
                   && (TYPE_PRECISION (TREE_TYPE (arg0))
                   && (TYPE_PRECISION (TREE_TYPE (arg0))
                       < TYPE_PRECISION (result_type))
                       < TYPE_PRECISION (result_type))
                   && (type
                   && (type
                       = c_common_signed_or_unsigned_type (unsigned0,
                       = c_common_signed_or_unsigned_type (unsigned0,
                                                           TREE_TYPE (arg0)),
                                                           TREE_TYPE (arg0)),
                       int_fits_type_p (arg1, type)))
                       int_fits_type_p (arg1, type)))
            result_type = type;
            result_type = type;
        }
        }
 
 
      /* Shifts can be shortened if shifting right.  */
      /* Shifts can be shortened if shifting right.  */
 
 
      if (short_shift)
      if (short_shift)
        {
        {
          int unsigned_arg;
          int unsigned_arg;
          tree arg0 = get_narrower (op0, &unsigned_arg);
          tree arg0 = get_narrower (op0, &unsigned_arg);
 
 
          final_type = result_type;
          final_type = result_type;
 
 
          if (arg0 == op0 && final_type == TREE_TYPE (op0))
          if (arg0 == op0 && final_type == TREE_TYPE (op0))
            unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
            unsigned_arg = TYPE_UNSIGNED (TREE_TYPE (op0));
 
 
          if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
          if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
              /* We can shorten only if the shift count is less than the
              /* We can shorten only if the shift count is less than the
                 number of bits in the smaller type size.  */
                 number of bits in the smaller type size.  */
              && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
              && compare_tree_int (op1, TYPE_PRECISION (TREE_TYPE (arg0))) < 0
              /* We cannot drop an unsigned shift after sign-extension.  */
              /* We cannot drop an unsigned shift after sign-extension.  */
              && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
              && (!TYPE_UNSIGNED (final_type) || unsigned_arg))
            {
            {
              /* Do an unsigned shift if the operand was zero-extended.  */
              /* Do an unsigned shift if the operand was zero-extended.  */
              result_type
              result_type
                = c_common_signed_or_unsigned_type (unsigned_arg,
                = c_common_signed_or_unsigned_type (unsigned_arg,
                                                    TREE_TYPE (arg0));
                                                    TREE_TYPE (arg0));
              /* Convert value-to-be-shifted to that type.  */
              /* Convert value-to-be-shifted to that type.  */
              if (TREE_TYPE (op0) != result_type)
              if (TREE_TYPE (op0) != result_type)
                op0 = convert (result_type, op0);
                op0 = convert (result_type, op0);
              converted = 1;
              converted = 1;
            }
            }
        }
        }
 
 
      /* Comparison operations are shortened too but differently.
      /* Comparison operations are shortened too but differently.
         They identify themselves by setting short_compare = 1.  */
         They identify themselves by setting short_compare = 1.  */
 
 
      if (short_compare)
      if (short_compare)
        {
        {
          /* Don't write &op0, etc., because that would prevent op0
          /* Don't write &op0, etc., because that would prevent op0
             from being kept in a register.
             from being kept in a register.
             Instead, make copies of the our local variables and
             Instead, make copies of the our local variables and
             pass the copies by reference, then copy them back afterward.  */
             pass the copies by reference, then copy them back afterward.  */
          tree xop0 = op0, xop1 = op1, xresult_type = result_type;
          tree xop0 = op0, xop1 = op1, xresult_type = result_type;
          enum tree_code xresultcode = resultcode;
          enum tree_code xresultcode = resultcode;
          tree val
          tree val
            = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
            = shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
 
 
          if (val != 0)
          if (val != 0)
            return val;
            return val;
 
 
          op0 = xop0, op1 = xop1;
          op0 = xop0, op1 = xop1;
          converted = 1;
          converted = 1;
          resultcode = xresultcode;
          resultcode = xresultcode;
 
