OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [cfgbuild.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Control flow graph building code for GNU compiler.
/* Control flow graph building code for GNU compiler.
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
/* find_basic_blocks divides the current function's rtl into basic
/* find_basic_blocks divides the current function's rtl into basic
   blocks and constructs the CFG.  The blocks are recorded in the
   blocks and constructs the CFG.  The blocks are recorded in the
   basic_block_info array; the CFG exists in the edge structures
   basic_block_info array; the CFG exists in the edge structures
   referenced by the blocks.
   referenced by the blocks.
 
 
   find_basic_blocks also finds any unreachable loops and deletes them.
   find_basic_blocks also finds any unreachable loops and deletes them.
 
 
   Available functionality:
   Available functionality:
     - CFG construction
     - CFG construction
         find_basic_blocks  */
         find_basic_blocks  */


#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "tree.h"
#include "tree.h"
#include "rtl.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "basic-block.h"
#include "regs.h"
#include "regs.h"
#include "flags.h"
#include "flags.h"
#include "output.h"
#include "output.h"
#include "function.h"
#include "function.h"
#include "except.h"
#include "except.h"
#include "toplev.h"
#include "toplev.h"
#include "timevar.h"
#include "timevar.h"
 
 
static int count_basic_blocks (rtx);
static int count_basic_blocks (rtx);
static void find_basic_blocks_1 (rtx);
static void find_basic_blocks_1 (rtx);
static void make_edges (basic_block, basic_block, int);
static void make_edges (basic_block, basic_block, int);
static void make_label_edge (sbitmap, basic_block, rtx, int);
static void make_label_edge (sbitmap, basic_block, rtx, int);
static void find_bb_boundaries (basic_block);
static void find_bb_boundaries (basic_block);
static void compute_outgoing_frequencies (basic_block);
static void compute_outgoing_frequencies (basic_block);


/* Return true if insn is something that should be contained inside basic
/* Return true if insn is something that should be contained inside basic
   block.  */
   block.  */
 
 
bool
bool
inside_basic_block_p (rtx insn)
inside_basic_block_p (rtx insn)
{
{
  switch (GET_CODE (insn))
  switch (GET_CODE (insn))
    {
    {
    case CODE_LABEL:
    case CODE_LABEL:
      /* Avoid creating of basic block for jumptables.  */
      /* Avoid creating of basic block for jumptables.  */
      return (NEXT_INSN (insn) == 0
      return (NEXT_INSN (insn) == 0
              || !JUMP_P (NEXT_INSN (insn))
              || !JUMP_P (NEXT_INSN (insn))
              || (GET_CODE (PATTERN (NEXT_INSN (insn))) != ADDR_VEC
              || (GET_CODE (PATTERN (NEXT_INSN (insn))) != ADDR_VEC
                  && GET_CODE (PATTERN (NEXT_INSN (insn))) != ADDR_DIFF_VEC));
                  && GET_CODE (PATTERN (NEXT_INSN (insn))) != ADDR_DIFF_VEC));
 
 
    case JUMP_INSN:
    case JUMP_INSN:
      return (GET_CODE (PATTERN (insn)) != ADDR_VEC
      return (GET_CODE (PATTERN (insn)) != ADDR_VEC
              && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC);
              && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC);
 
 
    case CALL_INSN:
    case CALL_INSN:
    case INSN:
    case INSN:
      return true;
      return true;
 
 
    case BARRIER:
    case BARRIER:
    case NOTE:
    case NOTE:
      return false;
      return false;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Return true if INSN may cause control flow transfer, so it should be last in
/* Return true if INSN may cause control flow transfer, so it should be last in
   the basic block.  */
   the basic block.  */
 
 
bool
bool
control_flow_insn_p (rtx insn)
control_flow_insn_p (rtx insn)
{
{
  rtx note;
  rtx note;
 
 
  switch (GET_CODE (insn))
  switch (GET_CODE (insn))
    {
    {
    case NOTE:
    case NOTE:
    case CODE_LABEL:
    case CODE_LABEL:
      return false;
      return false;
 
 
    case JUMP_INSN:
    case JUMP_INSN:
      /* Jump insn always causes control transfer except for tablejumps.  */
      /* Jump insn always causes control transfer except for tablejumps.  */
      return (GET_CODE (PATTERN (insn)) != ADDR_VEC
      return (GET_CODE (PATTERN (insn)) != ADDR_VEC
              && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC);
              && GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC);
 
 
    case CALL_INSN:
    case CALL_INSN:
      /* Noreturn and sibling call instructions terminate the basic blocks
      /* Noreturn and sibling call instructions terminate the basic blocks
         (but only if they happen unconditionally).  */
         (but only if they happen unconditionally).  */
      if ((SIBLING_CALL_P (insn)
      if ((SIBLING_CALL_P (insn)
           || find_reg_note (insn, REG_NORETURN, 0))
           || find_reg_note (insn, REG_NORETURN, 0))
          && GET_CODE (PATTERN (insn)) != COND_EXEC)
          && GET_CODE (PATTERN (insn)) != COND_EXEC)
        return true;
        return true;
      /* Call insn may return to the nonlocal goto handler.  */
      /* Call insn may return to the nonlocal goto handler.  */
      return ((nonlocal_goto_handler_labels
      return ((nonlocal_goto_handler_labels
               && (0 == (note = find_reg_note (insn, REG_EH_REGION,
               && (0 == (note = find_reg_note (insn, REG_EH_REGION,
                                               NULL_RTX))
                                               NULL_RTX))
                   || INTVAL (XEXP (note, 0)) >= 0))
                   || INTVAL (XEXP (note, 0)) >= 0))
              /* Or may trap.  */
              /* Or may trap.  */
              || can_throw_internal (insn));
              || can_throw_internal (insn));
 
 
    case INSN:
    case INSN:
      /* Treat trap instructions like noreturn calls (same provision).  */
      /* Treat trap instructions like noreturn calls (same provision).  */
      if (GET_CODE (PATTERN (insn)) == TRAP_IF
      if (GET_CODE (PATTERN (insn)) == TRAP_IF
          && XEXP (PATTERN (insn), 0) == const1_rtx)
          && XEXP (PATTERN (insn), 0) == const1_rtx)
        return true;
        return true;
 
 
      return (flag_non_call_exceptions && can_throw_internal (insn));
      return (flag_non_call_exceptions && can_throw_internal (insn));
 
 
    case BARRIER:
    case BARRIER:
      /* It is nonsense to reach barrier when looking for the
      /* It is nonsense to reach barrier when looking for the
         end of basic block, but before dead code is eliminated
         end of basic block, but before dead code is eliminated
         this may happen.  */
         this may happen.  */
      return false;
      return false;
 
 
    default:
    default:
      gcc_unreachable ();
      gcc_unreachable ();
    }
    }
}
}
 
