OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [config/] [dfp-bit.c] - Diff between revs 154 and 816

Go to most recent revision | Only display areas with differences | Details | Blame | View Log

Rev 154 Rev 816
/* This is a software decimal floating point library.
/* This is a software decimal floating point library.
   Copyright (C) 2005, 2006 Free Software Foundation, Inc.
   Copyright (C) 2005, 2006 Free Software Foundation, Inc.
 
 
This file is part of GCC.
This file is part of GCC.
 
 
GCC is free software; you can redistribute it and/or modify it under
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
Software Foundation; either version 2, or (at your option) any later
version.
version.
 
 
In addition to the permissions in the GNU General Public License, the
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
the file, and distribution when not linked into a combine
executable.)
executable.)
 
 
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.
for more details.
 
 
You should have received a copy of the GNU General Public License
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */
02110-1301, USA.  */
 
 
/* This implements IEEE 754R decimal floating point arithmetic, but
/* This implements IEEE 754R decimal floating point arithmetic, but
   does not provide a mechanism for setting the rounding mode, or for
   does not provide a mechanism for setting the rounding mode, or for
   generating or handling exceptions.  Conversions between decimal
   generating or handling exceptions.  Conversions between decimal
   floating point types and other types depend on C library functions.
   floating point types and other types depend on C library functions.
 
 
   Contributed by Ben Elliston  <bje@au.ibm.com>.  */
   Contributed by Ben Elliston  <bje@au.ibm.com>.  */
 
 
/* The intended way to use this file is to make two copies, add `#define '
/* The intended way to use this file is to make two copies, add `#define '
   to one copy, then compile both copies and add them to libgcc.a.  */
   to one copy, then compile both copies and add them to libgcc.a.  */
 
 
#include <stdio.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>
#include <string.h>
#include <string.h>
#include <limits.h>
#include <limits.h>
 
 
#include "config/dfp-bit.h"
#include "config/dfp-bit.h"
 
 
/* Forward declarations.  */
/* Forward declarations.  */
#if WIDTH == 32 || WIDTH_TO == 32
#if WIDTH == 32 || WIDTH_TO == 32
void __host_to_ieee_32 (_Decimal32 in, decimal32 *out);
void __host_to_ieee_32 (_Decimal32 in, decimal32 *out);
void __ieee_to_host_32 (decimal32 in, _Decimal32 *out);
void __ieee_to_host_32 (decimal32 in, _Decimal32 *out);
#endif
#endif
#if WIDTH == 64 || WIDTH_TO == 64
#if WIDTH == 64 || WIDTH_TO == 64
void __host_to_ieee_64 (_Decimal64 in, decimal64 *out);
void __host_to_ieee_64 (_Decimal64 in, decimal64 *out);
void __ieee_to_host_64 (decimal64 in, _Decimal64 *out);
void __ieee_to_host_64 (decimal64 in, _Decimal64 *out);
#endif
#endif
#if WIDTH == 128 || WIDTH_TO == 128
#if WIDTH == 128 || WIDTH_TO == 128
void __host_to_ieee_128 (_Decimal128 in, decimal128 *out);
void __host_to_ieee_128 (_Decimal128 in, decimal128 *out);
void __ieee_to_host_128 (decimal128 in, _Decimal128 *out);
void __ieee_to_host_128 (decimal128 in, _Decimal128 *out);
#endif
#endif
 
 
/* A pointer to a unary decNumber operation.  */
/* A pointer to a unary decNumber operation.  */
typedef decNumber* (*dfp_unary_func)
typedef decNumber* (*dfp_unary_func)
     (decNumber *, decNumber *, decContext *);
     (decNumber *, decNumber *, decContext *);
 
 
/* A pointer to a binary decNumber operation.  */
/* A pointer to a binary decNumber operation.  */
typedef decNumber* (*dfp_binary_func)
typedef decNumber* (*dfp_binary_func)
     (decNumber *, decNumber *, decNumber *, decContext *);
     (decNumber *, decNumber *, decNumber *, decContext *);
 
 
extern unsigned long __dec_byte_swap (unsigned long);
extern unsigned long __dec_byte_swap (unsigned long);


