OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [cfgloopanal.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* Natural loop analysis code for GNU compiler.
/* Natural loop analysis code for GNU compiler.
   Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
   Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
Software Foundation; either version 3, or (at your option) any later
version.
version.
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */
<http://www.gnu.org/licenses/>.  */
 
 
#include "config.h"
#include "config.h"
#include "system.h"
#include "system.h"
#include "coretypes.h"
#include "coretypes.h"
#include "tm.h"
#include "tm.h"
#include "rtl.h"
#include "rtl.h"
#include "hard-reg-set.h"
#include "hard-reg-set.h"
#include "obstack.h"
#include "obstack.h"
#include "basic-block.h"
#include "basic-block.h"
#include "cfgloop.h"
#include "cfgloop.h"
#include "expr.h"
#include "expr.h"
#include "output.h"
#include "output.h"
 
 
/* Checks whether BB is executed exactly once in each LOOP iteration.  */
/* Checks whether BB is executed exactly once in each LOOP iteration.  */
 
 
bool
bool
just_once_each_iteration_p (const struct loop *loop, basic_block bb)
just_once_each_iteration_p (const struct loop *loop, basic_block bb)
{
{
  /* It must be executed at least once each iteration.  */
  /* It must be executed at least once each iteration.  */
  if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
  if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
    return false;
    return false;
 
 
  /* And just once.  */
  /* And just once.  */
  if (bb->loop_father != loop)
  if (bb->loop_father != loop)
    return false;
    return false;
 
 
  /* But this was not enough.  We might have some irreducible loop here.  */
  /* But this was not enough.  We might have some irreducible loop here.  */
  if (bb->flags & BB_IRREDUCIBLE_LOOP)
  if (bb->flags & BB_IRREDUCIBLE_LOOP)
    return false;
    return false;
 
 
  return true;
  return true;
}
}
 
 
/* Structure representing edge of a graph.  */
/* Structure representing edge of a graph.  */
 
 
struct edge
struct edge
{
{
  int src, dest;        /* Source and destination.  */
  int src, dest;        /* Source and destination.  */
  struct edge *pred_next, *succ_next;
  struct edge *pred_next, *succ_next;
                        /* Next edge in predecessor and successor lists.  */
                        /* Next edge in predecessor and successor lists.  */
  void *data;           /* Data attached to the edge.  */
  void *data;           /* Data attached to the edge.  */
};
};
 
 
/* Structure representing vertex of a graph.  */
/* Structure representing vertex of a graph.  */
 
 
struct vertex
struct vertex
{
{
  struct edge *pred, *succ;
  struct edge *pred, *succ;
                        /* Lists of predecessors and successors.  */
                        /* Lists of predecessors and successors.  */
  int component;        /* Number of dfs restarts before reaching the
  int component;        /* Number of dfs restarts before reaching the
                           vertex.  */
                           vertex.  */
  int post;             /* Postorder number.  */
  int post;             /* Postorder number.  */
};
};
 
 
/* Structure representing a graph.  */
/* Structure representing a graph.  */
 
 
struct graph
struct graph
{
{
  int n_vertices;       /* Number of vertices.  */
  int n_vertices;       /* Number of vertices.  */
  struct vertex *vertices;
  struct vertex *vertices;
                        /* The vertices.  */
                        /* The vertices.  */
};
};
 
 
/* Dumps graph G into F.  */
/* Dumps graph G into F.  */
 
 
extern void dump_graph (FILE *, struct graph *);
extern void dump_graph (FILE *, struct graph *);
 
 
void
void
dump_graph (FILE *f, struct graph *g)
dump_graph (FILE *f, struct graph *g)
{
{
  int i;
  int i;
  struct edge *e;
  struct edge *e;
 
 
  for (i = 0; i < g->n_vertices; i++)
  for (i = 0; i < g->n_vertices; i++)
    {
    {
      if (!g->vertices[i].pred
      if (!g->vertices[i].pred
          && !g->vertices[i].succ)
          && !g->vertices[i].succ)
        continue;
        continue;
 
 
      fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
      fprintf (f, "%d (%d)\t<-", i, g->vertices[i].component);
      for (e = g->vertices[i].pred; e; e = e->pred_next)
      for (e = g->vertices[i].pred; e; e = e->pred_next)
        fprintf (f, " %d", e->src);
        fprintf (f, " %d", e->src);
      fprintf (f, "\n");
      fprintf (f, "\n");
 
 
      fprintf (f, "\t->");
      fprintf (f, "\t->");
      for (e = g->vertices[i].succ; e; e = e->succ_next)
      for (e = g->vertices[i].succ; e; e = e->succ_next)
        fprintf (f, " %d", e->dest);
        fprintf (f, " %d", e->dest);
      fprintf (f, "\n");
      fprintf (f, "\n");
    }
    }
}
}
 