 
          if (warn_sign_compare && skip_evaluation == 0)
          if (warn_sign_compare && skip_evaluation == 0)
            {
            {
              int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
              int op0_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op0));
              int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
              int op1_signed = !TYPE_UNSIGNED (TREE_TYPE (orig_op1));
              int unsignedp0, unsignedp1;
              int unsignedp0, unsignedp1;
              tree primop0 = get_narrower (op0, &unsignedp0);
              tree primop0 = get_narrower (op0, &unsignedp0);
              tree primop1 = get_narrower (op1, &unsignedp1);
              tree primop1 = get_narrower (op1, &unsignedp1);
 
 
              xop0 = orig_op0;
              xop0 = orig_op0;
              xop1 = orig_op1;
              xop1 = orig_op1;
              STRIP_TYPE_NOPS (xop0);
              STRIP_TYPE_NOPS (xop0);
              STRIP_TYPE_NOPS (xop1);
              STRIP_TYPE_NOPS (xop1);
 
 
              /* Give warnings for comparisons between signed and unsigned
              /* Give warnings for comparisons between signed and unsigned
                 quantities that may fail.
                 quantities that may fail.
 
 
                 Do the checking based on the original operand trees, so that
                 Do the checking based on the original operand trees, so that
                 casts will be considered, but default promotions won't be.
                 casts will be considered, but default promotions won't be.
 
 
                 Do not warn if the comparison is being done in a signed type,
                 Do not warn if the comparison is being done in a signed type,
                 since the signed type will only be chosen if it can represent
                 since the signed type will only be chosen if it can represent
                 all the values of the unsigned type.  */
                 all the values of the unsigned type.  */
              if (!TYPE_UNSIGNED (result_type))
              if (!TYPE_UNSIGNED (result_type))
                /* OK */;
                /* OK */;
              /* Do not warn if both operands are the same signedness.  */
              /* Do not warn if both operands are the same signedness.  */
              else if (op0_signed == op1_signed)
              else if (op0_signed == op1_signed)
                /* OK */;
                /* OK */;
              else
              else
                {
                {
                  tree sop, uop;
                  tree sop, uop;
                  bool ovf;
                  bool ovf;
 
 
                  if (op0_signed)
                  if (op0_signed)
                    sop = xop0, uop = xop1;
                    sop = xop0, uop = xop1;
                  else
                  else
                    sop = xop1, uop = xop0;
                    sop = xop1, uop = xop0;
 
 
                  /* Do not warn if the signed quantity is an
                  /* Do not warn if the signed quantity is an
                     unsuffixed integer literal (or some static
                     unsuffixed integer literal (or some static
                     constant expression involving such literals or a
                     constant expression involving such literals or a
                     conditional expression involving such literals)
                     conditional expression involving such literals)
                     and it is non-negative.  */
                     and it is non-negative.  */
                  if (tree_expr_nonnegative_warnv_p (sop, &ovf))
                  if (tree_expr_nonnegative_warnv_p (sop, &ovf))
                    /* OK */;
                    /* OK */;
                  /* Do not warn if the comparison is an equality operation,
                  /* Do not warn if the comparison is an equality operation,
                     the unsigned quantity is an integral constant, and it
                     the unsigned quantity is an integral constant, and it
                     would fit in the result if the result were signed.  */
                     would fit in the result if the result were signed.  */
                  else if (TREE_CODE (uop) == INTEGER_CST
                  else if (TREE_CODE (uop) == INTEGER_CST
                           && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
                           && (resultcode == EQ_EXPR || resultcode == NE_EXPR)
                           && int_fits_type_p
                           && int_fits_type_p
                           (uop, c_common_signed_type (result_type)))
                           (uop, c_common_signed_type (result_type)))
                    /* OK */;
                    /* OK */;
                  /* Do not warn if the unsigned quantity is an enumeration
                  /* Do not warn if the unsigned quantity is an enumeration
                     constant and its maximum value would fit in the result
                     constant and its maximum value would fit in the result
                     if the result were signed.  */
                     if the result were signed.  */
                  else if (TREE_CODE (uop) == INTEGER_CST
                  else if (TREE_CODE (uop) == INTEGER_CST
                           && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
                           && TREE_CODE (TREE_TYPE (uop)) == ENUMERAL_TYPE
                           && int_fits_type_p
                           && int_fits_type_p
                           (TYPE_MAX_VALUE (TREE_TYPE (uop)),
                           (TYPE_MAX_VALUE (TREE_TYPE (uop)),
                            c_common_signed_type (result_type)))
                            c_common_signed_type (result_type)))
                    /* OK */;
                    /* OK */;
                  else
                  else
                    warning (0, "comparison between signed and unsigned");
                    warning (0, "comparison between signed and unsigned");
                }
                }
 