/* Unary operations.  */
/* Unary operations.  */
 
 
static inline DFP_C_TYPE
static inline DFP_C_TYPE
dfp_unary_op (dfp_unary_func op, DFP_C_TYPE arg)
dfp_unary_op (dfp_unary_func op, DFP_C_TYPE arg)
{
{
  DFP_C_TYPE result;
  DFP_C_TYPE result;
  decContext context;
  decContext context;
  decNumber arg1, res;
  decNumber arg1, res;
  IEEE_TYPE a, encoded_result;
  IEEE_TYPE a, encoded_result;
 
 
  HOST_TO_IEEE (arg, &a);
  HOST_TO_IEEE (arg, &a);
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  context.round = CONTEXT_ROUND;
  context.round = CONTEXT_ROUND;
 
 
  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&a, &arg1);
 
 
  /* Perform the operation.  */
  /* Perform the operation.  */
  op (&res, &arg1, &context);
  op (&res, &arg1, &context);
 
 
  if (CONTEXT_TRAPS && CONTEXT_ERRORS (context))
  if (CONTEXT_TRAPS && CONTEXT_ERRORS (context))
    DFP_RAISE (0);
    DFP_RAISE (0);
 
 
  TO_ENCODED (&encoded_result, &res, &context);
  TO_ENCODED (&encoded_result, &res, &context);
  IEEE_TO_HOST (encoded_result, &result);
  IEEE_TO_HOST (encoded_result, &result);
  return result;
  return result;
}
}
 
 
/* Binary operations.  */
/* Binary operations.  */
 
 
static inline DFP_C_TYPE
static inline DFP_C_TYPE
dfp_binary_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
dfp_binary_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  DFP_C_TYPE result;
  DFP_C_TYPE result;
  decContext context;
  decContext context;
  decNumber arg1, arg2, res;
  decNumber arg1, arg2, res;
  IEEE_TYPE a, b, encoded_result;
  IEEE_TYPE a, b, encoded_result;
 
 
  HOST_TO_IEEE (arg_a, &a);
  HOST_TO_IEEE (arg_a, &a);
  HOST_TO_IEEE (arg_b, &b);
  HOST_TO_IEEE (arg_b, &b);
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  context.round = CONTEXT_ROUND;
  context.round = CONTEXT_ROUND;
 
 
  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&b, &arg2);
  TO_INTERNAL (&b, &arg2);
 
 
  /* Perform the operation.  */
  /* Perform the operation.  */
  op (&res, &arg1, &arg2, &context);
  op (&res, &arg1, &arg2, &context);
 
 
  if (CONTEXT_TRAPS && CONTEXT_ERRORS (context))
  if (CONTEXT_TRAPS && CONTEXT_ERRORS (context))
    DFP_RAISE (0);
    DFP_RAISE (0);
 
 
  TO_ENCODED (&encoded_result, &res, &context);
  TO_ENCODED (&encoded_result, &res, &context);
  IEEE_TO_HOST (encoded_result, &result);
  IEEE_TO_HOST (encoded_result, &result);
  return result;
  return result;
}
}
 
 
/* Comparison operations.  */
/* Comparison operations.  */
 
 
static inline int
static inline int
dfp_compare_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
dfp_compare_op (dfp_binary_func op, DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  IEEE_TYPE a, b;
  IEEE_TYPE a, b;
  decContext context;
  decContext context;
  decNumber arg1, arg2, res;
  decNumber arg1, arg2, res;
  int result;
  int result;
 
 
  HOST_TO_IEEE (arg_a, &a);
  HOST_TO_IEEE (arg_a, &a);
  HOST_TO_IEEE (arg_b, &b);
  HOST_TO_IEEE (arg_b, &b);
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  context.round = CONTEXT_ROUND;
  context.round = CONTEXT_ROUND;
 
 
  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&b, &arg2);
  TO_INTERNAL (&b, &arg2);
 