 
/* Count the basic blocks of the function.  */
/* Count the basic blocks of the function.  */
 
 
static int
static int
count_basic_blocks (rtx f)
count_basic_blocks (rtx f)
{
{
  int count = NUM_FIXED_BLOCKS;
  int count = NUM_FIXED_BLOCKS;
  bool saw_insn = false;
  bool saw_insn = false;
  rtx insn;
  rtx insn;
 
 
  for (insn = f; insn; insn = NEXT_INSN (insn))
  for (insn = f; insn; insn = NEXT_INSN (insn))
    {
    {
      /* Code labels and barriers causes current basic block to be
      /* Code labels and barriers causes current basic block to be
         terminated at previous real insn.  */
         terminated at previous real insn.  */
      if ((LABEL_P (insn) || BARRIER_P (insn))
      if ((LABEL_P (insn) || BARRIER_P (insn))
          && saw_insn)
          && saw_insn)
        count++, saw_insn = false;
        count++, saw_insn = false;
 
 
      /* Start basic block if needed.  */
      /* Start basic block if needed.  */
      if (!saw_insn && inside_basic_block_p (insn))
      if (!saw_insn && inside_basic_block_p (insn))
        saw_insn = true;
        saw_insn = true;
 
 
      /* Control flow insn causes current basic block to be terminated.  */
      /* Control flow insn causes current basic block to be terminated.  */
      if (saw_insn && control_flow_insn_p (insn))
      if (saw_insn && control_flow_insn_p (insn))
        count++, saw_insn = false;
        count++, saw_insn = false;
    }
    }
 
 
  if (saw_insn)
  if (saw_insn)
    count++;
    count++;
 
 
  /* The rest of the compiler works a bit smoother when we don't have to
  /* The rest of the compiler works a bit smoother when we don't have to
     check for the edge case of do-nothing functions with no basic blocks.  */
     check for the edge case of do-nothing functions with no basic blocks.  */
  if (count == NUM_FIXED_BLOCKS)
  if (count == NUM_FIXED_BLOCKS)
    {
    {
      emit_insn (gen_rtx_USE (VOIDmode, const0_rtx));
      emit_insn (gen_rtx_USE (VOIDmode, const0_rtx));
      count = NUM_FIXED_BLOCKS + 1;
      count = NUM_FIXED_BLOCKS + 1;
    }
    }
 
 
  return count;
  return count;
}
}


/* Create an edge between two basic blocks.  FLAGS are auxiliary information
/* Create an edge between two basic blocks.  FLAGS are auxiliary information
   about the edge that is accumulated between calls.  */
   about the edge that is accumulated between calls.  */
 
 
/* Create an edge from a basic block to a label.  */
/* Create an edge from a basic block to a label.  */
 
 
static void
static void
make_label_edge (sbitmap edge_cache, basic_block src, rtx label, int flags)
make_label_edge (sbitmap edge_cache, basic_block src, rtx label, int flags)
{
{
  gcc_assert (LABEL_P (label));
  gcc_assert (LABEL_P (label));
 
 
  /* If the label was never emitted, this insn is junk, but avoid a
  /* If the label was never emitted, this insn is junk, but avoid a
     crash trying to refer to BLOCK_FOR_INSN (label).  This can happen
     crash trying to refer to BLOCK_FOR_INSN (label).  This can happen
     as a result of a syntax error and a diagnostic has already been
     as a result of a syntax error and a diagnostic has already been
     printed.  */
     printed.  */
 
 
  if (INSN_UID (label) == 0)
  if (INSN_UID (label) == 0)
    return;
    return;
 
 
  cached_make_edge (edge_cache, src, BLOCK_FOR_INSN (label), flags);
  cached_make_edge (edge_cache, src, BLOCK_FOR_INSN (label), flags);
}
}
 
 
/* Create the edges generated by INSN in REGION.  */
/* Create the edges generated by INSN in REGION.  */
 
 
void
void
rtl_make_eh_edge (sbitmap edge_cache, basic_block src, rtx insn)
rtl_make_eh_edge (sbitmap edge_cache, basic_block src, rtx insn)
{
{
  int is_call = CALL_P (insn) ? EDGE_ABNORMAL_CALL : 0;
  int is_call = CALL_P (insn) ? EDGE_ABNORMAL_CALL : 0;
  rtx handlers, i;
  rtx handlers, i;
 
 
  handlers = reachable_handlers (insn);
  handlers = reachable_handlers (insn);
 
 
  for (i = handlers; i; i = XEXP (i, 1))
  for (i = handlers; i; i = XEXP (i, 1))
    make_label_edge (edge_cache, src, XEXP (i, 0),
    make_label_edge (edge_cache, src, XEXP (i, 0),
                     EDGE_ABNORMAL | EDGE_EH | is_call);
                     EDGE_ABNORMAL | EDGE_EH | is_call);
 
 
  free_INSN_LIST_list (&handlers);
  free_INSN_LIST_list (&handlers);
}
}
 
 
/* States of basic block as seen by find_many_sub_basic_blocks.  */
/* States of basic block as seen by find_many_sub_basic_blocks.  */
enum state {
enum state {
  /* Basic blocks created via split_block belong to this state.
  /* Basic blocks created via split_block belong to this state.
     make_edges will examine these basic blocks to see if we need to
     make_edges will examine these basic blocks to see if we need to
     create edges going out of them.  */
     create edges going out of them.  */
  BLOCK_NEW = 0,
  BLOCK_NEW = 0,
 