 
              /* Warn if two unsigned values are being compared in a size
              /* Warn if two unsigned values are being compared in a size
                 larger than their original size, and one (and only one) is the
                 larger than their original size, and one (and only one) is the
                 result of a `~' operator.  This comparison will always fail.
                 result of a `~' operator.  This comparison will always fail.
 
 
                 Also warn if one operand is a constant, and the constant
                 Also warn if one operand is a constant, and the constant
                 does not have all bits set that are set in the ~ operand
                 does not have all bits set that are set in the ~ operand
                 when it is extended.  */
                 when it is extended.  */
 
 
              if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
              if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
                  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
                  != (TREE_CODE (primop1) == BIT_NOT_EXPR))
                {
                {
                  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
                  if (TREE_CODE (primop0) == BIT_NOT_EXPR)
                    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
                    primop0 = get_narrower (TREE_OPERAND (primop0, 0),
                                            &unsignedp0);
                                            &unsignedp0);
                  else
                  else
                    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
                    primop1 = get_narrower (TREE_OPERAND (primop1, 0),
                                            &unsignedp1);
                                            &unsignedp1);
 
 
                  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
                  if (host_integerp (primop0, 0) || host_integerp (primop1, 0))
                    {
                    {
                      tree primop;
                      tree primop;
                      HOST_WIDE_INT constant, mask;
                      HOST_WIDE_INT constant, mask;
                      int unsignedp, bits;
                      int unsignedp, bits;
 
 
                      if (host_integerp (primop0, 0))
                      if (host_integerp (primop0, 0))
                        {
                        {
                          primop = primop1;
                          primop = primop1;
                          unsignedp = unsignedp1;
                          unsignedp = unsignedp1;
                          constant = tree_low_cst (primop0, 0);
                          constant = tree_low_cst (primop0, 0);
                        }
                        }
                      else
                      else
                        {
                        {
                          primop = primop0;
                          primop = primop0;
                          unsignedp = unsignedp0;
                          unsignedp = unsignedp0;
                          constant = tree_low_cst (primop1, 0);
                          constant = tree_low_cst (primop1, 0);
                        }
                        }
 
 
                      bits = TYPE_PRECISION (TREE_TYPE (primop));
                      bits = TYPE_PRECISION (TREE_TYPE (primop));
                      if (bits < TYPE_PRECISION (result_type)
                      if (bits < TYPE_PRECISION (result_type)
                          && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
                          && bits < HOST_BITS_PER_WIDE_INT && unsignedp)
                        {
                        {
                          mask = (~(HOST_WIDE_INT) 0) << bits;
                          mask = (~(HOST_WIDE_INT) 0) << bits;
                          if ((mask & constant) != mask)
                          if ((mask & constant) != mask)
                            warning (0, "comparison of promoted ~unsigned with constant");
                            warning (0, "comparison of promoted ~unsigned with constant");
                        }
                        }
                    }
                    }
                  else if (unsignedp0 && unsignedp1
                  else if (unsignedp0 && unsignedp1
                           && (TYPE_PRECISION (TREE_TYPE (primop0))
                           && (TYPE_PRECISION (TREE_TYPE (primop0))
                               < TYPE_PRECISION (result_type))
                               < TYPE_PRECISION (result_type))
                           && (TYPE_PRECISION (TREE_TYPE (primop1))
                           && (TYPE_PRECISION (TREE_TYPE (primop1))
                               < TYPE_PRECISION (result_type)))
                               < TYPE_PRECISION (result_type)))
                    warning (0, "comparison of promoted ~unsigned with unsigned");
                    warning (0, "comparison of promoted ~unsigned with unsigned");
                }
                }
            }
            }
        }
        }
    }
    }
 