 
  /* Perform the comparison.  */
  /* Perform the comparison.  */
  op (&res, &arg1, &arg2, &context);
  op (&res, &arg1, &arg2, &context);
 
 
  if (CONTEXT_TRAPS && CONTEXT_ERRORS (context))
  if (CONTEXT_TRAPS && CONTEXT_ERRORS (context))
    DFP_RAISE (0);
    DFP_RAISE (0);
 
 
  if (decNumberIsNegative (&res))
  if (decNumberIsNegative (&res))
    result = -1;
    result = -1;
  else if (decNumberIsZero (&res))
  else if (decNumberIsZero (&res))
    result = 0;
    result = 0;
  else
  else
    result = 1;
    result = 1;
 
 
  return result;
  return result;
}
}
 
 


#if defined(L_conv_sd)
#if defined(L_conv_sd)
void
void
__host_to_ieee_32 (_Decimal32 in, decimal32 *out)
__host_to_ieee_32 (_Decimal32 in, decimal32 *out)
{
{
  uint32_t t;
  uint32_t t;
 
 
  if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
  if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
    {
    {
      memcpy (&t, &in, 4);
      memcpy (&t, &in, 4);
      t = __dec_byte_swap (t);
      t = __dec_byte_swap (t);
      memcpy (out, &t, 4);
      memcpy (out, &t, 4);
    }
    }
  else
  else
    memcpy (out, &in, 4);
    memcpy (out, &in, 4);
}
}
 
 
void
void
__ieee_to_host_32 (decimal32 in, _Decimal32 *out)
__ieee_to_host_32 (decimal32 in, _Decimal32 *out)
{
{
  uint32_t t;
  uint32_t t;
 
 
  if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
  if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
    {
    {
      memcpy (&t, &in, 4);
      memcpy (&t, &in, 4);
      t = __dec_byte_swap (t);
      t = __dec_byte_swap (t);
      memcpy (out, &t, 4);
      memcpy (out, &t, 4);
    }
    }
  else
  else
    memcpy (out, &in, 4);
    memcpy (out, &in, 4);
}
}
#endif /* L_conv_sd */
#endif /* L_conv_sd */
 
 
#if defined(L_conv_dd)
#if defined(L_conv_dd)
static void
static void
__swap64 (char *src, char *dst)
__swap64 (char *src, char *dst)
{
{
  uint32_t t1, t2;
  uint32_t t1, t2;
 
 
  if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
  if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
    {
    {
      memcpy (&t1, src, 4);
      memcpy (&t1, src, 4);
      memcpy (&t2, src + 4, 4);
      memcpy (&t2, src + 4, 4);
      t1 = __dec_byte_swap (t1);
      t1 = __dec_byte_swap (t1);
      t2 = __dec_byte_swap (t2);
      t2 = __dec_byte_swap (t2);
      memcpy (dst, &t2, 4);
      memcpy (dst, &t2, 4);
      memcpy (dst + 4, &t1, 4);
      memcpy (dst + 4, &t1, 4);
    }
    }
  else
  else
    memcpy (dst, src, 8);
    memcpy (dst, src, 8);
}
}
 
 
void
void
__host_to_ieee_64 (_Decimal64 in, decimal64 *out)
__host_to_ieee_64 (_Decimal64 in, decimal64 *out)
{
{
  __swap64 ((char *) &in, (char *) out);
  __swap64 ((char *) &in, (char *) out);
}
}
 
 
void
void
__ieee_to_host_64 (decimal64 in, _Decimal64 *out)
__ieee_to_host_64 (decimal64 in, _Decimal64 *out)
{
{
  __swap64 ((char *) &in, (char *) out);
  __swap64 ((char *) &in, (char *) out);
}
}
#endif /* L_conv_dd */
#endif /* L_conv_dd */
 
 
#if defined(L_conv_td)
#if defined(L_conv_td)
static void
static void
__swap128 (char *src, char *dst)
__swap128 (char *src, char *dst)
{
{
  uint32_t t1, t2, t3, t4;
  uint32_t t1, t2, t3, t4;
 
