OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [cfgexpand.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* A pass for lowering trees to RTL.
/* A pass for lowering trees to RTL.
   Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
   Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
the Free Software Foundation; either version 3, or (at your option)
any later version.
any later version.
 
 
GCC is distributed in the hope that it will be useful,
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
GNU General Public License for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "tree.h"
#include "tree.h"
#include "rtl.h"
#include "rtl.h"
#include "tm_p.h"
#include "tm_p.h"
#include "basic-block.h"
#include "basic-block.h"
#include "function.h"
#include "function.h"
#include "expr.h"
#include "expr.h"
#include "langhooks.h"
#include "langhooks.h"
#include "tree-flow.h"
#include "tree-flow.h"
#include "timevar.h"
#include "timevar.h"
#include "tree-dump.h"
#include "tree-dump.h"
#include "tree-pass.h"
#include "tree-pass.h"
#include "except.h"
#include "except.h"
#include "flags.h"
#include "flags.h"
#include "diagnostic.h"
#include "diagnostic.h"
#include "toplev.h"
#include "toplev.h"
#include "debug.h"
#include "debug.h"
#include "params.h"
#include "params.h"
 
 
/* Verify that there is exactly single jump instruction since last and attach
/* Verify that there is exactly single jump instruction since last and attach
   REG_BR_PROB note specifying probability.
   REG_BR_PROB note specifying probability.
   ??? We really ought to pass the probability down to RTL expanders and let it
   ??? We really ought to pass the probability down to RTL expanders and let it
   re-distribute it when the conditional expands into multiple conditionals.
   re-distribute it when the conditional expands into multiple conditionals.
   This is however difficult to do.  */
   This is however difficult to do.  */
static void
static void
add_reg_br_prob_note (rtx last, int probability)
add_reg_br_prob_note (rtx last, int probability)
{
{
  if (profile_status == PROFILE_ABSENT)
  if (profile_status == PROFILE_ABSENT)
    return;
    return;
  for (last = NEXT_INSN (last); last && NEXT_INSN (last); last = NEXT_INSN (last))
  for (last = NEXT_INSN (last); last && NEXT_INSN (last); last = NEXT_INSN (last))
    if (JUMP_P (last))
    if (JUMP_P (last))
      {
      {
        /* It is common to emit condjump-around-jump sequence when we don't know
        /* It is common to emit condjump-around-jump sequence when we don't know
           how to reverse the conditional.  Special case this.  */
           how to reverse the conditional.  Special case this.  */
        if (!any_condjump_p (last)
        if (!any_condjump_p (last)
            || !JUMP_P (NEXT_INSN (last))
            || !JUMP_P (NEXT_INSN (last))
            || !simplejump_p (NEXT_INSN (last))
            || !simplejump_p (NEXT_INSN (last))
            || !NEXT_INSN (NEXT_INSN (last))
            || !NEXT_INSN (NEXT_INSN (last))
            || !BARRIER_P (NEXT_INSN (NEXT_INSN (last)))
            || !BARRIER_P (NEXT_INSN (NEXT_INSN (last)))
            || !NEXT_INSN (NEXT_INSN (NEXT_INSN (last)))
            || !NEXT_INSN (NEXT_INSN (NEXT_INSN (last)))
            || !LABEL_P (NEXT_INSN (NEXT_INSN (NEXT_INSN (last))))
            || !LABEL_P (NEXT_INSN (NEXT_INSN (NEXT_INSN (last))))
            || NEXT_INSN (NEXT_INSN (NEXT_INSN (NEXT_INSN (last)))))
            || NEXT_INSN (NEXT_INSN (NEXT_INSN (NEXT_INSN (last)))))
          goto failed;
          goto failed;
        gcc_assert (!find_reg_note (last, REG_BR_PROB, 0));
        gcc_assert (!find_reg_note (last, REG_BR_PROB, 0));
        REG_NOTES (last)
        REG_NOTES (last)
          = gen_rtx_EXPR_LIST (REG_BR_PROB,
          = gen_rtx_EXPR_LIST (REG_BR_PROB,
                               GEN_INT (REG_BR_PROB_BASE - probability),
                               GEN_INT (REG_BR_PROB_BASE - probability),
                               REG_NOTES (last));
                               REG_NOTES (last));
        return;
        return;
      }
      }
  if (!last || !JUMP_P (last) || !any_condjump_p (last))
  if (!last || !JUMP_P (last) || !any_condjump_p (last))
    goto failed;
    goto failed;
  gcc_assert (!find_reg_note (last, REG_BR_PROB, 0));
  gcc_assert (!find_reg_note (last, REG_BR_PROB, 0));
  REG_NOTES (last)
  REG_NOTES (last)
    = gen_rtx_EXPR_LIST (REG_BR_PROB,
    = gen_rtx_EXPR_LIST (REG_BR_PROB,
                         GEN_INT (probability), REG_NOTES (last));
                         GEN_INT (probability), REG_NOTES (last));
  return;
  return;
failed:
failed:
  if (dump_file)
  if (dump_file)
    fprintf (dump_file, "Failed to add probability note\n");
    fprintf (dump_file, "Failed to add probability note\n");
}
}
 
 
 
 
#ifndef LOCAL_ALIGNMENT
#ifndef LOCAL_ALIGNMENT
#define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
#define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
#endif
#endif
 
 
#ifndef STACK_ALIGNMENT_NEEDED
#ifndef STACK_ALIGNMENT_NEEDED
#define STACK_ALIGNMENT_NEEDED 1
#define STACK_ALIGNMENT_NEEDED 1
#endif
#endif
 
 
 
 
/* This structure holds data relevant to one variable that will be
/* This structure holds data relevant to one variable that will be
   placed in a stack slot.  */
   placed in a stack slot.  */
struct stack_var
struct stack_var
{
{
  /* The Variable.  */
  /* The Variable.  */
  tree decl;
  tree decl;
 
 
  /* The offset of the variable.  During partitioning, this is the
  /* The offset of the variable.  During partitioning, this is the
     offset relative to the partition.  After partitioning, this
     offset relative to the partition.  After partitioning, this
     is relative to the stack frame.  */
     is relative to the stack frame.  */
  HOST_WIDE_INT offset;
  HOST_WIDE_INT offset;
 
 
  /* Initially, the size of the variable.  Later, the size of the partition,
  /* Initially, the size of the variable.  Later, the size of the partition,
     if this variable becomes it's partition's representative.  */
     if this variable becomes it's partition's representative.  */
  HOST_WIDE_INT size;
  HOST_WIDE_INT size;
 
 
  /* The *byte* alignment required for this variable.  Or as, with the
  /* The *byte* alignment required for this variable.  Or as, with the
     size, the alignment for this partition.  */
     size, the alignment for this partition.  */
  unsigned int alignb;
  unsigned int alignb;
 
 
  /* The partition representative.  */
  /* The partition representative.  */
  size_t representative;
  size_t representative;
 
 
  /* The next stack variable in the partition, or EOC.  */
  /* The next stack variable in the partition, or EOC.  */
  size_t next;
  size_t next;
};
};
 
 
#define EOC  ((size_t)-1)
#define EOC  ((size_t)-1)
 
 
/* We have an array of such objects while deciding allocation.  */
/* We have an array of such objects while deciding allocation.  */
static struct stack_var *stack_vars;
static struct stack_var *stack_vars;
static size_t stack_vars_alloc;
static size_t stack_vars_alloc;
static size_t stack_vars_num;
static size_t stack_vars_num;
 
 
/* An array of indicies such that stack_vars[stack_vars_sorted[i]].size
/* An array of indicies such that stack_vars[stack_vars_sorted[i]].size
   is non-decreasing.  */
   is non-decreasing.  */
static size_t *stack_vars_sorted;
static size_t *stack_vars_sorted;
 
 
/* We have an interference graph between such objects.  This graph
/* We have an interference graph between such objects.  This graph
   is lower triangular.  */
   is lower triangular.  */
static bool *stack_vars_conflict;
static bool *stack_vars_conflict;
static size_t stack_vars_conflict_alloc;
static size_t stack_vars_conflict_alloc;
 
 
/* The phase of the stack frame.  This is the known misalignment of
/* The phase of the stack frame.  This is the known misalignment of
   virtual_stack_vars_rtx from PREFERRED_STACK_BOUNDARY.  That is,
   virtual_stack_vars_rtx from PREFERRED_STACK_BOUNDARY.  That is,
   (frame_offset+frame_phase) % PREFERRED_STACK_BOUNDARY == 0.  */
   (frame_offset+frame_phase) % PREFERRED_STACK_BOUNDARY == 0.  */
static int frame_phase;
static int frame_phase;
 
 
/* Used during expand_used_vars to remember if we saw any decls for
/* Used during expand_used_vars to remember if we saw any decls for
   which we'd like to enable stack smashing protection.  */
   which we'd like to enable stack smashing protection.  */
static bool has_protected_decls;
static bool has_protected_decls;
 
 
/* Used during expand_used_vars.  Remember if we say a character buffer
/* Used during expand_used_vars.  Remember if we say a character buffer
   smaller than our cutoff threshold.  Used for -Wstack-protector.  */
   smaller than our cutoff threshold.  Used for -Wstack-protector.  */
static bool has_short_buffer;
static bool has_short_buffer;
 
 
/* Discover the byte alignment to use for DECL.  Ignore alignment
/* Discover the byte alignment to use for DECL.  Ignore alignment
   we can't do with expected alignment of the stack boundary.  */
   we can't do with expected alignment of the stack boundary.  */
 
 
static unsigned int
static unsigned int
get_decl_align_unit (tree decl)
get_decl_align_unit (tree decl)
{
{
  unsigned int align;
  unsigned int align;
 
 
  align = DECL_ALIGN (decl);
  align = DECL_ALIGN (decl);
  align = LOCAL_ALIGNMENT (TREE_TYPE (decl), align);
  align = LOCAL_ALIGNMENT (TREE_TYPE (decl), align);
  if (align > PREFERRED_STACK_BOUNDARY)
  if (align > PREFERRED_STACK_BOUNDARY)
    align = PREFERRED_STACK_BOUNDARY;
    align = PREFERRED_STACK_BOUNDARY;
  if (cfun->stack_alignment_needed < align)
  if (cfun->stack_alignment_needed < align)
    cfun->stack_alignment_needed = align;
    cfun->stack_alignment_needed = align;
 
 
  return align / BITS_PER_UNIT;
  return align / BITS_PER_UNIT;
}
}
 
 
/* Allocate SIZE bytes at byte alignment ALIGN from the stack frame.
/* Allocate SIZE bytes at byte alignment ALIGN from the stack frame.
   Return the frame offset.  */
   Return the frame offset.  */
 
 
static HOST_WIDE_INT
static HOST_WIDE_INT
alloc_stack_frame_space (HOST_WIDE_INT size, HOST_WIDE_INT align)
alloc_stack_frame_space (HOST_WIDE_INT size, HOST_WIDE_INT align)
{
{
  HOST_WIDE_INT offset, new_frame_offset;
  HOST_WIDE_INT offset, new_frame_offset;
 
 
  new_frame_offset = frame_offset;
  new_frame_offset = frame_offset;
  if (FRAME_GROWS_DOWNWARD)
  if (FRAME_GROWS_DOWNWARD)
    {
    {
      new_frame_offset -= size + frame_phase;
      new_frame_offset -= size + frame_phase;
      new_frame_offset &= -align;
      new_frame_offset &= -align;
      new_frame_offset += frame_phase;
      new_frame_offset += frame_phase;
      offset = new_frame_offset;
      offset = new_frame_offset;
    }
    }
  else
  else
    {
    {
      new_frame_offset -= frame_phase;
      new_frame_offset -= frame_phase;
      new_frame_offset += align - 1;
      new_frame_offset += align - 1;
      new_frame_offset &= -align;
      new_frame_offset &= -align;
      new_frame_offset += frame_phase;
      new_frame_offset += frame_phase;
      offset = new_frame_offset;
      offset = new_frame_offset;
      new_frame_offset += size;
      new_frame_offset += size;
    }
    }
  frame_offset = new_frame_offset;
  frame_offset = new_frame_offset;
 
 
  if (frame_offset_overflow (frame_offset, cfun->decl))
  if (frame_offset_overflow (frame_offset, cfun->decl))
    frame_offset = offset = 0;
    frame_offset = offset = 0;
 
 
  return offset;
  return offset;
}
}
 
 
/* Accumulate DECL into STACK_VARS.  */
/* Accumulate DECL into STACK_VARS.  */
 
 
static void
static void
add_stack_var (tree decl)
add_stack_var (tree decl)
{
{
  if (stack_vars_num >= stack_vars_alloc)
  if (stack_vars_num >= stack_vars_alloc)
    {
    {
      if (stack_vars_alloc)
      if (stack_vars_alloc)
        stack_vars_alloc = stack_vars_alloc * 3 / 2;
        stack_vars_alloc = stack_vars_alloc * 3 / 2;
      else
      else
        stack_vars_alloc = 32;
        stack_vars_alloc = 32;
      stack_vars
      stack_vars
        = XRESIZEVEC (struct stack_var, stack_vars, stack_vars_alloc);
        = XRESIZEVEC (struct stack_var, stack_vars, stack_vars_alloc);
    }
    }
  stack_vars[stack_vars_num].decl = decl;
  stack_vars[stack_vars_num].decl = decl;
  stack_vars[stack_vars_num].offset = 0;
  stack_vars[stack_vars_num].offset = 0;
  stack_vars[stack_vars_num].size = tree_low_cst (DECL_SIZE_UNIT (decl), 1);
  stack_vars[stack_vars_num].size = tree_low_cst (DECL_SIZE_UNIT (decl), 1);
  stack_vars[stack_vars_num].alignb = get_decl_align_unit (decl);
  stack_vars[stack_vars_num].alignb = get_decl_align_unit (decl);
 
 
  /* All variables are initially in their own partition.  */
  /* All variables are initially in their own partition.  */
  stack_vars[stack_vars_num].representative = stack_vars_num;
  stack_vars[stack_vars_num].representative = stack_vars_num;
  stack_vars[stack_vars_num].next = EOC;
  stack_vars[stack_vars_num].next = EOC;
 