 
  /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
  /* At this point, RESULT_TYPE must be nonzero to avoid an error message.
     If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
     If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
     Then the expression will be built.
     Then the expression will be built.
     It will be given type FINAL_TYPE if that is nonzero;
     It will be given type FINAL_TYPE if that is nonzero;
     otherwise, it will be given type RESULT_TYPE.  */
     otherwise, it will be given type RESULT_TYPE.  */
 
 
  if (!result_type)
  if (!result_type)
    {
    {
      binary_op_error (code);
      binary_op_error (code);
      return error_mark_node;
      return error_mark_node;
    }
    }
 
 
  if (!converted)
  if (!converted)
    {
    {
      if (TREE_TYPE (op0) != result_type)
      if (TREE_TYPE (op0) != result_type)
        op0 = convert_and_check (result_type, op0);
        op0 = convert_and_check (result_type, op0);
      if (TREE_TYPE (op1) != result_type)
      if (TREE_TYPE (op1) != result_type)
        op1 = convert_and_check (result_type, op1);
        op1 = convert_and_check (result_type, op1);
 
 
      /* This can happen if one operand has a vector type, and the other
      /* This can happen if one operand has a vector type, and the other
         has a different type.  */
         has a different type.  */
      if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
      if (TREE_CODE (op0) == ERROR_MARK || TREE_CODE (op1) == ERROR_MARK)
        return error_mark_node;
        return error_mark_node;
    }
    }
 
 
  if (build_type == NULL_TREE)
  if (build_type == NULL_TREE)
    build_type = result_type;
    build_type = result_type;
 
 
  {
  {
    /* Treat expressions in initializers specially as they can't trap.  */
    /* Treat expressions in initializers specially as they can't trap.  */
    tree result = require_constant_value ? fold_build2_initializer (resultcode,
    tree result = require_constant_value ? fold_build2_initializer (resultcode,
                                                                    build_type,
                                                                    build_type,
                                                                    op0, op1)
                                                                    op0, op1)
                                         : fold_build2 (resultcode, build_type,
                                         : fold_build2 (resultcode, build_type,
                                                        op0, op1);
                                                        op0, op1);
 
 
    if (final_type != 0)
    if (final_type != 0)
      result = convert (final_type, result);
      result = convert (final_type, result);
    return result;
    return result;
  }
  }
}
}
 
 
 
 
/* Convert EXPR to be a truth-value, validating its type for this
/* Convert EXPR to be a truth-value, validating its type for this
   purpose.  */
   purpose.  */
 
 
tree
tree
c_objc_common_truthvalue_conversion (tree expr)
c_objc_common_truthvalue_conversion (tree expr)
{
{
  switch (TREE_CODE (TREE_TYPE (expr)))
  switch (TREE_CODE (TREE_TYPE (expr)))
    {
    {
    case ARRAY_TYPE:
    case ARRAY_TYPE:
      error ("used array that cannot be converted to pointer where scalar is required");
      error ("used array that cannot be converted to pointer where scalar is required");
      return error_mark_node;
      return error_mark_node;
 