 
/* Creates a new graph with N_VERTICES vertices.  */
/* Creates a new graph with N_VERTICES vertices.  */
 
 
static struct graph *
static struct graph *
new_graph (int n_vertices)
new_graph (int n_vertices)
{
{
  struct graph *g = XNEW (struct graph);
  struct graph *g = XNEW (struct graph);
 
 
  g->n_vertices = n_vertices;
  g->n_vertices = n_vertices;
  g->vertices = XCNEWVEC (struct vertex, n_vertices);
  g->vertices = XCNEWVEC (struct vertex, n_vertices);
 
 
  return g;
  return g;
}
}
 
 
/* Adds an edge from F to T to graph G, with DATA attached.  */
/* Adds an edge from F to T to graph G, with DATA attached.  */
 
 
static void
static void
add_edge (struct graph *g, int f, int t, void *data)
add_edge (struct graph *g, int f, int t, void *data)
{
{
  struct edge *e = xmalloc (sizeof (struct edge));
  struct edge *e = xmalloc (sizeof (struct edge));
 
 
  e->src = f;
  e->src = f;
  e->dest = t;
  e->dest = t;
  e->data = data;
  e->data = data;
 
 
  e->pred_next = g->vertices[t].pred;
  e->pred_next = g->vertices[t].pred;
  g->vertices[t].pred = e;
  g->vertices[t].pred = e;
 
 
  e->succ_next = g->vertices[f].succ;
  e->succ_next = g->vertices[f].succ;
  g->vertices[f].succ = e;
  g->vertices[f].succ = e;
}
}
 
 
/* Runs dfs search over vertices of G, from NQ vertices in queue QS.
/* Runs dfs search over vertices of G, from NQ vertices in queue QS.
   The vertices in postorder are stored into QT.  If FORWARD is false,
   The vertices in postorder are stored into QT.  If FORWARD is false,
   backward dfs is run.  */
   backward dfs is run.  */
 
 
static void
static void
dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
dfs (struct graph *g, int *qs, int nq, int *qt, bool forward)
{
{
  int i, tick = 0, v, comp = 0, top;
  int i, tick = 0, v, comp = 0, top;
  struct edge *e;
  struct edge *e;
  struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
  struct edge **stack = xmalloc (sizeof (struct edge *) * g->n_vertices);
 
 
  for (i = 0; i < g->n_vertices; i++)
  for (i = 0; i < g->n_vertices; i++)
    {
    {
      g->vertices[i].component = -1;
      g->vertices[i].component = -1;
      g->vertices[i].post = -1;
      g->vertices[i].post = -1;
    }
    }
 
 
#define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
#define FST_EDGE(V) (forward ? g->vertices[(V)].succ : g->vertices[(V)].pred)
#define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
#define NEXT_EDGE(E) (forward ? (E)->succ_next : (E)->pred_next)
#define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
#define EDGE_SRC(E) (forward ? (E)->src : (E)->dest)
#define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
#define EDGE_DEST(E) (forward ? (E)->dest : (E)->src)
 
 
  for (i = 0; i < nq; i++)
  for (i = 0; i < nq; i++)
    {
    {
      v = qs[i];
      v = qs[i];
      if (g->vertices[v].post != -1)
      if (g->vertices[v].post != -1)
        continue;
        continue;
 
 
      g->vertices[v].component = comp++;
      g->vertices[v].component = comp++;
      e = FST_EDGE (v);
      e = FST_EDGE (v);
      top = 0;
      top = 0;
 
 
      while (1)
      while (1)
        {
        {
          while (e && g->vertices[EDGE_DEST (e)].component != -1)
          while (e && g->vertices[EDGE_DEST (e)].component != -1)
            e = NEXT_EDGE (e);
            e = NEXT_EDGE (e);
 
 
          if (!e)
          if (!e)
            {
            {
              if (qt)
              if (qt)
                qt[tick] = v;
                qt[tick] = v;
              g->vertices[v].post = tick++;
              g->vertices[v].post = tick++;
 