 
  /* Ensure that this decl doesn't get put onto the list twice.  */
  /* Ensure that this decl doesn't get put onto the list twice.  */
  SET_DECL_RTL (decl, pc_rtx);
  SET_DECL_RTL (decl, pc_rtx);
 
 
  stack_vars_num++;
  stack_vars_num++;
}
}
 
 
/* Compute the linear index of a lower-triangular coordinate (I, J).  */
/* Compute the linear index of a lower-triangular coordinate (I, J).  */
 
 
static size_t
static size_t
triangular_index (size_t i, size_t j)
triangular_index (size_t i, size_t j)
{
{
  if (i < j)
  if (i < j)
    {
    {
      size_t t;
      size_t t;
      t = i, i = j, j = t;
      t = i, i = j, j = t;
    }
    }
  return (i * (i + 1)) / 2 + j;
  return (i * (i + 1)) / 2 + j;
}
}
 
 
/* Ensure that STACK_VARS_CONFLICT is large enough for N objects.  */
/* Ensure that STACK_VARS_CONFLICT is large enough for N objects.  */
 
 
static void
static void
resize_stack_vars_conflict (size_t n)
resize_stack_vars_conflict (size_t n)
{
{
  size_t size = triangular_index (n-1, n-1) + 1;
  size_t size = triangular_index (n-1, n-1) + 1;
 
 
  if (size <= stack_vars_conflict_alloc)
  if (size <= stack_vars_conflict_alloc)
    return;
    return;
 
 
  stack_vars_conflict = XRESIZEVEC (bool, stack_vars_conflict, size);
  stack_vars_conflict = XRESIZEVEC (bool, stack_vars_conflict, size);
  memset (stack_vars_conflict + stack_vars_conflict_alloc, 0,
  memset (stack_vars_conflict + stack_vars_conflict_alloc, 0,
          (size - stack_vars_conflict_alloc) * sizeof (bool));
          (size - stack_vars_conflict_alloc) * sizeof (bool));
  stack_vars_conflict_alloc = size;
  stack_vars_conflict_alloc = size;
}
}
 
 
/* Make the decls associated with luid's X and Y conflict.  */
/* Make the decls associated with luid's X and Y conflict.  */
 
 
static void
static void
add_stack_var_conflict (size_t x, size_t y)
add_stack_var_conflict (size_t x, size_t y)
{
{
  size_t index = triangular_index (x, y);
  size_t index = triangular_index (x, y);
  gcc_assert (index < stack_vars_conflict_alloc);
  gcc_assert (index < stack_vars_conflict_alloc);
  stack_vars_conflict[index] = true;
  stack_vars_conflict[index] = true;
}
}
 
 
/* Check whether the decls associated with luid's X and Y conflict.  */
/* Check whether the decls associated with luid's X and Y conflict.  */
 
 
static bool
static bool
stack_var_conflict_p (size_t x, size_t y)
stack_var_conflict_p (size_t x, size_t y)
{
{
  size_t index = triangular_index (x, y);
  size_t index = triangular_index (x, y);
  gcc_assert (index < stack_vars_conflict_alloc);
  gcc_assert (index < stack_vars_conflict_alloc);
  return stack_vars_conflict[index];
  return stack_vars_conflict[index];
}
}
 
 
/* Returns true if TYPE is or contains a union type.  */
/* Returns true if TYPE is or contains a union type.  */
 
 
static bool
static bool
aggregate_contains_union_type (tree type)
aggregate_contains_union_type (tree type)
{
{
  tree field;
  tree field;
 
 
  if (TREE_CODE (type) == UNION_TYPE
  if (TREE_CODE (type) == UNION_TYPE
      || TREE_CODE (type) == QUAL_UNION_TYPE)
      || TREE_CODE (type) == QUAL_UNION_TYPE)
    return true;
    return true;
  if (TREE_CODE (type) == ARRAY_TYPE)
  if (TREE_CODE (type) == ARRAY_TYPE)
    return aggregate_contains_union_type (TREE_TYPE (type));
    return aggregate_contains_union_type (TREE_TYPE (type));
  if (TREE_CODE (type) != RECORD_TYPE)
  if (TREE_CODE (type) != RECORD_TYPE)
    return false;
    return false;
 
 
  for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
  for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
    if (TREE_CODE (field) == FIELD_DECL)
    if (TREE_CODE (field) == FIELD_DECL)
      if (aggregate_contains_union_type (TREE_TYPE (field)))
      if (aggregate_contains_union_type (TREE_TYPE (field)))
        return true;
        return true;
 
 
  return false;
  return false;
}
}
 
 
/* A subroutine of expand_used_vars.  If two variables X and Y have alias
/* A subroutine of expand_used_vars.  If two variables X and Y have alias
   sets that do not conflict, then do add a conflict for these variables
   sets that do not conflict, then do add a conflict for these variables
   in the interference graph.  We also need to make sure to add conflicts
   in the interference graph.  We also need to make sure to add conflicts
   for union containing structures.  Else RTL alias analysis comes along
   for union containing structures.  Else RTL alias analysis comes along
   and due to type based aliasing rules decides that for two overlapping
   and due to type based aliasing rules decides that for two overlapping
   union temporaries { short s; int i; } accesses to the same mem through
   union temporaries { short s; int i; } accesses to the same mem through
   different types may not alias and happily reorders stores across
   different types may not alias and happily reorders stores across
   life-time boundaries of the temporaries (See PR25654).
   life-time boundaries of the temporaries (See PR25654).
   We also have to mind MEM_IN_STRUCT_P and MEM_SCALAR_P.  */
   We also have to mind MEM_IN_STRUCT_P and MEM_SCALAR_P.  */
 
 
static void
static void
add_alias_set_conflicts (void)
add_alias_set_conflicts (void)
{
{
  size_t i, j, n = stack_vars_num;
  size_t i, j, n = stack_vars_num;
 
 
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    {
    {
      tree type_i = TREE_TYPE (stack_vars[i].decl);
      tree type_i = TREE_TYPE (stack_vars[i].decl);
      bool aggr_i = AGGREGATE_TYPE_P (type_i);
      bool aggr_i = AGGREGATE_TYPE_P (type_i);
      bool contains_union;
      bool contains_union;
 
 
      contains_union = aggregate_contains_union_type (type_i);
      contains_union = aggregate_contains_union_type (type_i);
      for (j = 0; j < i; ++j)
      for (j = 0; j < i; ++j)
        {
        {
          tree type_j = TREE_TYPE (stack_vars[j].decl);
          tree type_j = TREE_TYPE (stack_vars[j].decl);
          bool aggr_j = AGGREGATE_TYPE_P (type_j);
          bool aggr_j = AGGREGATE_TYPE_P (type_j);
          if (aggr_i != aggr_j
          if (aggr_i != aggr_j
              /* Either the objects conflict by means of type based
              /* Either the objects conflict by means of type based
                 aliasing rules, or we need to add a conflict.  */
                 aliasing rules, or we need to add a conflict.  */
              || !objects_must_conflict_p (type_i, type_j)
              || !objects_must_conflict_p (type_i, type_j)
              /* In case the types do not conflict ensure that access
              /* In case the types do not conflict ensure that access
                 to elements will conflict.  In case of unions we have
                 to elements will conflict.  In case of unions we have
                 to be careful as type based aliasing rules may say
                 to be careful as type based aliasing rules may say
                 access to the same memory does not conflict.  So play
                 access to the same memory does not conflict.  So play
                 safe and add a conflict in this case.  */
                 safe and add a conflict in this case.  */
              || contains_union)
              || contains_union)
            add_stack_var_conflict (i, j);
            add_stack_var_conflict (i, j);
        }
        }
    }
    }
}
}
 
 
/* A subroutine of partition_stack_vars.  A comparison function for qsort,
/* A subroutine of partition_stack_vars.  A comparison function for qsort,
   sorting an array of indicies by the size of the object.  */
   sorting an array of indicies by the size of the object.  */
 
 
static int
static int
stack_var_size_cmp (const void *a, const void *b)
stack_var_size_cmp (const void *a, const void *b)
{
{
  HOST_WIDE_INT sa = stack_vars[*(const size_t *)a].size;
  HOST_WIDE_INT sa = stack_vars[*(const size_t *)a].size;
  HOST_WIDE_INT sb = stack_vars[*(const size_t *)b].size;
  HOST_WIDE_INT sb = stack_vars[*(const size_t *)b].size;
  unsigned int uida = DECL_UID (stack_vars[*(const size_t *)a].decl);
  unsigned int uida = DECL_UID (stack_vars[*(const size_t *)a].decl);
  unsigned int uidb = DECL_UID (stack_vars[*(const size_t *)b].decl);
  unsigned int uidb = DECL_UID (stack_vars[*(const size_t *)b].decl);
 
 
  if (sa < sb)
  if (sa < sb)
    return -1;
    return -1;
  if (sa > sb)
  if (sa > sb)
    return 1;
    return 1;
  /* For stack variables of the same size use the uid of the decl
  /* For stack variables of the same size use the uid of the decl
     to make the sort stable.  */
     to make the sort stable.  */
  if (uida < uidb)
  if (uida < uidb)
    return -1;
    return -1;
  if (uida > uidb)
  if (uida > uidb)
    return 1;
    return 1;
  return 0;
  return 0;
}
}
 
 
/* A subroutine of partition_stack_vars.  The UNION portion of a UNION/FIND
/* A subroutine of partition_stack_vars.  The UNION portion of a UNION/FIND
   partitioning algorithm.  Partitions A and B are known to be non-conflicting.
   partitioning algorithm.  Partitions A and B are known to be non-conflicting.
   Merge them into a single partition A.
   Merge them into a single partition A.
 
 
   At the same time, add OFFSET to all variables in partition B.  At the end
   At the same time, add OFFSET to all variables in partition B.  At the end
   of the partitioning process we've have a nice block easy to lay out within
   of the partitioning process we've have a nice block easy to lay out within
   the stack frame.  */
   the stack frame.  */
 
 
static void
static void
union_stack_vars (size_t a, size_t b, HOST_WIDE_INT offset)
union_stack_vars (size_t a, size_t b, HOST_WIDE_INT offset)
{
{
  size_t i, last;
  size_t i, last;
 
 
  /* Update each element of partition B with the given offset,
  /* Update each element of partition B with the given offset,
     and merge them into partition A.  */
     and merge them into partition A.  */
  for (last = i = b; i != EOC; last = i, i = stack_vars[i].next)
  for (last = i = b; i != EOC; last = i, i = stack_vars[i].next)
    {
    {
      stack_vars[i].offset += offset;
      stack_vars[i].offset += offset;
      stack_vars[i].representative = a;
      stack_vars[i].representative = a;
    }
    }
  stack_vars[last].next = stack_vars[a].next;
  stack_vars[last].next = stack_vars[a].next;
  stack_vars[a].next = b;
  stack_vars[a].next = b;
 
 
  /* Update the required alignment of partition A to account for B.  */
  /* Update the required alignment of partition A to account for B.  */
  if (stack_vars[a].alignb < stack_vars[b].alignb)
  if (stack_vars[a].alignb < stack_vars[b].alignb)
    stack_vars[a].alignb = stack_vars[b].alignb;
    stack_vars[a].alignb = stack_vars[b].alignb;
 
 
  /* Update the interference graph and merge the conflicts.  */
  /* Update the interference graph and merge the conflicts.  */
  for (last = stack_vars_num, i = 0; i < last; ++i)
  for (last = stack_vars_num, i = 0; i < last; ++i)
    if (stack_var_conflict_p (b, i))
    if (stack_var_conflict_p (b, i))
      add_stack_var_conflict (a, i);
      add_stack_var_conflict (a, i);
}
}
 
 
/* A subroutine of expand_used_vars.  Binpack the variables into
/* A subroutine of expand_used_vars.  Binpack the variables into
   partitions constrained by the interference graph.  The overall
   partitions constrained by the interference graph.  The overall
   algorithm used is as follows:
   algorithm used is as follows:
 
 
        Sort the objects by size.
        Sort the objects by size.
        For each object A {
        For each object A {
          S = size(A)
          S = size(A)
          O = 0
          O = 0
          loop {
          loop {
            Look for the largest non-conflicting object B with size <= S.
            Look for the largest non-conflicting object B with size <= S.
            UNION (A, B)
            UNION (A, B)
            offset(B) = O
            offset(B) = O
            O += size(B)
            O += size(B)
            S -= size(B)
            S -= size(B)
          }
          }
        }
        }
*/
*/
 
 
static void
static void
partition_stack_vars (void)
partition_stack_vars (void)
{
{
  size_t si, sj, n = stack_vars_num;
  size_t si, sj, n = stack_vars_num;
 
 
  stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
  stack_vars_sorted = XNEWVEC (size_t, stack_vars_num);
  for (si = 0; si < n; ++si)
  for (si = 0; si < n; ++si)
    stack_vars_sorted[si] = si;
    stack_vars_sorted[si] = si;
 
 
  if (n == 1)
  if (n == 1)
    return;
    return;
 
 
  qsort (stack_vars_sorted, n, sizeof (size_t), stack_var_size_cmp);
  qsort (stack_vars_sorted, n, sizeof (size_t), stack_var_size_cmp);
 