 
  if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
  if (!LIBGCC2_FLOAT_WORDS_BIG_ENDIAN)
    {
    {
      memcpy (&t1, src, 4);
      memcpy (&t1, src, 4);
      memcpy (&t2, src + 4, 4);
      memcpy (&t2, src + 4, 4);
      memcpy (&t3, src + 8, 4);
      memcpy (&t3, src + 8, 4);
      memcpy (&t4, src + 12, 4);
      memcpy (&t4, src + 12, 4);
      t1 = __dec_byte_swap (t1);
      t1 = __dec_byte_swap (t1);
      t2 = __dec_byte_swap (t2);
      t2 = __dec_byte_swap (t2);
      t3 = __dec_byte_swap (t3);
      t3 = __dec_byte_swap (t3);
      t4 = __dec_byte_swap (t4);
      t4 = __dec_byte_swap (t4);
      memcpy (dst, &t4, 4);
      memcpy (dst, &t4, 4);
      memcpy (dst + 4, &t3, 4);
      memcpy (dst + 4, &t3, 4);
      memcpy (dst + 8, &t2, 4);
      memcpy (dst + 8, &t2, 4);
      memcpy (dst + 12, &t1, 4);
      memcpy (dst + 12, &t1, 4);
    }
    }
  else
  else
    memcpy (dst, src, 16);
    memcpy (dst, src, 16);
}
}
 
 
void
void
__host_to_ieee_128 (_Decimal128 in, decimal128 *out)
__host_to_ieee_128 (_Decimal128 in, decimal128 *out)
{
{
  __swap128 ((char *) &in, (char *) out);
  __swap128 ((char *) &in, (char *) out);
}
}
 
 
void
void
__ieee_to_host_128 (decimal128 in, _Decimal128 *out)
__ieee_to_host_128 (decimal128 in, _Decimal128 *out)
{
{
  __swap128 ((char *) &in, (char *) out);
  __swap128 ((char *) &in, (char *) out);
}
}
#endif /* L_conv_td */
#endif /* L_conv_td */
 
 
#if defined(L_addsub_sd) || defined(L_addsub_dd) || defined(L_addsub_td)
#if defined(L_addsub_sd) || defined(L_addsub_dd) || defined(L_addsub_td)
DFP_C_TYPE
DFP_C_TYPE
DFP_ADD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_ADD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  return dfp_binary_op (decNumberAdd, arg_a, arg_b);
  return dfp_binary_op (decNumberAdd, arg_a, arg_b);
}
}
 
 
DFP_C_TYPE
DFP_C_TYPE
DFP_SUB (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_SUB (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  return dfp_binary_op (decNumberSubtract, arg_a, arg_b);
  return dfp_binary_op (decNumberSubtract, arg_a, arg_b);
}
}
#endif /* L_addsub */
#endif /* L_addsub */
 
 
#if defined(L_mul_sd) || defined(L_mul_dd) || defined(L_mul_td)
#if defined(L_mul_sd) || defined(L_mul_dd) || defined(L_mul_td)
DFP_C_TYPE
DFP_C_TYPE
DFP_MULTIPLY (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_MULTIPLY (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  return dfp_binary_op (decNumberMultiply, arg_a, arg_b);
  return dfp_binary_op (decNumberMultiply, arg_a, arg_b);
}
}
#endif /* L_mul */
#endif /* L_mul */
 
 
#if defined(L_div_sd) || defined(L_div_dd) || defined(L_div_td)
#if defined(L_div_sd) || defined(L_div_dd) || defined(L_div_td)
DFP_C_TYPE
DFP_C_TYPE
DFP_DIVIDE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_DIVIDE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  return dfp_binary_op (decNumberDivide, arg_a, arg_b);
  return dfp_binary_op (decNumberDivide, arg_a, arg_b);
}
}
#endif /* L_div */
#endif /* L_div */
 
 
#if defined (L_eq_sd) || defined (L_eq_dd) || defined (L_eq_td)
#if defined (L_eq_sd) || defined (L_eq_dd) || defined (L_eq_td)
CMPtype
CMPtype
DFP_EQ (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_EQ (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  int stat;
  int stat;
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  /* For EQ return zero for true, nonzero for false.  */
  /* For EQ return zero for true, nonzero for false.  */
  return stat != 0;
  return stat != 0;
}
}
#endif /* L_eq */
#endif /* L_eq */
 