 
              if (!top)
              if (!top)
                break;
                break;
 
 
              e = stack[--top];
              e = stack[--top];
              v = EDGE_SRC (e);
              v = EDGE_SRC (e);
              e = NEXT_EDGE (e);
              e = NEXT_EDGE (e);
              continue;
              continue;
            }
            }
 
 
          stack[top++] = e;
          stack[top++] = e;
          v = EDGE_DEST (e);
          v = EDGE_DEST (e);
          e = FST_EDGE (v);
          e = FST_EDGE (v);
          g->vertices[v].component = comp - 1;
          g->vertices[v].component = comp - 1;
        }
        }
    }
    }
 
 
  free (stack);
  free (stack);
}
}
 
 
/* Marks the edge E in graph G irreducible if it connects two vertices in the
/* Marks the edge E in graph G irreducible if it connects two vertices in the
   same scc.  */
   same scc.  */
 
 
static void
static void
check_irred (struct graph *g, struct edge *e)
check_irred (struct graph *g, struct edge *e)
{
{
  edge real = e->data;
  edge real = e->data;
 
 
  /* All edges should lead from a component with higher number to the
  /* All edges should lead from a component with higher number to the
     one with lower one.  */
     one with lower one.  */
  gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
  gcc_assert (g->vertices[e->src].component >= g->vertices[e->dest].component);
 
 
  if (g->vertices[e->src].component != g->vertices[e->dest].component)
  if (g->vertices[e->src].component != g->vertices[e->dest].component)
    return;
    return;
 
 
  real->flags |= EDGE_IRREDUCIBLE_LOOP;
  real->flags |= EDGE_IRREDUCIBLE_LOOP;
  if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
  if (flow_bb_inside_loop_p (real->src->loop_father, real->dest))
    real->src->flags |= BB_IRREDUCIBLE_LOOP;
    real->src->flags |= BB_IRREDUCIBLE_LOOP;
}
}
 
 
/* Runs CALLBACK for all edges in G.  */
/* Runs CALLBACK for all edges in G.  */
 
 
static void
static void
for_each_edge (struct graph *g,
for_each_edge (struct graph *g,
               void (callback) (struct graph *, struct edge *))
               void (callback) (struct graph *, struct edge *))
{
{
  struct edge *e;
  struct edge *e;
  int i;
  int i;
 
 
  for (i = 0; i < g->n_vertices; i++)
  for (i = 0; i < g->n_vertices; i++)
    for (e = g->vertices[i].succ; e; e = e->succ_next)
    for (e = g->vertices[i].succ; e; e = e->succ_next)
      callback (g, e);
      callback (g, e);
}
}
 
 
/* Releases the memory occupied by G.  */
/* Releases the memory occupied by G.  */
 
 
static void
static void
free_graph (struct graph *g)
free_graph (struct graph *g)
{
{
  struct edge *e, *n;
  struct edge *e, *n;
  int i;
  int i;
 
 
  for (i = 0; i < g->n_vertices; i++)
  for (i = 0; i < g->n_vertices; i++)
    for (e = g->vertices[i].succ; e; e = n)
    for (e = g->vertices[i].succ; e; e = n)
      {
      {
        n = e->succ_next;
        n = e->succ_next;
        free (e);
        free (e);
      }
      }
  free (g->vertices);
  free (g->vertices);
  free (g);
  free (g);
}
}
 
 
/* Marks blocks and edges that are part of non-recognized loops; i.e. we
/* Marks blocks and edges that are part of non-recognized loops; i.e. we
   throw away all latch edges and mark blocks inside any remaining cycle.
   throw away all latch edges and mark blocks inside any remaining cycle.
   Everything is a bit complicated due to fact we do not want to do this
   Everything is a bit complicated due to fact we do not want to do this
   for parts of cycles that only "pass" through some loop -- i.e. for
   for parts of cycles that only "pass" through some loop -- i.e. for
   each cycle, we want to mark blocks that belong directly to innermost
   each cycle, we want to mark blocks that belong directly to innermost
   loop containing the whole cycle.
   loop containing the whole cycle.
 