 
  /* Special case: detect when all variables conflict, and thus we can't
  /* Special case: detect when all variables conflict, and thus we can't
     do anything during the partitioning loop.  It isn't uncommon (with
     do anything during the partitioning loop.  It isn't uncommon (with
     C code at least) to declare all variables at the top of the function,
     C code at least) to declare all variables at the top of the function,
     and if we're not inlining, then all variables will be in the same scope.
     and if we're not inlining, then all variables will be in the same scope.
     Take advantage of very fast libc routines for this scan.  */
     Take advantage of very fast libc routines for this scan.  */
  gcc_assert (sizeof(bool) == sizeof(char));
  gcc_assert (sizeof(bool) == sizeof(char));
  if (memchr (stack_vars_conflict, false, stack_vars_conflict_alloc) == NULL)
  if (memchr (stack_vars_conflict, false, stack_vars_conflict_alloc) == NULL)
    return;
    return;
 
 
  for (si = 0; si < n; ++si)
  for (si = 0; si < n; ++si)
    {
    {
      size_t i = stack_vars_sorted[si];
      size_t i = stack_vars_sorted[si];
      HOST_WIDE_INT isize = stack_vars[i].size;
      HOST_WIDE_INT isize = stack_vars[i].size;
      HOST_WIDE_INT offset = 0;
      HOST_WIDE_INT offset = 0;
 
 
      for (sj = si; sj-- > 0; )
      for (sj = si; sj-- > 0; )
        {
        {
          size_t j = stack_vars_sorted[sj];
          size_t j = stack_vars_sorted[sj];
          HOST_WIDE_INT jsize = stack_vars[j].size;
          HOST_WIDE_INT jsize = stack_vars[j].size;
          unsigned int jalign = stack_vars[j].alignb;
          unsigned int jalign = stack_vars[j].alignb;
 
 
          /* Ignore objects that aren't partition representatives.  */
          /* Ignore objects that aren't partition representatives.  */
          if (stack_vars[j].representative != j)
          if (stack_vars[j].representative != j)
            continue;
            continue;
 
 
          /* Ignore objects too large for the remaining space.  */
          /* Ignore objects too large for the remaining space.  */
          if (isize < jsize)
          if (isize < jsize)
            continue;
            continue;
 
 
          /* Ignore conflicting objects.  */
          /* Ignore conflicting objects.  */
          if (stack_var_conflict_p (i, j))
          if (stack_var_conflict_p (i, j))
            continue;
            continue;
 
 
          /* Refine the remaining space check to include alignment.  */
          /* Refine the remaining space check to include alignment.  */
          if (offset & (jalign - 1))
          if (offset & (jalign - 1))
            {
            {
              HOST_WIDE_INT toff = offset;
              HOST_WIDE_INT toff = offset;
              toff += jalign - 1;
              toff += jalign - 1;
              toff &= -(HOST_WIDE_INT)jalign;
              toff &= -(HOST_WIDE_INT)jalign;
              if (isize - (toff - offset) < jsize)
              if (isize - (toff - offset) < jsize)
                continue;
                continue;
 
 
              isize -= toff - offset;
              isize -= toff - offset;
              offset = toff;
              offset = toff;
            }
            }
 
 
          /* UNION the objects, placing J at OFFSET.  */
          /* UNION the objects, placing J at OFFSET.  */
          union_stack_vars (i, j, offset);
          union_stack_vars (i, j, offset);
 
 
          isize -= jsize;
          isize -= jsize;
          if (isize == 0)
          if (isize == 0)
            break;
            break;
        }
        }
    }
    }
}
}
 
 
/* A debugging aid for expand_used_vars.  Dump the generated partitions.  */
/* A debugging aid for expand_used_vars.  Dump the generated partitions.  */
 
 
static void
static void
dump_stack_var_partition (void)
dump_stack_var_partition (void)
{
{
  size_t si, i, j, n = stack_vars_num;
  size_t si, i, j, n = stack_vars_num;
 
 
  for (si = 0; si < n; ++si)
  for (si = 0; si < n; ++si)
    {
    {
      i = stack_vars_sorted[si];
      i = stack_vars_sorted[si];
 
 
      /* Skip variables that aren't partition representatives, for now.  */
      /* Skip variables that aren't partition representatives, for now.  */
      if (stack_vars[i].representative != i)
      if (stack_vars[i].representative != i)
        continue;
        continue;
 
 
      fprintf (dump_file, "Partition %lu: size " HOST_WIDE_INT_PRINT_DEC
      fprintf (dump_file, "Partition %lu: size " HOST_WIDE_INT_PRINT_DEC
               " align %u\n", (unsigned long) i, stack_vars[i].size,
               " align %u\n", (unsigned long) i, stack_vars[i].size,
               stack_vars[i].alignb);
               stack_vars[i].alignb);
 
 
      for (j = i; j != EOC; j = stack_vars[j].next)
      for (j = i; j != EOC; j = stack_vars[j].next)
        {
        {
          fputc ('\t', dump_file);
          fputc ('\t', dump_file);
          print_generic_expr (dump_file, stack_vars[j].decl, dump_flags);
          print_generic_expr (dump_file, stack_vars[j].decl, dump_flags);
          fprintf (dump_file, ", offset " HOST_WIDE_INT_PRINT_DEC "\n",
          fprintf (dump_file, ", offset " HOST_WIDE_INT_PRINT_DEC "\n",
                   stack_vars[i].offset);
                   stack_vars[i].offset);
        }
        }
    }
    }
}
}
 
 
/* Assign rtl to DECL at frame offset OFFSET.  */
/* Assign rtl to DECL at frame offset OFFSET.  */
 
 
static void
static void
expand_one_stack_var_at (tree decl, HOST_WIDE_INT offset)
expand_one_stack_var_at (tree decl, HOST_WIDE_INT offset)
{
{
  HOST_WIDE_INT align;
  HOST_WIDE_INT align;
  rtx x;
  rtx x;
 
 
  /* If this fails, we've overflowed the stack frame.  Error nicely?  */
  /* If this fails, we've overflowed the stack frame.  Error nicely?  */
  gcc_assert (offset == trunc_int_for_mode (offset, Pmode));
  gcc_assert (offset == trunc_int_for_mode (offset, Pmode));
 
 
  x = plus_constant (virtual_stack_vars_rtx, offset);
  x = plus_constant (virtual_stack_vars_rtx, offset);
  x = gen_rtx_MEM (DECL_MODE (decl), x);
  x = gen_rtx_MEM (DECL_MODE (decl), x);
 
 
  /* Set alignment we actually gave this decl.  */
  /* Set alignment we actually gave this decl.  */
  offset -= frame_phase;
  offset -= frame_phase;
  align = offset & -offset;
  align = offset & -offset;
  align *= BITS_PER_UNIT;
  align *= BITS_PER_UNIT;
  if (align > STACK_BOUNDARY || align == 0)
  if (align > STACK_BOUNDARY || align == 0)
    align = STACK_BOUNDARY;
    align = STACK_BOUNDARY;
  DECL_ALIGN (decl) = align;
  DECL_ALIGN (decl) = align;
  DECL_USER_ALIGN (decl) = 0;
  DECL_USER_ALIGN (decl) = 0;
 
 
  set_mem_attributes (x, decl, true);
  set_mem_attributes (x, decl, true);
  SET_DECL_RTL (decl, x);
  SET_DECL_RTL (decl, x);
}
}
 
 
/* A subroutine of expand_used_vars.  Give each partition representative
/* A subroutine of expand_used_vars.  Give each partition representative
   a unique location within the stack frame.  Update each partition member
   a unique location within the stack frame.  Update each partition member
   with that location.  */
   with that location.  */
 
 
static void
static void
expand_stack_vars (bool (*pred) (tree))
expand_stack_vars (bool (*pred) (tree))
{
{
  size_t si, i, j, n = stack_vars_num;
  size_t si, i, j, n = stack_vars_num;
 
 
  for (si = 0; si < n; ++si)
  for (si = 0; si < n; ++si)
    {
    {
      HOST_WIDE_INT offset;
      HOST_WIDE_INT offset;
 
 
      i = stack_vars_sorted[si];
      i = stack_vars_sorted[si];
 
 
      /* Skip variables that aren't partition representatives, for now.  */
      /* Skip variables that aren't partition representatives, for now.  */
      if (stack_vars[i].representative != i)
      if (stack_vars[i].representative != i)
        continue;
        continue;
 
 
      /* Skip variables that have already had rtl assigned.  See also
      /* Skip variables that have already had rtl assigned.  See also
         add_stack_var where we perpetrate this pc_rtx hack.  */
         add_stack_var where we perpetrate this pc_rtx hack.  */
      if (DECL_RTL (stack_vars[i].decl) != pc_rtx)
      if (DECL_RTL (stack_vars[i].decl) != pc_rtx)
        continue;
        continue;
 
 
      /* Check the predicate to see whether this variable should be
      /* Check the predicate to see whether this variable should be
         allocated in this pass.  */
         allocated in this pass.  */
      if (pred && !pred (stack_vars[i].decl))
      if (pred && !pred (stack_vars[i].decl))
        continue;
        continue;
 
 
      offset = alloc_stack_frame_space (stack_vars[i].size,
      offset = alloc_stack_frame_space (stack_vars[i].size,
                                        stack_vars[i].alignb);
                                        stack_vars[i].alignb);
 
 
      /* Create rtl for each variable based on their location within the
      /* Create rtl for each variable based on their location within the
         partition.  */
         partition.  */
      for (j = i; j != EOC; j = stack_vars[j].next)
      for (j = i; j != EOC; j = stack_vars[j].next)
        expand_one_stack_var_at (stack_vars[j].decl,
        expand_one_stack_var_at (stack_vars[j].decl,
                                 stack_vars[j].offset + offset);
                                 stack_vars[j].offset + offset);
    }
    }
}
}
 
 
/* A subroutine of expand_one_var.  Called to immediately assign rtl
/* A subroutine of expand_one_var.  Called to immediately assign rtl
   to a variable to be allocated in the stack frame.  */
   to a variable to be allocated in the stack frame.  */
 
 
static void
static void
expand_one_stack_var (tree var)
expand_one_stack_var (tree var)
{
{
  HOST_WIDE_INT size, offset, align;
  HOST_WIDE_INT size, offset, align;
 
 
  size = tree_low_cst (DECL_SIZE_UNIT (var), 1);
  size = tree_low_cst (DECL_SIZE_UNIT (var), 1);
  align = get_decl_align_unit (var);
  align = get_decl_align_unit (var);
  offset = alloc_stack_frame_space (size, align);
  offset = alloc_stack_frame_space (size, align);
 
 
  expand_one_stack_var_at (var, offset);
  expand_one_stack_var_at (var, offset);
}
}
 
 
/* A subroutine of expand_one_var.  Called to assign rtl
/* A subroutine of expand_one_var.  Called to assign rtl
   to a TREE_STATIC VAR_DECL.  */
   to a TREE_STATIC VAR_DECL.  */
 
 
static void
static void
expand_one_static_var (tree var)
expand_one_static_var (tree var)
{
{
  /* In unit-at-a-time all the static variables are expanded at the end
  /* In unit-at-a-time all the static variables are expanded at the end
     of compilation process.  */
     of compilation process.  */
  if (flag_unit_at_a_time)
  if (flag_unit_at_a_time)
    return;
    return;
  /* If this is an inlined copy of a static local variable,
  /* If this is an inlined copy of a static local variable,
     look up the original.  */
     look up the original.  */
  var = DECL_ORIGIN (var);
  var = DECL_ORIGIN (var);
 
 
  /* If we've already processed this variable because of that, do nothing.  */
  /* If we've already processed this variable because of that, do nothing.  */
  if (TREE_ASM_WRITTEN (var))
  if (TREE_ASM_WRITTEN (var))
    return;
    return;
 
 
  /* Give the front end a chance to do whatever.  In practice, this is
  /* Give the front end a chance to do whatever.  In practice, this is
     resolving duplicate names for IMA in C.  */
     resolving duplicate names for IMA in C.  */
  if (lang_hooks.expand_decl (var))
  if (lang_hooks.expand_decl (var))
    return;
    return;
 
 
  /* Otherwise, just emit the variable.  */
  /* Otherwise, just emit the variable.  */
  rest_of_decl_compilation (var, 0, 0);
  rest_of_decl_compilation (var, 0, 0);
}
}
 
 
/* A subroutine of expand_one_var.  Called to assign rtl to a VAR_DECL
/* A subroutine of expand_one_var.  Called to assign rtl to a VAR_DECL
   that will reside in a hard register.  */
   that will reside in a hard register.  */
 
 
static void
static void
expand_one_hard_reg_var (tree var)
expand_one_hard_reg_var (tree var)
{
{
  rest_of_decl_compilation (var, 0, 0);
  rest_of_decl_compilation (var, 0, 0);
}
}
 
 
/* A subroutine of expand_one_var.  Called to assign rtl to a VAR_DECL
/* A subroutine of expand_one_var.  Called to assign rtl to a VAR_DECL
   that will reside in a pseudo register.  */
   that will reside in a pseudo register.  */
 
 
static void
static void
expand_one_register_var (tree var)
expand_one_register_var (tree var)
{
{
  tree type = TREE_TYPE (var);
  tree type = TREE_TYPE (var);
  int unsignedp = TYPE_UNSIGNED (type);
  int unsignedp = TYPE_UNSIGNED (type);
  enum machine_mode reg_mode
  enum machine_mode reg_mode
    = promote_mode (type, DECL_MODE (var), &unsignedp, 0);
    = promote_mode (type, DECL_MODE (var), &unsignedp, 0);
  rtx x = gen_reg_rtx (reg_mode);
  rtx x = gen_reg_rtx (reg_mode);
 
 
  SET_DECL_RTL (var, x);
  SET_DECL_RTL (var, x);
 
 
  /* Note if the object is a user variable.  */
  /* Note if the object is a user variable.  */
  if (!DECL_ARTIFICIAL (var))
  if (!DECL_ARTIFICIAL (var))
    {
    {
      mark_user_reg (x);
      mark_user_reg (x);
 
 
      /* Trust user variables which have a pointer type to really
      /* Trust user variables which have a pointer type to really
         be pointers.  Do not trust compiler generated temporaries
         be pointers.  Do not trust compiler generated temporaries
         as our type system is totally busted as it relates to
         as our type system is totally busted as it relates to
         pointer arithmetic which translates into lots of compiler
         pointer arithmetic which translates into lots of compiler
         generated objects with pointer types, but which are not really
         generated objects with pointer types, but which are not really
         pointers.  */
         pointers.  */
      if (POINTER_TYPE_P (type))
      if (POINTER_TYPE_P (type))
        mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
        mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var))));
    }
    }
}
}
 
 
/* A subroutine of expand_one_var.  Called to assign rtl to a VAR_DECL that
/* A subroutine of expand_one_var.  Called to assign rtl to a VAR_DECL that
   has some associated error, e.g. its type is error-mark.  We just need
   has some associated error, e.g. its type is error-mark.  We just need
   to pick something that won't crash the rest of the compiler.  */
   to pick something that won't crash the rest of the compiler.  */
 
 
static void
static void
expand_one_error_var (tree var)
expand_one_error_var (tree var)
{
{
  enum machine_mode mode = DECL_MODE (var);
  enum machine_mode mode = DECL_MODE (var);
  rtx x;
  rtx x;
 
 
  if (mode == BLKmode)
  if (mode == BLKmode)
    x = gen_rtx_MEM (BLKmode, const0_rtx);
    x = gen_rtx_MEM (BLKmode, const0_rtx);
  else if (mode == VOIDmode)
  else if (mode == VOIDmode)
    x = const0_rtx;
    x = const0_rtx;
  else
  else
    x = gen_reg_rtx (mode);
    x = gen_reg_rtx (mode);
 
 
  SET_DECL_RTL (var, x);
  SET_DECL_RTL (var, x);
}
}
 
 
/* A subroutine of expand_one_var.  VAR is a variable that will be
/* A subroutine of expand_one_var.  VAR is a variable that will be
   allocated to the local stack frame.  Return true if we wish to
   allocated to the local stack frame.  Return true if we wish to
   add VAR to STACK_VARS so that it will be coalesced with other
   add VAR to STACK_VARS so that it will be coalesced with other
   variables.  Return false to allocate VAR immediately.
   variables.  Return false to allocate VAR immediately.
 