 
  /* Basic blocks that do not need examining belong to this state.
  /* Basic blocks that do not need examining belong to this state.
     These blocks will be left intact.  In particular, make_edges will
     These blocks will be left intact.  In particular, make_edges will
     not create edges going out of these basic blocks.  */
     not create edges going out of these basic blocks.  */
  BLOCK_ORIGINAL,
  BLOCK_ORIGINAL,
 
 
  /* Basic blocks that may need splitting (due to a label appearing in
  /* Basic blocks that may need splitting (due to a label appearing in
     the middle, etc) belong to this state.  After splitting them,
     the middle, etc) belong to this state.  After splitting them,
     make_edges will create edges going out of them as needed.  */
     make_edges will create edges going out of them as needed.  */
  BLOCK_TO_SPLIT
  BLOCK_TO_SPLIT
};
};
 
 
#define STATE(BB) (enum state) ((size_t) (BB)->aux)
#define STATE(BB) (enum state) ((size_t) (BB)->aux)
#define SET_STATE(BB, STATE) ((BB)->aux = (void *) (size_t) (STATE))
#define SET_STATE(BB, STATE) ((BB)->aux = (void *) (size_t) (STATE))
 
 
/* Used internally by purge_dead_tablejump_edges, ORed into state.  */
/* Used internally by purge_dead_tablejump_edges, ORed into state.  */
#define BLOCK_USED_BY_TABLEJUMP         32
#define BLOCK_USED_BY_TABLEJUMP         32
#define FULL_STATE(BB) ((size_t) (BB)->aux)
#define FULL_STATE(BB) ((size_t) (BB)->aux)
 
 
/* Identify the edges going out of basic blocks between MIN and MAX,
/* Identify the edges going out of basic blocks between MIN and MAX,
   inclusive, that have their states set to BLOCK_NEW or
   inclusive, that have their states set to BLOCK_NEW or
   BLOCK_TO_SPLIT.
   BLOCK_TO_SPLIT.
 
 
   UPDATE_P should be nonzero if we are updating CFG and zero if we
   UPDATE_P should be nonzero if we are updating CFG and zero if we
   are building CFG from scratch.  */
   are building CFG from scratch.  */
 
 
static void
static void
make_edges (basic_block min, basic_block max, int update_p)
make_edges (basic_block min, basic_block max, int update_p)
{
{
  basic_block bb;
  basic_block bb;
  sbitmap edge_cache = NULL;
  sbitmap edge_cache = NULL;
 
 
  /* Heavy use of computed goto in machine-generated code can lead to
  /* Heavy use of computed goto in machine-generated code can lead to
     nearly fully-connected CFGs.  In that case we spend a significant
     nearly fully-connected CFGs.  In that case we spend a significant
     amount of time searching the edge lists for duplicates.  */
     amount of time searching the edge lists for duplicates.  */
  if (forced_labels || cfun->max_jumptable_ents > 100)
  if (forced_labels || cfun->max_jumptable_ents > 100)
    edge_cache = sbitmap_alloc (last_basic_block);
    edge_cache = sbitmap_alloc (last_basic_block);
 
 
  /* By nature of the way these get numbered, ENTRY_BLOCK_PTR->next_bb block
  /* By nature of the way these get numbered, ENTRY_BLOCK_PTR->next_bb block
     is always the entry.  */
     is always the entry.  */
  if (min == ENTRY_BLOCK_PTR->next_bb)
  if (min == ENTRY_BLOCK_PTR->next_bb)
    make_edge (ENTRY_BLOCK_PTR, min, EDGE_FALLTHRU);
    make_edge (ENTRY_BLOCK_PTR, min, EDGE_FALLTHRU);
 
 
  FOR_BB_BETWEEN (bb, min, max->next_bb, next_bb)
  FOR_BB_BETWEEN (bb, min, max->next_bb, next_bb)
    {
    {
      rtx insn, x;
      rtx insn, x;
      enum rtx_code code;
      enum rtx_code code;
      edge e;
      edge e;
      edge_iterator ei;
      edge_iterator ei;
 
 
      if (STATE (bb) == BLOCK_ORIGINAL)
      if (STATE (bb) == BLOCK_ORIGINAL)
        continue;
        continue;
 
 
      /* If we have an edge cache, cache edges going out of BB.  */
      /* If we have an edge cache, cache edges going out of BB.  */
      if (edge_cache)
      if (edge_cache)
        {
        {
          sbitmap_zero (edge_cache);
          sbitmap_zero (edge_cache);
          if (update_p)
          if (update_p)
            {
            {
              FOR_EACH_EDGE (e, ei, bb->succs)
              FOR_EACH_EDGE (e, ei, bb->succs)
                if (e->dest != EXIT_BLOCK_PTR)
                if (e->dest != EXIT_BLOCK_PTR)
                  SET_BIT (edge_cache, e->dest->index);
                  SET_BIT (edge_cache, e->dest->index);
            }
            }
        }
        }
 
 
      if (LABEL_P (BB_HEAD (bb))
      if (LABEL_P (BB_HEAD (bb))
          && LABEL_ALT_ENTRY_P (BB_HEAD (bb)))
          && LABEL_ALT_ENTRY_P (BB_HEAD (bb)))
        cached_make_edge (NULL, ENTRY_BLOCK_PTR, bb, 0);
        cached_make_edge (NULL, ENTRY_BLOCK_PTR, bb, 0);
 
 
      /* Examine the last instruction of the block, and discover the
      /* Examine the last instruction of the block, and discover the
         ways we can leave the block.  */
         ways we can leave the block.  */
 
 
      insn = BB_END (bb);
      insn = BB_END (bb);
      code = GET_CODE (insn);
      code = GET_CODE (insn);
 
 
      /* A branch.  */
      /* A branch.  */
      if (code == JUMP_INSN)
      if (code == JUMP_INSN)
        {
        {
          rtx tmp;
          rtx tmp;
 
 
          /* Recognize exception handling placeholders.  */
          /* Recognize exception handling placeholders.  */
          if (GET_CODE (PATTERN (insn)) == RESX)
          if (GET_CODE (PATTERN (insn)) == RESX)
            rtl_make_eh_edge (edge_cache, bb, insn);
            rtl_make_eh_edge (edge_cache, bb, insn);
 
 
          /* Recognize a non-local goto as a branch outside the
          /* Recognize a non-local goto as a branch outside the
             current function.  */
             current function.  */
          else if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
          else if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
            ;
            ;
 