 
   LOOPS is the loop tree.  */
   LOOPS is the loop tree.  */
 
 
#define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
#define LOOP_REPR(LOOP) ((LOOP)->num + last_basic_block)
#define BB_REPR(BB) ((BB)->index + 1)
#define BB_REPR(BB) ((BB)->index + 1)
 
 
void
void
mark_irreducible_loops (struct loops *loops)
mark_irreducible_loops (struct loops *loops)
{
{
  basic_block act;
  basic_block act;
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
  int i, src, dest;
  int i, src, dest;
  struct graph *g;
  struct graph *g;
  int *queue1 = XNEWVEC (int, last_basic_block + loops->num);
  int *queue1 = XNEWVEC (int, last_basic_block + loops->num);
  int *queue2 = XNEWVEC (int, last_basic_block + loops->num);
  int *queue2 = XNEWVEC (int, last_basic_block + loops->num);
  int nq, depth;
  int nq, depth;
  struct loop *cloop;
  struct loop *cloop;
 
 
  /* Reset the flags.  */
  /* Reset the flags.  */
  FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
  FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
    {
    {
      act->flags &= ~BB_IRREDUCIBLE_LOOP;
      act->flags &= ~BB_IRREDUCIBLE_LOOP;
      FOR_EACH_EDGE (e, ei, act->succs)
      FOR_EACH_EDGE (e, ei, act->succs)
        e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
        e->flags &= ~EDGE_IRREDUCIBLE_LOOP;
    }
    }
 
 
  /* Create the edge lists.  */
  /* Create the edge lists.  */
  g = new_graph (last_basic_block + loops->num);
  g = new_graph (last_basic_block + loops->num);
 
 
  FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
  FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
    FOR_EACH_EDGE (e, ei, act->succs)
    FOR_EACH_EDGE (e, ei, act->succs)
      {
      {
        /* Ignore edges to exit.  */
        /* Ignore edges to exit.  */
        if (e->dest == EXIT_BLOCK_PTR)
        if (e->dest == EXIT_BLOCK_PTR)
          continue;
          continue;
 
 
        /* And latch edges.  */
        /* And latch edges.  */
        if (e->dest->loop_father->header == e->dest
        if (e->dest->loop_father->header == e->dest
            && e->dest->loop_father->latch == act)
            && e->dest->loop_father->latch == act)
          continue;
          continue;
 
 
        /* Edges inside a single loop should be left where they are.  Edges
        /* Edges inside a single loop should be left where they are.  Edges
           to subloop headers should lead to representative of the subloop,
           to subloop headers should lead to representative of the subloop,
           but from the same place.
           but from the same place.
 
 
           Edges exiting loops should lead from representative
           Edges exiting loops should lead from representative
           of the son of nearest common ancestor of the loops in that
           of the son of nearest common ancestor of the loops in that
           act lays.  */
           act lays.  */
 
 
        src = BB_REPR (act);
        src = BB_REPR (act);
        dest = BB_REPR (e->dest);
        dest = BB_REPR (e->dest);
 
 
        if (e->dest->loop_father->header == e->dest)
        if (e->dest->loop_father->header == e->dest)
          dest = LOOP_REPR (e->dest->loop_father);
          dest = LOOP_REPR (e->dest->loop_father);
 
 
        if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
        if (!flow_bb_inside_loop_p (act->loop_father, e->dest))
          {
          {
            depth = find_common_loop (act->loop_father,
            depth = find_common_loop (act->loop_father,
                                      e->dest->loop_father)->depth + 1;
                                      e->dest->loop_father)->depth + 1;
            if (depth == act->loop_father->depth)
            if (depth == act->loop_father->depth)
              cloop = act->loop_father;
              cloop = act->loop_father;
            else
            else
              cloop = act->loop_father->pred[depth];
              cloop = act->loop_father->pred[depth];
 
 
            src = LOOP_REPR (cloop);
            src = LOOP_REPR (cloop);
          }
          }
 