 
#if defined (L_ne_sd) || defined (L_ne_dd) || defined (L_ne_td)
#if defined (L_ne_sd) || defined (L_ne_dd) || defined (L_ne_td)
CMPtype
CMPtype
DFP_NE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_NE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  int stat;
  int stat;
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  /* For NE return nonzero for true, zero for false.  */
  /* For NE return nonzero for true, zero for false.  */
  return stat != 0;
  return stat != 0;
}
}
#endif /* L_ne */
#endif /* L_ne */
 
 
#if defined (L_lt_sd) || defined (L_lt_dd) || defined (L_lt_td)
#if defined (L_lt_sd) || defined (L_lt_dd) || defined (L_lt_td)
CMPtype
CMPtype
DFP_LT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_LT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  int stat;
  int stat;
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  /* For LT return -1 (<0) for true, 1 for false.  */
  /* For LT return -1 (<0) for true, 1 for false.  */
  return (stat == -1) ? -1 : 1;
  return (stat == -1) ? -1 : 1;
}
}
#endif /* L_lt */
#endif /* L_lt */
 
 
#if defined (L_gt_sd) || defined (L_gt_dd) || defined (L_gt_td)
#if defined (L_gt_sd) || defined (L_gt_dd) || defined (L_gt_td)
CMPtype
CMPtype
DFP_GT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_GT (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  int stat;
  int stat;
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  /* For GT return 1 (>0) for true, -1 for false.  */
  /* For GT return 1 (>0) for true, -1 for false.  */
  return (stat == 1) ? 1 : -1;
  return (stat == 1) ? 1 : -1;
}
}
#endif
#endif
 
 
#if defined (L_le_sd) || defined (L_le_dd) || defined (L_le_td)
#if defined (L_le_sd) || defined (L_le_dd) || defined (L_le_td)
CMPtype
CMPtype
DFP_LE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_LE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  int stat;
  int stat;
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  /* For LE return 0 (<= 0) for true, 1 for false.  */
  /* For LE return 0 (<= 0) for true, 1 for false.  */
  return stat == 1;
  return stat == 1;
}
}
#endif /* L_le */
#endif /* L_le */
 
 
#if defined (L_ge_sd) || defined (L_ge_dd) || defined (L_ge_td)
#if defined (L_ge_sd) || defined (L_ge_dd) || defined (L_ge_td)
CMPtype
CMPtype
DFP_GE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_GE (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  int stat;
  int stat;
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  stat = dfp_compare_op (decNumberCompare, arg_a, arg_b);
  /* For GE return 1 (>=0) for true, -1 for false.  */
  /* For GE return 1 (>=0) for true, -1 for false.  */
  return (stat != -1) ? 1 : -1;
  return (stat != -1) ? 1 : -1;
}
}
#endif /* L_ge */
#endif /* L_ge */
 
 
#define BUFMAX 128
#define BUFMAX 128
 
 
#if defined (L_sd_to_dd) || defined (L_sd_to_td) || defined (L_dd_to_sd) \
#if defined (L_sd_to_dd) || defined (L_sd_to_td) || defined (L_dd_to_sd) \
 || defined (L_dd_to_td) || defined (L_td_to_sd) || defined (L_td_to_dd)
 || defined (L_dd_to_td) || defined (L_td_to_sd) || defined (L_td_to_dd)
DFP_C_TYPE_TO
DFP_C_TYPE_TO
DFP_TO_DFP (DFP_C_TYPE f_from)
DFP_TO_DFP (DFP_C_TYPE f_from)
{
{
  DFP_C_TYPE_TO f_to;
  DFP_C_TYPE_TO f_to;
  IEEE_TYPE s_from;
  IEEE_TYPE s_from;
  IEEE_TYPE_TO s_to;
  IEEE_TYPE_TO s_to;
  decNumber d;
  decNumber d;
  decContext context;
  decContext context;
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  context.round = CONTEXT_ROUND;
  context.round = CONTEXT_ROUND;
 
 
  HOST_TO_IEEE (f_from, &s_from);
  HOST_TO_IEEE (f_from, &s_from);
  TO_INTERNAL (&s_from, &d);
  TO_INTERNAL (&s_from, &d);
  TO_ENCODED_TO (&s_to, &d, &context);
  TO_ENCODED_TO (&s_to, &d, &context);
  if (CONTEXT_TRAPS && (context.status & DEC_Inexact) != 0)
  if (CONTEXT_TRAPS && (context.status & DEC_Inexact) != 0)
    DFP_RAISE (DEC_Inexact);
    DFP_RAISE (DEC_Inexact);
 