 
   This function is used to reduce the number of variables considered
   This function is used to reduce the number of variables considered
   for coalescing, which reduces the size of the quadratic problem.  */
   for coalescing, which reduces the size of the quadratic problem.  */
 
 
static bool
static bool
defer_stack_allocation (tree var, bool toplevel)
defer_stack_allocation (tree var, bool toplevel)
{
{
  /* If stack protection is enabled, *all* stack variables must be deferred,
  /* If stack protection is enabled, *all* stack variables must be deferred,
     so that we can re-order the strings to the top of the frame.  */
     so that we can re-order the strings to the top of the frame.  */
  if (flag_stack_protect)
  if (flag_stack_protect)
    return true;
    return true;
 
 
  /* Variables in the outermost scope automatically conflict with
  /* Variables in the outermost scope automatically conflict with
     every other variable.  The only reason to want to defer them
     every other variable.  The only reason to want to defer them
     at all is that, after sorting, we can more efficiently pack
     at all is that, after sorting, we can more efficiently pack
     small variables in the stack frame.  Continue to defer at -O2.  */
     small variables in the stack frame.  Continue to defer at -O2.  */
  if (toplevel && optimize < 2)
  if (toplevel && optimize < 2)
    return false;
    return false;
 
 
  /* Without optimization, *most* variables are allocated from the
  /* Without optimization, *most* variables are allocated from the
     stack, which makes the quadratic problem large exactly when we
     stack, which makes the quadratic problem large exactly when we
     want compilation to proceed as quickly as possible.  On the
     want compilation to proceed as quickly as possible.  On the
     other hand, we don't want the function's stack frame size to
     other hand, we don't want the function's stack frame size to
     get completely out of hand.  So we avoid adding scalars and
     get completely out of hand.  So we avoid adding scalars and
     "small" aggregates to the list at all.  */
     "small" aggregates to the list at all.  */
  if (optimize == 0 && tree_low_cst (DECL_SIZE_UNIT (var), 1) < 32)
  if (optimize == 0 && tree_low_cst (DECL_SIZE_UNIT (var), 1) < 32)
    return false;
    return false;
 
 
  return true;
  return true;
}
}
 
 
/* A subroutine of expand_used_vars.  Expand one variable according to
/* A subroutine of expand_used_vars.  Expand one variable according to
   its flavor.  Variables to be placed on the stack are not actually
   its flavor.  Variables to be placed on the stack are not actually
   expanded yet, merely recorded.  */
   expanded yet, merely recorded.  */
 
 
static void
static void
expand_one_var (tree var, bool toplevel)
expand_one_var (tree var, bool toplevel)
{
{
  if (TREE_CODE (var) != VAR_DECL)
  if (TREE_CODE (var) != VAR_DECL)
    lang_hooks.expand_decl (var);
    lang_hooks.expand_decl (var);
  else if (DECL_EXTERNAL (var))
  else if (DECL_EXTERNAL (var))
    ;
    ;
  else if (DECL_HAS_VALUE_EXPR_P (var))
  else if (DECL_HAS_VALUE_EXPR_P (var))
    ;
    ;
  else if (TREE_STATIC (var))
  else if (TREE_STATIC (var))
    expand_one_static_var (var);
    expand_one_static_var (var);
  else if (DECL_RTL_SET_P (var))
  else if (DECL_RTL_SET_P (var))
    ;
    ;
  else if (TREE_TYPE (var) == error_mark_node)
  else if (TREE_TYPE (var) == error_mark_node)
    expand_one_error_var (var);
    expand_one_error_var (var);
  else if (DECL_HARD_REGISTER (var))
  else if (DECL_HARD_REGISTER (var))
    expand_one_hard_reg_var (var);
    expand_one_hard_reg_var (var);
  else if (use_register_for_decl (var))
  else if (use_register_for_decl (var))
    expand_one_register_var (var);
    expand_one_register_var (var);
  else if (defer_stack_allocation (var, toplevel))
  else if (defer_stack_allocation (var, toplevel))
    add_stack_var (var);
    add_stack_var (var);
  else
  else
    expand_one_stack_var (var);
    expand_one_stack_var (var);
}
}
 
 
/* A subroutine of expand_used_vars.  Walk down through the BLOCK tree
/* A subroutine of expand_used_vars.  Walk down through the BLOCK tree
   expanding variables.  Those variables that can be put into registers
   expanding variables.  Those variables that can be put into registers
   are allocated pseudos; those that can't are put on the stack.
   are allocated pseudos; those that can't are put on the stack.
 
 
   TOPLEVEL is true if this is the outermost BLOCK.  */
   TOPLEVEL is true if this is the outermost BLOCK.  */
 
 
static void
static void
expand_used_vars_for_block (tree block, bool toplevel)
expand_used_vars_for_block (tree block, bool toplevel)
{
{
  size_t i, j, old_sv_num, this_sv_num, new_sv_num;
  size_t i, j, old_sv_num, this_sv_num, new_sv_num;
  tree t;
  tree t;
 
 
  old_sv_num = toplevel ? 0 : stack_vars_num;
  old_sv_num = toplevel ? 0 : stack_vars_num;
 
 
  /* Expand all variables at this level.  */
  /* Expand all variables at this level.  */
  for (t = BLOCK_VARS (block); t ; t = TREE_CHAIN (t))
  for (t = BLOCK_VARS (block); t ; t = TREE_CHAIN (t))
    if (TREE_USED (t)
    if (TREE_USED (t)
        /* Force local static variables to be output when marked by
        /* Force local static variables to be output when marked by
           used attribute.  For unit-at-a-time, cgraph code already takes
           used attribute.  For unit-at-a-time, cgraph code already takes
           care of this.  */
           care of this.  */
        || (!flag_unit_at_a_time && TREE_STATIC (t)
        || (!flag_unit_at_a_time && TREE_STATIC (t)
            && DECL_PRESERVE_P (t)))
            && DECL_PRESERVE_P (t)))
      expand_one_var (t, toplevel);
      expand_one_var (t, toplevel);
 
 
  this_sv_num = stack_vars_num;
  this_sv_num = stack_vars_num;
 
 
  /* Expand all variables at containing levels.  */
  /* Expand all variables at containing levels.  */
  for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
  for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
    expand_used_vars_for_block (t, false);
    expand_used_vars_for_block (t, false);
 
 
  /* Since we do not track exact variable lifetimes (which is not even
  /* Since we do not track exact variable lifetimes (which is not even
     possible for variables whose address escapes), we mirror the block
     possible for variables whose address escapes), we mirror the block
     tree in the interference graph.  Here we cause all variables at this
     tree in the interference graph.  Here we cause all variables at this
     level, and all sublevels, to conflict.  Do make certain that a
     level, and all sublevels, to conflict.  Do make certain that a
     variable conflicts with itself.  */
     variable conflicts with itself.  */
  if (old_sv_num < this_sv_num)
  if (old_sv_num < this_sv_num)
    {
    {
      new_sv_num = stack_vars_num;
      new_sv_num = stack_vars_num;
      resize_stack_vars_conflict (new_sv_num);
      resize_stack_vars_conflict (new_sv_num);
 
 
      for (i = old_sv_num; i < new_sv_num; ++i)
      for (i = old_sv_num; i < new_sv_num; ++i)
        for (j = i < this_sv_num ? i+1 : this_sv_num; j-- > old_sv_num ;)
        for (j = i < this_sv_num ? i+1 : this_sv_num; j-- > old_sv_num ;)
          add_stack_var_conflict (i, j);
          add_stack_var_conflict (i, j);
    }
    }
}
}
 
 
/* A subroutine of expand_used_vars.  Walk down through the BLOCK tree
/* A subroutine of expand_used_vars.  Walk down through the BLOCK tree
   and clear TREE_USED on all local variables.  */
   and clear TREE_USED on all local variables.  */
 
 
static void
static void
clear_tree_used (tree block)
clear_tree_used (tree block)
{
{
  tree t;
  tree t;
 
 
  for (t = BLOCK_VARS (block); t ; t = TREE_CHAIN (t))
  for (t = BLOCK_VARS (block); t ; t = TREE_CHAIN (t))
    /* if (!TREE_STATIC (t) && !DECL_EXTERNAL (t)) */
    /* if (!TREE_STATIC (t) && !DECL_EXTERNAL (t)) */
      TREE_USED (t) = 0;
      TREE_USED (t) = 0;
 
 
  for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
  for (t = BLOCK_SUBBLOCKS (block); t ; t = BLOCK_CHAIN (t))
    clear_tree_used (t);
    clear_tree_used (t);
}
}
 
 
/* Examine TYPE and determine a bit mask of the following features.  */
/* Examine TYPE and determine a bit mask of the following features.  */
 
 
#define SPCT_HAS_LARGE_CHAR_ARRAY       1
#define SPCT_HAS_LARGE_CHAR_ARRAY       1
#define SPCT_HAS_SMALL_CHAR_ARRAY       2
#define SPCT_HAS_SMALL_CHAR_ARRAY       2
#define SPCT_HAS_ARRAY                  4
#define SPCT_HAS_ARRAY                  4
#define SPCT_HAS_AGGREGATE              8
#define SPCT_HAS_AGGREGATE              8
 
 
static unsigned int
static unsigned int
stack_protect_classify_type (tree type)
stack_protect_classify_type (tree type)
{
{
  unsigned int ret = 0;
  unsigned int ret = 0;
  tree t;
  tree t;
 
 
  switch (TREE_CODE (type))
  switch (TREE_CODE (type))
    {
    {
    case ARRAY_TYPE:
    case ARRAY_TYPE:
      t = TYPE_MAIN_VARIANT (TREE_TYPE (type));
      t = TYPE_MAIN_VARIANT (TREE_TYPE (type));
      if (t == char_type_node
      if (t == char_type_node
          || t == signed_char_type_node
          || t == signed_char_type_node
          || t == unsigned_char_type_node)
          || t == unsigned_char_type_node)
        {
        {
          unsigned HOST_WIDE_INT max = PARAM_VALUE (PARAM_SSP_BUFFER_SIZE);
          unsigned HOST_WIDE_INT max = PARAM_VALUE (PARAM_SSP_BUFFER_SIZE);
          unsigned HOST_WIDE_INT len;
          unsigned HOST_WIDE_INT len;
 
 
          if (!TYPE_SIZE_UNIT (type)
          if (!TYPE_SIZE_UNIT (type)
              || !host_integerp (TYPE_SIZE_UNIT (type), 1))
              || !host_integerp (TYPE_SIZE_UNIT (type), 1))
            len = max;
            len = max;
          else
          else
            len = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
            len = tree_low_cst (TYPE_SIZE_UNIT (type), 1);
 
 
          if (len < max)
          if (len < max)
            ret = SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_ARRAY;
            ret = SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_ARRAY;
          else
          else
            ret = SPCT_HAS_LARGE_CHAR_ARRAY | SPCT_HAS_ARRAY;
            ret = SPCT_HAS_LARGE_CHAR_ARRAY | SPCT_HAS_ARRAY;
        }
        }
      else
      else
        ret = SPCT_HAS_ARRAY;
        ret = SPCT_HAS_ARRAY;
      break;
      break;
 
 
    case UNION_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
    case QUAL_UNION_TYPE:
    case RECORD_TYPE:
    case RECORD_TYPE:
      ret = SPCT_HAS_AGGREGATE;
      ret = SPCT_HAS_AGGREGATE;
      for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
      for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
        if (TREE_CODE (t) == FIELD_DECL)
        if (TREE_CODE (t) == FIELD_DECL)
          ret |= stack_protect_classify_type (TREE_TYPE (t));
          ret |= stack_protect_classify_type (TREE_TYPE (t));
      break;
      break;
 
 
    default:
    default:
      break;
      break;
    }
    }
 
 
  return ret;
  return ret;
}
}
 
 
/* Return nonzero if DECL should be segregated into the "vulnerable" upper
/* Return nonzero if DECL should be segregated into the "vulnerable" upper
   part of the local stack frame.  Remember if we ever return nonzero for
   part of the local stack frame.  Remember if we ever return nonzero for
   any variable in this function.  The return value is the phase number in
   any variable in this function.  The return value is the phase number in
   which the variable should be allocated.  */
   which the variable should be allocated.  */
 
 
static int
static int
stack_protect_decl_phase (tree decl)
stack_protect_decl_phase (tree decl)
{
{
  unsigned int bits = stack_protect_classify_type (TREE_TYPE (decl));
  unsigned int bits = stack_protect_classify_type (TREE_TYPE (decl));
  int ret = 0;
  int ret = 0;
 
 
  if (bits & SPCT_HAS_SMALL_CHAR_ARRAY)
  if (bits & SPCT_HAS_SMALL_CHAR_ARRAY)
    has_short_buffer = true;
    has_short_buffer = true;
 
 
  if (flag_stack_protect == 2)
  if (flag_stack_protect == 2)
    {
    {
      if ((bits & (SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_LARGE_CHAR_ARRAY))
      if ((bits & (SPCT_HAS_SMALL_CHAR_ARRAY | SPCT_HAS_LARGE_CHAR_ARRAY))
          && !(bits & SPCT_HAS_AGGREGATE))
          && !(bits & SPCT_HAS_AGGREGATE))
        ret = 1;
        ret = 1;
      else if (bits & SPCT_HAS_ARRAY)
      else if (bits & SPCT_HAS_ARRAY)
        ret = 2;
        ret = 2;
    }
    }
  else
  else
    ret = (bits & SPCT_HAS_LARGE_CHAR_ARRAY) != 0;
    ret = (bits & SPCT_HAS_LARGE_CHAR_ARRAY) != 0;
 
 
  if (ret)
  if (ret)
    has_protected_decls = true;
    has_protected_decls = true;
 
 
  return ret;
  return ret;
}
}
 
 
/* Two helper routines that check for phase 1 and phase 2.  These are used
/* Two helper routines that check for phase 1 and phase 2.  These are used
   as callbacks for expand_stack_vars.  */
   as callbacks for expand_stack_vars.  */
 
 
static bool
static bool
stack_protect_decl_phase_1 (tree decl)
stack_protect_decl_phase_1 (tree decl)
{
{
  return stack_protect_decl_phase (decl) == 1;
  return stack_protect_decl_phase (decl) == 1;
}
}
 
 
static bool
static bool
stack_protect_decl_phase_2 (tree decl)
stack_protect_decl_phase_2 (tree decl)
{
{
  return stack_protect_decl_phase (decl) == 2;
  return stack_protect_decl_phase (decl) == 2;
}
}
 