 
          /* Recognize a tablejump and do the right thing.  */
          /* Recognize a tablejump and do the right thing.  */
          else if (tablejump_p (insn, NULL, &tmp))
          else if (tablejump_p (insn, NULL, &tmp))
            {
            {
              rtvec vec;
              rtvec vec;
              int j;
              int j;
 
 
              if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
              if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
                vec = XVEC (PATTERN (tmp), 0);
                vec = XVEC (PATTERN (tmp), 0);
              else
              else
                vec = XVEC (PATTERN (tmp), 1);
                vec = XVEC (PATTERN (tmp), 1);
 
 
              for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
              for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
                make_label_edge (edge_cache, bb,
                make_label_edge (edge_cache, bb,
                                 XEXP (RTVEC_ELT (vec, j), 0), 0);
                                 XEXP (RTVEC_ELT (vec, j), 0), 0);
 
 
              /* Some targets (eg, ARM) emit a conditional jump that also
              /* Some targets (eg, ARM) emit a conditional jump that also
                 contains the out-of-range target.  Scan for these and
                 contains the out-of-range target.  Scan for these and
                 add an edge if necessary.  */
                 add an edge if necessary.  */
              if ((tmp = single_set (insn)) != NULL
              if ((tmp = single_set (insn)) != NULL
                  && SET_DEST (tmp) == pc_rtx
                  && SET_DEST (tmp) == pc_rtx
                  && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
                  && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
                  && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
                  && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
                make_label_edge (edge_cache, bb,
                make_label_edge (edge_cache, bb,
                                 XEXP (XEXP (SET_SRC (tmp), 2), 0), 0);
                                 XEXP (XEXP (SET_SRC (tmp), 2), 0), 0);
            }
            }
 
 
          /* If this is a computed jump, then mark it as reaching
          /* If this is a computed jump, then mark it as reaching
             everything on the forced_labels list.  */
             everything on the forced_labels list.  */
          else if (computed_jump_p (insn))
          else if (computed_jump_p (insn))
            {
            {
              for (x = forced_labels; x; x = XEXP (x, 1))
              for (x = forced_labels; x; x = XEXP (x, 1))
                make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
                make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
            }
            }
 
 
          /* Returns create an exit out.  */
          /* Returns create an exit out.  */
          else if (returnjump_p (insn))
          else if (returnjump_p (insn))
            cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, 0);
            cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, 0);
 
 
          /* Otherwise, we have a plain conditional or unconditional jump.  */
          /* Otherwise, we have a plain conditional or unconditional jump.  */
          else
          else
            {
            {
              gcc_assert (JUMP_LABEL (insn));
              gcc_assert (JUMP_LABEL (insn));
              make_label_edge (edge_cache, bb, JUMP_LABEL (insn), 0);
              make_label_edge (edge_cache, bb, JUMP_LABEL (insn), 0);
            }
            }
        }
        }
 
 
      /* If this is a sibling call insn, then this is in effect a combined call
      /* If this is a sibling call insn, then this is in effect a combined call
         and return, and so we need an edge to the exit block.  No need to
         and return, and so we need an edge to the exit block.  No need to
         worry about EH edges, since we wouldn't have created the sibling call
         worry about EH edges, since we wouldn't have created the sibling call
         in the first place.  */
         in the first place.  */
      if (code == CALL_INSN && SIBLING_CALL_P (insn))
      if (code == CALL_INSN && SIBLING_CALL_P (insn))
        cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR,
        cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR,
                          EDGE_SIBCALL | EDGE_ABNORMAL);
                          EDGE_SIBCALL | EDGE_ABNORMAL);
 
 
      /* If this is a CALL_INSN, then mark it as reaching the active EH
      /* If this is a CALL_INSN, then mark it as reaching the active EH
         handler for this CALL_INSN.  If we're handling non-call
         handler for this CALL_INSN.  If we're handling non-call
         exceptions then any insn can reach any of the active handlers.
         exceptions then any insn can reach any of the active handlers.
         Also mark the CALL_INSN as reaching any nonlocal goto handler.  */
         Also mark the CALL_INSN as reaching any nonlocal goto handler.  */
      else if (code == CALL_INSN || flag_non_call_exceptions)
      else if (code == CALL_INSN || flag_non_call_exceptions)
        {
        {
          /* Add any appropriate EH edges.  */
          /* Add any appropriate EH edges.  */
          rtl_make_eh_edge (edge_cache, bb, insn);
          rtl_make_eh_edge (edge_cache, bb, insn);
 
 
          if (code == CALL_INSN && nonlocal_goto_handler_labels)
          if (code == CALL_INSN && nonlocal_goto_handler_labels)
            {
            {
              /* ??? This could be made smarter: in some cases it's possible
              /* ??? This could be made smarter: in some cases it's possible
                 to tell that certain calls will not do a nonlocal goto.
                 to tell that certain calls will not do a nonlocal goto.
                 For example, if the nested functions that do the nonlocal
                 For example, if the nested functions that do the nonlocal
                 gotos do not have their addresses taken, then only calls to
                 gotos do not have their addresses taken, then only calls to
                 those functions or to other nested functions that use them
                 those functions or to other nested functions that use them
                 could possibly do nonlocal gotos.  */
                 could possibly do nonlocal gotos.  */
 
 
              /* We do know that a REG_EH_REGION note with a value less
              /* We do know that a REG_EH_REGION note with a value less
                 than 0 is guaranteed not to perform a non-local goto.  */
                 than 0 is guaranteed not to perform a non-local goto.  */
              rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
              rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
 
 
              if (!note || INTVAL (XEXP (note, 0)) >=  0)
              if (!note || INTVAL (XEXP (note, 0)) >=  0)
                for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
                for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
                  make_label_edge (edge_cache, bb, XEXP (x, 0),
                  make_label_edge (edge_cache, bb, XEXP (x, 0),
                                   EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
                                   EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
            }
            }
        }
        }
 