 
        add_edge (g, src, dest, e);
        add_edge (g, src, dest, e);
      }
      }
 
 
  /* Find the strongly connected components.  Use the algorithm of Tarjan --
  /* Find the strongly connected components.  Use the algorithm of Tarjan --
     first determine the postorder dfs numbering in reversed graph, then
     first determine the postorder dfs numbering in reversed graph, then
     run the dfs on the original graph in the order given by decreasing
     run the dfs on the original graph in the order given by decreasing
     numbers assigned by the previous pass.  */
     numbers assigned by the previous pass.  */
  nq = 0;
  nq = 0;
  FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
  FOR_BB_BETWEEN (act, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
    {
    {
      queue1[nq++] = BB_REPR (act);
      queue1[nq++] = BB_REPR (act);
    }
    }
  for (i = 1; i < (int) loops->num; i++)
  for (i = 1; i < (int) loops->num; i++)
    if (loops->parray[i])
    if (loops->parray[i])
      queue1[nq++] = LOOP_REPR (loops->parray[i]);
      queue1[nq++] = LOOP_REPR (loops->parray[i]);
  dfs (g, queue1, nq, queue2, false);
  dfs (g, queue1, nq, queue2, false);
  for (i = 0; i < nq; i++)
  for (i = 0; i < nq; i++)
    queue1[i] = queue2[nq - i - 1];
    queue1[i] = queue2[nq - i - 1];
  dfs (g, queue1, nq, NULL, true);
  dfs (g, queue1, nq, NULL, true);
 
 
  /* Mark the irreducible loops.  */
  /* Mark the irreducible loops.  */
  for_each_edge (g, check_irred);
  for_each_edge (g, check_irred);
 
 
  free_graph (g);
  free_graph (g);
  free (queue1);
  free (queue1);
  free (queue2);
  free (queue2);
 
 
  loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
  loops->state |= LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS;
}
}
 
 
/* Counts number of insns inside LOOP.  */
/* Counts number of insns inside LOOP.  */
int
int
num_loop_insns (struct loop *loop)
num_loop_insns (struct loop *loop)
{
{
  basic_block *bbs, bb;
  basic_block *bbs, bb;
  unsigned i, ninsns = 0;
  unsigned i, ninsns = 0;
  rtx insn;
  rtx insn;
 
 
  bbs = get_loop_body (loop);
  bbs = get_loop_body (loop);
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    {
    {
      bb = bbs[i];
      bb = bbs[i];
      ninsns++;
      ninsns++;
      for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
      for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
        if (INSN_P (insn))
        if (INSN_P (insn))
          ninsns++;
          ninsns++;
    }
    }
  free(bbs);
  free(bbs);
 
 
  return ninsns;
  return ninsns;
}
}
 
 
/* Counts number of insns executed on average per iteration LOOP.  */
/* Counts number of insns executed on average per iteration LOOP.  */
int
int
average_num_loop_insns (struct loop *loop)
average_num_loop_insns (struct loop *loop)
{
{
  basic_block *bbs, bb;
  basic_block *bbs, bb;
  unsigned i, binsns, ninsns, ratio;
  unsigned i, binsns, ninsns, ratio;
  rtx insn;
  rtx insn;
 
 
  ninsns = 0;
  ninsns = 0;
  bbs = get_loop_body (loop);
  bbs = get_loop_body (loop);
  for (i = 0; i < loop->num_nodes; i++)
  for (i = 0; i < loop->num_nodes; i++)
    {
    {
      bb = bbs[i];
      bb = bbs[i];
 
 
      binsns = 1;
      binsns = 1;
      for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
      for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
        if (INSN_P (insn))
        if (INSN_P (insn))
          binsns++;
          binsns++;
 
 
      ratio = loop->header->frequency == 0
      ratio = loop->header->frequency == 0
              ? BB_FREQ_MAX
              ? BB_FREQ_MAX
              : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
              : (bb->frequency * BB_FREQ_MAX) / loop->header->frequency;
      ninsns += binsns * ratio;
      ninsns += binsns * ratio;
    }
    }
  free(bbs);
  free(bbs);
 
 
  ninsns /= BB_FREQ_MAX;
  ninsns /= BB_FREQ_MAX;
  if (!ninsns)
  if (!ninsns)
    ninsns = 1; /* To avoid division by zero.  */
    ninsns = 1; /* To avoid division by zero.  */
 
 
  return ninsns;
  return ninsns;
}
}
 
 
/* Returns expected number of LOOP iterations.
/* Returns expected number of LOOP iterations.
   Compute upper bound on number of iterations in case they do not fit integer
   Compute upper bound on number of iterations in case they do not fit integer
   to help loop peeling heuristics.  Use exact counts if at all possible.  */
   to help loop peeling heuristics.  Use exact counts if at all possible.  */
unsigned
unsigned
expected_loop_iterations (const struct loop *loop)
expected_loop_iterations (const struct loop *loop)
{
{
  edge e;
  edge e;
  edge_iterator ei;
  edge_iterator ei;
 
 
  if (loop->latch->count || loop->header->count)
  if (loop->latch->count || loop->header->count)
    {
    {
      gcov_type count_in, count_latch, expected;
      gcov_type count_in, count_latch, expected;
 
 
      count_in = 0;
      count_in = 0;
      count_latch = 0;
      count_latch = 0;
 