 
/* Ensure that variables in different stack protection phases conflict
/* Ensure that variables in different stack protection phases conflict
   so that they are not merged and share the same stack slot.  */
   so that they are not merged and share the same stack slot.  */
 
 
static void
static void
add_stack_protection_conflicts (void)
add_stack_protection_conflicts (void)
{
{
  size_t i, j, n = stack_vars_num;
  size_t i, j, n = stack_vars_num;
  unsigned char *phase;
  unsigned char *phase;
 
 
  phase = XNEWVEC (unsigned char, n);
  phase = XNEWVEC (unsigned char, n);
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    phase[i] = stack_protect_decl_phase (stack_vars[i].decl);
    phase[i] = stack_protect_decl_phase (stack_vars[i].decl);
 
 
  for (i = 0; i < n; ++i)
  for (i = 0; i < n; ++i)
    {
    {
      unsigned char ph_i = phase[i];
      unsigned char ph_i = phase[i];
      for (j = 0; j < i; ++j)
      for (j = 0; j < i; ++j)
        if (ph_i != phase[j])
        if (ph_i != phase[j])
          add_stack_var_conflict (i, j);
          add_stack_var_conflict (i, j);
    }
    }
 
 
  XDELETEVEC (phase);
  XDELETEVEC (phase);
}
}
 
 
/* Create a decl for the guard at the top of the stack frame.  */
/* Create a decl for the guard at the top of the stack frame.  */
 
 
static void
static void
create_stack_guard (void)
create_stack_guard (void)
{
{
  tree guard = build_decl (VAR_DECL, NULL, ptr_type_node);
  tree guard = build_decl (VAR_DECL, NULL, ptr_type_node);
  TREE_THIS_VOLATILE (guard) = 1;
  TREE_THIS_VOLATILE (guard) = 1;
  TREE_USED (guard) = 1;
  TREE_USED (guard) = 1;
  expand_one_stack_var (guard);
  expand_one_stack_var (guard);
  cfun->stack_protect_guard = guard;
  cfun->stack_protect_guard = guard;
}
}
 
 
/* Expand all variables used in the function.  */
/* Expand all variables used in the function.  */
 
 
static void
static void
expand_used_vars (void)
expand_used_vars (void)
{
{
  tree t, outer_block = DECL_INITIAL (current_function_decl);
  tree t, outer_block = DECL_INITIAL (current_function_decl);
 
 
  /* Compute the phase of the stack frame for this function.  */
  /* Compute the phase of the stack frame for this function.  */
  {
  {
    int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
    int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
    int off = STARTING_FRAME_OFFSET % align;
    int off = STARTING_FRAME_OFFSET % align;
    frame_phase = off ? align - off : 0;
    frame_phase = off ? align - off : 0;
  }
  }
 
 
  /* Set TREE_USED on all variables in the unexpanded_var_list.  */
  /* Set TREE_USED on all variables in the unexpanded_var_list.  */
  for (t = cfun->unexpanded_var_list; t; t = TREE_CHAIN (t))
  for (t = cfun->unexpanded_var_list; t; t = TREE_CHAIN (t))
    TREE_USED (TREE_VALUE (t)) = 1;
    TREE_USED (TREE_VALUE (t)) = 1;
 
 
  /* Clear TREE_USED on all variables associated with a block scope.  */
  /* Clear TREE_USED on all variables associated with a block scope.  */
  clear_tree_used (outer_block);
  clear_tree_used (outer_block);
 
 
  /* Initialize local stack smashing state.  */
  /* Initialize local stack smashing state.  */
  has_protected_decls = false;
  has_protected_decls = false;
  has_short_buffer = false;
  has_short_buffer = false;
 
 
  /* At this point all variables on the unexpanded_var_list with TREE_USED
  /* At this point all variables on the unexpanded_var_list with TREE_USED
     set are not associated with any block scope.  Lay them out.  */
     set are not associated with any block scope.  Lay them out.  */
  for (t = cfun->unexpanded_var_list; t; t = TREE_CHAIN (t))
  for (t = cfun->unexpanded_var_list; t; t = TREE_CHAIN (t))
    {
    {
      tree var = TREE_VALUE (t);
      tree var = TREE_VALUE (t);
      bool expand_now = false;
      bool expand_now = false;
 
 
      /* We didn't set a block for static or extern because it's hard
      /* We didn't set a block for static or extern because it's hard
         to tell the difference between a global variable (re)declared
         to tell the difference between a global variable (re)declared
         in a local scope, and one that's really declared there to
         in a local scope, and one that's really declared there to
         begin with.  And it doesn't really matter much, since we're
         begin with.  And it doesn't really matter much, since we're
         not giving them stack space.  Expand them now.  */
         not giving them stack space.  Expand them now.  */
      if (TREE_STATIC (var) || DECL_EXTERNAL (var))
      if (TREE_STATIC (var) || DECL_EXTERNAL (var))
        expand_now = true;
        expand_now = true;
 
 
      /* Any variable that could have been hoisted into an SSA_NAME
      /* Any variable that could have been hoisted into an SSA_NAME
         will have been propagated anywhere the optimizers chose,
         will have been propagated anywhere the optimizers chose,
         i.e. not confined to their original block.  Allocate them
         i.e. not confined to their original block.  Allocate them
         as if they were defined in the outermost scope.  */
         as if they were defined in the outermost scope.  */
      else if (is_gimple_reg (var))
      else if (is_gimple_reg (var))
        expand_now = true;
        expand_now = true;
 
 
      /* If the variable is not associated with any block, then it
      /* If the variable is not associated with any block, then it
         was created by the optimizers, and could be live anywhere
         was created by the optimizers, and could be live anywhere
         in the function.  */
         in the function.  */
      else if (TREE_USED (var))
      else if (TREE_USED (var))
        expand_now = true;
        expand_now = true;
 
 
      /* Finally, mark all variables on the list as used.  We'll use
      /* Finally, mark all variables on the list as used.  We'll use
         this in a moment when we expand those associated with scopes.  */
         this in a moment when we expand those associated with scopes.  */
      TREE_USED (var) = 1;
      TREE_USED (var) = 1;
 
 
      if (expand_now)
      if (expand_now)
        expand_one_var (var, true);
        expand_one_var (var, true);
    }
    }
  cfun->unexpanded_var_list = NULL_TREE;
  cfun->unexpanded_var_list = NULL_TREE;
 
 
  /* At this point, all variables within the block tree with TREE_USED
  /* At this point, all variables within the block tree with TREE_USED
     set are actually used by the optimized function.  Lay them out.  */
     set are actually used by the optimized function.  Lay them out.  */
  expand_used_vars_for_block (outer_block, true);
  expand_used_vars_for_block (outer_block, true);
 
 
  if (stack_vars_num > 0)
  if (stack_vars_num > 0)
    {
    {
      /* Due to the way alias sets work, no variables with non-conflicting
      /* Due to the way alias sets work, no variables with non-conflicting
         alias sets may be assigned the same address.  Add conflicts to
         alias sets may be assigned the same address.  Add conflicts to
         reflect this.  */
         reflect this.  */
      add_alias_set_conflicts ();
      add_alias_set_conflicts ();
 
 
      /* If stack protection is enabled, we don't share space between
      /* If stack protection is enabled, we don't share space between
         vulnerable data and non-vulnerable data.  */
         vulnerable data and non-vulnerable data.  */
      if (flag_stack_protect)
      if (flag_stack_protect)
        add_stack_protection_conflicts ();
        add_stack_protection_conflicts ();
 
 
      /* Now that we have collected all stack variables, and have computed a
      /* Now that we have collected all stack variables, and have computed a
         minimal interference graph, attempt to save some stack space.  */
         minimal interference graph, attempt to save some stack space.  */
      partition_stack_vars ();
      partition_stack_vars ();
      if (dump_file)
      if (dump_file)
        dump_stack_var_partition ();
        dump_stack_var_partition ();
    }
    }
 
 
  /* There are several conditions under which we should create a
  /* There are several conditions under which we should create a
     stack guard: protect-all, alloca used, protected decls present.  */
     stack guard: protect-all, alloca used, protected decls present.  */
  if (flag_stack_protect == 2
  if (flag_stack_protect == 2
      || (flag_stack_protect
      || (flag_stack_protect
          && (current_function_calls_alloca || has_protected_decls)))
          && (current_function_calls_alloca || has_protected_decls)))
    create_stack_guard ();
    create_stack_guard ();
 
 
  /* Assign rtl to each variable based on these partitions.  */
  /* Assign rtl to each variable based on these partitions.  */
  if (stack_vars_num > 0)
  if (stack_vars_num > 0)
    {
    {
      /* Reorder decls to be protected by iterating over the variables
      /* Reorder decls to be protected by iterating over the variables
         array multiple times, and allocating out of each phase in turn.  */
         array multiple times, and allocating out of each phase in turn.  */
      /* ??? We could probably integrate this into the qsort we did
      /* ??? We could probably integrate this into the qsort we did
         earlier, such that we naturally see these variables first,
         earlier, such that we naturally see these variables first,
         and thus naturally allocate things in the right order.  */
         and thus naturally allocate things in the right order.  */
      if (has_protected_decls)
      if (has_protected_decls)
        {
        {
          /* Phase 1 contains only character arrays.  */
          /* Phase 1 contains only character arrays.  */
          expand_stack_vars (stack_protect_decl_phase_1);
          expand_stack_vars (stack_protect_decl_phase_1);
 
 
          /* Phase 2 contains other kinds of arrays.  */
          /* Phase 2 contains other kinds of arrays.  */
          if (flag_stack_protect == 2)
          if (flag_stack_protect == 2)
            expand_stack_vars (stack_protect_decl_phase_2);
            expand_stack_vars (stack_protect_decl_phase_2);
        }
        }
 
 
      expand_stack_vars (NULL);
      expand_stack_vars (NULL);
 
 
      /* Free up stack variable graph data.  */
      /* Free up stack variable graph data.  */
      XDELETEVEC (stack_vars);
      XDELETEVEC (stack_vars);
      XDELETEVEC (stack_vars_sorted);
      XDELETEVEC (stack_vars_sorted);
      XDELETEVEC (stack_vars_conflict);
      XDELETEVEC (stack_vars_conflict);
      stack_vars = NULL;
      stack_vars = NULL;
      stack_vars_alloc = stack_vars_num = 0;
      stack_vars_alloc = stack_vars_num = 0;
      stack_vars_conflict = NULL;
      stack_vars_conflict = NULL;
      stack_vars_conflict_alloc = 0;
      stack_vars_conflict_alloc = 0;
    }
    }
 
 
  /* If the target requires that FRAME_OFFSET be aligned, do it.  */
  /* If the target requires that FRAME_OFFSET be aligned, do it.  */
  if (STACK_ALIGNMENT_NEEDED)
  if (STACK_ALIGNMENT_NEEDED)
    {
    {
      HOST_WIDE_INT align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
      HOST_WIDE_INT align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
      if (!FRAME_GROWS_DOWNWARD)
      if (!FRAME_GROWS_DOWNWARD)
        frame_offset += align - 1;
        frame_offset += align - 1;
      frame_offset &= -align;
      frame_offset &= -align;
    }
    }
}
}
 
 
 
 
/* If we need to produce a detailed dump, print the tree representation
/* If we need to produce a detailed dump, print the tree representation
   for STMT to the dump file.  SINCE is the last RTX after which the RTL
   for STMT to the dump file.  SINCE is the last RTX after which the RTL
   generated for STMT should have been appended.  */
   generated for STMT should have been appended.  */
 
 
static void
static void
maybe_dump_rtl_for_tree_stmt (tree stmt, rtx since)
maybe_dump_rtl_for_tree_stmt (tree stmt, rtx since)
{
{
  if (dump_file && (dump_flags & TDF_DETAILS))
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
    {
      fprintf (dump_file, "\n;; ");
      fprintf (dump_file, "\n;; ");
      print_generic_expr (dump_file, stmt, TDF_SLIM);
      print_generic_expr (dump_file, stmt, TDF_SLIM);
      fprintf (dump_file, "\n");
      fprintf (dump_file, "\n");
 
 
      print_rtl (dump_file, since ? NEXT_INSN (since) : since);
      print_rtl (dump_file, since ? NEXT_INSN (since) : since);
    }
    }
}
}
 