 
    case RECORD_TYPE:
    case RECORD_TYPE:
      error ("used struct type value where scalar is required");
      error ("used struct type value where scalar is required");
      return error_mark_node;
      return error_mark_node;
 
 
    case UNION_TYPE:
    case UNION_TYPE:
      error ("used union type value where scalar is required");
      error ("used union type value where scalar is required");
      return error_mark_node;
      return error_mark_node;
 
 
    case FUNCTION_TYPE:
    case FUNCTION_TYPE:
      gcc_unreachable ();
      gcc_unreachable ();
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  /* ??? Should we also give an error for void and vectors rather than
  /* ??? Should we also give an error for void and vectors rather than
     leaving those to give errors later?  */
     leaving those to give errors later?  */
  return c_common_truthvalue_conversion (expr);
  return c_common_truthvalue_conversion (expr);
}
}


 
 
/* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
/* Convert EXPR to a contained DECL, updating *TC, *TI and *SE as
   required.  */
   required.  */
 
 
tree
tree
c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
c_expr_to_decl (tree expr, bool *tc ATTRIBUTE_UNUSED,
                bool *ti ATTRIBUTE_UNUSED, bool *se)
                bool *ti ATTRIBUTE_UNUSED, bool *se)
{
{
  if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
  if (TREE_CODE (expr) == COMPOUND_LITERAL_EXPR)
    {
    {
      tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
      tree decl = COMPOUND_LITERAL_EXPR_DECL (expr);
      /* Executing a compound literal inside a function reinitializes
      /* Executing a compound literal inside a function reinitializes
         it.  */
         it.  */
      if (!TREE_STATIC (decl))
      if (!TREE_STATIC (decl))
        *se = true;
        *se = true;
      return decl;
      return decl;
    }
    }
  else
  else
    return expr;
    return expr;
}
}


/* Like c_begin_compound_stmt, except force the retention of the BLOCK.  */
/* Like c_begin_compound_stmt, except force the retention of the BLOCK.  */
 
 
tree
tree
c_begin_omp_parallel (void)
c_begin_omp_parallel (void)
{
{
  tree block;
  tree block;
 
 
  keep_next_level ();
  keep_next_level ();
  block = c_begin_compound_stmt (true);
  block = c_begin_compound_stmt (true);
 
 
  return block;
  return block;
}
}
 
 
tree
tree
c_finish_omp_parallel (tree clauses, tree block)
c_finish_omp_parallel (tree clauses, tree block)
{
{
  tree stmt;
  tree stmt;
 
 
  block = c_end_compound_stmt (block, true);
  block = c_end_compound_stmt (block, true);
 
 
  stmt = make_node (OMP_PARALLEL);
  stmt = make_node (OMP_PARALLEL);
  TREE_TYPE (stmt) = void_type_node;
  TREE_TYPE (stmt) = void_type_node;
  OMP_PARALLEL_CLAUSES (stmt) = clauses;
  OMP_PARALLEL_CLAUSES (stmt) = clauses;
  OMP_PARALLEL_BODY (stmt) = block;
  OMP_PARALLEL_BODY (stmt) = block;
 
 
  return add_stmt (stmt);
  return add_stmt (stmt);
}
}
 
 
/* For all elements of CLAUSES, validate them vs OpenMP constraints.
/* For all elements of CLAUSES, validate them vs OpenMP constraints.
   Remove any elements from the list that are invalid.  */
   Remove any elements from the list that are invalid.  */
 
 
tree
tree
c_finish_omp_clauses (tree clauses)
c_finish_omp_clauses (tree clauses)
{
{
  bitmap_head generic_head, firstprivate_head, lastprivate_head;
  bitmap_head generic_head, firstprivate_head, lastprivate_head;
  tree c, t, *pc = &clauses;
  tree c, t, *pc = &clauses;
  const char *name;
  const char *name;
 