 
      /* Find out if we can drop through to the next block.  */
      /* Find out if we can drop through to the next block.  */
      insn = NEXT_INSN (insn);
      insn = NEXT_INSN (insn);
      e = find_edge (bb, EXIT_BLOCK_PTR);
      e = find_edge (bb, EXIT_BLOCK_PTR);
      if (e && e->flags & EDGE_FALLTHRU)
      if (e && e->flags & EDGE_FALLTHRU)
        insn = NULL;
        insn = NULL;
 
 
      while (insn
      while (insn
             && NOTE_P (insn)
             && NOTE_P (insn)
             && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
             && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
        insn = NEXT_INSN (insn);
        insn = NEXT_INSN (insn);
 
 
      if (!insn)
      if (!insn)
        cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
        cached_make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
      else if (bb->next_bb != EXIT_BLOCK_PTR)
      else if (bb->next_bb != EXIT_BLOCK_PTR)
        {
        {
          if (insn == BB_HEAD (bb->next_bb))
          if (insn == BB_HEAD (bb->next_bb))
            cached_make_edge (edge_cache, bb, bb->next_bb, EDGE_FALLTHRU);
            cached_make_edge (edge_cache, bb, bb->next_bb, EDGE_FALLTHRU);
        }
        }
    }
    }
 
 
  if (edge_cache)
  if (edge_cache)
    sbitmap_vector_free (edge_cache);
    sbitmap_vector_free (edge_cache);
}
}


/* Find all basic blocks of the function whose first insn is F.
/* Find all basic blocks of the function whose first insn is F.
 
 
   Collect and return a list of labels whose addresses are taken.  This
   Collect and return a list of labels whose addresses are taken.  This
   will be used in make_edges for use with computed gotos.  */
   will be used in make_edges for use with computed gotos.  */
 
 
static void
static void
find_basic_blocks_1 (rtx f)
find_basic_blocks_1 (rtx f)
{
{
  rtx insn, next;
  rtx insn, next;
  rtx bb_note = NULL_RTX;
  rtx bb_note = NULL_RTX;
  rtx head = NULL_RTX;
  rtx head = NULL_RTX;
  rtx end = NULL_RTX;
  rtx end = NULL_RTX;
  basic_block prev = ENTRY_BLOCK_PTR;
  basic_block prev = ENTRY_BLOCK_PTR;
 
 
  /* We process the instructions in a slightly different way than we did
  /* We process the instructions in a slightly different way than we did
     previously.  This is so that we see a NOTE_BASIC_BLOCK after we have
     previously.  This is so that we see a NOTE_BASIC_BLOCK after we have
     closed out the previous block, so that it gets attached at the proper
     closed out the previous block, so that it gets attached at the proper
     place.  Since this form should be equivalent to the previous,
     place.  Since this form should be equivalent to the previous,
     count_basic_blocks continues to use the old form as a check.  */
     count_basic_blocks continues to use the old form as a check.  */
 
 
  for (insn = f; insn; insn = next)
  for (insn = f; insn; insn = next)
    {
    {
      enum rtx_code code = GET_CODE (insn);
      enum rtx_code code = GET_CODE (insn);
 
 
      next = NEXT_INSN (insn);
      next = NEXT_INSN (insn);
 
 
      if ((LABEL_P (insn) || BARRIER_P (insn))
      if ((LABEL_P (insn) || BARRIER_P (insn))
          && head)
          && head)
        {
        {
          prev = create_basic_block_structure (head, end, bb_note, prev);
          prev = create_basic_block_structure (head, end, bb_note, prev);
          head = end = NULL_RTX;
          head = end = NULL_RTX;
          bb_note = NULL_RTX;
          bb_note = NULL_RTX;
        }
        }
 
 
      if (inside_basic_block_p (insn))
      if (inside_basic_block_p (insn))
        {
        {
          if (head == NULL_RTX)
          if (head == NULL_RTX)
            head = insn;
            head = insn;
          end = insn;
          end = insn;
        }
        }
 
 
      if (head && control_flow_insn_p (insn))
      if (head && control_flow_insn_p (insn))
        {
        {
          prev = create_basic_block_structure (head, end, bb_note, prev);
          prev = create_basic_block_structure (head, end, bb_note, prev);
          head = end = NULL_RTX;
          head = end = NULL_RTX;
          bb_note = NULL_RTX;
          bb_note = NULL_RTX;
        }
        }
 
 
      switch (code)
      switch (code)
        {
        {
        case NOTE:
        case NOTE:
          {
          {
            int kind = NOTE_LINE_NUMBER (insn);
            int kind = NOTE_LINE_NUMBER (insn);
 
 
            /* Look for basic block notes with which to keep the
            /* Look for basic block notes with which to keep the
               basic_block_info pointers stable.  Unthread the note now;
               basic_block_info pointers stable.  Unthread the note now;
               we'll put it back at the right place in create_basic_block.
               we'll put it back at the right place in create_basic_block.
               Or not at all if we've already found a note in this block.  */
               Or not at all if we've already found a note in this block.  */
            if (kind == NOTE_INSN_BASIC_BLOCK)
            if (kind == NOTE_INSN_BASIC_BLOCK)
              {
              {
                if (bb_note == NULL_RTX)
                if (bb_note == NULL_RTX)
                  bb_note = insn;
                  bb_note = insn;
                else
                else
                  next = delete_insn (insn);
                  next = delete_insn (insn);
              }
              }
            break;
            break;
          }
          }
 
 
        case CODE_LABEL:
        case CODE_LABEL:
        case JUMP_INSN:
        case JUMP_INSN:
        case CALL_INSN:
        case CALL_INSN:
        case INSN:
        case INSN:
        case BARRIER:
        case BARRIER:
          break;
          break;
 
 
        default:
        default:
          gcc_unreachable ();
          gcc_unreachable ();
        }
        }
    }
    }
 
 
  if (head != NULL_RTX)
  if (head != NULL_RTX)
    create_basic_block_structure (head, end, bb_note, prev);
    create_basic_block_structure (head, end, bb_note, prev);
  else if (bb_note)
  else if (bb_note)
    delete_insn (bb_note);
    delete_insn (bb_note);
 
 
  gcc_assert (last_basic_block == n_basic_blocks);
  gcc_assert (last_basic_block == n_basic_blocks);
 
 
  clear_aux_for_blocks ();
  clear_aux_for_blocks ();
}
}
 
 
 