 
  IEEE_TO_HOST_TO (s_to, &f_to);
  IEEE_TO_HOST_TO (s_to, &f_to);
  return f_to;
  return f_to;
}
}
#endif
#endif
 
 
#if defined (L_sd_to_si) || defined (L_dd_to_si) || defined (L_td_to_si) \
#if defined (L_sd_to_si) || defined (L_dd_to_si) || defined (L_td_to_si) \
  || defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \
  || defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di) \
  || defined (L_sd_to_usi) || defined (L_dd_to_usi) || defined (L_td_to_usi) \
  || defined (L_sd_to_usi) || defined (L_dd_to_usi) || defined (L_td_to_usi) \
  || defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
  || defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
INT_TYPE
INT_TYPE
DFP_TO_INT (DFP_C_TYPE x)
DFP_TO_INT (DFP_C_TYPE x)
{
{
  /* decNumber's decimal* types have the same format as C's _Decimal*
  /* decNumber's decimal* types have the same format as C's _Decimal*
     types, but they have different calling conventions.  */
     types, but they have different calling conventions.  */
 
 
  IEEE_TYPE s;
  IEEE_TYPE s;
  char buf[BUFMAX];
  char buf[BUFMAX];
  char *pos;
  char *pos;
  decNumber qval, n1, n2;
  decNumber qval, n1, n2;
  decContext context;
  decContext context;
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  /* Need non-default rounding mode here.  */
  /* Need non-default rounding mode here.  */
  context.round = DEC_ROUND_DOWN;
  context.round = DEC_ROUND_DOWN;
 
 
  HOST_TO_IEEE (x, &s);
  HOST_TO_IEEE (x, &s);
  TO_INTERNAL (&s, &n1);
  TO_INTERNAL (&s, &n1);
  /* Rescale if the exponent is less than zero.  */
  /* Rescale if the exponent is less than zero.  */
  decNumberToIntegralValue (&n2, &n1, &context);
  decNumberToIntegralValue (&n2, &n1, &context);
  /* Get a value to use for the quantize call.  */
  /* Get a value to use for the quantize call.  */
  decNumberFromString (&qval, (char *) "1.0", &context);
  decNumberFromString (&qval, (char *) "1.0", &context);
  /* Force the exponent to zero.  */
  /* Force the exponent to zero.  */
  decNumberQuantize (&n1, &n2, &qval, &context);
  decNumberQuantize (&n1, &n2, &qval, &context);
  /* This is based on text in N1107 section 5.1; it might turn out to be
  /* This is based on text in N1107 section 5.1; it might turn out to be
     undefined behavior instead.  */
     undefined behavior instead.  */
  if (context.status & DEC_Invalid_operation)
  if (context.status & DEC_Invalid_operation)
    {
    {
#if defined (L_sd_to_si) || defined (L_dd_to_si) || defined (L_td_to_si)
#if defined (L_sd_to_si) || defined (L_dd_to_si) || defined (L_td_to_si)
      if (decNumberIsNegative(&n2))
      if (decNumberIsNegative(&n2))
        return INT_MIN;
        return INT_MIN;
      else
      else
        return INT_MAX;
        return INT_MAX;
#elif defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di)
#elif defined (L_sd_to_di) || defined (L_dd_to_di) || defined (L_td_to_di)
      if (decNumberIsNegative(&n2))
      if (decNumberIsNegative(&n2))
        /* Find a defined constant that will work here.  */
        /* Find a defined constant that will work here.  */
        return (-9223372036854775807LL - 1LL);
        return (-9223372036854775807LL - 1LL);
      else
      else
        /* Find a defined constant that will work here.  */
        /* Find a defined constant that will work here.  */
        return 9223372036854775807LL;
        return 9223372036854775807LL;
#elif defined (L_sd_to_usi) || defined (L_dd_to_usi) || defined (L_td_to_usi)
#elif defined (L_sd_to_usi) || defined (L_dd_to_usi) || defined (L_td_to_usi)
      return UINT_MAX;
      return UINT_MAX;
#elif defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
#elif defined (L_sd_to_udi) || defined (L_dd_to_udi) || defined (L_td_to_udi)
        /* Find a defined constant that will work here.  */
        /* Find a defined constant that will work here.  */
      return 18446744073709551615ULL;
      return 18446744073709551615ULL;
#endif
#endif
    }
    }
  /* Get a string, which at this point will not include an exponent.  */
  /* Get a string, which at this point will not include an exponent.  */
  decNumberToString (&n1, buf);
  decNumberToString (&n1, buf);
  /* Ignore the fractional part.  */
  /* Ignore the fractional part.  */
  pos = strchr (buf, '.');
  pos = strchr (buf, '.');
  if (pos)
  if (pos)
    *pos = 0;
    *pos = 0;
  /* Use a C library function to convert to the integral type.  */
  /* Use a C library function to convert to the integral type.  */
  return STR_TO_INT (buf, NULL, 10);
  return STR_TO_INT (buf, NULL, 10);
}
}
#endif
#endif
 