 
      FOR_EACH_EDGE (e, ei, loop->header->preds)
      FOR_EACH_EDGE (e, ei, loop->header->preds)
        if (e->src == loop->latch)
        if (e->src == loop->latch)
          count_latch = e->count;
          count_latch = e->count;
        else
        else
          count_in += e->count;
          count_in += e->count;
 
 
      if (count_in == 0)
      if (count_in == 0)
        expected = count_latch * 2;
        expected = count_latch * 2;
      else
      else
        expected = (count_latch + count_in - 1) / count_in;
        expected = (count_latch + count_in - 1) / count_in;
 
 
      /* Avoid overflows.  */
      /* Avoid overflows.  */
      return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
      return (expected > REG_BR_PROB_BASE ? REG_BR_PROB_BASE : expected);
    }
    }
  else
  else
    {
    {
      int freq_in, freq_latch;
      int freq_in, freq_latch;
 
 
      freq_in = 0;
      freq_in = 0;
      freq_latch = 0;
      freq_latch = 0;
 
 
      FOR_EACH_EDGE (e, ei, loop->header->preds)
      FOR_EACH_EDGE (e, ei, loop->header->preds)
        if (e->src == loop->latch)
        if (e->src == loop->latch)
          freq_latch = EDGE_FREQUENCY (e);
          freq_latch = EDGE_FREQUENCY (e);
        else
        else
          freq_in += EDGE_FREQUENCY (e);
          freq_in += EDGE_FREQUENCY (e);
 
 
      if (freq_in == 0)
      if (freq_in == 0)
        return freq_latch * 2;
        return freq_latch * 2;
 
 
      return (freq_latch + freq_in - 1) / freq_in;
      return (freq_latch + freq_in - 1) / freq_in;
    }
    }
}
}
 
 
/* Returns the maximum level of nesting of subloops of LOOP.  */
/* Returns the maximum level of nesting of subloops of LOOP.  */
 
 
unsigned
unsigned
get_loop_level (const struct loop *loop)
get_loop_level (const struct loop *loop)
{
{
  const struct loop *ploop;
  const struct loop *ploop;
  unsigned mx = 0, l;
  unsigned mx = 0, l;
 
 
  for (ploop = loop->inner; ploop; ploop = ploop->next)
  for (ploop = loop->inner; ploop; ploop = ploop->next)
    {
    {
      l = get_loop_level (ploop);
      l = get_loop_level (ploop);
      if (l >= mx)
      if (l >= mx)
        mx = l + 1;
        mx = l + 1;
    }
    }
  return mx;
  return mx;
}
}
 
 
/* Returns estimate on cost of computing SEQ.  */
/* Returns estimate on cost of computing SEQ.  */
 
 
static unsigned
static unsigned
seq_cost (rtx seq)
seq_cost (rtx seq)
{
{
  unsigned cost = 0;
  unsigned cost = 0;
  rtx set;
  rtx set;
 
 
  for (; seq; seq = NEXT_INSN (seq))
  for (; seq; seq = NEXT_INSN (seq))
    {
    {
      set = single_set (seq);
      set = single_set (seq);
      if (set)
      if (set)
        cost += rtx_cost (set, SET);
        cost += rtx_cost (set, SET);
      else
      else
        cost++;
        cost++;
    }
    }
 
 
  return cost;
  return cost;
}
}
 
 
/* The properties of the target.  */
/* The properties of the target.  */
 
 
unsigned target_avail_regs;     /* Number of available registers.  */
unsigned target_avail_regs;     /* Number of available registers.  */
unsigned target_res_regs;       /* Number of reserved registers.  */
unsigned target_res_regs;       /* Number of reserved registers.  */
unsigned target_small_cost;     /* The cost for register when there is a free one.  */
unsigned target_small_cost;     /* The cost for register when there is a free one.  */
unsigned target_pres_cost;      /* The cost for register when there are not too many
unsigned target_pres_cost;      /* The cost for register when there are not too many
                                   free ones.  */
                                   free ones.  */
unsigned target_spill_cost;     /* The cost for register when we need to spill.  */
unsigned target_spill_cost;     /* The cost for register when we need to spill.  */
 