 
/* Find basic blocks of the current function.
/* Find basic blocks of the current function.
   F is the first insn of the function.  */
   F is the first insn of the function.  */
 
 
void
void
find_basic_blocks (rtx f)
find_basic_blocks (rtx f)
{
{
  basic_block bb;
  basic_block bb;
 
 
  timevar_push (TV_CFG);
  timevar_push (TV_CFG);
 
 
  /* Flush out existing data.  */
  /* Flush out existing data.  */
  if (basic_block_info != NULL)
  if (basic_block_info != NULL)
    {
    {
      clear_edges ();
      clear_edges ();
 
 
      /* Clear bb->aux on all extant basic blocks.  We'll use this as a
      /* Clear bb->aux on all extant basic blocks.  We'll use this as a
         tag for reuse during create_basic_block, just in case some pass
         tag for reuse during create_basic_block, just in case some pass
         copies around basic block notes improperly.  */
         copies around basic block notes improperly.  */
      FOR_EACH_BB (bb)
      FOR_EACH_BB (bb)
        bb->aux = NULL;
        bb->aux = NULL;
 
 
      basic_block_info = NULL;
      basic_block_info = NULL;
    }
    }
 
 
  n_basic_blocks = count_basic_blocks (f);
  n_basic_blocks = count_basic_blocks (f);
  last_basic_block = NUM_FIXED_BLOCKS;
  last_basic_block = NUM_FIXED_BLOCKS;
  ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
  ENTRY_BLOCK_PTR->next_bb = EXIT_BLOCK_PTR;
  EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
  EXIT_BLOCK_PTR->prev_bb = ENTRY_BLOCK_PTR;
 
 
 
 
  /* Size the basic block table.  The actual structures will be allocated
  /* Size the basic block table.  The actual structures will be allocated
     by find_basic_blocks_1, since we want to keep the structure pointers
     by find_basic_blocks_1, since we want to keep the structure pointers
     stable across calls to find_basic_blocks.  */
     stable across calls to find_basic_blocks.  */
  /* ??? This whole issue would be much simpler if we called find_basic_blocks
  /* ??? This whole issue would be much simpler if we called find_basic_blocks
     exactly once, and thereafter we don't have a single long chain of
     exactly once, and thereafter we don't have a single long chain of
     instructions at all until close to the end of compilation when we
     instructions at all until close to the end of compilation when we
     actually lay them out.  */
     actually lay them out.  */
 
 
  basic_block_info = VEC_alloc (basic_block, gc, n_basic_blocks);
  basic_block_info = VEC_alloc (basic_block, gc, n_basic_blocks);
  VEC_safe_grow (basic_block, gc, basic_block_info, n_basic_blocks);
  VEC_safe_grow (basic_block, gc, basic_block_info, n_basic_blocks);
  memset (VEC_address (basic_block, basic_block_info), 0,
  memset (VEC_address (basic_block, basic_block_info), 0,
          sizeof (basic_block) * n_basic_blocks);
          sizeof (basic_block) * n_basic_blocks);
  SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
  SET_BASIC_BLOCK (ENTRY_BLOCK, ENTRY_BLOCK_PTR);
  SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
  SET_BASIC_BLOCK (EXIT_BLOCK, EXIT_BLOCK_PTR);
 
 
  find_basic_blocks_1 (f);
  find_basic_blocks_1 (f);
 
 
  profile_status = PROFILE_ABSENT;
  profile_status = PROFILE_ABSENT;
 
 
  /* Tell make_edges to examine every block for out-going edges.  */
  /* Tell make_edges to examine every block for out-going edges.  */
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    SET_STATE (bb, BLOCK_NEW);
    SET_STATE (bb, BLOCK_NEW);
 
 
  /* Discover the edges of our cfg.  */
  /* Discover the edges of our cfg.  */
  make_edges (ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR->prev_bb, 0);
  make_edges (ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR->prev_bb, 0);
 
 
  /* Do very simple cleanup now, for the benefit of code that runs between
  /* Do very simple cleanup now, for the benefit of code that runs between
     here and cleanup_cfg, e.g. thread_prologue_and_epilogue_insns.  */
     here and cleanup_cfg, e.g. thread_prologue_and_epilogue_insns.  */
  tidy_fallthru_edges ();
  tidy_fallthru_edges ();
 
 
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  verify_flow_info ();
  verify_flow_info ();
#endif
#endif
  timevar_pop (TV_CFG);
  timevar_pop (TV_CFG);
}
}


static void
static void
mark_tablejump_edge (rtx label)
mark_tablejump_edge (rtx label)
{
{
  basic_block bb;
  basic_block bb;
 
 
  gcc_assert (LABEL_P (label));
  gcc_assert (LABEL_P (label));
  /* See comment in make_label_edge.  */
  /* See comment in make_label_edge.  */
  if (INSN_UID (label) == 0)
  if (INSN_UID (label) == 0)
    return;
    return;
  bb = BLOCK_FOR_INSN (label);
  bb = BLOCK_FOR_INSN (label);
  SET_STATE (bb, FULL_STATE (bb) | BLOCK_USED_BY_TABLEJUMP);
  SET_STATE (bb, FULL_STATE (bb) | BLOCK_USED_BY_TABLEJUMP);
}
}
 
 
static void
static void
purge_dead_tablejump_edges (basic_block bb, rtx table)
purge_dead_tablejump_edges (basic_block bb, rtx table)
{
{
  rtx insn = BB_END (bb), tmp;
  rtx insn = BB_END (bb), tmp;
  rtvec vec;
  rtvec vec;
  int j;
  int j;
  edge_iterator ei;
  edge_iterator ei;
  edge e;
  edge e;
 
 
  if (GET_CODE (PATTERN (table)) == ADDR_VEC)
  if (GET_CODE (PATTERN (table)) == ADDR_VEC)
    vec = XVEC (PATTERN (table), 0);
    vec = XVEC (PATTERN (table), 0);
  else
  else
    vec = XVEC (PATTERN (table), 1);
    vec = XVEC (PATTERN (table), 1);
 
 
  for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
  for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
    mark_tablejump_edge (XEXP (RTVEC_ELT (vec, j), 0));
    mark_tablejump_edge (XEXP (RTVEC_ELT (vec, j), 0));
 