 
  bitmap_obstack_initialize (NULL);
  bitmap_obstack_initialize (NULL);
  bitmap_initialize (&generic_head, &bitmap_default_obstack);
  bitmap_initialize (&generic_head, &bitmap_default_obstack);
  bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
  bitmap_initialize (&firstprivate_head, &bitmap_default_obstack);
  bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
  bitmap_initialize (&lastprivate_head, &bitmap_default_obstack);
 
 
  for (pc = &clauses, c = clauses; c ; c = *pc)
  for (pc = &clauses, c = clauses; c ; c = *pc)
    {
    {
      bool remove = false;
      bool remove = false;
      bool need_complete = false;
      bool need_complete = false;
      bool need_implicitly_determined = false;
      bool need_implicitly_determined = false;
 
 
      switch (OMP_CLAUSE_CODE (c))
      switch (OMP_CLAUSE_CODE (c))
        {
        {
        case OMP_CLAUSE_SHARED:
        case OMP_CLAUSE_SHARED:
          name = "shared";
          name = "shared";
          need_implicitly_determined = true;
          need_implicitly_determined = true;
          goto check_dup_generic;
          goto check_dup_generic;
 
 
        case OMP_CLAUSE_PRIVATE:
        case OMP_CLAUSE_PRIVATE:
          name = "private";
          name = "private";
          need_complete = true;
          need_complete = true;
          need_implicitly_determined = true;
          need_implicitly_determined = true;
          goto check_dup_generic;
          goto check_dup_generic;
 
 
        case OMP_CLAUSE_REDUCTION:
        case OMP_CLAUSE_REDUCTION:
          name = "reduction";
          name = "reduction";
          need_implicitly_determined = true;
          need_implicitly_determined = true;
          t = OMP_CLAUSE_DECL (c);
          t = OMP_CLAUSE_DECL (c);
          if (AGGREGATE_TYPE_P (TREE_TYPE (t))
          if (AGGREGATE_TYPE_P (TREE_TYPE (t))
              || POINTER_TYPE_P (TREE_TYPE (t)))
              || POINTER_TYPE_P (TREE_TYPE (t)))
            {
            {
              error ("%qE has invalid type for %<reduction%>", t);
              error ("%qE has invalid type for %<reduction%>", t);
              remove = true;
              remove = true;
            }
            }
          else if (FLOAT_TYPE_P (TREE_TYPE (t)))
          else if (FLOAT_TYPE_P (TREE_TYPE (t)))
            {
            {
              enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
              enum tree_code r_code = OMP_CLAUSE_REDUCTION_CODE (c);
              const char *r_name = NULL;
              const char *r_name = NULL;
 
 
              switch (r_code)
              switch (r_code)
                {
                {
                case PLUS_EXPR:
                case PLUS_EXPR:
                case MULT_EXPR:
                case MULT_EXPR:
                case MINUS_EXPR:
                case MINUS_EXPR:
                  break;
                  break;
                case BIT_AND_EXPR:
                case BIT_AND_EXPR:
                  r_name = "&";
                  r_name = "&";
                  break;
                  break;
                case BIT_XOR_EXPR:
                case BIT_XOR_EXPR:
                  r_name = "^";
                  r_name = "^";
                  break;
                  break;
                case BIT_IOR_EXPR:
                case BIT_IOR_EXPR:
                  r_name = "|";
                  r_name = "|";
                  break;
                  break;
                case TRUTH_ANDIF_EXPR:
                case TRUTH_ANDIF_EXPR:
                  r_name = "&&";
                  r_name = "&&";
                  break;
                  break;
                case TRUTH_ORIF_EXPR:
                case TRUTH_ORIF_EXPR:
                  r_name = "||";
                  r_name = "||";
                  break;
                  break;
                default:
                default:
                  gcc_unreachable ();
                  gcc_unreachable ();
                }
                }
              if (r_name)
              if (r_name)
                {
                {
                  error ("%qE has invalid type for %<reduction(%s)%>",
                  error ("%qE has invalid type for %<reduction(%s)%>",
                         t, r_name);
                         t, r_name);
                  remove = true;
                  remove = true;
                }
                }
            }
            }
          goto check_dup_generic;
          goto check_dup_generic;
 