 
#if defined (L_si_to_sd) || defined (L_si_to_dd) || defined (L_si_to_td) \
#if defined (L_si_to_sd) || defined (L_si_to_dd) || defined (L_si_to_td) \
  || defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td) \
  || defined (L_di_to_sd) || defined (L_di_to_dd) || defined (L_di_to_td) \
  || defined (L_usi_to_sd) || defined (L_usi_to_dd) || defined (L_usi_to_td) \
  || defined (L_usi_to_sd) || defined (L_usi_to_dd) || defined (L_usi_to_td) \
  || defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td)
  || defined (L_udi_to_sd) || defined (L_udi_to_dd) || defined (L_udi_to_td)
DFP_C_TYPE
DFP_C_TYPE
INT_TO_DFP (INT_TYPE i)
INT_TO_DFP (INT_TYPE i)
{
{
  DFP_C_TYPE f;
  DFP_C_TYPE f;
  IEEE_TYPE s;
  IEEE_TYPE s;
  char buf[BUFMAX];
  char buf[BUFMAX];
  decContext context;
  decContext context;
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  context.round = CONTEXT_ROUND;
  context.round = CONTEXT_ROUND;
 
 
  /* Use a C library function to get a floating point string.  */
  /* Use a C library function to get a floating point string.  */
  sprintf (buf, INT_FMT ".0", CAST_FOR_FMT(i));
  sprintf (buf, INT_FMT ".0", CAST_FOR_FMT(i));
  /* Convert from the floating point string to a decimal* type.  */
  /* Convert from the floating point string to a decimal* type.  */
  FROM_STRING (&s, buf, &context);
  FROM_STRING (&s, buf, &context);
  IEEE_TO_HOST (s, &f);
  IEEE_TO_HOST (s, &f);
  if (CONTEXT_TRAPS && (context.status & DEC_Inexact) != 0)
  if (CONTEXT_TRAPS && (context.status & DEC_Inexact) != 0)
    DFP_RAISE (DEC_Inexact);
    DFP_RAISE (DEC_Inexact);
  return f;
  return f;
}
}
#endif
#endif
 
 
#if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \
#if defined (L_sd_to_sf) || defined (L_dd_to_sf) || defined (L_td_to_sf) \
 || defined (L_sd_to_df) || defined (L_dd_to_df) || defined (L_td_to_df) \
 || defined (L_sd_to_df) || defined (L_dd_to_df) || defined (L_td_to_df) \
 || ((defined (L_sd_to_xf) || defined (L_dd_to_xf) || defined (L_td_to_xf)) \
 || ((defined (L_sd_to_xf) || defined (L_dd_to_xf) || defined (L_td_to_xf)) \
     && LIBGCC2_HAS_XF_MODE)
     && LIBGCC2_HAS_XF_MODE)
BFP_TYPE
BFP_TYPE
DFP_TO_BFP (DFP_C_TYPE f)
DFP_TO_BFP (DFP_C_TYPE f)
{
{
  IEEE_TYPE s;
  IEEE_TYPE s;
  char buf[BUFMAX];
  char buf[BUFMAX];
 