 
/* A subroutine of expand_gimple_basic_block.  Expand one COND_EXPR.
/* A subroutine of expand_gimple_basic_block.  Expand one COND_EXPR.
   Returns a new basic block if we've terminated the current basic
   Returns a new basic block if we've terminated the current basic
   block and created a new one.  */
   block and created a new one.  */
 
 
static basic_block
static basic_block
expand_gimple_cond_expr (basic_block bb, tree stmt)
expand_gimple_cond_expr (basic_block bb, tree stmt)
{
{
  basic_block new_bb, dest;
  basic_block new_bb, dest;
  edge new_edge;
  edge new_edge;
  edge true_edge;
  edge true_edge;
  edge false_edge;
  edge false_edge;
  tree pred = COND_EXPR_COND (stmt);
  tree pred = COND_EXPR_COND (stmt);
  tree then_exp = COND_EXPR_THEN (stmt);
  tree then_exp = COND_EXPR_THEN (stmt);
  tree else_exp = COND_EXPR_ELSE (stmt);
  tree else_exp = COND_EXPR_ELSE (stmt);
  rtx last2, last;
  rtx last2, last;
 
 
  last2 = last = get_last_insn ();
  last2 = last = get_last_insn ();
 
 
  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
  extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
  if (EXPR_LOCUS (stmt))
  if (EXPR_LOCUS (stmt))
    {
    {
      emit_line_note (*(EXPR_LOCUS (stmt)));
      emit_line_note (*(EXPR_LOCUS (stmt)));
      record_block_change (TREE_BLOCK (stmt));
      record_block_change (TREE_BLOCK (stmt));
    }
    }
 
 
  /* These flags have no purpose in RTL land.  */
  /* These flags have no purpose in RTL land.  */
  true_edge->flags &= ~EDGE_TRUE_VALUE;
  true_edge->flags &= ~EDGE_TRUE_VALUE;
  false_edge->flags &= ~EDGE_FALSE_VALUE;
  false_edge->flags &= ~EDGE_FALSE_VALUE;
 
 
  /* We can either have a pure conditional jump with one fallthru edge or
  /* We can either have a pure conditional jump with one fallthru edge or
     two-way jump that needs to be decomposed into two basic blocks.  */
     two-way jump that needs to be decomposed into two basic blocks.  */
  if (TREE_CODE (then_exp) == GOTO_EXPR && IS_EMPTY_STMT (else_exp))
  if (TREE_CODE (then_exp) == GOTO_EXPR && IS_EMPTY_STMT (else_exp))
    {
    {
      jumpif (pred, label_rtx (GOTO_DESTINATION (then_exp)));
      jumpif (pred, label_rtx (GOTO_DESTINATION (then_exp)));
      add_reg_br_prob_note (last, true_edge->probability);
      add_reg_br_prob_note (last, true_edge->probability);
      maybe_dump_rtl_for_tree_stmt (stmt, last);
      maybe_dump_rtl_for_tree_stmt (stmt, last);
      if (EXPR_LOCUS (then_exp))
      if (EXPR_LOCUS (then_exp))
        emit_line_note (*(EXPR_LOCUS (then_exp)));
        emit_line_note (*(EXPR_LOCUS (then_exp)));
      return NULL;
      return NULL;
    }
    }
  if (TREE_CODE (else_exp) == GOTO_EXPR && IS_EMPTY_STMT (then_exp))
  if (TREE_CODE (else_exp) == GOTO_EXPR && IS_EMPTY_STMT (then_exp))
    {
    {
      jumpifnot (pred, label_rtx (GOTO_DESTINATION (else_exp)));
      jumpifnot (pred, label_rtx (GOTO_DESTINATION (else_exp)));
      add_reg_br_prob_note (last, false_edge->probability);
      add_reg_br_prob_note (last, false_edge->probability);
      maybe_dump_rtl_for_tree_stmt (stmt, last);
      maybe_dump_rtl_for_tree_stmt (stmt, last);
      if (EXPR_LOCUS (else_exp))
      if (EXPR_LOCUS (else_exp))
        emit_line_note (*(EXPR_LOCUS (else_exp)));
        emit_line_note (*(EXPR_LOCUS (else_exp)));
      return NULL;
      return NULL;
    }
    }
  gcc_assert (TREE_CODE (then_exp) == GOTO_EXPR
  gcc_assert (TREE_CODE (then_exp) == GOTO_EXPR
              && TREE_CODE (else_exp) == GOTO_EXPR);
              && TREE_CODE (else_exp) == GOTO_EXPR);
 
 
  jumpif (pred, label_rtx (GOTO_DESTINATION (then_exp)));
  jumpif (pred, label_rtx (GOTO_DESTINATION (then_exp)));
  add_reg_br_prob_note (last, true_edge->probability);
  add_reg_br_prob_note (last, true_edge->probability);
  last = get_last_insn ();
  last = get_last_insn ();
  expand_expr (else_exp, const0_rtx, VOIDmode, 0);
  expand_expr (else_exp, const0_rtx, VOIDmode, 0);
 
 
  BB_END (bb) = last;
  BB_END (bb) = last;
  if (BARRIER_P (BB_END (bb)))
  if (BARRIER_P (BB_END (bb)))
    BB_END (bb) = PREV_INSN (BB_END (bb));
    BB_END (bb) = PREV_INSN (BB_END (bb));
  update_bb_for_insn (bb);
  update_bb_for_insn (bb);
 
 
  new_bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
  new_bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
  dest = false_edge->dest;
  dest = false_edge->dest;
  redirect_edge_succ (false_edge, new_bb);
  redirect_edge_succ (false_edge, new_bb);
  false_edge->flags |= EDGE_FALLTHRU;
  false_edge->flags |= EDGE_FALLTHRU;
  new_bb->count = false_edge->count;
  new_bb->count = false_edge->count;
  new_bb->frequency = EDGE_FREQUENCY (false_edge);
  new_bb->frequency = EDGE_FREQUENCY (false_edge);
  new_edge = make_edge (new_bb, dest, 0);
  new_edge = make_edge (new_bb, dest, 0);
  new_edge->probability = REG_BR_PROB_BASE;
  new_edge->probability = REG_BR_PROB_BASE;
  new_edge->count = new_bb->count;
  new_edge->count = new_bb->count;
  if (BARRIER_P (BB_END (new_bb)))
  if (BARRIER_P (BB_END (new_bb)))
    BB_END (new_bb) = PREV_INSN (BB_END (new_bb));
    BB_END (new_bb) = PREV_INSN (BB_END (new_bb));
  update_bb_for_insn (new_bb);
  update_bb_for_insn (new_bb);
 
 
  maybe_dump_rtl_for_tree_stmt (stmt, last2);
  maybe_dump_rtl_for_tree_stmt (stmt, last2);
 
 
  if (EXPR_LOCUS (else_exp))
  if (EXPR_LOCUS (else_exp))
    emit_line_note (*(EXPR_LOCUS (else_exp)));
    emit_line_note (*(EXPR_LOCUS (else_exp)));
 
 
  return new_bb;
  return new_bb;
}
}
 
 
/* A subroutine of expand_gimple_basic_block.  Expand one CALL_EXPR
/* A subroutine of expand_gimple_basic_block.  Expand one CALL_EXPR
   that has CALL_EXPR_TAILCALL set.  Returns non-null if we actually
   that has CALL_EXPR_TAILCALL set.  Returns non-null if we actually
   generated a tail call (something that might be denied by the ABI
   generated a tail call (something that might be denied by the ABI
   rules governing the call; see calls.c).
   rules governing the call; see calls.c).
 
 
   Sets CAN_FALLTHRU if we generated a *conditional* tail call, and
   Sets CAN_FALLTHRU if we generated a *conditional* tail call, and
   can still reach the rest of BB.  The case here is __builtin_sqrt,
   can still reach the rest of BB.  The case here is __builtin_sqrt,
   where the NaN result goes through the external function (with a
   where the NaN result goes through the external function (with a
   tailcall) and the normal result happens via a sqrt instruction.  */
   tailcall) and the normal result happens via a sqrt instruction.  */
 
 
static basic_block
static basic_block
expand_gimple_tailcall (basic_block bb, tree stmt, bool *can_fallthru)
expand_gimple_tailcall (basic_block bb, tree stmt, bool *can_fallthru)
{
{
  rtx last2, last;
  rtx last2, last;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
  int probability;
  int probability;
  gcov_type count;
  gcov_type count;
 
 
  last2 = last = get_last_insn ();
  last2 = last = get_last_insn ();
 
 
  expand_expr_stmt (stmt);
  expand_expr_stmt (stmt);
 
 
  for (last = NEXT_INSN (last); last; last = NEXT_INSN (last))
  for (last = NEXT_INSN (last); last; last = NEXT_INSN (last))
    if (CALL_P (last) && SIBLING_CALL_P (last))
    if (CALL_P (last) && SIBLING_CALL_P (last))
      goto found;
      goto found;
 
 
  maybe_dump_rtl_for_tree_stmt (stmt, last2);
  maybe_dump_rtl_for_tree_stmt (stmt, last2);
 
 
  *can_fallthru = true;
  *can_fallthru = true;
  return NULL;
  return NULL;
 
 
 found:
 found:
  /* ??? Wouldn't it be better to just reset any pending stack adjust?
  /* ??? Wouldn't it be better to just reset any pending stack adjust?
     Any instructions emitted here are about to be deleted.  */
     Any instructions emitted here are about to be deleted.  */
  do_pending_stack_adjust ();
  do_pending_stack_adjust ();
 
 
  /* Remove any non-eh, non-abnormal edges that don't go to exit.  */
  /* Remove any non-eh, non-abnormal edges that don't go to exit.  */
  /* ??? I.e. the fallthrough edge.  HOWEVER!  If there were to be
  /* ??? I.e. the fallthrough edge.  HOWEVER!  If there were to be
     EH or abnormal edges, we shouldn't have created a tail call in
     EH or abnormal edges, we shouldn't have created a tail call in
     the first place.  So it seems to me we should just be removing
     the first place.  So it seems to me we should just be removing
     all edges here, or redirecting the existing fallthru edge to
     all edges here, or redirecting the existing fallthru edge to
     the exit block.  */
     the exit block.  */
 
 
  probability = 0;
  probability = 0;
  count = 0;
  count = 0;
 
 
  for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
  for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
    {
    {
      if (!(e->flags & (EDGE_ABNORMAL | EDGE_EH)))
      if (!(e->flags & (EDGE_ABNORMAL | EDGE_EH)))
        {
        {
          if (e->dest != EXIT_BLOCK_PTR)
          if (e->dest != EXIT_BLOCK_PTR)
            {
            {
              e->dest->count -= e->count;
              e->dest->count -= e->count;
              e->dest->frequency -= EDGE_FREQUENCY (e);
              e->dest->frequency -= EDGE_FREQUENCY (e);
              if (e->dest->count < 0)
              if (e->dest->count < 0)
                e->dest->count = 0;
                e->dest->count = 0;
              if (e->dest->frequency < 0)
              if (e->dest->frequency < 0)
                e->dest->frequency = 0;
                e->dest->frequency = 0;
            }
            }
          count += e->count;
          count += e->count;
          probability += e->probability;
          probability += e->probability;
          remove_edge (e);
          remove_edge (e);
        }
        }
      else
      else
        ei_next (&ei);
        ei_next (&ei);
    }
    }
 
 
  /* This is somewhat ugly: the call_expr expander often emits instructions
  /* This is somewhat ugly: the call_expr expander often emits instructions
     after the sibcall (to perform the function return).  These confuse the
     after the sibcall (to perform the function return).  These confuse the
     find_many_sub_basic_blocks code, so we need to get rid of these.  */
     find_many_sub_basic_blocks code, so we need to get rid of these.  */
  last = NEXT_INSN (last);
  last = NEXT_INSN (last);
  gcc_assert (BARRIER_P (last));
  gcc_assert (BARRIER_P (last));
 
 
  *can_fallthru = false;
  *can_fallthru = false;
  while (NEXT_INSN (last))
  while (NEXT_INSN (last))
    {
    {
      /* For instance an sqrt builtin expander expands if with
      /* For instance an sqrt builtin expander expands if with
         sibcall in the then and label for `else`.  */
         sibcall in the then and label for `else`.  */
      if (LABEL_P (NEXT_INSN (last)))
      if (LABEL_P (NEXT_INSN (last)))
        {
        {
          *can_fallthru = true;
          *can_fallthru = true;
          break;
          break;
        }
        }
      delete_insn (NEXT_INSN (last));
      delete_insn (NEXT_INSN (last));
    }
    }
 
 
  e = make_edge (bb, EXIT_BLOCK_PTR, EDGE_ABNORMAL | EDGE_SIBCALL);
  e = make_edge (bb, EXIT_BLOCK_PTR, EDGE_ABNORMAL | EDGE_SIBCALL);
  e->probability += probability;
  e->probability += probability;
  e->count += count;
  e->count += count;
  BB_END (bb) = last;
  BB_END (bb) = last;
  update_bb_for_insn (bb);
  update_bb_for_insn (bb);
 
 
  if (NEXT_INSN (last))
  if (NEXT_INSN (last))
    {
    {
      bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
      bb = create_basic_block (NEXT_INSN (last), get_last_insn (), bb);
 
 
      last = BB_END (bb);
      last = BB_END (bb);
      if (BARRIER_P (last))
      if (BARRIER_P (last))
        BB_END (bb) = PREV_INSN (last);
        BB_END (bb) = PREV_INSN (last);
    }
    }
 
 
  maybe_dump_rtl_for_tree_stmt (stmt, last2);
  maybe_dump_rtl_for_tree_stmt (stmt, last2);
 
 
  return bb;
  return bb;
}
}
 
 
/* Expand basic block BB from GIMPLE trees to RTL.  */
/* Expand basic block BB from GIMPLE trees to RTL.  */
 
 
static basic_block
static basic_block
expand_gimple_basic_block (basic_block bb)
expand_gimple_basic_block (basic_block bb)
{
{
  block_stmt_iterator bsi = bsi_start (bb);
  block_stmt_iterator bsi = bsi_start (bb);
  tree stmt = NULL;
  tree stmt = NULL;
  rtx note, last;
  rtx note, last;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file,
      fprintf (dump_file,
               "\n;; Generating RTL for tree basic block %d\n",
               "\n;; Generating RTL for tree basic block %d\n",
               bb->index);
               bb->index);
    }
    }
 
 
  init_rtl_bb_info (bb);
  init_rtl_bb_info (bb);
  bb->flags |= BB_RTL;
  bb->flags |= BB_RTL;
 
 
  if (!bsi_end_p (bsi))
  if (!bsi_end_p (bsi))
    stmt = bsi_stmt (bsi);
    stmt = bsi_stmt (bsi);
 
 
  if (stmt && TREE_CODE (stmt) == LABEL_EXPR)
  if (stmt && TREE_CODE (stmt) == LABEL_EXPR)
    {
    {
      last = get_last_insn ();
      last = get_last_insn ();
 
 
      expand_expr_stmt (stmt);
      expand_expr_stmt (stmt);
 