 
  /* Some targets (eg, ARM) emit a conditional jump that also
  /* Some targets (eg, ARM) emit a conditional jump that also
     contains the out-of-range target.  Scan for these and
     contains the out-of-range target.  Scan for these and
     add an edge if necessary.  */
     add an edge if necessary.  */
  if ((tmp = single_set (insn)) != NULL
  if ((tmp = single_set (insn)) != NULL
       && SET_DEST (tmp) == pc_rtx
       && SET_DEST (tmp) == pc_rtx
       && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
       && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
       && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
       && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
    mark_tablejump_edge (XEXP (XEXP (SET_SRC (tmp), 2), 0));
    mark_tablejump_edge (XEXP (XEXP (SET_SRC (tmp), 2), 0));
 
 
  for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
  for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
    {
    {
      if (FULL_STATE (e->dest) & BLOCK_USED_BY_TABLEJUMP)
      if (FULL_STATE (e->dest) & BLOCK_USED_BY_TABLEJUMP)
        SET_STATE (e->dest, FULL_STATE (e->dest)
        SET_STATE (e->dest, FULL_STATE (e->dest)
                            & ~(size_t) BLOCK_USED_BY_TABLEJUMP);
                            & ~(size_t) BLOCK_USED_BY_TABLEJUMP);
      else if (!(e->flags & (EDGE_ABNORMAL | EDGE_EH)))
      else if (!(e->flags & (EDGE_ABNORMAL | EDGE_EH)))
        {
        {
          remove_edge (e);
          remove_edge (e);
          continue;
          continue;
        }
        }
      ei_next (&ei);
      ei_next (&ei);
    }
    }
}
}
 
 
/* Scan basic block BB for possible BB boundaries inside the block
/* Scan basic block BB for possible BB boundaries inside the block
   and create new basic blocks in the progress.  */
   and create new basic blocks in the progress.  */
 
 
static void
static void
find_bb_boundaries (basic_block bb)
find_bb_boundaries (basic_block bb)
{
{
  basic_block orig_bb = bb;
  basic_block orig_bb = bb;
  rtx insn = BB_HEAD (bb);
  rtx insn = BB_HEAD (bb);
  rtx end = BB_END (bb);
  rtx end = BB_END (bb);
  rtx table;
  rtx table;
  rtx flow_transfer_insn = NULL_RTX;
  rtx flow_transfer_insn = NULL_RTX;
  edge fallthru = NULL;
  edge fallthru = NULL;
 
 
  if (insn == BB_END (bb))
  if (insn == BB_END (bb))
    return;
    return;
 
 
  if (LABEL_P (insn))
  if (LABEL_P (insn))
    insn = NEXT_INSN (insn);
    insn = NEXT_INSN (insn);
 
 
  /* Scan insn chain and try to find new basic block boundaries.  */
  /* Scan insn chain and try to find new basic block boundaries.  */
  while (1)
  while (1)
    {
    {
      enum rtx_code code = GET_CODE (insn);
      enum rtx_code code = GET_CODE (insn);
 
 
      /* On code label, split current basic block.  */
      /* On code label, split current basic block.  */
      if (code == CODE_LABEL)
      if (code == CODE_LABEL)
        {
        {
          fallthru = split_block (bb, PREV_INSN (insn));
          fallthru = split_block (bb, PREV_INSN (insn));
          if (flow_transfer_insn)
          if (flow_transfer_insn)
            BB_END (bb) = flow_transfer_insn;
            BB_END (bb) = flow_transfer_insn;
 
 
          bb = fallthru->dest;
          bb = fallthru->dest;
          remove_edge (fallthru);
          remove_edge (fallthru);
          flow_transfer_insn = NULL_RTX;
          flow_transfer_insn = NULL_RTX;
          if (LABEL_ALT_ENTRY_P (insn))
          if (LABEL_ALT_ENTRY_P (insn))
            make_edge (ENTRY_BLOCK_PTR, bb, 0);
            make_edge (ENTRY_BLOCK_PTR, bb, 0);
        }
        }
 
 
      /* In case we've previously seen an insn that effects a control
      /* In case we've previously seen an insn that effects a control
         flow transfer, split the block.  */
         flow transfer, split the block.  */
      if (flow_transfer_insn && inside_basic_block_p (insn))
      if (flow_transfer_insn && inside_basic_block_p (insn))
        {
        {
          fallthru = split_block (bb, PREV_INSN (insn));
          fallthru = split_block (bb, PREV_INSN (insn));
          BB_END (bb) = flow_transfer_insn;
          BB_END (bb) = flow_transfer_insn;
          bb = fallthru->dest;
          bb = fallthru->dest;
          remove_edge (fallthru);
          remove_edge (fallthru);
          flow_transfer_insn = NULL_RTX;
          flow_transfer_insn = NULL_RTX;
        }
        }
 
 
      if (control_flow_insn_p (insn))
      if (control_flow_insn_p (insn))
        flow_transfer_insn = insn;
        flow_transfer_insn = insn;
      if (insn == end)
      if (insn == end)
        break;
        break;
      insn = NEXT_INSN (insn);
      insn = NEXT_INSN (insn);
    }
    }
 
 
  /* In case expander replaced normal insn by sequence terminating by
  /* In case expander replaced normal insn by sequence terminating by
     return and barrier, or possibly other sequence not behaving like
     return and barrier, or possibly other sequence not behaving like
     ordinary jump, we need to take care and move basic block boundary.  */
     ordinary jump, we need to take care and move basic block boundary.  */
  if (flow_transfer_insn)
  if (flow_transfer_insn)
    BB_END (bb) = flow_transfer_insn;
    BB_END (bb) = flow_transfer_insn;
 
 
  /* We've possibly replaced the conditional jump by conditional jump
  /* We've possibly replaced the conditional jump by conditional jump
     followed by cleanup at fallthru edge, so the outgoing edges may
     followed by cleanup at fallthru edge, so the outgoing edges may
     be dead.  */
     be dead.  */
  purge_dead_edges (bb);
  purge_dead_edges (bb);
 
 
  /* purge_dead_edges doesn't handle tablejump's, but if we have split the
  /* purge_dead_edges doesn't handle tablejump's, but if we have split the
     basic block, we might need to kill some edges.  */
     basic block, we might need to kill some edges.  */
  if (bb != orig_bb && tablejump_p (BB_END (bb), NULL, &table))
  if (bb != orig_bb && tablejump_p (BB_END (bb), NULL, &table))
    purge_dead_tablejump_edges (bb, table);
    purge_dead_tablejump_edges (bb, table);
}
}
 