 
        case OMP_CLAUSE_COPYPRIVATE:
        case OMP_CLAUSE_COPYPRIVATE:
          name = "copyprivate";
          name = "copyprivate";
          goto check_dup_generic;
          goto check_dup_generic;
 
 
        case OMP_CLAUSE_COPYIN:
        case OMP_CLAUSE_COPYIN:
          name = "copyin";
          name = "copyin";
          t = OMP_CLAUSE_DECL (c);
          t = OMP_CLAUSE_DECL (c);
          if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
          if (TREE_CODE (t) != VAR_DECL || !DECL_THREAD_LOCAL_P (t))
            {
            {
              error ("%qE must be %<threadprivate%> for %<copyin%>", t);
              error ("%qE must be %<threadprivate%> for %<copyin%>", t);
              remove = true;
              remove = true;
            }
            }
          goto check_dup_generic;
          goto check_dup_generic;
 
 
        check_dup_generic:
        check_dup_generic:
          t = OMP_CLAUSE_DECL (c);
          t = OMP_CLAUSE_DECL (c);
          if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
          if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
            {
            {
              error ("%qE is not a variable in clause %qs", t, name);
              error ("%qE is not a variable in clause %qs", t, name);
              remove = true;
              remove = true;
            }
            }
          else if (bitmap_bit_p (&generic_head, DECL_UID (t))
          else if (bitmap_bit_p (&generic_head, DECL_UID (t))
                   || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
                   || bitmap_bit_p (&firstprivate_head, DECL_UID (t))
                   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
                   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
            {
            {
              error ("%qE appears more than once in data clauses", t);
              error ("%qE appears more than once in data clauses", t);
              remove = true;
              remove = true;
            }
            }
          else
          else
            bitmap_set_bit (&generic_head, DECL_UID (t));
            bitmap_set_bit (&generic_head, DECL_UID (t));
          break;
          break;
 
 
        case OMP_CLAUSE_FIRSTPRIVATE:
        case OMP_CLAUSE_FIRSTPRIVATE:
          name = "firstprivate";
          name = "firstprivate";
          t = OMP_CLAUSE_DECL (c);
          t = OMP_CLAUSE_DECL (c);
          need_complete = true;
          need_complete = true;
          need_implicitly_determined = true;
          need_implicitly_determined = true;
          if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
          if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
            {
            {
              error ("%qE is not a variable in clause %<firstprivate%>", t);
              error ("%qE is not a variable in clause %<firstprivate%>", t);
              remove = true;
              remove = true;
            }
            }
          else if (bitmap_bit_p (&generic_head, DECL_UID (t))
          else if (bitmap_bit_p (&generic_head, DECL_UID (t))
                   || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
                   || bitmap_bit_p (&firstprivate_head, DECL_UID (t)))
            {
            {
              error ("%qE appears more than once in data clauses", t);
              error ("%qE appears more than once in data clauses", t);
              remove = true;
              remove = true;
            }
            }
          else
          else
            bitmap_set_bit (&firstprivate_head, DECL_UID (t));
            bitmap_set_bit (&firstprivate_head, DECL_UID (t));
          break;
          break;
 