 
  HOST_TO_IEEE (f, &s);
  HOST_TO_IEEE (f, &s);
  /* Write the value to a string.  */
  /* Write the value to a string.  */
  TO_STRING (&s, buf);
  TO_STRING (&s, buf);
  /* Read it as the binary floating point type and return that.  */
  /* Read it as the binary floating point type and return that.  */
  return STR_TO_BFP (buf, NULL);
  return STR_TO_BFP (buf, NULL);
}
}
#endif
#endif
 
 
#if defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td) \
#if defined (L_sf_to_sd) || defined (L_sf_to_dd) || defined (L_sf_to_td) \
 || defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td) \
 || defined (L_df_to_sd) || defined (L_df_to_dd) || defined (L_df_to_td) \
 || ((defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)) \
 || ((defined (L_xf_to_sd) || defined (L_xf_to_dd) || defined (L_xf_to_td)) \
     && LIBGCC2_HAS_XF_MODE)
     && LIBGCC2_HAS_XF_MODE)
DFP_C_TYPE
DFP_C_TYPE
BFP_TO_DFP (BFP_TYPE x)
BFP_TO_DFP (BFP_TYPE x)
{
{
  DFP_C_TYPE f;
  DFP_C_TYPE f;
  IEEE_TYPE s;
  IEEE_TYPE s;
  char buf[BUFMAX];
  char buf[BUFMAX];
  decContext context;
  decContext context;
 
 
  decContextDefault (&context, CONTEXT_INIT);
  decContextDefault (&context, CONTEXT_INIT);
  context.round = CONTEXT_ROUND;
  context.round = CONTEXT_ROUND;
 
 
  /* Use a C library function to write the floating point value to a string.  */
  /* Use a C library function to write the floating point value to a string.  */
#ifdef BFP_VIA_TYPE
#ifdef BFP_VIA_TYPE
  /* FIXME: Is there a better way to output an XFmode variable in C?  */
  /* FIXME: Is there a better way to output an XFmode variable in C?  */
  sprintf (buf, BFP_FMT, (BFP_VIA_TYPE) x);
  sprintf (buf, BFP_FMT, (BFP_VIA_TYPE) x);
#else
#else
  sprintf (buf, BFP_FMT, x);
  sprintf (buf, BFP_FMT, x);
#endif
#endif
 
 
  /* Convert from the floating point string to a decimal* type.  */
  /* Convert from the floating point string to a decimal* type.  */
  FROM_STRING (&s, buf, &context);
  FROM_STRING (&s, buf, &context);
  IEEE_TO_HOST (s, &f);
  IEEE_TO_HOST (s, &f);
  if (CONTEXT_TRAPS && (context.status & DEC_Inexact) != 0)
  if (CONTEXT_TRAPS && (context.status & DEC_Inexact) != 0)
    DFP_RAISE (DEC_Inexact);
    DFP_RAISE (DEC_Inexact);
  return f;
  return f;
}
}
#endif
#endif
 
 
#if defined (L_unord_sd) || defined (L_unord_dd) || defined (L_unord_td)
#if defined (L_unord_sd) || defined (L_unord_dd) || defined (L_unord_td)
CMPtype
CMPtype
DFP_UNORD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
DFP_UNORD (DFP_C_TYPE arg_a, DFP_C_TYPE arg_b)
{
{
  decNumber arg1, arg2;
  decNumber arg1, arg2;
  IEEE_TYPE a, b;
  IEEE_TYPE a, b;
 
 
  HOST_TO_IEEE (arg_a, &a);
  HOST_TO_IEEE (arg_a, &a);
  HOST_TO_IEEE (arg_b, &b);
  HOST_TO_IEEE (arg_b, &b);
  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&a, &arg1);
  TO_INTERNAL (&b, &arg2);
  TO_INTERNAL (&b, &arg2);
  return (decNumberIsNaN (&arg1) || decNumberIsNaN (&arg2));
  return (decNumberIsNaN (&arg1) || decNumberIsNaN (&arg2));
}
}
#endif /* L_unord_sd || L_unord_dd || L_unord_td */
#endif /* L_unord_sd || L_unord_dd || L_unord_td */
 
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.