 
/*  Assume that frequency of basic block B is known.  Compute frequencies
/*  Assume that frequency of basic block B is known.  Compute frequencies
    and probabilities of outgoing edges.  */
    and probabilities of outgoing edges.  */
 
 
static void
static void
compute_outgoing_frequencies (basic_block b)
compute_outgoing_frequencies (basic_block b)
{
{
  edge e, f;
  edge e, f;
  edge_iterator ei;
  edge_iterator ei;
 
 
  if (EDGE_COUNT (b->succs) == 2)
  if (EDGE_COUNT (b->succs) == 2)
    {
    {
      rtx note = find_reg_note (BB_END (b), REG_BR_PROB, NULL);
      rtx note = find_reg_note (BB_END (b), REG_BR_PROB, NULL);
      int probability;
      int probability;
 
 
      if (note)
      if (note)
        {
        {
          probability = INTVAL (XEXP (note, 0));
          probability = INTVAL (XEXP (note, 0));
          e = BRANCH_EDGE (b);
          e = BRANCH_EDGE (b);
          e->probability = probability;
          e->probability = probability;
          e->count = ((b->count * probability + REG_BR_PROB_BASE / 2)
          e->count = ((b->count * probability + REG_BR_PROB_BASE / 2)
                      / REG_BR_PROB_BASE);
                      / REG_BR_PROB_BASE);
          f = FALLTHRU_EDGE (b);
          f = FALLTHRU_EDGE (b);
          f->probability = REG_BR_PROB_BASE - probability;
          f->probability = REG_BR_PROB_BASE - probability;
          f->count = b->count - e->count;
          f->count = b->count - e->count;
          return;
          return;
        }
        }
    }
    }
 
 
  if (single_succ_p (b))
  if (single_succ_p (b))
    {
    {
      e = single_succ_edge (b);
      e = single_succ_edge (b);
      e->probability = REG_BR_PROB_BASE;
      e->probability = REG_BR_PROB_BASE;
      e->count = b->count;
      e->count = b->count;
      return;
      return;
    }
    }
  guess_outgoing_edge_probabilities (b);
  guess_outgoing_edge_probabilities (b);
  if (b->count)
  if (b->count)
    FOR_EACH_EDGE (e, ei, b->succs)
    FOR_EACH_EDGE (e, ei, b->succs)
      e->count = ((b->count * e->probability + REG_BR_PROB_BASE / 2)
      e->count = ((b->count * e->probability + REG_BR_PROB_BASE / 2)
                  / REG_BR_PROB_BASE);
                  / REG_BR_PROB_BASE);
}
}
 
 
/* Assume that some pass has inserted labels or control flow
/* Assume that some pass has inserted labels or control flow
   instructions within a basic block.  Split basic blocks as needed
   instructions within a basic block.  Split basic blocks as needed
   and create edges.  */
   and create edges.  */
 
 
void
void
find_many_sub_basic_blocks (sbitmap blocks)
find_many_sub_basic_blocks (sbitmap blocks)
{
{
  basic_block bb, min, max;
  basic_block bb, min, max;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    SET_STATE (bb,
    SET_STATE (bb,
               TEST_BIT (blocks, bb->index) ? BLOCK_TO_SPLIT : BLOCK_ORIGINAL);
               TEST_BIT (blocks, bb->index) ? BLOCK_TO_SPLIT : BLOCK_ORIGINAL);
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    if (STATE (bb) == BLOCK_TO_SPLIT)
    if (STATE (bb) == BLOCK_TO_SPLIT)
      find_bb_boundaries (bb);
      find_bb_boundaries (bb);
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    if (STATE (bb) != BLOCK_ORIGINAL)
    if (STATE (bb) != BLOCK_ORIGINAL)
      break;
      break;
 
 
  min = max = bb;
  min = max = bb;
  for (; bb != EXIT_BLOCK_PTR; bb = bb->next_bb)
  for (; bb != EXIT_BLOCK_PTR; bb = bb->next_bb)
    if (STATE (bb) != BLOCK_ORIGINAL)
    if (STATE (bb) != BLOCK_ORIGINAL)
      max = bb;
      max = bb;
 
 
  /* Now re-scan and wire in all edges.  This expect simple (conditional)
  /* Now re-scan and wire in all edges.  This expect simple (conditional)
     jumps at the end of each new basic blocks.  */
     jumps at the end of each new basic blocks.  */
  make_edges (min, max, 1);
  make_edges (min, max, 1);
 
 
  /* Update branch probabilities.  Expect only (un)conditional jumps
  /* Update branch probabilities.  Expect only (un)conditional jumps
     to be created with only the forward edges.  */
     to be created with only the forward edges.  */
  if (profile_status != PROFILE_ABSENT)
  if (profile_status != PROFILE_ABSENT)
    FOR_BB_BETWEEN (bb, min, max->next_bb, next_bb)
    FOR_BB_BETWEEN (bb, min, max->next_bb, next_bb)
      {
      {
        edge e;
        edge e;
        edge_iterator ei;
        edge_iterator ei;
 
 
        if (STATE (bb) == BLOCK_ORIGINAL)
        if (STATE (bb) == BLOCK_ORIGINAL)
          continue;
          continue;
        if (STATE (bb) == BLOCK_NEW)
        if (STATE (bb) == BLOCK_NEW)
          {
          {
            bb->count = 0;
            bb->count = 0;
            bb->frequency = 0;
            bb->frequency = 0;
            FOR_EACH_EDGE (e, ei, bb->preds)
            FOR_EACH_EDGE (e, ei, bb->preds)
              {
              {
                bb->count += e->count;
                bb->count += e->count;
                bb->frequency += EDGE_FREQUENCY (e);
                bb->frequency += EDGE_FREQUENCY (e);
              }
              }
          }
          }
 
 
        compute_outgoing_frequencies (bb);
        compute_outgoing_frequencies (bb);
      }
      }
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    SET_STATE (bb, 0);
    SET_STATE (bb, 0);
}
}
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.