 
      /* Java emits line number notes in the top of labels.
      /* Java emits line number notes in the top of labels.
         ??? Make this go away once line number notes are obsoleted.  */
         ??? Make this go away once line number notes are obsoleted.  */
      BB_HEAD (bb) = NEXT_INSN (last);
      BB_HEAD (bb) = NEXT_INSN (last);
      if (NOTE_P (BB_HEAD (bb)))
      if (NOTE_P (BB_HEAD (bb)))
        BB_HEAD (bb) = NEXT_INSN (BB_HEAD (bb));
        BB_HEAD (bb) = NEXT_INSN (BB_HEAD (bb));
      bsi_next (&bsi);
      bsi_next (&bsi);
      note = emit_note_after (NOTE_INSN_BASIC_BLOCK, BB_HEAD (bb));
      note = emit_note_after (NOTE_INSN_BASIC_BLOCK, BB_HEAD (bb));
 
 
      maybe_dump_rtl_for_tree_stmt (stmt, last);
      maybe_dump_rtl_for_tree_stmt (stmt, last);
    }
    }
  else
  else
    note = BB_HEAD (bb) = emit_note (NOTE_INSN_BASIC_BLOCK);
    note = BB_HEAD (bb) = emit_note (NOTE_INSN_BASIC_BLOCK);
 
 
  NOTE_BASIC_BLOCK (note) = bb;
  NOTE_BASIC_BLOCK (note) = bb;
 
 
  for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
  for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
    {
    {
      /* Clear EDGE_EXECUTABLE.  This flag is never used in the backend.  */
      /* Clear EDGE_EXECUTABLE.  This flag is never used in the backend.  */
      e->flags &= ~EDGE_EXECUTABLE;
      e->flags &= ~EDGE_EXECUTABLE;
 
 
      /* At the moment not all abnormal edges match the RTL representation.
      /* At the moment not all abnormal edges match the RTL representation.
         It is safe to remove them here as find_many_sub_basic_blocks will
         It is safe to remove them here as find_many_sub_basic_blocks will
         rediscover them.  In the future we should get this fixed properly.  */
         rediscover them.  In the future we should get this fixed properly.  */
      if (e->flags & EDGE_ABNORMAL)
      if (e->flags & EDGE_ABNORMAL)
        remove_edge (e);
        remove_edge (e);
      else
      else
        ei_next (&ei);
        ei_next (&ei);
    }
    }
 
 
  for (; !bsi_end_p (bsi); bsi_next (&bsi))
  for (; !bsi_end_p (bsi); bsi_next (&bsi))
    {
    {
      tree stmt = bsi_stmt (bsi);
      tree stmt = bsi_stmt (bsi);
      basic_block new_bb;
      basic_block new_bb;
 
 
      if (!stmt)
      if (!stmt)
        continue;
        continue;
 
 
      /* Expand this statement, then evaluate the resulting RTL and
      /* Expand this statement, then evaluate the resulting RTL and
         fixup the CFG accordingly.  */
         fixup the CFG accordingly.  */
      if (TREE_CODE (stmt) == COND_EXPR)
      if (TREE_CODE (stmt) == COND_EXPR)
        {
        {
          new_bb = expand_gimple_cond_expr (bb, stmt);
          new_bb = expand_gimple_cond_expr (bb, stmt);
          if (new_bb)
          if (new_bb)
            return new_bb;
            return new_bb;
        }
        }
      else
      else
        {
        {
          tree call = get_call_expr_in (stmt);
          tree call = get_call_expr_in (stmt);
          if (call && CALL_EXPR_TAILCALL (call))
          if (call && CALL_EXPR_TAILCALL (call))
            {
            {
              bool can_fallthru;
              bool can_fallthru;
              new_bb = expand_gimple_tailcall (bb, stmt, &can_fallthru);
              new_bb = expand_gimple_tailcall (bb, stmt, &can_fallthru);
              if (new_bb)
              if (new_bb)
                {
                {
                  if (can_fallthru)
                  if (can_fallthru)
                    bb = new_bb;
                    bb = new_bb;
                  else
                  else
                    return new_bb;
                    return new_bb;
                }
                }
            }
            }
          else
          else
            {
            {
              last = get_last_insn ();
              last = get_last_insn ();
              expand_expr_stmt (stmt);
              expand_expr_stmt (stmt);
              maybe_dump_rtl_for_tree_stmt (stmt, last);
              maybe_dump_rtl_for_tree_stmt (stmt, last);
            }
            }
        }
        }
    }
    }
 
 
  do_pending_stack_adjust ();
  do_pending_stack_adjust ();
 
 
  /* Find the block tail.  The last insn in the block is the insn
  /* Find the block tail.  The last insn in the block is the insn
     before a barrier and/or table jump insn.  */
     before a barrier and/or table jump insn.  */
  last = get_last_insn ();
  last = get_last_insn ();
  if (BARRIER_P (last))
  if (BARRIER_P (last))
    last = PREV_INSN (last);
    last = PREV_INSN (last);
  if (JUMP_TABLE_DATA_P (last))
  if (JUMP_TABLE_DATA_P (last))
    last = PREV_INSN (PREV_INSN (last));
    last = PREV_INSN (PREV_INSN (last));
  BB_END (bb) = last;
  BB_END (bb) = last;
 
 
  update_bb_for_insn (bb);
  update_bb_for_insn (bb);
 
 
  return bb;
  return bb;
}
}
 
 
 
 
/* Create a basic block for initialization code.  */
/* Create a basic block for initialization code.  */
 
 
static basic_block
static basic_block
construct_init_block (void)
construct_init_block (void)
{
{
  basic_block init_block, first_block;
  basic_block init_block, first_block;
  edge e = NULL;
  edge e = NULL;
  int flags;
  int flags;
 
 
  /* Multiple entry points not supported yet.  */
  /* Multiple entry points not supported yet.  */
  gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
  gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
  init_rtl_bb_info (ENTRY_BLOCK_PTR);
  init_rtl_bb_info (ENTRY_BLOCK_PTR);
  init_rtl_bb_info (EXIT_BLOCK_PTR);
  init_rtl_bb_info (EXIT_BLOCK_PTR);
  ENTRY_BLOCK_PTR->flags |= BB_RTL;
  ENTRY_BLOCK_PTR->flags |= BB_RTL;
  EXIT_BLOCK_PTR->flags |= BB_RTL;
  EXIT_BLOCK_PTR->flags |= BB_RTL;
 
 
  e = EDGE_SUCC (ENTRY_BLOCK_PTR, 0);
  e = EDGE_SUCC (ENTRY_BLOCK_PTR, 0);
 
 
  /* When entry edge points to first basic block, we don't need jump,
  /* When entry edge points to first basic block, we don't need jump,
     otherwise we have to jump into proper target.  */
     otherwise we have to jump into proper target.  */
  if (e && e->dest != ENTRY_BLOCK_PTR->next_bb)
  if (e && e->dest != ENTRY_BLOCK_PTR->next_bb)
    {
    {
      tree label = tree_block_label (e->dest);
      tree label = tree_block_label (e->dest);
 
 
      emit_jump (label_rtx (label));
      emit_jump (label_rtx (label));
      flags = 0;
      flags = 0;
    }
    }
  else
  else
    flags = EDGE_FALLTHRU;
    flags = EDGE_FALLTHRU;
 
 
  init_block = create_basic_block (NEXT_INSN (get_insns ()),
  init_block = create_basic_block (NEXT_INSN (get_insns ()),
                                   get_last_insn (),
                                   get_last_insn (),
                                   ENTRY_BLOCK_PTR);
                                   ENTRY_BLOCK_PTR);
  init_block->frequency = ENTRY_BLOCK_PTR->frequency;
  init_block->frequency = ENTRY_BLOCK_PTR->frequency;
  init_block->count = ENTRY_BLOCK_PTR->count;
  init_block->count = ENTRY_BLOCK_PTR->count;
  if (e)
  if (e)
    {
    {
      first_block = e->dest;
      first_block = e->dest;
      redirect_edge_succ (e, init_block);
      redirect_edge_succ (e, init_block);
      e = make_edge (init_block, first_block, flags);
      e = make_edge (init_block, first_block, flags);
    }
    }
  else
  else
    e = make_edge (init_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
    e = make_edge (init_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
  e->probability = REG_BR_PROB_BASE;
  e->probability = REG_BR_PROB_BASE;
  e->count = ENTRY_BLOCK_PTR->count;
  e->count = ENTRY_BLOCK_PTR->count;
 
 
  update_bb_for_insn (init_block);
  update_bb_for_insn (init_block);
  return init_block;
  return init_block;
}
}
 
 
 
 
/* Create a block containing landing pads and similar stuff.  */
/* Create a block containing landing pads and similar stuff.  */
 
 
static void
static void
construct_exit_block (void)
construct_exit_block (void)
{
{
  rtx head = get_last_insn ();
  rtx head = get_last_insn ();
  rtx end;
  rtx end;
  basic_block exit_block;
  basic_block exit_block;
  edge e, e2;
  edge e, e2;
  unsigned ix;
  unsigned ix;
  edge_iterator ei;
  edge_iterator ei;
 
 
  /* Make sure the locus is set to the end of the function, so that
  /* Make sure the locus is set to the end of the function, so that
     epilogue line numbers and warnings are set properly.  */
     epilogue line numbers and warnings are set properly.  */
#ifdef USE_MAPPED_LOCATION
#ifdef USE_MAPPED_LOCATION
  if (cfun->function_end_locus != UNKNOWN_LOCATION)
  if (cfun->function_end_locus != UNKNOWN_LOCATION)
#else
#else
  if (cfun->function_end_locus.file)
  if (cfun->function_end_locus.file)
#endif
#endif
    input_location = cfun->function_end_locus;
    input_location = cfun->function_end_locus;
 
 
  /* The following insns belong to the top scope.  */
  /* The following insns belong to the top scope.  */
  record_block_change (DECL_INITIAL (current_function_decl));
  record_block_change (DECL_INITIAL (current_function_decl));
 
 
  /* Generate rtl for function exit.  */
  /* Generate rtl for function exit.  */
  expand_function_end ();
  expand_function_end ();
 
 
  end = get_last_insn ();
  end = get_last_insn ();
  if (head == end)
  if (head == end)
    return;
    return;
  while (NEXT_INSN (head) && NOTE_P (NEXT_INSN (head)))
  while (NEXT_INSN (head) && NOTE_P (NEXT_INSN (head)))
    head = NEXT_INSN (head);
    head = NEXT_INSN (head);
  exit_block = create_basic_block (NEXT_INSN (head), end,
  exit_block = create_basic_block (NEXT_INSN (head), end,
                                   EXIT_BLOCK_PTR->prev_bb);
                                   EXIT_BLOCK_PTR->prev_bb);
  exit_block->frequency = EXIT_BLOCK_PTR->frequency;
  exit_block->frequency = EXIT_BLOCK_PTR->frequency;
  exit_block->count = EXIT_BLOCK_PTR->count;
  exit_block->count = EXIT_BLOCK_PTR->count;
 
 
  ix = 0;
  ix = 0;
  while (ix < EDGE_COUNT (EXIT_BLOCK_PTR->preds))
  while (ix < EDGE_COUNT (EXIT_BLOCK_PTR->preds))
    {
    {
      e = EDGE_PRED (EXIT_BLOCK_PTR, ix);
      e = EDGE_PRED (EXIT_BLOCK_PTR, ix);
      if (!(e->flags & EDGE_ABNORMAL))
      if (!(e->flags & EDGE_ABNORMAL))
        redirect_edge_succ (e, exit_block);
        redirect_edge_succ (e, exit_block);
      else
      else
        ix++;
        ix++;
    }
    }
 
 
  e = make_edge (exit_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
  e = make_edge (exit_block, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
  e->probability = REG_BR_PROB_BASE;
  e->probability = REG_BR_PROB_BASE;
  e->count = EXIT_BLOCK_PTR->count;
  e->count = EXIT_BLOCK_PTR->count;
  FOR_EACH_EDGE (e2, ei, EXIT_BLOCK_PTR->preds)
  FOR_EACH_EDGE (e2, ei, EXIT_BLOCK_PTR->preds)
    if (e2 != e)
    if (e2 != e)
      {
      {
        e->count -= e2->count;
        e->count -= e2->count;
        exit_block->count -= e2->count;
        exit_block->count -= e2->count;
        exit_block->frequency -= EDGE_FREQUENCY (e2);
        exit_block->frequency -= EDGE_FREQUENCY (e2);
      }
      }
  if (e->count < 0)
  if (e->count < 0)
    e->count = 0;
    e->count = 0;
  if (exit_block->count < 0)
  if (exit_block->count < 0)
    exit_block->count = 0;
    exit_block->count = 0;
  if (exit_block->frequency < 0)
  if (exit_block->frequency < 0)
    exit_block->frequency = 0;
    exit_block->frequency = 0;
  update_bb_for_insn (exit_block);
  update_bb_for_insn (exit_block);
}
}
 