 
        case OMP_CLAUSE_LASTPRIVATE:
        case OMP_CLAUSE_LASTPRIVATE:
          name = "lastprivate";
          name = "lastprivate";
          t = OMP_CLAUSE_DECL (c);
          t = OMP_CLAUSE_DECL (c);
          need_complete = true;
          need_complete = true;
          need_implicitly_determined = true;
          need_implicitly_determined = true;
          if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
          if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
            {
            {
              error ("%qE is not a variable in clause %<lastprivate%>", t);
              error ("%qE is not a variable in clause %<lastprivate%>", t);
              remove = true;
              remove = true;
            }
            }
          else if (bitmap_bit_p (&generic_head, DECL_UID (t))
          else if (bitmap_bit_p (&generic_head, DECL_UID (t))
                   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
                   || bitmap_bit_p (&lastprivate_head, DECL_UID (t)))
            {
            {
              error ("%qE appears more than once in data clauses", t);
              error ("%qE appears more than once in data clauses", t);
              remove = true;
              remove = true;
            }
            }
          else
          else
            bitmap_set_bit (&lastprivate_head, DECL_UID (t));
            bitmap_set_bit (&lastprivate_head, DECL_UID (t));
          break;
          break;
 
 
        case OMP_CLAUSE_IF:
        case OMP_CLAUSE_IF:
        case OMP_CLAUSE_NUM_THREADS:
        case OMP_CLAUSE_NUM_THREADS:
        case OMP_CLAUSE_SCHEDULE:
        case OMP_CLAUSE_SCHEDULE:
        case OMP_CLAUSE_NOWAIT:
        case OMP_CLAUSE_NOWAIT:
        case OMP_CLAUSE_ORDERED:
        case OMP_CLAUSE_ORDERED:
        case OMP_CLAUSE_DEFAULT:
        case OMP_CLAUSE_DEFAULT:
          pc = &OMP_CLAUSE_CHAIN (c);
          pc = &OMP_CLAUSE_CHAIN (c);
          continue;
          continue;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
 
 
      if (!remove)
      if (!remove)
        {
        {
          t = OMP_CLAUSE_DECL (c);
          t = OMP_CLAUSE_DECL (c);
 
 
          if (need_complete)
          if (need_complete)
            {
            {
              t = require_complete_type (t);
              t = require_complete_type (t);
              if (t == error_mark_node)
              if (t == error_mark_node)
                remove = true;
                remove = true;
            }
            }
 
 
          if (need_implicitly_determined)
          if (need_implicitly_determined)
            {
            {
              const char *share_name = NULL;
              const char *share_name = NULL;
 
 
              if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
              if (TREE_CODE (t) == VAR_DECL && DECL_THREAD_LOCAL_P (t))
                share_name = "threadprivate";
                share_name = "threadprivate";
              else switch (c_omp_predetermined_sharing (t))
              else switch (c_omp_predetermined_sharing (t))
                {
                {
                case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
                case OMP_CLAUSE_DEFAULT_UNSPECIFIED:
                  break;
                  break;
                case OMP_CLAUSE_DEFAULT_SHARED:
                case OMP_CLAUSE_DEFAULT_SHARED:
                  share_name = "shared";
                  share_name = "shared";
                  break;
                  break;
                case OMP_CLAUSE_DEFAULT_PRIVATE:
                case OMP_CLAUSE_DEFAULT_PRIVATE:
                  share_name = "private";
                  share_name = "private";
                  break;
                  break;
                default:
                default:
                  gcc_unreachable ();
                  gcc_unreachable ();
                }
                }
              if (share_name)
              if (share_name)
                {
                {
                  error ("%qE is predetermined %qs for %qs",
                  error ("%qE is predetermined %qs for %qs",
                         t, share_name, name);
                         t, share_name, name);
                  remove = true;
                  remove = true;
                }
                }
            }
            }
        }
        }
 
 
      if (remove)
      if (remove)
        *pc = OMP_CLAUSE_CHAIN (c);
        *pc = OMP_CLAUSE_CHAIN (c);
      else
      else
        pc = &OMP_CLAUSE_CHAIN (c);
        pc = &OMP_CLAUSE_CHAIN (c);
    }
    }
 
 
  bitmap_obstack_release (NULL);
  bitmap_obstack_release (NULL);
  return clauses;
  return clauses;
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.