 
/* Initialize the constants for computing set costs.  */
/* Initialize the constants for computing set costs.  */
 
 
void
void
init_set_costs (void)
init_set_costs (void)
{
{
  rtx seq;
  rtx seq;
  rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
  rtx reg1 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER);
  rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
  rtx reg2 = gen_raw_REG (SImode, FIRST_PSEUDO_REGISTER + 1);
  rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
  rtx addr = gen_raw_REG (Pmode, FIRST_PSEUDO_REGISTER + 2);
  rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
  rtx mem = validize_mem (gen_rtx_MEM (SImode, addr));
  unsigned i;
  unsigned i;
 
 
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
    if (TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], i)
        && !fixed_regs[i])
        && !fixed_regs[i])
      target_avail_regs++;
      target_avail_regs++;
 
 
  target_res_regs = 3;
  target_res_regs = 3;
 
 
  /* These are really just heuristic values.  */
  /* These are really just heuristic values.  */
 
 
  start_sequence ();
  start_sequence ();
  emit_move_insn (reg1, reg2);
  emit_move_insn (reg1, reg2);
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
  target_small_cost = seq_cost (seq);
  target_small_cost = seq_cost (seq);
  target_pres_cost = 2 * target_small_cost;
  target_pres_cost = 2 * target_small_cost;
 
 
  start_sequence ();
  start_sequence ();
  emit_move_insn (mem, reg1);
  emit_move_insn (mem, reg1);
  emit_move_insn (reg2, mem);
  emit_move_insn (reg2, mem);
  seq = get_insns ();
  seq = get_insns ();
  end_sequence ();
  end_sequence ();
  target_spill_cost = seq_cost (seq);
  target_spill_cost = seq_cost (seq);
}
}
 
 
/* Calculates cost for having SIZE new loop global variables.  REGS_USED is the
/* Calculates cost for having SIZE new loop global variables.  REGS_USED is the
   number of global registers used in loop.  N_USES is the number of relevant
   number of global registers used in loop.  N_USES is the number of relevant
   variable uses.  */
   variable uses.  */
 
 
unsigned
unsigned
global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
global_cost_for_size (unsigned size, unsigned regs_used, unsigned n_uses)
{
{
  unsigned regs_needed = regs_used + size;
  unsigned regs_needed = regs_used + size;
  unsigned cost = 0;
  unsigned cost = 0;
 
 
  if (regs_needed + target_res_regs <= target_avail_regs)
  if (regs_needed + target_res_regs <= target_avail_regs)
    cost += target_small_cost * size;
    cost += target_small_cost * size;
  else if (regs_needed <= target_avail_regs)
  else if (regs_needed <= target_avail_regs)
    cost += target_pres_cost * size;
    cost += target_pres_cost * size;
  else
  else
    {
    {
      cost += target_pres_cost * size;
      cost += target_pres_cost * size;
      cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed;
      cost += target_spill_cost * n_uses * (regs_needed - target_avail_regs) / regs_needed;
    }
    }
 
 
  return cost;
  return cost;
}
}
 
 
/* Sets EDGE_LOOP_EXIT flag for all exits of LOOPS.  */
/* Sets EDGE_LOOP_EXIT flag for all exits of LOOPS.  */
 
 
void
void
mark_loop_exit_edges (struct loops *loops)
mark_loop_exit_edges (struct loops *loops)
{
{
  basic_block bb;
  basic_block bb;
  edge e;
  edge e;
 
 
  if (loops->num <= 1)
  if (loops->num <= 1)
    return;
    return;
 
 
  FOR_EACH_BB (bb)
  FOR_EACH_BB (bb)
    {
    {
      edge_iterator ei;
      edge_iterator ei;
 
 
      FOR_EACH_EDGE (e, ei, bb->succs)
      FOR_EACH_EDGE (e, ei, bb->succs)
        {
        {
          if (bb->loop_father->outer
          if (bb->loop_father->outer
              && loop_exit_edge_p (bb->loop_father, e))
              && loop_exit_edge_p (bb->loop_father, e))
            e->flags |= EDGE_LOOP_EXIT;
            e->flags |= EDGE_LOOP_EXIT;
          else
          else
            e->flags &= ~EDGE_LOOP_EXIT;
            e->flags &= ~EDGE_LOOP_EXIT;
        }
        }
    }
    }
}
}
 
 
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.