 
/* Helper function for discover_nonconstant_array_refs.
/* Helper function for discover_nonconstant_array_refs.
   Look for ARRAY_REF nodes with non-constant indexes and mark them
   Look for ARRAY_REF nodes with non-constant indexes and mark them
   addressable.  */
   addressable.  */
 
 
static tree
static tree
discover_nonconstant_array_refs_r (tree * tp, int *walk_subtrees,
discover_nonconstant_array_refs_r (tree * tp, int *walk_subtrees,
                                   void *data ATTRIBUTE_UNUSED)
                                   void *data ATTRIBUTE_UNUSED)
{
{
  tree t = *tp;
  tree t = *tp;
 
 
  if (IS_TYPE_OR_DECL_P (t))
  if (IS_TYPE_OR_DECL_P (t))
    *walk_subtrees = 0;
    *walk_subtrees = 0;
  else if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
  else if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
    {
    {
      while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
      while (((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
              && is_gimple_min_invariant (TREE_OPERAND (t, 1))
              && is_gimple_min_invariant (TREE_OPERAND (t, 1))
              && (!TREE_OPERAND (t, 2)
              && (!TREE_OPERAND (t, 2)
                  || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
                  || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
             || (TREE_CODE (t) == COMPONENT_REF
             || (TREE_CODE (t) == COMPONENT_REF
                 && (!TREE_OPERAND (t,2)
                 && (!TREE_OPERAND (t,2)
                     || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
                     || is_gimple_min_invariant (TREE_OPERAND (t, 2))))
             || TREE_CODE (t) == BIT_FIELD_REF
             || TREE_CODE (t) == BIT_FIELD_REF
             || TREE_CODE (t) == REALPART_EXPR
             || TREE_CODE (t) == REALPART_EXPR
             || TREE_CODE (t) == IMAGPART_EXPR
             || TREE_CODE (t) == IMAGPART_EXPR
             || TREE_CODE (t) == VIEW_CONVERT_EXPR
             || TREE_CODE (t) == VIEW_CONVERT_EXPR
             || TREE_CODE (t) == NOP_EXPR
             || TREE_CODE (t) == NOP_EXPR
             || TREE_CODE (t) == CONVERT_EXPR)
             || TREE_CODE (t) == CONVERT_EXPR)
        t = TREE_OPERAND (t, 0);
        t = TREE_OPERAND (t, 0);
 
 
      if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
      if (TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
        {
        {
          t = get_base_address (t);
          t = get_base_address (t);
          if (t && DECL_P (t))
          if (t && DECL_P (t))
            TREE_ADDRESSABLE (t) = 1;
            TREE_ADDRESSABLE (t) = 1;
        }
        }
 
 
      *walk_subtrees = 0;
      *walk_subtrees = 0;
    }
    }
 
 
  return NULL_TREE;
  return NULL_TREE;
}
}
 
 
/* RTL expansion is not able to compile array references with variable
/* RTL expansion is not able to compile array references with variable
   offsets for arrays stored in single register.  Discover such
   offsets for arrays stored in single register.  Discover such
   expressions and mark variables as addressable to avoid this
   expressions and mark variables as addressable to avoid this
   scenario.  */
   scenario.  */
 
 
static void
static void
discover_nonconstant_array_refs (void)
discover_nonconstant_array_refs (void)
{
{
  basic_block bb;
  basic_block bb;
  block_stmt_iterator bsi;
  block_stmt_iterator bsi;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
      for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
        walk_tree (bsi_stmt_ptr (bsi), discover_nonconstant_array_refs_r,
        walk_tree (bsi_stmt_ptr (bsi), discover_nonconstant_array_refs_r,
                   NULL , NULL);
                   NULL , NULL);
    }
    }
}
}
 
 
/* Translate the intermediate representation contained in the CFG
/* Translate the intermediate representation contained in the CFG
   from GIMPLE trees to RTL.
   from GIMPLE trees to RTL.
 
 
   We do conversion per basic block and preserve/update the tree CFG.
   We do conversion per basic block and preserve/update the tree CFG.
   This implies we have to do some magic as the CFG can simultaneously
   This implies we have to do some magic as the CFG can simultaneously
   consist of basic blocks containing RTL and GIMPLE trees.  This can
   consist of basic blocks containing RTL and GIMPLE trees.  This can
   confuse the CFG hooks, so be careful to not manipulate CFG during
   confuse the CFG hooks, so be careful to not manipulate CFG during
   the expansion.  */
   the expansion.  */
 
 
static unsigned int
static unsigned int
tree_expand_cfg (void)
tree_expand_cfg (void)
{
{
  basic_block bb, init_block;
  basic_block bb, init_block;
  sbitmap blocks;
  sbitmap blocks;
  edge_iterator ei;
  edge_iterator ei;
  edge e;
  edge e;
 
 
  /* Some backends want to know that we are expanding to RTL.  */
  /* Some backends want to know that we are expanding to RTL.  */
  currently_expanding_to_rtl = 1;
  currently_expanding_to_rtl = 1;
 
 
  /* Prepare the rtl middle end to start recording block changes.  */
  /* Prepare the rtl middle end to start recording block changes.  */
  reset_block_changes ();
  reset_block_changes ();
 
 
  /* Mark arrays indexed with non-constant indices with TREE_ADDRESSABLE.  */
  /* Mark arrays indexed with non-constant indices with TREE_ADDRESSABLE.  */
  discover_nonconstant_array_refs ();
  discover_nonconstant_array_refs ();
 
 
  /* Expand the variables recorded during gimple lowering.  */
  /* Expand the variables recorded during gimple lowering.  */
  expand_used_vars ();
  expand_used_vars ();
 
 
  /* Honor stack protection warnings.  */
  /* Honor stack protection warnings.  */
  if (warn_stack_protect)
  if (warn_stack_protect)
    {
    {
      if (current_function_calls_alloca)
      if (current_function_calls_alloca)
        warning (0, "not protecting local variables: variable length buffer");
        warning (0, "not protecting local variables: variable length buffer");
      if (has_short_buffer && !cfun->stack_protect_guard)
      if (has_short_buffer && !cfun->stack_protect_guard)
        warning (0, "not protecting function: no buffer at least %d bytes long",
        warning (0, "not protecting function: no buffer at least %d bytes long",
                 (int) PARAM_VALUE (PARAM_SSP_BUFFER_SIZE));
                 (int) PARAM_VALUE (PARAM_SSP_BUFFER_SIZE));
    }
    }
 
 
  /* Set up parameters and prepare for return, for the function.  */
  /* Set up parameters and prepare for return, for the function.  */
  expand_function_start (current_function_decl);
  expand_function_start (current_function_decl);
 
 
  /* If this function is `main', emit a call to `__main'
  /* If this function is `main', emit a call to `__main'
     to run global initializers, etc.  */
     to run global initializers, etc.  */
  if (DECL_NAME (current_function_decl)
  if (DECL_NAME (current_function_decl)
      && MAIN_NAME_P (DECL_NAME (current_function_decl))
      && MAIN_NAME_P (DECL_NAME (current_function_decl))
      && DECL_FILE_SCOPE_P (current_function_decl))
      && DECL_FILE_SCOPE_P (current_function_decl))
    expand_main_function ();
    expand_main_function ();
 
 
  /* Initialize the stack_protect_guard field.  This must happen after the
  /* Initialize the stack_protect_guard field.  This must happen after the
     call to __main (if any) so that the external decl is initialized.  */
     call to __main (if any) so that the external decl is initialized.  */
  if (cfun->stack_protect_guard)
  if (cfun->stack_protect_guard)
    stack_protect_prologue ();
    stack_protect_prologue ();
 
 
  /* Register rtl specific functions for cfg.  */
  /* Register rtl specific functions for cfg.  */
  rtl_register_cfg_hooks ();
  rtl_register_cfg_hooks ();
 
 
  init_block = construct_init_block ();
  init_block = construct_init_block ();
 
 
  /* Clear EDGE_EXECUTABLE on the entry edge(s).  It is cleaned from the
  /* Clear EDGE_EXECUTABLE on the entry edge(s).  It is cleaned from the
     remaining edges in expand_gimple_basic_block.  */
     remaining edges in expand_gimple_basic_block.  */
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
  FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
    e->flags &= ~EDGE_EXECUTABLE;
    e->flags &= ~EDGE_EXECUTABLE;
 
 
  FOR_BB_BETWEEN (bb, init_block->next_bb, EXIT_BLOCK_PTR, next_bb)
  FOR_BB_BETWEEN (bb, init_block->next_bb, EXIT_BLOCK_PTR, next_bb)
    bb = expand_gimple_basic_block (bb);
    bb = expand_gimple_basic_block (bb);
 
 
  construct_exit_block ();
  construct_exit_block ();
 
 
  /* We're done expanding trees to RTL.  */
  /* We're done expanding trees to RTL.  */
  currently_expanding_to_rtl = 0;
  currently_expanding_to_rtl = 0;
 
 
  /* Convert tree EH labels to RTL EH labels, and clean out any unreachable
  /* Convert tree EH labels to RTL EH labels, and clean out any unreachable
     EH regions.  */
     EH regions.  */
  convert_from_eh_region_ranges ();
  convert_from_eh_region_ranges ();
 
 
  rebuild_jump_labels (get_insns ());
  rebuild_jump_labels (get_insns ());
  find_exception_handler_labels ();
  find_exception_handler_labels ();
 
 
  blocks = sbitmap_alloc (last_basic_block);
  blocks = sbitmap_alloc (last_basic_block);
  sbitmap_ones (blocks);
  sbitmap_ones (blocks);
  find_many_sub_basic_blocks (blocks);
  find_many_sub_basic_blocks (blocks);
  purge_all_dead_edges ();
  purge_all_dead_edges ();
  sbitmap_free (blocks);
  sbitmap_free (blocks);
 
 
  compact_blocks ();
  compact_blocks ();
#ifdef ENABLE_CHECKING
#ifdef ENABLE_CHECKING
  verify_flow_info();
  verify_flow_info();
#endif
#endif
 
 
  /* There's no need to defer outputting this function any more; we
  /* There's no need to defer outputting this function any more; we
     know we want to output it.  */
     know we want to output it.  */
  DECL_DEFER_OUTPUT (current_function_decl) = 0;
  DECL_DEFER_OUTPUT (current_function_decl) = 0;
 
 
  /* Now that we're done expanding trees to RTL, we shouldn't have any
  /* Now that we're done expanding trees to RTL, we shouldn't have any
     more CONCATs anywhere.  */
     more CONCATs anywhere.  */
  generating_concat_p = 0;
  generating_concat_p = 0;
 
 
  finalize_block_changes ();
  finalize_block_changes ();
 
 
  if (dump_file)
  if (dump_file)
    {
    {
      fprintf (dump_file,
      fprintf (dump_file,
               "\n\n;;\n;; Full RTL generated for this function:\n;;\n");
               "\n\n;;\n;; Full RTL generated for this function:\n;;\n");
      /* And the pass manager will dump RTL for us.  */
      /* And the pass manager will dump RTL for us.  */
    }
    }
 
 
  /* If we're emitting a nested function, make sure its parent gets
  /* If we're emitting a nested function, make sure its parent gets
     emitted as well.  Doing otherwise confuses debug info.  */
     emitted as well.  Doing otherwise confuses debug info.  */
  {
  {
    tree parent;
    tree parent;
    for (parent = DECL_CONTEXT (current_function_decl);
    for (parent = DECL_CONTEXT (current_function_decl);
         parent != NULL_TREE;
         parent != NULL_TREE;
         parent = get_containing_scope (parent))
         parent = get_containing_scope (parent))
      if (TREE_CODE (parent) == FUNCTION_DECL)
      if (TREE_CODE (parent) == FUNCTION_DECL)
        TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (parent)) = 1;
        TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (parent)) = 1;
  }
  }
 
 
  /* We are now committed to emitting code for this function.  Do any
  /* We are now committed to emitting code for this function.  Do any
     preparation, such as emitting abstract debug info for the inline
     preparation, such as emitting abstract debug info for the inline
     before it gets mangled by optimization.  */
     before it gets mangled by optimization.  */
  if (cgraph_function_possibly_inlined_p (current_function_decl))
  if (cgraph_function_possibly_inlined_p (current_function_decl))
    (*debug_hooks->outlining_inline_function) (current_function_decl);
    (*debug_hooks->outlining_inline_function) (current_function_decl);
 
 
  TREE_ASM_WRITTEN (current_function_decl) = 1;
  TREE_ASM_WRITTEN (current_function_decl) = 1;
 
 
  /* After expanding, the return labels are no longer needed. */
  /* After expanding, the return labels are no longer needed. */
  return_label = NULL;
  return_label = NULL;
  naked_return_label = NULL;
  naked_return_label = NULL;
  return 0;
  return 0;
}
}
 
 
struct tree_opt_pass pass_expand =
struct tree_opt_pass pass_expand =
{
{
  "expand",                             /* name */
  "expand",                             /* name */
  NULL,                                 /* gate */
  NULL,                                 /* gate */
  tree_expand_cfg,                      /* execute */
  tree_expand_cfg,                      /* execute */
  NULL,                                 /* sub */
  NULL,                                 /* sub */
  NULL,                                 /* next */
  NULL,                                 /* next */
  0,                                    /* static_pass_number */
  0,                                    /* static_pass_number */
  TV_EXPAND,                            /* tv_id */
  TV_EXPAND,                            /* tv_id */
  /* ??? If TER is enabled, we actually receive GENERIC.  */
  /* ??? If TER is enabled, we actually receive GENERIC.  */
  PROP_gimple_leh | PROP_cfg,           /* properties_required */
  PROP_gimple_leh | PROP_cfg,           /* properties_required */
  PROP_rtl,                             /* properties_provided */
  PROP_rtl,                             /* properties_provided */
  PROP_trees,                           /* properties_destroyed */
  PROP_trees,                           /* properties_destroyed */
  0,                                    /* todo_flags_start */
  0,                                    /* todo_flags_start */
  TODO_dump_func,                       /* todo_flags_finish */
  TODO_dump_func,                       /* todo_flags_finish */
  'r'                                   /* letter */
  'r'                                   /* letter */
};
};
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.